Chapter 2

Differential Calculus

2.1 Differentiability in one variable

Let f:R— R and a € R. We say f'(a) € R is the derivative of f at a if
Cf@) -~ fl) | flath) -~ f)

r—a €T — Q h—0 h

- '(a). (2.1)

Note that f’(a) is the slope of the tangent line to the graph of f at point
(a, f(a)).
We now look at (2.1) from another point of view. Let m = f’(a). From
(2.1), we have
o S@) = fla) —m—a) _ | E(—a)

Tr—a r—a z—a T — Q

=0,

where E(z —a) = f(x) — l(x) is the difference between f(x) and its linear
approzimation l(x), here l(z) = m(x — a) + f(a) is the “linear” equation for
the tangent line.

Let h = x — a, we have f(a+ h) = f(a) + mh + E(h), and E(h)/h — 0
as h — 0. This leads to the following definition

Definition 2.1. f is differentiable at a if there is m € R such that

fla+h)= f(a) + mh+ E(h), where }ILILI(I) @ =0. (2.2)
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20 CHAPTER 2. DIFFERENTIAL CALCULUS

Note that m = f’(a) is unique when it exists.

Let S C R, then f is differentiable on S if it is differentiable at every
point of S.

Example 2.2. If f : R — R is a constant function then f’(z) = 0 for all
r € R.
If f(z) = cx where ¢ is a fixed number and =z € R, then f'(x) = ¢ for all

x.

Remark 2.3. If f is differentiable at a then f is continuous at a.

Proposition 2.4. Let a € R and f,g : R — R be differentiable at a. Then
(i) f £ g are differentiable at a and

(f £9)'(a) = f'(a) £ g'(a). (2.3)
(i1) fg is differentiable at a and
(f9)'(a) = f'(a)g(a) + f(a)g'(a). (2.4)
(111) If g(a) # 0, then (f/g) is differentiable at a and
AY f'(a)g(a) — g'(a)f(a)
(5) 0= FHE 2
In particular,
I AC)
<g) @)=~ @) (26)

Proof. We prove, for instance (ii). Suppose

flath) = f(@) + f'(a)h+ Er(h), where lim EIT(}’) _0,

gla+h) =g(a)+ g (a)h + Ey(h), where lim

h—0

Then f(a+h)g(a+h) = f(a)g(a) +{f'(a)g(a) +g'(a)f(a)}h + Es(h), where

Ey(h) = f'(a)g'(a)h® + Er(h){g(a) + ¢'(a)h+ Ex(h)} + Ex(h){ fa) + f'(a)h}.
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Note that

B0 _ piatapn+ B B a4 pamy,

which goes to zero as h — 0. Therefore (fg) is differentiable at a and its
derivative is (fg)'(a) is f'(a)g(a) + f(a)g'(a). O

Definition 2.5. Let SCR", f: S —-R,and a € 5.

f(a) is the mazimum (largest value) of f on S if f(a) > f(x) for all
res.

f(a) is the minimum (smallest value) of f on S if f(a) < f(x) for all
r€eS.

f has a local mazimum at a if there is > 0 such that f(z) < f(a) for
all z € SN B(r,a).

f has a local minimum at a if there is > 0 such that f(x) > f(a) for all
r € SNB(ra).

Note that if f(a) is the maximum (respectively, minimum) then it is also

{9(a) +g'(a)h+ Ex(h)} +

a local maximum (respectively, local minimum).

Proposition 2.6. Suppose f is defined on an open set I C R and a € I. If

f has a local mazimum or minimum at a and f is differentiable at a then
f'(a) =0

Proof. Suppose f(a) is a local minimum. Let 6 > 0 be such that if |h| < 0,
then a +h € I and f(a+ h) — f(a) > 0. We have

f/(a) — lim f(a_'_h) B f(a)

h—0 h

When 0 < h < §, we have W > 0, letting h — 0 gives f’(a) > 0.
When —§ < h < 0, we have w < 0, letting h — 0 gives f'(a) < 0.
We conclude f’(a) = 0.

]

Lemma 2.7 (Rolle’s theorem). Suppose a < b and f is differentiable on
(a,b) and continuous on |a,b]. If f(a) = f(b), then there is ¢ € (a,b) such
that f'(c) = 0.
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Proof. Since [a, b] is compact, then there are 1, x9 € [a, b] such that f(x;) =
M is the (absolute) maximum and f(x3) = m is the (absolute) minimum of
f on [a,b].

