
Chapter 2

Differential Calculus

2.1 Differentiability in one variable

Let f : R → R and a ∈ R. We say f ′(a) ∈ R is the derivative of f at a if

lim
x→a

f(x) − f(a)

x − a
= lim

h→0

f(a + h) − f(a)

h
= f ′(a). (2.1)

Note that f ′(a) is the slope of the tangent line to the graph of f at point

(a, f(a)).

We now look at (2.1) from another point of view. Let m = f ′(a). From

(2.1), we have

lim
x→a

f(x) − f(a) − m(x − a)

x − a
= lim

x→a

E(x − a)

x − a
= 0,

where E(x − a) = f(x) − l(x) is the difference between f(x) and its linear

approximation l(x), here l(x) = m(x− a) + f(a) is the “linear” equation for

the tangent line.

Let h = x − a, we have f(a + h) = f(a) + mh + E(h), and E(h)/h → 0

as h → 0. This leads to the following definition

Definition 2.1. f is differentiable at a if there is m ∈ R such that

f(a + h) = f(a) + mh + E(h), where lim
h→0

E(h)

h
= 0. (2.2)
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Note that m = f ′(a) is unique when it exists.

Let S ⊂ R, then f is differentiable on S if it is differentiable at every

point of S.

Example 2.2. If f : R → R is a constant function then f ′(x) = 0 for all

x ∈ R.

If f(x) = cx where c is a fixed number and x ∈ R, then f ′(x) = c for all

x.

Remark 2.3. If f is differentiable at a then f is continuous at a.

Proposition 2.4. Let a ∈ R and f, g : R → R be differentiable at a. Then

(i) f ± g are differentiable at a and

(f ± g)′(a) = f ′(a) ± g′(a). (2.3)

(ii) fg is differentiable at a and

(fg)′(a) = f ′(a)g(a) + f(a)g′(a). (2.4)

(iii) If g(a) 6= 0, then (f/g) is differentiable at a and

(

f

g

)′

(a) =
f ′(a)g(a) − g′(a)f(a)

g2(a)
. (2.5)

In particular,
(

1

g

)′

(a) = −
g′(a)

g2(a)
. (2.6)

Proof. We prove, for instance (ii). Suppose

f(a + h) = f(a) + f ′(a)h + E1(h), where lim
h→0

E1(h)

h
= 0,

g(a + h) = g(a) + g′(a)h + E2(h), where lim
h→0

E2(h)

h
= 0.

Then f(a+h)g(a+h) = f(a)g(a)+ {f ′(a)g(a)+ g′(a)f(a)}h+E3(h), where

E3(h) = f ′(a)g′(a)h2 + E1(h){g(a) + g′(a)h + E2(h)}+ E2(h){fa) + f ′(a)h}.



2.1. DIFFERENTIABILITY IN ONE VARIABLE 21

Note that

E3(h)

h
= f ′(a)g′(a)h+

E1(h)

h
{g(a)+ g′(a)h+E2(h)}+

E2(h)

h
{fa)+ f ′(a)h},

which goes to zero as h → 0. Therefore (fg) is differentiable at a and its

derivative is (fg)′(a) is f ′(a)g(a) + f(a)g′(a).

Definition 2.5. Let S ⊂ R
n, f : S → R, and a ∈ S.

f(a) is the maximum (largest value) of f on S if f(a) ≥ f(x) for all

x ∈ S.

f(a) is the minimum (smallest value) of f on S if f(a) ≤ f(x) for all

x ∈ S.

f has a local maximum at a if there is r > 0 such that f(x) ≤ f(a) for

all x ∈ S ∩ B(r, a).

f has a local minimum at a if there is r > 0 such that f(x) ≥ f(a) for all

x ∈ S ∩ B(r, a).

Note that if f(a) is the maximum (respectively, minimum) then it is also

a local maximum (respectively, local minimum).

Proposition 2.6. Suppose f is defined on an open set I ⊂ R and a ∈ I. If

f has a local maximum or minimum at a and f is differentiable at a then

f ′(a) = 0.

Proof. Suppose f(a) is a local minimum. Let δ > 0 be such that if |h| < δ,

then a + h ∈ I and f(a + h) − f(a) ≥ 0. We have

f ′(a) = lim
h→0

f(a + h) − f(a)

h
.

