Chapter 2

Differential Calculus

2.1 Differentiability in one variable

Let $f : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. We say $f'(a) \in \mathbb{R}$ is the *derivative* of f at a if

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = f'(a).$$
(2.1)

Note that f'(a) is the slope of the tangent line to the graph of f at point (a, f(a)).

We now look at (2.1) from another point of view. Let m = f'(a). From (2.1), we have

$$\lim_{x \to a} \frac{f(x) - f(a) - m(x - a)}{x - a} = \lim_{x \to a} \frac{E(x - a)}{x - a} = 0,$$

where E(x - a) = f(x) - l(x) is the difference between f(x) and its *linear* approximation l(x), here l(x) = m(x - a) + f(a) is the "linear" equation for the tangent line.

Let h = x - a, we have f(a + h) = f(a) + mh + E(h), and $E(h)/h \to 0$ as $h \to 0$. This leads to the following definition

Definition 2.1. f is differentiable at a if there is $m \in \mathbb{R}$ such that

$$f(a+h) = f(a) + mh + E(h)$$
, where $\lim_{h \to 0} \frac{E(h)}{h} = 0.$ (2.2)

Note that m = f'(a) is unique when it exists.

Let $S \subset \mathbb{R}$, then f is differentiable on S if it is differentiable at every point of S.

Example 2.2. If $f : \mathbb{R} \to \mathbb{R}$ is a constant function then f'(x) = 0 for all $x \in \mathbb{R}$.

If f(x) = cx where c is a fixed number and $x \in \mathbb{R}$, then f'(x) = c for all x.

Remark 2.3. If f is differentiable at a then f is continuous at a.

Proposition 2.4. Let $a \in \mathbb{R}$ and $f, g : \mathbb{R} \to \mathbb{R}$ be differentiable at a. Then (i) $f \pm g$ are differentiable at a and

$$(f \pm g)'(a) = f'(a) \pm g'(a).$$
 (2.3)

(ii) fg is differentiable at a and

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a).$$
 (2.4)

(iii) If $g(a) \neq 0$, then (f/g) is differentiable at a and

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - g'(a)f(a)}{g^2(a)}.$$
(2.5)

In particular,

$$\left(\frac{1}{g}\right)'(a) = -\frac{g'(a)}{g^2(a)}.$$
 (2.6)

Proof. We prove, for instance (ii). Suppose

$$f(a+h) = f(a) + f'(a)h + E_1(h), \text{ where } \lim_{h \to 0} \frac{E_1(h)}{h} = 0,$$

$$g(a+h) = g(a) + g'(a)h + E_2(h), \text{ where } \lim_{h \to 0} \frac{E_2(h)}{h} = 0.$$

Then $f(a+h)g(a+h) = f(a)g(a) + \{f'(a)g(a) + g'(a)f(a)\}h + E_3(h), \text{ where } E_3(h) = f'(a)g'(a)h^2 + E_1(h)\{g(a) + g'(a)h + E_2(h)\} + E_2(h)\{fa) + f'(a)h\}.$

20

Note that

$$\frac{E_3(h)}{h} = f'(a)g'(a)h + \frac{E_1(h)}{h}\{g(a) + g'(a)h + E_2(h)\} + \frac{E_2(h)}{h}\{fa\} + f'(a)h\},$$

which goes to zero as $h \to 0$. Therefore (fg) is differentiable at a and its derivative is (fg)'(a) is f'(a)g(a) + f(a)g'(a).

Definition 2.5. Let $S \subset \mathbb{R}^n$, $f : S \to \mathbb{R}$, and $a \in S$.

f(a) is the maximum (largest value) of f on S if $f(a) \ge f(x)$ for all $x \in S$.

f(a) is the minimum (smallest value) of f on S if $f(a) \leq f(x)$ for all $x \in S$.

f has a local maximum at a if there is r > 0 such that $f(x) \leq f(a)$ for all $x \in S \cap B(r, a)$.

f has a local minimum at a if there is r > 0 such that $f(x) \ge f(a)$ for all $x \in S \cap B(r, a)$.

Note that if f(a) is the maximum (respectively, minimum) then it is also a local maximum (respectively, local minimum).

