Navier-Stokes equations: the normalization map, statistical solutions and fluid dynamics

Ciprian Foias, Luan Hoang*, Basil Nicolaenko

*School of Mathematics, University of Minnesota
www.math.umn.edu/~lthoang/
lthoang@math.umn.edu

Nonlinear Dynamics and PDE Mini-Conference
Arizona State University, Tempe, AZ
November 19, 2007
Outline

1. Introduction
2. Properties of the normalization map
3. Asymptotic behavior of the mean flows
4. Beltrami flows
5. Generic properties
6. Applications to decaying turbulence
Physical quantities in studies of Fluid Dynamics:

- the kinetic energy/mass

\[\mathcal{E}(t) = \frac{1}{2} \int_{\Omega} |u(x, t)|^2 dx, \]

- the dissipation rate of energy/mass

\[\mathcal{F}(t) = \int_{\Omega} |\omega(x, t)|^2 dx, \quad \omega = \nabla \times u. \]

- and the helicity/mass

\[\mathcal{H}(t) = \int_{\Omega} u(x, t) \cdot \omega(x, t) dx. \]

Their ensemble averages \(\langle \mathcal{E}(t) \rangle, \langle \mathcal{F}(t) \rangle \) and \(\langle \mathcal{H}(t) \rangle \).
Turbulence!

GOAL: Use the analysis of Navier–Stokes equations to understand the above quantities.
Navier-Stokes equations (NSE) in \mathbb{R}^3 with a potential body force

\[
\begin{align*}
\frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \Delta u &= -\nabla p - \nabla \phi, \\
\text{div } u &= 0, \\
u(x, 0) &= u^0(x),
\end{align*}
\]

$\nu > 0$ is the kinematic viscosity,

$u = (u_1, u_2, u_3)$ is the unknown velocity field,

$p \in \mathbb{R}$ is the unknown pressure,

ϕ is the potential of the body force,

u^0 is the initial velocity.
Let $L > 0$ and $\Omega = (0, L)^3$. The L-periodic solutions:

$$u(x + Le_j) = u(x) \text{ for all } x \in \mathbb{R}^3, j = 1, 2, 3,$$

where $\{e_1, e_2, e_3\}$ is the canonical basis in \mathbb{R}^3.

Zero average condition

$$\int_{\Omega} u(x) dx = 0,$$

Throughout $L = 2\pi$ and $\nu = 1$.
Let \mathcal{V} be the set of \mathbb{R}^3-valued L-periodic trigonometric polynomials which are divergence-free and satisfy the zero average condition.

We define

$$H = \text{closure of } \mathcal{V} \text{ in } L^2(\Omega)^3 = H^0(\Omega)^3,$$

$$\mathcal{V} = \text{closure of } \mathcal{V} \text{ in } H^1(\Omega)^3,$$

$$\mathcal{D}_A = \mathcal{V} \cap H^2(\Omega)^3.$$

Norm on H: $|u| = \|u\|_H = \|u\|_{L^2(\Omega)}$,
Norm on \mathcal{V}: $\|u\| = \|u\|_V = \|\nabla u\|_{L^2(\Omega)} = \|\nabla \times u\|_{L^2(\Omega)}$,
Norm on \mathcal{D}_A: $\|\Delta u\|_{L^2(\Omega)}$.

The Stokes operator: $Au = -\Delta u$ for all $u \in \mathcal{D}_A$.

Spectrum of A: $\sigma(A) = \{|k|^2, 0 \neq k \in \mathbb{Z}^3\}$.

If $N \in \sigma(A)$, denote by R_NH the eigenspace of A corresponding to N.
Otherwise, $R_NH = \{0\}$.

The bilinear mapping:

$$B(u, v) = P_L(u \cdot \nabla v) \text{ for all } u, v \in D_A.$$

P_L is the Leray projection from $L^2(\Omega)$ onto H.

