Chapter 2

Differential Calculus

2.1 Differentiability in one variable

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$. We say $f^{\prime}(a) \in \mathbb{R}$ is the derivative of f at a if

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a) . \tag{2.1}
\end{equation*}
$$

Note that $f^{\prime}(a)$ is the slope of the tangent line to the graph of f at point ($a, f(a)$).

We now look at (2.1) from another point of view. Let $m=f^{\prime}(a)$. From (2.1), we have

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)-m(x-a)}{x-a}=\lim _{x \rightarrow a} \frac{E(x-a)}{x-a}=0
$$

where $E(x-a)=f(x)-l(x)$ is the difference between $f(x)$ and its linear approximation $l(x)$, here $l(x)=m(x-a)+f(a)$ is the "linear" equation for the tangent line.

Let $h=x-a$, we have $f(a+h)=f(a)+m h+E(h)$, and $E(h) / h \rightarrow 0$ as $h \rightarrow 0$. This leads to the following definition

Definition 2.1. f is differentiable at a if there is $m \in \mathbb{R}$ such that

$$
\begin{equation*}
f(a+h)=f(a)+m h+E(h), \text { where } \lim _{h \rightarrow 0} \frac{E(h)}{h}=0 . \tag{2.2}
\end{equation*}
$$

Note that $m=f^{\prime}(a)$ is unique when it exists.
Let $S \subset \mathbb{R}$, then f is differentiable on S if it is differentiable at every point of S.

Example 2.2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a constant function then $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.

If $f(x)=c x$ where c is a fixed number and $x \in \mathbb{R}$, then $f^{\prime}(x)=c$ for all x.

Remark 2.3. If f is differentiable at a then f is continuous at a.
Proposition 2.4. Let $a \in \mathbb{R}$ and $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at a. Then (i) $f \pm g$ are differentiable at a and

$$
\begin{equation*}
(f \pm g)^{\prime}(a)=f^{\prime}(a) \pm g^{\prime}(a) \tag{2.3}
\end{equation*}
$$

(ii) $f g$ is differentiable at a and

$$
\begin{equation*}
(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a) \tag{2.4}
\end{equation*}
$$

(iii) If $g(a) \neq 0$, then (f / g) is differentiable at a and

$$
\begin{equation*}
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-g^{\prime}(a) f(a)}{g^{2}(a)} \tag{2.5}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left(\frac{1}{g}\right)^{\prime}(a)=-\frac{g^{\prime}(a)}{g^{2}(a)} \tag{2.6}
\end{equation*}
$$

Proof. We prove, for instance (ii). Suppose

$$
\begin{aligned}
& f(a+h)=f(a)+f^{\prime}(a) h+E_{1}(h), \text { where } \lim _{h \rightarrow 0} \frac{E_{1}(h)}{h}=0, \\
& g(a+h)=g(a)+g^{\prime}(a) h+E_{2}(h), \text { where } \lim _{h \rightarrow 0} \frac{E_{2}(h)}{h}=0 .
\end{aligned}
$$

Then $f(a+h) g(a+h)=f(a) g(a)+\left\{f^{\prime}(a) g(a)+g^{\prime}(a) f(a)\right\} h+E_{3}(h)$, where
$\left.E_{3}(h)=f^{\prime}(a) g^{\prime}(a) h^{2}+E_{1}(h)\left\{g(a)+g^{\prime}(a) h+E_{2}(h)\right\}+E_{2}(h)\{f a)+f^{\prime}(a) h\right\}$.

Note that
$\left.\frac{E_{3}(h)}{h}=f^{\prime}(a) g^{\prime}(a) h+\frac{E_{1}(h)}{h}\left\{g(a)+g^{\prime}(a) h+E_{2}(h)\right\}+\frac{E_{2}(h)}{h}\{f a)+f^{\prime}(a) h\right\}$, which goes to zero as $h \rightarrow 0$. Therefore $(f g)$ is differentiable at a and its derivative is $(f g)^{\prime}(a)$ is $f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$.