When 0 < h < δ, we have f(a+h)−f(a)
h

≥ 0, letting h → 0 gives f ′(a) ≥ 0.

When −δ < h < 0, we have f(a+h)−f(a)
h

≤ 0, letting h → 0 gives f ′(a) ≤ 0.

We conclude f ′(a) = 0.

Lemma 2.7 (Rolle’s theorem). Suppose a < b and f is differentiable on

(a, b) and continuous on [a, b]. If f(a) = f(b), then there is c ∈ (a, b) such

that f ′(c) = 0.
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Proof. Since [a, b] is compact, then there are x1, x2 ∈ [a, b] such that f(x1) =

M is the (absolute) maximum and f(x2) = m is the (absolute) minimum of

f on [a, b].

If M = m, then f is a constant function, hence f ′(c) = 0 for any c ∈ (a, b).

If M 6= m, then M 6= L = f(a) = f(b) or m 6= L. Suppose M 6= L then

c = x1 6= a, b, hence c ∈ (a, b). Since f is differentiable on the open interval

(a, b) and has a local maximum at c ∈ (a, b), then by Proposition 2.6 we have

f ′(c) = 0.

Theorem 2.8 (Mean value theorem I). Suppose f is continuous on [a, b] and

is differentiable on (a, b). Then there is a point c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a
. (2.7)

Note that f(b)−f(a)
b−a

is the slope of the straight line going through (a, f(a))

and (b, f(b)).

Proof. Let

g(x) = f(a) +
f(b) − f(a)

b − a
(x − a) − f(x).

Then g is continuous on [a, b] and is differentiable on (a, b). Note that g(a) =

g(b) = 0 and g′(x) = f(b)−f(a)
b−a

− f ′(x). By Rolle’s lemma, there is c ∈ (a, b)

such that g′(c) = 0, hence we obtain (2.7).

Theorem 2.9. Suppose f is differentiable on an open interval I. (a) If

|f ′(x)| ≤ C for all x ∈ I then |f(b) − f(a)| ≤ C|b − a| for all a, b ∈ I.

(b) If f ′(x) = 0 for all x ∈ I then f is constant in I.

(c) If |f ′(x)| ≥ 0 (resp., > 0,≤, < 0) for all x ∈ I then f is increasing (resp.,

strictly increasing, decreasing, strictly decreasing) on I.

Proof. Let a, b ∈ I and a < b, then f continuous on [a, b] and is differentiable

on (a, b). By the Mean Value Theorem 2.8, there is c ∈ (a, b) such that

f(b) − f(a) = f ′(c)(b − a).
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We easily prove (a)–(c). For example, if f ′(x) < 0 for all x ∈ I then f ′(c) < 0,

therefore f(b) − f(a) < 0 for any b > a; that means f is strictly decreasing

in I.

Theorem 2.10 (Mean value theorem II). Suppose f and g are continuous

on [a, b] and is differentiable on (a, b), and g′(x) 6= 0 for all x ∈ (a, b). Then

there is a point c ∈ (a, b) such that

f ′(c)

g′(c)
=

f(b) − f(a)

g(b) − g(a)
. (2.8)

Proof. Apply Rolle’s lemma for the following function

h(x) = [f(x) − f(a)][g(b) − g(a)] − [g(x) − g(a)][f(b) − f(a)].

Definition 2.11. We have the following notion of limits

• Let f : (d, a) → R
m and L ∈ R

m. Then limx→a− f(x) = L if

∀ε > 0, ∃δ > 0, ∀x ∈ (d, a) : a − δ < x < a =⇒ |f(x) − L| < ε. (2.9)

• Let f : (a, b) → R
m and L ∈ R. Then limx→a+ f(x) = L if

∀ε > 0, ∃δ > 0, ∀x ∈ (a, b) : a < x < a+ δ =⇒ |f(x)−L| < ε. (2.10)

• Let f : (c,∞) → R
m and L ∈ R. Then limx→∞ f(x) = L if

∀ε > 0, ∃M > 0, ∀x ∈ (c,∞) : x > M =⇒ |f(x) − L| < ε. (2.11)

• Let f : (−∞, c) → R
m and L ∈ R. Then limx→−∞ f(x) = L if

∀ε > 0, ∃M > 0, ∀x ∈ (−∞, c) : x < −M =⇒ |f(x) − L| < ε. (2.12)