The functional form of the NSE:

$$\frac{du(t)}{dt} + Au(t) + B(u(t), u(t)) = 0, \quad t > 0,$$

$$u(0) = u^0.$$
Recall that for each \(u_0 \in H \), there exists a Leray-Hopf weak solution \(u(t) \) of the Navier–Stokes equations with \(u(0) = u_0 \). This weak solution satisfies

\[
 u \in C([0, \infty), H_{\text{weak}}) \cap L^\infty((0, \infty), H) \cap L^2((0, \infty), V).
\]

Additionally, let \(G = G(u(\cdot)) \) be the set of \(t_0 \geq 0 \) such that

\[
 \lim_{\tau \downarrow 0} \| u(t_0 + \tau) - u(t_0) \|_H = 0,
\]

then \(0 \in G \), the Lebesgue measure of \([0, \infty) \setminus G \) is zero and for any \(t_0 \in G \)

\[
 \| u(t) \|_H^2 + 2 \int_{t_0}^{t} \| u(s) \|_V^2 \, ds \leq \| u(t_0) \|_H^2, \quad t \geq t_0.
\]

Denote by \(\Sigma \) the set of the Leray-Hopf weak solutions of the Navier–Stokes equations on \([0, \infty)\). Hence \(\Sigma \subset C([0, \infty), H_{\text{weak}}) \).
We denote by T the class of test functionals

$$
\Phi(u) = \phi(\langle u, g_1 \rangle, \langle u, g_2 \rangle, \ldots, \langle u, g_k \rangle), \quad u \in H,
$$

for some $k > 0$, where ϕ is a C^1 function on \mathbb{R}^k with compact support and g_1, g_2, \ldots, g_k are in V.

A family $\{\mu_t, t \geq 0\}$ of Borel probability measures on H is called a statistical solution of the Navier–Stokes equations with the initial data μ_0 if

- the initial kinetic energy $\int_H \|u\|^2_H d\mu_0(u)$ is finite;
- the function $t \mapsto \int_H \varphi(u) d\mu_t(u)$ is measurable for every bounded and continuous function φ on H;
- the function $t \mapsto \int_H \|u\|^2_H d\mu_t(u)$ belongs to $L^\infty_{loc}([0, \infty))$;
the function \(t \mapsto \int_H \| u \|_V^2 d\mu_t(u) \) belongs to \(L^1_{loc}([0, \infty)) \);

- \(\mu_t \) satisfies the Liouville equation

\[
\int_H \Phi(u) d\mu_t(u) = \int_H \Phi(u) d\mu_0(u) \\
- \int_0^t \int_H \langle Au + B(u, u), \Phi'(u) \rangle d\mu_s(u) ds,
\]

for all \(t \geq 0 \) and \(\Phi \in \mathcal{T} \);

- the following energy inequality holds

\[
\int_H \| u \|_H^2 d\mu_t(u) + 2 \int_0^t \int_H \| u \|_V^2 d\mu_s(u) ds \leq \int_H \| u \|_H^2 d\mu_0(u).
\]
A statistical solution \(\{ \mu_t, t \geq 0 \} \) is called a Vishik-Fursikov (VF) statistical solution if there is a Borel probability measure \(\hat{\mu} \), called the Vishik-Fursikov (VF) measure, on the space \(C([0, \infty), H_{\text{weak}}) \), such that

- \(\hat{\mu}(\Sigma) = 1 \);
- for each \(t \geq 0 \), \(\mu_t \) is the projection measure \(Pr_t \hat{\mu} \) on \(H \), i.e.

\[
\int_H \Phi(u) d\mu_t(u) = \int_\Sigma \Phi(v(t)) d\hat{\mu}(v(\cdot)),
\]

for all \(\Phi \in C(H_{\text{weak}}) \).
The existence of the statistical solutions

We summarize the results by Foias and Vishik-Fursikov.

Theorem

Let m be a Borel probability measure on H such that $\int_H \|u\|^2_H dm(u)$ is finite. Then there exists a Vishik-Fursikov statistical solution $\{\mu_t, t \geq 0\}$ with $\mu_0 = m$.

Note: The Vishik-Fursikov statistical solutions and measures are not necessarily unique.
Denote by \mathcal{R} the set of all initial data $u^0 \in \mathcal{V}$ such that the solution is regular for all times $t > 0$.

For $u^0 \in \mathcal{R}$, the solution $u(t) = u(t, u^0)$ has the asymptotic expansion of

$$u(t) \sim q_1(t)e^{-t} + q_2(t)e^{-2t} + q_3(t)e^{-3t} + \ldots,$$

where $q_j(t) = W_j(t, u^0)$ is a polynomial in t of degree at most $(j - 1)$ and with values in \mathcal{V}.

