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Preface

Homological algebra originated in late 19th century topology. Homological studies
of algebraic objects, such as rings and modules, only got under way in the middle of
the 20th century—Cartan and Eilenberg’s classic text “Homological Algebra” serves
as a historic marker. The utility of homological methods in commutative algebra
was firmly established in the mid 1950s through the proofs of Krull’s conjectures on
regular local rings, which were achieved by Auslander and Buchsbaum and by Serre.

The technically more involved methods of derived categories came into com-
mutative algebra through the work of Grothendieck and his school. This happened
only some ten years after the initial successes of classic homological algebra; an
early, and still central, text is Hartshorne’s exposition “Residues and Duality” of
Grothendieck’s 1963–64 seminar at Harvard. Applications of derived categories in
commutative algebra have grown steadily, albeit slowly, since the mid 1960s. One
reason for the modest pace has, possibly, been the absence of a coherent introduc-
tion to the topic. There are several excellent textbooks from which one can learn
about classic homological algebra and its applications, but to become an efficient
practitioner of derived category methods in commutative algebra one must be well-
versed in a train of research articles and lecture notes, including unpublished ones.
Textbooks on the foundations have only emerged in this century: Neeman’s book
“Triangulated Categories” is from 2001, “Categories and Sheaves” by Kashiwara
and Schapira is from 2006, and Yekutieli’s “Derived Categories” is from 2020.

With this book, we aim to provide an accessible and coherent introduction to
derived category methods—in the past known as hyperhomological algebra—and
their applications in commutative algebra. We want to make the case that these
methods, compared to those of classic homological algebra, provide broader and
stronger results with cleaner proofs—this to an extent that outweighs the effort
it requires to master them. Moreover, there are important results in commutative
algebra whose natural habitat is the derived category. The Local Duality Theorem,
for example, has an elegant formulation in the derived category, but only for a limited
class of rings does it have a satisfactory one within classic homological algebra.

The book is intended to double as a graduate textbook and a work of reference.
It is organized into three parts: “Foundations”, “Tools”, and “Applications”. In the
first part, we introduce the fundamental homological machinery and construct the
derived category over a ring. The second part continues with a systematic study
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of functors and invariants of utility in ring theory. In the third part we assemble
textbook applications of derived category methods in commutative ring theory into
a treatise on homological commutative algebra.

The organization of the book serves several purposes. Readers familiar with de-
rived categories may skip “Foundations”. The tools are kept separate from their
applications in order to develop them in higher generality; this should make “Foun-
dations” and “Tools” useful, not only to commutative algebraists, but also to readers
from neighboring fields. The third part “Applications” is intended to be a high-level
primer to homological aspects of commutative algebra.

We have learned the material in this book from our teachers, our collaborators, and
other colleagues—we hope they will find that we have done it justice.

The forerunners of this book are two collections of lecture notes by H.-B.F., that
were used at the University of Copenhagen from 1982. Indeed, L.W.C. and H.H. were
first introduced to the subject through these notes, and through the notes “Differential
Graded Homological Algebra” by Avramov, H.-B.F., and Halperin. Following the
untimely passing of H.-B.F. in 2014, L.W.C. and H.H. have striven to complete
it in the style and spirit already established. Several versions of the lecture notes
mentioned above have been circulated widely over the years, and it is hoped that
their many readers will recognize H.-B.F.’s voice in the book.

Preliminary versions of this book have since 2006 been used in graduate classes
and lectures at Beĳing Normal University, Texas Tech University, and at the Uni-
versity of Nebraska-Lincoln. We thank the many students who gave their comments
on these early versions of the manuscript. Thanks are also due to the anonymous
refeerees and to colleagues who have provided their comments and answered our
questions along the way; they include H. Faridian, J. Faucett, L. Ferraro, A. Hardesty,
C.U. Jensen, S. Jøndrup, F. Köksal, L. Liang, Q. Pan, G. Piepmeyer, P. Thompson,
Y. Wang, D. Wu, and A. Yekutieli. Finally, we thank our successive editors at
Springer-Verlag: Karen Borthwick, Joerg Sixt, and last but not least Remi Lodh,
who saw the project through to completion.

Great strides were made on the book during sojourns at Banff International Research
Station, Centre Internationale de Rencontres Mathématiques (Luminy), Centro Inter-
nazionale per la Ricerca Matematica (Trento), and Mathematisches Forschungsinsti-
tut Oberwolfach, as well as during L.W.C.’s visits to the University of Copenhagen
and H.H.’s visits to Texas Tech University; the support and hospitality of these
institutions is greatly appreciated.

At various stages of the writing, the authors have been supported by grants from
the Carlsberg Foundation, the Danish Confederation of Professional Associations
(AC), the Danish Council for Independent Research, the (U.S.) National Security
Agency, and the Simons Foundation.

Lubbock and Copenhagen, L.W.C.
March 2024 H.-B.F.

H.H.
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Introduction

The year 1956 saw the first major applications of homological algebra in commutative
ring theory. In seminal papers by Auslander and Buchsbaum [10] and Serre [226],
homological algebra was used to characterize regular local rings in a way that opened
to proofs of conjectures by Krull [163, 164]. This breakthrough right away established
homological algebra as a powerful research tool in commutative ring theory and, in
the words of Kaplansky [155], “marked a turning point of the subject.” It coincided
with the appearance of the magnum opus “Homological Algebra” [48], by Cartan and
Eilenberg, which made the tools of classic homological algebra broadly available.
The present book deals with the more advanced methods of derived categories and
their applications in commutative algebra; applications to other areas of mathematics
than ring theory are beyond the scope of the book.

Theme and Goal

Under the heading “Hyperhomology”, a predecessor to the framework of derived
categories was briefly treated by Cartan and Eilenberg in the final chapter of [48].
Yet, it was the work of Grothendieck—in particular, Hartshorne’s notes “Residues
and Duality” [114] published in 1966—that truly brought derived category methods
into algebraic geometry and commutative algebra. In the 1970s, works by Iversen
[141] and Roberts [213] emphasized the utility of these methods in commutative
algebra, and since then their importance has grown steadily.

The theme of this book, as indicated in the Preface, is that derived category
methods have significant advantages over those of classic homological algebra,
which they extend. To facilitate a discussion of their similarities and differences, we
sketch elements of the two pieces of machinery in the algebraic context.

Classic homological algebra is used to study modules through the behavior,
notably vanishing, derived functors on modules. Let F: M(𝑅) →M(𝑅) be a well-
behaved functor on the category of modules over a ring 𝑅. The value of the 𝑛th left
derived functor L𝑛 F on a module 𝑀 is computed follows:
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(1) Choose any free resolution 𝐿• of 𝑀 .
(2) Apply the functor F to this resolution to get a complex F(𝐿•) of 𝑅-modules.
(3) By definition, L𝑛 F(𝑀) is the homology module H𝑛 (F(𝐿•)) .

This procedure determines L𝑛 F(𝑀) up to isomorphism in M(𝑅), and a similar one
for homomorphisms establishes L𝑛 F as a functor. The purpose of step (3) is to return
an object in M(𝑅); this is not only aesthetically pleasing but also useful, as it allows
the procedure to be iterated. However, the honest output is the complex F(𝐿•).

Derived category methods are used to study 𝑅-modules and complexes of such
through the behavior, notably boundedness, derived functors on complexes. For a
well-behaved functor F: C(𝑅) → C(𝑅) on the category of complexes of 𝑅-modules,
the value of the left derived functor LF on a complex 𝑀• is computed as follows:

(1) Choose any semi-free resolution 𝐿• of the complex 𝑀• .
(2) By definition, LF(𝑀•) is the complex F(𝐿•) of 𝑅-modules.

This procedure only determines LF(𝑀•) up to homology isomorphism in C(𝑅).
Thus, the homology H(LF(𝑀•)) is a well-defined object in C(𝑅), but LF(𝑀•) itself
is not. This is overcome by passage to the derived categoryD(𝑅), which has the same
objects as C(𝑅) but more morphisms—enough to make all homology isomorphisms
invertible. In this category, LF(𝑀•) is unique up to isomorphism, and LF is a functor.

A module 𝑀 can be viewed as a complex, and in that perspective H(LF(𝑀)) is
nothing but the assembly of all the modules L𝑛 F(𝑀). The theme of the book, in
a nutshell, is that working with the functors LF on D(𝑅), as opposed to L𝑛 F on
M(𝑅), yields broader and stronger results, even for modules. An early example of
the case in point is Roberts’ “no holes” theorem [213] in local algebra, which gave
new insight into the structure of injective resolutions of modules. Another example
comes from algebraic geometry. Grothendieck’s localization problem for flat local
homomorphisms was stated in EGA [112, §7], but a solution was only obtained
30 years later, when Avramov and Foxby [24] applied derived category methods to
study a wider class of ring homomorphisms.

The goal of this book is to expound the utility of derived category methods in
ring theory. For commutative rings, the goal is further to collect textbook applications
of these methods into a compact, yet comprehensive, introduction to homological
aspects of commutative algebra. The book is intended to serve as a graduate textbook
as well as a work of reference for professional mathematicians.

Contents and Organization

The facets of the goal, as described above, are reflected in the organization of the
book. First we build the framework, that is, the derived category over a ring. Within
this framework, we develop a set of efficacious tools, such as derived functors,
fundamental transformations of such functors, categorical equivalences, and homo-
logical invariants. Finally, we apply these tools to prove classic and modern results
in commutative algebra. The body of the book hence consists of three parts.
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Contents and Organization xxxi

Part I “Foundations” presents the primary machinery of homological algebra.
Chapter 1 is focused on the category of modules over a ring. For convenience, its
first section recounts a few basic concepts and results that we expect the reader to
be familiar with, such as bimodule structures and diagram lemmas. Chapters 2–4
treat the category of complexes of modules; the treatment includes categorical con-
structions, important functors, and special types of morphisms. Resolutions play a
key role in homological algebra; they are the topic of Chap. 5. The derived category,
which provides the framework for the rest of the book, is constructed in Chap. 6.

Part II “Tools” is devoted to homological invariants of complexes and studies
of special complexes, morphisms, and functors in the derived category. Chapter 7
covers the derived Hom and tensor product functors; together with the standard
isomorphisms that link them, these functors are key players in the rest of the book.
Homological dimensions are developed in Chaps. 8 and 9, and they are tied in to
the so-called evaluation morphisms. Together with the standard isomorphisms from
Chap. 7, the evaluation morphisms play a central role in our approach to the material
in Part III. Another powerful technical tool, dualizing complexes, is developed
in Chap. 10, where also Grothendieck Duality, Morita Equivalence, and Foxby–
Sharp Equivalence are treated. Torsion, completion, and the associated (co)homology
theories are introduced in Chap. 11.

Part III “Applications” focuses on the homological theory of commutative Noe-
therian rings. It opens with a “Brief for Commutative Ring Theorists” (Chap.12),
which recapitulates central results from Part II in the simpler form they take in the
setting of commutative Noetherian rings. In Chap. 13 we further develop the theory
of derived torsion and section functors and treat the Greenlees–May Equivalence.
Chapter 14 extends classic notions from commutative algebra, such as support, Krull
dimension, and depth to objects in the derived category, while Chap. 15 centers on
concepts of support that more relevant in the derived category setting than the
classic notion. With these concepts in place, the tools from Part II are applied to
prove time-honored and recent theorems on commutative rings and their modules.
Chapter 16 treats homological invariants of modules over local rings, and in the
subseqeuent chapters—most conspicuously in Chap. 17—they drive the study of ho-
mological invariants over general rings through the local–global principle. Chap. 18
has several of the classic big results in the field such as the Matlis and Grothendieck
Duality Theorems, the Local Duality Theorem, the New Intersection Theorem, and
the related homological characterizations of Cohen–Macaulay rings. Chapter 19
further develops the theory of Gorenstein homological dimensions and the homolo-
gical characterizations of Gorenstein rings. Regular rings are the topic of the final
Chap. 20.

The choice of topics is detailed in the synopses that open each section; they are
also embedded in the table of contents.

A few topics that one might expect to find in this book, spectral sequences for
example, are absent. The simplistic reason is that we manage without them. For
example, standard arguments based on collapsing spectral sequences coming from
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xxxii Exposition

double complexes are naturally replaced by isomorphisms in the derived category.
More to the point, our rationale is that, within the scope of this book, we see no way
to improve on existing expositions of these topics, and since we do not need them,
we have decided to avoid them all together.

At the same time, the book covers at least one topic that could be considered non-
standard: Gorenstein homological dimensions. The motivation for including this
theory is two-fold. Significant progress has been made within the last three decades
and derived category methods have been crucial for the successes of this research.
The literature is ponderous to penetrate, and the existing surveys [52, 60] are not up
to date or present no proofs.

The derived category over a ring is a particular example of a triangulated category.
Other such categories—stable module categories and singularity categories to name
a few—play significant roles in contemporary algebra and representation theory, but
they are not treated in this book.

Exposition

We have striven to make the book coherent and self-contained. Assuming some
background knowledge—specified in the Reader’s Guide below—we provide full
proofs of all statements in the book, though with the following qualification pertaining
to Part III: In addition to the dimension theory for commutative Noetherian rings and
the classic theory of support for modules, which we consider prerequisites, we use
the Artin–Rees Lemma [208] and the existence of big Cohen–Macaulay modules
over commutative Noetherian local rings. A proof of the Artin–Reese Lemma can
be found in standard texts on commutative algebra such as Matsumura’s [182].
Hochster [123, 126] proved the existence of big Cohen–Macaulay modules in the
equicharacteristic case, and André [4] proved their existence in general.

Constructions and results that are required to keep the book self-contained, but
might otherwise disrupt the flow of the material, have been relegated to appendices.

To keep the text accessible to a wide audience—and to avoid working in too many
different contexts—we have resisted temptations to increase the level of generality
beyond what is justified by the goal of the book, even when it would come at
low or no cost. To begin with, several statements in Parts I and II are proved for
Noetherian rings though they could be extended to coherent rings. Further, in the
construction of the homotopy category over a ring, one could easily replace the
module category with any other additive category. Similarly, parts of the material on
standard isomorphisms and evaluation morphisms could be developed in the more
general context of a closed monoidal category. In the same vein, we emphasize
explicit constructions over axiomatic approaches. For example, we use resolutions
to establish certain properties of the derived category over a ring, though they could
be deduced from formal properties of triangulated categories.
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Reader’s Guide xxxiii

The material in this textbook is not new, and the fact that references are sparse in
the main text should not be interpreted as the authors’ subtle claim for credit. In fact,
every significant statement in the text is either folklore or can be traced to the papers
and books listed in the Bibliography. Most references to the literature are found in
the Remarks that accompany the main text. We have not attempted to systematically
trace the origins of all major results; the selection of literature to cite only reveals
our personal preferences and does not aspire to establish priority. The Bibliography
is meant as a gateway to the vast literature, and the reader is encouraged to interpret
“see [𝑛]” to mean start from [𝑛] and follow the relevant citations therein. Among the
texts that have inspired the contents, we emphasize two that have also influenced the
exposition: “Homological Algebra” [48] by Cartan and Eilenberg and “Differential
Graded Homological Algebra” [25] by Avramov, Foxby, and Halperin.

Reader’s Guide

This book is written for researchers and advanced graduate students, so the reader
should possess the mathematical maturity of a doctoral student of algebra.

The prerequisites include familiarity with basic notions from set theory, category
theory, ring theory and, for Part III, commutative algebra. Notice, though, that we
assume no prerequisites in homological algebra.

Commutative algebraists who are familiar with derived categories and want to
dive into Part III will find an extract of essential results from Parts I and II in Chap. 12
and the final section of Chap. 15.

Text elements that are typeset in small font are auxiliary. They provide commen-
tary and perspective to the main text, but they can be read or skipped at will, as the
main text does not depend on them.

The chapters of the book can, of course, be read sequentially, with the occasional
foray into an appendix. That being said, substantial references to Chap. 9 only occur
in Chap. 19, and references to Chap. 10 only appear in Chaps. 18 and 19.

The conventions we employ are explained right after this introduction.

A Glossary is provided towards the end of the book. It lists terms that are used
but not defined in the text along with their definitions and references to textbooks.
We refer to Lam’s books “A First Course in Noncommutative Rings” and “Lectures
on Modules and Rings” [167, 168] for notions in ring theory, to “Categories for
the Working Mathematician” [175] by MacLane for concepts in category theory,
and to Matsumura’s “Commutative Ring Theory” [182] for notions in commutative
algebra.

A List of Symbols follows the glossary; it includes most symbols used—and
certainly all those defined—in the book.
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xxxiv Teacher’s Guide

Exercises are included at the end of each section. In addition to the purpose that
exercises ordinarily serve in a textbook, they supplement the text in three ways.
• Examples in the text are kept as elementary as reasonably possible; exercises

are used to develop more interesting ones.
• To some results in the main text there are parallel or dual versions that are not

needed in the exposition; these are relegated to exercises.
• Exercises are used to explore directions beyond the scope of the book; some of

these come with references to the literature to facilitate further study.
We emphasize that the main text does not depend on the exercises.

Teacher’s Guide

The nature of the subject leaves a teacher of homological algebra with hard choices
to make about the amount of detail to present in lectures. An over- or underemphasis
on technical details can easily create an irksome feeling that the topic belongs
to accounting or religion rather than mathematics. The favored compromise is to
treat some constructions and arguments in full detail and leave it to the students to
reassure themselves that the balance of the material is also solid. We facilitate this
style by supplying a fair and consistent amount of detail; certainly more than one
would attempt to include in lectures. With some restraint, we follow the tradition
for recycling arguments by saying that a proof is “parallel” or “dual” to one that has
already been presented. We apply this technique when consecutive statements have
similar proofs, but we avoid the wholesale application that would dispense with the
theory of injective modules in one sentence, “dual to the projective case.”

For pedagogical reasons, we have included several exercises that ask the students
to perform elementary verifications and computations that are omitted from the text.
These exercises are easily recognized as they open with a reference like (Cf. 1.1.1).
The details examined in these exercises are ones that a professional mathematician
can fill in on the fly, so we stand by the claim made right above: The main text does
not depend on the exercises. Another class of exercises explore elementary versions
of constructions and arguments that are treated later in the text; they are not marked
in any particular way, but they should be easily recognizable to the teacher.
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Conventions and Notation

Throughout the book, the symbols𝑄, 𝑅, 𝑆, and 𝑇 denote non-zero associative unital
rings. They are assumed to be algebras over a common commutative unital ring𝕜, and
homomorphisms between them are tacitly assumed to be 𝕜-algebra homomorphisms.
The generic choice of 𝕜 is the ring of integers, but in concrete settings other choices
may be useful. For example, in studies of algebras over a field 𝒌, the natural choice
is 𝕜 = 𝒌, and in studies of Artin 𝐴-algebras, the commutative Artinian ring 𝐴 is the
natural candidate for 𝕜. In a different direction, the center of 𝑅 is a possible choice
for 𝕜, when one studies ring homomorphisms 𝑅 → 𝑆.

Ideals in a ring are subsets that are both left ideals and right ideals. Similarly, a
ring is called Artinian/Noetherian/perfect etc. if it is both left and right Artinian/
Noetherian/perfect etc. From Chap. 11 and onwards, the rings 𝑄, 𝑅, 𝑆, and 𝑇 are
assumed to be commutative and such distinctions conveniently disappear.

Modules are assumed to be unitary, and by convention the ring acts on the left. That
is, an 𝑅-module is a left 𝑅-module. Right 𝑅-modules are, consequently, considered
to be modules (i.e. left modules) over 𝑅o, the opposite ring of 𝑅. Thus, a left ideal
in 𝑅 is a submodule of the 𝑅-module 𝑅, while a right ideal in 𝑅 is a submodule of
the 𝑅o-module 𝑅.

Functors are by convention covariant. Replacing one category by its opposite, a
contravariant functorU→ V is hence considered to be a (covariant) functorUop → V

or U → Vop. For a natural transformation 𝜏 : F→ G of functors U → V we write
𝜏op : Gop→ Fop for the natural transformation of opposite functors Uop → Vop. On
endofunctors U→ U and their transformations the ‘op’ is usually suppressed.

The notation is either standard or explained in the text, starting here:
(≪ 0) ≫ 0 sufficiently (small) large

↣ injective map
↠ surjective map

(⊂) ⊆ (proper) subset
\ difference of sets⊎ disjoint union of sets
× cartesian product
� isomorphism

ℂ complex numbers
ℕ (ℕ0) natural numbers (and 0)

ℚ rational numbers
ℝ real numbers
ℤ integers

Id identity functor
card cardinality

xxxv
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Part I
Foundations
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The objective of the six chapters that lay immediately ahead is to construct the
derived category of the module category over a ring. In order to not loose track of
the overall aim—applications of homological algebra in (commutative) ring theory—
we suspend work on the construction every now and then to tie up connections to
ring theory as they come within reach. Such connections include homological char-
acterizations of principal ideal domains, semi-simple rings, von Neumann regular
rings, perfect rings, and semi-perfect rings—and in exercises, hereditary rings. Most
of these excursions into ring theory are short, but the homological characterizations
of (semi-)perfect rings, including Bass’ Theorem P, are intertwined with the con-
structions of minimal resolutions, which is the topic of the rather lengthy Appn. B.

Homological algebra has a reputation for being (tediously) technical, per se.
It is somewhat befitting, and we shall make no attempt to hide or trivialize the
theory’s nature. Rather, we expound it as we adopt the point of view that the fabric of
homological algebra is technical constructions and statements about them. With this
unapologetic style we aspire to put a transparent hood on the homological machine.
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Chapter 1
Modules

The collection of all 𝑅-modules and all homomorphisms of 𝑅-modules forms an
Abelian category with set indexed products and coproducts; it is denoted M(𝑅). We
take this for granted, and the first section of this chapter sums up the key properties
of this category that we build on throughout the book.

Although the applications of homological algebra that we ultimately aim for
are to modules, it is advantageous to work with the wider notion of complexes.
Modules are elementary complexes, or complexes are modules with extra structure,
depending on the point of view. In any event, there is a decision to make about when
to leave modules and pass to complexes. We make this transition as soon as we
have established a baseline of homological module theory that allows us to interpret
results about complexes in the realm of modules. That baseline is established in this
first chapter, and the transition to complexes takes place in Chap. 2.

1.1 Prerequisites

Synopsis. Five Lemma; Snake Lemma; Hom; tensor product; restriction of scalars; linear cate-
gory; linear functor; biproduct; product; coproduct; direct sum; bimodule; split exact sequence;
(half/left/right) exact functor; faithful functor.

The primary purpose of this section is to remind the reader of some basic material
and, in that process, to introduce the accompanying symbols and nomenclature. The
material in this section is used throughout the book and usually without reference.

1.1.1 Definition. A sequence of 𝑅-modules is a, possibly infinite, diagram in M(𝑅),

(1.1.1.1) · · · −→ 𝑀0 𝛼0

−−−→ 𝑀1 𝛼1

−−−→ 𝑀2 𝛼2

−−−→ · · · ;

it is called exact if Im𝛼𝑛−1 = Ker𝛼𝑛 holds for all 𝑛. Notice that (1.1.1.1) is exact if
and only if every sequence 0 → Im𝛼𝑛−1 → 𝑀𝑛 → Im𝛼𝑛 → 0 is exact. An exact
sequence of the form 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 is called a short exact sequence.

3



4 1 Modules

Two sequences {𝛼𝑛 : 𝑀𝑛 → 𝑀𝑛+1}𝑛∈ℤ and {𝛽𝑛 : 𝑁𝑛 → 𝑁𝑛+1}𝑛∈ℤ of 𝑅-modules
are called isomorphic if there exists a family of isomorphisms {𝜑𝑛}𝑛∈ℤ such that the
diagram

𝑀𝑛 𝛼𝑛
//

𝜑𝑛

��

𝑀𝑛+1

𝜑𝑛+1

��

𝑁𝑛
𝛽𝑛
// 𝑁𝑛+1

is commutative for every 𝑛 ∈ ℤ.

Diagram lemmas are workhorses of homological algebra. Two of the most fre-
quently used are known as the Five Lemma and the Snake Lemma.

1.1.2 Five Lemma. Consider a commutative diagram in M(𝑅) with exact rows,

𝑀1 //

𝜑1

��

𝑀2 //

𝜑2

��

𝑀3 //

𝜑3

��

𝑀4 //

𝜑4

��

𝑀5

𝜑5

��

𝑁1 // 𝑁2 // 𝑁3 // 𝑁4 // 𝑁5 .

(a) If 𝜑1 is surjective, and 𝜑2 and 𝜑4 are injective, then 𝜑3 is injective.
(b) If 𝜑5 is injective, and 𝜑2 and 𝜑4 are surjective, then 𝜑3 is surjective.
(c) If 𝜑1, 𝜑2, 𝜑4, and 𝜑5 are isomorphisms, then 𝜑3 is an isomorphism.

1.1.3 Kernel Lemma. Consider a commutative diagram in M(𝑅),

𝑀 ′
𝛼′
//

𝜑′

��

𝑀
𝛼
//

𝜑

��

𝑀 ′′

𝜑′′

��

0 // 𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ ,

with exact rows. There is an exact sequence,

Ker 𝜑′ 𝛼′−−−→ Ker 𝜑 𝛼−−−→ Ker 𝜑′′ .

If 𝛼′ is injective, then so is the restriction 𝛼′ : Ker 𝜑′ → Ker 𝜑.

1.1.4 Cokernel Lemma. Consider a commutative diagram in M(𝑅),

𝑀 ′
𝛼′
//

𝜑′

��

𝑀
𝛼
//

𝜑

��

𝑀 ′′ //

𝜑′′

��

0

𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ ,

with exact rows. There is an exact sequence,

Coker 𝜑′ 𝛽′−−−→ Coker 𝜑 𝛽−−−→ Coker 𝜑′′ .

If 𝛽 is surjective, then so is the induced homomorphism 𝛽 : Coker 𝜑→ Coker 𝜑′′.
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1.1 Prerequisites 5

The two results above are fused in the Snake Lemma 1.1.6 below.

1.1.5 Construction. Consider a commutative diagram in M(𝑅),

𝑀 ′
𝛼′
//

𝜑′

��

𝑀
𝛼
//

𝜑

��

𝑀 ′′ //

𝜑′′

��

0

0 // 𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ ,

with exact rows. Given an element 𝑥′′ ∈ Ker 𝜑′′ choose, by surjectivity of 𝛼, a
preimage 𝑥 in 𝑀 . Set 𝑦 = 𝜑(𝑥) and note that 𝑦 belongs to Ker 𝛽, by commutativity
of the right-hand square. By exactness at 𝑁 choose 𝑦′ ∈ 𝑁 ′ with 𝛽′ (𝑦′) = 𝑦. It is
straightforward to verify that the element [𝑦′]Im 𝜑′ in Coker 𝜑′ does not depend on
the choices of 𝑥 and 𝑦′, so this procedure defines a map 𝛿 : Ker 𝜑′′ → Coker 𝜑′.

1.1.6 Snake Lemma. The map 𝛿 : Ker 𝜑′′ → Coker 𝜑′ defined in 1.1.5 is a homo-
morphism of 𝑅-modules, called the connecting homomorphism, and there is an exact
sequence in M(𝑅),

Ker 𝜑′ 𝛼′−−−→ Ker 𝜑 𝛼−−−→ Ker 𝜑′′ 𝛿−−−→ Coker 𝜑′ 𝛽′−−−→ Coker 𝜑 𝛽−−−→ Coker 𝜑′′ .

Moreover, if 𝛼′ is injective, then so is the restriction 𝛼′ : Ker 𝜑′ → Ker 𝜑, and if 𝛽 is
surjective, then so is the induced homomorphism 𝛽 : Coker 𝜑→ Coker 𝜑′′.

For historical reasons, the morphisms in M(𝑅) are called homomorphisms and
the hom-sets are written Hom𝑅.

1.1.7 Homomorphisms. From the hom-sets in M(𝑅) one can construct a functor

Hom𝑅 ( , ) : M(𝑅)op ×M(𝑅) −→ M(𝕜) .

For homomorphisms 𝛼 : 𝑀 ′ → 𝑀 and 𝛽 : 𝑁 → 𝑁 ′ of 𝑅-modules, the functor acts
as follows,

Hom𝑅 (𝛼, 𝛽) : Hom𝑅 (𝑀, 𝑁) −→ Hom𝑅 (𝑀 ′, 𝑁 ′) is given by 𝜗 ↦−→ 𝛽𝜗𝛼 .

1.1.8 Example. Let 𝔞 be a left ideal in 𝑅 and 𝑀 an 𝑅-module. There is an iso-
morphism of 𝕜-modules Hom𝑅 (𝑅/𝔞, 𝑀) → (0 :𝑀 𝔞) given by 𝛼 ↦→ 𝛼( [1]𝔞). The
inverse function maps an element 𝑚 in (0 :𝑀 𝔞) to the homomorphism 𝑅/𝔞 → 𝑀

given by [𝑟]𝔞 ↦→ 𝑟𝑚. In particular, for a cyclic 𝑅-module 𝑀 = 𝑅/𝔟 one gets

Hom𝑅 (𝑅/𝔞, 𝑅/𝔟) � (0 :𝑅/𝔟 𝔞) � (𝔟 :𝑅 𝔞)/𝔟 .

1.1.9 Tensor Product. The tensor product of modules yields a functor

⊗𝑅 : M(𝑅o) ×M(𝑅) −→ M(𝕜) .

For a homomorphism 𝛼 : 𝑀 → 𝑀 ′ of 𝑅o-modules and a homomorphism 𝛽 : 𝑁 → 𝑁 ′

of 𝑅-modules, the functor acts as follows,

𝛼 ⊗𝑅 𝛽 : 𝑀 ⊗𝑅 𝑁 −→ 𝑀 ′ ⊗𝑅 𝑁 ′ is given by 𝑚 ⊗ 𝑛 ↦−→ 𝛼(𝑚) ⊗ 𝛽(𝑛) .
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6 1 Modules

1.1.10 Example. Let 𝔟 be a right ideal in 𝑅 and 𝑀 an 𝑅-module. There is an
isomorphism of 𝕜-modules 𝑅/𝔟 ⊗𝑅 𝑀 → 𝑀/𝔟𝑀 given by [𝑟]𝔟 ⊗ 𝑚 ↦→ [𝑟𝑚]𝔟𝑀 .
The inverse function maps an element [𝑚]𝔟𝑀 in 𝑀/𝔟𝑀 to the element [1]𝔟 ⊗ 𝑚 in
𝑅/𝔟 ⊗𝑅 𝑀 . In particular, for a cyclic 𝑅-module 𝑀 = 𝑅/𝔞 there are isomorphisms

𝑅/𝔟 ⊗𝑅 𝑅/𝔞 �
𝑅/𝔞

𝔟(𝑅/𝔞) �
𝑅/𝔞

(𝔟 + 𝔞)/𝔞 � 𝑅/(𝔞 + 𝔟) .

The localization of a module over a commutative ring at a multiplicative subset
can be realized as a tensor product.

1.1.11 Example. Assume that 𝑅 is commutative. Let 𝑈 be a multiplicative subset
of 𝑅 and 𝑀 an 𝑅-module. There is an isomorphism 𝑈−1𝑅 ⊗𝑅 𝑀 → 𝑈−1𝑀 of
𝑈−1𝑅-modules, given by 𝑟

𝑢
⊗ 𝑚 ↦→ 𝑟𝑚

𝑢
, and it is natural in 𝑀 .

1.1.12 Restriction of scalars I. Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism; it induces
an 𝑅-module structure on every 𝑆-module and an 𝑅o-module structure on every
𝑆o-module. The forgetful functors

res𝑆𝑅 : M(𝑆) −→ M(𝑅) and res𝑆
o

𝑅o : M(𝑆o) −→ M(𝑅o)

that assign to an 𝑆-module (𝑆o-module) the 𝑅-module (𝑅o-module) with the action
induced by 𝜑 are called restriction of scalars along 𝜑. At the level of symbols these
functors are mostly suppressed, but when we write “over 𝑅” or “as an 𝑅-module”
about an 𝑆-module, it means that the restriction of scalars functor is being applied.

Linearity

Because 𝑅 is assumed to be a 𝕜-algebra, the module category M(𝑅) is 𝕜-linear in
the following sense.

1.1.13 Definition. A category U is called 𝕜-linear if it satisfies the next conditions.
(1) For every pair of objects 𝑀 and 𝑁 in U, the hom-set U(𝑀, 𝑁) is a 𝕜-module,

and composition of morphisms U(𝑀, 𝑁) ×U(𝐿, 𝑀) → U(𝐿, 𝑁) is 𝕜-bilinear.
(2) There is a zero object, 0, in U. That is, for each object 𝑀 in U there is a unique

morphism 𝑀 → 0 and a unique morphism 0→ 𝑀 .
(3) For every pair of objects 𝑀 and 𝑁 in U there is a biproduct, 𝑀 ⊕ 𝑁 , in U.

That is, given 𝑀 and 𝑁 there is a diagram in U,

𝑀
𝜀𝑀
// 𝑀 ⊕ 𝑁

𝜛𝑀
oo

𝜛𝑁
//
𝑁 ,

𝜀𝑁
oo

such that 𝜛𝑀𝜀𝑀 = 1𝑀 , 𝜛𝑁𝜀𝑁 = 1𝑁 , and 𝜀𝑀𝜛𝑀 + 𝜀𝑁𝜛𝑁 = 1𝑀⊕𝑁 hold.
Here 1𝑋 denotes the identity morphism of the object 𝑋 .

A category that satisfies (1) is called 𝕜-prelinear. It is evident that the opposite
category of a 𝕜-(pre)linear category is 𝕜-(pre)linear.
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1.1 Prerequisites 7

The module category M(𝑅) has additional structure; indeed, it is Abelian, and so
is the category C(𝑅) of 𝑅-complexes, which is the topic of the next chapter. However,
the homotopy category K(𝑅) and the derived category D(𝑅), which are constructed
in Chap. 6, are not Abelian but triangulated. All four categories are 𝕜-linear, hence
the focus on that notion.

1.1.14 Direct Sum. Let U be a 𝕜-linear category. The biproduct ⊕ is both a product
and a coproduct, and it is elementary to verify that it is associative. For a finite set
𝑈 and a family {𝑀𝑢}𝑢∈𝑈 of objects in U, the notation ⊕

𝑢∈𝑈 𝑀
𝑢 for the iterated

biproduct is, therefore, unambiguous. The object 𝑀 =
⊕
𝑢∈𝑈 𝑀

𝑢 is called the direct
sum of the family {𝑀𝑢}𝑢∈𝑈 , and each object 𝑀𝑢 is called a direct summand of 𝑀 .

It is handy to identify a morphism 𝛼 : ⊕𝑛
𝑣=1 𝑀

𝑣 →⊕𝑚
𝑢=1 𝑁

𝑢 by an 𝑚 × 𝑛 matrix,

𝑀1
⊕
...

⊕
𝑀𝑛

©«
𝛼11 . . . 𝛼1𝑛
...
. . .

...
𝛼𝑚1 . . . 𝛼𝑚𝑛

ª®¬
//

𝑁1
⊕
...

⊕
𝑁𝑚 ,

with 𝛼𝑢𝑣 = 𝜛𝑁𝑢𝛼𝜀𝑀
𝑣 , where 𝜀𝑀𝑣 and 𝜛𝑁𝑢 are the morphisms from 1.1.13.

The homomorphism functor 1.1.7 and the tensor product functor 1.1.9 are both
𝕜-multilinear in the following sense.

1.1.15 Definition. A functor F: U→ V between 𝕜-prelinear categories is called
𝕜-linear if it satisfies the following conditions.

(1) F(𝛼 + 𝛽) = F(𝛼) + F(𝛽) for all parallel morphisms 𝛼 and 𝛽 in U .

(2) F(𝑥𝛼) = 𝑥 F(𝛼) for all morphisms 𝛼 in U and all 𝑥 ∈ 𝕜 .
Let U1, . . . ,U𝑛 and V be 𝕜-prelinear categories. A functor

F : U1 × · · · × U𝑛 −→ V

is called 𝕜-multilinear if it is 𝕜-linear in each variable.

There is a unique ring homomorphism ℤ → 𝕜; therefore, every 𝕜-linear cate-
gory/functor is ℤ-linear in a canonical way.

1.1.16 Definition. A ℤ-prelinear category is also called preadditive. A ℤ-linear
category/functor is also called additive.

1.1.17 Definition. Let 𝑀 and 𝑁 be objects in an additive category U. The zero
morphism from 𝑀 to 𝑁 is the composite of the unique morphisms 𝑀 → 0 and
0→ 𝑁; this morphism is denoted by 0.

1.1.18. Let F: U→ V be an additive functor between additive categories. It takes
zero morphisms in U to zero morphisms in V. In particular, F takes zero objects in
U to zero objects in V.
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8 1 Modules

Products, Coproducts, and Direct Sums of Modules

1.1.19 Product. For a family {𝑁𝑢}𝑢∈𝑈 in M(𝑅), the product
∏
𝑢∈𝑈 𝑁

𝑢 in M(𝑅)
is the Cartesian product of the underlying sets, with the 𝑅-module structure given
by coordinatewise operations, together with the projections 𝜛𝑢 :

∏
𝑢∈𝑈 𝑁

𝑢 ↠ 𝑁𝑢.
Indeed, given a family of homomorphisms {𝛼𝑢 : 𝑀 → 𝑁𝑢}𝑢∈𝑈 , the map 𝛼 defined
by 𝑚 ↦→ (𝛼𝑢 (𝑚))𝑢∈𝑈 is the unique homomorphism that makes the diagram∏

𝑢∈𝑈
𝑁𝑢

𝜛𝑢

����

𝑀

𝛼

??

𝛽𝑢
// 𝑁𝑢

commutative for every 𝑢 ∈ 𝑈. For a family {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 of homomor-
phisms, the product

∏
𝑢∈𝑈 𝛼

𝑢 :
∏
𝑢∈𝑈 𝑀

𝑢 → ∏
𝑢∈𝑈 𝑁

𝑢 is given by (𝑚𝑢)𝑢∈𝑈 ↦→
(𝛼𝑢 (𝑚𝑢))𝑢∈𝑈 .

If one has 𝑀𝑢 = 𝑀 for every 𝑢 ∈ 𝑈, then the product
∏
𝑢∈𝑈 𝑀

𝑢 is denoted 𝑀𝑈

and called the𝑈-fold product of 𝑀 .

Remark. Other names for the product are ‘categorical product’ and ‘direct product’.

1.1.20 Coproduct. For a family {𝑀𝑢}𝑢∈𝑈 in M(𝑅), the coproduct
∐
𝑢∈𝑈 𝑀

𝑢 is the
submodule{

(𝑚𝑢)𝑢∈𝑈 ∈
∏
𝑢∈𝑈

𝑀𝑢
��� 𝑚𝑢 = 0 for all but finitely many 𝑢 ∈ 𝑈

}
of the product, together with the injections 𝜀𝑢 : 𝑀𝑢 ↣

∐
𝑢∈𝑈 𝑀

𝑢. Every element of∐
𝑢∈𝑈 𝑀

𝑢 has the form ∑
𝑢∈𝑈 𝜀

𝑢 (𝑚𝑢) for a unique family (𝑚𝑢)𝑢∈𝑈 with 𝑚𝑢 = 0 for
all but finitely many 𝑢 ∈ 𝑈. Given a family of homomorphisms {𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 ,
the map 𝛼 defined by ∑

𝑢∈𝑈 𝜀
𝑢 (𝑚𝑢) ↦→ ∑

𝑢∈𝑈 𝛼
𝑢 (𝑚𝑢) is the unique homomorphism

that makes the following diagram commutative

𝑀𝑢

𝛼𝑢

��

//
𝜀𝑢
//
∐
𝑢∈𝑈

𝑀𝑢

𝛼
||

𝑁

for every 𝑢 ∈ 𝑈. For a family {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 of homomorphisms the coproduct∐
𝑢∈𝑈 𝛼

𝑢 :
∐
𝑢∈𝑈 𝑀

𝑢 → ∐
𝑢∈𝑈 𝑁

𝑢 is given by ∑
𝑢∈𝑈 𝜀

𝑢 (𝑚𝑢) ↦→ ∑
𝑢∈𝑈 𝛼

𝑢 (𝑚𝑢).
If one has 𝑀𝑢 = 𝑀 for every 𝑢 ∈ 𝑈, then the coproduct

∐
𝑢∈𝑈 𝑀

𝑢 is denoted
𝑀 (𝑈) and called the𝑈-fold coproduct of 𝑀 .

Remark. Other names for the coproduct are ‘categorical sum’ and ‘direct sum’; we reserve the
latter for the iterated biproduct; see 1.1.14.
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1.1 Prerequisites 9

1.1.21 Direct Sum. If𝑈 is a finite set, then the product and the coproduct of a family
{𝑀𝑢}𝑢∈𝑈 in M(𝑅) coincide, and this module

∏
𝑢∈𝑈 𝑀

𝑢 =
∐
𝑢∈𝑈 𝑀

𝑢 is the iterated
biproduct 𝑀 =

⊕
𝑢∈𝑈 𝑀

𝑢. Per 1.1.14 one refers to 𝑀 as the direct sum of the family
{𝑀𝑢}𝑢∈𝑈 and to each module 𝑀𝑢 as a direct summand of 𝑀 .

1.1.22. Let {𝑀𝑢}𝑢∈𝑈 be a family of objects in a 𝕜-linear category U. Notice that for
every finite subset 𝑈′ of 𝑈 one has

∏
𝑢∈𝑈 𝑀

𝑢 � (⊕𝑢∈𝑈′ 𝑀
𝑢) ⊕ ∏

𝑢∈𝑈\𝑈′ 𝑀
𝑢 and∐

𝑢∈𝑈 𝑀
𝑢 � (⊕𝑢∈𝑈′ 𝑀

𝑢) ⊕ ∐
𝑢∈𝑈\𝑈′ 𝑀

𝑢.

1.1.23 Definition. Let 𝑀 be an 𝑅-module and {𝑀𝑢}𝑢∈𝑈 a family of submodules of
𝑀 . The sum of the family, written ∑

𝑢∈𝑈 𝑀
𝑢, is the image of the homomorphism,∐

𝑢∈𝑈
𝑀𝑢 −→ 𝑀 given by

∑︁
𝑢∈𝑈

𝜀𝑢 (𝑚𝑢) ↦−→
∑︁
𝑢∈𝑈

𝑚𝑢 ;

if it is injective, then the family {𝑀𝑢}𝑢∈𝑈 is called independent.

Remark. In some texts, an independent family of submodules is said to form an ‘internal direct
sum’. We have, though, reserved ‘direct sum’ to mean a finite (co)product; see 1.1.14.

1.1.24 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of submodules of an 𝑅-module 𝑀 .
(a) The following conditions are equivalent.

(i) The family {𝑀𝑢}𝑢∈𝑈 is independent.
(ii) (∑𝑢∈𝑈\{𝑤} 𝑀

𝑢) ∩ 𝑀𝑤 = 0 for every 𝑤 ∈ 𝑈.
(iii) (∑𝑢∈𝑉 𝑀

𝑢) ∩ 𝑀𝑤 = 0 for every finite subset 𝑉 ⊆ 𝑈 and 𝑤 ∈ 𝑈 \𝑉 .
(b) If 𝑈 is infinite, 𝑀𝑢 ≠ 0 holds for all 𝑢 ∈ 𝑈, and the family {𝑀𝑢}𝑢∈𝑈 is

independent, then 𝑀 is neither Artinian nor Noetherian.