If M = m, then f is a constant function, hence f’(¢) = 0 for any ¢ € (a, b).

If M # m, then M # L = f(a) = f(b) or m # L. Suppose M # L then
¢ =11 # a,b, hence ¢ € (a,b). Since f is differentiable on the open interval
(a,b) and has a local maximum at ¢ € (a, b), then by Proposition 2.6 we have
f'(c)=0. O

Theorem 2.8 (Mean value theorem I). Suppose f is continuous on [a, b] and
is differentiable on (a,b). Then there is a point ¢ € (a,b) such that

Fb) ~ f(a)

flle)=—— (2.7)

Note that w is the slope of the straight line going through (a, f(a))
and (b, £(b).

Proof. Let

o) = (@) + 1Oy p)

Then g is continuous on [a, b] and is differentiable on (a,b). Note that g(a) =

g(b) =0 and ¢'(z) = % — f'(z). By Rolle’s lemma, there is ¢ € (a,b)

such that ¢'(c) = 0, hence we obtain (2.7). O

Theorem 2.9. Suppose f is differentiable on an open interval I. (a) If
|f'(x)] < C forallx € I then |f(b) — f(a)| < C|b—al| for all a,b € I.

(b) If f'(x) =0 for all x € I then f is constant in I.

(c) If | f'(x)| > 0 (resp., > 0,<,<0) for all x € I then f is increasing (resp.,

strictly increasing, decreasing, strictly decreasing) on I.

Proof. Let a,b € I and a < b, then f continuous on [a, b] and is differentiable
on (a,b). By the Mean Value Theorem 2.8, there is ¢ € (a,b) such that

f(b) = fla) = f(c)(b - a).
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We easily prove (a)—(c). For example, if f’(x) < 0 forall x € I then f'(c) < 0,
therefore f(b) — f(a) < 0 for any b > a; that means f is strictly decreasing
in I. O

Theorem 2.10 (Mean value theorem II). Suppose f and g are continuous
on la,b] and is differentiable on (a,b), and g'(x) # 0 for all x € (a,b). Then
there is a point ¢ € (a,b) such that

fe) _ 1) - (o) 05

g'c)  g(b) —gla)
Proof. Apply Rolle’s lemma for the following function

Definition 2.11. We have the following notion of limits
o Let f:(d,a) = R™and L € R™. Then lim, ., f(z) =L if

Ve>0,30 >0,Vr € (d,a):a—d <z <a = |f(x)—L| <e. (2.9)

Let f: (a,b) — R™and L € R. Then lim, . f(z) = L if

Ve>0,30>0,Vx € (a,b):a<zr<a+d = |f(x)—L| <e. (2.10)

Let f:(c,00) = R™ and L € R. Then lim, ., f(z) = L if

Ve >0,dM > 0,Vz € (¢,0) :x > M = |f(x)—L| <e. (2.11)

Let f:(—o0,¢) = R™ and L € R. Then lim,_,_, f(z) = L if

Ve > 0,dM > 0,Vx € (—o0,¢) :x < —M = |f(x) — L| <e. (2.12)

Let f:R" - R, a € R". Then lim,_,, f(z) = oo if

VM >0,30 >0,V e R":0< [z —a|] <0 = f(z)> M. (2.13)
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o Let f:R" - R, a€R" Then lim,_, f(x) = —oc if

VM >0,30 >0,VzeR":0< |z —a| <d = f(z)<—-M. (2.14)

Note that if f: (d,a) U (a,b) — R™ and L € R™ then

lim f(z) =L < lim f(z)= lim f(x)=L. (2.15)

r—a r—a— r—a+

Theorem 2.12 (L’Hopital’s rule I). Suppose f and g are differentiable on
(a,b) and
lim f(z) = lim g(z)=0. (2.16)

r—a+ r—a+

If ¢’ never vanishes on (a,b) and

- fix)
Jim =L (2.17)
then (o)
. T
xli}ril+ M = L. (218)

Proof. Extend f(a) =0,¢g(a) = 0. For x € (a,b), we have f, g are continuous
on [a,z] and differentiable on (a,z). By Theorem 2.10, there is ¢ € (a,x)
such that

flx) _ fle) = fla) _ f(e)

g(x)  g(x) —gla) g'(c)
Note that ¢ — a+ and © — a+. Letting x — a+ and using (2.17), we obtain
(2.18). O