One has for $N \in \mathbb{N}$ and $m \in \mathbb{N}$ that

$$\|u(t) - \sum_{j=1}^{N} q_j(t)e^{-jt}\|_{H^m(\Omega)} = O(e^{-(N+\varepsilon)t})$$

as $t \to \infty$, for some $\varepsilon = \varepsilon_{N,m} > 0$.
Normalization map

Let

\[W(u^0) = \left(W_1(u^0), W_2(u^0), W_3(u^0), \ldots \right), \]

where \(W_j(u^0) = R_j q_j(0) \), for \(j = 1, 2, 3, \ldots \).

Here we focus on the first component

\[W_1(u^0) = \lim_{t \to \infty} e^t u(t) = \lim_{t \to \infty} e^t R_1 u(t). \]

Lemma

Let \(u(\cdot) \in \Sigma \) and \(t_0 \geq 0 \) such that \(u(t_0) \in \mathcal{R} \). Then

\[e^t W_1(u(t)) = e^{t_0} W_1(u(t_0)), \quad t \geq t_0. \]
Properties of the normalization map

Definition

Let $u(\cdot) \in \Sigma$. We define

$$W_1(u(\cdot)) = e^{t_0} W_1(u(t_0)),$$

where $t_0 \geq 0$ such that $u(t_0) \in \mathcal{R}$.

One also has

$$W_1(u(\cdot)) = \lim_{t \to \infty} e^t u(t) = \lim_{t \to \infty} e^t R_1 u(t).$$

where the limits are taken in either H or V.

Note: If $u_0 = u(0) \in \mathcal{R}$, then $t_0 = 0$ and $W_1(u(\cdot)) = W_1(u_0)$. Thus $W_1(u(\cdot))$ is an extension of $W_1(u_0), u_0 \in \mathcal{R}$.
Properties of the normalization map (cont.)

Let \(u(\cdot) \in \Sigma \). Then

\[
\| W_1(u(\cdot)) \|_H \leq e^t \| u(t) \|_H, \quad t \in \mathcal{G}(u(\cdot)).
\]

In particular,

\[
\| W_1(u(\cdot)) \|_H \leq \| u(0) \|_H.
\]

For \(t \geq 0 \),

\[
\| W_1(u(\cdot)) \|_H^2 \leq \frac{1}{T} \int_t^{t+T} e^{2\tau} \| u(\tau) \|_H^2 d\tau \leq \| u(0) \|_H^2,
\]

\[
\int_t^{t+T} \| u(\tau) \|_V^2 d\tau \leq \frac{e^{-2t}}{2} \| u(0) \|_H^2 - \frac{e^{-2(t+T)}}{2} \| W_1(u(\cdot)) \|_H^2.
\]

\[
\| R_1 u(0) - W_1(u(\cdot)) \|_H \leq C_1 \| u(0) \|_H^2.
\]
Asymptotic behavior of the mean flows.

Proposition

\[
\lim_{t \to \infty} e^{2t} \int_{H} \| u \|_{H}^2 d\mu_t(u) = \int_{\Sigma} \| W_1(u(\cdot)) \|_{H}^2 d\hat{\mu}(u(\cdot)).
\]

Theorem

We have for any \(T > 0 \) that

\[
\lim_{t \to \infty} \frac{e^{2t}}{T} \int_{t}^{t+T} \int_{H} \| u \|_{H}^2 d\mu_s(u) ds
\]

\[
= 1 - e^{-2T} \int_{\Sigma} \| W_1(u(\cdot)) \|_{H}^2 d\hat{\mu}(u(\cdot)),
\]
Theorem (continued)

\[\lim_{t \to \infty} \frac{e^{2t}}{T} \int_t^{t+T} \int_H \|u\|_V^2 d\mu_s(u) ds = \frac{1 - e^{-2T}}{2T} \int_{\Sigma} \|W_1(u(\cdot))\|_H^2 d\hat{\mu}(u(\cdot)), \]

and

\[\lim_{t \to \infty} \frac{e^{2t}}{T} \int_t^{t+T} \int_H \mathcal{H}(u) d\mu_s(u) ds = \frac{1 - e^{-2T}}{2T} \int_{\Sigma} \mathcal{H}(W_1(u(\cdot))) d\hat{\mu}(u(\cdot)). \]
Proposition