Definition 2.5. Let $S \subset \mathbb{R}^{n}, f: S \rightarrow \mathbb{R}$, and $a \in S$.
$f(a)$ is the maximum (largest value) of f on S if $f(a) \geq f(x)$ for all $x \in S$.
$f(a)$ is the minimum (smallest value) of f on S if $f(a) \leq f(x)$ for all $x \in S$.
f has a local maximum at a if there is $r>0$ such that $f(x) \leq f(a)$ for all $x \in S \cap B(r, a)$.
f has a local minimum at a if there is $r>0$ such that $f(x) \geq f(a)$ for all $x \in S \cap B(r, a)$.

Note that if $f(a)$ is the maximum (respectively, minimum) then it is also a local maximum (respectively, local minimum).

Proposition 2.6. Suppose f is defined on an open set $I \subset \mathbb{R}$ and $a \in I$. If f has a local maximum or minimum at a and f is differentiable at a then $f^{\prime}(a)=0$.
Proof. Suppose $f(a)$ is a local minimum. Let $\delta>0$ be such that if $|h|<\delta$, then $a+h \in I$ and $f(a+h)-f(a) \geq 0$. We have

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

When $0<h<\delta$, we have $\frac{f(a+h)-f(a)}{h} \geq 0$, letting $h \rightarrow 0$ gives $f^{\prime}(a) \geq 0$. When $-\delta<h<0$, we have $\frac{f(a+h)-f(a)}{h} \leq 0$, letting $h \rightarrow 0$ gives $f^{\prime}(a) \leq 0$. We conclude $f^{\prime}(a)=0$.

Lemma 2.7 (Rolle's theorem). Suppose $a<b$ and f is differentiable on (a, b) and continuous on $[a, b]$. If $f(a)=f(b)$, then there is $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof. Since $[a, b]$ is compact, then there are $x_{1}, x_{2} \in[a, b]$ such that $f\left(x_{1}\right)=$ M is the (absolute) maximum and $f\left(x_{2}\right)=m$ is the (absolute) minimum of f on $[a, b]$.

If $M=m$, then f is a constant function, hence $f^{\prime}(c)=0$ for any $c \in(a, b)$.
If $M \neq m$, then $M \neq L=f(a)=f(b)$ or $m \neq L$. Suppose $M \neq L$ then $c=x_{1} \neq a, b$, hence $c \in(a, b)$. Since f is differentiable on the open interval (a, b) and has a local maximum at $c \in(a, b)$, then by Proposition 2.6 we have $f^{\prime}(c)=0$.

Theorem 2.8 (Mean value theorem I). Suppose f is continuous on $[a, b]$ and is differentiable on (a, b). Then there is a point $c \in(a, b)$ such that

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \tag{2.7}
\end{equation*}
$$

Note that $\frac{f(b)-f(a)}{b-a}$ is the slope of the straight line going through $(a, f(a))$ and $(b, f(b))$.

Proof. Let

$$
g(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)-f(x) .
$$

Then g is continuous on $[a, b]$ and is differentiable on (a, b). Note that $g(a)=$ $g(b)=0$ and $g^{\prime}(x)=\frac{f(b)-f(a)}{b-a}-f^{\prime}(x)$. By Rolle's lemma, there is $c \in(a, b)$ such that $g^{\prime}(c)=0$, hence we obtain (2.7).

Theorem 2.9. Suppose f is differentiable on an open interval I. (a) If $\left|f^{\prime}(x)\right| \leq C$ for all $x \in I$ then $|f(b)-f(a)| \leq C|b-a|$ for all $a, b \in I$.
(b) If $f^{\prime}(x)=0$ for all $x \in I$ then f is constant in I.
(c) If $\left|f^{\prime}(x)\right| \geq 0$ (resp., $>0, \leq,<0$) for all $x \in I$ then f is increasing (resp., strictly increasing, decreasing, strictly decreasing) on I.

Proof. Let $a, b \in I$ and $a<b$, then f continuous on $[a, b]$ and is differentiable on (a, b). By the Mean Value Theorem 2.8, there is $c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

We easily prove (a)-(c). For example, if $f^{\prime}(x)<0$ for all $x \in I$ then $f^{\prime}(c)<0$, therefore $f(b)-f(a)<0$ for any $b>a$; that means f is strictly decreasing in I.