• Let f : R
n → R, a ∈ R

n. Then limx→a f(x) = ∞ if

∀M > 0, ∃δ > 0, ∀x ∈ R
n : 0 < |x − a| < δ =⇒ f(x) > M. (2.13)
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• Let f : R
n → R, a ∈ R

n. Then limx→a f(x) = −∞ if

∀M > 0, ∃δ > 0, ∀x ∈ R
n : 0 < |x − a| < δ =⇒ f(x) < −M. (2.14)

Note that if f : (d, a) ∪ (a, b) → R
m and L ∈ R

m then

lim
x→a

f(x) = L ⇐⇒ lim
x→a−

f(x) = lim
x→a+

f(x) = L. (2.15)

Theorem 2.12 (L’Hôpital’s rule I). Suppose f and g are differentiable on

(a, b) and

lim
x→a+

f(x) = lim
x→a+

g(x) = 0. (2.16)

If g′ never vanishes on (a, b) and

lim
x→a+

f ′(x)

g′(x)
= L, (2.17)

then

lim
x→a+

f(x)

g(x)
= L. (2.18)

Proof. Extend f(a) = 0, g(a) = 0. For x ∈ (a, b), we have f, g are continuous

on [a, x] and differentiable on (a, x). By Theorem 2.10, there is c ∈ (a, x)

such that
f(x)

g(x)
=

f(x) − f(a)

g(x) − g(a)
=

f ′(c)

g′(c)
.

Note that c → a+ and x → a+. Letting x → a+ and using (2.17), we obtain

(2.18).

Remark 2.13. The theorem still holds if we replace limx→a+ by limx→a−,

limx→a, limx→∞, limx→−∞ and the domains of f, g are appropriate.

Theorem 2.14 (L’Hôpital’s rule II). Suppose f and g are differentiable on

(a, b) and

lim
x→a+

|f(x)| = lim
x→a+

|g(x)| = ∞. (2.19)

If g′ never vanishes on (a, b) and

lim
x→a+

f ′(x)

g′(x)
= L, (2.20)
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then

lim
x→a+

f(x)

g(x)
= L. (2.21)

Theorem 2.15 (Chain rule). Let f, g : R → R and a ∈ R. Let g(a) = b and

suppose that g is differentiable at a, and f is differentiable at b. Then f ◦ g

is differentiable at a and

(f ◦ g)′(a) = f ′(b)g′(a). (2.22)

Proof. We have

g(a + h) = g(a) + g′(a)h + E1(h), where lim
h→0

E1(h)

h
= 0,

f(b + h) = f(b) + f ′(b)h + E2(k), where lim
k→0

E2(k)

k
= 0.

Then (f ◦g)(a+h) = f(g(a+h)) = f(b+k) where k = k(h) = g′(a)h+E1(h).

We have

(f ◦ g)(a + h) = f(b) + f ′(b){g′(a)h + E1(h)} + E2(k(h))

= (f ◦ g)(a) + f ′(b)g′(a)h + E3(h), (2.23)

where E3(h) = f ′(b)E1(h) + E2(k(h)). Note that

E3(h)

h
= f ′(b)

E1(h)

h
+

E2(k(h))

h

Claim: limh→0
E2(k(h))

h
= 0.

Suppose the claim is true, then limh→0 E3(h)/h = 0. Hence, according to

the Definition 2.1, we infer from (2.23) that f ◦ g is differentiable at a and

(2.22).

Proof of the claim: The idea is that

E2(k(h))

h
=

E2(k(h))

k(h)

k(h)

h
.

Since

lim
h→0

k(h) = 0, lim
k→0

E2(k)

k
= 0, and lim

h→0

k(h)

h
= g′(a),
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we obtain limh→0
E3(h)

h
= 0. This argument can be easily made rigorous (to

take care of the case k(h) = 0). However, the direct proof can go as follows:

Let M = |g′(a)| + 1. Since limh→0
k(h)

h
= g′(a), there is δ1 > 0 such that

|k(h)| ≤ M |h| for 0 < |h| < δ1.