Proposition 2.6. Suppose f is defined on an open set $I \subset \mathbb{R}$ and $a \in I$. If f has a local maximum or minimum at a and f is differentiable at a then f'(a) = 0.

Proof. Suppose f(a) is a local minimum. Let $\delta > 0$ be such that if $|h| < \delta$, then $a + h \in I$ and $f(a + h) - f(a) \ge 0$. We have

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

When $0 < h < \delta$, we have $\frac{f(a+h)-f(a)}{h} \ge 0$, letting $h \to 0$ gives $f'(a) \ge 0$. When $-\delta < h < 0$, we have $\frac{f(a+h)-f(a)}{h} \le 0$, letting $h \to 0$ gives $f'(a) \le 0$. We conclude f'(a) = 0.

Lemma 2.7 (Rolle's theorem). Suppose a < b and f is differentiable on (a, b) and continuous on [a, b]. If f(a) = f(b), then there is $c \in (a, b)$ such that f'(c) = 0.

Proof. Since [a, b] is compact, then there are $x_1, x_2 \in [a, b]$ such that $f(x_1) = M$ is the (absolute) maximum and $f(x_2) = m$ is the (absolute) minimum of f on [a, b].

If M = m, then f is a constant function, hence f'(c) = 0 for any $c \in (a, b)$.

If $M \neq m$, then $M \neq L = f(a) = f(b)$ or $m \neq L$. Suppose $M \neq L$ then $c = x_1 \neq a, b$, hence $c \in (a, b)$. Since f is differentiable on the open interval (a, b) and has a local maximum at $c \in (a, b)$, then by Proposition 2.6 we have f'(c) = 0.

Theorem 2.8 (Mean value theorem I). Suppose f is continuous on [a, b] and is differentiable on (a, b). Then there is a point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$
 (2.7)

Note that $\frac{f(b)-f(a)}{b-a}$ is the slope of the straight line going through (a, f(a)) and (b, f(b)).

Proof. Let

$$g(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a) - f(x)$$

Then g is continuous on [a, b] and is differentiable on (a, b). Note that g(a) = g(b) = 0 and $g'(x) = \frac{f(b) - f(a)}{b-a} - f'(x)$. By Rolle's lemma, there is $c \in (a, b)$ such that g'(c) = 0, hence we obtain (2.7).

Theorem 2.9. Suppose f is differentiable on an open interval I. (a) If $|f'(x)| \leq C$ for all $x \in I$ then $|f(b) - f(a)| \leq C|b - a|$ for all $a, b \in I$. (b) If f'(x) = 0 for all $x \in I$ then f is constant in I. (c) If $|f'(x)| \geq 0$ (resp., $> 0, \leq, < 0$) for all $x \in I$ then f is increasing (resp., strictly increasing, decreasing, strictly decreasing) on I.

Proof. Let $a, b \in I$ and a < b, then f continuous on [a, b] and is differentiable on (a, b). By the Mean Value Theorem 2.8, there is $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

We easily prove (a)–(c). For example, if f'(x) < 0 for all $x \in I$ then f'(c) < 0, therefore f(b) - f(a) < 0 for any b > a; that means f is strictly decreasing in I.

Theorem 2.10 (Mean value theorem II). Suppose f and g are continuous on [a, b] and is differentiable on (a, b), and $g'(x) \neq 0$ for all $x \in (a, b)$. Then there is a point $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$
(2.8)

Proof. Apply Rolle's lemma for the following function

$$h(x) = [f(x) - f(a)][g(b) - g(a)] - [g(x) - g(a)][f(b) - f(a)].$$

Definition 2.11. We have the following notion of limits

• Let $f: (d, a) \to \mathbb{R}^m$ and $L \in \mathbb{R}^m$. Then $\lim_{x \to a^-} f(x) = L$ if $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in (d, a) : a - \delta < x < a \implies |f(x) - L| < \varepsilon.$ (2.9)

• Let
$$f: (a, b) \to \mathbb{R}^m$$
 and $L \in \mathbb{R}$. Then $\lim_{x \to a+} f(x) = L$ if
 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in (a, b) : a < x < a + \delta \implies |f(x) - L| < \varepsilon.$ (2.10)