Theorem 2.10 (Mean value theorem II). Suppose f and g are continuous on $[a, b]$ and is differentiable on (a, b), and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is a point $c \in(a, b)$ such that

$$
\begin{equation*}
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} . \tag{2.8}
\end{equation*}
$$

Proof. Apply Rolle's lemma for the following function

$$
h(x)=[f(x)-f(a)][g(b)-g(a)]-[g(x)-g(a)][f(b)-f(a)] .
$$

Definition 2.11. We have the following notion of limits

- Let $f:(d, a) \rightarrow \mathbb{R}^{m}$ and $L \in \mathbb{R}^{m}$. Then $\lim _{x \rightarrow a-} f(x)=L$ if

$$
\begin{equation*}
\forall \varepsilon>0, \exists \delta>0, \forall x \in(d, a): a-\delta<x<a \Longrightarrow|f(x)-L|<\varepsilon \tag{2.9}
\end{equation*}
$$

- Let $f:(a, b) \rightarrow \mathbb{R}^{m}$ and $L \in \mathbb{R}$. Then $\lim _{x \rightarrow a+} f(x)=L$ if

$$
\begin{equation*}
\forall \varepsilon>0, \exists \delta>0, \forall x \in(a, b): a<x<a+\delta \Longrightarrow|f(x)-L|<\varepsilon \tag{2.10}
\end{equation*}
$$

- Let $f:(c, \infty) \rightarrow \mathbb{R}^{m}$ and $L \in \mathbb{R}$. Then $\lim _{x \rightarrow \infty} f(x)=L$ if

$$
\begin{equation*}
\forall \varepsilon>0, \exists M>0, \forall x \in(c, \infty): x>M \Longrightarrow|f(x)-L|<\varepsilon \tag{2.11}
\end{equation*}
$$

- Let $f:(-\infty, c) \rightarrow \mathbb{R}^{m}$ and $L \in \mathbb{R}$. Then $\lim _{x \rightarrow-\infty} f(x)=L$ if

$$
\begin{equation*}
\forall \varepsilon>0, \exists M>0, \forall x \in(-\infty, c): x<-M \Longrightarrow|f(x)-L|<\varepsilon \tag{2.12}
\end{equation*}
$$

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, a \in \mathbb{R}^{n}$. Then $\lim _{x \rightarrow a} f(x)=\infty$ if

$$
\begin{equation*}
\forall M>0, \exists \delta>0, \forall x \in \mathbb{R}^{n}: 0<|x-a|<\delta \Longrightarrow f(x)>M \tag{2.13}
\end{equation*}
$$

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, a \in \mathbb{R}^{n}$. Then $\lim _{x \rightarrow a} f(x)=-\infty$ if

$$
\begin{equation*}
\forall M>0, \exists \delta>0, \forall x \in \mathbb{R}^{n}: 0<|x-a|<\delta \Longrightarrow f(x)<-M \tag{2.14}
\end{equation*}
$$

Note that if $f:(d, a) \cup(a, b) \rightarrow \mathbb{R}^{m}$ and $L \in \mathbb{R}^{m}$ then

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow \lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a+} f(x)=L \tag{2.15}
\end{equation*}
$$

Theorem 2.12 (L'Hôpital's rule I). Suppose f and g are differentiable on (a, b) and

$$
\begin{equation*}
\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)=0 \tag{2.16}
\end{equation*}
$$

If g^{\prime} never vanishes on (a, b) and

$$
\begin{equation*}
\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \tag{2.17}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=L \tag{2.18}
\end{equation*}
$$

Proof. Extend $f(a)=0, g(a)=0$. For $x \in(a, b)$, we have f, g are continuous on $[a, x]$ and differentiable on (a, x). By Theorem 2.10, there is $c \in(a, x)$ such that

$$
\frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Note that $c \rightarrow a+$ and $x \rightarrow a+$. Letting $x \rightarrow a+$ and using (2.17), we obtain (2.18).