Remark 2.13. The theorem still holds if we replace lim, .. by lim, .,

lim, .., lim,_ ., lim,_,_,, and the domains of f, g are appropriate.
Theorem 2.14 (L’Hoépital’s rule II). Suppose f and g are differentiable on
(a,b) and

hm+ |f(x)] = hm+ lg(z)| = 0. (2.19)

If ¢’ never vanishes on (a,b) and

lim f(@)

a—at g'(x)

=L, (2.20)
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then

@)
Jim o = L (2.21)

Theorem 2.15 (Chain rule). Let f,g: R — R and a € R. Let g(a) = b and
suppose that g s differentiable at a, and f is differentiable at b. Then f o g

is differentiable at a and

(fog)(a)=f'(b)g'(a). (2.22)
Proof. We have
E,(h)

gla+h)=g(a) + ¢'(a)h + E1(h), where lim = 0,
Fb+ 1) = FO) + f'(B)h+ Ex(k), where lim E2T(k‘) —0.

Then (fog)(a+h) = f(g(a+h)) = f(b+k) where k = k(h) = ¢'(a)h+ E;(h).
We have
(fog)la+h)=fb)+ f(®){g (@)h+ Er(h)} + Ea(k(h))
= (fog)(a)+ f'(b)g'(a)h + Es(h), (2.23)
where FE3(h) = f'(b)E1(h) + Ex(k(h)). Note that

Ev(h) | Ea(k(h))
h h

Claim: limy_ EQUZ(h)) = 0.

Suppose the claim is true, then lim,_.q E5(h)/h = 0. Hence, according to
the Definition 2.1, we infer from (2.23) that f o g is differentiable at a and
(2.22).

Proof of the claim: The idea is that

Ba(k(h)) _ Ea(k(h)) k(h)
h k(h)  h

Since

E
limk(h) =0, lim 2(k) _ 0, and }lLin%k— = ¢'(a),

h—0 k—0 k
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we obtain limy_ E3}Eh) = 0. This argument can be easily made rigorous (to

take care of the case k(h) = 0). However, the direct proof can go as follows:
Let M = |¢g'(a)| + 1. Since limy, g @ = ¢'(a), there is §; > 0 such that
|k(h)| < M]|h| for 0 < |h| < 4;.
Let ¢ > 0. Since limy_.qo EZT(k) = 0, there is d > 0 such that |Fy(k)| <
(e/M)|k| for |k| < d2 (note that E9(0) = 0). Let 6 = min{dy,do/M}, then
for 0 < |h| < 9, we have |k(h)| < M|h| < 5 and hence

|E5(k(h))] < (e/M)|k(R)| < (¢/M)M|h| = e]h].
Therefore limy, o E2(k(h))/h = 0. O

Differentiability of vector-valued functions. Let f = (f1, fo, ..., fim) :
R — R™ be a vector-valued function, where f; : R — R, for j =1,2,...m.
Let a € R. Then the derivative of f at a is the vector

fla) i £ 1) = F(@)

h—0 h

= (fila), f5(a), ..., fu(a)). (2.24)

whenever the involved quantities are defined. If f/(a) exists then we say f is
differentiable at a. In fact, f'(a) is the unique vector v € R™ such that
E(h)

im ——=0. (2.2
im — 0. (2.25)

fla+h)= f(a) + hv + E(h), where E(h) € R™, leO

Curves and tangent vectors. See text, p.50.

Higher order derivatives. Just as in lower calculus course.
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2.2 Differentiability in several variables

2.2.1 Real-valued functions

Partial derivatives. Let f : R" — R, a = (a1, as,...,a,) € R™. Partial

derivative of f with respect to variable z; at a is

ﬁ(a) = lim flar,...,a;_1,a;+ hyajeq, ... a,) — flar, ..., a4,... . a,)
Oz, h—0 A

(2.26)
Other notation: f, ,0;f, 0., f.
Gradient vector and Differentiability. Let S C R™ be open, f: S —
R, a € S§. We say f is differentiable at a if there is ¢ € R™ such that

fla+h)= f(a)+c-h+ E(h), where 11{}%% = 0. (2.27)

The vector ¢ is the gradient of f at a and is denoted by V f(a).

