Conditional Probability and Independence

MATH 3342 Sections 2.4 and 2.5

Example What is the probability that you get an A on a test? Would you change your answer if you studied for 1+ hour/day for the week before the exam? How about if you did not?

9/7/11

College Attendance									
		City	Suburb	Country	Total				
	College	2,550	4,580	470	7,600				
	No College	3,450	920	430	4,800				
	Total	6,000	5,500	900	12,400				
			1	1	L]				

The Multiplication Rule

• For any two events A and B,

 $P(A \cap B) = P(A \mid B)P(B)$

Some Facts

$$P(B \mid A) + P(B' \mid A) = 1$$

 $P(B \mid A)P(A) + P(B \mid A')P(A') = P(B)$

The Law of Total Probability

- Let A₁,...,A_k be mutually exclusive and exhaustive events.
- Then for any other event B:

$$P(B) = \sum_{i=1}^{k} P(B \mid A_i) P(A_i)$$

Independence

• Events A and B are *independent* if

$$P(A \mid B) = P(A)$$

• Otherwise, they are *dependent*.

Proposition

• A and B are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

Col	lege	Atte	nda	nce
-----	------	------	-----	-----

	City	Suburb	Country	Total
College	2,550	4,580	470	7,600
No College	3,450	920	430	4,800
Total	6,000	5,500	900	12,400

Example: Christmas Lights

- A string of Christmas lights contains 20 lights.
- If any light fails, the whole string fails.
- The probability that a light fails during a 3 year period is 0.02.
- The lights fail independently.
- What is the probability that the string stays lit for all 3 years?