Remark 2.13. The theorem still holds if we replace $\lim _{x \rightarrow a+}$ by $\lim _{x \rightarrow a-}$, $\lim _{x \rightarrow a}, \lim _{x \rightarrow \infty}, \lim _{x \rightarrow-\infty}$ and the domains of f, g are appropriate.

Theorem 2.14 (L'Hôpital's rule II). Suppose f and g are differentiable on (a, b) and

$$
\begin{equation*}
\lim _{x \rightarrow a+}|f(x)|=\lim _{x \rightarrow a+}|g(x)|=\infty \tag{2.19}
\end{equation*}
$$

If g^{\prime} never vanishes on (a, b) and

$$
\begin{equation*}
\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \tag{2.20}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=L \tag{2.21}
\end{equation*}
$$

Theorem 2.15 (Chain rule). Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$. Let $g(a)=b$ and suppose that g is differentiable at a, and f is differentiable at b. Then $f \circ g$ is differentiable at a and

$$
\begin{equation*}
(f \circ g)^{\prime}(a)=f^{\prime}(b) g^{\prime}(a) \tag{2.22}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& g(a+h)=g(a)+g^{\prime}(a) h+E_{1}(h), \text { where } \lim _{h \rightarrow 0} \frac{E_{1}(h)}{h}=0, \\
& f(b+h)=f(b)+f^{\prime}(b) h+E_{2}(k), \text { where } \lim _{k \rightarrow 0} \frac{E_{2}(k)}{k}=0 .
\end{aligned}
$$

Then $(f \circ g)(a+h)=f(g(a+h))=f(b+k)$ where $k=k(h)=g^{\prime}(a) h+E_{1}(h)$. We have

$$
\begin{align*}
(f \circ g)(a+h) & =f(b)+f^{\prime}(b)\left\{g^{\prime}(a) h+E_{1}(h)\right\}+E_{2}(k(h)) \\
& =(f \circ g)(a)+f^{\prime}(b) g^{\prime}(a) h+E_{3}(h), \tag{2.23}
\end{align*}
$$

where $E_{3}(h)=f^{\prime}(b) E_{1}(h)+E_{2}(k(h))$. Note that

$$
\frac{E_{3}(h)}{h}=f^{\prime}(b) \frac{E_{1}(h)}{h}+\frac{E_{2}(k(h))}{h}
$$

Claim: $\lim _{h \rightarrow 0} \frac{E_{2}(k(h))}{h}=0$.
Suppose the claim is true, then $\lim _{h \rightarrow 0} E_{3}(h) / h=0$. Hence, according to the Definition 2.1, we infer from (2.23) that $f \circ g$ is differentiable at a and (2.22).

Proof of the claim: The idea is that

$$
\frac{E_{2}(k(h))}{h}=\frac{E_{2}(k(h))}{k(h)} \frac{k(h)}{h} .
$$

Since

$$
\lim _{h \rightarrow 0} k(h)=0, \quad \lim _{k \rightarrow 0} \frac{E_{2}(k)}{k}=0, \quad \text { and } \lim _{h \rightarrow 0} \frac{k(h)}{h}=g^{\prime}(a)
$$

we obtain $\lim _{h \rightarrow 0} \frac{E_{3}(h)}{h}=0$. This argument can be easily made rigorous (to take care of the case $k(h)=0$). However, the direct proof can go as follows:

Let $M=\left|g^{\prime}(a)\right|+1$. Since $\lim _{h \rightarrow 0} \frac{k(h)}{h}=g^{\prime}(a)$, there is $\delta_{1}>0$ such that $|k(h)| \leq M|h|$ for $0<|h|<\delta_{1}$.

