Factorizations of Algebraic Integers, Block Monoids and Additive Number Theory

Scott Chapman

Sam Houston State University
Department of Mathematics and Statistics
Huntsville, TX 77340

Abstract

Let \(\mathcal{O}_K \) be the ring of integers in a finite extension of the rationals. Fundamental problems involving the factorizations of elements in \(\mathcal{O}_K \) into irreducibles appear early in the Abstract Algebra curriculum. At a basic level, the usual technique for attacking such problems involves using the norm function. There is a much deeper connection between factorizations of elements in \(\mathcal{O}_K \) and the class group of \(\mathcal{O}_K \). We will explore this connection and show that it easily generalizes to Dedekind and Krull domains. Implicit in this discussion is the introduction of a structure known as a Block Monoid. A well-known theorem of Geroldinger constructs a monoid homomorphism from \(\mathcal{O}_K \) to an appropriately chosen Block Monoid \(B \) which preserves lengths of factorizations of elements into products of irreducibles. The analysis of the factorization properties of Block Monoids leads to the study of two well-known arithmetic constants from Additive Number Theory, the Davenport Constant and the Cross Number.

Email address: scott.chapman@shsu.edu (Scott Chapman).