For any $T > 0$ and $t \geq 0$,

$$e^{-2(t+T)} \int_{\Sigma} \|W_1 u(\cdot)\|_{H}^2 d\hat{\mu}(u(\cdot)) \leq \frac{1}{T} \int_{t}^{t+T} \int_{H} \|u\|_{H}^2 d\mu_\tau(u) d\tau$$

$$\leq e^{-2t} \int_{H} \|u\|_{H}^2 d\mu_0(u),$$

and

$$e^{-2(t+T)} \int_{\Sigma} \|W_1 u(\cdot)\|_{H}^2 d\hat{\mu}(u(\cdot)) \leq \frac{1}{T} \int_{t}^{t+T} \int_{H} \|u\|_{H}^2 d\mu_\tau(u) d\tau$$

$$\leq \frac{e^{-2t}}{2T} \int_{H} \|u\|_{H}^2 d\mu_0(u) - \frac{e^{-2(t+T)}}{2T} \int_{\Sigma} \|W_1(u(\cdot))\|_{H}^2 d\hat{\mu}(u(\cdot)).$$
A C^1 vector field $u(x)$ in \mathbb{R}^3 is said to be Beltrami if
\[
\nabla \times u(x) = \alpha(x)u(x), \quad x \in \mathbb{R}^3, \text{ some } \alpha(x) \in \mathbb{R}.
\]

If $u = u(\cdot)$ is an eigenfunction of the curl operator \mathcal{C}, then it is Beltrami with $\alpha \equiv \pm \sqrt{n}$, for some $n \in \sigma(A)$.

Proposition

Let $u \in R_nH \setminus \{0\}$ where $n \in \sigma(A)$. Then u is Beltrami if and only if u is an eigenfunction of the curl operator, i.e., $\mathcal{C}u = \sqrt{n}u$ or $\mathcal{C}u = -\sqrt{n}u$.

Notation: $R_n^{\pm}H$ is the eigenspace of the curl operator corresponding to $\pm \sqrt{n}$.
Asymptotic Beltrami flows

Definition

We say that a time dependent vector field \(u(x, t) \) is asymptotically Beltrami if there are \(\alpha(x, t) \in \mathbb{R} \) such that

\[
\lim_{t \to \infty} \frac{\nabla \times u(x, t) - \alpha(x, t)u(x, t)}{|u(x, t)|} = 0, \text{ a.e. on } \mathbb{R}^3.
\]

Let \(u(\cdot) \in \Sigma \) such that there is \(t_0 \geq 0, u(t_0) \in \mathcal{R} \setminus \{0\} \). Denote

\[
n_\ast = n_\ast (u(\cdot)) = \lim_{t \to \infty} \frac{\|u(t)\|_V^2}{\|u(t)\|_H^2}.
\]

Define

\[
W_\ast (u(\cdot)) = e^{n_\ast t_0} W_{n_\ast} (u(t_0)) = \lim_{t \to \infty} e^{n_\ast t} u(t),
\]

where the limit is taken in either \(H \) or \(V \).
Theorem

Let \(u(\cdot) \in \Sigma \) such that \(u(t_0) \in \mathcal{R} \setminus \{0\} \), for some \(t_0 > 0 \). The following are equivalent

1. \(u(t) \) is asymptotically Beltrami.
2. There is a subsequence \(t_k \uparrow \infty \) and \(\alpha(x, t_k) \in \mathbb{R} \) such that
 \[
 \lim_{k \to \infty} \frac{\nabla \times u(x, t_k) - \alpha(x, t_k)u(x, t_k)}{|u(x, t_k)|} = 0,
 \]
a.e. on \(\mathbb{R}^3 \).
3. \(W_*(u(\cdot)) \) is a Beltrami vector field.
4. For \(n_* = n_*(u(\cdot)) \),
 \[
 \lim_{t \to \infty} \frac{\|\mathcal{C}u(t) - \varepsilon \sqrt{n_*}u(t)\|_{L^2(\Omega)}}{\|u(t)\|_{L^2(\Omega)}} = 0,
 \]
 where \(\varepsilon = 1 \) or \(-1\).
Definition