Let ε > 0. Since limk→0
E2(k)

k
= 0, there is δ2 > 0 such that |E2(k)| ≤

(ε/M)|k| for |k| < δ2 (note that E2(0) = 0). Let δ = min{δ1, δ2/M}, then

for 0 < |h| < δ, we have |k(h)| ≤ M |h| ≤ δ2 and hence

|E2(k(h))| ≤ (ε/M)|k(h)| ≤ (ε/M)M |h| = ε|h|.

Therefore limh→0 E2(k(h))/h = 0.

Differentiability of vector-valued functions. Let f = (f1, f2, . . . , fm) :

R → R
m be a vector-valued function, where fj : R → R, for j = 1, 2, . . .m.

Let a ∈ R. Then the derivative of f at a is the vector

f ′(a) = lim
h→0

f(a + h) − f(a)

h
= (f ′

1(a), f ′
2(a), . . . , f ′

n(a)). (2.24)

whenever the involved quantities are defined. If f ′(a) exists then we say f is

differentiable at a. In fact, f ′(a) is the unique vector v ∈ R
m such that

f(a + h) = f(a) + hv + E(h), where E(h) ∈ R
m, lim

h→0

E(h)

h
= 0. (2.25)

Curves and tangent vectors. See text, p.50.

Higher order derivatives. Just as in lower calculus course.
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2.2 Differentiability in several variables

2.2.1 Real-valued functions

Partial derivatives. Let f : R
n → R, a = (a1, a2, . . . , an) ∈ R

n. Partial

derivative of f with respect to variable xj at a is

∂f

∂xj

(a) = lim
h→0

f(a1, . . . , aj−1, aj + h, aj+1, . . . , an) − f(a1, . . . , aj, . . . , an)

h
(2.26)

Other notation: fxj
, ∂jf, ∂xj

f.

Gradient vector and Differentiability. Let S ⊂ R
n be open, f : S →

R, a ∈ S. We say f is differentiable at a if there is c ∈ R
n such that

f(a + h) = f(a) + c · h + E(h), where lim
h→0

E(h)

|h|
= 0. (2.27)

The vector c is the gradient of f at a and is denoted by ∇f(a).

Tangent planes. For n = 2, f = f(x) = f(x1, x2) the graph of z = f(x)

is a surface in R
3. Let P = (a, f(a)) be a point on the surface. The equation

for the tangent plane of the surface at P is:

z = (x − a) · ∇f(a) + f(a).

Theorem 2.16 (Chain Rule). Let g(t) = (g1, g2, . . . , gn) : R
m → R

n, f(x) :

R
n → R, a ∈ R

m, b = g(a) ∈ R
n. If g is differentiable at a and f is

differentiable at b then f ◦ g is differentiable at a and

∂(f ◦ g)

∂tk
(a) =

∂f

∂x1

(b)
∂g1

∂tk
(a) +

∂f

∂x2

(b)
∂g2

∂tk
(a) + . . . +

∂f

∂xn

(b)
∂gn

∂tk
(a), (2.28)

for k = 1, 2, . . . , m. Briefly, we have

∂(f ◦ g)

∂tk
(a) = ∇f(b) ·

∂g

∂tk
(a), (2.29)

for k = 1, 2, . . . , m.
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Directional derivatives. Let u ∈ R
n, |u| = 1, then

∂uf(a) = lim
h→0

f(a + hu) − f(a)

h
. (2.30)

We have

∂uf(a) = ∇f(a) · u. (2.31)

By Cauchy-Schwarz’s inequality |∂uf(a)| ≤ |∇f(a)||u| = |∇f(a)|. Hence

∂uf(a) attains its maximum value |∇f(a)| when u = λ∇f(a) for some λ > 0.

2.2.2 Vector-valued functions

Definition 2.17. Let f : R
n → R

m, a ∈ R
n. We say f is differentiable at a

if there is a m × n matrix L such that

f(a + h) = f(a) + Lh + E(h), where E(h) ∈ R
m, lim

h→0

E(h)

|h|
= 0. (2.32)

The matrix L, denoted by Df(a) (or f ′(a)), is called the (Fréchet) deriva-

tive of f at a.

Proposition 2.18. If Df(a) exists, then it is unique.

Proposition 2.19. If f is differentiable at a then f is continuous at a.