Proof. (a): The implication (ii)⇒ (iii) is trivial.
(i)⇒ (ii): If {𝑀𝑢}𝑢∈𝑈 is independent, then there is by 1.1.23 an isomorphism∐
𝑢∈𝑈 𝑀

𝑢 �
∑
𝑢∈𝑈 𝑀

𝑢 that identifies the submodule 𝜀𝑢 (𝑀𝑢) of
∐
𝑢∈𝑈 𝑀

𝑢 with
the submodule 𝑀𝑢 of ∑

𝑢∈𝑈 𝑀
𝑢. For every element 𝑤 ∈ 𝑈 one evidently has

(∑𝑢∈𝑈\{𝑤} 𝜀
𝑢 (𝑀𝑢)) ∩ 𝜀𝑤(𝑀𝑤) = 0 and, therefore, (∑𝑢∈𝑈\{𝑤} 𝑀

𝑢) ∩ 𝑀𝑤 = 0.
(iii)⇒ (i): Every element 𝑥 ∈ ∐

𝑢∈𝑈 𝑀
𝑢 has the form 𝑥 =

∑
𝑢∈𝑋 𝜀

𝑢 (𝑚𝑢) for some
finite subset 𝑋 ⊆ 𝑈 and 𝑚𝑢 ∈ 𝑀𝑢. If 𝑥 belongs to the kernel of the homomorphism
in 1.1.23, then one has ∑

𝑢∈𝑋 𝑚
𝑢 = 0 in ∑

𝑢∈𝑈 𝑀
𝑢. Thus, for every 𝑤 ∈ 𝑋 the

element 𝑚𝑤 = −∑
𝑢∈𝑋\{𝑤} 𝑚

𝑢 belongs to the module (∑𝑢∈𝑋\{𝑤} 𝑀
𝑢) ∩ 𝑀𝑤, which

is zero by assumption. Hence 𝑚𝑤 = 0 holds for every 𝑤 ∈ 𝑋 and thus 𝑥 = 0, so the
homomorphism in 1.1.23 is injective.

(b): Let {𝑢1, 𝑢2, . . . } be a countable subset of𝑈. For every 𝑠 ⩾ 1 set 𝑋𝑠 = ∑
𝑖⩽𝑠 𝑀

𝑢𝑖

and 𝑌 𝑠 = ∑
𝑖⩾𝑠 𝑀

𝑢𝑖 . If 𝑋𝑠 = 𝑋𝑠+1 holds, then one has 𝑀𝑢𝑠+1 ⊆ ∑
𝑖⩽𝑠 𝑀

𝑢𝑖 and thus
(∑𝑖⩽𝑠 𝑀

𝑢𝑖 ) ∩ 𝑀𝑢𝑠+1 = 𝑀𝑢𝑠+1 ≠ 0, which contradicts the assumption that the family
{𝑀𝑢}𝑢∈𝑈 is independent. Now 𝑋1 ⊂ 𝑋2 ⊂ 𝑋3 ⊂ · · · is a strictly increasing family
of submodules of 𝑀 , so 𝑀 is not Noetherian. If 𝑌 𝑠 = 𝑌 𝑠+1 holds, then one has
𝑀𝑢𝑠 ⊆ ∑

𝑖⩾𝑠+1 𝑀
𝑢𝑖 and thus (∑𝑖⩾𝑠+1 𝑀

𝑢𝑖 ) ∩𝑀𝑢𝑠 = 𝑀𝑢𝑠 ≠ 0, which contradicts the
assumption that the family is independent. Now 𝑌1 ⊃ 𝑌2 ⊃ 𝑌3 ⊃ · · · is a strictly
decreasing family of submodules of 𝑀 , whence 𝑀 is not Artinian. □
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10 1 Modules

An Abelian group 𝑀 that is both an 𝑅-module and an 𝑆-module is called an
𝑅–𝑆-bimodule if the two module structures are compatible, i.e. 𝑠(𝑟𝑚) = 𝑟 (𝑠𝑚)
holds for all 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, and 𝑚 ∈ 𝑀 . A homomorphism of 𝑅–𝑆-bimodules is a
homomorphism of Abelian groups that is both 𝑅- and 𝑆-linear.

The convention to identify right modules with left modules over the opposite ring
is convenient for abstract considerations. However, in concrete computations with
elements in, say, an 𝑅–𝑆o-bimodule it often adds clarity to write the 𝑆-action on the
right; the bimodule condition then reads (𝑟𝑚)𝑠 = 𝑟 (𝑚𝑠).

An 𝑅–𝑅o-bimodule is called symmetric if 𝑟𝑚 = 𝑚𝑟 holds for all 𝑟 ∈ 𝑅 and𝑚 ∈ 𝑀 .
If 𝑅 is commutative, then every 𝑅-module has a canonical structure of a symmetric
𝑅–𝑅-bimodule. When no other convention is specified, modules over a commutative
ring 𝑅 are tacitly considered to be symmetric bimodules—this is discussed further
with the passage to commutative Noetherian rings in Chap. 12.

As 𝑅 and 𝑆 are 𝕜-algebras, an 𝑅–𝑆o-bimodule is a 𝕜–𝕜-bimodule. We assume that
this structure is symmetric; i.e. we only consider 𝕜-symmetric 𝑅–𝑆o-bimodules. In
particular, an 𝑅-module is an 𝑅–𝕜-bimodule, and an 𝑆o-module is a 𝕜–𝑆o-bimodule.

1.1.25 Example. For numbers 𝑚, 𝑛 ∈ ℕ let M𝑚×𝑛 (𝑅) denote the 𝑅–𝑅o-bimodule of
𝑚×𝑛-matrices with entries from 𝑅. Set 𝑀 = M1×𝑛 (𝑅) and 𝑁 = M𝑛×1 (𝑅), and let𝑄
denote the ring M𝑛×𝑛 (𝑅). Now 𝑀 is an 𝑅–𝑄o-bimodule and 𝑁 is a𝑄–𝑅o-bimodule.

1.1.26. There is an equivalence of 𝕜-linear Abelian categories,

{𝑅–𝑆o-bimodules and their homomorphisms}
F
//
M(𝑅 ⊗𝕜 𝑆

o) .
G

oo

The functor F assigns to an 𝑅–𝑆o-bimodule 𝑀 the 𝑅 ⊗𝕜 𝑆
o-module with action

given by (𝑟 ⊗ 𝑠)𝑚 = 𝑟𝑚𝑠. Conversely, G assigns to an 𝑅 ⊗𝕜 𝑆
o-module 𝑀 the

𝑅–𝑆o-bimodule with 𝑅-action given by 𝑟𝑚 = (𝑟 ⊗ 1)𝑚 and right 𝑆-action given by
𝑚𝑠 = (1⊗ 𝑠)𝑚. Homomorphisms are treated analogously. Notice that G assigns to an
𝑅 ⊗𝕜 𝑆

o-module the 𝑅- and 𝑆o-module structures obtained by restriction of scalars
along the canonical ring homomorphisms 𝑅 → 𝑅 ⊗𝕜 𝑆

o and 𝑆o→ 𝑅 ⊗𝕜 𝑆
o.

1.1.27 Definition. Let M(𝑅–𝑆o) denote the category M(𝑅 ⊗𝕜 𝑆
o).

Per 1.1.26 the category M(𝑅–𝑆o) is naturally identified with the category of
𝑅–𝑆o-bimodules and their homomorphisms.

1.1.28 Enveloping Algebra. The ring 𝑅 ⊗𝕜 𝑅
o is called the enveloping algebra of

𝑅 and denoted 𝑅e. Per 1.1.26 the category of 𝑅–𝑅o-bimodules is equivalent to the
category of 𝑅e-modules.

1.1.29 Restriction of scalars II. Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism. Restric-
tion of scalars along the composites of 𝜑 and the canonical ring homomorphisms
𝑆 → 𝑆 ⊗𝕜 𝑇

o and 𝑆o → (𝑆 ⊗𝕜 𝑇
o)o = 𝑇 ⊗𝕜 𝑆

o yield functors M(𝑆–𝑇o) → M(𝑅)
and M(𝑇–𝑆o) →M(𝑅o). When we refer to, say, the ring 𝑆 ⊗𝕜 𝑇

o or a module over
it as an 𝑅-module, it means that the former functor is applied.
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1.1 Prerequisites 11

Caveat. An endomorphism 𝜑 : 𝑅 → 𝑅 induces two 𝑅–𝑅o-bimodule structures on 𝑅; if 𝜑 is not
the identity, then neither is symmetric—not even if 𝑅 is commutative.

The set Hom𝑅 (𝑀, 𝑁) of 𝑅-linear maps between 𝑅-modules is a 𝕜-module but
it has, in general, no built-in 𝑅-module structure. The reason is, so to say, that the
𝑅-actions on 𝑀 and 𝑁 are consumed by the 𝑅-linearity of the maps. Similarly, the
𝑅-balancedness consumes the 𝑅o- and 𝑅-actions on the factors in a tensor product
𝑀 ⊗𝑅 𝑁 and leaves only a 𝕜-module. If 𝑅 is commutative, then one can take 𝕜 = 𝑅.
At work here is the tacit assumption that a module over a commutative ring 𝑅 is
a symmetric 𝑅–𝑅-bimodule. Also in a non-commutative setting, access to richer
module structures on hom-sets and tensor products is via bimodules.

1.1.30 Addendum (to 1.1.7). If 𝑀 is an 𝑅–𝑄o-bimodule and 𝑁 an 𝑅–𝑆o-bimodule,
then the 𝕜-module Hom𝑅 (𝑀, 𝑁) has a 𝑄–𝑆o-bimodule structure given by

(𝑞𝜑) (𝑚) = 𝜑(𝑚𝑞) and (𝜑𝑠) (𝑚) = (𝜑(𝑚))𝑠 .

Moreover, if 𝛼 : 𝑀 → 𝑀 ′ is a homomorphism of 𝑅–𝑄o-bimodules, and 𝛽 : 𝑁 → 𝑁 ′

is a homomorphism of 𝑅–𝑆o-bimodules, then Hom𝑅 (𝛼, 𝛽), as defined in 1.1.7, is a
homomorphism of 𝑄–𝑆o-bimodules. Thus, there is an induced 𝕜-bilinear functor,

Hom𝑅 ( , ) : M(𝑅–𝑄o)op ×M(𝑅–𝑆o) −→ M(𝑄–𝑆o) .

1.1.31 Example. Let 𝑅 → 𝑆 be a ring homomorphism and consider 𝑆 as an 𝑅–𝑆o-
bimodule; see 1.1.29. Now Hom𝑅 (𝑆, ) is a functor from M(𝑅) to M(𝑆).

1.1.32 Example. Set𝑄 = M𝑛×𝑛 (𝑅) and 𝑀 = M1×𝑛 (𝑅) as in 1.1.25. An application
of 1.1.30 with 𝑆 = 𝕜 yields a functor Hom𝑅 (𝑀, ) : M(𝑅) →M(𝑄). Another
application of 1.1.30, this time with 𝑆 = M𝑛 (𝑅) = 𝑄, shows that Hom𝑅 (𝑀, ) is a
functor from M(𝑅–𝑄o) to M(𝑄–𝑄o). In particular, Hom𝑅 (𝑀, 𝑀) has the structure
of a 𝑄–𝑄o-bimodule.

1.1.33 Addendum (to 1.1.9). If 𝑀 is a𝑄–𝑅o-bimodule and 𝑁 is an 𝑅–𝑆o-bimodule,
then the 𝕜-module 𝑀 ⊗𝑅 𝑁 has a 𝑄–𝑆o-bimodule structure given by

𝑞(𝑚 ⊗ 𝑛) = (𝑞𝑚) ⊗ 𝑛 and (𝑚 ⊗ 𝑛)𝑠 = 𝑚 ⊗ (𝑛𝑠) .

Moreover, if 𝛼 : 𝑀 → 𝑀 ′ is a homomorphism of 𝑄–𝑅o-bimodules, and 𝛽 : 𝑁 → 𝑁 ′

is a homomorphism of 𝑅–𝑆o-bimodules, then 𝛼 ⊗ 𝛽, as defined in 1.1.9, is a homo-
morphism of 𝑄–𝑆o-bimodules. Thus, there is an induced 𝕜-bilinear functor,

⊗𝑅 : M(𝑄–𝑅o) ×M(𝑅–𝑆o) −→ M(𝑄–𝑆o) .

1.1.34 Example. Let 𝑅 → 𝑆 be a ring homomorphism and consider 𝑆 as an 𝑆–𝑅o-
bimodule; see 1.1.29. Now 𝑆 ⊗𝑅 is a functor from M(𝑅) to M(𝑆).

1.1.35 Example. Set𝑄 = M𝑛×𝑛 (𝑅), 𝑀 = M1×𝑛 (𝑅), and 𝑁 = M𝑛×1 (𝑅) as in 1.1.25.
An application of 1.1.33 with 𝑆 = 𝕜 yields a functor 𝑁 ⊗𝑅 : M(𝑅) →M(𝑄).
Another application, this time with 𝑆 = M𝑛×𝑛 (𝑅) = 𝑄, shows that 𝑁 ⊗𝑅 is a
functor from M(𝑅–𝑄o) to M(𝑄–𝑄o). In particular, 𝑁 ⊗𝑅 𝑀 is a 𝑄–𝑄o-bimodule.
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12 1 Modules

Exactness

Though we are not concerned with abstract Abelian categories, the language is useful
for the following reason. The convention that every functor is covariant forces one to
consider, for example, Hom𝑅 as a functor on the product category M(𝑅)op ×M(𝑅)
which is Abelian but not a module category.
Remark. The class of all Abelian categories is closed under products and opposites of categories,
that is, if U and V are Abelian categories, then so are U × V and Uop. The class of module
categories—i.e. categories that are equivalent to M(𝑅) for some ring 𝑅—is also closed under
products; indeed M(𝑅) ×M(𝑆) is equivalent to M(𝑅 × 𝑆); see E 1.1.21. However, M(𝑅)op is
not a module category; see E 1.1.23. Yet, by the Freyd–Mitchell Embedding Theorem, see [102,
4.4 and 7.1] and [184], every Abelian category is, in fact, a full subcategory of a module category.

1.1.36 Split Exact Sequences. An exact sequence 0 −−→ 𝑀 ′
𝛼′−−→ 𝑀

𝛼−−→ 𝑀 ′′ −−→ 0
in M(𝑅) is called split if it satisfies the following equivalent conditions.

(i) There exist homomorphisms 𝜚 : 𝑀 → 𝑀 ′ and 𝜎 : 𝑀 ′′ → 𝑀 such that one has

𝜚𝛼′ = 1𝑀
′
, 𝛼′𝜚 + 𝜎𝛼 = 1𝑀 , and 𝛼𝜎 = 1𝑀

′′
.

(ii) There exists a homomorphism 𝜚 : 𝑀 → 𝑀 ′ such that 𝜚𝛼′ = 1𝑀′ .
(iii) There exists a homomorphism 𝜎 : 𝑀 ′′ → 𝑀 such that 𝛼𝜎 = 1𝑀′′ .
(iv) The sequence is isomorphic to 0 −−→ 𝑀 ′

𝜀−−→ 𝑀 ′ ⊕ 𝑀 ′′ 𝜛−−→ 𝑀 ′′ −−→ 0, where
𝜀 and 𝜛 are the injection and the projection, respectively.

Moreover, if 0 −−→ 𝑀 ′
𝛼′−−→ 𝑀

𝛼−−→ 𝑀 ′′ −−→ 0 is split exact, then also the sequence
0 −−→ 𝑀 ′′

𝜎−−→ 𝑀
𝜚−−→ 𝑀 ′ −−→ 0, where 𝜚 and 𝜎 are as in part (i), is split exact.

Remark. There exist non-split short exact sequences of ℤ-modules 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0
with 𝑀 � 𝑀 ′ ⊕ 𝑀 ′′, via some isomorphism. By a result of Miyata [185] this phenomenon can
not occur for finitely generated modules over a commutative Noetherian ring.

The definitions 1.1.1 and 1.1.36 of (split) exact sequences in M(𝑅) make sense
in any Abelian category. A (split) exact sequence in M(𝑅)op is just a (split) exact
sequence in M(𝑅) with the arrows reversed.

1.1.37 Definition. Let 𝑀 and 𝑁 be 𝑅-modules. An extension of 𝑀 by 𝑁 is an exact
sequence of 𝑅-modules of the form 0 → 𝑁 → 𝑋 → 𝑀 → 0; it is called a trivial
extension if the sequence is split.

Remark. The terminology in 1.1.37 may appear awkward as 𝑋 contains 𝑁 , not 𝑀; a justification
is provided in the Remark after 7.3.30. While this terminology is standard, there are authors, for
example Rotman [219], who call a sequence 0→ 𝑁 → 𝑋 → 𝑀 → 0 an ‘extension of 𝑁 by 𝑀’.

1.1.38. Let F: U→ V be an additive functor between Abelian categories. For every
split exact sequence 0 −−→ 𝑀 ′ −−→ 𝑀 −−→ 𝑀 ′′ −−→ 0 in U the induced sequence in V,
0 −−→ F(𝑀 ′) −−→ F(𝑀) −−→ F(𝑀 ′′) −−→ 0, is split exact.

1.1.39 Example. The assignments 𝑀 ↦→ 𝑅 ⊕ 𝑀 and 𝛼 ↦→ 1𝑅 ⊕ 𝛼 define a functor
F: M(𝑅) →M(𝑅), which is not additive, as F(0) is non-zero; cf. 1.1.18.
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1.1 Prerequisites 13

A frequently used consequence of 1.1.38 is that additive functors preserve biprod-
ucts and hence direct sums; cf. 1.1.13 and 1.1.14. In particular, there is a canonical
isomorphism F(⊕𝑢∈𝑈𝑀𝑢) � ⊕𝑢∈𝑈 F(𝑀𝑢) for an additive functor F and a finite
family of objects {𝑀𝑢}𝑢∈𝑈 .

1.1.40 Half Exactness. A functor F: U→ V between Abelian categories is called
half exact if for every short exact sequence 0 −−→ 𝑀 ′ −−→ 𝑀 −−→ 𝑀 ′′ −−→ 0 in U, the
sequence F(𝑀 ′) −−→ F(𝑀) −−→ F(𝑀 ′′) in V is exact. A half exact functor is additive.

It is not too hard to construct an additive functor that is not half exact. An example
of such a functor comes up naturally in 11.1.32. See also E 2.2.4.

The Hom functor 1.1.7 is left exact in the following sense.

1.1.41 Left Exactness. A functor F: U→ V between Abelian categories is called
left exact if it satisfies the following equivalent conditions.

(i) For every short exact sequence 0 −−→ 𝑀 ′ −−→ 𝑀 −−→ 𝑀 ′′ −−→ 0 in U, the
sequence 0 −−→ F(𝑀 ′) −−→ F(𝑀) −−→ F(𝑀 ′′) in V is exact.

(ii) For every (left) exact sequence 0 −−→ 𝑀 ′ −−→ 𝑀 −−→ 𝑀 ′′ in U, the sequence
0 −−→ F(𝑀 ′) −−→ F(𝑀) −−→ F(𝑀 ′′) in V is exact.

Remark. If G: M(𝑅)op →M(𝑆) is an additive left exact functor that preserves products, then
there is an𝑅–𝑆o-bimodule𝑁 and a natural isomorphism G � Hom𝑅 ( , 𝑁 ) . If F: M(𝑅) →M(ℤ)
is an additive left exact functor that preserves limits, then there exists an 𝑅-module 𝑀 and a natural
isomorphism F � Hom𝑅 (𝑀, ); see Watts [252].

The tensor product functor 1.1.9 is right exact in the following sense.

1.1.42 Right Exactness. A functor F: U→ V between Abelian categories is called
right exact if it satisfies the following equivalent conditions.

(i) For every short exact sequence 0 −−→ 𝑀 ′ −−→ 𝑀 −−→ 𝑀 ′′ −−→ 0 in U, the
sequence F(𝑀 ′) −−→ F(𝑀) −−→ F(𝑀 ′′) −−→ 0 in V is exact.

(ii) For every (right) exact sequence 𝑀 ′ −−→ 𝑀 −−→ 𝑀 ′′ −−→ 0 in U, the sequence
F(𝑀 ′) −−→ F(𝑀) −−→ F(𝑀 ′′) −−→ 0 in V is exact.

Remark. If F: M(𝑅) →M(𝑆) is an additive right exact functor that preserves coproducts, then
there exists an 𝑆–𝑅o-bimodule 𝑀 and a natural isomorphism F � 𝑀 ⊗𝑅 ; see Watts [252].

1.1.43 Exactness. A functor F: U→ V between Abelian categories is called exact
if it satisfies the following equivalent conditions.

(i) For every short exact sequence 0 −−→ 𝑀 ′ −−→ 𝑀 −−→ 𝑀 ′′ −−→ 0 in U, the
sequence 0 −−→ F(𝑀 ′) −−→ F(𝑀) −−→ F(𝑀 ′′) −−→ 0 in V is exact.

(ii) F preserves exactness of sequences.
(iii) F is left exact and right exact.

It is not too hard to construct a half exact functor that is neither left nor right
exact. See 2.2.22 and E 8.2.2 for examples of such a functors.
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14 1 Modules

Faithfulness

An additive functor F: U→ V between additive categories is faithful if for every
morphism 𝛼 in U one has F(𝛼) = 0 in V only if 𝛼 = 0 in U. In that case it follows
that for objects 𝑀 in U one has F(𝑀) � 0 in V only if 𝑀 � 0 in U.

1.1.44 Faithful Exactness. An additive functor F: U→ V between Abelian cate-
gories is called faithfully exact if it satisfies the following equivalent conditions.

(i) F is exact and faithful.
(ii) F is exact and for every 𝑀 in U one has F(𝑀) � 0 in V only if 𝑀 � 0 in U .

Faithful functors have convenient cancellation properties.

1.1.45. Let F: U→ V be an additive functor between Abelian categories. If F is
faithfully exact and𝑀 ′ → 𝑀 → 𝑀 ′′ is a sequence inU, then exactness of the induced
sequence F(𝑀 ′) → F(𝑀) → F(𝑀 ′′) in V implies exactness of 𝑀 ′ → 𝑀 → 𝑀 ′′.

Let G: V→W be a faithfully exact functor between Abelian categories. The
composite GF: U→W is then (faithfully) exact if and only if F is (faithfully) exact.

Recall that a functor is conservative if it reflects isomorphisms.

1.1.46 Conservative Functor. A faithful functor reflects monomorphisms and epi-
morphisms. Consequently, if a category U is balanced, meaning that a morphism
in U is an isomorphism if (and only if) it is both a monomorphism and an epimor-
phism, then a faithful functor F: U→ V is conservative. Every Abelian category is
balanced, and by E.24 so is every triangulated category. Thus, if U is Abelian or
triangulated, then every faithful functor F: U→ V is conservative. As demonstrated
in 6.4.37 and 7.3.37, a conservative functor need not be faithful.

1.1.47 Example. Given a ring homomorphism 𝜑 : 𝑅 → 𝑆, the restriction of scalars
functors res𝑆

𝑅
: M(𝑆) →M(𝑅) and res𝑆o

𝑅o : M(𝑆o) →M(𝑅o) from 1.1.12 are easily
seen to be faithfully exact and conservative; the latter property also follows from the
former in view of 1.1.46. In particular, res𝑅

𝕜
: M(𝑅) →M(𝕜) has these properties.

Exercises

E 1.1.1 (Cf. 1.1.47) Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism. Show that the restriction functor
res𝑆
𝑅

: M(𝑆) →M(𝑅) is faithfully exact and conservative.
E 1.1.2 Show that a morphism in M(𝑅) is a monomorphism if and only if it is injective, and

that it is an epimorphism if and only if it is surjective.
E 1.1.3 Show that the category M(𝑅) is Abelian.
E 1.1.4 Show that in the category of unital rings the embeddingℤ↣ ℚ is both a monomorphism

and an epimorphism though not an isomorphism.
E 1.1.5 Consider a commutative diagram in M(𝑅) ,

𝑀 ′
𝛼′
// 𝑀

𝛼
//

𝜑

��

𝑀 ′′

𝜑′′

��

0 // 𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ .
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1.1 Prerequisites 15

Assuming that the lower row is exact and 𝛼𝛼′ = 0 holds, show that there is a unique
homomorphism 𝜑′ : 𝑀 ′ → 𝑁 ′ such that one has 𝛽′𝜑′ = 𝜑𝛼′.

E 1.1.6 Consider a commutative diagram in M(𝑅) ,

𝑀 ′
𝛼′
//

𝜓′

��

𝑀
𝛼
//

𝜓

��

𝑀 ′′ // 0

𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ .

Assuming that the upper row is exact and 𝛽𝛽′ = 0 holds, show that there is a unique
homomorphism 𝜓′′ : 𝑀 ′′ → 𝑁 ′′ such that one has 𝜓′′𝛼 = 𝛽𝜓.

E 1.1.7 Let
𝑀 ′

𝛼′
//

𝜑′

��

𝑀
𝛼
//

𝜑

��

𝑀 ′′

𝜑′′

��

𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′

be a commutative diagram in M(𝑅) with exact rows. (a) Show that if 𝛼 is surjective,
then the sequence Coker 𝜑′ → Coker 𝜑 → Coker 𝜑′′ is exact. (b) Show that if 𝛽′ is
injective, then the sequence Ker 𝜑′ → Ker 𝜑 → Ker 𝜑′′ is exact.

E 1.1.8 Determine the inverse of the map Hom𝑅 (𝑅/𝔞, 𝑀 ) → (0 :𝑀 𝔞) given in 1.1.8.
E 1.1.9 Determine the inverse of the map 𝑅/𝔟 ⊗𝑅 𝑀 → 𝑀/𝔟𝑀 given in 1.1.10.
E 1.1.10 Let 𝔟 be a right ideal in 𝑅 and 𝑀 an 𝑅-module. Show that for every submodule 𝐾 ⊆ 𝑀

there is an isomorphism of 𝕜-modules 𝑅/𝔟 ⊗𝑅 𝑀/𝐾 � 𝑀/(𝔟𝑀 + 𝐾 ) .
E 1.1.11 Let {𝑀𝑢 }𝑢∈𝑈 be a family of 𝑅-modules and set 𝑀 =

∐
𝑢∈𝑈 𝑀

𝑢. Show that the family
{ 𝜀𝑢 (𝑀𝑢 ) }𝑢∈𝑈 of submodules of 𝑀 is independent.

E 1.1.12 Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢 }𝑢∈𝑈 be a family of homomorphisms in M(𝑅) .
(a) Show that

∏
𝑢∈𝑈 𝛼

𝑢, as defined in 1.1.19, is the unique homomorphism 𝛼 that
makes the following diagram commutative for every 𝑢 ∈ 𝑈.∏

𝑢∈𝑈 𝑀
𝑢

����

𝛼
//
∏
𝑢∈𝑈 𝑁

𝑢

����

𝑀𝑢 𝛼𝑢
// 𝑁𝑢

(b) Show that
∐
𝑢∈𝑈 𝛼

𝑢, as defined in 1.1.20, is the unique homomorphism 𝛼 that
makes the following diagram commutative for every 𝑢 ∈ 𝑈.

𝑀𝑢

𝛼𝑢

��

// //
∐
𝑢∈𝑈 𝑀

𝑢

𝛼

��

𝑁𝑢 // //
∐
𝑢∈𝑈 𝑁

𝑢

E 1.1.13 Show that 𝑅 is an 𝑅–𝑅o-bimodule, but only a symmetric one if 𝑅 is commutative.
E 1.1.14 Show that the enveloping algebra (𝑅o)e is the opposite ring of 𝑅e and isomorphic to 𝑅e.
E 1.1.15 Show that if an 𝑅-module is a sum of simple submodules, then it is semi-simple.
E 1.1.16 For 𝑄 and 𝑀 as in 1.1.32 decide if Hom𝑅 (𝑀, 𝑀 ) and 𝑄 are isomorphic 𝑄–𝑄o-

bimodules.
E 1.1.17 For𝑄,𝑀, and𝑁 as in 1.1.35 decide if𝑁 ⊗𝑅 𝑀 and𝑄 are isomorphic𝑄–𝑄o-bimodules.
E 1.1.18 Let 𝑀 be an 𝑅-module. (a) Show that 𝑆 = Hom𝑅 (𝑀, 𝑀 ) is a 𝕜-algebra with multipli-

cation given by composition of homomorphisms. (b) Show that 𝑀 is an 𝑆-module.
E 1.1.19 Show that the endomorphism algebra Hom𝑅 (𝑅, 𝑅) , see E 1.1.18, is isomorphic to 𝑅o.
E 1.1.20 In the algebra 𝑀 = M2×2 (ℝ) , consider the subset

𝐶 =

{ (
𝑥 −𝑦
𝑦 𝑥

) ���� 𝑥, 𝑦 ∈ ℝ}
.
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(a) Show that 𝐶 is a subring isomorphic to ℂ. (b) Show that the ℂ-actions afforded by
the canonical ring homomorphism ℂ→ 𝑀 make 𝑀 a non-symmetric ℂ–ℂ-bimodule.

E 1.1.21 Consider the functors F: M(𝑅) ×M(𝑆) →M(𝑅 × 𝑆) given by F(𝑀, 𝑁 ) = 𝑀 × 𝑁
and G: M(𝑅 × 𝑆) →M(𝑅) ×M(𝑆) given by G(𝑋) = ( (1, 0)𝑋, (0, 1)𝑋) . Show
that F and G yield an equivalence of categories.

E 1.1.22 Let𝑈 be a set with card𝑈 ⩾ max{card𝑅, ℵ0}. Show that 𝑅 (𝑈) has cardinality strictly
less than 𝑅𝑈 and conclude that there exists no surjective maps 𝑅 (𝑈) → 𝑅𝑈 .

E 1.1.23 Consider the categoryV = M(𝑅)op. Coproducts inM(𝑅) yields products inV, denoted∏
V, and products in M(𝑅) yield coproducts in V, denoted

∐
V. (a) Show that for every

family {𝑋𝑢 }𝑢∈𝑈 of objects in V there exists an epimorphism
∐

V
𝑢∈𝑈 𝑋𝑢 →

∏
V
𝑢∈𝑈 𝑋𝑢.

(b) Use E 1.1.22 to show that unless 𝑅 is the zero ring, there exists no ring 𝑆 such that
V is equivalent to M(𝑆) .

E 1.1.24 Show that the sequence of ℤ-modules 0 −→ ℤ
𝛼−→ ℤ ⊕ (ℤ/2ℤ)ℕ 𝛽−→ (ℤ/2ℤ)ℕ −→ 0,

with 𝛼(𝑚) = (2𝑚, 0, 0, . . . ) and 𝛽 (𝑛, 𝑥1, 𝑥2, . . . ) = ( [𝑛]2ℤ, 𝑥1, 𝑥2, . . . ) , is exact but
not split.

E 1.1.25 Show that the ℤ-submodule ℤ(ℕ) of ℤℕ is not a direct summand.
E 1.1.26 (a) Show that a half exact functor between Abelian categories is additive. (b) For everyℤ-

module𝑀 set F(𝑀 ) = 2𝑀, and for every homomorphism 𝛼 : 𝑀 → 𝑁 ofℤ-modules let
F(𝛼) : 2𝑀 → 2𝑁 be the restriction of 𝛼. Show that F: M(ℤ) →M(ℤ) is an additive
functor but not half exact.

E 1.1.27 (Cf. 1.1.43) Show that the three conditions on F: U→ V in 1.1.43 in are equivalent.
E 1.1.28 Show that a functor F: U→ V between Abelian categories is right exact if and only if

the opposite functor Fop : Uop → Vop is left exact.
E 1.1.29 Let F: U→ V and G: V→W be functors between Abelian categories. (a) Show that

if both functors are right exact, then GF is right exact. (b) Show that if both functors are
left exact, then GF is left exact. (c) Show that if one functor is left exact and the other is
right exact, then GF need not be half exact.

E 1.1.30 Let 𝑀 be an 𝑅–𝑅o-bimodule. (a) Show that 𝑀 ⊗𝕜 𝑀 has two compatible structures
as a module over 𝑅e, an “inner” and an “outer”. (b) Show that the assignments 𝑀 ↦→
Hom𝑅𝑒 (𝑅, 𝑀 ⊗𝕜 𝑀 ) and 𝛼 ↦→ Hom𝑅𝑒 (𝑅, 𝛼 ⊗𝕜 𝛼) define an endofunctor on M(𝑅e )
that is not additive.

E 1.1.31 Let 𝑀 and 𝑁 be 𝑅-modules. (a) Show that if Hom𝑅 (𝑀, ) and Hom𝑅 (𝑁, ) are
naturally isomorphic, then 𝑀 and 𝑁 are isomorphic. (b) Show that if Hom𝑅 ( , 𝑀 ) and
Hom𝑅 ( , 𝑁 ) are naturally isomorphic, then 𝑀 and 𝑁 are isomorphic.

1.2 Standard Isomorphisms

Synopsis. Unitor; counitor; commutativity; associativity; swap; adjunction; base change; cobase
change.

Under suitable assumptions about bimodule structures, it makes sense to consider
composites like Hom (𝑋 ⊗ 𝑀, 𝑁) and Hom (𝑀,Hom (𝑋, 𝑁)), and they turn out to
be isomorphic. At work here is adjunction, one of several natural isomorphisms of
composites of Hom and tensor product functors, which are the focus of this section.

We start by recalling that both functors 𝑅 ⊗𝑅 and Hom𝑅 (𝑅, ) are naturally
isomorphic to the identity functor on M(𝑅).
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Unitor and Counitor

1.2.1. Let 𝑀 be an 𝑅-module. There is an isomorphism of 𝑅-modules,

𝜇𝑀𝑅 : 𝑅 ⊗𝑅 𝑀 −→ 𝑀 given by 𝜇𝑀𝑅 (𝑟 ⊗ 𝑚) = 𝑟𝑚 ,

called the unitor. It is natural in 𝑀 , and if 𝑀 is an 𝑅–𝑆o-bimodule, then it is an
isomorphism of 𝑅–𝑆o-bimodules.

1.2.2. Let 𝑀 be an 𝑅-module. There are isomorphisms of 𝑅-modules,

𝜖𝑀𝑅 : 𝑀 −→ Hom𝑅 (𝑅, 𝑀) given by 𝜖𝑀𝑅 (𝑚) (𝑟) = 𝑟𝑚 ,

called the counitor. It is natural in 𝑀 , and if 𝑀 is an 𝑅–𝑆o-bimodule, then it is an
isomorphism of 𝑅–𝑆o-bimodules.

The tensor product behaves as one would expect of a multiplicative product. Being
additive, the tensor product distributes over direct sums, and the first two standard
isomorphisms below show that it is commutative and associative.

Commutativity

1.2.3 Proposition. Let 𝑀 be an 𝑅o-module and 𝑁 an 𝑅-module. The commutativity
map,

𝜐𝑀𝑁 : 𝑀 ⊗𝑅 𝑁 −→ 𝑁 ⊗𝑅o 𝑀 given by 𝜐𝑀𝑁 (𝑚 ⊗ 𝑛) = 𝑛 ⊗ 𝑚 ,

is an isomorphism of 𝕜-modules, and it is natural in 𝑀 and 𝑁 . Moreover, if 𝑀 is in
M(𝑄–𝑅o) and 𝑁 is in M(𝑅–𝑆o), then 𝜐𝑀𝑁 is an isomorphism in M(𝑄–𝑆o).

Proof. For every 𝑅o-module 𝑀 and every 𝑅-module 𝑁 , the map 𝜋 from 𝑀 × 𝑁 to
𝑁 ⊗𝑅o 𝑀 given by (𝑚, 𝑛) ↦→ 𝑛 ⊗ 𝑚 is 𝕜-bilinear and middle 𝑅-linear. Indeed,

𝜋(𝑚, 𝑛 + 𝑛′) = (𝑛 + 𝑛′) ⊗ 𝑚 = 𝑛 ⊗ 𝑚 + 𝑛′ ⊗ 𝑚 = 𝜋(𝑚, 𝑛) + 𝜋(𝑚, 𝑛′)
𝜋(𝑚 + 𝑚′, 𝑛) = 𝑛 ⊗ (𝑚 + 𝑚′) = 𝑛 ⊗ 𝑚 + 𝑛 ⊗ 𝑚′ = 𝜋(𝑚, 𝑛) + 𝜋(𝑚′, 𝑛)

𝜋(𝑚𝑟, 𝑛) = 𝑛 ⊗ 𝑚𝑟 = 𝑟𝑛 ⊗ 𝑚 = 𝜋(𝑚, 𝑟𝑛)
𝜋(𝑚𝑥, 𝑛) = 𝜋(𝑚, 𝑥𝑛) = 𝑥𝑛 ⊗ 𝑚 = 𝑥(𝑛 ⊗ 𝑚) = 𝑥𝜋(𝑚, 𝑛)

holds for all 𝑚 ∈ 𝑀 , 𝑛 ∈ 𝑁 , 𝑟 ∈ 𝑅, and 𝑥 ∈ 𝕜. Thus, 𝜐𝑀𝑁 is a homomorphism of
𝕜-modules.

Let 𝛼 : 𝑀 → 𝑀 ′ be a homomorphism of 𝑅o-modules and 𝛽 : 𝑁 → 𝑁 ′ a homo-
morphism of 𝑅-modules. The diagram

𝑀 ⊗𝑅 𝑁
𝜐𝑀𝑁

//

𝛼⊗𝛽
��

𝑁 ⊗𝑅o 𝑀

𝛽⊗𝛼
��

𝑀 ′ ⊗𝑅 𝑁 ′
𝜐𝑀

′𝑁 ′
// 𝑁 ′ ⊗𝑅o 𝑀 ′
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18 1 Modules

is commutative, as one has

(𝜐𝑀′𝑁 ′ ◦ (𝛼 ⊗𝑅 𝛽)) (𝑚 ⊗ 𝑛) = 𝜐𝑀
′𝑁 ′ (𝛼(𝑚) ⊗ 𝛽(𝑛))

= 𝛽(𝑛) ⊗ 𝛼(𝑚)
= (𝛽 ⊗𝑅o 𝛼) (𝑛 ⊗ 𝑚)
= ((𝛽 ⊗𝑅o 𝛼) ◦ 𝜐𝑀𝑁 ) (𝑚 ⊗ 𝑛)

for all 𝑚 ∈ 𝑀 and all 𝑛 ∈ 𝑁 . Thus, 𝜐 is a natural transformation of functors from
M(𝑅o) ×M(𝑅) to M(𝕜).

For 𝑀 in M(𝑅o) and 𝑁 in M(𝑅) the map from 𝑁 ⊗𝑅o 𝑀 to 𝑀 ⊗𝑅 𝑁 given by
𝑛 ⊗ 𝑚 ↦→ 𝑚 ⊗ 𝑛 is an inverse of 𝜐𝑀𝑁 , so 𝜐𝑀𝑁 is an isomorphism of 𝕜-modules.

If 𝑀 is a𝑄–𝑅o-bimodule and 𝑁 is an 𝑅–𝑆o-bimodule, then 𝑀 ⊗𝑅 𝑁 and 𝑁 ⊗𝑅o 𝑀

are 𝑄–𝑆o-bimodules. The computation

𝜐𝑀𝑁 (𝑞(𝑚⊗𝑛)𝑠) = 𝜐𝑀𝑁 (𝑞𝑚⊗𝑛𝑠) = 𝑛𝑠⊗𝑞𝑚 = 𝑞(𝑛⊗𝑚)𝑠 = 𝑞(𝜐𝑀𝑁 (𝑚⊗𝑛))𝑠 ,

which holds for all 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀 , and 𝑛 ∈ 𝑁 , shows that the isomorphism
𝜐𝑀𝑁 is 𝑄- and 𝑆o-linear. □

Associativity

1.2.4 Proposition. Let 𝑀 be an 𝑅o-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝑁 an 𝑆-
module. The associativity map,

𝜔𝑀𝑋𝑁 : (𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁 −→ 𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁) ,

given by
𝜔𝑀𝑋𝑁 ((𝑚 ⊗ 𝑥) ⊗ 𝑛) = 𝑚 ⊗ (𝑥 ⊗ 𝑛)

is an isomorphism of 𝕜-modules, and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀
is in M(𝑄–𝑅o) and 𝑁 is in M(𝑆–𝑇o), then 𝜔𝑀𝑋𝑁 is an isomorphism in M(𝑄–𝑇o).

Proof. Proceeding as in the proof of 1.2.3, it is straightforward to verify that 𝜔 is a
natural transformation of functors fromM(𝑅o)×M(𝑅–𝑆o)×M(𝑆) toM(𝕜). Further,
for modules𝑀 , 𝑋 , and 𝑁 as in the statement, the assignment𝑚⊗(𝑥⊗𝑛) ↦→ (𝑚⊗𝑥)⊗𝑛
defines a map 𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁) → (𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁; it is an inverse of 𝜔𝑀𝑋𝑁 which,
therefore, is an isomorphism of 𝕜-modules.

If 𝑀 is in M(𝑄–𝑅o) and 𝑁 is in M(𝑆–𝑇o), then the modules (𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁 and
𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁) are in M(𝑄–𝑇o), and a computation similar to the one performed
in the proof of 1.2.3 shows that 𝜔𝑀𝑋𝑁 is 𝑄- and 𝑇o-linear. □

Caveat. Let 𝑋 and 𝑌 be 𝑅o-modules and 𝑍 an 𝑅-module. The innocent looking computation
𝑋 ⊗𝕜 (𝑌 ⊗𝑅 𝑍 ) � (𝑋 ⊗𝕜 𝑌 ) ⊗𝑅 𝑍 � (𝑌 ⊗𝕜 𝑋) ⊗𝑅 𝑍 � 𝑌 ⊗𝕜 (𝑋 ⊗𝑅 𝑍 )

based on associativity 1.2.4 and commutativity 1.2.3 yields 0 � 𝕜 when applied to 𝑅 = 𝕜 [𝑥 ] = 𝑋,
𝑌 = 𝑅/(𝑥 ) , and 𝑍 = 𝑅/(𝑥 − 1) . Indeed, the ideals (𝑥 ) and (𝑥 − 1) are comaximal in 𝑅, so
𝑌 ⊗𝑅 𝑍 is 0, see 1.1.10; at the same time𝑌 and 𝑍 are both isomorphic to 𝕜 as 𝕜-modules, whence
one has𝑌 ⊗𝕜 (𝑋 ⊗𝑅 𝑍 ) � 𝕜 ⊗𝕜 (𝑅 ⊗𝑅 𝕜) � 𝕜. The issue is that the 𝑅–𝑅-bimodule 𝑋 ⊗𝕜 𝑌 is not
symmetric; the first isomorphism is valid under the 𝑅-module structure coming from 𝑌 , and the
last isomorphism is valid under the 𝑅-module structure coming from 𝑋.
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1.2 Standard Isomorphisms 19

Swap

For modules 𝑀 , 𝑁 , and 𝑋 the bilinear maps 𝑀 × 𝑁 → 𝑋 are in one-to-one cor-
respondence with elements in Hom (𝑀,Hom (𝑁, 𝑋)) and Hom (𝑁,Hom (𝑀, 𝑋)).
Swap compares these two hom-sets directly.

1.2.5 Proposition. Let 𝑀 be an 𝑅-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝑁 an 𝑆o-
module. The swap map,

𝜁𝑀𝑋𝑁 : Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)) −→ Hom𝑆o (𝑁,Hom𝑅 (𝑀, 𝑋)) ,

given by
𝜁𝑀𝑋𝑁 (𝜓) (𝑛) (𝑚) = 𝜓(𝑚) (𝑛)

is an isomorphism of 𝕜-modules, and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀
is in M(𝑅–𝑄o) and 𝑁 is in M(𝑇–𝑆o), then 𝜁𝑀𝑋𝑁 is an isomorphism in M(𝑄–𝑇o).

Proof. It is straightforward to verify that 𝜁 is a natural transformation of functors
from M(𝑅)op ×M(𝑅–𝑆o) ×M(𝑆o)op to M(𝕜). Further, for modules 𝑀 , 𝑋 , and 𝑁
as in the statement, it is immediate that the swap map 𝜁𝑁𝑋𝑀 is an inverse of 𝜁𝑀𝑋𝑁 .