- Let $f: (c, \infty) \to \mathbb{R}^m$ and $L \in \mathbb{R}$. Then $\lim_{x \to \infty} f(x) = L$ if $\forall \varepsilon > 0, \exists M > 0, \forall x \in (c, \infty) : x > M \implies |f(x) - L| < \varepsilon.$ (2.11)
- Let $f: (-\infty, c) \to \mathbb{R}^m$ and $L \in \mathbb{R}$. Then $\lim_{x \to -\infty} f(x) = L$ if $\forall \varepsilon > 0, \exists M > 0, \forall x \in (-\infty, c) : x < -M \implies |f(x) - L| < \varepsilon.$ (2.12)

• Let
$$f : \mathbb{R}^n \to \mathbb{R}, a \in \mathbb{R}^n$$
. Then $\lim_{x \to a} f(x) = \infty$ if
 $\forall M > 0, \exists \delta > 0, \forall x \in \mathbb{R}^n : 0 < |x - a| < \delta \implies f(x) > M.$ (2.13)

• Let
$$f : \mathbb{R}^n \to \mathbb{R}, a \in \mathbb{R}^n$$
. Then $\lim_{x \to a} f(x) = -\infty$ if
 $\forall M > 0, \exists \delta > 0, \forall x \in \mathbb{R}^n : 0 < |x - a| < \delta \implies f(x) < -M.$ (2.14)

Note that if $f:(d,a)\cup(a,b)\to\mathbb{R}^m$ and $L\in\mathbb{R}^m$ then

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L.$$
(2.15)

Theorem 2.12 (L'Hôpital's rule I). Suppose f and g are differentiable on (a, b) and

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0.$$
(2.16)

If g' never vanishes on (a, b) and

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)} = L,$$
(2.17)

then

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = L.$$
 (2.18)

Proof. Extend f(a) = 0, g(a) = 0. For $x \in (a, b)$, we have f, g are continuous on [a, x] and differentiable on (a, x). By Theorem 2.10, there is $c \in (a, x)$ such that

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Note that $c \to a+$ and $x \to a+$. Letting $x \to a+$ and using (2.17), we obtain (2.18).

Remark 2.13. The theorem still holds if we replace $\lim_{x\to a^+}$ by $\lim_{x\to a^-}$, $\lim_{x\to a}$, $\lim_{x\to\infty}$, $\lim_{x\to\infty}$ and the domains of f, g are appropriate.

Theorem 2.14 (L'Hôpital's rule II). Suppose f and g are differentiable on (a, b) and

$$\lim_{x \to a_+} |f(x)| = \lim_{x \to a_+} |g(x)| = \infty.$$
(2.19)

If g' never vanishes on (a, b) and

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)} = L,$$
(2.20)

24

then

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = L.$$
 (2.21)

Theorem 2.15 (Chain rule). Let $f, g : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Let g(a) = b and suppose that g is differentiable at a, and f is differentiable at b. Then $f \circ g$ is differentiable at a and

$$(f \circ g)'(a) = f'(b)g'(a).$$
 (2.22)

Proof. We have

$$g(a+h) = g(a) + g'(a)h + E_1(h), \text{ where } \lim_{h \to 0} \frac{E_1(h)}{h} = 0,$$
$$f(b+h) = f(b) + f'(b)h + E_2(k), \text{ where } \lim_{k \to 0} \frac{E_2(k)}{k} = 0.$$

Then $(f \circ g)(a+h) = f(g(a+h)) = f(b+k)$ where $k = k(h) = g'(a)h + E_1(h)$. We have

$$(f \circ g)(a+h) = f(b) + f'(b)\{g'(a)h + E_1(h)\} + E_2(k(h))$$

= $(f \circ g)(a) + f'(b)g'(a)h + E_3(h),$ (2.23)

where $E_3(h) = f'(b)E_1(h) + E_2(k(h))$. Note that

$$\frac{E_3(h)}{h} = f'(b)\frac{E_1(h)}{h} + \frac{E_2(k(h))}{h}$$

Claim: $\lim_{h\to 0} \frac{E_2(k(h))}{h} = 0.$

Suppose the claim is true, then $\lim_{h\to 0} E_3(h)/h = 0$. Hence, according to the Definition 2.1, we infer from (2.23) that $f \circ g$ is differentiable at a and (2.22).