Proposition 2.20. Let f = (f1, f2, . . . , fm) : R
n → R

m be differentiable

at a ∈ R
n. Then the partial derivatives ∂xj

fi(a), for i = 1, 2, . . . , m, j =

1, 2, . . . , n, exist and the matrix Df(a) is

Df =
( ∂fi

∂xj

)

i=1,...,m

j=1,...,n
=













Df1

Df2

...

Dfm













=













∂f1

∂x1

∂f1

∂x2

. . . ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2

. . . ∂f2

∂xn

...
...

...
...

∂fm

∂x1

∂fm

∂x2

. . . ∂fm

∂xn













. (2.33)

Theorem 2.21 (Chain Rule). Suppose g : R
k → R

n is differentiable at

a ∈ R
k and f : R

n → R
m is differentiable at b = g(a) ∈ R

n. Then their

composition H = f ◦ g : R
k → R

m is differentiable at a, and

DH(a) = DF (b)Dg(a). (2.34)
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Note that Df is an m × n matrix, Dg is an n × k matrix and DH is an

m × k matrix.

Theorem 2.22. Let S ⊂ R
n be open, f : S → R, and a ∈ S. Suppose all

partial derivatives ∂jf(a), for j = 1, 2, . . . , n, exist in a neighborhood of a

and are continuous at a, then f is differentiable at a.

2.3 The Mean Value Theorem

The following notation is not standard and is only used in this lecture note.

Let a, b ∈ R
n, we denote the line segments whose endpoints are a and b

by

[a, b] = {(1 − t)a + tb : t ∈ [0, 1]},

and

(a, b) = {(1 − t)a + tb : t ∈ (0, 1)},

Note that l(t) = (1− t)a + tb, for t ∈ [0, 1], is the equation for the closed

line segment [a, b], and l(0) = a, l(1) = b.

A subset S of R
n is called convex if for any a, b ∈ S, we have [a, b] ⊂ S.

Note that every convex set is connected.

Theorem 2.23. Let S be an open subset of R
n and a, b ∈ S such that

[a, b] ⊂ S. Suppose f : S → R is continuous on [a, b] and differentiable on

(a, b), then there is a point c ∈ [a, b] such that

f(b) − f(a) = ∇f(c) · (b − a).

Corollary 2.24. Suppose f is differentiable on an open convex set S ⊂ R
n

and |∇f(x)| ≤ M for all x ∈ S. Then |f(b) − f(a)| ≤ M |b − a| for all

a, b ∈ S.

Remark: We can use this to prove the uniform continuity of a function.

Corollary 2.25. If S is convex, f is differentiable on S and ∇f(x) = 0 for

all x ∈ S, then f is constant on S.
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Corollary 2.25 still holds true when S is only connected.

Theorem 2.26. Suppose f is differentiable on an open connected set S ⊂ R
n

and ∇f(x) = 0 for all x ∈ S. Then f is constant on S.

2.4 Higher-order partial derivatives

See Section 2.6 of the textbook.

Suppose f is defined on an open set S ⊂ R
n and ∂xj

f , for some j ∈

{1, 2, . . . , n}, exists on S. Then whenever it makes sense, we have the second-

order derivative ∂xi

[

∂xj
f
]

.

Notation:
∂2f

∂xi∂xj

, fxjxi
, fji, ∂xi

∂xj
f, ∂i∂jf.

In particular,
∂2f

∂x2
j

, fxjxj
, fjj, ∂2

xj
f, ∂2

j f.

Similarly, we may have third-order partial derivatives ∂xk
∂xi

∂xj
f where

j, i, k ∈ {1, 2, . . . , n}; or the k-order partial derivatives

∂xjk
. . . ∂xj2

∂xj1
f,

for k ∈ N and j1, j2, . . . , jk ∈ {1, 2, . . . , n}.

For our convention, the zero-order derivative of f is just f itself.

Definition 2.27. Let U ⊂ R
n be open and f : U → R.

The function f is said to be of class Ck on U if all the partial derivatives

of f up to order k exist and are continuous on U . Notation f ∈ Ck(U).

If all partial derivatives of f of all orders exist and are continuous on U

then f is said of class C∞. Notation f ∈ C∞(U).

In the case of vector-valued functions, f = (f1, f2, . . . , fm) is said of class

Ck, (or C∞,) if each fj , for j = 1, 2, . . . , m, is of class Ck, (or C∞).
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Theorem 2.28. Let f be a function defined in an open set S ⊂ R
n. Suppose

a ∈ S and i, j ∈ {1, 2, . . . , n}. If the derivatives ∂if , ∂jf , ∂i∂jf and ∂j∂if

exist in S and are continuous at a, then ∂i∂jf(a) = ∂j∂if(a).