Let $\hat{\mu}$ be a Vishik-Fursikov measure on Σ. We say that the $\hat{\mu}$ is asymptotically Beltrami if almost surely every solution $u(\cdot)$ in Σ is asymptotic Beltrami; more precisely,

$$\hat{\mu}\left(\{u(\cdot) \in \Sigma : u(\cdot) \text{ is asymptotically Beltrami}\}\right) = 1.$$

The necessary condition for $\hat{\mu}$ to be asymptotically Beltrami is that

$$\hat{\mu}\left(\{u(\cdot) \in \Sigma : |R_1^+ W_1(u(\cdot))| |R_1^- W_1(u(\cdot))| = 0\}\right) = 1,$$

equivalently,

$$\int_{\Sigma} |R_1^+ W_1(u(\cdot))| |R_1^- W_1(u(\cdot))| d\hat{\mu}(u(\cdot)) = 0,$$

or

$$\int_{\Sigma} |R_1^+ W_1(u(\cdot))| + |R_1^- W_1(u(\cdot))| - |W_1(u(\cdot))| d\hat{\mu}(u(\cdot)) = 0.$$
Proposition

If \(\hat{\mu} \) is a VF measure with initial data \(\mu \) satisfying

\[
\int_H \left[|R_1^+ u| + |R_1^- u| - |R_1 u| \right] d\mu(u) > 3c_5 \int_H |u|^2 d\mu(u),
\]

then \(\hat{\mu} \) is not asymptotically Beltrami.

Theorem

There exists a VF measure \(\hat{\mu} \) with initial Gaussian probability measure such that \(\hat{\mu} \) is not asymptotically Beltrami.
Fast decaying mean flows

We study the case when

\[\int_{\Sigma} \| W_1(u(\cdot)) \|^2_H d\hat{\mu}(u(\cdot)) = 0. \]

Denote

\[\mathcal{M}_1 = \{ u \in \mathcal{R} : W_1(u) = 0 \}. \]

Let

\[\mathcal{N}_1 = \{ u_0 \in H : \exists u(\cdot) \in \Sigma, u(0) = u_0, u(t) \in \mathcal{M}_1, t \geq t_0(u(\cdot)) \}, \]

\[\Sigma_1 = \{ u(\cdot) \in \Sigma : u(t) \in \mathcal{M}_1, t \geq t_0, \text{ some } t_0 \text{ depending on } u(\cdot) \}. \]
Proposition

\[
\int_{\Sigma} \| W_1(u(\cdot)) \|^2_H d\hat{\mu}(u(\cdot)) = 0 \text{ if and only if } \hat{\mu}(\Sigma_1) = 1,
\]
equivalently,

\[
\int_{\Sigma} \| W_1(u(\cdot)) \|^2_H d\hat{\mu}(u(\cdot)) > 0 \text{ if and only if } \hat{\mu}(\Sigma_1) < 1,
\]

Corollary

If \(\int_{\Sigma} \| W_1(u(\cdot)) \|^2_H d\hat{\mu}(u(\cdot)) = 0 \) then \(\mu_0(\mathcal{N}_1) = 1 \).
Generic properties

Let $\hat{\mu}$ and $\tilde{\mu}$ be two Borel measures on Σ. We define $d_1(\hat{\mu}, \tilde{\mu})$ by the total variation of the measure $\hat{\mu} - \tilde{\mu}$, that is,

$$d_1(\hat{\mu}, \tilde{\mu}) = \sup \left\{ \sum_{j=1}^{N} |\hat{\mu}(E_j) - \tilde{\mu}(E_j)| \right\},$$

where the supremum is taken over all Borel partitions $\{E_1, E_2, \ldots, E_N\}$, $N \in \mathbb{N}$, of Σ.