Proof of the claim: The idea is that

$$\frac{E_2(k(h))}{h} = \frac{E_2(k(h))}{k(h)}\frac{k(h)}{h}.$$

Since

$$\lim_{h \to 0} k(h) = 0, \quad \lim_{k \to 0} \frac{E_2(k)}{k} = 0, \quad \text{and} \ \lim_{h \to 0} \frac{k(h)}{h} = g'(a),$$

we obtain $\lim_{h\to 0} \frac{E_3(h)}{h} = 0$. This argument can be easily made rigorous (to take care of the case k(h) = 0). However, the direct proof can go as follows:

Let M = |g'(a)| + 1. Since $\lim_{h\to 0} \frac{k(h)}{h} = g'(a)$, there is $\delta_1 > 0$ such that $|k(h)| \leq M|h|$ for $0 < |h| < \delta_1$.

Let $\varepsilon > 0$. Since $\lim_{k\to 0} \frac{E_2(k)}{k} = 0$, there is $\delta_2 > 0$ such that $|E_2(k)| \le (\varepsilon/M)|k|$ for $|k| < \delta_2$ (note that $E_2(0) = 0$). Let $\delta = \min\{\delta_1, \delta_2/M\}$, then for $0 < |h| < \delta$, we have $|k(h)| \le M|h| \le \delta_2$ and hence

$$|E_2(k(h))| \le (\varepsilon/M)|k(h)| \le (\varepsilon/M)M|h| = \varepsilon|h|.$$

Therefore $\lim_{h\to 0} E_2(k(h))/h = 0$.

Differentiability of vector-valued functions. Let $f = (f_1, f_2, \ldots, f_m)$: $\mathbb{R} \to \mathbb{R}^m$ be a vector-valued function, where $f_j : \mathbb{R} \to \mathbb{R}$, for $j = 1, 2, \ldots m$. Let $a \in \mathbb{R}$. Then the derivative of f at a is the vector

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = (f'_1(a), f'_2(a), \dots, f'_n(a)).$$
(2.24)

whenever the involved quantities are defined. If f'(a) exists then we say f is differentiable at a. In fact, f'(a) is the unique vector $v \in \mathbb{R}^m$ such that

$$f(a+h) = f(a) + hv + E(h)$$
, where $E(h) \in \mathbb{R}^m$, $\lim_{h \to 0} \frac{E(h)}{h} = 0.$ (2.25)

Curves and tangent vectors. See text, p.50.

Higher order derivatives. Just as in lower calculus course.

2.2 Differentiability in several variables

2.2.1 Real-valued functions

Partial derivatives. Let $f : \mathbb{R}^n \to \mathbb{R}$, $a = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$. Partial derivative of f with respect to variable x_j at a is

$$\frac{\partial f}{\partial x_j}(a) = \lim_{h \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + h, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_j, \dots, a_n)}{h}$$
(2.26)

Other notation: $f_{x_j}, \partial_j f, \partial_{x_j} f$.

Gradient vector and Differentiability. Let $S \subset \mathbb{R}^n$ be open, $f: S \to \mathbb{R}$, $a \in S$. We say f is differentiable at a if there is $c \in \mathbb{R}^n$ such that

$$f(a+h) = f(a) + c \cdot h + E(h)$$
, where $\lim_{h \to 0} \frac{E(h)}{|h|} = 0.$ (2.27)

The vector c is the gradient of f at a and is denoted by $\nabla f(a)$.

