Our goal is to find the general solution of

$$
L y=\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{0}\right) y=f(x)(*)
$$

The general solution is obtained as $y=y_{c}+y_{p}$ where

1. y_{c} is the general solution of the homogeneous (or complementary) problem, i.e. $y_{h}=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$ where y_{1}, \cdots, y_{n} are n linearly independent solutions of

$$
L y=\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{0}\right) y=0
$$

with the characteristic polynomial

$$
\left(a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{0}\right)=0 \quad(\dagger) \text {. }
$$

2. y_{p} is (any) particular solution of the nonhomogeneous problem $(*)$.

The main problem then is to find y_{p}.

Method of Undetermined Coefficients

The method of undetermined coefficients is only applicable if the right hand side is a sum of terms of the following form

$$
\begin{equation*}
p(x), \quad p(x) e^{a x}, \quad p(x) e^{\alpha x} \cos (\beta x), \quad p(x) e^{\alpha x} \sin (\beta x) \tag{1}
\end{equation*}
$$

where we denote by $p(x)=C x^{m}+\cdots$ a general polynomial of degree m. For a sum of such terms, y_{p} will also be a sum of terms each of which is computed using the following

$$
\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{0}\right) y=p(x) e^{r_{0} x} \quad \Rightarrow \quad y_{p}=x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{r_{0} x}
$$

1. $s=0$ if r_{0} is not a root of (\dagger)
2. $s=k$ if r_{0} is a root k times of (\dagger).
N.B. The above case includes the case $r_{0}=0$ in which case the right side is $p(x)$.

$$
\begin{aligned}
& \left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{0}\right) y=\left\{\begin{array}{c}
p(x) e^{\alpha x} \cos (\beta x) \\
\text { or } \\
p(x) e^{\alpha x} \sin (\beta x)
\end{array}\right. \\
& \quad \Rightarrow y_{p}=x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{\alpha x} \cos (\beta x)+x^{s}\left(B_{m} x^{m}+\cdots+B_{1} x+B_{0}\right) e^{\alpha x} \sin (\beta x) \\
& \text { 1. } s=0 \text { if } r_{0}=\alpha \pm i \beta \text { is not a root of }(\dagger) . \\
& \text { 2. } s=k \text { if } r_{0} \text { is a root } k \text { times of }(\dagger)
\end{aligned}
$$