Let \mathcal{M} be the set of all VF measures and define the following metric in \mathcal{M}:

$$d(\hat{\mu}, \tilde{\mu}) = d_1(\hat{\mu}, \tilde{\mu}) + \int_{\Sigma} |u(0)|^2 d|\hat{\mu} - \tilde{\mu}|(u(\cdot)),$$

where $|\hat{\mu} - \tilde{\mu}|$ is the total variation measure of the signed measure $(\hat{\mu} - \tilde{\mu})$.

Proposition

The metric space (\mathcal{M}, d) is complete.
A property $P(\hat{\mu})$ of a VF measure $\hat{\mu}$ is called \textit{generic} if the set of all VF measures $\hat{\mu}$ enjoying the property $P(\hat{\mu})$ contains an intersection of dense open sets in \mathcal{M}.

Theorem

The set \mathcal{M}_E of all $\hat{\mu} \in \mathcal{M}$ such that

$$\int_\Sigma |W_1(u(\cdot))|^2 d\hat{\mu}(u(\cdot)) > 0$$

(1)

holds is open and dense in \mathcal{M}. Subsequently, (1) is generic.

Denote by \mathcal{M}_H the set of all $\hat{\mu} \in \mathcal{M}$ such that

$$\int_\Sigma H(W_1(u(\cdot))) d\hat{\mu}(u(\cdot)) \neq 0.$$

(2)

holds.

Theorem

The set \mathcal{M}_H is open and dense in \mathcal{M}. Subsequently, (2) is generic.
The genericity of the VF measures which are asymptotically Beltrami: let

\[M_B = \{ \hat{\mu} \in \mathcal{M} : \hat{\mu} \text{ is asymptotically Beltrami} \}, \]

\[\mathcal{N}_B = \left\{ \hat{\mu} \in \mathcal{M} : \int_{\Sigma} |R_1^+ W_1(u(\cdot))| \ |R_1^- W_1(u(\cdot))| d\hat{\mu}(u(\cdot)) > 0 \right\}. \]

Note: \(\mathcal{N}_B \subset \mathcal{M} \setminus M_B \).

Theorem

The set \(\mathcal{N}_B \) is open and dense in \(\mathcal{M} \). Consequently, the property “\(\hat{\mu} \) is not asymptotically Beltrami” for a VF measure \(\hat{\mu} \) is generic.

Idea

Let \(\hat{\mu}, \hat{m} \in \mathcal{M}, \ \varepsilon \in (0, 1) \) and \(\check{\mu} = (1 - \varepsilon)\hat{\mu} + \varepsilon \hat{m} \). Then \(\check{\mu} \in \mathcal{M} \) and

\[d(\check{\mu}, \hat{\mu}) \leq 2\varepsilon + \varepsilon \left\{ \int_{\Sigma} |u(0)|^2 d\hat{\mu}(u(\cdot)) + \int_{\Sigma} |u(0)|^2 d\hat{m}(u(\cdot)) \right\}. \]
Kolmogorov’s empirical theory of turbulence: let

\[U^2 = \frac{1}{L^3} \langle \int_{[0,L]^3} |\mathbf{u}(x, t)|^2 \, dx \rangle \quad \text{and} \quad \epsilon = \frac{\nu}{L^3} \langle \int_{[0,L]^3} |\nabla \times \mathbf{u}(x, t)|^2 \, dx \rangle, \]

where \(\langle \cdot \rangle \) denotes an ensemble average. These two quantities are connected by

\[U^2 \sim \int_{k_i}^{k_d} S(k) \, dk, \quad \epsilon \sim \nu \int_{k_i}^{k_d} k^2 S(k) \, dk, \]

where \(S(k) \) is the energy spectrum and \([k_i, k_d]\) is so called the “inertial range” of the turbulent flows. Assume \(k_i \sim k_0 = \sqrt{\lambda_1} = 2\pi / L, \) \(k_d \sim (\epsilon / \nu^3)^{1/4} \) and \(S(k) \sim \epsilon^{2/3} k^{-5/3} \) (based on the dimensional analysis), we obtain

\[U^2 \sim \epsilon^{2/3} \int_{k_i}^{k_d} k^{-5/3} \, dk \sim \epsilon^{2/3} k_i^{-2/3} \sim (L\epsilon)^{2/3}. \]
Let \((\mu_t)_{t \geq 0}\) be a VF statistical solution to the Navier–Stokes equations with the VF measure \(\hat{\mu}\) and \(T > 0\). We define for \(t \geq 0\)

\[
U_t^2 = \lambda_1^{3/2} \frac{1}{T} \int_t^{t+T} \int_H |u|^2 d\mu_\tau(u) d\tau,
\]

and

\[
\epsilon_t = \nu \lambda_1^{3/2} \frac{1}{T} \int_t^{t+T} \int_H \|u\|^2 d\mu_\tau(u) d\tau,
\]