Tangent planes. For n = 2, $f = f(x) = f(x_1, x_2)$ the graph of z = f(x) is a surface in \mathbb{R}^3 . Let P = (a, f(a)) be a point on the surface. The equation for the tangent plane of the surface at P is:

$$z = (x - a) \cdot \nabla f(a) + f(a)$$

Theorem 2.16 (Chain Rule). Let $g(t) = (g_1, g_2, \ldots, g_n) : \mathbb{R}^m \to \mathbb{R}^n$, $f(x) : \mathbb{R}^n \to \mathbb{R}$, $a \in \mathbb{R}^m$, $b = g(a) \in \mathbb{R}^n$. If g is differentiable at a and f is differentiable at b then $f \circ g$ is differentiable at a and

$$\frac{\partial (f \circ g)}{\partial t_k}(a) = \frac{\partial f}{\partial x_1}(b)\frac{\partial g_1}{\partial t_k}(a) + \frac{\partial f}{\partial x_2}(b)\frac{\partial g_2}{\partial t_k}(a) + \dots + \frac{\partial f}{\partial x_n}(b)\frac{\partial g_n}{\partial t_k}(a), \quad (2.28)$$

for $k = 1, 2, \ldots, m$. Briefly, we have

$$\frac{\partial (f \circ g)}{\partial t_k}(a) = \nabla f(b) \cdot \frac{\partial g}{\partial t_k}(a), \qquad (2.29)$$

for k = 1, 2, ..., m.

Directional derivatives. Let $u \in \mathbb{R}^n$, |u| = 1, then

$$\partial_u f(a) = \lim_{h \to 0} \frac{f(a+hu) - f(a)}{h}.$$
 (2.30)

We have

$$\partial_u f(a) = \nabla f(a) \cdot u. \tag{2.31}$$

By Cauchy-Schwarz's inequality $|\partial_u f(a)| \leq |\nabla f(a)| |u| = |\nabla f(a)|$. Hence $\partial_u f(a)$ attains its maximum value $|\nabla f(a)|$ when $u = \lambda \nabla f(a)$ for some $\lambda > 0$.

2.2.2 Vector-valued functions

Definition 2.17. Let $f : \mathbb{R}^n \to \mathbb{R}^m$, $a \in \mathbb{R}^n$. We say f is differentiable at a if there is a $m \times n$ matrix L such that

$$f(a+h) = f(a) + Lh + E(h)$$
, where $E(h) \in \mathbb{R}^m$, $\lim_{h \to 0} \frac{E(h)}{|h|} = 0.$ (2.32)

The matrix L, denoted by Df(a) (or f'(a)), is called the (Fréchet) derivative of f at a.

Proposition 2.18. If Df(a) exists, then it is unique.

Proposition 2.19. If f is differentiable at a then f is continuous at a.

Proposition 2.20. Let $f = (f_1, f_2, \ldots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$. Then the partial derivatives $\partial_{x_j} f_i(a)$, for $i = 1, 2, \ldots, m, j = 1, 2, \ldots, n$, exist and the matrix Df(a) is

$$Df = \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{i=1,\dots,m\\j=1,\dots,n}} = \begin{pmatrix} Df_1\\Df_2\\\vdots\\Df_m \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n}\\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n}\\\vdots & \vdots & \vdots & \vdots\\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}.$$
 (2.33)

Theorem 2.21 (Chain Rule). Suppose $g : \mathbb{R}^k \to \mathbb{R}^n$ is differentiable at $a \in \mathbb{R}^k$ and $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $b = g(a) \in \mathbb{R}^n$. Then their composition $H = f \circ g : \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at a, and

$$DH(a) = DF(b)Dg(a).$$
(2.34)

Note that Df is an $m \times n$ matrix, Dg is an $n \times k$ matrix and DH is an $m \times k$ matrix.

Theorem 2.22. Let $S \subset \mathbb{R}^n$ be open, $f : S \to \mathbb{R}$, and $a \in S$. Suppose all partial derivatives $\partial_j f(a)$, for j = 1, 2, ..., n, exist in a neighborhood of a and are continuous at a, then f is differentiable at a.

2.3 The Mean Value Theorem

The following notation is not standard and is only used in this lecture note.

Let $a, b \in \mathbb{R}^n$, we denote the line segments whose endpoints are a and b by

$$[a,b] = \{(1-t)a + tb : t \in [0,1]\},\$$

and

$$(a,b) = \{(1-t)a + tb : t \in (0,1)\},\$$

Note that l(t) = (1 - t)a + tb, for $t \in [0, 1]$, is the equation for the closed line segment [a, b], and l(0) = a, l(1) = b.