Corollary 2.29. If f ∈ C2(S) where S ⊂ R
n is open, then ∂i∂jf = ∂j∂if

on S for all i, j.

For higher order derivatives, we have the following theorem

Theorem 2.30. If f ∈ Ck(S) where S ⊂ R
n is open, then

∂i1∂i2 . . . ∂ikf = ∂j1∂j2 . . . ∂jk
f,

whenever the sequence {j1, j2, . . . , jk} is a reordering of {i1, i2, . . . , ik}.

Multi-index Notation. A multi-index is an n-tuple of non-negative

integers:

α = (α1, α2, . . . , αn), αj ∈ {0, 1, 2, . . .}.

Let α = (α1, α2, . . . , αn) be a multi-index, x = (x1, x2, . . . , xn) ∈ R
n and

f : R
n → R. We define

|α| = α1 + α2 + . . . + αn, α! = α1!α2! . . . αn!,

xα = xα1

1 xα2

2 . . . xαn

n ,

∂αf = ∂α1

1 ∂α2

2 . . . ∂αn

n f =
∂|α|f

∂x1
α1∂x2

α2 . . . ∂xn
αn

.

Recall 0! = 1, 1! = 1, 2! = 2(1!) = 2, k! = k[(k − 1)!] = 1 · 2 · . . . · k.

The number |α| is called the order or degree of α. Also, |α| is the order

of the partial derivative ∂αf .

Theorem 2.31 (Multinomial Theorem). For any x = (x1, x2, . . . , xn) ∈ R
n

and k ∈ N, we have

(x1 + x2 + . . . + xn)k =
∑

|α|=k

k!

α!
xα.
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Particularly, when n = 2,

(x1 + x2)
k =

k
∑

j=0

k!

j!(k − j)!
xj .

2.5 Taylor’s Theorem

We only present Taylor’s theorem with Lagrange’s remainder.

2.5.1 In one variable

We aim to approximate the value of a function f near a using the polynomials.

The following was explained in details in class.

We write f(a+h) = Pa,k(h)+Ra,k(h), where Pa,k(h) is the k-order Taylor

polynomial

Pa,k(h) = f(a) + f ′(a)h +
f ′′(a)

2
h2 + . . . +

f (k)(a)

k!
hk =

k
∑

j=0

f (j)(a)

j!
hj .

We expect to have

lim
h→0

Ra,k(h)

hk
= 0.

Theorem 2.32. Suppose f is k+1 times differentiable on an interval I ⊂ R

and a ∈ I. For each h ∈ R such that a + h ∈ I, there is a point c between 0

and h such that

Ra,k(h) =
f (k+1)(a + c)

(k + 1)!
hk+1.

The proof of the above theorem requires a generalization of Rolle’s Lemma

for higher derivatives (see Lemma 2.62 in the text).

Corollary 2.33. If |f (k+1)(x)| ≤ M for all x ∈ I then

lim
h→0

Ra,k(h)

hk
= 0.

See Proposition 2.65 in the text for some examples of Taylor polynomials.
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2.5.2 In several variables

Theorem 2.34. Suppose f : R
n → R is of class Ck+1 on an open convex set

S. If a, a + h ∈ S, then f(a + h) = Pa,k(h)Ra,k(h) where

Pa,k(h) =
∑

|α|≤k

∂αf(a)

α!
hα,

Ra,k(h) =
∑

|α|=k+1

∂αf(a + ch)

α!
hα,

for some c ∈ (0, 1).

Corollary 2.35. If, in addition to Theorem 2.34, we have |∂αf(x)| ≤ M for

all x ∈ S and |α| = k + 1, then

|Ra,k(h)| ≤
M

(k + 1)!
(|h1| + |h2| + . . . + |hn|)

k+1,

and consequently,

lim
h→0

Ra,k(h)

|h|k
= 0.

2.6 Critical Points

Theorem 2.36. Let S ⊂ R
n and f : S → R. If f has a local maximum or

local minimum at a ∈ S and f is differentiable at a, then ∇f(a) = 0.