Let $\varepsilon>0$. Since $\lim _{k \rightarrow 0} \frac{E_{2}(k)}{k}=0$, there is $\delta_{2}>0$ such that $\left|E_{2}(k)\right| \leq$ $(\varepsilon / M)|k|$ for $|k|<\delta_{2}\left(\right.$ note that $\left.E_{2}(0)=0\right)$. Let $\delta=\min \left\{\delta_{1}, \delta_{2} / M\right\}$, then for $0<|h|<\delta$, we have $|k(h)| \leq M|h| \leq \delta_{2}$ and hence

$$
\left|E_{2}(k(h))\right| \leq(\varepsilon / M)|k(h)| \leq(\varepsilon / M) M|h|=\varepsilon|h| .
$$

Therefore $\lim _{h \rightarrow 0} E_{2}(k(h)) / h=0$.
Differentiability of vector-valued functions. Let $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$: $\mathbb{R} \rightarrow \mathbb{R}^{m}$ be a vector-valued function, where $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$, for $j=1,2, \ldots m$. Let $a \in \mathbb{R}$. Then the derivative of f at a is the vector

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\left(f_{1}^{\prime}(a), f_{2}^{\prime}(a), \ldots, f_{n}^{\prime}(a)\right) \tag{2.24}
\end{equation*}
$$

whenever the involved quantities are defined. If $f^{\prime}(a)$ exists then we say f is differentiable at a. In fact, $f^{\prime}(a)$ is the unique vector $v \in \mathbb{R}^{m}$ such that

$$
\begin{equation*}
f(a+h)=f(a)+h v+E(h), \text { where } E(h) \in \mathbb{R}^{m}, \quad \lim _{h \rightarrow 0} \frac{E(h)}{h}=0 \tag{2.25}
\end{equation*}
$$

Curves and tangent vectors. See text, p.50.
Higher order derivatives. Just as in lower calculus course.

2.2 Differentiability in several variables

2.2.1 Real-valued functions

Partial derivatives. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. Partial derivative of f with respect to variable x_{j} at a is

$$
\begin{equation*}
\frac{\partial f}{\partial x_{j}}(a)=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{j-1}, a_{j}+h, a_{j+1}, \ldots, a_{n}\right)-f\left(a_{1}, \ldots, a_{j}, \ldots, a_{n}\right)}{h} \tag{2.26}
\end{equation*}
$$

Other notation: $f_{x_{j}}, \partial_{j} f, \partial_{x_{j}} f$.
Gradient vector and Differentiability. Let $S \subset \mathbb{R}^{n}$ be open, $f: S \rightarrow$ $\mathbb{R}, a \in S$. We say f is differentiable at a if there is $c \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
f(a+h)=f(a)+c \cdot h+E(h), \text { where } \lim _{h \rightarrow 0} \frac{E(h)}{|h|}=0 . \tag{2.27}
\end{equation*}
$$

The vector c is the gradient of f at a and is denoted by $\nabla f(a)$.
Tangent planes. For $n=2, f=f(x)=f\left(x_{1}, x_{2}\right)$ the graph of $z=f(x)$ is a surface in \mathbb{R}^{3}. Let $P=(a, f(a))$ be a point on the surface. The equation for the tangent plane of the surface at P is:

$$
z=(x-a) \cdot \nabla f(a)+f(a) .
$$

Theorem 2.16 (Chain Rule). Let $g(t)=\left(g_{1}, g_{2}, \ldots, g_{n}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, f(x)$: $\mathbb{R}^{n} \rightarrow \mathbb{R}$, $a \in \mathbb{R}^{m}, b=g(a) \in \mathbb{R}^{n}$. If g is differentiable at a and f is differentiable at b then $f \circ g$ is differentiable at a and

$$
\begin{equation*}
\frac{\partial(f \circ g)}{\partial t_{k}}(a)=\frac{\partial f}{\partial x_{1}}(b) \frac{\partial g_{1}}{\partial t_{k}}(a)+\frac{\partial f}{\partial x_{2}}(b) \frac{\partial g_{2}}{\partial t_{k}}(a)+\ldots+\frac{\partial f}{\partial x_{n}}(b) \frac{\partial g_{n}}{\partial t_{k}}(a) \tag{2.28}
\end{equation*}
$$

for $k=1,2, \ldots, m$. Briefly, we have

$$
\begin{equation*}
\frac{\partial(f \circ g)}{\partial t_{k}}(a)=\nabla f(b) \cdot \frac{\partial g}{\partial t_{k}}(a) \tag{2.29}
\end{equation*}
$$

for $k=1,2, \ldots, m$.