If 𝑀 is in M(𝑅–𝑄o) and 𝑁 is in M(𝑇–𝑆o), then Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)) and
Hom𝑆o (𝑁,Hom𝑅 (𝑀, 𝑋)) are 𝑄–𝑇o-bimodules. The computation

𝜁𝑀𝑋𝑁 (𝑞𝜓𝑡) (𝑛) (𝑚) = (𝑞𝜓𝑡) (𝑚) (𝑛)
= 𝜓(𝑚𝑞) (𝑡𝑛)
= 𝜁𝑀𝑋𝑁 (𝜓) (𝑡𝑛) (𝑚𝑞)
= (𝑞(𝜁𝑀𝑋𝑁 (𝜓))𝑡) (𝑛) (𝑚) ,

which holds for all 𝑞 ∈ 𝑄, 𝑡 ∈ 𝑇 , 𝜓 ∈ Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)), 𝑚 ∈ 𝑀 , and 𝑛 ∈ 𝑁 ,
shows that the isomorphism 𝜁𝑀𝑋𝑁 is 𝑄- and 𝑇o-linear. □

Adjunction

The next isomorphism expresses that Hom and tensor product are adjoint functors.

1.2.6 Proposition. Let𝑀 be an 𝑅-module, 𝑋 an 𝑅–𝑆o-bimodule, and𝑁 an 𝑆-module.
The adjunction map,

𝜌𝑀𝑋𝑁 : Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀) −→ Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀)) ,

given by
𝜌𝑀𝑋𝑁 (𝜓) (𝑛) (𝑥) = 𝜓(𝑥 ⊗ 𝑛)

is an isomorphism of 𝕜-modules, and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀
is in M(𝑅–𝑄o) and 𝑁 is in M(𝑆–𝑇o), then 𝜌𝑀𝑋𝑁 is an isomorphism in M(𝑇–𝑄o).

Proof. It is straightforward to verify that 𝜌 is a natural transformation of functors
from M(𝑅) ×M(𝑅–𝑆o)op ×M(𝑆)op to M(𝕜). Further, for modules 𝑀 , 𝑋 , and 𝑁 as
in the statement, it is elementary to verify that the map
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20 1 Modules

𝜘 : Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀)) −→ Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀)

given by 𝜘(𝜑) (𝑥 ⊗ 𝑛) = 𝜑(𝑛) (𝑥) is an inverse of 𝜌𝑀𝑋𝑁 .
If 𝑀 is in M(𝑅–𝑇o) and 𝑁 is in M(𝑆–𝑄o), then Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀) is a 𝑄–𝑇o-

bimodule and so is Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀)). The computation

𝜌𝑀𝑋𝑁 (𝑞𝜓𝑡) (𝑛) (𝑥) = (𝑞𝜓𝑡) (𝑥 ⊗ 𝑛)
= (𝜓(𝑥 ⊗ 𝑛𝑞))𝑡
= (𝜌𝑀𝑋𝑁 (𝜓) (𝑛𝑞) (𝑥))𝑡
= ((𝑞(𝜌𝑀𝑋𝑁 (𝜓))) (𝑛) (𝑥))𝑡
= (𝑞(𝜌𝑀𝑋𝑁 (𝜓))𝑡) (𝑛) (𝑥) ,

which holds for all 𝑞 ∈ 𝑄, 𝑡 ∈ 𝑇 , 𝜓 ∈ Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀), 𝑛 ∈ 𝑁 , and 𝑥 ∈ 𝑋 , shows
that the isomorphism 𝜌𝑀𝑋𝑁 is 𝑄- and 𝑇o-linear. □

Caveat. Let 𝑌 and 𝑍 be 𝑅-modules and 𝑋 an 𝑅o-module. The innocent looking computation
Hom𝕜 (𝑋 ⊗𝑅 𝑌, 𝑍 ) � Hom𝑅 (𝑌,Hom𝕜 (𝑋, 𝑍 ) ) � Hom𝕜 (𝑋,Hom𝑅 (𝑌, 𝑍 ) )

based on adjunction 1.2.6 and swap 1.2.5 yields 𝕜 [𝑥 ] � 0 when applied to 𝑅 = 𝕜 [𝑥 ] = 𝑋 = 𝑍 and
𝑌 = 𝑅/(𝑥 ) . Indeed, one has 𝑌 � 𝕜, so the left-hand side is isomorphic to Hom𝕜 (𝕜, 𝑅) � 𝑅 and
the right-hand side vanishes as one has Hom𝑅 (𝑌, 𝑍 ) � Hom𝑅 (𝕜, 𝑅) = 0. The issue is that the
𝑅–𝑅-bimodule Hom𝕜 (𝑋, 𝑍 ) is not symmetric; the first isomorphism is valid under the 𝑅-module
structure coming from 𝑋, and the second isomorphism is valid under the 𝑅-module structure
coming from 𝑍 .

Base Change and Cobase Change

1.2.7 Proposition. Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism.
(a) With 𝑆 considered as an 𝑆–𝑅o-bimodule, the functor

𝑆 ⊗𝑅 : M(𝑅) −→ M(𝑆)

is left adjoint to the restriction of scalars functor res𝑆
𝑅

: M(𝑆) →M(𝑅) .
(b) With 𝑆 considered as an 𝑅–𝑆o-bimodule, the functor

Hom𝑅 (𝑆, ) : M(𝑅) −→ M(𝑆)

is right adjoint to the restriction of scalars functor res𝑆
𝑅

: M(𝑆) →M(𝑅) .

Proof. (a): Consider 𝑆 with the 𝑆–𝑅o-bimodule structure induced by 𝜑; see 1.1.12.
The functor res𝑆

𝑅
is isomorphic to Hom𝑆 (𝑆, ) : M(𝑆) →M(𝑅), see 1.1.30, and it

follows from adjunction 1.2.6 that this functor has the asserted left adjoint.
(b): Consider 𝑆 with the 𝑅–𝑆o-bimodule structure induced by 𝜑; see 1.1.12. The

functor res𝑆
𝑅

is isomorphic to 𝑆 ⊗𝑆 : M(𝑆) →M(𝑅), see 1.1.33, and it follows
from adjunction 1.2.6 that this functor has the asserted right adjoint. □

1.2.8 Definition. Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism. The functor 𝑆 ⊗𝑅 from
1.2.7(a) is called base change along 𝜑, and the functor Hom𝑅 (𝑆, ) from part (b) is
called cobase change along 𝜑.
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1.3 Exact Functors and Classes of Modules 21

Remark. Other terms for base change and cobase change that better capture the connections to
restriction of scalars are ‘extension of scalars’ and ‘coextension of scalars’; nevertheless we opt for
the shorter terms.

Exercises

E 1.2.1 Determine the inverse maps of the unitor 1.2.1 and the counitor 1.2.2.
E 1.2.2 Let 𝛼 be an 𝑚 × 𝑛 matrix with entries in 𝑅. (a) Show that 𝑅𝑚 ·𝛼−→ 𝑅𝑛, i.e. the map

given by right multiplication by 𝛼, is a homomorphism of 𝑅-modules. (b) Let 𝑀 be an
𝑅-module and show that Hom𝑅 ( ·𝛼, 𝑀 ) is a homomorphism of 𝕜-modules naturally
identified with 𝑀𝑛 𝛼·−→ 𝑀𝑚.

E 1.2.3 Let 𝕜 be a field and set ( )∗ = Hom𝕜 ( , 𝕜) . Let 𝐿 be a 𝕜-vector space with basis
{𝑒𝑢 }𝑢∈𝑈 . For each 𝑢 ∈ 𝑈 let 𝑒∗𝑢 : 𝐿 → 𝕜 be the functional given by 𝑒∗𝑢 (𝑒𝑣 ) = δ𝑢𝑣.
(a) Show that the assignment 𝑒𝑢 ↦→ 𝑒∗𝑢 defines a homomorphism 𝜖 : 𝐿 → 𝐿∗ of 𝕜-vector
spaces. (b) Show that 𝜖 is an isomorphism if 𝐿 has finite rank. (c) Assume that 𝐿 has
rank at least 2; show that there is an automorphism 𝛼 : 𝐿 → 𝐿 such that the following
diagram is not commutative,

𝐿
𝜖
//

𝛼

��

𝐿∗

𝐿
𝜖
// 𝐿∗ .

𝛼∗

OO

E 1.2.4 Let 𝕜 be a field and set ( )∗ = Hom𝕜 ( , 𝕜) . Let 𝑀 be a 𝕜-vector space. (a) For𝑚 ∈ 𝑀,
show that the map 𝜀𝑚 : 𝑀∗ → 𝕜 given by 𝜑 ↦→ 𝜑 (𝑚) is an element in 𝑀∗∗ = (𝑀∗ )∗.
(b) Show that the map 𝛿𝑀 : 𝑀 → 𝑀∗∗ given by 𝑚 ↦→ 𝜀𝑚 is 𝕜-linear. (c) Show that
𝛿 : IdM(𝕜) → ( )∗∗ is a natural transformation of functors from M(𝕜) to M(𝕜) .

E 1.2.5 Let 𝑀 be an 𝑅o-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝑁 an 𝑆-module. Show that
(𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁 is an 𝑅c–𝑆c-bimodule, where 𝑅c is the center of 𝑅.

E 1.2.6 Assume that 𝑅 is commutative. Let 𝑀 be an 𝑅-module and show that the functor
𝑀 ⊗𝑅 is left adjoint for Hom𝑅 (𝑀, )

E 1.2.7 Let 𝑋 be an 𝑅–𝑆o-bimodule. Show that the functor Hom𝑅 ( , 𝑋) : M(𝑅)op →M(𝑆o)
is a right adjoint for Hom𝑆o ( , 𝑋)op.

E 1.2.8 Let 𝑋 be an 𝑅–𝑆o-bimodule and consider the map 𝑅 → Hom𝑆o (𝑋, 𝑋) that maps 𝑟 to
multiplication by 𝑟 on 𝑋. Show that it is a homomorphism of 𝑅–𝑅o-bimodules.

E 1.2.9 Let 𝑀 be an 𝑅-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝑁 an 𝑆-module. Without using
1.2.3–1.2.5, show that there is a natural isomorphism of 𝕜-modules

Hom𝑅 (𝑁 ⊗𝑆o 𝑋, 𝑀 ) −→ Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀 ) ) .
E 1.2.10 Show that under suitable assumptions one can derive swap 1.2.5 from adjunction 1.2.6.

1.3 Exact Functors and Classes of Modules

Synopsis. Basis; free module; unique extension property; finite generation of Hom and tensor
product; projective module; injective module; lifting property; semi-simple ring; Baer’s criterion;
finitely presented module; flat module; von Neumann regular ring; vanishing of functor.

We start by recalling the language of generators of modules and ideals.
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22 1 Modules

1.3.1 Definition. Let 𝑀 be an 𝑅-module and 𝑋 a subset of 𝑀 . The submodule,

𝑅⟨𝑋 ⟩ =
{ ∑︁
𝑥∈𝑋

𝑟𝑥𝑥

��� 𝑟𝑥 ∈ 𝑅 and 𝑟𝑥 = 0 for all but finitely many 𝑥 ∈ 𝑋
}
,

of 𝑀 is called the submodule generated by 𝑋 . For an indexed set 𝑋 = {𝑥𝑢}𝑢∈𝑈
one often writes 𝑅⟨𝑥𝑢 | 𝑢 ∈ 𝑈 ⟩ instead of 𝑅⟨𝑋 ⟩; in particular, for a finite set 𝑋 =

{𝑥1, . . . , 𝑥𝑛} one writes 𝑅⟨𝑥1, . . . , 𝑥𝑛 ⟩. By convention, 𝑅⟨∅⟩ is the zero module 0.
If 𝑅⟨𝑋 ⟩ = 𝑀 holds, then 𝑋 is called a set of generators for 𝑀; if no proper subset

of 𝑋 generates 𝑀 , then 𝑋 is called a minimal set of generators for 𝑀 . If 𝑀 has a
finite set of generators, then 𝑀 is called finitely generated.

If 𝑀 is generated by one element, then 𝑀 is called cyclic. A cyclic 𝑅-module
generated by an element 𝑥 is isomorphic to 𝑅/𝔞 for the left ideal 𝔞 = (0 :𝑅 𝑥) in 𝑅.

1.3.2. Let 𝑀 be an 𝑅-module. For a subset 𝑋 of 𝑀 one has 𝑅⟨𝑋 ⟩ = ∑
𝑥∈𝑋 𝑅⟨𝑥 ⟩;

for a family of submodules {𝑀𝑢}𝑢∈𝑈 of 𝑀 one has ∑
𝑢∈𝑈 𝑀

𝑢 = 𝑅⟨⋃𝑢∈𝑈 𝑀
𝑢 ⟩,

cf. 1.1.23.

1.3.3 Definition. Left ideals and right ideals in 𝑅 generated by elements 𝑥1, . . . , 𝑥𝑛
are denoted 𝑅(𝑥1, . . . , 𝑥𝑛) and (𝑥1, . . . , 𝑥𝑛)𝑅, respectively. The abridged notations 𝑅𝑥
and 𝑥𝑅 are used for principal left and right ideals. If 𝑅 is commutative, then the ideal
𝑅(𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛)𝑅 is written (𝑥1, . . . , 𝑥𝑛), and a principal ideal may be
written using any of the notations 𝑅𝑥, 𝑥𝑅, and (𝑥). The zero ideal is usually written
0 but occasionally (0) when the simpler notation could lead to an ambiguity.

Remark. Though left and right ideals in 𝑅 are submodules of the 𝑅-module 𝑅 and the 𝑅o-module
𝑅, respectively, it would be awkward to insist on applying the notation from 1.3.1 to ideals. Indeed,
a principal right ideal would be written 𝑅o⟨ 𝑥 ⟩; even worse, writing 𝕜⟨ 𝑥1, 𝑥2 ⟩ for the ideal in 𝕜

generated by elements 𝑥1 and 𝑥2 would conflict with the standard notation for a free 𝕜-algebra.

Free Modules

The gateway to projective objects, and also to injective objects, in module categories
is free modules.

1.3.4 Definition. Let 𝐿 be an 𝑅-module and 𝐸 = {𝑒𝑢}𝑢∈𝑈 a set of generators for 𝐿.
Every element in 𝐿 can then be expressed on the form ∑

𝑢∈𝑈 𝑟𝑢𝑒𝑢; if this expression
is unique, then 𝐸 is called a basis for 𝐿, and 𝐿 is called free. By convention, the zero
module is free with the empty set as basis.

For a set 𝐸 , not a priori assumed to be a subset of a module, the free 𝑅-module
with basis 𝐸 is denoted 𝑅⟨𝐸 ⟩.

1.3.5 Example. If 𝑅 is a division ring, then every 𝑅-module is free; indeed, every
module over a division ring has a basis.

The ℤ-module 𝑀 = ℤ/2ℤ is not free; indeed, a set of generators for 𝑀 must
include [1]2ℤ, and one has 0[1]2ℤ = 2[1]2ℤ .

Free modules have the following unique extension property.
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1.3 Exact Functors and Classes of Modules 23

1.3.6 Proposition. Let 𝐿 be a free 𝑅-module with basis 𝐸 = {𝑒𝑢}𝑢∈𝑈 and 𝑀 an
𝑅-module. For every map 𝛼 : 𝐸 → 𝑀 of sets there is a unique 𝑅-module homomor-
phism, 𝛼 : 𝐿 → 𝑀 , such that the diagram

𝐸

𝛼

��

// // 𝐿

𝛼
~~

𝑀

is commutative; the homomorphism is given by 𝛼(∑𝑢∈𝑈 𝑟𝑢𝑒𝑢) =
∑
𝑢∈𝑈 𝑟𝑢𝛼(𝑒𝑢).

Proof. The assertion is immediate from the definition, 1.3.4, of a free module. □

Remark. The unique extension property characterizes free modules; see E 1.3.3.

1.3.7. Let 𝐿 be a free 𝑅-module with basis {𝑒𝑢}𝑢∈𝑈 and { 𝑓𝑢}𝑢∈𝑈 be the standard
basis for 𝑅 (𝑈) . There is an isomorphism, 𝐿 → 𝑅 (𝑈) , given by 𝑒𝑢 ↦→ 𝑓𝑢.

Important families of rings—commutative rings, left Noetherian rings, and local
rings included—have the Invariant Basis Number property (IBN).

1.3.8 Definition. A free 𝑅-module is said to have finite rank if it is finitely generated;
that is, it has a finite basis. A free 𝑅-module that is not finitely generated is said to
have infinite rank. For a finitely generated free module 𝐿 over a ring 𝑅 that has IBN,
the rank of 𝐿, written rank𝑅 𝐿, is the number of elements in a basis for 𝐿.

Remark. If 𝑈 is infinite, then one has 𝑅 (𝑈) � 𝑅 (𝑉 ) only if the sets 𝑈 and 𝑉 have the same
cardinality, even if 𝑅 does not have IBN; see [167, §1A].

1.3.9. Let {𝐿𝑢}𝑢∈𝑈 be a family of free 𝑅-modules with bases {𝐸𝑢}𝑢∈𝑈 . The co-
product

∐
𝑢∈𝑈 𝐿

𝑢 is then a free 𝑅-module with basis ⋃
𝑢∈𝑈 𝜀

𝑢 (𝐸𝑢), where 𝜀𝑢 is the
injection 𝐿𝑢 ↣

∐
𝑢∈𝑈 𝐿

𝑢. Notice that if 𝑈 is a finite set, each module 𝐿𝑢 is finitely
generated, and 𝑅 has IBN, then one has rank𝑅 (

⊕
𝑢∈𝑈 𝐿

𝑢) = ∑
𝑢∈𝑈 rank𝑅 𝐿𝑢.

1.3.10. Assume that 𝑅 is commutative. Let 𝐿 and 𝐿′ be free 𝑅-modules with bases
{𝑒𝑢}𝑢∈𝑈 and { 𝑓𝑣}𝑣∈𝑉 , it is elementary to verify that the 𝑅-module 𝐿 ⊗𝑅 𝐿′ is free
with basis {𝑒𝑢 ⊗ 𝑓𝑣}𝑢∈𝑈, 𝑣∈𝑉 . Thus, if 𝐿 and 𝐿′ are finitely generated, then one has
rank𝑅 (𝐿 ⊗𝑅 𝐿′) = (rank𝑅 𝐿) (rank𝑅 𝐿′).

1.3.11 Theorem. If 𝑅 is a principal left ideal domain, then every submodule of a
free 𝑅-module is free.

Proof. Let 𝐿 be a free 𝑅-module with basis {𝑒𝑢}𝑢∈𝑈 and 𝑀 a submodule of 𝐿.
Choose a well-ordering ⩽ on𝑈. For 𝑢 ∈ 𝑈 define submodules of 𝐿 as follows:

𝐿<𝑢 = 𝑅⟨𝑒𝑣 | 𝑣 < 𝑢⟩ and 𝐿⩽𝑢 = 𝑅⟨𝑒𝑣 | 𝑣 ⩽ 𝑢⟩ .

Let 𝑢 ∈ 𝑈 be given. Every element 𝑙 in 𝐿⩽𝑢 has a unique decomposition 𝑙 = 𝑙′ + 𝑟𝑒𝑢
with 𝑙′ ∈ 𝐿<𝑢 and 𝑟 ∈ 𝑅, so there is a split exact sequence of 𝑅-modules,

0 −→ 𝐿<𝑢 −→ 𝐿⩽𝑢
𝜛𝑢−−−→ 𝑅⟨𝑒𝑢 ⟩ −→ 0 ,
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where 𝜛𝑢 is given by 𝑙′ + 𝑟𝑒𝑢 ↦→ 𝑟𝑒𝑢. Let 𝜑𝑢 be the restriction of 𝜛𝑢 to 𝑀 ∩ 𝐿⩽𝑢;
one has Ker 𝜑𝑢 = 𝑀 ∩ Ker𝜛𝑢 = 𝑀 ∩ 𝐿<𝑢. The image of 𝜑𝑢 is a submodule of
𝑅⟨𝑒𝑢 ⟩ and, hence, isomorphic to a left ideal in 𝑅. It follows from the assumption on
𝑅 that Im 𝜑𝑢 is cyclic and free, so choose 𝑥𝑢 ∈ 𝑅 with Im 𝜑𝑢 = 𝑅⟨𝑥𝑢𝑒𝑢 ⟩ and note
that if 𝑥𝑢 is non-zero, then {𝑥𝑢𝑒𝑢} is a basis for Im 𝜑𝑢. There is an exact sequence,

0 −→ 𝑀 ∩ 𝐿<𝑢 −→ 𝑀 ∩ 𝐿⩽𝑢 𝜑𝑢−−−→ 𝑅⟨𝑥𝑢𝑒𝑢 ⟩ −→ 0 ,

and it is split. Indeed, if 𝑥𝑢 ≠ 0 choose an element 𝑓𝑢 in𝑀∩𝐿⩽𝑢 with 𝜑𝑢 ( 𝑓𝑢) = 𝑥𝑢𝑒𝑢,
and if 𝑥𝑢 = 0 set 𝑓𝑢 = 0. The assignment 𝑥𝑢𝑒𝑢 ↦→ 𝑓𝑢 then defines a right inverse
homomorphism to 𝜑𝑢; cf. 1.3.6. Thus, one has 𝑀 ∩ 𝐿⩽𝑢 = (𝑀 ∩ 𝐿<𝑢) ⊕ 𝑅⟨ 𝑓𝑢 ⟩;
that is, every element 𝑚 in 𝑀 ∩ 𝐿⩽𝑢 has a unique decomposition 𝑚 = 𝑚′ + 𝑟 𝑓𝑢 with
𝑚′ ∈ 𝑀 ∩ 𝐿<𝑢 and 𝑟 ∈ 𝑅.

Set 𝑈′ = {𝑢 ∈ 𝑈 | 𝑥𝑢 ≠ 0}; we argue that { 𝑓𝑢}𝑢∈𝑈′ is a basis for 𝑀 . To see that
every linear combination of the elements 𝑓𝑢 is unique, suppose that there is a relation
𝑟1 𝑓𝑢1 + · · · + 𝑟𝑛 𝑓𝑢𝑛 = 0 with 𝑟𝑖 ∈ 𝑅 and 𝑢𝑖 ∈ 𝑈′. One can assume that the elements
𝑢𝑖 are ordered 𝑢1 < · · · < 𝑢𝑛, and thus consider the relation in 𝑀 ∩ 𝐿⩽𝑢𝑛 . Applying
𝜑𝑢𝑛 to the relation one gets 𝑟𝑛𝑥𝑢𝑛𝑒𝑢𝑛 = 0. As 𝑢𝑛 is in 𝑈′, the singleton {𝑥𝑢𝑛𝑒𝑢𝑛 }
is a basis for Im 𝜑𝑢, whence one has 𝑟𝑛 = 0. Continuing in this manner, one gets
𝑟𝑛 = · · · = 𝑟1 = 0, as desired. If 𝐹 = 𝑅⟨ 𝑓𝑢 | 𝑢 ∈ 𝑈′ ⟩ were a proper submodule of 𝑀 ,
then there would be a least 𝑢 in𝑈′ such that 𝑀 ∩ 𝐿⩽𝑢 contains an element 𝑚 not in
𝐹. This element has a unique decomposition 𝑚 = 𝑚′ + 𝑟 𝑓𝑢 with 𝑚′ ∈ 𝑀 ∩ 𝐿<𝑢 and
𝑟 ∈ 𝑅. The element 𝑚′ is in 𝑀 ∩ 𝐿⩽𝑣 for some 𝑣 < 𝑢 and hence in 𝐹 by minimality
of 𝑢. However, 𝑟 𝑓𝑢 is also in 𝐹, so one has 𝑚 = 𝑚′ + 𝑟 𝑓𝑢 ∈ 𝐹; a contradiction. □

Remark. A commutative ring is a principal ideal domain if (and only if) every submodule of a
free module is free; see E 11.2.11.

The content of the next result is often phrased as: the category of 𝑅-modules has
enough free modules.

1.3.12 Lemma. Let 𝑀 be an 𝑅-module; there is a surjective homomorphism 𝐿 → 𝑀

of 𝑅-modules where 𝐿 is free. Moreover, if 𝑀 is generated by 𝑛 elements, then one
can choose 𝐿 such that it has a basis with 𝑛 elements.

Proof. Choose a set 𝐺 of generators for 𝑀 and let 𝐸 = {𝑒𝑔 | 𝑔 ∈ 𝐺 } be an abstract
set. Consider the free 𝑅-module 𝐿 = 𝑅⟨𝐸 ⟩ and define by 1.3.6 a homomorphism
𝜋 : 𝐿 → 𝑀 by 𝜋(∑𝑔∈𝐺 𝑟𝑔𝑒𝑔) =

∑
𝑔∈𝐺 𝑟𝑔𝑔; it is surjective by the assumption on𝐺. □

Finite Generation of Hom and Tensor Product

Under suitable assumptions on the ring, the Hom and tensor product functors restrict
to the subcategories of finitely generated modules.

1.3.13 Proposition. Assume that 𝑆 is right Noetherian. Let 𝑀 be an 𝑅-module and
𝑋 an 𝑅–𝑆o-bimodule. If 𝑀 is finitely generated and 𝑋 is finitely generated over 𝑆o,
then the 𝑆o-module Hom𝑅 (𝑀, 𝑋) is finitely generated.

8-Mar-2024 Draft - use at own risk



1.3 Exact Functors and Classes of Modules 25

Proof. Choose by 1.3.12 a surjective homomorphism of 𝑅-modules 𝐿 → 𝑀 , where
𝐿 is free and finitely generated; say, 𝐿 � 𝑅𝑛 as 𝑅-modules. Apply the left exact func-
tor Hom𝑅 ( , 𝑋) to get an injective homomorphism Hom𝑅 (𝑀, 𝑋) → Hom𝑅 (𝐿, 𝑋).
The counitor 1.2.2 and additivity of the Hom functor yield an isomorphism of
𝑆o-modules, Hom𝑅 (𝐿, 𝑋) � 𝑋𝑛. Thus, Hom𝑅 (𝑀, 𝑋) is a submodule of a finitely
generated 𝑆o-module and hence finitely generated, as 𝑆 is right Noetherian. □

Caveat. For 𝑀 and 𝑋 as in 1.3.13 the 𝑆-module Hom𝑅 (𝑋, 𝑀 ) need not be finitely generated,
not even if 𝑅 and 𝑆 are Noetherian; see E 1.3.32.

1.3.14 Proposition. Let 𝑁 be an 𝑆-module and 𝑋 an 𝑅–𝑆o-bimodule. If 𝑁 is finitely
generated and 𝑋 is finitely generated over 𝑅, then the 𝑅-module 𝑋 ⊗𝑆 𝑁 is finitely
generated.

Proof. Choose by 1.3.12 a surjective homomorphism of 𝑆-modules 𝐿 → 𝑁 , where
𝐿 is free and finitely generated; say, 𝐿 � 𝑆𝑛 as 𝑆-modules. Apply the right exact
functor 𝑋 ⊗𝑆 to get a surjective homomorphism 𝑋 ⊗𝑆 𝐿 → 𝑋 ⊗𝑆 𝑁 . The uni-
tor 1.2.1 and additivity of the tensor product yield an isomorphism of 𝑅-modules,
𝑋 ⊗𝑆 𝐿 � 𝑋𝑛. Thus, 𝑋 ⊗𝑆 𝑁 is a homomorphic image of a finitely generated 𝑅-
module and hence finitely generated. □

1.3.15 Corollary. Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism and 𝑁 an 𝑆-module. If 𝑆
is finitely generated as an 𝑅-module, then 𝑁 is finitely generated as an 𝑅-module if
and only if it is finitely generated as an 𝑆-module.

Proof. If 𝑁 is finitely generated as an 𝑆-module, then it follows from 1.3.14 applied
with 𝑋 = 𝑆 that 𝑁 is finitely generated as an 𝑅-module. On the other hand, the
𝑅-action on 𝑁 factors through 𝑆, so every set of elements that generates 𝑁 as an
𝑅-module also generates 𝑁 as an 𝑆-module. □

Projective Modules

For an 𝑅-module 𝑀 , the functors Hom𝑅 (𝑀, ), Hom𝑅 ( , 𝑀), and ⊗𝑅 𝑀 are, in
general, not exact. Modules that make one or more of these functors exact are of
particular interest and play a pivotal role in homological algebra.

1.3.16 Definition. An 𝑅-module 𝑃 is called projective if the functor Hom𝑅 (𝑃, )
from M(𝑅) to M(𝕜) is exact. If the functor Hom𝑅 (𝑃, ) is faithfully exact, then 𝑃
is called faithfully projective.

Part (ii) below captures the lifting property of projective modules, which amounts
to the definition of projective objects in a general category.

1.3.17 Proposition. For an 𝑅-module 𝑃, the following conditions are equivalent.
(i) 𝑃 is projective.
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(ii) For every homomorphism 𝛼 : 𝑃→ 𝑁 and every surjective homomorphism
𝛽 : 𝑀 → 𝑁 , there exists a homomorphism 𝛾 : 𝑃→ 𝑀 such that the diagram

𝑃
𝛾

~~

𝛼

��

𝑀
𝛽
// // 𝑁

in M(𝑅) is commutative; that is, there is an equality 𝛼 = 𝛽𝛾 .

(iii) Every exact sequence 0→ 𝑀 ′ → 𝑀 → 𝑃→ 0 of 𝑅-modules is split.
(iv) 𝑃 is a direct summand of a free 𝑅-module.

Proof. Conditions (i) and (ii) are equivalent, as the Hom functor is left exact.
(ii)⇒ (iii): Let 𝛽 denote the homomorphism 𝑀 ↠ 𝑃. by (ii) there exists a

homomorphism 𝛾 : 𝑃→ 𝑀 such that 1𝑃 = 𝛽𝛾 holds, whence the sequence is split.
(iii)⇒ (iv): Choose by 1.3.12 a surjective homomorphism 𝛽 : 𝐿 → 𝑃, where 𝐿

is free. The associated exact sequence 0→ Ker 𝛽 → 𝐿 → 𝑃 → 0 is split, so 𝑃 is a
direct summand of 𝐿.

(iv)⇒ (ii) As the Hom functor is additive, it is sufficient to prove that every free 𝑅-
module has the lifting property. Let 𝛽 : 𝑀 ↠ 𝑁 and 𝛼 : 𝐿 → 𝑁 be homomorphisms
of 𝑅-modules. Assume that 𝐿 is free with basis 𝐸 = {𝑒𝑢 | 𝑢 ∈ 𝑈 }. For every 𝑢 in𝑈,
choose by surjectivity of 𝛽 a preimage 𝑚𝑢 ∈ 𝑀 of 𝛼(𝑒𝑢). The map 𝐸 → 𝑀 given
by 𝑒𝑢 ↦→ 𝑚𝑢 extends by the unique extension property 1.3.6 to a homomorphism
𝛾 : 𝐿 → 𝑀 with 𝛼 = 𝛽𝛾. □

1.3.18 Corollary. Every free 𝑅-module is projective.

Proof. The assertion is immediate from the equivalence of (i) and (iv) in 1.3.17. □

1.3.19 Example. With 𝑅 considered as an 𝑅–𝕜-bimodule there is a natural isomor-
phism of functors Hom𝑅 (𝑅, ) � res𝑅

𝕜
, so it follows from 1.1.47 that 𝑅 is a faithfully

projective 𝑅-module. As 𝑅 is a direct summand of every free 𝑅-module 𝐿 ≠ 0,
see 1.3.7, it follows from 1.3.18 and additivity of the Hom functor that every such
module is faithfully projective.

The next result is commonly referred to as Eilenberg’s swindle, though Lam [169]
perfer’s Eilenberg’s trick.

1.3.20 Corollary. Let 𝑃 be an 𝑅-module. If 𝑃 is projective, then there exists a free
𝑅-module 𝐿 such that there is an isomorphism 𝑃 ⊕ 𝐿 � 𝐿.

Proof. Assuming that 𝑃 is projective, there exists by 1.3.17 a projective 𝑅-module
𝑃′ such that 𝑃 ⊕ 𝑃′ is free. The 𝑅-module 𝐿 = (𝑃 ⊕ 𝑃′) (ℕ) is free by 1.3.9 and,
evidently, one has 𝐿 � 𝑃 ⊕ 𝐿. □

A homomorphism 𝑃 ↠ 𝑀 with 𝑃 projective is called a projective precover of
𝑀; cf. C.8. By 1.3.12 and 1.3.18 every 𝑅-module has a projective precover.
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1.3.21 Corollary. If 𝑅 is a principal left ideal domain, then an 𝑅-module is projective
if and only if it is free.

Proof. Combine 1.3.11 and 1.3.17. □

Remark. That every projective module is free is also true over a local ring, see Kaplansky [154],
and over a polynomial algebra 𝕜 [𝑥1, . . . , 𝑥𝑛 ], where 𝕜 is a field, see Quillen [205], and Suslin [242].
The result for the polynomial algebra resolved “Serre’s problem on projective modules”; Lam gives
a thorough account of its history in [169]. Bass [31] shows that not finitely generated projective
modules in many cases are free.

1.3.22 Example. In a product ring 𝑅× 𝑆, the ideal 𝔞 = 𝑅× 0 is a projective module;
if 𝑆 is non-zero then 𝔞 is not free.

1.3.23 Example. In the commutative ring ℤ[
√
−5] = {𝑎 + 𝑏

√
−5 | 𝑎, 𝑏 ∈ ℤ}, the

subset 𝔞 = {𝑎 + 𝑏
√
−5 | 𝑎 = 𝑏 mod 2} is an ideal. The elements 1 ±

√
−5 in 𝔞 have

no common factor, so 𝔞 is not a principal ideal, whence it is not free. Yet, the map
ℤ[
√
−5] ⊕ ℤ[

√
−5] → 𝔞 ⊕ 𝔞 given by (𝑟, 𝑠) ↦→ (2𝑟 + (1 +

√
−5)𝑠, 2𝑠 + (1−

√
−5)𝑟)

is an isomorphism of ℤ[
√
−5]-modules, so 𝔞 is a direct summand of a free module

and hence projective.

Remark. A classic example of a non-free projective module can be found, for example, in Eisen-
bud’s book [78, 19.4]. Let 𝑅 be the coordinate ring of the 2-sphere, ℝ[𝑥, 𝑦, 𝑧 ]/(𝑥2 + 𝑦2 + 𝑧2 − 1) ,
and consider the homomorphism 𝜑 : 𝑅 → 𝑅3 given by 𝑟 ↦→ (𝑟 𝑥, 𝑟 𝑦, 𝑟 𝑧) where, by a standard
abuse of notation, 𝑥, 𝑦, and 𝑧 now denote the cosets in 𝑅 of the indeterminates. The sequence
0 −→ 𝑅

𝜑−→ 𝑅3 −→ Coker 𝜑 −→ 0 is split exact, so the module Coker 𝜑 is projective; one can,
however, show that it is not free.

1.3.24 Proposition. Let {𝑃𝑢}𝑢∈𝑈 be a family of 𝑅-modules. The coproduct
∐
𝑢∈𝑈𝑃

𝑢

is projective if and only if each module 𝑃𝑢 is projective.

Proof. If the coproduct
∐
𝑢∈𝑈 𝑃

𝑢 is projective, then by 1.3.17 it is a direct summand
of a free module, and hence so is each module 𝑃𝑢. Conversely, if each module 𝑃𝑢
is projective and hence a direct summand of a free module 𝐿𝑢, then the coproduct∐
𝑢∈𝑈 𝑃

𝑢 is a direct summand of the free module
∐
𝑢∈𝑈 𝐿

𝑢; cf. 1.3.9. □

Caveat. A product of projective modules need not be projective; see E 1.3.15.

Injective Modules

Injective modules are categorically dual to projective modules.

1.3.25 Definition. An 𝑅-module 𝐼 is called injective if the functor Hom𝑅 ( , 𝐼) from
M(𝑅)op to M(𝕜) is exact. If the functor Hom𝑅 ( , 𝐼) is faithfully exact, then 𝐼 is
called faithfully injective.

1.3.26. An 𝑅-module 𝐼 is injective if and only if it has the following lifting property,
which amounts to the definition of an injective object in a general category. Given a
homomorphism 𝛼 : 𝐾 → 𝐼 and an injective homomorphism 𝛽 : 𝐾 → 𝑀 , there exists
a homomorphism 𝛾 : 𝑀 → 𝐼 such that the diagram
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𝐾 //
𝛽
//

𝛼

��

𝑀

𝛾

~~

𝐼

in M(𝑅) is commutative; that is, there is an equality 𝛾𝛽 = 𝛼.

Remark. The epimorphisms in the category M(𝑅) are exactly the surjective homomorphisms;
see E 1.1.2. In view of this and 1.3.17, an 𝑅-module 𝑃 is projective if and only if the functor
Hom𝑅 (𝑃, ) : M(𝑅) →M(𝕜) takes epimorphisms to epimorphisms.

The epimorphisms in the category M(𝑅)op correspond to monomorphisms—which by E 1.1.2
are the injective homomorphisms—inM(𝑅) . In view of this and 1.3.26, an 𝑅-module 𝐼 is injective
if and only if the functor Hom𝑅 ( , 𝐼 ) : M(𝑅)op →M(𝕜) takes epimorphisms to epimorphisms.

1.3.27 Proposition. Let {𝐼𝑢}𝑢∈𝑈 be a family of 𝑅-modules. The product
∏
𝑢∈𝑈 𝐼

𝑢

is injective if and only if each module 𝐼𝑢 is injective.

Proof. Let 𝛽 : 𝐾 → 𝑀 be an injective homomorphism of 𝑅-modules and {𝐼𝑢}𝑢∈𝑈 a
family of 𝑅-modules; set 𝐼 =

∏
𝑢∈𝑈 𝐼

𝑢. Assume first that each module 𝐼𝑢 is injective.
Let a homomorphism 𝛼 : 𝐾 → 𝐼 be given. For each 𝑢 ∈ 𝑈 set 𝛼𝑢 = 𝜛𝑢𝛼, where 𝜛𝑢

is the projection 𝐼 ↠ 𝐼𝑢. By assumption there exist homomorphisms 𝛾𝑢 : 𝑀 → 𝐼𝑢,
such that 𝛾𝑢𝛽 = 𝛼𝑢 holds for every 𝑢 ∈ 𝑈. The unique homomorphism 𝛾 : 𝑀 → 𝐼

with 𝛾𝑢 = 𝜛𝑢𝛾 now satisfies 𝛾𝛽 = 𝛼, so 𝐼 is injective.
Assume now that 𝐼 is injective, fix an element 𝑢 ∈ 𝑈, and let 𝜀𝑢 denote the

injection 𝐼𝑢 ↣ 𝐼. Given a homomorphism 𝛼 : 𝐾 → 𝐼𝑢, one has a homomorphism
𝜀𝑢𝛼 from 𝐾 to 𝐼. By injectivity of 𝐼 there is a homomorphism 𝛾 : 𝑀 → 𝐼 such that
𝛾𝛽 = 𝜀𝑢𝛼 holds and, therefore, one has (𝜛𝑢𝛾)𝛽 = 𝛼. □

Caveat. A coproduct of injective modules need not be injective; see E 1.3.21.

1.3.28 Theorem. The following conditions are equivalent.
(i) 𝑅 is semi-simple.
(ii) Every short exact sequence of 𝑅-modules is split.
(iii) Every 𝑅-module is projective.
(iv) Every 𝑅-module is injective.

Proof. Recall that 𝑅 being semi-simple means that every submodule 𝑀 ′ of an 𝑅-
module 𝑀 is a direct summand of that module; conditions (i) and (ii) are, therefore,
equivalent. It is evident that (ii) implies (iii) and (iv). The converse implications
follow from 1.3.17 and 1.3.26. □

Remark. The Artin–Wedderburn Theorem asserts that a ring is semi-simple if and only if it is
isomorphic to a product M𝑛1×𝑛1 (𝐷1 ) × · · · ×M𝑛𝑘×𝑛𝑘 (𝐷𝑘 ) where 𝐷1, . . . , 𝐷𝑘 are division rings;
see [168, §3]. In particular, a commutative ring is semi-simple if and only if it is a finite product of
fields. An arbitrary product of fields is a von Neumann regular ring; see 1.3.45.

1.3.29 Example. Every module over a division ring is injective, as division rings
are semi-simple.

The next result is known as Baer’s criterion; it goes back to [28].
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1.3.30 Theorem. Let 𝐼 be an 𝑅-module, 𝔞 a left ideal in 𝑅, and 𝜄 : 𝔞↣ 𝑅 the em-
bedding. The module 𝐼 is injective if and only if for every 𝑅-module homomorphism
𝜑 : 𝔞 → 𝐼 there exists a homomorphism 𝜑′ : 𝑅 → 𝐼 with 𝜑′𝜄 = 𝜑.

Proof. The “only if” part of the statement follows from 1.3.26. To prove “if”, let
𝛼 : 𝐾 → 𝐼 and 𝛽 : 𝐾 → 𝑀 be homomorphisms of 𝑅-modules and assume that 𝛽 is
injective. Denote by 𝐺 the set of all homomorphisms 𝛾′ : 𝑀 ′ → 𝐼 with Im 𝛽 ⊆ 𝑀 ′
and 𝛾′𝛽 = 𝛼. Since𝛼𝛽−1 : Im 𝛽→ 𝐼 belongs to𝐺, this set is non-empty. By declaring
(𝛾′ : 𝑀 ′ → 𝐼) ⩽ (𝛾′′ : 𝑀 ′′ → 𝐼) if 𝑀 ′ ⊆ 𝑀 ′′ and 𝛾′′ |𝑀′ = 𝛾′, the set 𝐺 becomes
inductively ordered. Hence Zorn’s lemma guarantees the existence of a maximal
element 𝛾′′ : 𝑀 ′′ → 𝐼. To finish the proof, we show the equality 𝑀 ′′ = 𝑀 . Assume,
towards a contradiction, that 𝑀 ′′ is a proper submodule of 𝑀 and choose an element
𝑚 ∈ 𝑀 \ 𝑀 ′′. The set 𝔞 = (𝑀 ′′ :𝑅 𝑚) is a left ideal in 𝑅. The map 𝜑 : 𝔞 → 𝐼 given
by 𝜑(𝑟) = 𝛾′′ (𝑟𝑚) is an 𝑅-module homomorphism, so by assumption it has a lift
𝜑′ : 𝑅 → 𝐼. It follows from the definition of 𝔞 that the map 𝛾′ : 𝑀 ′′ + 𝑅⟨𝑚 ⟩ → 𝐼 given
by 𝛾′ (𝑚′′ + 𝑟𝑚) = 𝛾′′ (𝑚′′) + 𝜑′ (𝑟) is well-defined. It is evidently a homomorphism
whose restriction to 𝑀 ′′ is 𝛾′′, so one has 𝛾′𝛽 = 𝛾′′𝛽 = 𝛼. Hence 𝛾′ belongs to 𝐺
and satisfies 𝛾′ > 𝛾′′, which contradicts the maximality of 𝛾′′. □

Remark. It appears that Baer’s criterion has no real counterpart for projective modules; perhaps
E 1.4.7 comes as close as one can get.

1.3.31. Let 𝑅 be a domain. Recall that an 𝑅-module 𝑀 is called divisible if 𝑟𝑀 = 𝑀

holds for all 𝑟 ≠ 0 in 𝑅. Every injective 𝑅-module 𝐼 is divisible. Indeed, right-
multiplication by 𝑟 ≠ 0 yields an injective homomorphism 𝑅

𝑟−−→ 𝑅 of 𝑅-modules, so
the induced homomorphism Hom𝑅 (𝑅, 𝐼) → Hom𝑅 (𝑅, 𝐼) of𝕜-modules is surjective,
whence one has 𝑟 𝐼 = 𝐼; cf. 1.2.2. The converse statement in 1.3.32 below, however,
hinges crucially on the principal ideal hypothesis, as illustrated in 1.3.34.