Tangent planes. Forn =2, f = f(z) = f(x1,22) the graph of z = f(x)
is a surface in R®. Let P = (a, f(a)) be a point on the surface. The equation

for the tangent plane of the surface at P is:
z=(r—a)-Vf(a)+ f(a)

Theorem 2.16 (Chain Rule). Let g(t) = (91,92, ---,9n) : R™ = R", f(x) :
R* — R, a € R™ b = g(a) € R*. If g is differentiable at a and f is
differentiable at b then f o g is differentiable at a and

d(foyg) of ., 0q of 092

of ,\99n
@) = GOS0 + 0 @)+ () @), (225)
for k=1,2,...,m. Briefly, we have
fog), | _ g
Ttk(@) =Vf(b)- 8—tk<a>’ (2.29)

fork=1,2,... m.
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Directional derivatives. Let u € R™, |u| = 1, then

flathw) — f(@)

Ouf (@) = lim - (2.30)
We have
duf(a) = Vf(a) - u. (2.31)

By Cauchy-Schwarz’s inequality |0, f(a)| < |V f(a)||lu] = |V f(a)|. Hence
Oy f (a) attains its maximum value |V f(a)| when u = AV f(a) for some A > 0.

2.2.2 Vector-valued functions

Definition 2.17. Let f: R" — R™ a € R". We say f is differentiable at a

if there is a m x n matrix L such that

fla+h)= f(a) + Lh+ E(h), where E(h) € R™, }lll_)r%% =0.

The matrix L, denoted by D f(a) (or f'(a)), is called the (Fréchet) deriva-

tive of f at a.

(2.32)

Proposition 2.18. If Df(a) ezists, then it is unique.
Proposition 2.19. If f is differentiable at a then f is continuous at a.

Proposition 2.20. Let f = (f1, fo,..., fm) : R — R™ be differentiable

at a € R™. Then the partial derivatives 0., fi(a), fori = 1,2,...,m, j =
1,2,...,n, exist and the matriz D f(a) is
o7, D o O o
pf=( I Jpm— o I Pz (2.33)
8xj j=1,...,n :
Ofm  Ofm O fm
D fm Buy  Ors e

Theorem 2.21 (Chain Rule). Suppose g : RF — R" is differentiable at
a € R* and f : R® — R™ is differentiable at b = g(a) € R™. Then their
composition H = f o g : RF — R™ is differentiable at a, and

DH(a) = DF(b)Dg(a). (2.34)
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Note that Df is an m x n matrix, Dg is an n X k matrix and DH is an
m X k matrix.

Theorem 2.22. Let S C R™ be open, f: S — R, and a € S. Suppose all
partial derivatives 0;f(a), for j = 1,2,...,n, exist in a neighborhood of a

and are continuous at a, then f is differentiable at a.

2.3 The Mean Value Theorem

The following notation is not standard and is only used in this lecture note.
Let a,b € R", we denote the line segments whose endpoints are a and b
by
la,b) ={(1 —t)a+tb : t€]0,1]},
and
(a,b) ={(1—t)a+tb : t€(0,1)},
Note that I(t) = (1 —t)a +tb, for ¢ € [0, 1], is the equation for the closed
line segment [a, b], and 1(0) = a, I(1) = D.
A subset S of R™ is called convez if for any a,b € S, we have [a,b] C S.
Note that every convex set is connected.

Theorem 2.23. Let S be an open subset of R" and a,b € S such that
[a,b] C S. Suppose f : S — R is continuous on [a,b] and differentiable on
(a,b), then there is a point ¢ € |a,b] such that

f(b) = fla) = V[(c)- (b—a)

Corollary 2.24. Suppose f is differentiable on an open convexr set S C R"
and |Vf(z)] < M for all x € S. Then |f(b) — f(a)] < M|b — al| for all
a,bes.

Remark: We can use this to prove the uniform continuity of a function.

Corollary 2.25. If S is convex, f is differentiable on S and V f(x) = 0 for
all x € S, then f is constant on S.
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Corollary 2.25 still holds true when S'is only connected.

Theorem 2.26. Suppose f is differentiable on an open connected set S C R"
and Vf(x) =0 for allz € S. Then f is constant on S.

2.4 Higher-order partial derivatives

See Section 2.6 of the textbook.

Suppose [ is defined on an open set S C R" and &,,f, for some j €
{1,2,...,n}, exists on S. Then whenever it makes sense, we have the second-
order derivative 0, [&Bj f]

Notation:

02 f

Grr, Jeie Jiv 000u,f. 00;f.