The first component of the normalization map is defined now by

\[
W_1(u(\cdot)) = \lim_{t \to \infty} e^{\nu \lambda_1 t} u(t),
\]

where the limit is taken in any Sobolev norms.
Let

\[\alpha_0^2 = \lambda_1^{3/2} \int_H |u|^2 d\mu_0(u) \text{ and } \alpha_1^2 = \lambda_1^{3/2} \int_{\Sigma} |W_1(u(\cdot))|^2 d\hat{\mu}(u(\cdot)). \]

Proposition

One has for each \(T > 0 \) that

\[
\lim_{t \to \infty} e^{2\nu \lambda_1 t} U_t^2 = \frac{1 - e^{-2T}}{2T} \alpha_1^2,
\]

\[
\lim_{t \to \infty} e^{2\nu \lambda_1 t} \epsilon_t = \frac{1 - e^{-2T}}{2T} \alpha_1^2.
\]

If Kolmogorov’s theory applies to \(U_t^2 \) and \(\epsilon_t \) then there are absolute positive constants \(c_K \) and \(C_K \) such that

\[
c_K \leq \frac{U_t^2}{(L/2\pi)^2/3 \epsilon_t^{2/3}} = \frac{\lambda_1^{1/3} U_t^2}{\epsilon_t^{2/3}} \leq C_K.
\]
Proposition

For $T > 0$ and $t \geq 0$, one has

\[e^{-2\nu\lambda_1(t+T)}\alpha_1^2 \leq U_t^2 \leq e^{-2\nu\lambda_1 t}\alpha_0^2, \]

\[\nu\lambda_1 U_t^2 \leq \epsilon_t \leq \frac{e^{-2\nu\lambda_1 t}}{2T}(\alpha_0^2 - e^{-2\nu\lambda_1 T}\alpha_1^2). \]

Consequently, let $Q = \frac{\alpha_1^2}{\alpha_0^2}$, one has for $t \geq 0$ that

\[\left\{ \frac{2\nu\lambda_1 T}{Q^{-1} e^{2\nu\lambda_1 T} - 1} \right\}^{2/3} \left\{ \frac{e^{-2\nu\lambda_1 t}\alpha_1^2}{\lambda_1 \nu^2} \right\}^{1/3} \leq \frac{\lambda_1^{1/3} U_t^2}{\epsilon_t^{2/3}} \leq \left\{ \frac{e^{-2\nu\lambda_1 t}\alpha_0^2}{\lambda_1 \nu^2} \right\}^{1/3}. \]
Corollary

Kolmogorov’s universal features may only be valid on the time interval \([t_K, T_K]\) where

\[
t_K = \frac{1}{2\nu \lambda_1} \left(\log \frac{\alpha_0^2}{\lambda_1 \nu^2} - 3 \log C_K - 2 \log \frac{Q^{-1} e^{2\nu \lambda_1 T}}{2\nu \lambda_1 T} - 1 \right),
\]

\[
T_K = \frac{1}{2\nu \lambda_1} \left(\log \frac{\alpha_0^2}{\lambda_1 \nu^2} - 3 \log c_K \right).
\]

Example

Let \(L = 2\pi\) (\(\lambda_1 = 1\)), \(\nu = 1\), \(M > 0\), and \(\theta \in (0, 1)\). There is a VF measure \(\hat{\mu}\) with initial Gaussian data such that \(\alpha_0^2 \geq M\) and \(\theta \leq Q \leq 1\), hence one obtains

\[
t_K \geq \frac{1}{2} \left(\log M - 3 \log C_K - 2 \log \frac{\theta^{-1} e^{2T}}{2T} - 1 \right),
\]

\[
T_K = \frac{1}{2} \{\log(\alpha_0^2) - 3 \log c_K\}.
\]