Directional derivatives. Let $u \in \mathbb{R}^{n},|u|=1$, then

$$
\begin{equation*}
\partial_{u} f(a)=\lim _{h \rightarrow 0} \frac{f(a+h u)-f(a)}{h} \tag{2.30}
\end{equation*}
$$

We have

$$
\begin{equation*}
\partial_{u} f(a)=\nabla f(a) \cdot u \tag{2.31}
\end{equation*}
$$

By Cauchy-Schwarz's inequality $\left|\partial_{u} f(a)\right| \leq|\nabla f(a)||u|=|\nabla f(a)|$. Hence $\partial_{u} f(a)$ attains its maximum value $|\nabla f(a)|$ when $u=\lambda \nabla f(a)$ for some $\lambda>0$.

2.2.2 Vector-valued functions

Definition 2.17. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, a \in \mathbb{R}^{n}$. We say f is differentiable at a if there is a $m \times n$ matrix L such that

$$
\begin{equation*}
f(a+h)=f(a)+L h+E(h), \text { where } E(h) \in \mathbb{R}^{m}, \quad \lim _{h \rightarrow 0} \frac{E(h)}{|h|}=0 \tag{2.32}
\end{equation*}
$$

The matrix L, denoted by $D f(a)$ (or $f^{\prime}(a)$), is called the (Fréchet) derivative of f at a.

Proposition 2.18. If $D f(a)$ exists, then it is unique.
Proposition 2.19. If f is differentiable at a then f is continuous at a.
Proposition 2.20. Let $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable at $a \in \mathbb{R}^{n}$. Then the partial derivatives $\partial_{x_{j}} f_{i}(a)$, for $i=1,2, \ldots, m, j=$ $1,2, \ldots, n$, exist and the matrix $D f(a)$ is

$$
D f=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{\substack{i=1, \ldots, m \tag{2.33}\\
j=1, \ldots, n}}=\left(\begin{array}{c}
D f_{1} \\
D f_{2} \\
\vdots \\
D f_{m}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right) .
$$

Theorem 2.21 (Chain Rule). Suppose $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is differentiable at $a \in \mathbb{R}^{k}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $b=g(a) \in \mathbb{R}^{n}$. Then their composition $H=f \circ g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ is differentiable at a, and

$$
\begin{equation*}
D H(a)=D F(b) D g(a) \tag{2.34}
\end{equation*}
$$

Note that $D f$ is an $m \times n$ matrix, $D g$ is an $n \times k$ matrix and $D H$ is an $m \times k$ matrix.

Theorem 2.22. Let $S \subset \mathbb{R}^{n}$ be open, $f: S \rightarrow \mathbb{R}$, and $a \in S$. Suppose all partial derivatives $\partial_{j} f(a)$, for $j=1,2, \ldots, n$, exist in a neighborhood of a and are continuous at a, then f is differentiable at a.

2.3 The Mean Value Theorem

The following notation is not standard and is only used in this lecture note.
Let $a, b \in \mathbb{R}^{n}$, we denote the line segments whose endpoints are a and b by

$$
[a, b]=\{(1-t) a+t b: t \in[0,1]\},
$$

and

$$
(a, b)=\{(1-t) a+t b: t \in(0,1)\},
$$

Note that $l(t)=(1-t) a+t b$, for $t \in[0,1]$, is the equation for the closed line segment $[a, b]$, and $l(0)=a, l(1)=b$.

A subset S of \mathbb{R}^{n} is called convex if for any $a, b \in S$, we have $[a, b] \subset S$. Note that every convex set is connected.

Theorem 2.23. Let S be an open subset of \mathbb{R}^{n} and $a, b \in S$ such that $[a, b] \subset S$. Suppose $f: S \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), then there is a point $c \in[a, b]$ such that

$$
f(b)-f(a)=\nabla f(c) \cdot(b-a) .
$$

Corollary 2.24. Suppose f is differentiable on an open convex set $S \subset \mathbb{R}^{n}$ and $|\nabla f(x)| \leq M$ for all $x \in S$. Then $|f(b)-f(a)| \leq M|b-a|$ for all $a, b \in S$.