1.3.32 Proposition. Assume that 𝑅 is a principal left ideal domain. An 𝑅-module
is injective if and only if it is divisible. Moreover, every quotient of an injective
𝑅-module is injective.

Proof. Once the first claim is proved, the second one follows, as the divisibility
property is inherited by quotient modules. Every injective 𝑅-module is divisible by
1.3.31. Let 𝐼 be a divisible 𝑅-module and 𝔞 a left ideal in 𝑅. By assumption there
exists an element 𝑥 ∈ 𝑅 with 𝑅𝑥 = 𝔞. A homomorphism of 𝑅-modules 𝛼 : 𝔞 → 𝐼 is
determined by the value 𝛼(𝑥) = 𝑖, and it can be lifted to a homomorphism 𝑅 → 𝐼 as
there exists an element 𝑖′ ∈ 𝐼 with 𝑥𝑖′ = 𝑖. Thus, it follows from Baer’s criterion 1.3.30
that 𝐼 is injective. □

The field of fractions of an integral domain is clearly divisible and, in fact,
injective. For principal ideal domains this follows from 1.3.32 and here is the general
case:

1.3.33 Proposition. Assume that 𝑅 is an integral domain. A divisible and torsion-free
𝑅-module is injective; in particular, the field of fractions of 𝑅 is injective.
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Proof. Let 𝑀 be a divisible and torsion-free 𝑅-module. Let 𝔞 be an ideal in 𝑅 and
𝜑 : 𝔞 → 𝑀 a homomorphism. For elements 𝑟 ≠ 0 ≠ 𝑟 ′ in 𝔞 there exist by divisibility
of 𝑀 elements 𝑚 and 𝑚′ with 𝜑(𝑟) = 𝑟𝑚 and 𝜑(𝑟 ′) = 𝑟 ′𝑚′. As 𝑅 is commutative,
one now has 𝑟 ′𝑟𝑚 = 𝜑(𝑟 ′𝑟) = 𝜑(𝑟𝑟 ′) = 𝑟𝑟 ′𝑚′ = 𝑟 ′𝑟𝑚′, and since 𝑀 is torsion-free,
this implies 𝑚 = 𝑚′. Thus the morphism 𝜑 : 𝑅 → 𝑀 given by 𝜑(𝑟) = 𝑟𝑚 extends 𝜑,
so 𝑀 is injective by 1.3.30. □

1.3.34 Example. Let 𝕜 be a field and consider the polynomial algebra 𝑅 = 𝕜 [𝑥, 𝑦];
its field of fractions is the field 𝑄 = 𝕜(𝑥, 𝑦) of rational functions. Evidently, 𝑄
and, therefore,𝑄/𝑅 are divisible 𝑅-modules. However,𝑄/𝑅 is not injective. Indeed,
consider map 𝑅 → 𝑄/𝑅 given by

𝑓 ↦−→
[
𝑓 (𝑥, 0)
𝑥𝑦

]
𝑅

.

While it is additive, it is not 𝑅-linear. However, its restriction to the ideal 𝔐 of poly-
nomials with zero constant term (called the ‘irrelevant maximal ideal’) is 𝑅-linear.
This homomorphism𝔐 → 𝑄/𝑅 does not extend to a homomorphism 𝜑 : 𝑅 → 𝑄/𝑅.
If it did, then 𝜑(1), which has the form [𝑔ℎ−1]𝑅 for some 𝑔 and ℎ in 𝑅, would satisfy
𝑦𝜑(1) = 𝜑(𝑦) = [0]𝑅 and 𝑥𝜑(1) = 𝜑(𝑥) = [𝑦−1]𝑅. The first equation shows that
there would be a 𝑘 ∈ 𝑅 with 𝑦𝑔ℎ−1 = 𝑘 and, therefore, 𝜑(1) = [𝑔ℎ−1]𝑅 = [𝑘𝑦−1]𝑅.
To satisfy the second equation there would be an 𝑙 in 𝑅 with 𝑥𝑘𝑦−1 = 𝑦−1 + 𝑙, that
is, 𝑥𝑘 = 1 + 𝑙𝑦, which is absurd.

Faithful Injectivity

It follows from 1.3.32 that ℚ and ℚ/ℤ are injective ℤ-modules; one can say even
more about the latter.

1.3.35 Proposition. The ℤ-module ℚ/ℤ is faithfully injective.

Proof. Let 𝐺 be a non-zero ℤ-module and choose an element 𝑔 ≠ 0 in 𝐺. Define a
homomorphism 𝜉 from the cyclic submodule ℤ⟨𝑔⟩ to ℚ/ℤ as follows. If 𝑔 is torsion
set 𝜉 (𝑔) = [ 1

𝑛
]ℤ, where 𝑛 is the least positive integer with 𝑛𝑔 = 0. If 𝑔 is not torsion,

set 𝜉 (𝑔) = [ 12 ]ℤ. By the lifting property 1.3.26 there is a homomorphism 𝐺 → ℚ/ℤ
that restricts to 𝜉 on ℤ⟨𝑔⟩, whence Homℤ (𝐺,ℚ/ℤ) is non-zero. □

1.3.36 Lemma. Let 𝐸 be an injective 𝕜-module. The 𝑅–𝑅o-bimodule Hom𝕜 (𝑅, 𝐸)
is injective over 𝑅 and over 𝑅o, and if 𝐸 is faithfully injective, then so is Hom𝕜 (𝑅, 𝐸).

Proof. By adjunction 1.2.6 and the unitor 1.2.1 there are natural isomorphisms of
functors from M(𝑅) to M(𝕜),

Hom𝑅 ( ,Hom𝕜 (𝑅, 𝐸)) � Hom𝕜 (𝑅 ⊗𝑅 , 𝐸) � Hom𝕜 ( , 𝐸) .

It follows that if 𝐸 is (faithfully) injective, then so is the 𝑅-module Hom𝕜 (𝑅, 𝐸),
cf. 1.3.25. Similarly, the 𝑅o-module Hom𝕜 (𝑅, 𝐸) is (faithfully) injective. □
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For 𝕜 = ℤ a natural choice of a faithfully injective 𝕜-module is ℚ/ℤ; see 1.3.35.
For any choice of 𝕜, the 𝕜-module Homℤ (𝕜,ℚ/ℤ) is faithfully injective by 1.3.36.
For specific choices of 𝕜 other candidates present themselves: If, say, 𝕜 is a field,
then 𝕜 is itself faithfully injective 𝕜-module.

1.3.37 Definition. Let 𝔼 denote a faithfully injective 𝕜-module.

1.3.38. It follows from 1.3.36 that the 𝑅–𝑅o-bimodule Hom𝕜 (𝑅,𝔼) is faithfully
injective over 𝑅 and over 𝑅o.

See C.3 for a different approach to the existence of faithfully injective modules.

Finitely Presented Modules

1.3.39 Definition. Let 𝑀 be an 𝑅-module. By 1.3.12 there exist free 𝑅-modules 𝐿
and 𝐿′ such that there is an exact sequence

𝐿′ −→ 𝐿 −→ 𝑀 −→ 0 ;

it is called a free presentation of 𝑀 . If 𝑀 has a free presentation with 𝐿 and 𝐿′
finitely generated, then 𝑀 is called finitely presented.

Every finitely presented module is finitely generated; the converse holds over left
Noetherian rings; in fact, it characterizes left Noetherian rings.

1.3.40 Lemma. Let 𝑀 be a finitely presented 𝑅-module.
(a) For every surjective homomorphism 𝜋 : 𝐿 → 𝑀 with 𝐿 finitely generated and

free, the submodule Ker 𝜋 is finitely generated.
(b) For every finitely generated submodule 𝑁 of 𝑀 , the quotient module 𝑀/𝑁 is

finitely presented.

Proof. As 𝑀 is finitely presented, there exists a surjective homomorphism of 𝑅-
modules 𝜋′ : 𝐿′ → 𝑀 with 𝐿′ finitely generated free and Ker 𝜋′ finitely generated.

(a): Denote by 𝑋 the kernel of the homomorphism 𝐿 ⊕ 𝐿′ → 𝑀 that maps (𝑙, 𝑙′)
to 𝜋(𝑙) − 𝜋′ (𝑙′). As 𝜋 and 𝜋′ are surjective, the canonical homomorphisms 𝑋 → 𝐿

and 𝑋 → 𝐿′ that map (𝑙, 𝑙′) to 𝑙 and 𝑙′, respectively, are surjective; notice that
they have kernels 0 ⊕ Ker 𝜋′ and Ker 𝜋 ⊕ 0. It follows from 1.3.17 that there are
isomorphisms Ker 𝜋′ ⊕ 𝐿 � 𝑋 � Ker 𝜋 ⊕ 𝐿′. Thus, Ker 𝜋 is a direct summand of
the finitely generated module Ker 𝜋′ ⊕ 𝐿 and hence finitely generated.

(b): There is a commutative diagram with exact rows,

0 // 0 //

��

𝐿′
1𝐿′

//

𝜋′

����

𝐿′ //

𝜘𝜋′

����

0

0 // 𝑁 // 𝑀
𝜘
// 𝑀/𝑁 // 0 ,

where 𝜘 is the canonical surjection. By the Snake Lemma 1.1.6 there is an exact
sequence 0 → Ker 𝜋′ → Ker(𝜘𝜋′) → 𝑁 → 0. As Ker 𝜋′ and 𝑁 are finitely
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generated, it follows that also Ker(𝜘𝜋′) is finitely generated, whence 𝑀/𝑁 is finitely
presented. □

Flat Modules

1.3.41 Definition. An 𝑅-module 𝐹 is called flat if the functor ⊗𝑅 𝐹 from M(𝑅o)
to M(𝕜) is exact. If ⊗𝑅 𝐹 is faithfully exact, then 𝐹 is called faithfully flat.

1.3.42 Example. Assume that 𝑅 is commutative and let𝑈 be a multiplicative subset
of 𝑅. As localization at 𝑈 is an exact functor, the isomorphism in 1.1.11 shows that
the 𝑅-module 𝑈−1𝑅 is flat. In particular, if 𝑅 is an integral domain, then its field of
fractions is flat as an 𝑅-module.

1.3.43 Example. It is elementary to verify that every non-zero free 𝑅-module is
faithfully flat. Hence, by additivity of the tensor product, every projective 𝑅-module
is flat; see 1.3.17. The ℤ-module ℚ is flat by 1.3.42, but it is not faithfully flat, and
in view of 1.3.21 it is elementary to show that it is not projective either.

1.3.44 Lemma. Let 𝑀 be an 𝑅-module and 𝐾 a submodule of 𝑀 . If the quotient
module 𝑀/𝐾 is flat, then 𝔟𝐾 = 𝔟𝑀 ∩ 𝐾 holds for every right ideal 𝔟 in 𝑅.

Proof. Let 𝜄 be the embedding 𝔟↣ 𝑅. For every module 𝑋 set 𝜇𝑋
𝔟
= 𝜇𝑋

𝑅
◦ (𝜄 ⊗𝑅 𝑋),

where 𝜇𝑋
𝑅

is the unitor 1.2.1. By assumption, the homomorphism 𝜄 ⊗𝑅 𝑀/𝐾 is
injective, hence so is 𝜇𝑀/𝐾

𝔟
. There is a commutative diagram with exact rows,

𝔟 ⊗𝑅 𝐾 //

𝜇𝐾
𝔟

��

𝔟 ⊗𝑅 𝑀 //

𝜇𝑀
𝔟

��

𝔟 ⊗𝑅 𝑀/𝐾 //

𝜇
𝑀/𝐾
𝔟

��

0

0 // 𝐾 // 𝑀 // 𝑀/𝐾 // 0 ,

where the upper row is obtained by application of 𝔟 ⊗𝑅 to the lower row. One has
Im 𝜇𝐾

𝔟
= 𝔟𝐾 and Im 𝜇𝑀

𝔟
= 𝔟𝑀 , so it follows from the Snake Lemma 1.1.6 that the

canonical homomorphism 𝐾/𝔟𝐾 → 𝑀/𝔟𝑀 is injective. This yields the inclusion
𝐾 ∩ 𝔟𝑀 ⊆ 𝔟𝐾; the opposite inclusion is trivial, so equality holds. □

Our first application of 1.3.44 is to von Neumann regular rings.

1.3.45 Example. Let {𝑅𝑢}𝑢∈𝑈 be a family of von Neumann regular rings, for
example fields. Let 𝑥 = (𝑥𝑢)𝑢∈𝑈 be an element in the product ring 𝑅 =

�
𝑢∈𝑈 𝑅

𝑢

and set 𝑟 = (𝑟𝑢)𝑢∈𝑈 , where 𝑟𝑢 satisfies 𝑥𝑢 = 𝑥𝑢𝑟𝑢𝑥𝑢 in 𝑅𝑢. One thus has 𝑥 = 𝑥𝑟𝑥 in
𝑅, so 𝑅 is a von Neumann regular ring.

1.3.46 Proposition. If every 𝑅-module is flat, then 𝑅 is von Neumann regular.

Proof. Let 𝑥 be an element in 𝑅 and set 𝑀 = 𝑅, 𝐾 = 𝑅𝑥, and 𝔟 = 𝑥𝑅; one now has
𝑥 ∈ 𝔟𝑀 ∩ 𝐾 . If every 𝑅-module is flat, then 1.3.44 yields 𝑥 ∈ 𝔟𝐾 = (𝑥𝑅) (𝑅𝑥), so 𝑅
is von Neumann regular. □
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The von Neumann regular rings are, in fact, precisely the rings over which every
module is flat; this is proved in 8.5.8.
Remark. Von Neumann regular rings are also called ‘absolutely flat’ rings.

The next theorem is an easy consequence of a theorem due to Govorov and Lazard,
see 5.5.10. Here we present a direct proof.

1.3.47 Theorem. For an 𝑅-module 𝐹, the following conditions are equivalent.
(i) 𝐹 is a finitely presented flat 𝑅-module.
(ii) 𝐹 is a finitely generated projective 𝑅-module.
(iii) 𝐹 is a direct summand of a finitely generated free 𝑅-module.

Proof. (i)⇒ (ii): Let 𝐿′ → 𝐿 → 𝐹 → 0 be a presentation with 𝐿 and 𝐿′ finitely
generated free 𝑅-modules. It follows that 𝐹 and the kernel 𝐾 of the surjection
𝐿 → 𝐹 are finitely generated, so there is a short exact sequence 0 → 𝐾 → 𝐿 →
𝐹 → 0 of finitely generated 𝑅-modules. Showing that 𝐹 is projective is by 1.3.17
tantamount to showing that this sequence is split. To this end it suffices to construct
a homomorphism 𝜚 : 𝐿 → 𝐾 with 𝜚 |𝐾 = 1𝐾 .

Let {𝑒1, . . . , 𝑒𝑚} be a basis for 𝐿 and {𝑘1, . . . , 𝑘𝑛} a set of generators for the
submodule 𝐾 . Let 𝑘 ∈ 𝐾 be given; we start by constructing a homomorphism
𝜚𝑘 : 𝐿 → 𝐾 with 𝜚𝑘 (𝑘) = 𝑘 . Write 𝑘 in terms of the basis: 𝑘 = 𝑟1𝑒1 + · · · + 𝑟𝑚𝑒𝑚.
Let 𝔟 be the right ideal in 𝑅 generated by 𝑟1, . . . , 𝑟𝑚; one has 𝑘 ∈ 𝐾 ∩ 𝔟𝐿, whence
𝑘 is in 𝔟𝐾 by 1.3.44. It follows that there are elements 𝑏𝑖 ∈ 𝔟 and 𝑥 𝑗𝑖 ∈ 𝑅 such that
the following equalities hold,

(†) 𝑘 =
𝑛∑
𝑖=1
𝑏𝑖𝑘𝑖 =

𝑛∑
𝑖=1

( 𝑚∑
𝑗=1
𝑟 𝑗𝑥 𝑗𝑖

)
𝑘𝑖 =

𝑚∑
𝑗=1
𝑟 𝑗

( 𝑛∑
𝑖=1
𝑥 𝑗𝑖𝑘𝑖

)
.

Define 𝜚𝑘 by 𝑒 𝑗 ↦→
∑𝑛
𝑖=1 𝑥 𝑗𝑖𝑘𝑖 , then 𝜚𝑘 (𝑘) = 𝜚𝑘 (

∑𝑚
𝑗=1 𝑟 𝑗𝑒 𝑗 ) = 𝑘 holds by (†).

To construct a homomorphism 𝜚 : 𝐿 → 𝐾 whose restriction to 𝐾 is the identity,
it suffices to construct 𝜚 with 𝜚(𝑘𝑖) = 𝑘𝑖 for all the generators 𝑘1, . . . , 𝑘𝑛. Proceed by
induction on 𝑛; the construction above settles the base case 𝑛 = 1. For 𝑛 > 1 there
exists by the same construction a homomorphism 𝜚𝑘𝑛 that fixes 𝑘𝑛. For 𝑖 < 𝑛 set
𝑘 ′
𝑖
= 𝑘𝑖−𝜚𝑘𝑛 (𝑘𝑖). By the induction hypothesis, there is a homomorphism 𝜚′ : 𝐿 → 𝐾

with 𝜚′ (𝑘 ′
𝑖
) = 𝑘 ′

𝑖
for 𝑖 < 𝑛. Now, set 𝜚 = 𝜚′ − 𝜚′𝜚𝑘𝑛 + 𝜚𝑘𝑛 ; one has

𝜚(𝑘𝑛) = 𝜚′ (𝑘𝑛) − 𝜚′ (𝑘𝑛) + 𝑘𝑛 = 𝑘𝑛,

and for 𝑖 < 𝑛 one has

𝜚(𝑘𝑖) = 𝜚′ (𝑘𝑖) − 𝜚′𝜚𝑘𝑛 (𝑘𝑖) + 𝜚𝑘𝑛 (𝑘𝑖) = 𝜚′ (𝑘 ′𝑖) + 𝜚𝑘𝑛 (𝑘𝑖) = 𝑘 ′𝑖 + 𝜚𝑘𝑛 (𝑘𝑖) = 𝑘𝑖 .

(ii)⇒ (iii): By 1.3.12 there is a short exact sequence 0 → 𝐾 → 𝐿 → 𝐹 → 0,
where 𝐿 is a finitely generated free 𝑅-module, and by 1.3.17 the sequence is split.

(iii)⇒ (i): There is a split exact sequence 0→ 𝐾 → 𝐿 → 𝐹 → 0 of 𝑅-modules,
where 𝐿 is finitely generated and free. In particular, 𝐹 is flat by 1.3.43. The module 𝐾
is also a direct summand of 𝐿, in particular it is finitely generated, so by 1.3.12 there
is a finitely generated free 𝑅-module 𝐿′ and a surjective homomorphism 𝐿′ → 𝐾 .
Thus, one has a free presentation 𝐿′ → 𝐿 → 𝐹 → 0. □
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A characterization in non-homological terms of flat modules over principal ideal
domains—akin to 1.3.21 and 1.3.32—is given in 11.2.31.

Flat–Injective Duality

Projective and injective objects are categorically dual. In module categories there is
another important duality between flat and injective modules, which is rooted in the
adjointness of Hom and tensor product.

1.3.48 Proposition. For an 𝑅-module 𝐹, the following conditions are equivalent.
(i) 𝐹 is flat.
(ii) For every right ideal 𝔟 in 𝑅, the homomorphism 𝜄 ⊗𝑅 𝐹, induced by the em-

bedding 𝜄 : 𝔟↣ 𝑅, is injective.
(iii) The 𝑅o-module Hom𝕜 (𝐹, 𝐸) is injective for every injective 𝕜-module 𝐸 .
(iv) The 𝑅o-module Hom𝕜 (𝐹,𝔼) is injective.

Moreover, the 𝑅o-module Hom𝕜 (𝐹,𝔼) is faithfully injective if and only if 𝐹 is a
faithfully flat 𝑅-module.

Proof. Condition (iv) clearly follows from (iii), and it follows from the definition
1.3.41 that (i) implies (ii).

(ii)⇒ (iii): Apply the exact functors ⊗𝑅 𝐹 followed by ( )∨ = Hom𝕜 ( , 𝐸) to
the short exact sequence 0→ 𝔟→ 𝑅 → 𝑅/𝔟→ 0. This yields the upper row in the
following commutative diagram

0 // (𝑅/𝔟 ⊗𝑅 𝐹)∨ //

�

��

(𝑅 ⊗𝑅 𝐹)∨ //

�

��

(𝔟 ⊗𝑅 𝐹)∨ //

�

��

0

0 // Hom𝑅o (𝑅/𝔟, 𝐹∨) // Hom𝑅o (𝑅, 𝐹∨) // Hom𝑅o (𝔟, 𝐹∨) // 0 .

The vertical isomorphisms follow from commutativity 1.2.3 and adjunction 1.2.6.
By commutativity of the diagram, the lower row is an exact sequence. Thus, the
𝑅o-module 𝐹∨ = Hom𝕜 (𝐹, 𝐸) is injective by Baer’s criterion 1.3.30.

(iv)⇒ (i): By adjunction 1.2.6 and commutativity 1.2.3 there is a natural isomor-
phism of functors from M(𝑅o) to M(𝕜),

(♭) Hom𝑅o ( ,Hom𝕜 (𝐹,𝔼)) � Hom𝕜 ( ⊗𝑅 𝐹,𝔼) .

The left-hand functor is by assumption exact, and Hom𝕜 ( ,𝔼) is faithfully exact; it
follows that ⊗𝑅 𝐹 is exact, whence 𝐹 is flat.

It also follows from (♭) that the functor Hom𝑅o ( ,Hom𝕜 (𝐹,𝔼)) is faithfully exact
if and only if ⊗𝑅 𝐹 is so. This proves the last assertion. □

1.3.49 Corollary. Let 𝔟 be a right ideal in 𝑅 and 𝐹 a flat 𝑅-module. The canonical
map 𝔟 ⊗𝑅 𝐹 → 𝔟𝐹 induced by the unitor is an isomorphism of 𝕜-modules.

Proof. By 1.3.48 one has an injective homomorphism 𝔟 ⊗𝑅 𝐹 ↣ 𝑅 ⊗𝑅 𝐹 �−−→ 𝐹

with image 𝔟𝐹, so one has 𝔟 ⊗𝑅 𝐹 � 𝔟𝐹. □
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In Sect. 5.3 we make extensive use of the following special case.

1.3.50 Corollary. Let 𝐿 be a free 𝑅o-module. If 𝐿 is non-zero, then the 𝑅-module
Hom𝕜 (𝐿,𝔼) is faithfully injective.

Proof. The assertion is immediate from 1.3.43 and 1.3.48. □

Vanishing of Functors

1.3.51 Lemma. Let U be an Abelian category and F: M(𝑅) → U a half exact
functor. One has F(𝑀) = 0 for every finitely generated 𝑅-module 𝑀 if and only if
F(𝑅/𝔞) = 0 holds for every left ideal 𝔞 in 𝑅.

Proof. The “only if” part is trivial. Assume that F(𝑅/𝔞) = 0 holds for every left
ideal 𝔞 in 𝑅. Let 𝑀 be an 𝑅-module generated by elements 𝑥1, . . . , 𝑥𝑛 and proceed
by induction on the number, 𝑛, of generators. For 𝑛 = 1 one has 𝑀 � 𝑅/(0 :𝑅 𝑥1),
whence F(𝑀) = 0 holds by assumption. For 𝑛 > 1 set 𝑁 = 𝑅⟨𝑥1, . . . , 𝑥𝑛−1 ⟩; the
quotient module 𝑀/𝑁 is then generated by [𝑥𝑛]𝑁 . Apply F to the exact sequence
0→ 𝑁 → 𝑀 → 𝑀/𝑁 → 0 to get the exact sequence F(𝑁) −−→ F(𝑀) −−→ F(𝑀/𝑁)
where F(𝑀/𝑁) = 0 holds by assumption and F(𝑁) = 0 holds by the induction
hypothesis. It follows that also F(𝑀) is zero. □

1.3.52 Lemma. Let U be an Abelian category and G: M(𝑅)op → U a half exact
functor. One has G(𝑀) = 0 for every finitely generated 𝑅-module 𝑀 if and only if
G(𝑅/𝔞) = 0 holds for every left ideal 𝔞 in 𝑅.

Proof. Apply 1.3.51 to the opposite functor Gop : M(𝑅) → Uop. □

Exercises

E 1.3.1 Show that ℚ is not a finitely generated ℤ-module and that ℝ is not a finitely generated
ℚ-module.

E 1.3.2 Let 𝐿 be an 𝑅-module and 𝐸 = {𝑒𝑢 }𝑢∈𝑈 a set of generators for 𝐿. Show that every
element in 𝐿 can be expressed uniquely on the form ∑

𝑢∈𝑈 𝑟𝑢𝑒𝑢 if and only if some
element in 𝐿 can be expressed uniquely on that form.

E 1.3.3 Let 𝐿 be an 𝑅-module and 𝐸 a subset of 𝐿. Show that if every map from 𝐸 to an
𝑅-module 𝑀 extends uniquely to a homomorphism 𝐿 → 𝑀 of 𝑅-modules, then 𝐸 is a
basis for 𝐿; in particular, 𝐿 is free.

E 1.3.4 Assume that 𝑅 is commutative. Show that if every cyclic 𝑅-module is free, then 𝑅 is a
field.

E 1.3.5 Let 𝕜 be a field and 𝑀 a 𝕜-vector space of infinite rank. Show that the endomorphism
ring Hom𝕜 (𝑀, 𝑀 ) does not have IBN.

E 1.3.6 Show that every division ring has IBN.
E 1.3.7 Assume that 𝑅 is commutative. Let 𝐿 and 𝐿′ be finitely generated free 𝑅-modules, show

that the 𝑅-module Hom𝑅 (𝐿, 𝐿′ ) is free, and find its rank as a function of the ranks of
𝐿 and 𝐿′.

E 1.3.8 Denote byS the category of sets. Show that the functorS→M(𝑅) given by𝑈 ↦→ 𝑅 (𝑈)

is a left adjoint for the forgetful functor M(𝑅) → S.
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E 1.3.9 Let 𝐿 be a free 𝑅-module with basis {𝑒𝑢 }𝑢∈𝑈 and 𝐾 a submodule of 𝐿 generated by
elements {𝑘𝑣 }𝑣∈𝑉 . (a) Show that if 𝑉 is a finite set, then there is a finite subset 𝑈′
of 𝑈 such that 𝐾 is contained in 𝐿′ = 𝑅⟨𝑒𝑢 | 𝑢 ∈ 𝑈′ ⟩. (b) Show that if 𝑉 is infinite,
then there is a subset 𝑈′ of 𝑈 with card𝑈′ ⩽ card𝑉 such that 𝐾 is contained in
𝐿′ = 𝑅⟨𝑒𝑢 | 𝑢 ∈ 𝑈′ ⟩.

E 1.3.10 Let𝑀 be an𝑅o-module generated by elements 𝑥1, . . . , 𝑥𝑚 and 𝑁 an𝑅-module generated
by 𝑦1, . . . , 𝑦𝑛. Assume that 𝑅 is generated as a 𝕜-module by 𝑟1, . . . , 𝑟𝑙 . Show that the
elements in the set { 𝑥𝑖 ⊗ 𝑟ℎ𝑦𝑗 | 1 ⩽ ℎ ⩽ 𝑙, 1 ⩽ 𝑖 ⩽ 𝑚, 1 ⩽ 𝑗 ⩽ 𝑛 } generate the 𝕜-
module 𝑀 ⊗𝑅 𝑁 .

E 1.3.11 Assume that 𝑅 is commutative. Let 𝐿 be a free 𝑅-module with basis {𝑒1, . . . , 𝑒𝑛 }, let
𝑙1, . . . , 𝑙𝑛 be elements in 𝐿, and write 𝑙 𝑗 =

∑𝑛
𝑗=1 𝑎𝑖 𝑗𝑒 𝑗 . Show that {𝑙1, . . . , 𝑙𝑛 } is a basis

for 𝐿 if and only if the matrix (𝑎𝑖 𝑗 )1⩽𝑖, 𝑗⩽𝑛 is invertible.
E 1.3.12 Show that a direct summand of a projective/injective/flat𝑅-module is projective/injective/

flat.
E 1.3.13 Dualize the proof of 1.3.27 to show that a coproduct of projective𝑅-modules is projective.

This provides an alternative proof of 1.3.24.
E 1.3.14 (Cf. 1.3.43) Show that every non-zero free 𝑅-module is faithfully flat, and show that ℚ

as ℤ-module is flat but not projective.
E 1.3.15 Show that ℤℕ is not a projective ℤ-module.
E 1.3.16 Show that ℤ is not a homomorphic image of an injective ℤ-module.
E 1.3.17 Let 𝑅 be left hereditary. Show that a submodule of a projective 𝑅-module is projective.
E 1.3.18 Let 𝑃 be an 𝑅-module and 𝑃′ a 𝕜-module. Show: (a) If 𝑃 and 𝑃′ are free/projective,

then the 𝑅-module 𝑃 ⊗𝕜 𝑃′ is free/projective. (b) If 𝑃′ is faithfully projective, then the
𝑅-module 𝑃 ⊗𝕜 𝑃′ is (faithfully) projective if and only if 𝑃 is (faithfully) projective.

E 1.3.19 Let 𝐹 be an 𝑅-module and 𝐹′ a flat 𝕜-module. Show: (a) If 𝐹 is flat, then the 𝑅-module
𝐹 ⊗𝕜 𝐹′ is flat. (b) If 𝐹′ is faithfully flat, then the 𝑅-module 𝐹 ⊗𝕜 𝐹′ is (faithfully) flat
if and only if 𝐹 is (faithfully) flat.

E 1.3.20 Let 0 → 𝐾 → 𝐿 → 𝑀 → 0 be an exact sequence of 𝑅-modules with 𝐿 free. If 𝐾 is
finitely generated, then 𝑀 is said to be finitely related. Show that a finitely related flat
𝑅-module is projective. (A countably related flat module is almost projective; see D.9.)

E 1.3.21 In the ring 𝑅 =
�
𝑛∈ℕ ℚ consider the ideals 𝔞𝑖 = { (𝑞𝑛 )𝑛∈ℕ ∈ 𝑅 | 𝑞𝑛 = 0 for all 𝑛 ≠ 𝑖 }

for every 𝑖 ∈ ℕ. Show that each 𝔞𝑖 is an injective 𝑅-module but that
∐
𝑖∈ℕ 𝔞𝑖 is not.

Show also that the 𝑅-module 𝑅 is injective.
E 1.3.22 Let 𝐼 be an 𝑅-module and 𝑃 a projective 𝕜-module. Show: (a) If 𝐼 is injective, then the

𝑅-module Hom𝕜 (𝑃, 𝐼 ) is injective. (b) If 𝑃 is faithfully projective, then the 𝑅-module
Hom𝕜 (𝑃, 𝐼 ) is (faithfully) injective if and only if 𝐼 is (faithfully) injective.

E 1.3.23 (a) Show that Homℤ (𝐼,ℤ) = 0 holds for every injective ℤ-module 𝐼 . (b) Consider
the full subcategory of M(ℤ) whose objects are the injective ℤ-modules. Show that
in this category the canonical homomorphism ℚ ↠ ℚ/ℤ is a monomorphism and an
epimorphism but not an isomorphism. Hint: 1.3.32.

E 1.3.24 Let 𝑅 → 𝑆 be a ring homomorphism. Show that if 𝑃 is a free/(faithfully) projective
𝑅-module, then the 𝑆-module 𝑆 ⊗𝑅 𝑃 is free/(faithfully) projective.

E 1.3.25 Let 𝑅 → 𝑆 be a ring homomorphism. Show that 𝑆 is faithfully flat as an 𝑅-module if
and only if the map 𝑅 → 𝑆 is injective and 𝑆/𝑅 is a flat 𝑅-module.

E 1.3.26 Let 𝑅 → 𝑆 be a ring homomorphism. Show that 𝑅 has IBN if 𝑆 has IBN.
E 1.3.27 Let 𝑅 → 𝑆 be a ring homomorphism. Show that if 𝐹 is a (faithfully) flat 𝑅-module,

then the 𝑆-module 𝑆 ⊗𝑅 𝐹 is (faithfully) flat.
E 1.3.28 Let 𝑅 → 𝑆 be a ring homomorphism. Show that if 𝐼 is a (faithfully) injective 𝑅-module,

then the 𝑆-module Hom𝑅 (𝑆, 𝐼 ) is (faithfully) injective.
E 1.3.29 Let𝑀 be an 𝑅-module and 𝐸 a faithfully injective 𝑅-module. Show that for every𝑚 ≠ 0

in 𝑀 there exists a homomorphism 𝜑 ∈ Hom𝑅 (𝑀, 𝐸 ) with 𝜑 (𝑚) ≠ 0.
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E 1.3.30 Give a proof of 1.3.36 that does not use adjunction 1.2.6. Hint: Let 𝛾 : 𝑀 → 𝐸 be a non-
zero homomorphism of 𝕜-modules. For 𝑚 ∈ 𝑀 consider the map 𝛾𝑚 : 𝑅 → 𝐸 defined
by 𝛾𝑚 (𝑟 ) = 𝛾 (𝑟𝑚) . Show that 𝑚 ↦→ 𝛾𝑚 is a non-zero homomorphism of 𝑅-modules.
To prove injectivity, turn a map to Hom𝕜 (𝑅, 𝐸 ) into a map to 𝐸 by evaluation at 1.

E 1.3.31 There exists a family {𝐴𝑢 }𝑢∈𝑈 of infinite subsets of ℕ such that card𝑈 = 2ℵ0 and
𝐴𝑢 ∩ 𝐴𝑣 is finite for all 𝑢 ≠ 𝑣 in𝑈; see for example Sierpiński [232, IV.14]. Let 𝕜 be a
field and use this fact to show that a basis for 𝕜ℕ has cardinality at least 2ℵ0 .

E 1.3.32 Let 𝕜 be a field and set 𝑅 = 𝕜 [𝑥 ]. Show that Hom𝕜 (𝑅, 𝕜) is not a finitely generated
𝑅-module. Hint: E 1.3.31.

1.4 Evaluation Homomorphisms

Synopsis. Biduality; tensor evaluation; homomorphism evaluation.

With projective, injective, and flat modules now available, we continue the compar-
isons, started in Sect. 1.2, of composites of Hom and tensor product functors.

1.4.1 Definition. Let 𝐿 be a free 𝑅-module with basis {𝑒𝑢}𝑢∈𝑈 . For each 𝑢 ∈ 𝑈 let
𝑒∗𝑢 ∈ Hom𝑅 (𝐿, 𝑅) be given by 𝑒𝑣 ↦→ δ𝑢𝑣, where δ denotes the Kronecker delta.

If {𝑒𝑢}𝑢∈𝑈 is a basis for a vector space 𝐿 of finite rank, then the family of
functionals {𝑒∗𝑢}𝑢∈𝑈 is a basis for the dual space 𝐿∗, and it is called the dual basis.

Biduality

For a vector space 𝑀 of finite rank there is a canonical isomorphism from 𝑀 to its
double dual space 𝑀∗∗; it is given by evaluation: A basis element 𝑒𝑣 is mapped to
the functional given by 𝑒∗𝑢 ↦→ 𝑒∗𝑢 (𝑒𝑣) = δ𝑢𝑣. This isomorphism is an instance of the
biduality map that we consider next.

1.4.2 Lemma. Let 𝑋 be an 𝑅–𝑆o-bimodule. For an 𝑅-module 𝑀 , the biduality map,

𝛿𝑀𝑋 : 𝑀 −→ Hom𝑆o (Hom𝑅 (𝑀, 𝑋), 𝑋)

given by
𝛿𝑀𝑋 (𝑚) (𝜓) = 𝜓(𝑚) ,

is a homomorphism of 𝑅-modules, and it is natural in 𝑀 . Moreover, if 𝑀 is in
M(𝑅–𝑄o), then 𝛿𝑀

𝑋
is a homomorphism in M(𝑅–𝑄o).

Proof. It is straightforward to verify that 𝛿 is a natural transformation of endofunc-
tors on M(𝑅); see the proof of 1.2.3.

If 𝑀 is an 𝑅–𝑄o-bimodule, then Hom𝑆o (Hom𝑅 (𝑀, 𝑋), 𝑋) is an 𝑅–𝑄o-bimodule
as well. For 𝑞 ∈ 𝑄, 𝑚 ∈ 𝑀 , and 𝜓 ∈ Hom𝑅 (𝑀, 𝑋) one has

𝛿𝑀𝑋 (𝑚𝑞) (𝜓) = 𝜓(𝑚𝑞) = (𝑞𝜓) (𝑚) = 𝛿𝑀𝑋 (𝑚) (𝑞𝜓) = (𝛿𝑀𝑋 (𝑚)𝑞) (𝜓) ;

that is, the homomorphism 𝛿𝑀
𝑋

is 𝑄o-linear. □
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38 1 Modules

1.4.3 Proposition. Let 𝑃 be a finitely generated projective 𝑅-module. The 𝑅o-module
Hom𝑅 (𝑃, 𝑅) is finitely generated and projective, and biduality

𝛿𝑃𝑅 : 𝑃 −→ Hom𝑅o (Hom𝑅 (𝑃, 𝑅), 𝑅)

is an isomorphism.

Proof. By 1.3.47 the module 𝑃 is a direct summand of a finitely generated free
𝑅-module 𝐿. Let {𝑒𝑢}𝑢∈𝑈 be a basis for 𝐿. The 𝑅o-module 𝐿∗ = Hom𝑅 (𝐿, 𝑅)
is free with basis {𝑒∗𝑢}𝑢∈𝑈 ; see 1.4.1. Indeed, for every element 𝜑 in 𝐿∗ one has
𝜑 =

∑
𝑢∈𝑈 𝑒

∗
𝑢𝜑(𝑒𝑢). The Hom functor is additive, so the 𝑅o-module Hom𝑅 (𝑃, 𝑅) is

a direct summand of 𝐿∗, whence it is finitely generated and projective.
Again because the Hom functor is additive, it is sufficient to show that 𝛿𝐿

𝑅
is an

isomorphism for a cyclic free module 𝐿 = 𝑅⟨𝑒⟩. Let 𝑒∗ be the functional 𝐿 → 𝑅

given by 𝑒∗ (𝑒) = 1; every element 𝜓 in Hom𝑅 (𝐿, 𝑅) has the form 𝑒∗𝑎 with 𝑎 = 𝜓(𝑒).
As 𝛿𝐿

𝑅
(𝑒) (𝑒∗) = 𝑒∗ (𝑒) = 1 holds, the homomorphism 𝛿𝐿

𝑅
is injective. Let 𝜗 be a

homomorphism in Hom𝑅o (Hom𝑅 (𝐿, 𝑅), 𝑅); for every 𝜓 ∈ Hom𝑅 (𝐿, 𝑅) one has
𝜗(𝜓) = 𝜗(𝑒∗𝜓(𝑒)) = 𝜗(𝑒∗)𝜓(𝑒) = 𝜗(𝑒∗)𝛿𝐿

𝑅
(𝑒) (𝜓), and hence 𝜗 = 𝑏𝛿𝐿

𝑅
(𝑒) =

𝛿𝐿
𝑅
(𝑏𝑒) with 𝑏 = 𝜗(𝑒∗), so 𝛿𝐿

𝑅
is surjective as well. □

Tensor Evaluation

For a vector space𝑀 of finite rank there is an isomorphism𝑀∗ ⊗ 𝑀 → Hom (𝑀, 𝑀);
it assigns to a basis element 𝑒∗𝑢⊗𝑒𝑣 the linear map given by 𝑒𝑤 ↦→ 𝑒∗𝑢 (𝑒𝑤)𝑒𝑣 = δ𝑢𝑤𝑒𝑣.
It is a special case of a map called tensor evaluation.

1.4.4 Lemma. Let 𝑀 be an 𝑅-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝑁 an 𝑆-module.
The tensor evaluation map,

𝜃𝑀𝑋𝑁 : Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 −→ Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁)

given by
𝜃𝑀𝑋𝑁 (𝜓 ⊗ 𝑛) (𝑚) = 𝜓(𝑚) ⊗ 𝑛 ,

is a homomorphism of 𝕜-modules, and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀
is in M(𝑅–𝑄o) and 𝑁 is in M(𝑆–𝑇o), then 𝜃𝑀𝑋𝑁 is a homomorphism in M(𝑄–𝑇o).

Proof. It is straightforward to verify that 𝜃 is a natural transformation of functors
from M(𝑅)op ×M(𝑅–𝑆o) ×M(𝑆) to M(𝕜); see the proof of 1.2.3.

If 𝑀 is in M(𝑅–𝑄o) and 𝑁 is in M(𝑆–𝑇o), then Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 is a 𝑄–𝑇o-
bimodule and so is Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁). The computation

𝜃𝑀𝑋𝑁 (𝑞(𝜓 ⊗ 𝑛)𝑡) (𝑚) = 𝜃𝑀𝑋𝑁 (𝑞𝜓 ⊗ 𝑛𝑡) (𝑚)
= (𝑞𝜓) (𝑚) ⊗ 𝑛𝑡
= 𝜓(𝑚𝑞) ⊗ 𝑛𝑡
= (𝜓(𝑚𝑞) ⊗ 𝑛)𝑡
= (𝜃𝑀𝑋𝑁 (𝜓 ⊗ 𝑛) (𝑚𝑞))𝑡
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= (𝑞(𝜃𝑀𝑋𝑁 (𝜓 ⊗ 𝑛))𝑡) (𝑚) ,

which holds for all 𝑞 ∈ 𝑄, 𝑡 ∈ 𝑇 , 𝜓 ∈ Hom𝑅 (𝑀, 𝑋), 𝑚 ∈ 𝑀 , and 𝑛 ∈ 𝑁 , shows that
the homomorphism 𝜃𝑀𝑋𝑁 is 𝑄- and 𝑇o-linear. □

1.4.5 Example. Set 𝑅 = 𝑆 = 𝕜 = ℤ. For theℤ-modules 𝑀 = ℤ/2ℤ = 𝑁 and 𝑋 = ℤ,
the homomorphism 𝜃𝑀𝑋𝑁 maps from 0 to ℤ/2ℤ, so it is not an isomorphism.

1.4.6 Proposition. Let𝑀 be an 𝑅-module, 𝑋 an 𝑅–𝑆o-bimodule, and𝑁 an 𝑆-module.
Tensor evaluation 1.4.4,

𝜃𝑀𝑋𝑁 : Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 −→ Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁) ,

is an isomorphism under any one of the following conditions.
(a) 𝑀 or 𝑁 is finitely generated and projective.
(b) 𝑀 is projective and 𝑁 is finitely presented.
(c) 𝑀 is finitely presented and 𝑁 is flat.

Proof. (a): For every 𝑅–𝑆o-bimodule 𝑋 and 𝑆-module 𝑁 the counitor 1.2.2 yields
a commutative diagram,

Hom𝑅 (𝑅, 𝑋) ⊗𝑆 𝑁
𝜃𝑅𝑋𝑁

// Hom𝑅 (𝑅, 𝑋 ⊗𝑆 𝑁)

𝑋 ⊗𝑆 𝑁 ,

�

𝜖 𝑋⊗𝑁

ee

�

𝜖 𝑋⊗𝑁

99

which shows that 𝜃𝑅𝑋𝑁 is an isomorphism. A similar diagram involving the un-
itor 1.2.1 shows that 𝜃𝑀𝑋𝑆 is an isomorphism for every 𝑅-module 𝑀 and every
𝑅–𝑆o-bimodule 𝑋 . By additivity of the involved functors, it now follows that 𝜃𝑀𝑋𝑁
is an isomorphism if 𝑀 or 𝑁 is finitely generated and projective.