A subset S of \mathbb{R}^n is called *convex* if for any $a, b \in S$, we have $[a, b] \subset S$. Note that every convex set is connected.

Theorem 2.23. Let S be an open subset of \mathbb{R}^n and $a, b \in S$ such that $[a, b] \subset S$. Suppose $f : S \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b), then there is a point $c \in [a, b]$ such that

$$f(b) - f(a) = \nabla f(c) \cdot (b - a).$$

Corollary 2.24. Suppose f is differentiable on an open convex set $S \subset \mathbb{R}^n$ and $|\nabla f(x)| \leq M$ for all $x \in S$. Then $|f(b) - f(a)| \leq M|b - a|$ for all $a, b \in S$.

Remark: We can use this to prove the uniform continuity of a function.

Corollary 2.25. If S is convex, f is differentiable on S and $\nabla f(x) = 0$ for all $x \in S$, then f is constant on S.

Corollary 2.25 still holds true when S is only connected.

Theorem 2.26. Suppose f is differentiable on an open connected set $S \subset \mathbb{R}^n$ and $\nabla f(x) = 0$ for all $x \in S$. Then f is constant on S.

2.4 Higher-order partial derivatives

See Section 2.6 of the textbook.

Suppose f is defined on an open set $S \subset \mathbb{R}^n$ and $\partial_{x_j} f$, for some $j \in \{1, 2, \ldots, n\}$, exists on S. Then whenever it makes sense, we have the second-order derivative $\partial_{x_i} [\partial_{x_j} f]$.

Notation:

$$\frac{\partial^2 f}{\partial x_i \partial x_j}, \ f_{x_j x_i}, \ f_{ji}, \ \partial_{x_i} \partial_{x_j} f, \ \partial_i \partial_j f.$$

In particular,

$$\frac{\partial^2 f}{\partial x_j^2}$$
, $f_{x_j x_j}$, f_{jj} , $\partial^2_{x_j} f$, $\partial^2_j f$.

Similarly, we may have third-order partial derivatives $\partial_{x_k} \partial_{x_i} \partial_{x_j} f$ where $j, i, k \in \{1, 2, ..., n\}$; or the k-order partial derivatives

$$\partial_{x_{j_k}} \dots \partial_{x_{j_2}} \partial_{x_{j_1}} f,$$

for $k \in \mathbb{N}$ and $j_1, j_2, \dots, j_k \in \{1, 2, \dots, n\}$.

For our convention, the zero-order derivative of f is just f itself.

Definition 2.27. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$.

The function f is said to be of class C^k on U if all the partial derivatives of f up to order k exist and are continuous on U. Notation $f \in C^k(U)$.

If all partial derivatives of f of all orders exist and are continuous on Uthen f is said of class C^{∞} . Notation $f \in C^{\infty}(U)$.

In the case of vector-valued functions, $f = (f_1, f_2, \ldots, f_m)$ is said of class C^k , (or C^{∞} ,) if each f_j , for $j = 1, 2, \ldots, m$, is of class C^k , (or C^{∞}).

Theorem 2.28. Let f be a function defined in an open set $S \subset \mathbb{R}^n$. Suppose $a \in S$ and $i, j \in \{1, 2, ..., n\}$. If the derivatives $\partial_i f$, $\partial_j f$, $\partial_i \partial_j f$ and $\partial_j \partial_i f$ exist in S and are continuous at a, then $\partial_i \partial_j f(a) = \partial_j \partial_i f(a)$.

Corollary 2.29. If $f \in C^2(S)$ where $S \subset \mathbb{R}^n$ is open, then $\partial_i \partial_j f = \partial_j \partial_i f$ on S for all i, j.

For higher order derivatives, we have the following theorem

Theorem 2.30. If $f \in C^k(S)$ where $S \subset \mathbb{R}^n$ is open, then

$$\partial_{i_1}\partial_{i_2}\ldots\partial_{i_k}f=\partial_{j_1}\partial_{j_2}\ldots\partial_{j_k}f,$$

whenever the sequence $\{j_1, j_2, \ldots, j_k\}$ is a reordering of $\{i_1, i_2, \ldots, i_k\}$.