Remark: We can use this to prove the uniform continuity of a function.
Corollary 2.25. If S is convex, f is differentiable on S and $\nabla f(x)=0$ for all $x \in S$, then f is constant on S.

Corollary 2.25 still holds true when S is only connected.
Theorem 2.26. Suppose f is differentiable on an open connected set $S \subset \mathbb{R}^{n}$ and $\nabla f(x)=0$ for all $x \in S$. Then f is constant on S.

2.4 Higher-order partial derivatives

See Section 2.6 of the textbook.
Suppose f is defined on an open set $S \subset \mathbb{R}^{n}$ and $\partial_{x_{j}} f$, for some $j \in$ $\{1,2, \ldots, n\}$, exists on S. Then whenever it makes sense, we have the secondorder derivative $\partial_{x_{i}}\left[\partial_{x_{j}} f\right]$.

Notation:

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, f_{x_{j} x_{i}}, f_{j i}, \partial_{x_{i}} \partial_{x_{j}} f, \partial_{i} \partial_{j} f
$$

In particular,

$$
\frac{\partial^{2} f}{\partial x_{j}^{2}}, f_{x_{j} x_{j}}, f_{j j}, \partial_{x_{j}}^{2} f, \partial_{j}^{2} f
$$

Similarly, we may have third-order partial derivatives $\partial_{x_{k}} \partial_{x_{i}} \partial_{x_{j}} f$ where $j, i, k \in\{1,2, \ldots, n\}$; or the k-order partial derivatives

$$
\partial_{x_{j_{k}}} \ldots \partial_{x_{j_{2}}} \partial_{x_{j_{1}}} f
$$

for $k \in \mathbb{N}$ and $j_{1}, j_{2}, \ldots, j_{k} \in\{1,2, \ldots, n\}$.
For our convention, the zero-order derivative of f is just f itself.
Definition 2.27. Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}$.
The function f is said to be of class C^{k} on U if all the partial derivatives of f up to order k exist and are continuous on U. Notation $f \in C^{k}(U)$.

If all partial derivatives of f of all orders exist and are continuous on U then f is said of class C^{∞}. Notation $f \in C^{\infty}(U)$.

In the case of vector-valued functions, $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ is said of class $C^{k},\left(\right.$ or $\left.C^{\infty},\right)$ if each f_{j}, for $j=1,2, \ldots, m$, is of class $C^{k},\left(\right.$ or $\left.C^{\infty}\right)$.

Theorem 2.28. Let f be a function defined in an open set $S \subset \mathbb{R}^{n}$. Suppose $a \in S$ and $i, j \in\{1,2, \ldots, n\}$. If the derivatives $\partial_{i} f, \partial_{j} f, \partial_{i} \partial_{j} f$ and $\partial_{j} \partial_{i} f$ exist in S and are continuous at a, then $\partial_{i} \partial_{j} f(a)=\partial_{j} \partial_{i} f(a)$.

Corollary 2.29. If $f \in C^{2}(S)$ where $S \subset \mathbb{R}^{n}$ is open, then $\partial_{i} \partial_{j} f=\partial_{j} \partial_{i} f$ on S for all i, j.

For higher order derivatives, we have the following theorem
Theorem 2.30. If $f \in C^{k}(S)$ where $S \subset \mathbb{R}^{n}$ is open, then

$$
\partial_{i_{1}} \partial_{i_{2}} \ldots \partial_{i_{k}} f=\partial_{j_{1}} \partial_{j_{2}} \ldots \partial_{j_{k}} f
$$

whenever the sequence $\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ is a reordering of $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$.
Multi-index Notation. A multi-index is an n-tuple of non-negative integers:

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \quad \alpha_{j} \in\{0,1,2, \ldots\} .
$$

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ be a multi-index, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We define

$$
\begin{gathered}
|\alpha|=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}, \quad \alpha!=\alpha_{1}!\alpha_{2}!\ldots \alpha_{n}!, \\
x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}, \\
\partial^{\alpha} f=\partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}} \ldots \partial_{n}^{\alpha_{n}} f=\frac{\partial^{|\alpha|} f}{\partial x_{1} \alpha_{1} \partial x_{2}{ }^{\alpha_{2}} \ldots \partial x_{n}{ }^{\alpha_{n}}} .
\end{gathered}
$$

Recall $0!=1,1!=1,2!=2(1!)=2, k!=k[(k-1)!]=1 \cdot 2 \cdot \ldots \cdot k$.
The number $|\alpha|$ is called the order or degree of α. Also, $|\alpha|$ is the order of the partial derivative $\partial^{\alpha} f$.