(b): Choose a presentation of 𝑁 by finitely generated free 𝑆-modules

(⋄) 𝐿′ −→ 𝐿 −→ 𝑁 −→ 0 .

Consider the following diagram, which is commutative as 𝜃 is natural by 1.4.4.

Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝐿′ //

� 𝜃𝑀𝑋𝐿
′

��

Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝐿 //

� 𝜃𝑀𝑋𝐿

��

Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 //

𝜃𝑀𝑋𝑁

��

0

Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝐿′) // Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝐿) // Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁) // 0 .

Either row in this diagram is exact. Indeed, they are obtained by applying the right
exact functors Hom𝑅 (𝑀, 𝑋) ⊗𝑆 and Hom𝑅 (𝑀, 𝑋 ⊗𝑆 ) to (⋄). Right exactness of
the latter functor hinges on the assumption that 𝑀 is projective. The maps 𝜃𝑀𝑋𝐿′

and 𝜃𝑀𝑋𝐿 are isomorphisms by part (a), and it follows from the Five Lemma that
𝜃𝑀𝑋𝑁 is an isomorphism.

(c): Choose a presentation 𝐿′ → 𝐿 → 𝑀 → 0 of 𝑀 by finitely generated free
𝑅-modules. The functors Hom𝑅 ( , 𝑋) ⊗𝑆 𝑁 and Hom𝑅 ( , 𝑋 ⊗𝑆 𝑁) are left exact;
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left exactness of the former functor hinges on the assumption that 𝑁 is flat. As in the
proof of (b) one thus gets the following commutative diagram with exact rows,

0 // Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 //

𝜃𝑀𝑋𝑁

��

Hom𝑅 (𝐿, 𝑋) ⊗𝑆 𝑁 //

� 𝜃𝐿𝑋𝑁

��

Hom𝑅 (𝐿′, 𝑋) ⊗𝑆 𝑁

� 𝜃𝐿
′𝑋𝑁

��

0 // Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁) // Hom𝑅 (𝐿, 𝑋 ⊗𝑆 𝑁) // Hom𝑅 (𝐿′, 𝑋 ⊗𝑆 𝑁) .

The maps 𝜃𝐿𝑋𝑁 and 𝜃𝐿′𝑋𝑁 are isomorphisms by part (a), and it follows from the
Five Lemma that 𝜃𝑀𝑋𝑁 is an isomorphism. □

Homomorphism Evaluation

For a vector space𝑀 of finite rank there is an isomorphism𝑀 ⊗ 𝑀 → Hom (𝑀∗, 𝑀);
it assigns to a basis element 𝑒𝑣⊗𝑒𝑤 the linear map given by 𝑒∗𝑢 ↦→ 𝑒∗𝑢 (𝑒𝑤)𝑒𝑣 = δ𝑢𝑤𝑒𝑣.
It is a special case of a map called homomorphism evaluation.

1.4.7 Lemma. Let 𝑀 be an 𝑅-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝑁 an 𝑆o-module.
The homomorphism evaluation map

𝜂𝑀𝑋𝑁 : 𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) −→ Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀)

given by
𝜂𝑀𝑋𝑁 (𝑛 ⊗ 𝜓) (𝜗) = 𝜓𝜗(𝑛)

is a homomorphism of 𝕜-modules, and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀
is in M(𝑅–𝑄o) and 𝑁 is in M(𝑇–𝑆o), then 𝜂𝑀𝑋𝑁 is a homomorphism in M(𝑇–𝑄o).

Proof. It is straightforward to verify that 𝜂 is a natural transformation of functors
from M(𝑅) ×M(𝑅–𝑆o)op ×M(𝑆o) to M(𝕜). See the proof of 1.2.3.

If 𝑀 is in M(𝑅–𝑄o) and 𝑁 is in M(𝑇–𝑆o), then 𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) is a 𝑇–𝑄o-
bimodule, and so is Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀). The computation

𝜂𝑀𝑋𝑁 (𝑡 (𝑛 ⊗ 𝜓)𝑞) (𝜗) = 𝜂𝑀𝑋𝑁 (𝑡𝑛 ⊗ 𝜓𝑞) (𝜗)
= (𝜓𝑞)𝜗(𝑡𝑛)
= (𝜓𝜗(𝑡𝑛))𝑞
= (𝜓(𝜗𝑡) (𝑛))𝑞
= (𝜂𝑀𝑋𝑁 (𝑛 ⊗ 𝜓) (𝜗𝑡))𝑞
= (𝑡 (𝜂𝑀𝑋𝑁 (𝑛 ⊗ 𝜓))𝑞) (𝜗) ,

which holds for all 𝑞 ∈ 𝑄, 𝑡 ∈ 𝑇 , 𝜓 ∈ Hom𝑅 (𝑋, 𝑀), 𝑛 ∈ 𝑁 , and 𝜗 ∈ Hom𝑆o (𝑁, 𝑋),
shows that the homomorphism 𝜂𝑀𝑋𝑁 is 𝑇- and 𝑄o-linear. □

1.4.8 Example. Set 𝑅 = 𝑆 = 𝕜 = ℤ. For theℤ-modules 𝑀 = ℤ/2ℤ = 𝑁 and 𝑋 = ℤ,
the homomorphism 𝜂𝑀𝑋𝑁 maps from ℤ/2ℤ to 0, so it is not an isomorphism.
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1.4.9 Proposition. Let 𝑀 be an 𝑅-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝑁 an 𝑆o-
module. Homomorphism evaluation 1.4.7,

𝜂𝑀𝑋𝑁 : 𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) −→ Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀) ,

is an isomorphism under either one of the following conditions.
(a) 𝑁 is finitely generated and projective.
(b) 𝑁 is finitely presented and 𝑀 is injective.

Proof. (a): Using the unitor 1.2.1 and counitor 1.2.2 it is elementary to verify that
𝜂𝑅𝑋𝑁 is an isomorphism for all 𝑅–𝑆o-bimodules 𝑋 and all 𝑆o-modules 𝑁 . The claim
then follows by additivity of the involved functors.

(b): Choose a presentation of 𝑁 by finitely generated free 𝑆o-modules

(★) 𝐿′ −→ 𝐿 −→ 𝑁 −→ 0 .

Consider the following diagram, which is commutative as 𝜂 is natural by 1.4.7.

𝐿′ ⊗𝑆 Hom𝑅 (𝑋, 𝑀) //

� 𝜂𝑀𝑋𝐿
′

��

𝐿 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) //

� 𝜂𝑀𝑋𝐿

��

𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) //

𝜂𝑀𝑋𝑁

��

0

Hom𝑅 (Hom𝑆o (𝐿′, 𝑋), 𝑀) // Hom𝑅 (Hom𝑆o (𝐿, 𝑋), 𝑀) // Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀) // 0 .

Either row in this diagram is exact. Indeed, they are obtained by applying the
right exact functors ⊗𝑆 Hom𝑅 (𝑋, 𝑀) and Hom𝑅 (Hom𝑆o ( , 𝑋), 𝑀) to (★). Right
exactness of the latter functor hinges on the assumption that 𝑀 is injective. The maps
𝜂𝑀𝑋𝐿

′ and 𝜂𝑀𝑋𝐿 are isomorphisms by part (a), and it follows from the Five Lemma
that 𝜂𝑀𝑋𝑁 is an isomorphism. □

Exercises

E 1.4.1 Let 𝐿 be a finitely generated free 𝑅-module with basis {𝑒𝑢 }𝑢∈𝑈 ; show that the func-
tionals 𝑒∗𝑢 form a basis for the 𝑅o-module Hom𝑅 (𝐿, 𝑅) .

E 1.4.2 Let 𝑃 be a finitely generated projective𝑅-module; show that Hom𝑅 (𝑃, 𝑅) is a projective
𝑅o-module.

E 1.4.3 Assume that 𝑅 is right Noetherian and let 𝑀 be a finitely generated 𝑅-module. Show
that the 𝑅o-module Hom𝑅 (𝑀, 𝑅) is finitely generated.

E 1.4.4 Set 𝐸 = Hom𝕜 (𝑅, 𝔼); show that biduality 𝛿𝑀
𝐸

is injective for every 𝑅-module 𝑀.
E 1.4.5 Show that biduality 1.4.2 need not be injective nor surjective.
E 1.4.6 Let 𝑀 be an 𝑅-module. Show that there is an injective homomorphism of 𝑅-modules

𝑀 → 𝐼 where 𝐼 is injective.
E 1.4.7 Show that an 𝑅-module 𝑃 is projective if and only if every homomorphism 𝐼 ↠ 𝑁 with

𝐼 injective induces a surjective homomorphism Hom𝑅 (𝑃, 𝐼 ) → Hom𝑅 (𝑃, 𝑁 ) .
E 1.4.8 Show that 𝑅 is left hereditary if and only if every quotient of an injective 𝑅-module is

injective.
E 1.4.9 Show that an 𝑅-module is injective if and only if it is a direct summand of a module

Hom𝕜 (𝐿, 𝔼) where 𝐿 is a free 𝑅o-module.
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E 1.4.10 For an 𝑅-module 𝐼 , show that the next conditions are equivalent. (i) 𝐼 is injective. (ii) For
every left ideal 𝔞 in 𝑅, the homomorphism Hom𝑅 ( 𝜄, 𝐼 ) , induced by the embedding
𝜄 : 𝔞↣ 𝑅, is surjective. (iii) Every exact sequence 0→ 𝐼 → 𝑀 → 𝑀 ′′ → 0 is split.

E 1.4.11 Assume that 𝑅 is left Noetherian; let 𝐼 be an 𝑅-module and 𝐹 a flat 𝕜-module. Show:
(a) If 𝐼 is injective, then so is the 𝑅-module 𝐼 ⊗𝕜 𝐹. (b) If 𝐹 is faithfully flat, then the
𝑅-module 𝐼 ⊗𝕜 𝐹 is (faithfully) injective if and only if 𝐼 is (faithfully) injective.

E 1.4.12 Let 𝕜 be a field and {𝑉𝑖 }𝑖∈ℤ and {𝑊𝑗 } 𝑗∈ℤ be families of finite rank 𝕜-vector spaces.
Show that the vector spaces

∐
𝑖∈ℤ 𝑉𝑖 and

∏
𝑗∈ℤ𝑊𝑗 are isomorphic if and only if the

sets 𝐼 = { 𝑖 ∈ ℤ | 𝑉𝑖 ≠ 0} and 𝐽 = { 𝑗 ∈ ℤ | 𝑊𝑗 ≠ 0} are finite and one has∑
𝑖∈𝐼 rank𝕜 𝑉𝑖 =

∑
𝑗∈𝐽 rank𝕜𝑊𝑗 . Hint: E 1.3.31.

E 1.4.13 Let 𝕜 be a field and 𝑀, 𝑁 , and 𝑋 ≠ 0 be 𝕜-vector spaces. Show that tensor evaluation
𝜃𝑀𝑋𝑁 : Hom𝕜 (𝑀, 𝑋) ⊗𝕜 𝑁 → Hom𝕜 (𝑀, 𝑋 ⊗𝕜 𝑁 ) is an isomorphism if and only if
𝑀 or 𝑁 has finite rank. Hint: E 1.4.12.

E 1.4.14 Let 𝕜 be a field and 𝑀, 𝑋 ≠ 0, and 𝑁 ≠ 0 be 𝕜-vector spaces. Show that homo-
morphism evaluation 𝜂𝑀𝑋𝑁 : 𝑀 ⊗𝕜 Hom𝕜 (𝑋, 𝑁 ) → Hom𝕜 (Hom𝕜 (𝑀, 𝑋) , 𝑁 ) is an
isomorphism if and only if 𝑀 has finite rank. Hint: E 1.4.12.

E 1.4.15 Show that biduality 1.4.2 yields the unit of the adjunction from E 1.2.7.
E 1.4.16 Let 𝑋 be an 𝑅–𝑆o-bimodule. Show that the unit of and counit of the adjunction 1.2.6 are

the unique homomorphisms that make the following diagrams commutative

𝑆 ⊗𝑆 𝑁
�𝜇𝑁

��

𝜒⊗𝑁
// Hom𝑅 (𝑋, 𝑋) ⊗𝑆 𝑁

𝜃𝑋𝑋𝑁

��

𝑁 // Hom𝑅 (𝑋, 𝑋 ⊗𝑆 𝑁 )
𝑋 ⊗𝑆 Hom𝑅 (𝑋, 𝑀 )

𝜂𝑀𝑋𝑋

��

// 𝑀

Hom𝑅 (Hom𝑆o (𝑋, 𝑋) , 𝑀 )
Hom (𝜒,𝑀)

// Hom𝑅 (𝑅, 𝑀 ) .

𝜖𝑀�

OO

Here 𝜒 is the morphism from E 1.2.8.
E 1.4.17 Use homomorphism evaluation 1.4.7 to show that every finitely presented flat 𝑅-module

is projective.
E 1.4.18 Let F: M(𝑅) →M(𝑆) be a right exact functor. Show that if F(𝑅) is a finitely generated

𝑆-module, then F(𝑀 ) is finitely generated for every finitely generated 𝑅-module 𝑀.
E 1.4.19 Let G: M(𝑅)op →M(𝑆) be a left exact functor. Show that 𝑆 is left Noetherian and

G(𝑅) is a finitely generated 𝑆-module, then G(𝑀 ) is finitely generated for every finitely
generated 𝑅-module 𝑀.

E 1.4.20 Let 𝜏 : E→ F be a natural transformation of right exact functorsM(𝑅) →M(𝑆) . Show
that if 𝜏𝑅 is an isomorphism, then 𝜏𝑀 is an isomorphism for every finitely presented
𝑅-module 𝑀.

E 1.4.21 Let 𝜏 : G→ J be a natural transformation of left exact functors M(𝑅)op → M(𝑆) .
Show that if 𝜏𝑅 is an isomorphism, then 𝜏𝑀 is an isomorphism for every finitely
presented 𝑅-module 𝑀.
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Chapter 2
Complexes

We now shift focus to complexes of modules. They are the objects in the derived
category, and our first step towards that category is to study the Abelian category of
complexes and their morphisms.

2.1 Definitions and Examples

Synopsis. Graded module; graded homomorphism; complex; chain map; category of complexes
of bimodules; Five Lemma; Snake Lemma; (degreewise) split exact sequence; ♮-functor.

Many modules carry an intrinsic structure: a grading. By imposing an additional
structure, a square zero endomap that respects the grading, one arrives at the notion
of a complex. The zero map respects any grading, so one can always consider a
graded module as a complex. After a short opening discussion of graded modules,
we move on to complexes, which abound in mathematics. We illustrate the concept
with examples from algebra, geometry, and topology.

Graded Modules

2.1.1 Definition. Let𝑈 be a set. An 𝑅-module 𝑀 is called𝑈-graded if there exists a
family {𝑀𝑢}𝑢∈𝑈 of submodules of 𝑀 such that 𝑀 =

∐
𝑢∈𝑈 𝑀𝑢. A ℤ-graded module

is simply called a graded module.

2.1.2 Example. Considered as an 𝕜-module, the polynomial algebra 𝑀 = 𝕜 [𝑥] is
graded with 𝑀𝑣 = 0 for 𝑣 < 0 and, in the notation from 1.3.1, 𝑀𝑣 = 𝕜⟨𝑥𝑣 ⟩ for 𝑣 ⩾ 0.

2.1.3 Definition. Let 𝑀 =
∐
𝑣∈ℤ 𝑀𝑣 be a graded 𝑅-module. The submodule 𝑀𝑣 is

called the module in degree 𝑣. An element 𝑚 in 𝑀 that belongs to a submodule 𝑀𝑣
is said to be homogeneous of degree 𝑣. Thus, the zero element is homogeneous of
every degree. A homogeneous element𝑚 ≠ 0 is homogeneous of exactly one degree,
which is called the degree of 𝑚 and denoted |𝑚 |; in symbols:
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44 2 Complexes

|𝑚 | = 𝑣 ⇐⇒ 𝑚 ∈ 𝑀𝑣 .

All subsequent formulas that involve the degree |𝑚 | of an arbitrary homogeneous
element 𝑚 are valid no matter what value one assigns to |0|.

2.1.4 Definition. Let 𝑀 and 𝑁 be graded 𝑅-modules. Denote by Hom𝑅 (𝑀, 𝑁) the
graded 𝕜-module with

Hom𝑅 (𝑀, 𝑁)𝑝 =
∏
𝑣∈ℤ

Hom𝑅 (𝑀𝑣, 𝑁𝑣+𝑝) ;

it is called the graded Hom of 𝑀 and 𝑁 . An element of Hom𝑅 (𝑀, 𝑁)𝑝 is called a
(graded) homomorphism of degree 𝑝.

2.1.5. Let 𝑀 =
∐
𝑣∈ℤ 𝑀𝑣 be a graded 𝑅-module and 𝑁 an 𝑅-module. A homomor-

phism 𝛼 from 𝑀 to 𝑁 is identified with the family (𝛼𝑣)𝑣∈ℤ in
∏
𝑣∈ℤ Hom𝑅 (𝑀𝑣, 𝑁),

given by 𝛼𝑣 = 𝛼𝜀𝑣 where 𝜀𝑣 is the injection 𝑀𝑣 ↣ 𝑀 . Under this identification
homomorphisms 𝛼 : 𝑀 → 𝑁 with 𝛼(𝑀𝑣) ⊆ 𝑁𝑣+𝑝 for all 𝑣 ∈ ℤ are in one-to-one
correspondence with elements in Hom𝑅 (𝑀, 𝑁)𝑝 . This explains the terminology in
2.1.4.

2.1.6 Example. Set𝑀 = 𝕜 [𝑥] as in 2.1.2. The derivative 𝑑
𝑑𝑥

yields a homomorphism
𝑀 → 𝑀 of degree −1.

For graded 𝑅-modules 𝑀 and 𝑁 the symbol Hom𝑅 (𝑀, 𝑁) has two possible
interpretations; namely the 𝕜-module of all 𝑅-linear maps from 𝑀 to 𝑁 , and the
graded 𝕜-module defined in 2.1.4. The two interpretations do, in general, not agree,
but whenever we consider graded modules, we have the second in mind.

2.1.7. Let 𝐿, 𝑀 , and 𝑁 be graded 𝑅-modules and 𝑝 and 𝑞 be integers. There is a
𝕜-bilinear composition rule for graded homomorphisms:

Hom𝑅 (𝑀, 𝑁)𝑝 × Hom𝑅 (𝐿, 𝑀)𝑞 −→ Hom𝑅 (𝐿, 𝑁)𝑝+𝑞 .

For 𝛼 = (𝛼𝑣)𝑣∈ℤ and 𝛽 = (𝛽𝑣)𝑣∈ℤ it is given by (𝛼, 𝛽) ↦→ 𝛼𝛽 = (𝛼𝑣+𝑞𝛽𝑣)𝑣∈ℤ. Notice
that the composite of homomorphisms of degree 0 is a homomorphism of degree 0.

2.1.8 Definition. A homomorphism of degree 0 is called a morphism of graded 𝑅-
modules. The category of graded 𝑅-modules and their morphisms is denotedMgr (𝑅).

2.1.9 Example. Let 𝑀 be a graded 𝑅-module and 𝑟 an element of 𝑅. The map
𝑟𝑀 : 𝑀 → 𝑀 given by 𝑚 ↦→ 𝑟𝑚 for 𝑚 ∈ 𝑀 is called a homothety. It is a morphism
in Mgr (𝕜), and if 𝑟 is central, e.g. if 𝑟 comes from 𝕜, then 𝑟𝑀 is a morphism in
Mgr (𝑅).

Notice that the notation 𝑟𝑀 for a homothety is in line with the notation 1𝑀 for
the identity morphism.

2.1.10 Definition. Let 𝑀 be a graded 𝑅-module. A graded submodule of 𝑀 is
a graded 𝑅-module 𝐾 that is a submodule of 𝑀 as an 𝑅-module such that the
embedding 𝐾 → 𝑀 is a morphism of graded 𝑅-modules.
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2.1 Definitions and Examples 45

Given a graded submodule 𝐾 of a graded 𝑅-module 𝑀 , the graded quotient is
the graded module 𝑀/𝐾 =

∐
𝑣∈ℤ 𝑀𝑣/𝐾𝑣, and the canonical surjection 𝑀 → 𝑀/𝐾

is a morphism of graded 𝑅-modules.

2.1.11 Example. Let 𝛼 : 𝑀 → 𝑁 be a graded homomorphism of graded 𝑅-modules.
The kernel Ker𝛼 = {𝑚 ∈ 𝑀 | 𝛼(𝑚) = 0} is a graded submodule of 𝑀 , and the
image Im𝛼 = {𝛼(𝑚) | 𝑚 ∈ 𝑀 } is a graded submodule of 𝑁 . The cokernel is the
graded quotient module Coker𝛼 = 𝑁/Im𝛼.

2.1.12. With the notions of kernels and cokernels from 2.1.11, the category Mgr (𝑅)
is 𝕜-linear and Abelian. The biproduct 𝑀 ⊕ 𝑁 of 𝑀 =

∐
𝑣∈ℤ 𝑀𝑣 and 𝑁 =

∐
𝑣∈ℤ 𝑁𝑣

in Mgr (𝑅) is the graded module
∐
𝑣∈ℤ (𝑀𝑣 ⊕ 𝑁𝑣); one refers to 𝑀 ⊕ 𝑁 as a graded

direct sum and to 𝑀 and 𝑁 as graded direct summands. See also 1.1.14.

2.1.13. There are exact 𝕜-linear functors between Abelian categories,

M(𝑅) //
Mgr (𝑅) .oo

The functor from M(𝑅) to Mgr (𝑅) is full and faithful; it equips an 𝑅-module 𝑀
with the trivial grading 𝑀0 = 𝑀 and 𝑀𝑣 = 0 for 𝑣 ≠ 0, and it acts analogously on
homomorphisms. The functor from Mgr (𝑅) to M(𝑅) forgets the grading.

At the level of symbols, applications of these functors is suppressed. However,
when we write e.g. “as an 𝑅-module” about a graded 𝑅-module, it means that the
forgetful functor is applied.

The category Mgr (𝑅) also has products and coproducts (and limits and colimits);
they are all treated within the context of complexes; see Chap. 3.

2.1.14 Definition. Let 𝑀 be a graded 𝑅o-module and 𝑁 a graded 𝑅-module. Denote
by 𝑀 ⊗𝑅 𝑁 the graded 𝕜-module with

(𝑀 ⊗𝑅 𝑁)𝑝 =
∐
𝑣∈ℤ

𝑀𝑣 ⊗𝑅 𝑁𝑝−𝑣 ;

it is called the graded tensor product of 𝑀 and 𝑁 . Notice that if 𝑚 and 𝑛 are
homogeneous elements in 𝑀 and 𝑁 , then 𝑚 ⊗ 𝑛 is homogeneous in 𝑀 ⊗𝑅 𝑁 of
degree |𝑚 ⊗ 𝑛| = |𝑚 | + |𝑛|.

The graded tensor product has the expected universal property.

2.1.15 Proposition. Let 𝑀 be a graded 𝑅o-module, 𝑁 a graded 𝑅-module, 𝑋 a
graded 𝕜-module, and 𝑝 an integer. For every family of 𝕜-bilinear and middle
𝑅-linear maps {

𝛷𝑣 :
⊎
𝑖∈ℤ

𝑀𝑖 × 𝑁𝑣−𝑖 −→ 𝑋𝑣+𝑝
}
𝑣∈ℤ

there is a unique degree 𝑝 homomorphism of graded 𝕜-modules

𝜑 : 𝑀 ⊗𝑅 𝑁 −→ 𝑋

with 𝜑(𝑚 ⊗ 𝑛) =𝛷𝑣 (𝑚, 𝑛) for all elements 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 with |𝑚 ⊗ 𝑛| = 𝑣.
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Proof. It is evident that such a morphism is unique if it exists. For existence, it is
sufficient to verify that for each integer 𝑣 there is a homomorphism of 𝕜-modules
𝜑𝑣 : (𝑀 ⊗𝑅 𝑁)𝑣 =

∐
𝑖∈ℤ 𝑀𝑖 ⊗𝑅 𝑁𝑣−𝑖 → 𝑋𝑣+𝑝 with 𝜑𝑣 (𝑚 ⊗ 𝑛) =𝛷𝑣 (𝑚, 𝑛). Fix 𝑣; for

each 𝑖 ∈ ℤ it follows from the universal property of tensor products that there is
a homomorphism 𝜑𝑖𝑣 : 𝑀𝑖 ⊗𝑅 𝑁𝑣−𝑖 → 𝑋𝑣+𝑝 with 𝜑𝑖𝑣 (𝑚 ⊗ 𝑛) = 𝛷𝑣 (𝑚, 𝑛). Now the
universal property of coproducts yields the desired homomorphism 𝜑𝑣. □

2.1.16 Definition. Let Mgr (𝑅–𝑆o) denote the category Mgr (𝑅 ⊗𝕜 𝑆
o).

2.1.17. Graded 𝑅–𝑆o-bimodules and graded homomorphisms of such are defined as
in 2.1.3 and 2.1.4. The category Mgr (𝑅–𝑆o) is naturally identified with the category
whose objects are graded 𝑅–𝑆o-bimodules, and whose morphisms are 𝑅- and 𝑆o-
linear homomorphisms of degree 0; cf. 1.1.26.

2.1.18 Addendum (to 2.1.4 and 2.1.14). If 𝑀 is a graded 𝑅–𝑄o-bimodule and 𝑁
is a graded 𝑅–𝑆o-bimodule, then it follows from 1.1.30 that the graded 𝕜-module
Hom𝑅 (𝑀, 𝑁) has a graded 𝑄–𝑆o-bimodule structure.

If 𝑀 is a graded 𝑄–𝑅o-bimodule and 𝑁 is a graded 𝑅–𝑆o-bimodule, then the
graded 𝕜-module 𝑀 ⊗𝑅 𝑁 has a graded 𝑄–𝑆o-bimodule structure; cf. 1.1.33.

2.1.19 Addendum (to 2.1.15). If 𝑀 is in Mgr (𝑄–𝑅o) and 𝑁 is in Mgr (𝑅–𝑆o), then
the tensor product 𝑀 ⊗𝑅 𝑁 is a graded 𝑄–𝑆o-bimodule; see 2.1.18. If 𝑋 is also in
Mgr (𝑄–𝑆o) and {𝛷𝑣 : ⊎

𝑖∈ℤ 𝑀𝑖 × 𝑁𝑣−𝑖 → 𝑋𝑣+𝑝 }𝑣∈ℤ is a family of 𝑄- and 𝑆o-linear
maps that are middle 𝑅-linear, then 𝜑 : 𝑀 ⊗𝑅 𝑁 → 𝑋 is a morphism in Mgr (𝑄–𝑆o).

It follows from 2.1.7 that if 𝑀 is a graded 𝑅-module, then Hom𝑅 (𝑀, 𝑀) has a
graded 𝕜-algebra structure with multiplication given by composition of homomor-
phisms. The tensor powers of a module can also be assembled into a graded algebra.

2.1.20 Example. Assume that 𝑅 is commutative and let𝑀 be an 𝑅-module. Consider
the graded 𝑅-module T𝑅 (𝑀) with

T𝑅𝑝 (𝑀) = 0 for 𝑝 < 0 , T𝑅0 (𝑀) = 𝑅 , and T𝑅𝑝 (𝑀) = 𝑀⊗𝑝 for 𝑝 > 0 ;

where 𝑀⊗𝑝 = 𝑀 ⊗𝑅 · · · ⊗𝑅𝑀 is the 𝑝-fold tensor product of 𝑀 . The module T𝑅𝑝 (𝑀)
is called the 𝑝th tensor power of 𝑀 . With multiplication given by concatenation of
elementary tensors, T𝑅 (𝑀) is a graded 𝑅-algebra called the tensor algebra of 𝑀 .
To be precise, the product of elements 𝑥1 ⊗ · · · ⊗ 𝑥𝑝 in T𝑅𝑝 (𝑀) and 𝑦1 ⊗ · · · ⊗ 𝑦𝑞 in
T𝑅𝑞 (𝑀) is the element 𝑥1 ⊗ · · · ⊗ 𝑥𝑝 ⊗ 𝑦1 ⊗ · · · ⊗ 𝑦𝑞 in T𝑅𝑝+𝑞 (𝑀).

Denote by ℌ the ideal in T𝑅 (𝑀) generated by the set {𝑥 ⊗ 𝑦− 𝑦⊗ 𝑥 | 𝑥, 𝑦 ∈ 𝑀 } of
homogeneous elements of degree 2; the graded quotient algebra S𝑅 (𝑀) = T𝑅 (𝑀)/ℌ
is called the symmetric algebra of 𝑀 , and the module S𝑅𝑝 (𝑀) in degree 𝑝 is called
the 𝑝th symmetric power of 𝑀 . One writes 𝑥1 · · · 𝑥𝑝 for the coset [𝑥1 ⊗ · · · ⊗ 𝑥𝑝]ℌ in
S𝑅 (𝑀); notice that S𝑅 (𝑀) is commutative.

Denote by ℑ the ideal in T𝑅 (𝑀) generated by the set {𝑥 ⊗ 𝑥 | 𝑥 ∈ 𝑀 } of homo-
geneous elements of degree 2; the graded quotient algebra ∧𝑅 (𝑀) = T𝑅 (𝑀)/ℑ is
called the exterior algebra of 𝑀 , and the module ∧𝑅

𝑝 (𝑀) in degree 𝑝 is called the
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𝑝th exterior power of 𝑀 . One writes 𝑥1 ∧ · · · ∧ 𝑥𝑝 for the coset [𝑥1 ⊗ · · · ⊗ 𝑥𝑝]ℑ in∧𝑅 (𝑀) and it is called the wedge product of the elements 𝑥1, . . . , 𝑥𝑝 . As elements
of the form 𝑥 ⊗ 𝑦 + 𝑦 ⊗ 𝑥 = (𝑥 + 𝑦) ⊗ (𝑥 + 𝑦) − 𝑥 ⊗ 𝑥 − 𝑦 ⊗ 𝑦 belong to ℑ, one has
𝑥1 ∧ · · · ∧ 𝑥𝑖 ∧ 𝑥𝑖+1 ∧ · · · ∧ 𝑥𝑝 = −𝑥1 ∧ · · · ∧ 𝑥𝑖+1 ∧ 𝑥𝑖 ∧ · · · ∧ 𝑥𝑝 .

Remark. The algebras in 2.1.20 have universal properties; see E 2.1.7–E 2.1.9.

2.1.21 Example. Assume that 𝑅 is commutative and let 𝐿 be a free 𝑅-module with
basis 𝑥1, . . . , 𝑥𝑛. The 𝑝th tensor power T𝑅𝑝 (𝐿) is by 1.3.10 free of rank 𝑛𝑝 .

The symmetric algebra S𝑅 (𝐿) is evidently isomorphic to the polynomial algebra
𝑅[𝑥1, . . . , 𝑥𝑛], so the monomials in 𝑥1, . . . , 𝑥𝑛 of degree 𝑝 form a basis for the 𝑝th

symmetric power of 𝐿, whence one has rank𝑅 S𝑅𝑝 (𝐿) =
(𝑛−1+𝑝
𝑛−1

)
.

The 𝑝th exterior power ∧𝑅
𝑝 (𝐿) is evidently generated by the

(𝑛
𝑝

)
elements

{𝑥𝑖1 ∧ 𝑥𝑖2 ∧ · · · ∧ 𝑥𝑖𝑝 | 1 ⩽ 𝑖1 < 𝑖2 < · · · < 𝑖𝑝 ⩽ 𝑛} .

To see that they form a basis notice the isomorphism∧𝑅
𝑝 (𝐿) �

∧𝑅
𝑝 (𝑅⟨𝑥1, . . . , 𝑥𝑛−1 ⟩) ⊕

∧𝑅
𝑝−1 (𝑅⟨𝑥1, . . . , 𝑥𝑛−1 ⟩)

and conclude by induction on 𝑛 that one has rank𝑅
∧𝑅
𝑝 (𝐿) =

(𝑛−1
𝑝

)
+

(𝑛−1
𝑝−1

)
=

(𝑛
𝑝

)
.

We return to the exterior algebra of a free module in 2.1.25.

Complexes

2.1.22 Definition. An 𝑅-complex, also called a complex of 𝑅-modules, is a graded
𝑅-module 𝑀 equipped with a homomorphism 𝜕𝑀 : 𝑀 → 𝑀 of degree −1, called
the differential, that satisfies 𝜕𝑀𝜕𝑀 = 0. It can be visualized as follows:

· · · −→ 𝑀𝑣+1
𝜕𝑀
𝑣+1−−−→ 𝑀𝑣

𝜕𝑀𝑣−−−→ 𝑀𝑣−1 −→ · · · .

The module 𝑀𝑣 is the module in degree 𝑣; the homomorphism 𝜕𝑀𝑣 : 𝑀𝑣 → 𝑀𝑣−1 is
the 𝑣th differential, and 𝜕𝑀𝑣 𝜕𝑀𝑣+1 = 0 holds for all 𝑣 ∈ ℤ.

Given an 𝑅-complex 𝑀 , the underlying graded 𝑅-module is denoted 𝑀♮.

As highlighted by Dold [73] an elementary complex serves to illustrate many
aspects of the homological theory of complexes.

2.1.23 Example. Over the ring ℤ/4ℤ consider the graded module with ℤ/4ℤ in
each degree. Endowed with the degree −1 homomorphism that in each degree is
multiplication by 2, it is a ℤ/4ℤ-complex,

· · · −→ ℤ/4ℤ 2−−−→ ℤ/4ℤ 2−−−→ ℤ/4ℤ −→ · · · ,

called the Dold complex.
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Remark. Another word for complex is ‘differential graded module’. In the notation for complexes
introduced in 2.1.22, degrees are written as subscripts and descend in the direction of the arrows;
this is known as “homological notation”. In “cohomological notation”, degrees are written as
superscripts and ascend in the direction of the arrows; in this notation, a complex𝑀 is visualized as:

· · · −→ 𝑀𝑣−1 𝜕𝑣−1
𝑀−−→ 𝑀𝑣

𝜕𝑣
𝑀−−→ 𝑀𝑣+1 −→ · · · .

In the literature, there is a strong tradition for employing homological (cohomological) notation for
complexes that are bounded below (above) in the sense of 2.5.2; such complexes are often referred
to as ‘chain (cochain) complexes’. Switching between homological and cohomological notation, it
is standard to set 𝑀𝑣 = 𝑀−𝑣. We have no proclivity for complexes bounded on either side, but we
settle on homological notation and only deviate from it in a few examples, such as 2.1.27 below.

2.1.24 Definition. Let 𝑀 be an 𝑅-complex and 𝑢 ⩾ 𝑤 be integers. The complex 𝑀
is said to be concentrated in degrees 𝑢, . . . , 𝑤 if 𝑀𝑣 = 0 holds for all 𝑣 ∉ {𝑤, .. . , 𝑢};
it is then visualized like this:

0 −→ 𝑀𝑢 −→ 𝑀𝑢−1 −→ · · · −→ 𝑀𝑤+1 −→ 𝑀𝑤 −→ 0 .

2.1.25 Example. Assume that 𝑅 is commutative. Let 𝑀 be an 𝑅-module and
𝜀 : 𝑀 → 𝑅 a homomorphism. Recall from 2.1.20 that T𝑅 (𝑀) and ∧𝑅 (𝑀) are the
tensor algebra and the exterior algebra of𝑀 . Consider the degree−1 homomorphism
𝛿 : T𝑅 (𝑀) → ∧𝑅 (𝑀) given by

𝛿(𝑥1 ⊗ · · · ⊗ 𝑥𝑝) =
𝑝∑
𝑖=1
(−1)𝑖+1𝜀(𝑥𝑖)𝑥1 ∧ · · · ∧ 𝑥𝑖−1 ∧ 𝑥𝑖+1 ∧ · · · ∧ 𝑥𝑝 .

Every element in the ideal ℑ ⊆ T𝑅 (𝑀) from 2.1.20 is an 𝑅-linear combination of
elements of the form 𝑦1 ⊗ · · · ⊗ 𝑦𝑝 ⊗ 𝑥 ⊗ 𝑥 ⊗ 𝑧1 ⊗ · · · ⊗ 𝑧𝑞; since 𝛿 is zero on such
elements, it factors through the exterior algebra, yielding a degree−1 homomorphism
𝜕 : ∧𝑅 (𝑀) → ∧𝑅 (𝑀) given by

𝜕 (𝑥1 ∧ · · · ∧ 𝑥𝑝) =
𝑝∑
𝑖=1
(−1)𝑖+1𝜀(𝑥𝑖)𝑥1 ∧ · · · ∧ 𝑥𝑖−1 ∧ 𝑥𝑖+1 ∧ · · · ∧ 𝑥𝑝 .

This homomorphism is square zero; indeed, one has

𝜕𝜕 (𝑥1 ∧ · · · ∧ 𝑥𝑝)

=
𝑝∑
𝑖=1
(−1)𝑖+1𝜀(𝑥𝑖)𝜕 (𝑥1∧ · · · ∧ 𝑥𝑖−1∧ 𝑥𝑖+1∧ · · · ∧ 𝑥𝑝)

=
∑
𝑗<𝑖
(−1) (𝑖+1) ( 𝑗+1)𝜀(𝑥𝑖)𝜀(𝑥 𝑗 )𝑥1∧ · · · ∧ 𝑥 𝑗−1∧ 𝑥 𝑗+1 ∧ · · · ∧ 𝑥𝑖−1∧ 𝑥𝑖+1∧ · · · ∧ 𝑥𝑝

+ ∑
𝑖<𝑘
(−1) (𝑖+1)𝑘𝜀(𝑥𝑖)𝜀(𝑥𝑘)𝑥1∧ · · · ∧ 𝑥𝑖−1∧ 𝑥𝑖+1 ∧ · · · ∧ 𝑥𝑘−1∧ 𝑥𝑘+1∧ · · · ∧ 𝑥𝑝

= 0 .

The 𝑅-complex with underlying graded module ∧𝑅 (𝑀) and differential 𝜕 is called
the Koszul complex over 𝜀 and denoted K𝑅 (𝜀).

For a sequence 𝑥1, . . . , 𝑥𝑛 in 𝑅, one writes K𝑅 (𝑥1, . . . , 𝑥𝑛) for the Koszul complex
over the canonical homomorphism from the free module 𝑅⟨𝑒1, . . . , 𝑒𝑛 ⟩ to the ideal
(𝑥1, . . . , 𝑥𝑛). Notice that in this important special case, the differential is given by
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𝜕K𝑅 (𝑥1 ,. . . ,𝑥𝑛 ) (𝑒ℎ1 ∧ · · · ∧ 𝑒ℎ𝑝 ) =
𝑝∑
𝑖=1
(−1)𝑖+1𝑥𝑖𝑒ℎ1 ∧ · · · ∧ 𝑒ℎ𝑖−1 ∧ 𝑒ℎ𝑖+1 ∧ · · · ∧ 𝑒ℎ𝑝 .

It is standard to set K𝑅
𝑣 (𝑥1, . . . , 𝑥𝑛) = K𝑅 (𝑥1, . . . , 𝑥𝑛)𝑣, and the superscript 𝑅 may be

suppressed if the ring is understood. Recall from 2.1.21 that K𝑅
𝑣 (𝑥1, . . . , 𝑥𝑛) is a free

𝑅-module of rank
(𝑛
𝑣

)
and notice that the differential on K𝑅 (𝑥1, . . . , 𝑥𝑛) is represented

by matrices with entries in the ideal (𝑥1, . . . , 𝑥𝑛).

2.1.26 Example. Consider for each 𝑛 ∈ ℕ0 the standard 𝑛-simplex,

Δ𝑛 =

{
(𝑡0, . . . , 𝑡𝑛) ∈ ℝ𝑛+1

��� 𝑛∑
𝑗=0
𝑡 𝑗 = 1 and 𝑡0, . . . , 𝑡𝑛 ⩾ 0

}
.

For 𝑛 ⩾ 1 and 𝑖 ∈ {0, . . . , 𝑛} the 𝑖 th face map 𝜖𝑛
𝑖

: Δ𝑛−1 → Δ𝑛 is given by

(𝑡0, . . . , 𝑡𝑛−1) ↦−→ (𝑡0, . . . , 𝑡𝑖−1, 0, 𝑡𝑖 , . . . , 𝑡𝑛−1) .

Let 𝑋 be a topological space. Denote by C(Δ𝑛, 𝑋) the set of all continuous maps
from Δ𝑛 to 𝑋 , and consider the free Abelian group S𝑛 (𝑋) = ℤ⟨C(Δ𝑛, 𝑋) ⟩ on this
set. The elements of S𝑛 (𝑋) are known as singular 𝑛-chains. For 𝑛 ⩾ 1, the map

C(Δ𝑛, 𝑋) −→ S𝑛−1 (𝑋) given by 𝜎 ↦−→
𝑛∑
𝑖=0
(−1)𝑖𝜎𝜖𝑛𝑖

extends uniquely by 1.3.6 to a group homomorphism 𝜕𝑋𝑛 : S𝑛 (𝑋) → S𝑛−1 (𝑋). Set
𝜕𝑋0 = 0, then 𝜕𝑋0 𝜕

𝑋
1 = 0 holds; for 𝑛 ⩾ 1 and a basis element 𝜎 in S𝑛+1 (𝑋) one has

𝜕𝑋𝑛 𝜕
𝑋
𝑛+1 (𝜎) = 𝜕𝑋𝑛

(𝑛+1∑
𝑖=0
(−1)𝑖𝜎𝜖𝑛+1𝑖

)
=

𝑛∑
𝑗=0
(−1) 𝑗

(𝑛+1∑
𝑖=0
(−1)𝑖𝜎𝜖𝑛+1𝑖

)
𝜖𝑛𝑗

=
∑
𝑗<𝑖
(−1)𝑖+ 𝑗𝜎𝜖𝑛+1𝑖 𝜖𝑛𝑗 +

∑
𝑖⩽ 𝑗
(−1)𝑖+ 𝑗𝜎𝜖𝑛+1𝑖 𝜖𝑛𝑗 .

For 0 ⩽ 𝑗 < 𝑖 ⩽ 𝑛 + 1 one has 𝜖𝑛+1
𝑖
𝜖𝑛
𝑗
= 𝜖𝑛+1

𝑗
𝜖𝑛
𝑖−1 and, therefore,∑

𝑗<𝑖
(−1)𝑖+ 𝑗𝜎𝜖𝑛+1𝑖 𝜖𝑛𝑗 =

∑
𝑗<𝑖
(−1)𝑖+ 𝑗𝜎𝜖𝑛+1𝑗 𝜖𝑛𝑖−1 =

∑
𝑗⩽𝑖
(−1)𝑖+ 𝑗+1𝜎𝜖𝑛+1𝑗 𝜖𝑛𝑖 .

In combination, these displays yield 𝜕𝑋𝑛 𝜕𝑋𝑛+1 (𝜎) = 0, and thus one has a ℤ-complex,

S(𝑋) = · · · −→ S2 (𝑋)
𝜕𝑋2−−−→ S1 (𝑋)

𝜕𝑋1−−−→ S0 (𝑋) −→ 0 .

This complex is called the singular chain complex of the space 𝑋 .
Let 𝐴 be an Abelian group. Application of the functors ⊗ℤ 𝐴 and Homℤ ( , 𝐴)

to the complex S(𝑋) in each degree yields complexes called the singular chain and
singular cochain complex of 𝑋 with coefficients in 𝐴.