Multi-index Notation. A multi-index is an *n*-tuple of non-negative integers:

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), \quad \alpha_j \in \{0, 1, 2, \dots\}.$$

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ be a multi-index, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$. We define

$$|\alpha| = \alpha_1 + \alpha_2 + \ldots + \alpha_n, \quad \alpha! = \alpha_1! \alpha_2! \ldots \alpha_n!,$$

$$x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n},$$

$$\partial^{\alpha} f = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \dots \partial_n^{\alpha_n} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}}.$$

Recall 0! = 1, 1! = 1, 2! = 2(1!) = 2, $k! = k[(k-1)!] = 1 \cdot 2 \cdot \ldots \cdot k$.

The number $|\alpha|$ is called the *order* or *degree* of α . Also, $|\alpha|$ is the order of the partial derivative $\partial^{\alpha} f$.

Theorem 2.31 (Multinomial Theorem). For any $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and $k \in \mathbb{N}$, we have

$$(x_1 + x_2 + \ldots + x_n)^k = \sum_{|\alpha|=k} \frac{k!}{\alpha!} x^{\alpha}.$$

Particularly, when n = 2,

$$(x_1 + x_2)^k = \sum_{j=0}^k \frac{k!}{j!(k-j)!} x^j.$$

2.5 Taylor's Theorem

We only present Taylor's theorem with Lagrange's remainder.

2.5.1 In one variable

We aim to approximate the value of a function f near a using the polynomials. The following was explained in details in class.

We write $f(a+h) = P_{a,k}(h) + R_{a,k}(h)$, where $P_{a,k}(h)$ is the k-order Taylor polynomial

$$P_{a,k}(h) = f(a) + f'(a)h + \frac{f''(a)}{2}h^2 + \ldots + \frac{f^{(k)}(a)}{k!}h^k = \sum_{j=0}^k \frac{f^{(j)}(a)}{j!}h^j.$$

We expect to have

$$\lim_{h \to 0} \frac{R_{a,k}(h)}{h^k} = 0.$$

Theorem 2.32. Suppose f is k+1 times differentiable on an interval $I \subset \mathbb{R}$ and $a \in I$. For each $h \in \mathbb{R}$ such that $a + h \in I$, there is a point c between 0 and h such that

$$R_{a,k}(h) = \frac{f^{(k+1)}(a+c)}{(k+1)!}h^{k+1}.$$

The proof of the above theorem requires a generalization of Rolle's Lemma for higher derivatives (see Lemma 2.62 in the text).

Corollary 2.33. If $|f^{(k+1)}(x)| \leq M$ for all $x \in I$ then

$$\lim_{h \to 0} \frac{R_{a,k}(h)}{h^k} = 0.$$

See Proposition 2.65 in the text for some examples of Taylor polynomials.

2.5.2 In several variables

Theorem 2.34. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is of class C^{k+1} on an open convex set S. If $a, a + h \in S$, then $f(a + h) = P_{a,k}(h)R_{a,k(h)}$ where

$$P_{a,k}(h) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f(a)}{\alpha!} h^{\alpha},$$
$$R_{a,k}(h) = \sum_{|\alpha| = k+1} \frac{\partial^{\alpha} f(a+ch)}{\alpha!} h^{\alpha},$$

for some $c \in (0, 1)$.

Corollary 2.35. If, in addition to Theorem 2.34, we have $|\partial^{\alpha} f(x)| \leq M$ for all $x \in S$ and $|\alpha| = k + 1$, then

$$|R_{a,k}(h)| \le \frac{M}{(k+1)!} (|h_1| + |h_2| + \ldots + |h_n|)^{k+1},$$

and consequently,

$$\lim_{h \to 0} \frac{R_{a,k}(h)}{|h|^k} = 0.$$

2.6 Critical Points

Theorem 2.36. Let $S \subset \mathbb{R}^n$ and $f : S \to \mathbb{R}$. If f has a local maximum or local minimum at $a \in S$ and f is differentiable at a, then $\nabla f(a) = 0$.