In particular,
0 f

27
&rj

fijjv fjj7 azjfv a?f

Similarly, we may have third-order partial derivatives 0., 0,,0,,f where
Jyik € {1,2,...,n}; or the k-order partial derivatives

Or,y - 0u, O, .

Ty, o YTy

for k € N and j1,792,...,jk € {1,2,...,n}.

For our convention, the zero-order derivative of f is just f itself.

Definition 2.27. Let U C R" be open and f: U — R.

The function f is said to be of class C* on U if all the partial derivatives
of f up to order k exist and are continuous on U. Notation f € C*(U).

If all partial derivatives of f of all orders exist and are continuous on U
then f is said of class C*°. Notation f € C*>(U).

In the case of vector-valued functions, f = (fi, fo, ..., fm) is said of class
C*, (or C*,) if each fj, for j = 1,2,...,m, is of class C*, (or C*).
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Theorem 2.28. Let f be a function defined in an open set S C R™. Suppose
a€ Sandi,je{1,2,...,n}. If the derivatives 0;f, 0;f, 0;0;f and 0;0;f
exist in S and are continuous at a, then 0;0;f(a) = 0;0;f(a).

Corollary 2.29. If f € C*(S) where S C R™ is open, then 0;0;f = 0;0;f
on S for alli,j.

For higher order derivatives, we have the following theorem

Theorem 2.30. If f € C*(S) where S C R™ is open, then
82‘182‘2 e 82kf = 8j18j2 . e 8jkf,
whenever the sequence {j1, Ja, - - ., ji} 1S a reordering of {i1, s, ..., ix}.

Multi-index Notation. A multi-index is an n-tuple of non-negative
integers:
a=(ap,q,...,00), a;€{0,1,2,...}.

Let a = (aq, 9, ..., ay) be a multi-index, = = (x1, 29, ...,2,) € R" and
f:R"™ — R. We define

ol =1 +as+ ... +a, o =aoala!. . . a,l

¢ =atay? ot
olel f
8:1710‘10:)52“2 S 093”% .
Recall 0! =1, 11=1, 21 =2(1) =2, kKl =k[(k—-Dl]=1-2-...- k.

The number || is called the order or degree of a. Also, |a] is the order

Of = 05 ..o f =

of the partial derivative 0“f.

Theorem 2.31 (Multinomial Theorem). For any x = (x1,2s,...,x,) € R”
and k € N, we have

k!
(l’1+l’2++l’n)k: Z —'le'a.

la|=k
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Particularly, when n = 2,
N
(1 4+ 22)" = Z — 7.

2.5 Taylor’s Theorem

We only present Taylor’s theorem with Lagrange’s remainder.

2.5.1 In one variable

We aim to approximate the value of a function f near a using the polynomials.
The following was explained in details in class.
We write f(a+h) = P,x(h)+ Rax(h), where P, (h) is the k-order Taylor

polynomial

"(a ®)(q ForO(a)
Poslh) = fa) + fpp+ Ly S 5 T2

We expect to have
. Ra,k(h)
A
Theorem 2.32. Suppose f is k+1 times differentiable on an interval I C R
and a € I. For each h € R such that a + h € I, there is a point ¢ between 0
and h such that

= 0.

f(k+l)<a + C) k+1
(k+1)!

The proof of the above theorem requires a generalization of Rolle’s Lemma

Ra,k(h) =

for higher derivatives (see Lemma 2.62 in the text).
Corollary 2.33. If | f**V(2)| < M for all x € I then

lim Ra (1)

pm =0.

See Proposition 2.65 in the text for some examples of Taylor polynomials.
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2.5.2 In several variables

Theorem 2.34. Suppose f : R™ — R is of class C**' on an open convex set
S. Ifa,a+heS, then f(a+h) = P,r(h)Rarn where

sy = 3 LD e

ol
|| <k

0“f(a+ch)
Ra,k(h’) = Z %h’ )
|la|=k+1 '

for some ¢ € (0,1).

Corollary 2.35. If, in addition to Theorem 2.34, we have |0* f(x)| < M for
allx € S and |a| =k + 1, then

ar(h)] < ha| + |ha| + ...+ B )
Rah)] < gyl + hal o+ )
and consequently,
. Rar(h)
T

2.6 Critical Points

Theorem 2.36. Let S C R” and f : S — R. If f has a local maximum or
local minimum at a € S and f is differentiable at a, then V f(a) = 0.