2.1.27 Example. Let 𝑀 be a smooth 𝑑-dimensional real manifold. For a point 𝑥 on
𝑀 , denote by C∞𝑥 (𝑀) the germ of smooth functions at 𝑥; it is an ℝ-algebra. A linear
map 𝜐 : C∞𝑥 (𝑀) → ℝ with 𝜐( 𝑓 𝑔) = 𝜐( 𝑓 )𝑔(𝑥) + 𝑓 (𝑥)𝜐(𝑔) for all 𝑓 , 𝑔 ∈ C∞𝑥 (𝑀) is
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called a derivation at 𝑥. The set𝑀𝑥 of all derivations is a 𝑑-dimensional vector space,
called the tangent space at 𝑥. Given a chart 𝜑 = (𝜑1, . . . , 𝜑𝑑) :𝑈 → ℝ𝑑 , where 𝑈 is
a neighborhood of 𝑥, one can form a basis 𝜕

𝜕𝜑1

��
𝑥
, . . . , 𝜕

𝜕𝜑𝑑

��
𝑥

for 𝑀𝑥 ; for 𝑓 in C∞𝑥 (𝑀)
the derivation 𝜕

𝜕𝜑𝑖

��
𝑥

is defined by
𝜕
𝜕𝜑𝑖

��
𝑥
( 𝑓 ) = D𝑖 ( 𝑓 ◦ 𝜑−1)

��
𝜑 (𝑥 ) ,

where D𝑖 ( · )
��
𝜑 (𝑥 ) is the 𝑖 th derivative at the point 𝜑(𝑥) ∈ ℝ𝑑 . The dual space 𝑀∗𝑥 is

called the cotangent space at 𝑥, and the dual basis is denoted by (d𝜑1)𝑥 , . . . , (d𝜑𝑑)𝑥 .
More generally, for a smooth function 𝑓 :𝑈 → ℝ its differential at 𝑥 is the functional
(d 𝑓 )𝑥 ∈ 𝑀∗𝑥 given by (d 𝑓 )𝑥 (𝜐) = 𝜐( 𝑓 ) for 𝜐 ∈ 𝑀𝑥 .

Fix 𝑘 ∈ {0, . . . , 𝑑} and denote by ∧ℝ
𝑘
(𝑀∗𝑥) the 𝑘 th exterior power of 𝑀∗𝑥 , which is

a vector space of dimension 𝑞 =
(𝑑
𝑘

)
. One can show that the family {∧ℝ

𝑘
(𝑀∗𝑥)}𝑥∈𝑀

can be assembled to a smooth vector bundle 𝐸 𝑘 on 𝑀 of rank 𝑞; the total space is
𝐸 𝑘 =

⊎
𝑥∈𝑀

∧ℝ
𝑘
(𝑀∗𝑥) and the bundle projection 𝜋 : 𝐸 𝑘 ↠ 𝑀 maps ∧ℝ

𝑘
(𝑀∗𝑥) to 𝑥.

A differential form of degree 𝑘 is a smooth section of 𝜋 : 𝐸 𝑘 ↠ 𝑀 , i.e. a
smooth map 𝜔 : 𝑀 → 𝐸 𝑘 with 𝜋𝜔 = 1𝑀 . The vector space of all such maps is
denoted Ω𝑘 (𝑀).

As one has ∧ℝ
0 (𝑀

∗
𝑥) = ℝ, the bundle 𝐸0 = 𝑀 ×ℝ is trivial. Thus, an element in

Ω0 (𝑀) is nothing but a smooth map of the form (1𝑀 , 𝑓 ) : 𝑀 → 𝑀 ×ℝ. Hence one
naturally identifies Ω0 (𝑀) with the set C∞ (𝑀) of smooth functions 𝑀 → ℝ.

As one has ∧ℝ
1 (𝑀

∗
𝑥) = 𝑀∗𝑥 , an element in Ω1 (𝑀) is a smooth map 𝜔 : 𝑀 → 𝐸1

such that 𝜔𝑥 = 𝜔(𝑥) belongs to 𝑀∗𝑥 for every 𝑥 ∈ 𝑀 . In particular, 𝜔 = d 𝑓 is a
differential form of degree 1 for every 𝑓 in C∞ (𝑀). Thus, the differential yields a
map Ω0 (𝑀) → Ω1 (𝑀). This map d0 = d is part of the de Rham complex, which
traditionally is written in cohomological notation,

Ω(𝑀) = 0 −→ Ω0 (𝑀) d0

−−−→ Ω1 (𝑀) d1

−−−→ Ω2 (𝑀) d2

−−−→ · · · .

The differential on Ω(𝑀) is called the exterior derivative. To define it, notice that
the wedge product ∧ : ∧ℝ

𝑖
(𝑀∗𝑥) ×

∧ℝ
𝑗
(𝑀∗𝑥) →

∧ℝ
𝑖+ 𝑗 (𝑀∗𝑥) on the exterior algebra

induces a pairing ∧ : Ω𝑖 (𝑀) ×Ω 𝑗 (𝑀) → Ω𝑖+ 𝑗 (𝑀), defined by (𝜔∧𝜓)𝑥 = 𝜔𝑥 ∧𝜓𝑥 .
The exterior derivative is defined recursively by the formula

d𝑖+ 𝑗 (𝜔 ∧ 𝜓) = d𝑖 (𝜔) ∧ 𝜓 + (−1)𝑖𝜔 ∧ d 𝑗 (𝜓)

for 𝜔 ∈ Ω𝑖 (𝑀) and 𝜓 ∈ Ω 𝑗 (𝑀).

2.1.28 Definition. A homomorphism of complexes is a graded homomorphism of
the underlying graded modules; see 2.1.4. Let 𝑀 and 𝑁 be 𝑅-complexes, a chain
map 𝑀 → 𝑁 is homomorphism 𝛼 : 𝑀 → 𝑁 that satisfies

𝜕𝑁𝛼 = (−1) |𝛼 |𝛼𝜕𝑀 .

This means that every square in the next diagram commutes up to the sign (−1) |𝛼 | .
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· · · // 𝑀𝑣+1

(−1) |𝛼|

𝜕𝑀
𝑣+1

//

𝛼𝑣+1

��

𝑀𝑣

(−1) |𝛼|

𝜕𝑀𝑣
//

𝛼𝑣

��

𝑀𝑣−1 //

𝛼𝑣−1

��

· · ·

· · · // 𝑁𝑣+1+|𝛼 |
𝜕𝑁
𝑣+1+|𝛼|

// 𝑁𝑣+|𝛼 |
𝜕𝑁
𝑣+|𝛼|

// 𝑁𝑣−1+|𝛼 | // · · · ,

A chain map of degree 0 is called a morphism of 𝑅-complexes.

Remark. The sign above follows the Koszul Sign Convention: A sign (−1)𝑚𝑛 is introduced when
elements of degree 𝑚 and 𝑛 are interchanged; in this case, (−1) |𝛼| |𝜕| = (−1)−|𝛼| = (−1) |𝛼| .

2.1.29 Example. Let 𝑀 be an 𝑅-complex. The differential 𝜕𝑀 is a chain map of
𝑅-complexes of degree −1. For a central element 𝑥 ∈ 𝑅 the homothety 𝑥𝑀 is a
morphism of 𝑅-complexes; see 2.1.9.

2.1.30 Example. Assume that 𝑅 is commutative. Let

(𝑥1, . . . , 𝑥𝑛) ⊆ (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚)

be ideals in 𝑅, with the notation from 2.1.25 it is elementary to verify that the map
K𝑅 (𝑥1, . . . , 𝑥𝑛) → K𝑅 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) given by 𝑥1 ∧ · · · ∧ 𝑥𝑝 ↦→ 𝑥1 ∧ · · · ∧ 𝑥𝑝
is a morphism of 𝑅-complexes.

2.1.31. It is straightforward to verify that a composite of chain maps is a chain map.
In particular, a composite of morphisms is a morphism; cf. 2.1.7.

2.1.32 Definition. The category 𝑅-complexes and their morphisms is denoted C(𝑅).

2.1.33 Definition. Let 𝑀 be an 𝑅-complex. A graded submodule 𝐾 of 𝑀♮, with
the property that 𝜕𝑀 (𝐾) is contained in 𝐾 , is an 𝑅-complex when endowed with
the differential 𝜕𝑀 |𝐾 ; it is called a subcomplex of 𝑀 . In this case, the embedding
𝐾 ↣ 𝑀 is a morphism of 𝑅-complexes.

Given a subcomplex 𝐾 of 𝑀 , the differential 𝜕𝑀 induces a differential on the
graded module 𝑀♮/𝐾♮. The resulting complex 𝑀/𝐾 is called a quotient complex.
Note that the canonical map 𝑀 ↠ 𝑀/𝐾 is a morphism of 𝑅-complexes.

2.1.34 Example. Let 𝑀 be a smooth real manifold. Recall from 2.1.26 that the mod-
ules in the singular chain complex S(𝑀) are S𝑛 (𝑀) = ℤ⟨C(Δ𝑛, 𝑀) ⟩ for 𝑛 ⩾ 0 and
S𝑛 (𝑀) = 0 for 𝑛 < 0. It is immediate from the definitions that the graded submodule
S∞ (𝑀) with S∞𝑛 (𝑀) = ℤ⟨C∞ (Δ𝑛, 𝑀) ⟩ for 𝑛 ⩾ 0 is a subcomplex of S(𝑀).

With the notation from 2.1.26 and 2.1.27 there exists a morphism ofℝ-complexes
Ω(𝑀) → Homℤ (S∞ (𝑀),ℝ) that maps a differential form𝜔 of degree 𝑛 to the group
homomorphism S∞𝑛 (𝑀) → ℝ given by 𝜎 ↦→

∫
𝜎
𝜔 =

∫
Δ𝑛
𝜎∗𝜔.

2.1.35. Let 𝛼 : 𝑀 → 𝑁 be a chain map of 𝑅-complexes. It is straightforward to verify
that Ker𝛼, Im𝛼, and Coker𝛼 are 𝑅-complexes, see 2.1.11, and that the category
C(𝑅) is 𝕜-linear and Abelian. The biproduct of complexes 𝑀 and 𝑁 is the graded
direct sum 𝑀♮ ⊕ 𝑁 ♮ from 2.1.12 endowed with the differential 𝜕𝑀 ⊕ 𝜕𝑁 .
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2.1.36. There are exact 𝕜-linear functors between Abelian categories,

Mgr (𝑅) //
C(𝑅) .

( )♮
oo

The functor from Mgr (𝑅) to C(𝑅) is full and faithful; it equips a graded module
𝑀 with the trivial differential 𝜕𝑀 = 0, and it is the identity on morphisms. The
functor ( )♮ from C(𝑅) to Mgr (𝑅) forgets the differential on 𝑅-complexes, and it is
the identity on morphisms. At the level of symbols, applications of these functors is
often suppressed. When we write e.g. “as an 𝑅-complex” about a graded 𝑅-module,
it means that the functor Mgr (𝑅) → C(𝑅) is applied.

In particular, graded 𝑅-modules are isomorphic if and only if they are isomorphic
as 𝑅-complexes. Further, a morphism 𝑀 → 𝑁 of 𝑅-complexes is an isomorphism
if and only if it is an isomorphism of the underlying graded modules.

The module category M(𝑅) is a full subcategory of C(𝑅) via the full and faithful
functors M(𝑅) →Mgr (𝑅) → C(𝑅); see 2.1.13.

2.1.37 Definition. Let C(𝑅–𝑆o) denote the category C(𝑅 ⊗𝕜 𝑆
o).

2.1.38. Complexes of 𝑅–𝑆o-bimodules as well as homomorphisms and chain maps
of such are defined as in 2.1.22 and 2.1.28. The category C(𝑅–𝑆o) is naturally
identified with the category whose objects are complexes of 𝑅–𝑆o-bimodules (with
𝑅- and 𝑆o-linear differentials), and whose morphisms are 𝑅- and 𝑆o-linear chain
maps of degree 0; cf. 2.1.17.

Diagram Lemmas

In the next several paragraphs, in 2.1.39–2.1.47 to be precise, the category of com-
plexes could be replaced by any Abelian category, and in that sense they repeat
material from Sect. 1.1. We include them, nevertheless, for ease of reference, and we
provide proofs, because the material is central.

2.1.39 Definition. A sequence of 𝑅-complexes is a, possibly infinite, diagram,

(2.1.39.1) · · · −→ 𝑀0 𝛼0

−−−→ 𝑀1 𝛼1

−−−→ 𝑀2 −→ · · · ,

in C(𝑅); it is called exact if Im𝛼𝑛−1 = Ker𝛼𝑛 holds for all 𝑛. Notice that (2.1.39.1)
is exact if and only if every sequence 0→ Im𝛼𝑛−1 → 𝑀𝑛 → Im𝛼𝑛 → 0 is exact.
An exact sequence 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 is called a short exact sequence.

Two sequences {𝛼𝑛 : 𝑀𝑛 → 𝑀𝑛+1}𝑛∈ℤ and {𝛽𝑛 : 𝑁𝑛 → 𝑁𝑛+1}𝑛∈ℤ of 𝑅-com-
plexes are called isomorphic if there exists a family of isomorphisms {𝜑𝑛}𝑛∈ℤ such
that the diagram

𝑀𝑛 𝛼𝑛
//

𝜑𝑛

��

𝑀𝑛+1

𝜑𝑛+1

��

𝑁𝑛
𝛽𝑛
// 𝑁𝑛+1

is commutative for every 𝑛 ∈ ℤ.

8-Mar-2024 Draft - use at own risk



2.1 Definitions and Examples 53

2.1.40. Exactness of a sequence in C(𝑅) does not depend on the differentials, so it
can be detected degreewise. That is, (2.1.39.1) is exact if and only the sequence

· · · −→ 𝑀0
𝑣

𝛼0
𝑣−−−→ 𝑀1

𝑣

𝛼1
𝑣−−−→ 𝑀2

𝑣

𝛼2
𝑣−−−→ · · ·

in M(𝑅) is exact for every 𝑣 ∈ ℤ.

The next result is known as the Five Lemma.

2.1.41 Lemma. Consider a commutative diagram in C(𝑅) with exact rows,

𝑀1 //

𝜑1

��

𝑀2 //

𝜑2

��

𝑀3 //

𝜑3

��

𝑀4 //

𝜑4

��

𝑀5

𝜑5

��

𝑁1 // 𝑁2 // 𝑁3 // 𝑁4 // 𝑁5 .

(a) If 𝜑1 is surjective, and 𝜑2 and 𝜑4 are injective, then 𝜑3 is injective.
(b) If 𝜑5 is injective, and 𝜑2 and 𝜑4 are surjective, then 𝜑3 is surjective.
(c) If 𝜑1, 𝜑2, 𝜑4, and 𝜑5 are isomorphisms, then 𝜑3 is an isomorphism.

Proof. (a): The assumptions imply for each 𝑣 ∈ ℤ that the homomorphism 𝜑1
𝑣 is

surjective, and the homomorphisms 𝜑2
𝑣 and 𝜑4

𝑣 are injective. Thus, the Five Lemma
for modules 1.1.2 applied to the degree 𝑣 part of the given diagram yields that 𝜑3

𝑣 is
injective. Since this holds for every 𝑣 ∈ ℤ, it follows that 𝜑3 is injective.

The proofs of parts (b) and (c) are similar. □

2.1.42 Lemma. Consider a commutative diagram in C(𝑅),

𝑀 ′
𝛼′
//

𝜑′

��

𝑀
𝛼
//

𝜑

��

𝑀 ′′

𝜑′′

��

0 // 𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ ,

with exact rows. There is an exact sequence,

Ker 𝜑′ 𝛼′−−−→ Ker 𝜑 𝛼−−−→ Ker 𝜑′′ .

If 𝛼′ is injective, then so is the restriction 𝛼′ : Ker 𝜑′ → Ker 𝜑.

Proof. The assertion follows by degreewise application of 1.1.3. □

2.1.43 Lemma. Consider a commutative diagram in C(𝑅),

𝑀 ′
𝛼′
//

𝜑′

��

𝑀
𝛼
//

𝜑

��

𝑀 ′′ //

𝜑′′

��

0

𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ ,

with exact rows. There is an exact sequence,
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Coker 𝜑′ 𝛽′−−−→ Coker 𝜑 𝛽−−−→ Coker 𝜑′′ .

If 𝛽 is surjective, then so is the induced homomorphism 𝛽 : Coker 𝜑→ Coker 𝜑′′.

Proof. The assertion follows by degreewise application of 1.1.4. □

2.1.44 Construction. Consider a commutative diagram in C(𝑅),

𝑀 ′
𝛼′
//

𝜑′

��

𝑀
𝛼
//

𝜑

��

𝑀 ′′ //

𝜑′′

��

0

0 // 𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ ,

with exact rows. In each degree 𝑣 it yields a commutative diagram in M(𝑅), to
which 1.1.5 applies to give a homomorphism 𝛿𝑣 : Ker 𝜑′′𝑣 → Coker 𝜑′𝑣. Denote by
𝛿 : (Ker 𝜑′′)♮ → (Coker 𝜑′)♮ the morphism (𝛿𝑣)𝑣∈ℤ of graded 𝑅-modules.

The next result is known as the Snake Lemma; the morphism 𝛿 is called the
connecting morphism.

2.1.45 Lemma. The morphism 𝛿 of graded 𝑅-modules, defined in 2.1.44, is a
morphism of 𝑅-complexes, and there is an exact sequence in C(𝑅),

Ker 𝜑′ 𝛼′−−−→ Ker 𝜑 𝛼−−−→ Ker 𝜑′′ 𝛿−−−→ Coker 𝜑′ 𝛽′−−−→ Coker 𝜑 𝛽−−−→ Coker 𝜑′′ .

Moreover, if 𝛼′ is injective then so is the restricted morphism 𝛼′ : Ker 𝜑′ → Ker 𝜑,
and if 𝛽 is surjective, then so is the induced morphism 𝛽 : Coker 𝜑→ Coker 𝜑′′.

Proof. By the Snake Lemma for modules, 1.1.6, there is an exact sequence

(Ker 𝜑′)𝑣
𝛼′𝑣−−→ (Ker 𝜑)𝑣

𝛼𝑣−−→ (Ker 𝜑′′)𝑣
𝛿𝑣−−→

(Coker 𝜑′)𝑣
𝛽′𝑣−−−→ (Coker 𝜑)𝑣

𝛽𝑣−−−→ (Coker 𝜑′′)𝑣
for every 𝑣 ∈ ℤ. The restricted maps 𝛼′ : Ker 𝜑′ → Ker 𝜑 and 𝛼 : Ker 𝜑→ Ker 𝜑′′
are morphisms because Ker 𝜑′, Ker 𝜑, and Ker 𝜑′′ are subcomplexes. Similarly,
𝛽′ = (𝛽′𝑣)𝑣∈ℤ : Coker 𝜑′ → Coker 𝜑 and 𝛽 = (𝛽𝑣)𝑣∈ℤ : Coker 𝜑→ Coker 𝜑′′ are mor-
phisms. It remains to show that 𝛿 is a morphism. For a homogeneous element
𝑚′′ ∈ Ker 𝜑′′ one has 𝛿(𝑚′′) = [𝑛′]Im 𝜑′ for a homogeneous element 𝑛′ ∈ 𝑁 ′ that
satisfies 𝛽′ (𝑛′) = 𝜑(𝑚) for some 𝑚 ∈ 𝑀 with 𝛼(𝑚) = 𝑚′′; see 1.1.5. Now one has

𝜕Coker 𝜑′ (𝛿(𝑚′′)) = 𝜕Coker 𝜑′ ( [𝑛′]Im 𝜑′ ) = [𝜕𝑁
′ (𝑛′)]Im 𝜑′ .

The element 𝜕𝑁 ′ (𝑛′) satisfies

𝛽′ (𝜕𝑁 ′ (𝑛′)) = 𝜕𝑁 (𝛽′ (𝑛′)) = 𝜕𝑁 (𝜑(𝑚)) = 𝜑(𝜕𝑀 (𝑚))

and 𝛼(𝜕𝑀 (𝑚)) = 𝜕𝑀′′ (𝛼(𝑚)) = 𝜕𝑀′′ (𝑚′′) holds. Thus, by the definition of 𝛿 one
has 𝛿(𝜕𝑀′′ (𝑚′′)) = [𝜕𝑁 ′ (𝑛′)]Im 𝜑′ = 𝜕

Coker 𝜑′ (𝛿(𝑚′′)). □
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Split Exact Sequences

2.1.46 Definition. An exact sequence 0 −−→ 𝑀 ′
𝛼′−−→ 𝑀

𝛼−−→ 𝑀 ′′ −−→ 0 in C(𝑅) is
called split if there exist morphisms 𝜚 : 𝑀 → 𝑀 ′ and𝜎 : 𝑀 ′′ → 𝑀 such that one has

𝜚𝛼′ = 1𝑀
′
, 𝛼′𝜚 + 𝜎𝛼 = 1𝑀 , and 𝛼𝜎 = 1𝑀

′′
.

2.1.47 Proposition. Let 0 −−→ 𝑀 ′
𝛼′−−→ 𝑀

𝛼−−→ 𝑀 ′′ −−→ 0 be an exact sequence in
C(𝑅). The following conditions are equivalent.

(i) The sequence is split.
(ii) There exists a morphism 𝜚 : 𝑀 → 𝑀 ′ such that 𝜚𝛼′ = 1𝑀′ .
(iii) There exists a morphism 𝜎 : 𝑀 ′′ → 𝑀 such that 𝛼𝜎 = 1𝑀′′ .
(iv) The sequence is isomorphic to 0 −−→ 𝑀 ′

𝜀−−→ 𝑀 ′ ⊕ 𝑀 ′′ 𝜛−−→ 𝑀 ′′ −−→ 0, where
𝜀 and 𝜛 are the injection and the projection, respectively.

Moreover, if 0 −−→ 𝑀 ′
𝛼′−−→ 𝑀

𝛼−−→ 𝑀 ′′ −−→ 0 is split exact, then also the sequence
0 −−→ 𝑀 ′′

𝜎−−→ 𝑀
𝜚−−→ 𝑀 ′ −−→ 0, where 𝜚 and 𝜎 are as in 2.1.46, is split exact.

Proof. Conditions (ii) and (iii) follow from (i). To see that (ii) implies (iv), let
𝜚 : 𝑀 → 𝑀 ′ be a morphism with 𝜚𝛼′ = 1𝑀′ . There is then a commutative diagram,

0 // 𝑀 ′
𝛼′

// 𝑀
𝛼

//

𝜑

��

𝑀 ′′ // 0

0 // 𝑀 ′
𝜀𝑀
′
// 𝑀 ′ ⊕ 𝑀 ′′ 𝜛𝑀′′

// 𝑀 ′′ // 0 ,

in C(𝑅), where 𝜑 is given by 𝑚 ↦→ (𝜚(𝑚), 𝛼(𝑚)); it follows from the Five Lemma
2.1.41 that 𝜑 is an isomorphism. A parallel argument shows that (iii) implies (iv).

Given a commutative diagram,

0 // 𝑀 ′
𝛼′

//

𝜑′�

��

𝑀
𝛼

//

𝜑�

��

𝑀 ′′ //

𝜑′′�

��

0

0 // 𝑀 ′
𝜀𝑀
′
// 𝑀 ′ ⊕ 𝑀 ′′ 𝜛𝑀′′

// 𝑀 ′′ // 0 ,

set 𝜚 = (𝜑′)−1𝜛𝑀′𝜑 and 𝜎 = 𝜑−1𝜀𝑀
′′
𝜑′′. Now one has 𝜚𝛼′ = 1𝑀′ , and 𝛼𝜎 = 1𝑀′′ ,

and𝛼′𝜚+𝜎𝛼 = 𝛼′ (𝜑′)−1𝜛𝑀′𝜑+𝜑−1𝜀𝑀
′′
𝜑′′𝛼 = 𝜑−1 (𝜀𝑀′𝜛𝑀′+𝜀𝑀′′𝜛𝑀′′ )𝜑 = 1𝑀 ,

so (iv) implies (i).
Finally, assume that 0 −−→ 𝑀 ′

𝛼′−−→ 𝑀
𝛼−−→ 𝑀 ′′ −−→ 0 is split exact and let 𝜚 and 𝜎

be as in 2.1.46. The sequence 0 −−→ 𝑀 ′′
𝜎−−→ 𝑀

𝜚−−→ 𝑀 ′ −−→ 0 is exact. Indeed 𝜚 is
injective and 𝜎 is surjective; moreover, 𝜚𝜎 = 𝜚𝜎𝛼𝜎 = 𝜚(1𝑀 − 𝛼′𝜚)𝜎 = 0 holds,
and for 𝑚 ∈ 𝑀 with 𝜚(𝑚) = 0 one has 𝑚 = (𝛼′𝜚 + 𝜎𝛼) (𝑚) = 𝜎𝛼(𝑚). Thus the
sequence is split exact by 2.1.46. □

2.1.48. A functor F: M(𝑅) →M(𝑆) extends to a functor C(𝑅) → C(𝑆) that is
also denoted F and acts as follows: For a morphism 𝛼 : 𝑀 → 𝑁 in C(𝑅) and 𝑣 ∈ ℤ
one has
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F(𝑀)𝑣 = F(𝑀𝑣) , 𝜕
F(𝑀 )
𝑣 = F(𝜕𝑀𝑣 ) , and F(𝛼)𝑣 = F(𝛼𝑣) .

A natural transformation 𝜏 : E→ F of functors M(𝑅) →M(𝑆) extends to a natural
transformation of the extended functors E, F: C(𝑅) → C(𝑆) given by (𝜏𝑀 )𝑣 = 𝜏𝑀𝑣 .

A functor G: M(𝑅)op →M(𝑆) extends to a functorC(𝑅)op → C(𝑆), also denoted
G, which acts as follows: For a morphism 𝛼 : 𝑀 → 𝑁 in C(𝑅)op and 𝑣 ∈ ℤ one has

G(𝑁)𝑣 = G(𝑁−𝑣) , 𝜕
G(𝑁 )
𝑣 = G(𝜕𝑁−𝑣+1) , and G(𝛼)𝑣 = G(𝛼−𝑣) .

A natural transformation 𝜏 : G→ J of functorsM(𝑅)op →M(𝑆) extends to a natural
transformation of the extended functors G, J : C(𝑅)op → C(𝑆) given by (𝜏𝑀 )𝑣 = 𝜏𝑀𝑣 .

If the original functor is 𝕜-linear then so is the extended functor, and if the original
functor is (left/right) exact, then so is the extended functor.

2.1.49 Example. Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism. Base change and cobase
change along 𝜑, see 1.2.7, extend to functors

𝑆 ⊗𝑅 : C(𝑅) −→ C(𝑆) and Hom𝑅 (𝑆, ) : C(𝑅) −→ C(𝑆) .

Also their right/left adjoint functor, restriction of scalars res𝑆
𝑅

, and its companion
extend to functors res𝑆

𝑅
: C(𝑆) → C(𝑅) and res𝑆o

𝑅o : C(𝑆o) → C(𝑅o); at the level of
symbols, the restriction of scalars functors are usually suppressed. These restriction
functors are easily seen to be faithfully exact and conservative; the latter property
also follows from the former in view of 1.1.46.

2.1.50 Example. Assume that 𝑅 is commutative and let𝑈 be a multiplicative subset
of 𝑅. The localization functor,

𝑈−1 : M(𝑅) −→ M(𝑈−1𝑅) ,

which is exact, extends per 2.1.48 to an exact functor𝑈−1 : C(𝑅) → C(𝑈−1𝑅).
For every 𝑅-complex 𝑀 there is by 1.1.11 and 2.1.49 an isomorphism,

𝑈−1𝑀 � 𝑈−1𝑅 ⊗𝑅 𝑀 ,

of𝑈−1𝑅-complexes which is natural in 𝑀 .

2.1.51 Definition. A short exact sequence 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 in C(𝑅) is
called degreewise split if the exact sequence 0→ 𝑀 ′ ♮ → 𝑀♮ → 𝑀 ′′ ♮ → 0 is split.

Only exact functors C(𝑅) → C(𝑆) preserve short exact sequences of complexes.
It follows, however, from the next lemma that every functor F that satisfies a natural
condition—the differential on a complex 𝑀 has no influence on the graded module
underlying F(𝑀)—preserves degreewise split exact sequences.

2.1.52 Definition. A functor F: C(𝑅) → C(𝑆) is called a ♮-functor if it is additive and
( )♮ ◦ F and ( )♮ ◦ F ◦( )♮ are naturally isomorphic functors from C(𝑅) to Mgr (𝑆).

A functor G: C(𝑅)op → C(𝑆) is called a ♮-functor if it is additive and ( )♮ ◦ G
and ( )♮ ◦ G ◦(( )♮)op are naturally isomorphic functors from Uop to Mgr (𝑆).
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2.1.53 Example. Every functor on 𝑅-complexes that is extended from an additive
functor on 𝑅-modules, as described in 2.1.48, is per construction a ♮-functor.

Further examples of ♮-functors are given in 2.3.12/2.3.13 and 2.4.11/2.4.12. A
few functors that are not ♮-functors can be found in 2.2.18.

2.1.54 Lemma. Let F: C(𝑅) → C(𝑆) be a ♮-functor. For every degreewise split
exact sequence of 𝑅-complexes, 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0, the induced sequence
of 𝑆-complexes, 0→ F(𝑀 ′) → F(𝑀) → F(𝑀 ′′) → 0, is degreewise split exact.

Proof. It follows from the assumptions on F that the sequence

(★) 0 −→ (F(𝑀 ′))♮ −→ (F(𝑀))♮ −→ (F(𝑀 ′′))♮ −→ 0

is isomorphic to

(⋄) 0 −→ (F(𝑀 ′ ♮))♮ −→ (F(𝑀♮))♮ −→ (F(𝑀 ′′ ♮))♮ −→ 0

in Mgr (𝑆). The sequence (⋄) arises from application of the additive functor ( )♮ ◦ F
to the split exact sequence 0 → 𝑀 ′♮ → 𝑀♮ → 𝑀 ′′♮ → 0. Therefore, (⋄) is split
exact, and hence so is the isomorphic sequence (★). □

2.1.55 Lemma. Let G: C(𝑅)op → C(𝑆) be a ♮-functor. For every degreewise split
exact sequence of 𝑅-complexes, 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0, the induced sequence
of 𝑆-complexes, 0→ G(𝑀 ′′) → G(𝑀) → G(𝑀 ′) → 0, is degreewise split exact.

Proof. The assertion follows from an argument similar to the proof of 2.1.54. □

Exercises

E 2.1.1 Let 𝑀 =
∐
𝑣∈ℤ 𝑀𝑣 be a graded 𝑅-module and 𝐾 a submodule of 𝑀. Show that the

following conditions are equivalent. (i)𝐾 is a graded submodule of𝑀. (ii)𝐾 is generated
by homogeneous elements. (iii) The equality 𝐾 =

∐
𝑣∈ℤ 𝐾 ∩𝑀𝑣 holds.

E 2.1.2 Let 𝑛 be an integer. (a) Show that there is a full and faithful functor M(𝑅) →Mgr (𝑅)
that equips an 𝑅-module 𝑀 with the grading 𝑀𝑛 = 𝑀 and 𝑀𝑣 = 0 for 𝑛 ≠ 𝑣. (b) Show
that there is a functor Mgr (𝑅) →M(𝑅) that forgets the modules 𝑀𝑣 for 𝑣 ≠ 𝑛.

E 2.1.3 Let 𝜑 : 𝑀 → 𝑁 be a graded homomorphism. Show that if 𝜑 is a bĳective map, then its
inverse is a graded homomorphism of degree −|𝜑 |.

E 2.1.4 Assume that 𝑅 is commutative. Show that for a free 𝑅-module 𝐿 of rank 𝑛 the tensor
algebra T𝑅 (𝐿) is the free 𝑅-algebra on 𝑛 indeterminates.

E 2.1.5 Assume that 𝑅 is commutative. Show that the assignment𝑀 ↦→ T𝑅 (𝑀 ) yields a functor
fromM(𝑅) to the category of𝑅-algebras and that it is left adjoint to the forgetful functor.

E 2.1.6 Let 𝑅 be an integral domain with field of fractions 𝑄. Show that one has ∧𝑅
2 (𝑄) = 0.

E 2.1.7 Assume that 𝑅 is commutative. Let𝑀 be an 𝑅-module and 𝜄 : 𝑀 → T𝑅 (𝑀 ) the canoni-
cal map. Show that for every𝑅-algebra 𝐴and every𝑅-linear map 𝛼 : 𝑀 → 𝐴, the assign-
ment 𝑥1 ⊗ · · · ⊗ 𝑥𝑝 ↦→ 𝛼(𝑥1 ) · · · 𝛼(𝑥𝑝 ) defines a homomorphism 𝛼 : T𝑅 (𝑀 ) → 𝐴

of 𝑅-algebras with 𝛼𝜄 = 𝛼 and that 𝛼 is unique with this property.
E 2.1.8 Assume that 𝑅 is commutative. Let 𝑀 be an 𝑅-module and 𝜄 : 𝑀 → S𝑅 (𝑀 ) the

canonical map. Show that for every commutative 𝑅-algebra 𝐴 and every 𝑅-linear map
𝛼 : 𝑀 → 𝐴, the assignment 𝑥1 · · · 𝑥𝑝 ↦→ 𝛼(𝑥1 ) · · · 𝛼(𝑥𝑝 ) defines a homomorphism
𝛼 : S𝑅 (𝑀 ) → 𝐴 of 𝑅-algebras with 𝛼𝜄 = 𝛼 and that 𝛼 is unique with this property.
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E 2.1.9 Assume that 𝑅 is commutative. Let 𝑀 be an 𝑅-module and 𝜄 : 𝑀 → ∧𝑅 (𝑀 ) the
canonical map; note that 𝜄 (𝑥 ) 𝜄 (𝑥 ) = 𝑥 ∧ 𝑥 = 0 holds for all 𝑥 in 𝑀. Show that for
every 𝑅-algebra 𝐴 and every 𝑅-linear map 𝛼 : 𝑀 → 𝐴with 𝛼(𝑥 )𝛼(𝑥 ) = 0 for all 𝑥 in
𝑀, the assignment 𝑥1 ∧ · · · ∧ 𝑥𝑝 ↦→ 𝛼(𝑥1 ) · · · 𝛼(𝑥𝑝 ) defines a homomorphism 𝛼 of
𝑅-algebras with 𝛼𝜄 = 𝛼 and that 𝛼 is unique with that property.

E 2.1.10 Let 𝑛 ⩾ 2 be an integer. Compute the algebras Tℤ (ℤ/𝑛ℤ) and ∧ℤ (ℤ/𝑛ℤ) .
E 2.1.11 Show that the Koszul complexes Kℤ (2, 3) and Kℤ (4, 5) are not isomorphic.
E 2.1.12 Assume that 𝑅 is commutative. For elements 𝑥 and 𝑦 in 𝑅, show that the complexes

K𝑅 (𝑥, 𝑦) and K𝑅 (𝑦, 𝑥 ) are isomorphic.
E 2.1.13 Assume that𝑅 is commutative, let𝑀 be an𝑅-module and 𝜀 : 𝑀 → 𝑅 a homomorphism.

Show that the differential 𝜕 on the Koszul complex K𝑅 (𝜀) from 2.1.25 satisfies the
Leibniz Rule: 𝜕(𝑎𝑏) = 𝜕(𝑎)𝑏 + (−1) |𝑎 |𝑎𝜕(𝑏) for homogeneous elements 𝑎 and 𝑏.

E 2.1.14 Let 𝑓 : 𝑋 → 𝑌 be a continuous map between topological spaces; that is, a morphism in
the category T of topological spaces. (a) Show that the assignment 𝜎 ↦→ 𝑓 𝜎 defines a
morphism of singular chain complexes S(𝑋) → S(𝑌 ) . (b) Show that there is a functor
T → C(ℤ) that assigns to a topological space 𝑋 its singular chain complex S(𝑋) .

E 2.1.15 Fix 𝑣 ∈ ℤ. Show that the functions C(𝑅) →M(𝑅) given by 𝑀 ↦→ 𝑀𝑣 and 𝛼 ↦→ 𝛼𝑣
constitute a 𝕜-linear exact functor.

E 2.1.16 Show that the category C(𝑅) is isomorphic to Mgr (𝑅[𝑥 ]/(𝑥2 ) ) .
E 2.1.17 Show that a morphism in C(𝑅) is a monomorphism if and only if it is injective, and

show that it is an epimorphism if and only if it is surjective.
E 2.1.18 (Cf. 2.1.9) Let 𝑥 be a central element in 𝑅 and 𝑀 a graded 𝑅-module. Show that the

homothety 𝑥𝑀 : 𝑀 → 𝑀 is a morphism of graded 𝑅-modules.
E 2.1.19 (Cf. 2.1.31) Let 𝛽 : 𝐿 → 𝑀 and 𝛼 : 𝑀 → 𝑁 be chain maps of 𝑅-complexes; show that

the composite 𝛼𝛽 : 𝐿 → 𝑁 is a chain map of 𝑅-complexes of degree |𝛼 | + |𝛽 |.
E 2.1.20 (Cf. 2.1.35) Let 𝛼 : 𝑀 → 𝑁 be a chain map of 𝑅-complexes. Show that Ker 𝛼 is a

subcomplex of 𝑀 and that Im 𝛼 is a subcomplex of 𝑁 .
E 2.1.21 (Cf. 2.1.35) Verify that C(𝑅) is an Abelian category.
E 2.1.22 (Cf. 2.1.36) Let 𝛼 be a morphism of 𝑅-complexes. Show that 𝛼 is an isomorphism of

𝑅-complexes if and only if it is an isomorphism of the underlying graded 𝑅-modules.
E 2.1.23 Show that every split exact sequence in C(𝑅) is degreewise split. Is the converse true?
E 2.1.24 Give a proof of 2.1.55.

2.2 Homology

Synopsis. Shift; homology; connecting morphism; homotopy.

The requirement that the differential 𝜕 on a complex has to be square zero yields an
inclusion Im 𝜕 ⊆ Ker 𝜕; the homology of the complex is the quotient Ker 𝜕/Im 𝜕.
The implications of vanishing of homology depend on the underlying complex, but
it is often illustrative to interpret homology as a measure of deviation from a paragon
or obstructions to an aim. For instance, the homology of the de Rham complexΩ(𝑀)
from 2.1.27 detects closed differential forms on the manifold 𝑀 that are not exact.
The homology of the singular chain complex S(𝑋) from 2.1.26 tells whether it is
possible to contract the space 𝑋 to a single point, and much more. The homology of
the Koszul complex K𝑅 (𝑥1, . . . , 𝑥𝑛) from 2.1.25 shows, among other things, if one
or more of the elements 𝑥1, . . . , 𝑥𝑛 are non-zerodivisors.
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Shift

Before we proceed with the precise definition of homology, we formalize the intu-
itively natural process of renumbering the modules in a complex.

2.2.1 Definition. Let 𝑀 be an 𝑅-complex and 𝑠 an integer. The 𝑠-fold shift of 𝑀 is
the complex Σ𝑠𝑀 given by

(Σ𝑠𝑀)𝑣 = 𝑀𝑣−𝑠 and 𝜕Σ
𝑠𝑀

𝑣 = (−1)𝑠𝜕𝑀𝑣−𝑠
for all 𝑣 ∈ ℤ. For a homomorphism𝛼 = (𝛼𝑣)𝑣∈ℤ : 𝑀 → 𝑁 of 𝑅-complexes, the 𝑠-fold
shift Σ𝑠𝛼 : Σ𝑠𝑀 → Σ𝑠𝑁 is the homomorphism with (Σ𝑠𝛼)𝑣 = 𝛼𝑣−𝑠 for all 𝑣 ∈ ℤ.

Remark. Other words for shift are ‘suspension’ and ‘translation’.

2.2.2 Example. Every functor F on 𝑅-complexes that is extended from a functor on
𝑅-modules, as described in 2.1.48, commutes with shift; that is FΣ = ΣF. Further,
for an extended natural transformation 𝜏 of extended functors one has 𝜏Σ = Σ 𝜏.

2.2.3. For an 𝑅-complex 𝑀 one has 𝜕Σ𝑠𝑀 = (−1)𝑠Σ𝑠𝜕𝑀 . For a homomorphism 𝛼

of 𝑅-complexes one has |Σ𝑠𝛼 | = |𝛼 |, and for composable homomorphisms 𝛼 and
𝛽 one has (Σ𝑠𝛽) (Σ𝑠𝛼) = Σ𝑠 (𝛽𝛼). It follows that if 𝛼 : 𝑀 → 𝑁 is a chain map of
𝑅-complexes then so is Σ𝑠𝛼; indeed, there are equalities

𝜕Σ
𝑠𝑁 (Σ𝑠𝛼) = (−1)𝑠 (Σ𝑠𝜕𝑁 ) (Σ𝑠𝛼)

= (−1)𝑠Σ𝑠 (𝜕𝑁𝛼)
= (−1) |𝛼 | (−1)𝑠Σ𝑠 (𝛼𝜕𝑀 )
= (−1) |Σ𝑠𝛼 | (Σ𝑠𝛼)𝜕Σ𝑠𝑀 .

In particular, Σ𝑠 takes morphisms to morphisms, and it follows that Σ𝑠 is an exact 𝕜-
linear automorphism on C(𝑅) with inverse Σ−𝑠. Evidently, Σ𝑠 is the 𝑠-fold composite
of the functor Σ = Σ1.

2.2.4 Definition. Let 𝑀 be an 𝑅-complex and 𝑠 an integer. There is a canonical
chain map 𝜍𝑀𝑠 : 𝑀 → Σ𝑠𝑀 of degree 𝑠 that maps a homogeneous element 𝑚 in 𝑀
to the corresponding element of degree |𝑚 | + 𝑠 in Σ𝑠𝑀 . The map is invertible, and
(𝜍𝑀𝑠 )−1 is the chain map 𝜍Σ𝑠𝑀−𝑠 : Σ𝑠𝑀 → 𝑀 .

By means of shift, every chain map can be identified with a morphism.

2.2.5. Notice that for every homomorphism 𝛼 : 𝑀 → 𝑁 of 𝑅-complexes the diagram

(2.2.5.1)
𝑀

𝜍𝑀𝑠
//

𝛼

��

Σ𝑠𝑀

Σ𝑠𝛼

��

𝜍Σ𝑠𝑀
−𝑠
// 𝑀

𝛼

��

𝑁
𝜍𝑁𝑠
// Σ𝑠𝑁

𝜍Σ𝑠𝑁
−𝑠
// 𝑁
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is commutative. The degree shifting maps are occasionally suppressed. In particular,
a homomorphism (chain map) 𝛽 : 𝑀 → 𝑁 can be identified with the homomorphism
(chain map) 𝛽𝜍Σ𝑠𝑀−𝑠 : Σ𝑠𝑀 → 𝑁 of degree |𝛽 |−𝑠 or 𝜍𝑁𝑠 𝛽 : 𝑀 → Σ𝑠𝑁 of degree |𝛽 |+𝑠.

Homology

2.2.6. Let 𝑀 be an 𝑅-complex. The differential 𝜕𝑀 is a chain map, so it follows from
2.1.35 that Ker 𝜕𝑀 and Im 𝜕𝑀 are subcomplexes of 𝑀 . As 𝜕𝑀𝜕𝑀 = 0 holds, there
is an inclusion Im 𝜕𝑀 ⊆ Ker 𝜕𝑀 , and the induced differential on either subcomplex
is 0. Likewise, the differential on the quotient complex Coker 𝜕𝑀 is 0.

2.2.7 Definition. Let 𝑀 be an 𝑅-complex; set

Z(𝑀) = Ker 𝜕𝑀 , B(𝑀) = Im 𝜕𝑀 , and C(𝑀) = Coker 𝜕𝑀 .

Notice that C(𝑀) is the quotient complex 𝑀/B(𝑀). Elements in the subcomplex
Z(𝑀) are called cycles, and elements in B(𝑀) are called boundaries. The module of
homogeneous cycles in 𝑀 of degree 𝑣, that is, the module in degree 𝑣 in the complex
Z(𝑀), is written Z𝑣 (𝑀). Similarly the modules in the complexes B(𝑀) and C(𝑀)
are written B𝑣 (𝑀) and C𝑣 (𝑀). As these complexes have trivial differentials, they
could alternately be defined by specifying their modules as follows,

Z𝑣 (𝑀) = Ker 𝜕𝑀𝑣 , B𝑣 (𝑀) = Im 𝜕𝑀𝑣+1 , and C𝑣 (𝑀) = Coker 𝜕𝑀𝑣+1 .