Theorem 2.31 (Multinomial Theorem). For any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $k \in \mathbb{N}$, we have

$$
\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{k}=\sum_{|\alpha|=k} \frac{k!}{\alpha!} x^{\alpha} .
$$

Particularly, when $n=2$,

$$
\left(x_{1}+x_{2}\right)^{k}=\sum_{j=0}^{k} \frac{k!}{j!(k-j)!} x^{j}
$$

2.5 Taylor's Theorem

We only present Taylor's theorem with Lagrange's remainder.

2.5.1 In one variable

We aim to approximate the value of a function f near a using the polynomials. The following was explained in details in class.

We write $f(a+h)=P_{a, k}(h)+R_{a, k}(h)$, where $P_{a, k}(h)$ is the k-order Taylor polynomial

$$
P_{a, k}(h)=f(a)+f^{\prime}(a) h+\frac{f^{\prime \prime}(a)}{2} h^{2}+\ldots+\frac{f^{(k)}(a)}{k!} h^{k}=\sum_{j=0}^{k} \frac{f^{(j)}(a)}{j!} h^{j} .
$$

We expect to have

$$
\lim _{h \rightarrow 0} \frac{R_{a, k}(h)}{h^{k}}=0
$$

Theorem 2.32. Suppose f is $k+1$ times differentiable on an interval $I \subset \mathbb{R}$ and $a \in I$. For each $h \in \mathbb{R}$ such that $a+h \in I$, there is a point c between 0 and h such that

$$
R_{a, k}(h)=\frac{f^{(k+1)}(a+c)}{(k+1)!} h^{k+1}
$$

The proof of the above theorem requires a generalization of Rolle's Lemma for higher derivatives (see Lemma 2.62 in the text).

Corollary 2.33. If $\left|f^{(k+1)}(x)\right| \leq M$ for all $x \in I$ then

$$
\lim _{h \rightarrow 0} \frac{R_{a, k}(h)}{h^{k}}=0
$$

See Proposition 2.65 in the text for some examples of Taylor polynomials.

2.5.2 In several variables

Theorem 2.34. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is of class C^{k+1} on an open convex set S. If $a, a+h \in S$, then $f(a+h)=P_{a, k}(h) R_{a, k(h)}$ where

$$
\begin{gathered}
P_{a, k}(h)=\sum_{|\alpha| \leq k} \frac{\partial^{\alpha} f(a)}{\alpha!} h^{\alpha}, \\
R_{a, k}(h)=\sum_{|\alpha|=k+1} \frac{\partial^{\alpha} f(a+c h)}{\alpha!} h^{\alpha},
\end{gathered}
$$

for some $c \in(0,1)$.
Corollary 2.35. If, in addition to Theorem 2.34, we have $\left|\partial^{\alpha} f(x)\right| \leq M$ for all $x \in S$ and $|\alpha|=k+1$, then

$$
\left|R_{a, k}(h)\right| \leq \frac{M}{(k+1)!}\left(\left|h_{1}\right|+\left|h_{2}\right|+\ldots+\left|h_{n}\right|\right)^{k+1}
$$

and consequently,

$$
\lim _{h \rightarrow 0} \frac{R_{a, k}(h)}{|h|^{k}}=0 .
$$

2.6 Critical Points

Theorem 2.36. Let $S \subset \mathbb{R}^{n}$ and $f: S \rightarrow \mathbb{R}$. If f has a local maximum or local minimum at $a \in S$ and f is differentiable at a, then $\nabla f(a)=0$.

