Bounded Archimedean Lattice-Ordered \mathbb{R}-Algebras

Patrick Morandi
New Mexico State University

Abstract: The \mathbb{R}-algebra $C(X, \mathbb{R})$ of continuous real-valued functions on a topological space X has been well studied. In the 1930s Stone proved that the category of compact Hausdorff spaces is dually equivalent to the category C of such algebras. He also axiomatized these algebras as certain complete normed lattice-ordered \mathbb{R}-algebras. We will study a larger category bal, consisting of bounded Archimedean lattice-ordered \mathbb{R}-algebras. Each algebra in bal is isomorphic to a lattice-ordered subalgebra of $C(X, \mathbb{R})$ for some compact Hausdorff space X.

In this talk we will motivate our study of the category bal and give background on lattice-ordered algebras and the duality between compact Hausdorff spaces and rings of continuous functions. We will see that the category C can be described as the unique reflective epicomplete subcategory of bal. We will also discuss some other interesting subcategories of bal.

This research is joint with Guram Bezhanishvili and Bruce Olberding of NMSU.