The quotient
H(𝑀) = Z(𝑀)/B(𝑀)

is called the homology complex of 𝑀 . The module in degree 𝑣 is written H𝑣 (𝑀) and
called the 𝑣th homology module of 𝑀 . If H(𝑀) = 0 holds, then 𝑀 is called acyclic.

Notice that an 𝑅-complex is acyclic (see 2.2.7) as an object in C(𝑅) if and only if
it is exact (see 1.1.1) when regarded as a sequence in M(𝑅).
Remark. Other words for acyclic are ‘exact’ and ‘homologically trivial’. For a complex written
in cohomological notation 𝑀 = · · · → 𝑀𝑣−1 → 𝑀𝑣 → 𝑀𝑣+1 → · · · it is standard to write
the homology complex H(𝑀 ) in cohomological notation as well. The module in cohomological
degree 𝑣 of H(𝑀 ) is denoted H𝑣 (𝑀 ) and called the ‘𝑣th cohomology module’ of 𝑀.

The terms ‘boundary’ and ‘cycle’ are borrowed from specific homology theories,
where this terminology comes natural. Briefly: paths π and π′ in ℝ2 are deemed
equivalent if they differ by a boundary; that is, the concatenation of π and −π′ is
the boundary of a region. The reason is that by Stokes’ theorem the path integral of
an exact differential form is then the same along π and π′. In a topological space
that has a structure of a simplicial complex—a higher triangulation; cf. 2.1.26—it is
compelling to use the name cycle for a potential boundary. For a rigid, but still brief,
explanation see the first section of Rotman’s book [220]. Weibel’s historical survey
[254] has plenty of illuminating details.

2.2.8 Example. The Dold complex in 2.1.23 is acyclic.
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2.2.9 Example. Assume that 𝑅 is commutative. The Koszul homology of a sequence
𝑥1, . . . , 𝑥𝑛 in 𝑅 is the homology of the Koszul complex K𝑅 (𝑥1, . . . , 𝑥𝑛) from 2.1.25.
As the image in K𝑅

0 (𝑥1, . . . , 𝑥𝑛) = 𝑅 of 𝜕K𝑅 (𝑥1 ,. . . ,𝑥𝑛 )
1 is the ideal (𝑥1, . . . , 𝑥𝑛), the

homology in degree 0 is

H0 (K𝑅 (𝑥1, . . . , 𝑥𝑛)) = 𝑅/(𝑥1, . . . , 𝑥𝑛) .

For a single element 𝑥 the Koszul complex K𝑅 (𝑥) has the form

(2.2.9.1) 0 −→ 𝑅⟨𝑒⟩ 𝜕−−−→ 𝑅 −→ 0 ,

where 𝜕 (𝑒) = 𝑥. Hence one has H1 (K𝑅 (𝑥)) � (0 :𝑅 𝑥). In particular, this homology
module is zero if and only if 𝑥 is not a zerodivisor in 𝑅.

The Koszul complex 𝐾 = K𝑅 (𝑥1, 𝑥2) has the form

(2.2.9.2) 0 −→ 𝑅⟨𝑒1 ∧ 𝑒2 ⟩
𝜕𝐾2−−−→ 𝑅⟨𝑒1, 𝑒2 ⟩

𝜕𝐾1−−−→ 𝑅 −→ 0 ,

where 𝜕𝐾1 (𝑘1𝑒1 + 𝑘2𝑒2) = 𝑘1𝑥1 + 𝑘2𝑥2 and 𝜕𝐾2 (𝑒1 ∧ 𝑒2) = 𝑥1𝑒2 − 𝑥2𝑒1. The cycles in
degree 2 are elements 𝑘𝑒1 ∧ 𝑒2 with 𝑘𝑥1 = 0 = 𝑘𝑥2; hence there is an isomorphism
H2 (𝐾) � (0 :𝑅 𝑥1) ∩ (0 :𝑅 𝑥2) = (0 :𝑅 (𝑥1, 𝑥2)). The cycles in degree 1 embody the
relations between 𝑥1 and 𝑥2 while the boundaries embody the simple so-called Koszul
relation 𝑥1𝑥2 − 𝑥2𝑥1 = 0. Notice that H2 (𝐾) is zero if 𝑥1 or 𝑥2 is not a zerodivisor in
𝑅. The homology module H1 (𝐾) is zero if and only if [𝑥2] (𝑥1 ) is not a zerodivisor
in the quotient ring 𝑅/(𝑥1) and [𝑥1] (𝑥2 ) is not a zerodivisor in 𝑅/(𝑥2).

The complex 𝐾 = K𝑅 (𝑥1, . . . , 𝑥𝑛) is concentrated in degrees 𝑛, . . . , 1, 0. The ho-
mology module H𝑛 (𝐾) is isomorphic to the ideal of common annihilators of the
elements 𝑥1, . . . , 𝑥𝑛. The module H1 (𝐾) is the module generated by all relations be-
tween the generators modulo the one generated by the simple ones 𝑥𝑖𝑥 𝑗 − 𝑥 𝑗𝑥𝑖 = 0.
In intermediate degrees 𝑛 > 𝑖 > 1, the module H𝑖 (𝐾) is generated by “higher”
relations between the generators, and the boundaries that are factored out are simple
“higher” relations usually also referred to as ‘Koszul relations’.

2.2.10 Example. The singular homology H∗ (𝑋; 𝐴) of a topological space 𝑋 with
coefficients in an Abelian group 𝐴 is the homology of the singular chain complex
S(𝑋) ⊗ℤ 𝐴 from 2.1.26. Singular homology with coefficients in ℤ is written H∗ (𝑋).
The singular homology group H𝑛 (𝑋) detects “𝑛-dimensional holes” in 𝑋 .

For every space 𝑋 , the Abelian group H0 (𝑋) is free, and its rank (possibly an
infinite cardinal) is the number of path components of 𝑋 . The singular chain complex
of a one-point space 𝑝𝑡 is

S(𝑝𝑡) = · · · −→ ℤ⟨𝜎2 ⟩
𝜕
𝑝𝑡

2−−−→ ℤ⟨𝜎1 ⟩
𝜕
𝑝𝑡

1−−−→ ℤ⟨𝜎0 ⟩ −→ 0 .

where 𝜎𝑛 for each 𝑛 ⩾ 0 denotes the unique (continuous) map Δ𝑛 → 𝑝𝑡 from the
standard 𝑛-simplex to a point. The definition 2.1.26 yields

𝜕
𝑝𝑡
𝑛 = 0 for 𝑛 odd and 𝜕

𝑝𝑡
𝑛 (𝜎𝑛) = 𝜎𝑛−1 for 𝑛 even ,
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and thus one has H0 (𝑝𝑡) � ℤ and H𝑛 (𝑝𝑡) = 0 for all 𝑛 ≠ 0. Every contractible space
has the same singular homology as 𝑝𝑡; see 4.3.5. For 𝑚 > 0 the singular homology
of the 𝑚-sphere 𝑆𝑚 is H0 (𝑆𝑚) � ℤ � H𝑚 (𝑆𝑚) and H𝑛 (𝑆𝑚) = 0 for all 𝑛 ∉ {0, 𝑚}.

2.2.11 Example. The de Rham cohomology HdR (𝑀) of a smooth real manifold 𝑀
is the cohomology of the de Rham complex Ω(𝑀) from 2.1.27; it detects closed
differential forms on 𝑀 that are not exact. A closed 0-form is constant on every
connected component, so the rank of the real vector space H0

dR (𝑀) is the number of
connected components of 𝑀 . The cohomology group H1

dR (𝑀) is zero if and only if
every closed differential 1-form is the differential of a smooth function 𝑓 : 𝑀 → ℝ.

The de Rham complex Ω(𝑆1) of the 1-sphere is concentrated in degrees 1 and 0;
in particular, the cohomology modules H𝑛dR (𝑆

1) are zero for 𝑛 ∉ {0, 1}. As 𝑆1 is
connected, one has H0

dR (𝑀) � ℝ. Every 1-form is closed (d1 = 0). Despite the
appearance, 𝑑𝜃, the differential of the polar “coordinate function” 𝜃 is not exact, so
H1

dR (𝑀) is non-zero and, in fact, isomorphic to ℝ.
The de Rham cohomology H𝑛dR (𝐵

𝑛) of the open unit ball in ℝ𝑛 is zero for 𝑛 ≠ 0.

Functoriality

The subcomplexes and (sub-)quotient complexes introduced in 2.2.7 commingle in
canonical exact sequences.

2.2.12 Proposition. Let 𝑀 be an 𝑅-complex. The following sequences of subcom-
plexes and (sub-)quotient complexes of 𝑀 are exact.

0 −→ Z(𝑀) −→ 𝑀 −→ ΣB(𝑀) −→ 0 .(a)
0 −→ B(𝑀) −→ 𝑀 −→ C(𝑀) −→ 0 .(b)
0 −→ B(𝑀) −→ Z(𝑀) −→ H(𝑀) −→ 0 .(c)
0 −→ H(𝑀) −→ C(𝑀) −→ ΣB(𝑀) −→ 0 .(d)

Proof. The differential 𝜕𝑀 is per 2.1.29 and 2.2.7 a morphism 𝑀 → Σ𝑀 with
kernel Z(𝑀) and image B(𝑀). This explains the sequence (a), and also (b) and (c)
follow straight from the definitions. As B(𝑀) is contained in Z(𝑀) the differential
induces a morphism 𝜕𝑀 : 𝑀/B(𝑀) = C(𝑀) → Σ𝑀 with the same image as 𝜕𝑀
and kernel Z(𝑀)/B(𝑀) = H(𝑀); this explains the sequence (d). □

2.2.13 Proposition. Every morphism𝑀 → 𝑁 of 𝑅-complexes restricts to morphisms
Z(𝑀) → Z(𝑁) and B(𝑀) → B(𝑁). Whence, Z, B, and C are 𝕜-linear endofunctors
on C(𝑅). Moreover, there are equalities ZΣ = ΣZ, BΣ = ΣB, and CΣ = ΣC of
endofunctors on C(𝑅).

Proof. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes. As 𝛼𝜕𝑀 = 𝜕𝑁𝛼 holds,
it follows that 𝛼 restricts to a morphism of cycle complexes Z(𝑀) → Z(𝑁) and
to a morphism of boundary complexes B(𝑀) → B(𝑁). In particular, 𝛼 induces a
morphism, �̄�, of cokernel complexes C(𝑀) → C(𝑁). This explains how Z, B, and
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C act on morphisms; in symbols: Z(𝛼) = 𝛼 |Z (𝑀 ) , B(𝛼) = 𝛼 |B (𝑀 ) , and C(𝛼) = �̄�. It
is straightforward to verify that they are 𝕜-linear functors.

For every 𝑅-complex 𝑀 and 𝑣 ∈ ℤ one has

Z𝑣 (Σ𝑀) = Ker 𝜕Σ𝑀𝑣 = Ker(−𝜕𝑀𝑣−1) = Ker 𝜕𝑀𝑣−1 = Z𝑣−1 (𝑀) = (ΣZ(𝑀))𝑣 ,

so Z(Σ𝑀) = ΣZ(𝑀) holds. For every morphism 𝛼 : 𝑀 → 𝑁 in C(𝑅) one now gets

Z(Σ𝛼) = (Σ𝛼) |Z (Σ𝑀 ) = (Σ𝛼) |ΣZ (𝑀 ) = Σ (𝛼 |Z (𝑀 ) ) = ΣZ(𝛼) ;

so ZΣ = ΣZ as functors. Similar arguments yield BΣ = ΣB and CΣ = ΣC. □

2.2.14. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes. It follows from 2.2.13 that
𝛼 induces morphism of 𝑅-complexes,

H(𝛼) : H(𝑀) −→ H(𝑁) ,

which is given by the assignment [𝑧]B (𝑀 ) ↦→ [𝛼(𝑧)]B (𝑁 ) for 𝑧 ∈ Z(𝑀).
The equivalence class [𝑧]B (𝑀 ) is called the homology class of 𝑧. Hereafter we

drop the subscript on homology classes and write [𝑧] for the homology class of a
cycle 𝑧.

By the definition of H(𝛼) there is a commutative diagram,

0 // B(𝑀) //

𝛼

��

Z(𝑀) //

𝛼

��

H(𝑀) //

H (𝛼)
��

0

0 // B(𝑁) // Z(𝑁) // H(𝑁) // 0 .

(2.2.14.1)

2.2.15 Theorem. Homology H is a 𝕜-linear endofunctor on C(𝑅). Moreover, there
is an equality HΣ = ΣH of endofunctors on C(𝑅).

Proof. It is straightforward to verify that H: C(𝑅) → C(𝑅) is a 𝕜-linear functor.
For every 𝑅-complex 𝑀 , exactness of the shift functor and 2.2.13 yield:

H(Σ𝑀) = Z(Σ𝑀)/B(Σ𝑀)
= (ΣZ(𝑀))/(ΣB(𝑀))
= Σ (Z(𝑀)/B(𝑀))
= ΣH(𝑀) .

Similarly, one has H(Σ𝛼) = ΣH(𝛼) for every morphism 𝛼 in C(𝑅). □

2.2.16 Lemma. Let 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be a short exact sequence of
𝑅-complexes.

(a) For every 𝑣 ∈ ℤ there is an exact sequence

0→ Z𝑣 (𝑀 ′) → Z𝑣 (𝑀) → Z𝑣 (𝑀 ′′) →H𝑣−1 (𝑀 ′) →H𝑣−1 (𝑀) →H𝑣−1 (𝑀 ′′).

In particular, the functors Z𝑣 and Z are left exact.
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(b) For every 𝑣 ∈ ℤ there is an exact sequence

H𝑣+1 (𝑀 ′) →H𝑣+1 (𝑀) →H𝑣+1 (𝑀 ′′) → C𝑣 (𝑀 ′) → C𝑣 (𝑀) → C𝑣 (𝑀 ′′) → 0 .

In particular, the functors C𝑣 and C are right exact.

Proof. For every 𝑣 ∈ ℤ the Snake Lemma 1.1.6 applies to the diagram,

0 // 𝑀 ′𝑣 //

𝜕𝑀
′

𝑣

��

𝑀𝑣 //

𝜕𝑀𝑣

��

𝑀 ′′𝑣 //

𝜕𝑀
′′

𝑣

��

0

0 // 𝑀 ′
𝑣−1

// 𝑀𝑣−1 // 𝑀 ′′
𝑣−1

// 0 ,

and yields an exact sequence

0→ Z𝑣 (𝑀 ′) → Z𝑣 (𝑀) → Z𝑣 (𝑀 ′′) → C𝑣−1 (𝑀 ′) → C𝑣−1 (𝑀) → C𝑣−1 (𝑀 ′′) → 0 .

Thus, every functor Z𝑣 is left exact, and it follows that Z, which is computed degree-
wise, is left exact. Similarly, each functor C𝑣 and hence C is right exact.

To finish part (a) apply the Snake Lemma 1.1.6 to the diagram,

0 // 𝑀 ′𝑣 //

𝜕𝑀
′

𝑣

��

𝑀𝑣 //

𝜕𝑀𝑣

��

𝑀 ′′𝑣 //

𝜕𝑀
′′

𝑣

��

0

0 // Z𝑣−1 (𝑀 ′) // Z𝑣−1 (𝑀) // Z𝑣−1 (𝑀 ′′) .

To finish part (b) apply the Snake Lemma 1.1.6 to the diagram,

C𝑣+1 (𝑀 ′) //

�̄�𝑀
′

𝑣+1
��

C𝑣+1 (𝑀) //

�̄�𝑀
𝑣+1
��

C𝑣+1 (𝑀 ′′) //

�̄�𝑀
′′

𝑣+1
��

0

0 // 𝑀 ′𝑣 // 𝑀𝑣 // 𝑀 ′′𝑣 // 0 . □

Remark. The functor B is not even half exact, but it preserves surjective morphisms; see E 2.2.2.

2.2.17 Example. For an 𝑅-complex 𝑍 with zero differential one has H(𝑍) = 𝑍 . In
particular, H(H(𝑀)) = H(𝑀) holds for every complex.

2.2.18 Example. The functors B,C,H,Z: C(𝑅) → C(𝑅), see 2.2.13 and 2.2.15, are
𝕜-linear but not ♮-functors. Indeed, with 𝐷 = 0 −−→ 𝑅

=−−→ 𝑅 −−→ 0, concentrated in
degrees 1 and 0, the exact sequence η = 0 → 𝑅 → 𝐷 → Σ𝑅 → 0 in C(𝑅) is
degreewise split, but none of the sequences B(η), C(η), H(η), and Z(η) are even
exact. The assertion now follows from 2.1.54.

An exact functor C(𝑅) → C(𝑆) need not commute with homology. Far from,
actually, and most of Chap. 5 is devoted to a study of exact functors that, at least,
preserve acyclicity of complexes. Functors that are extended from exact functors on
modules do, however, commute with homology.
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2.2.19. A functor F: C(𝑅) → C(𝑆) that per 2.1.48 is extended from an exact functor
M(𝑅) → M(𝑆) commutes with homology. Indeed, it is straightforward to verify
that for every 𝑣 ∈ ℤ one has

Z𝑣 (F(𝑀)) � F(Z𝑣 (𝑀)) , B𝑣 (F(𝑀)) � F(B𝑣 (𝑀)) ,
C𝑣 (F(𝑀)) � F(C𝑣 (𝑀)) , and H𝑣 (F(𝑀)) � F(H𝑣 (𝑀)) ;

similarly H(F(𝛼)) = F(H(𝛼)) for every morphism 𝛼 in C(𝑅).
Analogously, for a functor G: C(𝑅)op → C(𝑆) that is extended from an exact

functor M(𝑅)op →M(𝑆) one has

Z𝑣 (G(𝑀)) � G(C−𝑣 (𝑀)) , B𝑣 (G(𝑀)) � G(B−𝑣−1 (𝑀)) ,
C𝑣 (G(𝑀)) � G(Z−𝑣 (𝑀)) , and H𝑣 (G(𝑀)) � G(H−𝑣 (𝑀)) ;

similarly H(G(𝛼)) = G(H(𝛼)) for every morphism 𝛼 in C(𝑅).

Connecting Morphism in Homology

The homology functor is only half exact, but the Snake Lemma facilitates a closer
comparison of the homology of complexes in a short exact sequence.

2.2.20 Construction. Consider a short exact sequence of 𝑅-complexes,

0 −→ 𝑀 ′
𝛼′−−−→ 𝑀

𝛼−−−→ 𝑀 ′′ −→ 0 .

It induces a commutative diagram in C(𝑅) with exact rows,

C(𝑀 ′) �̄�′
//

𝜍𝑀
′

1 �̄�𝑀
′

��

C(𝑀) �̄�
//

𝜍𝑀1 �̄�𝑀

��

C(𝑀 ′′) //

𝜍𝑀
′′

1 �̄�𝑀
′′

��

0

0 // ΣZ(𝑀 ′) Σ𝛼′
// ΣZ(𝑀) Σ𝛼

// ΣZ(𝑀 ′′) ,

and the Snake Lemma 2.1.45 yields an exact sequence

(2.2.20.1) H(𝑀 ′) H (𝛼′ )−−−−−→ H(𝑀) H (𝛼)−−−−→ H(𝑀 ′′) ð−−−→ ΣH(𝑀 ′) ΣH (𝛼′ )−−−−−−→ ΣH(𝑀) ,

where the connecting morphism in homology, ð, maps a homology class [𝑧′′] with
𝑧′′ = 𝛼(𝑚) to [𝑧′] with (Σ𝛼′) (𝑧′) = 𝜍𝑀1 𝜕𝑀 (𝑚); cf. 2.1.44 and 1.1.5.

The complexes in the exact sequence (2.2.20.1) have zero differentials, and it is
often written as an exact sequence in M(𝑅):

(2.2.20.2) · · · ð𝑣+1 // H𝑣 (𝑀 ′)

H
𝑣 (𝛼 ′)

// H𝑣 (𝑀)
H
𝑣 (𝛼)

// H𝑣 (𝑀 ′′)
ð𝑣
// H𝑣−1 (𝑀 ′)

H
𝑣−1 (𝛼 ′)

// · · · .

The connecting morphism is natural in the following sense.

2.2.21 Proposition. For every commutative diagram of 𝑅-complexes
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0 // 𝑀 ′
𝛼′
//

𝜑′

��

𝑀
𝛼
//

𝜑

��

𝑀 ′′ //

𝜑′′

��

0

0 // 𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ // 0

with exact rows, there is a commutative diagram in C(𝑅) with exact rows,

H(𝑀 ′) H (𝛼′ )
//

H (𝜑′ )
��

H(𝑀) H (𝛼)
//

H (𝜑)
��

H(𝑀 ′′) ð
//

H (𝜑′′ )
��

ΣH(𝑀 ′) ΣH (𝛼′ )
//

ΣH (𝜑′ )
��

ΣH(𝑀)

ΣH (𝜑)
��

H(𝑁 ′)
H (𝛽′ )

// H(𝑁)
H (𝛽)

// H(𝑁 ′′) 𝛿
// ΣH(𝑁 ′)

ΣH (𝛽′ )
// ΣH(𝑁) ;

here ð and 𝛿 are the connecting morphisms from 2.2.20. Equivalently, there is a
commuative diagram in M(𝑅) with exact rows

· · · ð𝑣+1
// H𝑣 (𝑀 ′)

H𝑣 (𝛼′ )
//

H𝑣 (𝜑′ )
��

H𝑣 (𝑀)
H𝑣 (𝛼)

//

H𝑣 (𝜑)
��

H𝑣 (𝑀 ′′)
ð𝑣
//

H𝑣 (𝜑′′ )
��

H𝑣−1 (𝑀 ′)
H𝑣−1 (𝛼′ )

//

H𝑣−1 (𝜑′ )
��

· · ·

· · · 𝛿𝑣+1
// H𝑣 (𝑁 ′)

H𝑣 (𝛽′ )
// H𝑣 (𝑁)

H𝑣 (𝛽)
// H𝑣 (𝑁 ′′)

𝛿𝑣
// H𝑣−1 (𝑁 ′)

H𝑣−1 (𝛽′ )
// · · ·

Proof. In view of 2.2.15 and 2.2.20 it remains to prove that the square

(♭)

H(𝑀 ′′) ð
//

H (𝜑′′ )
��

ΣH(𝑀 ′)

ΣH (𝜑′ )
��

H(𝑁 ′′) 𝛿
// ΣH(𝑁 ′)

is commutative. To this end, let [𝑧′′] be an element in H(𝑀 ′′) = Ker 𝜕𝑀′′ . By
the definition of the connecting morphism ð, see 2.2.20, one has ð( [𝑧′′]) = [𝑧′],
where 𝑧′ ∈ ΣZ(𝑀 ′) satisfies (Σ𝛼′) (𝑧′) = 𝜍𝑀1 𝜕𝑀 ( [𝑥]B (𝑀 ) ) for some element 𝑥 ∈
𝑀 with �̄�( [𝑥]B (𝑀 ) ) = [𝛼(𝑥)]B (𝑀′′ ) = [𝑧′′]. Thus, one has (ΣH(𝜑′)ð) ( [𝑧′′]) =
[(Σ𝜑′) (𝑧′)]. The cycle (Σ𝜑′) (𝑧′) satisfies

(Σ𝛽′) (Σ𝜑′) (𝑧′) = (Σ𝜑) (Σ𝛼′) (𝑧′)
= (Σ𝜑)𝜍𝑀1 𝜕𝑀 ( [𝑥]B (𝑀 ) )
= 𝜍𝑁1 𝜕

𝑁 ( [𝜑(𝑥)]B (𝑁 ) ) ,

where the last equality follows from (2.2.5.1). The element [𝜑(𝑥)]B (𝑁 ) satisfies

𝛽( [𝜑(𝑥)]B (𝑁 ) ) = [𝛽𝜑(𝑥)]B (𝑁 ′′ )
= [𝜑′′𝛼(𝑥)]B (𝑁 ′′ )
= H(𝜑′′) ( [𝛼(𝑥)]B (𝑀′′ ) )
= H(𝜑′′) ( [𝑧′′]) .

By the definition of 𝛿 one now has (𝛿H(𝜑′′)) ( [𝑧′′]) = [(Σ𝜑′) (𝑧′)]. That is, the
square (♭) is commutative. □
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It is evident from 2.2.21 that homology is a half exact functor, as the next example
shows it is neither left nor right exact.

2.2.22 Example. Let 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 be a short exact sequence of 𝑅-
complexes. If the complex 𝑁 is acyclic but 𝑁 ′, 𝑁 ′′ are not, then the induced sequence
0→ H(𝑁 ′) → 0→ H(𝑁 ′′) → 0 is neither exact at H(𝑁 ′) nor at H(𝑁 ′′).

Homotopy

Like many other notions in homological algebra, homotopy originates in topology.
Homotopy works behind the scenes: it is preserved by most functors of interest, but
it has zero homological footprint.

2.2.23 Definition. A chain map of 𝑅-complexes 𝛼 : 𝑀 → 𝑁 is called null-homotopic
if there exists a homomorphism 𝜎 : 𝑀♮ → 𝑁 ♮ of degree |𝛼 | + 1,

· · · // 𝑀𝑣+1
𝜕𝑀
𝑣+1

//

𝛼𝑣+1

��

𝑀𝑣

𝜎𝑣
yy

𝜕𝑀𝑣
//

𝛼𝑣

��

𝑀𝑣−1

𝜎𝑣−1
xx

//

𝛼𝑣−1

��

· · ·

· · · // 𝑁𝑣+1+|𝛼 |
𝜕𝑁
𝑣+1+|𝛼|

// 𝑁𝑣+|𝛼 |
𝜕𝑁
𝑣+|𝛼|

// 𝑁𝑣−1+|𝛼 | // · · · ,

such that the equality 𝛼 = 𝜕𝑁𝜎 + (−1) |𝛼 |𝜎𝜕𝑀 holds.
Two chain maps of 𝑅-complexes 𝛼, 𝛼′ : 𝑀 → 𝑁 of the same degree are called

homotopic, in symbols 𝛼 ∼ 𝛼′, if 𝛼 − 𝛼′ is null-homotopic. A homomorphism 𝜎

with 𝛼 − 𝛼′ = 𝜕𝑁𝜎 + (−1) |𝛼 |𝜎𝜕𝑀 is called a homotopy from 𝛼 to 𝛼′.

2.2.24 Example. Let 𝑀 be an 𝑅-module; the identity morphism for the complex
0 −−→ 𝑀

=−−→ 𝑀 −−→ 0 is null-homotopic. If the complex is concentrated in degrees,
say, 1 and 0, then the required homotopy is 𝜎 with 𝜎0 = 1𝑀 and 𝜎𝑣 = 0 for 𝑣 ≠ 0.
Complexes with this property are treated towards the end of Sect. 4.2.

The next proposition shows that homotopy yields a congruence relation in C(𝑅),
i.e. an equivalence relation that is compatible with 𝕜-linearity and composition.

2.2.25 Proposition. Let 𝐿,𝑀 , and 𝑁 be 𝑅-complexes. For every integer 𝑛, homotopy
‘∼’ is an equivalence relation on the set of chain maps 𝑀 → 𝑁 of degree 𝑛. Further,

(a) Let 𝛼, 𝛼′, 𝛽, 𝛽′ : 𝑀 → 𝑁 be chain maps of the same degree. If 𝛼 ∼ 𝛼′ and
𝛽 ∼ 𝛽′, then one has 𝛼 + 𝑥𝛽 ∼ 𝛼′ + 𝑥𝛽′ for every 𝑥 ∈ 𝕜 .

(b) Let 𝛽, 𝛽′ : 𝐿 → 𝑀 and 𝛼, 𝛼′ : 𝑀 → 𝑁 be chain maps. If 𝛼 ∼ 𝛼′ and 𝛽 ∼ 𝛽′,
then one has 𝛼𝛽 ∼ 𝛼′𝛽′.

Proof. (a): Let 𝜎 be a homotopy from 𝛼 to 𝛼′ and 𝜏 a homotopy from 𝛽 to 𝛽′. It is
immediate that 𝜎 + 𝑥𝜏 is a homotopy from 𝛼 + 𝑥𝛽 to 𝛼′ + 𝑥𝛽′.

In now follows that ‘∼’ is transitive: For chain maps 𝛾 ∼ 𝛾′ and 𝛾′ ∼ 𝛾′′ one has
𝛾 − 𝛾′′ = (𝛾 − 𝛾′) + (𝛾′ − 𝛾′′) ∼ 0 + 0 = 0 and hence 𝛾 ∼ 𝛾′′. As it is evident from
the definition, 2.2.23, that ∼ is reflexive and symmetric, it is an equivalence relation.
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(b): Let 𝜎 be a homotopy from 𝛼 to 𝛼′ and 𝜏 a homotopy from 𝛽 to 𝛽′. Using the
identity 𝛼𝛽−𝛼′𝛽′ = 𝛼(𝛽− 𝛽′) + (𝛼−𝛼′)𝛽′ it is straightforward to verify that degree
|𝛼 | + |𝛽 | + 1 homomorphism (−1) |𝛼 |𝛼𝜏 + 𝜎𝛽′ is a homotopy from 𝛼𝛽 to 𝛼′𝛽′. □

2.2.26 Proposition. Let 𝛼, 𝛽 : 𝑀 → 𝑁 be morphisms of 𝑅-complexes. If one has
𝛼 ∼ 𝛽, then H(𝛼) = H(𝛽) holds.

Proof. If 𝛼 : 𝑀 → 𝑁 is null-homotopic, then it follows directly from the definition,
2.2.23, that there is an inclusion 𝛼(Z(𝑀)) ⊆ B(𝑁), so the induced morphism H(𝛼)
is 0. As homology is an additive functor, see 2.2.15, the assertion follows. □

2.2.27 Example. Consider an 𝑅-complex

𝑀 = 0 −→ 𝑀2 −→ 𝑀1 −→ 𝑀0 −→ 0 .

One has H(1𝑀 ) = 0 if and only if 𝑀 is exact as a sequence in M(𝑅), while 1𝑀 is
null-homotopic if and only if 𝑀 is split exact as a sequence in M(𝑅).

2.2.28 Definition. A diagram in C(𝑅),

𝑀

𝜑

��

𝛼
// 𝑀 ′

𝜑′

��

𝑁
𝛽
// 𝑁 ′ ,

is called commutative up to homotopy if one has 𝜑′𝛼 ∼ 𝛽𝜑.

Notice that, in view of 2.2.26, application of the homology functor H to a diagram
in C(𝑅) that is commutative up to homotopy yields a commutative diagram.

Exercises

E 2.2.1 Consider the morphism of ℤ-complexes,

0 // ℤ/30ℤ 6
//

3
��

ℤ/30ℤ 10
//

5
��

ℤ/30ℤ //

3
��

0

0 // ℤ/30ℤ 10
// ℤ/30ℤ 6

// ℤ/30ℤ // 0 .

Describe the induced morphism in homology.
E 2.2.2 Show that a surjective morphism of 𝑅-complexes is surjective on boundaries and show

that a morphism that is injective on cycles is injective.
E 2.2.3 Show that a morphism of 𝑅-complexes is surjective if it is surjective on boundaries and

on cycles.
E 2.2.4 (Cf. 2.2.13) Show that B: C(𝑅) → C(𝑅) is a 𝕜-linear functor that is not half exact.
E 2.2.5 (Cf. 2.2.15) Show that homology H: C(𝑅) → C(𝑅) is a 𝕜-linear half exact functor.
E 2.2.6 (Cf. 2.2.19) Let F: M(𝑅) →M(𝑆) be a functor and consider the extended functor

C(𝑅) → C(𝑆); see 2.1.48. Let 𝑀 be an 𝑅-complex. (a) Show that if F is left exact,
then Z𝑣 (F(𝑀 ) ) � F(Z𝑣 (𝑀 ) ) holds for every 𝑣 ∈ ℤ. (b) Show that if F is right exact,
then C𝑣 (F(𝑀 ) ) � F(C𝑣 (𝑀 ) ) holds for every 𝑣 ∈ ℤ. (c) Conclude that if F is exact,
then one has B𝑣 (F(𝑀 ) ) � F(B𝑣 (𝑀 ) ) and H𝑣 (F(𝑀 ) ) � F(H𝑣 (𝑀 ) ) for every 𝑣 ∈ ℤ.
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E 2.2.7 (Cf. 2.2.19) Let G: M(𝑅)op →M(𝑆) be a functor and consider the extended functor
C(𝑅)op → C(𝑆); see 2.1.48. Let 𝑀 be an 𝑅-complex. (a) Show that if G is left exact,
then Z𝑣 (G(𝑀 ) ) � G(C−𝑣 (𝑀 ) ) holds for every 𝑣 ∈ ℤ. (b) Show that if G is right exact,
then C𝑣 (G(𝑀 ) ) � G(Z−𝑣 (𝑀 ) ) holds for every 𝑣 ∈ ℤ. (c) Conclude that if G is exact,
then B𝑣 (G(𝑀 ) ) � G(B−𝑣−1 (𝑀 ) ) and H𝑣 (G(𝑀 ) ) � G(H−𝑣 (𝑀 ) ) for every 𝑣 ∈ ℤ.

E 2.2.8 Let 0 → 𝑀1 → · · · → 𝑀𝑛 → 0 be an exact sequence of 𝑅-complexes. Show that if
𝑛 − 1 of the complexes 𝑀𝑢 are acyclic, then they are all acyclic.

E 2.2.9 Let 𝑀 be an 𝑅-complex. Show that for every 𝑣 ∈ ℤ with H𝑣 (𝑀 ) = 0 there is an
isomorphism C𝑣 (𝑀 ) � B𝑣−1 (𝑀 ) .

E 2.2.10 Let 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be an exact sequence of 𝑅-complexes and 𝑣 ∈ ℤ. Show
that if H𝑣 (𝑀 ′′ ) = 0 holds, then 0→ Z𝑣 (𝑀 ′ ) → Z𝑣 (𝑀 ) → Z𝑣 (𝑀 ′′ ) → 0 is exact.

E 2.2.11 Let 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be an exact sequence of 𝑅-complexes and 𝑣 ∈ ℤ. Show
that if H𝑣 (𝑀 ′ ) = 0 holds, then 0→ C𝑣 (𝑀 ′ ) → C𝑣 (𝑀 ) → C𝑣 (𝑀 ′′ ) → 0 is exact.

E 2.2.12 Let 0 −→ 𝑀 ′
𝛼′−→ 𝑀

𝛼−→ 𝑀 ′′ −→ 0 be an exact sequence of 𝑅-complexes; show that
the following conditions are equivalent. (i) H(𝛼′ ) is injective. (ii) H(𝛼) is surjective.
(iii) The sequence 0 −→ H(𝑀 ′ )

H (𝛼′ )
−−−−→ H(𝑀 )

H (𝛼)
−−−→ H(𝑀 ′′ ) −→ 0 is exact.

E 2.2.13 Let 𝕜 be a field and 𝑀 = 0 → 𝑀𝑛 → 𝑀𝑛−1 → · · · → 𝑀0 → 0 a com-
plex of 𝕜-vector spaces of finite rank. Show that the equality ∑𝑛

𝑣=0 (−1)𝑣 rank𝕜 𝑀𝑣 =∑𝑛
𝑣=0 (−1)𝑣 rank𝕜 H𝑣 (𝑀 ) holds.

E 2.2.14 Assume that 𝑅 is semi-simple. Show that for every 𝑅-complex 𝑀 there are morphisms
𝛼 : H(𝑀 ) → 𝑀 and 𝛽 : 𝑀 → H(𝑀 ) such that H(𝛼) and H(𝛽) are isomorphisms.

E 2.2.15 Let 𝑓 and 𝑔 be elements in the polynomial ring ℤ[𝑥 ] and denote by 𝐾 the Koszul
complex Kℤ[𝑥 ] ( 𝑓 , 𝑔) . (a) Show that if H0 (𝐾 ) is zero, then 𝐾 is acyclic. (b) Show that
if H1 (𝐾 ) is zero, then H2 (𝐾 ) is zero as well.

E 2.2.16 Let 𝑓 , 𝑔 : 𝑋 → 𝑌 be continuous maps between topological spaces and assume that 𝑓
and 𝑔 are homotopic in the topological sense; that is, there exists a continuous map
𝐻 : 𝑋 × [0, 1] → 𝑌 such that 𝐻 (𝑥, 0) = 𝑓 (𝑥 ) and 𝐻 (𝑥, 1) = 𝑔(𝑥 ) for all 𝑥 ∈ 𝑋.
Show that the induced morphisms S( 𝑓 ) , S(𝑔) : S(𝑋) → S(𝑌 ) in C(ℤ) are homotopic.
Is the converse true?

E 2.2.17 Let 𝑀 be an 𝑅-complex. Show that 𝜕𝑀 is a null-homotopic chain map.
E 2.2.18 Show that a homotopy between homotopic chain maps need not be unique.
E 2.2.19 Assume that 𝑅 is commutative. Let 𝑥1 and 𝑥2 be elements in 𝑅 and set𝐾 = K𝑅 (𝑥1, 𝑥2 ) .

Show that the homothety 𝑥𝐾 is null-homotopic for every 𝑥 ∈ (𝑥1, 𝑥2 ) .
E 2.2.20 Assume that 𝑅 is commutative and let 𝑀 be an 𝑅-complex. Show that { 𝑥 ∈ 𝑅 | 𝑥𝑀 ∼

0} is an ideal in 𝑅 and notice that it coincides with (0 :𝑅 𝑀 ) if 𝑀 is a module.
E 2.2.21 Show that the identity morphism on the Koszul complex Kℤ (2, 3) is null-homotopic.
E 2.2.22 Show that the cokernel functor is left adjoint to the inclusion Mgr (𝑅) → C(𝑅) .
E 2.2.23 Show that the cycle functor is right adjoint to the inclusion Mgr (𝑅) → C(𝑅) .

2.3 Homomorphisms

Synopsis. Hom complex; chain map; homotopy; the functor Hom; exactness of ∼.

Complexes 𝑀 and 𝑁 are graded modules with differentials, and those differentials
induce a differential on the graded module Hom𝑅 (𝑀, 𝑁), which then becomes the
Hom complex. Recall from 2.1.28 that the homogeneous elements in Hom𝑅 (𝑀, 𝑁)
are homomorphisms 𝑀 → 𝑁 .
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2.3.1 Definition. For 𝑅-complexes 𝑀 and 𝑁 , the complex Hom𝑅 (𝑀, 𝑁) is the
𝕜-complex with underlying graded module

Hom𝑅 (𝑀, 𝑁)♮ = Hom𝑅 (𝑀♮, 𝑁 ♮)

and differential given by

𝜕Hom𝑅 (𝑀,𝑁 ) (𝛼) = 𝜕𝑁𝛼 − (−1) |𝛼 |𝛼𝜕𝑀

for a homogeneous element 𝛼.

2.3.2. It is elementary to verify that 𝜕Hom𝑅 (𝑀,𝑁 ) is square zero. Indeed, one has

𝜕Hom𝑅 (𝑀,𝑁 )𝜕Hom𝑅 (𝑀,𝑁 ) (𝛼) = 𝜕Hom𝑅 (𝑀,𝑁 ) (𝜕𝑁𝛼 − (−1) |𝛼 |𝛼𝜕𝑀 )
= 𝜕𝑁 (𝜕𝑁𝛼 − (−1) |𝛼 |𝛼𝜕𝑀 )

− (−1) |𝛼 |−1 (𝜕𝑁𝛼 − (−1) |𝛼 |𝛼𝜕𝑀 )𝜕𝑀

= 0 .

The next result interprets boundaries and cycles in Hom complexes in famil-
iar terms and provides, thus, a retrospective motivation for the definition of the
differential on Hom complexes.

2.3.3 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes.
(a) A homomorphism 𝑀 → 𝑁 is a cycle in the complex Hom𝑅 (𝑀, 𝑁) if and only

if it is a chain map.
(b) A homomorphism 𝑀 → 𝑁 is a boundary in the complex Hom𝑅 (𝑀, 𝑁) if and

only if it is a null-homotopic chain map.

Proof. The assertions are immediate from the definition of the differential on the
Hom complex; see 2.3.1. □

2.3.4. Let 𝐿 𝛽−−→ 𝑀
𝛼−−→ 𝑁 be homomorphisms of 𝑅-complexes. The differentials

on the Hom complexes interact with the composition rule from 2.1.7 as follows,

𝜕Hom𝑅 (𝐿,𝑁 ) (𝛼𝛽) = 𝜕𝑁𝛼𝛽 − (−1) |𝛼𝛽 |𝛼𝛽𝜕𝐿

= (𝜕𝑁𝛼 − (−1) |𝛼 |𝛼𝜕𝑀 )𝛽 + (−1) |𝛼 |𝛼(𝜕𝑀 𝛽 − (−1) |𝛽 | 𝛽𝜕𝐿)
= 𝜕Hom𝑅 (𝑀,𝑁 ) (𝛼)𝛽 + (−1) |𝛼 |𝛼𝜕Hom𝑅 (𝐿,𝑀 ) (𝛽) .

Assume that 𝛼 and 𝛽 are chain maps. It follows from the identity above and 2.3.3
that 𝛼𝛽 is a chain map; this recovers 2.1.31.

Remark. A differential graded (for short, DG) 𝕜-algebra is a 𝕜-complex 𝐴 endowed with a graded
𝕜-algebra structure, such that the Leibniz Rule, 𝜕𝐴 (𝑎𝑏) = 𝜕𝐴 (𝑎)𝑏 + (−1) |𝑎 |𝑎𝜕𝐴 (𝑏) , holds for
all homogeneous elements 𝑎, 𝑏 ∈ 𝐴. In other words: the differential 𝜕𝐴 is a derivation on 𝐴. For an
𝑅-complex 𝑀, it follows from 2.1.7 and 2.3.4 that the complex Hom𝑅 (𝑀, 𝑀 ) is a DG 𝕜-algebra.
Moreover, the Koszul complex from 2.1.25 is a DG 𝕜-algebra, see E 2.1.13, and so is the de Rham
complex under the wedge product as well as the singular cochain complex Homℤ (S(𝑋) , 𝕜) from
2.1.26 endowed with the so-called cup product. An algebra structure on a complex 𝐴 induces an
algebra structure, notably a product, in homology; this yields another tool for investigating H(𝐴) .
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Functoriality

We now set out to prove that Hom is a functor. Our efforts culminate in The-
orem 2.3.10; the intermediate paragraphs establish the necessary definitions and
verify the technical requirements. We start by defining how Hom acts on homomor-
phisms, in particular, on morphisms.

2.3.5 Definition. Let 𝛼 : 𝑀 ′ → 𝑀 and 𝛽 : 𝑁 → 𝑁 ′ be homomorphisms of 𝑅-com-
plexes. Denote by Hom𝑅 (𝛼, 𝛽) the degree |𝛼 | + |𝛽 | homomorphism of 𝕜-complexes

Hom𝑅 (𝑀, 𝑁) −→ Hom𝑅 (𝑀 ′, 𝑁 ′) given by 𝜗 ↦−→ (−1) |𝛼 | ( |𝛽 |+|𝜗 | ) 𝛽𝜗𝛼 .

Furthermore, set Hom𝑅 (𝛼, 𝑁) = Hom𝑅 (𝛼, 1𝑁 ) and Hom𝑅 (𝑀, 𝛽) = Hom𝑅 (1𝑀 , 𝛽).

2.3.6. It is straightforward to verify that the assignment (𝛼, 𝛽) ↦→ Hom𝑅 (𝛼, 𝛽), for
homomorphisms 𝛼 and 𝛽 of 𝑅-complexes, is 𝕜-bilinear. It is also immediate from
the definition that one has

Hom𝑅 (1𝑀 , 1𝑁 ) = 1Hom𝑅 (𝑀,𝑁 ) .

For homomorphisms 𝑀 ′′ 𝛼−−→ 𝑀
𝛼′−−→ 𝑀 ′ and 𝑁 ′ 𝛽′−−→ 𝑁

𝛽−−→ 𝑁 ′′ of 𝑅-complexes
there is an equality

Hom𝑅 (𝛼′𝛼, 𝛽𝛽′) = (−1) |𝛼′ | ( |𝛼 |+|𝛽 | ) Hom𝑅 (𝛼, 𝛽) Hom𝑅 (𝛼′, 𝛽′) .

Indeed, for every homomorphism 𝜗 : 𝑀 ′ → 𝑁 ′ one has

Hom𝑅 (𝛼′𝛼, 𝛽𝛽′) (𝜗) = (−1) |𝛼′𝛼 | ( |𝛽𝛽′ |+|𝜗 | ) (𝛽𝛽′)𝜗(𝛼′𝛼)
= (−1) |𝛼′𝛼 | ( |𝛽𝛽′ |+|𝜗 | )(−1) |𝛼 | ( |𝛽 |+|𝛽′𝜗𝛼′ | )Hom𝑅 (𝛼, 𝛽) (𝛽′𝜗𝛼′)
= (−1) |𝛼′ | ( |𝛼 |+|𝛽 | ) (−1) |𝛼′ | ( |𝛽′ |+|𝜗 | )Hom𝑅 (𝛼, 𝛽) (𝛽′𝜗𝛼′)
= (−1) |𝛼′ | ( |𝛼 |+|𝛽 | )Hom𝑅 (𝛼, 𝛽) Hom𝑅 (𝛼′, 𝛽′) (𝜗) .

In particular, there are equalities,

Hom𝑅 (𝛼′𝛼, 𝑁) = (−1) |𝛼′ | |𝛼 | Hom𝑅 (𝛼, 𝑁) Hom𝑅 (𝛼′, 𝑁) ,
Hom𝑅 (𝑀, 𝛽𝛽′) = Hom𝑅 (𝑀, 𝛽) Hom𝑅 (𝑀, 𝛽′) ,

and, furthermore, a commutative diagram of homomorphisms of 𝕜-complexes,

Hom𝑅 (𝑀, 𝑁)
Hom (𝑀,𝛽)

//

Hom (𝛼,𝛽)

**

(−1) |𝛼| |𝛽 | Hom (𝛼,𝑁 )
��

Hom𝑅 (𝑀, 𝑁 ′′)

Hom (𝛼,𝑁 ′′ )
��

Hom𝑅 (𝑀 ′′, 𝑁)
Hom (𝑀′′ ,𝛽)

// Hom𝑅 (𝑀 ′′, 𝑁 ′′) .

2.3.7 Lemma. Let𝛼 : 𝑀 ′→ 𝑀 and 𝛽 : 𝑁 → 𝑁 ′ be homomorphisms of 𝑅-complexes.
With 𝐻 = Hom𝕜 (Hom𝑅 (𝑀, 𝑁),Hom𝑅 (𝑀 ′, 𝑁 ′)) there is an equality

𝜕𝐻 (Hom𝑅 (𝛼, 𝛽))
= Hom𝑅 (𝜕Hom𝑅 (𝑀′ ,𝑀 ) (𝛼), 𝛽) + (−1) |𝛼 | Hom𝑅 (𝛼, 𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝛽)) .
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Proof. Let 𝜗 : 𝑀 → 𝑁 be a homomorphism. The definitions yield

(𝜕𝐻 (Hom𝑅 (𝛼, 𝛽))) (𝜗)
= (𝜕Hom𝑅 (𝑀′ ,𝑁 ′ ) Hom𝑅 (𝛼, 𝛽)) (𝜗)

− (−1) |𝛼 |+|𝛽 | (Hom𝑅 (𝛼, 𝛽)𝜕Hom𝑅 (𝑀,𝑁 ) ) (𝜗)
= 𝜕Hom𝑅 (𝑀′ ,𝑁 ′ ) ((−1) |𝛼 | ( |𝛽 |+|𝜗 | ) 𝛽𝜗𝛼)

− (−1) |𝛼 |+|𝛽 | Hom𝑅 (𝛼, 𝛽) (𝜕𝑁𝜗 − (−1) |𝜗 |𝜗𝜕𝑀 )
= (−1) |𝛼 | ( |𝛽 |+|𝜗 | ) (𝜕𝑁 ′ 𝛽𝜗𝛼 − (−1) |𝛽 |+|𝜗 |+|𝛼 | 𝛽𝜗𝛼𝜕𝑀′ )

− (−1) |𝛼 |+|𝛽 | (−1) |𝛼 | ( |𝛽 |+|𝜗 |−1) 𝛽(𝜕𝑁𝜗 − (−1) |𝜗 |𝜗𝜕𝑀 )𝛼 .

Further, one has

(Hom𝑅 (𝜕Hom𝑅 (𝑀′ ,𝑀 ) (𝛼), 𝛽) + (−1) |𝛼 | Hom𝑅 (𝛼, 𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝛽))) (𝜗)
= (−1) ( |𝛼 |−1) ( |𝛽 |+|𝜗 | ) 𝛽𝜗𝜕Hom𝑅 (𝑀′ ,𝑀 ) (𝛼)

+ (−1) |𝛼 | (−1) |𝛼 | ( |𝛽 |−1+|𝜗 | )𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝛽)𝜗𝛼
= (−1) ( |𝛼 |−1) ( |𝛽 |+|𝜗 | ) 𝛽𝜗(𝜕𝑀𝛼 − (−1) |𝛼 |𝛼𝜕𝑀′ )

+ (−1) |𝛼 | (−1) |𝛼 | ( |𝛽 |−1+|𝜗 | ) (𝜕𝑁 ′ 𝛽 − (−1) |𝛽 | 𝛽𝜕𝑁 )𝜗𝛼 .

Compare the two expressions above to see that they are identical. □

Now we focus on chain maps.

2.3.8 Proposition. Let 𝛼 and 𝛽 be chain maps of 𝑅-complexes. The homomorphism
Hom𝑅 (𝛼, 𝛽) is a chain map of degree |𝛼 | + |𝛽 |, and if 𝛼 or 𝛽 is null-homotopic, then
Hom𝑅 (𝛼, 𝛽) is null-homotopic.

Proof. Let 𝛼 : 𝑀 ′ → 𝑀 and 𝛽 : 𝑁 → 𝑁 ′ be chain maps; by 2.3.3 they are cycles in
the complexes Hom𝑅 (𝑀 ′, 𝑀) and Hom𝑅 (𝑁, 𝑁 ′). That is, one has 𝜕Hom𝑅 (𝑀′ ,𝑀 ) (𝛼) =
0 and 𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝛽) = 0. With 𝐻 = Hom𝕜 (Hom𝑅 (𝑀, 𝑁),Hom𝑅 (𝑀 ′, 𝑁 ′)), 2.3.7
yields 𝜕𝐻 (Hom𝑅 (𝛼, 𝛽)) = 0, so Hom𝑅 (𝛼, 𝛽) is a chain map by 2.3.3.

If 𝛼 is null-homotopic, then 𝛼 = 𝜕Hom𝑅 (𝑀′ ,𝑀 ) (𝜗) holds for a 𝜗 in Hom𝑅 (𝑀 ′, 𝑀);
see 2.3.3. Now 2.3.7 yields Hom𝑅 (𝛼, 𝛽) = 𝜕𝐻 (Hom𝑅 (𝜗, 𝛽)), whence Hom𝑅 (𝛼, 𝛽)
is null-homotopic. Similarly, if one has 𝛽 = 𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝜗) for some 𝜗 in
Hom𝑅 (𝑁, 𝑁 ′), then 2.3.7 yields Hom𝑅 (𝛼, 𝛽) = 𝜕𝐻 (Hom𝑅 (𝛼, (−1) |𝛼 |𝜗)). □

2.3.9 Corollary. Let 𝛼, 𝛼′ : 𝑀 ′ → 𝑀 and 𝛽, 𝛽′ : 𝑁 → 𝑁 ′ be chain maps of 𝑅-
complexes. If 𝛼 ∼ 𝛼′ and 𝛽 ∼ 𝛽′, then one has Hom𝑅 (𝛼, 𝛽) ∼ Hom𝑅 (𝛼′, 𝛽′).

Proof. By bilinearity one has

Hom𝑅 (𝛼, 𝛽) − Hom𝑅 (𝛼′, 𝛽′) = Hom𝑅 (𝛼 − 𝛼′, 𝛽) + Hom𝑅 (𝛼′, 𝛽 − 𝛽′) ,

and by 2.3.8 that is a sum of null-homotopic chain maps; now invoke 2.2.25. □

The functor described in the next theorem is called the Hom functor. The last
equality requires a preparatory remark. In the 𝕜-linear category C(𝑅), each hom-set
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C(𝑅) (𝑀, 𝑁) is a 𝕜-module. Homotopy ‘∼’ is by 2.2.25 a congruence relation on
C(𝑅) (𝑀, 𝑁), so the set C(𝑅) (𝑀, 𝑁)/∼ of equivalence classes is a 𝕜-module under
induced addition, [𝛼]∼ + [𝛽]∼ = [𝛼 + 𝛽]∼, and 𝕜-multiplication 𝑥 [𝛼]∼ = [𝑥𝛼]∼.

2.3.10 Theorem. The functions

Hom𝑅 ( , ) : C(𝑅)op × C(𝑅) −→ C(𝕜) ,

defined on objects in 2.3.1 and on morphisms in 2.3.5, constitute a 𝕜-bilinear and
left exact functor.

For 𝑅-complexes 𝑀 and 𝑁 , the 𝕜-complex Hom𝑅 (𝑀, 𝑁) and the 𝕜-module
C(𝑅) (𝑀, 𝑁) are related by the following identities,

Z0 (Hom𝑅 (𝑀, 𝑁)) = C(𝑅) (𝑀, 𝑁) and
H0 (Hom𝑅 (𝑀, 𝑁)) = C(𝑅) (𝑀, 𝑁)/∼ .

Proof. It follows from 2.3.1 and 2.3.8 that Hom𝑅 takes objects and morphisms
in C(𝑅)op × C(𝑅) to objects and morphisms in C(𝕜). The functoriality and the
𝕜-bilinearity are established in 2.3.6. To prove left exactness, let

0 −→ (𝑀 ′, 𝑁 ′) (𝛼
′ ,𝛽′ )−−−−−−→ (𝑀, 𝑁) (𝛼,𝛽)−−−−−→ (𝑀 ′′, 𝑁 ′′) −→ 0

be an exact sequence in C(𝑅)op × C(𝑅). It is sufficient to verify that the sequence

0 −→ Hom𝑅 (𝑀 ′, 𝑁 ′)𝑣
Hom (𝛼′ ,𝛽′ )𝑣−−−−−−−−−−→ Hom𝑅 (𝑀, 𝑁)𝑣

Hom (𝛼,𝛽)𝑣−−−−−−−−−→ Hom𝑅 (𝑀 ′′, 𝑁 ′′)𝑣
in M(𝕜) is exact for every 𝑣 ∈ ℤ. By 2.1.4 and 2.3.5 such a sequence is a product of
exact sequences; indeed Hom𝑅 (𝛼′, 𝛽′)𝑣 is the product∏

𝑖∈ℤ
Hom𝑅 (𝛼′𝑖 , 𝛽′𝑖+𝑣) :

∏
𝑖∈ℤ

Hom𝑅 (𝑀 ′𝑖 , 𝑁 ′𝑖+𝑣) −→
∏
𝑖∈ℤ

Hom𝑅 (𝑀𝑖 , 𝑁𝑖+𝑣) ,

and Hom𝑅 (𝛼, 𝛽)𝑣 has a similar form; it follows that the sequence above is exact.
Finally, the equalities of 𝕜-modules follow from 2.3.3. □

Remark. The proof above uses the fact, immediate from 1.1.19, that a product of exact sequences
in M(𝑅) is exact. This property does not hold in every Abelian category; a counterexample is the
category of sheaves of Abelian groups on a suitable topological space; see Grothendieck [110] or
Krause [160].

2.3.11 Addendum (to 2.3.10). If 𝑀 is in C(𝑅–𝑄o) and 𝑁 is in C(𝑅–𝑆o), then it
follows from 2.1.38 and 2.1.18 that Hom𝑅 (𝑀, 𝑁)♮ is a graded 𝑄–𝑆o-bimodule, and
it is elementary to verify that the differential 𝜕Hom𝑅 (𝑀,𝑁 ) is 𝑄- and 𝑆o-linear. That
is, Hom𝑅 (𝑀, 𝑁) is an object in C(𝑄–𝑆o). For morphisms 𝛼 in C(𝑅–𝑄o) and 𝛽 in
C(𝑅–𝑆o) it is straightforward to verify that Hom𝑅 (𝛼, 𝛽) is a morphism in C(𝑄–𝑆o).
Thus, there is an induced 𝕜-bilinear functor,

Hom𝑅 ( , ) : C(𝑅–𝑄o)op × C(𝑅–𝑆o) −→ C(𝑄–𝑆o) .

2.3.12 Proposition. If 𝑀 is an 𝑅-complex, then Hom𝑅 (𝑀, ) is a ♮-functor and
for every degreewise split exact sequence 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 in C(𝑅),
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the sequence 0 → Hom𝑅 (𝑀, 𝑁 ′) → Hom𝑅 (𝑀, 𝑁) → Hom𝑅 (𝑀, 𝑁 ′′) → 0 is
degreewise split exact.

Proof. It follows from 2.3.1 and 2.3.5 that Hom𝑅 (𝑀, ) is a ♮-functor. The last
assertion is a special case of 2.1.54. □

2.3.13 Proposition. If 𝑁 is an 𝑅-complex, then Hom𝑅 ( , 𝑁) is a ♮-functor and
for every degreewise split exact sequence 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 in
C(𝑅), the sequence 0 → Hom𝑅 (𝑀 ′′, 𝑁) → Hom𝑅 (𝑀, 𝑁) → Hom𝑅 (𝑀 ′, 𝑁) → 0
is degreewise split exact.

Proof. It follows from 2.3.1 and 2.3.5 that Hom𝑅 ( , 𝑁) is a ♮-functor. The last
assertion is a special case of 2.1.55. □

Hom and Shift

The shift functor allows one to consider chain maps as morphisms; for this reason,
and for deeper reasons that become apparent in Chap. 6, we record how shift interacts
with Hom.

2.3.14 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes and 𝑠 an integer. The composite
Hom𝑅 (𝜍Σ

𝑠𝑀
−𝑠 , 𝑁)𝜍Σ

−𝑠Hom (𝑀,𝑁 )
𝑠 is an isomorphism of 𝕜-complexes,

Σ−𝑠Hom𝑅 (𝑀, 𝑁) �−−−→ Hom𝑅 (Σ𝑠𝑀, 𝑁) ,

and it is natural in 𝑀 and 𝑁 .

Proof. Recall from 2.2.4 that 𝜍Σ
−𝑠Hom (𝑀,𝑁 )
𝑠 is an invertible chain map of degree

𝑠 and that 𝜍Σ𝑠𝑀−𝑠 is a degree −𝑠 invertible chain map with inverse 𝜍𝑀𝑠 . It follows
from 2.3.6 and 2.3.8 that Hom𝑅 (𝜍Σ

𝑠𝑀
−𝑠 , 𝑁) is a degree −𝑠 invertible chain map with

inverse (−1)𝑠 Hom𝑅 (𝜍𝑀𝑠 , 𝑁). Thus, the composite Hom𝑅 (𝜍Σ
𝑠𝑀
−𝑠 , 𝑁)𝜍Σ

−𝑠Hom (𝑀,𝑁 )
𝑠

is an invertible chain map of degree 0, i.e. an isomorphism in the category C(𝕜).
To prove that this isomorphism is natural in 𝑀 and 𝑁 , let 𝛼 : 𝑀 ′ → 𝑀 and

𝛽 : 𝑁 → 𝑁 ′ be morphisms of 𝑅-complexes. It suffices to show that the following
diagram of homomorphisms of 𝕜-complexes is commutative,

Σ−𝑠Hom𝑅 (𝑀, 𝑁)
𝜍
Σ−𝑠Hom (𝑀,𝑁 )
𝑠

//

Σ−𝑠Hom (𝛼,𝛽)
��

Hom𝑅 (𝑀, 𝑁)
Hom (𝜍Σ𝑠𝑀

−𝑠 ,𝑁 )
//

Hom (𝛼,𝛽)
��

Hom𝑅 (Σ𝑠𝑀, 𝑁)

Hom (Σ𝑠𝛼,𝛽)
��

Σ−𝑠Hom𝑅 (𝑀 ′, 𝑁 ′)
𝜍
Σ−𝑠Hom (𝑀′ ,𝑁 ′ )
𝑠

// Hom𝑅 (𝑀 ′, 𝑁 ′)
Hom (𝜍Σ𝑠𝑀′

−𝑠 ,𝑁 ′ )
// Hom𝑅 (Σ𝑠𝑀 ′, 𝑁 ′) .

The left-hand square is commutative by (2.2.5.1). The equality𝛼𝜍Σ𝑠𝑀′−𝑠 = 𝜍Σ
𝑠𝑀
−𝑠 (Σ𝑠𝛼)

from (2.2.5.1) conspires with 2.3.6 to give

Hom𝑅 (𝜍Σ
𝑠𝑀′
−𝑠 , 𝑁 ′) Hom𝑅 (𝛼, 𝛽) = Hom𝑅 (𝛼𝜍Σ

𝑠𝑀′
−𝑠 , 𝛽)

= Hom𝑅 (𝜍Σ
𝑠𝑀
−𝑠 (Σ𝑠𝛼), 𝛽)
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2.3 Homomorphisms 75

= Hom𝑅 (Σ𝑠𝛼, 𝛽) Hom𝑅 (𝜍Σ
𝑠𝑀
−𝑠 , 𝑁) .

This shows that the right-hand square is commutative. □

2.3.15. If one suppresses the degree changing maps, then the isomorphism in 2.3.14
is given by the assignment 𝜗 ↦→ (−1)𝑠 |𝜗 |𝜗, where |𝜗 | is the degree of 𝜗 as an
element of Hom𝑅 (𝑀, 𝑁); see 2.3.5. Similarly, the isomorphism in 2.3.16 below is
the identity upon suppression of the degree changing chain maps.

2.3.16 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes and 𝑠 an integer. The composite
𝜍

Hom (𝑀,𝑁 )
𝑠 Hom𝑅 (𝑀, 𝜍Σ

𝑠𝑁
−𝑠 ) is an isomorphism of 𝕜-complexes,

Hom𝑅 (𝑀, Σ𝑠𝑁) �−−−→ Σ𝑠Hom𝑅 (𝑀, 𝑁) ,

and it is natural in 𝑀 and 𝑁 .

Proof. The assertions follow from an argument parallel to the proof of 2.3.14. □

Exactness

2.3.17 Proposition. Let 𝑀 be an 𝑅-complex and 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 a
sequence of 𝑅-complexes. If for all 𝑣, 𝑖 ∈ ℤ the sequence of modules,

0 −→ Hom𝑅 (𝑀𝑣, 𝑁 ′𝑖 ) −→ Hom𝑅 (𝑀𝑣, 𝑁𝑖) −→ Hom𝑅 (𝑀𝑣, 𝑁 ′′𝑖 ) −→ 0 ,

is exact, then 0→ Hom𝑅 (𝑀, 𝑁 ′) → Hom𝑅 (𝑀, 𝑁) → Hom𝑅 (𝑀, 𝑁 ′′) → 0 is an
exact sequence of complexes.

Proof. By 2.1.40 exactness of a sequence of complexes can be verified degree-
wise. Fix 𝑝 ∈ ℤ; it follows from 2.1.4 and 2.3.5 that the sequence of modules,
0→ Hom𝑅 (𝑀, 𝑁 ′)𝑝 → Hom𝑅 (𝑀, 𝑁)𝑝 → Hom𝑅 (𝑀, 𝑁 ′′)𝑝 → 0, is the product
of 0→ Hom𝑅 (𝑀𝑣, 𝑁 ′𝑣+𝑝) → Hom𝑅 (𝑀𝑣, 𝑁𝑣+𝑝) → Hom𝑅 (𝑀𝑣, 𝑁 ′′𝑣+𝑝) → 0 for all
𝑣 ∈ ℤ. By assumption all these sequences are exact, hence so is the product. □

2.3.18 Example. Let 𝑃 be a complex of projective 𝑅-modules. For every exact
sequence 0→ 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 of 𝑅-complexes the sequence of 𝕜-complexes,
0→ Hom𝑅 (𝑃, 𝑁 ′) → Hom𝑅 (𝑃, 𝑁) → Hom𝑅 (𝑃, 𝑁 ′′) → 0, is exact by 2.3.17.

2.3.19 Proposition. Let 𝑁 be an 𝑅-complex and 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 a
sequence in C(𝑅). If for all 𝑣, 𝑖 ∈ ℤ the sequence of modules,

0 −→ Hom𝑅 (𝑀 ′′𝑣 , 𝑁𝑖) −→ Hom𝑅 (𝑀𝑣, 𝑁𝑖) −→ Hom𝑅 (𝑀 ′𝑣, 𝑁𝑖) −→ 0 ,

is exact, then 0→ Hom𝑅 (𝑀 ′′, 𝑁) → Hom𝑅 (𝑀, 𝑁) → Hom𝑅 (𝑀 ′, 𝑁) → 0, is an
exact sequence of complexes.

Proof. The assertion follows from an argument parallel to the proof of 2.3.17. □

2.3.20 Example. Let 𝐼 be a complex of injective 𝑅-modules. For every exact se-
quence 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 of 𝑅-complexes the sequence of 𝕜-complexes,
0→ Hom𝑅 (𝑀 ′′, 𝐼) → Hom𝑅 (𝑀, 𝐼) → Hom𝑅 (𝑀 ′, 𝐼) → 0, is exact by 2.3.19.
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Exercises

E 2.3.1 Apply 2.3.4 to prove that if 𝛽 : 𝐿 → 𝑀 and 𝛼 : 𝑀 → 𝑁 are chain maps and one of them
is null-homotopic, then so is the composite 𝛼𝛽. From there recover 2.2.25(b).

E 2.3.2 Generalize the identity in 2.3.4 as follows. If 𝑀1 𝛼1

−→ 𝑀2 𝛼2

−→ · · · −→ 𝑀𝑛 𝛼𝑛−→ 𝑀𝑛+1 are
homomorphisms of 𝑅-complexes, then one has
𝜕Hom𝑅 (𝑀1 ,𝑀𝑛+1 ) (𝛼𝑛 · · · 𝛼2𝛼1 )

=
∑𝑛
𝑖=1 (−1) |𝛼𝑖+1 |+·· ·+|𝛼𝑛 |𝛼𝑛 · · · 𝛼𝑖+1𝜕Hom𝑅 (𝑀𝑖 ,𝑀𝑖+1 ) (𝛼𝑖 )𝛼𝑖−1 · · · 𝛼1 .

E 2.3.3 Give a proof of part (b) in 2.3.9.
E 2.3.4 For 𝑅-complexes𝑀 and 𝑁 consider the homomorphisms 𝜕Hom𝑅 (𝑀,𝑁 ) , Hom𝑅 (𝜕𝑀 , 𝑁 ) ,

and Hom𝑅 (𝑀, 𝜕𝑁 ) of degree −1 from the complex Hom𝑅 (𝑀, 𝑁 ) to itself. Verify that
𝜕Hom𝑅 (𝑀,𝑁 ) = Hom𝑅 (𝑀, 𝜕𝑁 ) − Hom𝑅 (𝜕𝑀 , 𝑁 ) .

E 2.3.5 (Cf. 2.3.11) Let 𝛼 be a homomorphism of complexes of 𝑅–𝑄o-bimodules and 𝛽 a homo-
morphism of complexes of 𝑅–𝑆o-bimodules. Show that Hom𝑅 (𝛼, 𝛽) is a homomorphism
of complexes of 𝑄–𝑆o-bimodules.

E 2.3.6 Give a proof of 2.3.16.
E 2.3.7 Let 𝑀 be an 𝑅-module and consider the functor Hom𝑅 (𝑀, ) : M(𝑅) →M(𝕜) . Show

that the extended functor C(𝑅) → C(𝕜) described in 2.1.48 agrees with the functor
Hom𝑅 (𝑀, ) defined in this section. Is the parallel statement true for Hom𝑅 ( , 𝑀 )?

E 2.3.8 Let η = 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be an exact sequence of 𝑅-complexes. Show that
the next conditions are equivalent. (i) η is degreewise split. (ii) Hom𝑅 (η, 𝑁 ) is exact for
every 𝑅-module/complex 𝑁 . (iii) Hom𝑅 (𝑁, η ) is exact for every 𝑅-module/complex 𝑁 .

2.4 Tensor Products

Synopsis. Tensor product complex; chain map; homotopy; the functor ⊗; exactness of ∼.

The graded tensor product of two complexes can be endowed with a differential
constructed from the differentials of the factors.

2.4.1 Definition. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. The tensor product
complex 𝑀 ⊗𝑅 𝑁 is the 𝕜-complex with underlying graded module

(𝑀 ⊗𝑅 𝑁)♮ = 𝑀♮ ⊗𝑅 𝑁 ♮

and differential given by

𝜕𝑀⊗𝑅𝑁 (𝑚 ⊗ 𝑛) = 𝜕𝑀 (𝑚) ⊗ 𝑛 + (−1) |𝑚 |𝑚 ⊗ 𝜕𝑁 (𝑛)

for homogeneous elements 𝑚 and 𝑛.

2.4.2. It is elementary to verify that 𝜕𝑀⊗𝑅𝑁 is square zero. Indeed, one has

𝜕𝑀⊗𝑅𝑁𝜕𝑀⊗𝑅𝑁 (𝑚 ⊗ 𝑛) = 𝜕𝑀⊗𝑅𝑁 (𝜕𝑀 (𝑚) ⊗ 𝑛 + (−1) |𝑚 |𝑚 ⊗ 𝜕𝑁 (𝑛))
= 𝜕𝑀𝜕𝑀 (𝑚) ⊗ 𝑛 + (−1) |𝑚 |−1𝜕𝑀 (𝑚) ⊗ 𝜕𝑁 (𝑛)
+ (−1) |𝑚 | (𝜕𝑀 (𝑚) ⊗ 𝜕𝑁 (𝑛) + (−1) |𝑚 |𝑚 ⊗ 𝜕𝑁𝜕𝑁 (𝑛))

= 0 .

8-Mar-2024 Draft - use at own risk



2.4 Tensor Products 77

2.4.3 Example. Assume that 𝑅 is commutative. For elements 𝑥1 and 𝑥2 in 𝑅, the
tensor product of Koszul complexes K𝑅 (𝑥1) ⊗𝑅 K𝑅 (𝑥2) is isomorphic to K𝑅 (𝑥1, 𝑥2).
Per (2.2.9.1) one has

0 −→ 𝑅⟨𝑒1 ⟩ ⊗𝑅 𝑅⟨𝑒2 ⟩
𝜕2−−−→ (𝑅⟨𝑒1 ⟩ ⊗𝑅 𝑅) ⊕ (𝑅 ⊗𝑅 𝑅⟨𝑒2 ⟩)

𝜕1−−−→ 𝑅 ⊗𝑅 𝑅 −→ 0

with

𝜕2 (𝑒1 ⊗ 𝑒2) = (−𝑒1 ⊗ 𝑥2, 𝑥1 ⊗ 𝑒2) and 𝜕1 (𝑒1 ⊗ 𝑘2, 𝑘1 ⊗ 𝑒2) = 𝑥1 ⊗ 𝑘2 + 𝑘1 ⊗ 𝑥2 .

Similarly, consider K𝑅 (𝑥1, 𝑥2) to be generated by the free module 𝑅⟨ 𝑓1, 𝑓2 ⟩. Com-
paring to (2.2.9.2) it is now elementary to verify that the assignments

𝑒1 ⊗ 𝑒2 ↦−→ 𝑓1 ∧ 𝑓2 , (𝑒1 ⊗ 𝑘2, 𝑘1 ⊗ 𝑒2) ↦−→ 𝑘2 𝑓1 + 𝑘1 𝑓2 , and 𝑘1 ⊗ 𝑘2 ↦−→ 𝑘1𝑘2

define an isomorphism K𝑅 (𝑥1) ⊗𝑅 K𝑅 (𝑥2) −−→ K𝑅 (𝑥1, 𝑥2).

Functoriality

The next several paragraphs lead up to Theorem 2.4.9, which shows that the tensor
product yields a functor.

2.4.4 Definition. Let 𝛼 : 𝑀 → 𝑀 ′ be a homomorphism of 𝑅o-complexes and
𝛽 : 𝑁 → 𝑁 ′ a homomorphism of 𝑅-complexes. Denote by 𝛼 ⊗𝑅 𝛽 the degree |𝛼 | + |𝛽 |
homomorphism of 𝕜-complexes

𝑀 ⊗𝑅 𝑁 −→ 𝑀 ′ ⊗𝑅 𝑁 ′ given by 𝑚 ⊗ 𝑛 ↦−→ (−1) |𝛽 | |𝑚 |𝛼(𝑚) ⊗ 𝛽(𝑛) .

Furthermore, set 𝛼 ⊗𝑅 𝑁 = 𝛼 ⊗𝑅 1𝑁 and 𝑀 ⊗𝑅 𝛽 = 1𝑀 ⊗𝑅 𝛽.

2.4.5. It is straightforward to verify that the assignment (𝛼, 𝛽) ↦→ 𝛼 ⊗𝑅 𝛽, for
homomorphisms 𝛼 and 𝛽 of complexes, is 𝕜-bilinear. It is also immediate from the
definition that one has

1𝑀 ⊗𝑅 1𝑁 = 1𝑀⊗𝑅𝑁 .

For homomorphisms 𝑀 ′ 𝛼′−−→ 𝑀
𝛼−−→ 𝑀 ′′ of 𝑅o-complexes and homomorphisms

𝑁 ′
𝛽′−−→ 𝑁

𝛽−−→ 𝑁 ′′ of 𝑅-complexes there is an equality

(𝛼𝛼′) ⊗𝑅 (𝛽𝛽′) = (−1) |𝛼′ | |𝛽 | (𝛼 ⊗𝑅 𝛽) (𝛼′ ⊗𝑅 𝛽′) .

Indeed, for homogeneous elements 𝑚′ in 𝑀 ′ and 𝑛′ in 𝑁 ′ one has

((𝛼𝛼′) ⊗𝑅 (𝛽𝛽′)) (𝑚′ ⊗ 𝑛′)
= (−1) |𝛽𝛽′ | |𝑚′ | (𝛼𝛼′) (𝑚′) ⊗ (𝛽𝛽′) (𝑛′)
= (−1) |𝛽𝛽′ | |𝑚′ | (−1) |𝛽 | |𝛼′ (𝑚′ ) | (𝛼 ⊗𝑅 𝛽) (𝛼′ (𝑚′) ⊗ 𝛽′ (𝑛′))
= (−1) |𝛼′ | |𝛽 | (−1) |𝛽′ | |𝑚′ | (𝛼 ⊗𝑅 𝛽) (𝛼′ (𝑚′) ⊗ 𝛽′ (𝑛′))
= (−1) |𝛼′ | |𝛽 | (𝛼 ⊗𝑅 𝛽) ((𝛼′ ⊗𝑅 𝛽′) (𝑚′ ⊗ 𝑛′)) .
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In particular, there are equalities,

(𝛼𝛼′) ⊗𝑅 𝑁 = (𝛼 ⊗𝑅 𝑁) (𝛼′ ⊗𝑅 𝑁) ,
𝑀 ⊗𝑅 (𝛽𝛽′) = (𝑀 ⊗𝑅 𝛽) (𝑀 ⊗𝑅 𝛽′) ,

and, furthermore, a commutative diagram of homomorphisms of 𝕜-complexes,

(2.4.5.1)
𝑀 ⊗𝑅 𝑁

𝑀⊗𝛽
//

𝛼⊗𝛽

((

(−1) |𝛼| |𝛽 |𝛼⊗𝑁
��

𝑀 ⊗𝑅 𝑁 ′′

𝛼⊗𝑁 ′′
��

𝑀 ′′ ⊗𝑅 𝑁
𝑀′′⊗𝛽

// 𝑀 ′′ ⊗𝑅 𝑁 ′′ .

2.4.6 Lemma. Let 𝛼 : 𝑀→𝑀 ′ be a homomorphism of 𝑅o-complexes and 𝛽 : 𝑁→𝑁 ′

a homomorphisms of 𝑅-complexes. With 𝐻 = Hom𝕜 (𝑀 ⊗𝑅 𝑁, 𝑀 ′ ⊗𝑅 𝑁 ′) one has

𝜕𝐻 (𝛼 ⊗𝑅 𝛽) = 𝜕Hom𝑅o (𝑀,𝑀′ ) (𝛼) ⊗𝑅 𝛽 + (−1) |𝛼 |𝛼 ⊗𝑅 𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝛽) .

Proof. Let 𝑚 and 𝑛 be homogeneous elements in 𝑀 and 𝑁 . There are equalities,

(𝜕𝐻 (𝛼 ⊗𝑅 𝛽)) (𝑚 ⊗ 𝑛)
= (𝜕𝑀′⊗𝑅𝑁 ′ (𝛼 ⊗𝑅 𝛽) − (−1) |𝛼 |+|𝛽 | (𝛼 ⊗𝑅 𝛽)𝜕𝑀⊗𝑅𝑁 ) (𝑚 ⊗ 𝑛)
= (−1) |𝛽 | |𝑚 |𝜕𝑀′⊗𝑅𝑁 ′ (𝛼(𝑚) ⊗ 𝛽(𝑛))

− (−1) |𝛼 |+|𝛽 | (𝛼 ⊗𝑅 𝛽) (𝜕𝑀 (𝑚) ⊗ 𝑛 + (−1) |𝑚 |𝑚 ⊗ 𝜕𝑁 (𝑛))
= (−1) |𝛽 | |𝑚 | (𝜕𝑀′𝛼(𝑚) ⊗ 𝛽(𝑛) + (−1) |𝛼 |+|𝑚 |𝛼(𝑚) ⊗ 𝜕𝑁 ′𝛽(𝑛))

− (−1) |𝛼 |+|𝛽 | ((−1) |𝛽 | ( |𝑚 |−1)𝛼𝜕𝑀 (𝑚) ⊗ 𝛽(𝑛)
+ (−1) |𝑚 | (−1) |𝛽 | |𝑚 |𝛼(𝑚) ⊗ 𝛽𝜕𝑁 (𝑛)) .

Further, one has

(𝜕Hom𝑅o (𝑀,𝑀′ ) (𝛼) ⊗𝑅 𝛽 + (−1) |𝛼 |𝛼 ⊗𝑅 𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝛽)) (𝑚 ⊗ 𝑛)
= (−1) |𝛽 | |𝑚 | (𝜕Hom𝑅o (𝑀,𝑀′ ) (𝛼)) (𝑚) ⊗ 𝛽(𝑛)

+ (−1) |𝛼 | (−1) ( |𝛽 |−1) |𝑚 |𝛼(𝑚) ⊗ (𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝛽)) (𝑛)
= (−1) |𝛽 | |𝑚 | (𝜕𝑀′𝛼 − (−1) |𝛼 |𝛼𝜕𝑀 ) (𝑚) ⊗ 𝛽(𝑛)

+ (−1) |𝛼 | (−1) ( |𝛽 |−1) |𝑚 |𝛼(𝑚) ⊗ (𝜕𝑁 ′ 𝛽 − (−1) |𝛽 | 𝛽𝜕𝑁 ) (𝑛) .

Compare the two expressions above to see that they are identical. □

2.4.7 Proposition. Let𝛼 : 𝑀 → 𝑀 ′ be a chain map of 𝑅o-complexes and 𝛽 : 𝑁 → 𝑁 ′

a chain map of 𝑅-complexes. The homomorphism 𝛼 ⊗𝑅 𝛽 is a chain map of degree
|𝛼 | + |𝛽 |, and if 𝛼 or 𝛽 is null-homotopic, then 𝛼 ⊗𝑅 𝛽 is null-homotopic.

Proof. By 2.3.3 the chain maps 𝛼 and 𝛽 are cycles in the complexes Hom𝑅o (𝑀, 𝑀 ′)
and Hom𝑅 (𝑁, 𝑁 ′). That is, one has 𝜕Hom𝑅o (𝑀,𝑀′ ) (𝛼) = 0 and 𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝛽) = 0.
Denote by𝐻 the complex Hom𝕜 (𝑀 ⊗𝑅 𝑁, 𝑀 ′ ⊗𝑅 𝑁 ′), 2.4.6 yields 𝜕𝐻 (𝛼 ⊗𝑅 𝛽) = 0,
so 𝛼 ⊗𝑅 𝛽 is a chain map by 2.3.3.
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If 𝛼 is null-homotopic, then 𝛼 = 𝜕Hom𝑅o (𝑀,𝑀′ ) (𝜗) for some 𝜗 ∈ Hom𝑅o (𝑀, 𝑀 ′);
see 2.3.3. Now 2.4.6 yields𝛼 ⊗𝑅 𝛽 = 𝜕𝐻 (𝜗 ⊗𝑅 𝛽), whence𝛼 ⊗𝑅 𝛽 is null-homotopic.
Similarly, 𝛽 = 𝜕Hom𝑅 (𝑁,𝑁 ′ ) (𝜗) implies 𝛼 ⊗𝑅 𝛽 = 𝜕𝐻 ((−1) |𝛼 |𝛼 ⊗𝑅 𝜗). □

2.4.8 Corollary. Let 𝛼, 𝛼′ : 𝑀 → 𝑀 ′ and 𝛽, 𝛽′ : 𝑁 → 𝑁 ′ be chain maps of 𝑅o- and
𝑅-complexes, respectively. If 𝛼 ∼ 𝛼′ and 𝛽 ∼ 𝛽′, then one has 𝛼 ⊗𝑅 𝛽 ∼ 𝛼′ ⊗𝑅 𝛽′.

Proof. Bilinearity yields

𝛼 ⊗𝑅 𝛽 − 𝛼′ ⊗𝑅 𝛽′ = (𝛼 − 𝛼′) ⊗𝑅 𝛽 + 𝛼′ ⊗𝑅 (𝛽 − 𝛽′) ,

and by 2.4.7 this is a sum of null-homotopic chain maps; now invoke 2.2.25. □

The functor described in the next theorem is called the tensor product functor.

2.4.9 Theorem. The functions

⊗𝑅 : C(𝑅o) × C(𝑅) −→ C(𝕜) ,

defined on objects in 2.4.1 and on morphisms in 2.4.4, constitute a 𝕜-bilinear and
right exact functor.

Proof. It follows from 2.4.1 and 2.4.7 that ⊗𝑅 takes objects and morphisms
in C(𝑅o) × C(𝑅) to objects and morphisms in C(𝕜). The functoriality and the 𝕜-
bilinearity are established in 2.4.5. To prove right exactness, let

0 −→ (𝑀 ′, 𝑁 ′) (𝛼
′ ,𝛽′ )−−−−−−→ (𝑀, 𝑁) (𝛼,𝛽)−−−−−→ (𝑀 ′′, 𝑁 ′′) −→ 0

be an exact sequence in C(𝑅o) × C(𝑅). It is sufficient to verify that the sequence

(⋄) (𝑀 ′ ⊗𝑅 𝑁 ′)𝑣
(𝛼′⊗𝛽′ )𝑣−−−−−−−−→ (𝑀 ⊗𝑅 𝑁)𝑣

(𝛼⊗𝛽)𝑣−−−−−−→ (𝑀 ′′ ⊗𝑅 𝑁 ′′)𝑣 −→ 0

in M(𝕜) is exact for every 𝑣 ∈ ℤ. By 2.1.14 and 2.4.4 such a sequence is a coproduct
of exact sequences; indeed (𝛼′ ⊗𝑅 𝛽′)𝑣 is the coproduct∐

𝑖∈ℤ
𝛼′𝑖 ⊗𝑅 𝛽′𝑣−𝑖 :

∐
𝑖∈ℤ

𝑀 ′𝑖 ⊗𝑅 𝑁 ′𝑣−𝑖 −→
∐
𝑖∈ℤ

𝑀𝑖 ⊗𝑅 𝑁𝑣−𝑖 ,

and (𝛼 ⊗𝑅 𝛽)𝑣 has a similar form; it follows that (⋄) is exact. □

2.4.10 Addendum (to 2.4.9). If 𝑀 is in C(𝑄–𝑅o) and 𝑁 is in C(𝑅–𝑆o), then it
follows from 2.1.38 and 2.1.18 that (𝑀 ⊗𝑅 𝑁)♮ is a graded𝑄–𝑆o-bimodule, and it is
elementary to verify that 𝜕𝑀⊗𝑅𝑁 is𝑄- and 𝑆o-linear. That is, 𝑀 ⊗𝑅 𝑁 is an object in
C(𝑄–𝑆o). For morphisms 𝛼 in C(𝑄–𝑅o) and 𝛽 in C(𝑅–𝑆o) it is elementary to verify
that 𝛼 ⊗𝑅 𝛽 is a morphism in C(𝑄–𝑆o). Thus, there is an induced 𝕜-bilinear functor

⊗𝑅 : C(𝑄–𝑅o) × C(𝑅–𝑆o) −→ C(𝑄–𝑆o) .

2.4.11 Proposition. If 𝑀 is an 𝑅o-complex, then 𝑀 ⊗𝑅 is a ♮-functor and for every
degreewise split exact sequence 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 in C(𝑅), the sequence
0→ 𝑀 ⊗𝑅 𝑁 ′ → 𝑀 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 ′′ → 0 is degreewise split exact.
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Proof. It follows from 2.4.1 and 2.4.4 that 𝑀 ⊗𝑅 is a ♮-functor. The last assertion
is a special case of 2.1.54. □

2.4.12 Proposition. If 𝑁 is an 𝑅-complex, then ⊗𝑅 𝑁 is a ♮-functor and for every
degreewise split exact sequence 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 in C(𝑅o), the sequence
0→ 𝑀 ′ ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 → 𝑀 ′′ ⊗𝑅 𝑁 → 0 is degreewise split exact.

Proof. It follows from 2.4.1 and 2.4.4 that ⊗𝑅 𝑀 is a ♮-functor. The last assertion
is a special case of 2.1.55. □

Tensor Product and Shift

Recall from 2.2.4 that for every complex 𝑋 and every integer 𝑠 there is an invertible
chain map 𝜍𝑋𝑠 : 𝑋 → Σ𝑠𝑋 . If one suppresses these maps, then the isomorphism in
2.4.13 below is given by the assignment 𝑚 ⊗ 𝑛 ↦→ (−1)𝑠 |𝑚 |𝑚 ⊗ 𝑛.

2.4.13 Proposition. Let 𝑀 be an 𝑅o-complex, 𝑁 an 𝑅-complex, and 𝑠 an integer.
The composite 𝜍𝑀⊗𝑁𝑠 ◦ (𝑀 ⊗𝑅 𝜍Σ

𝑠𝑁
−𝑠 ) is an isomorphism of 𝕜-complexes,

𝑀 ⊗𝑅 Σ𝑠𝑁 �−−−→ Σ𝑠 (𝑀 ⊗𝑅 𝑁) ,

and it is natural in 𝑀 and 𝑁 .

Proof. As recalled above, 𝜍𝑀⊗𝑁𝑠 is an invertible chain map of degree 𝑠, and 𝜍Σ𝑠𝑁−𝑠
is a degree −𝑠 invertible chain map with inverse 𝜍𝑁𝑠 ; see 2.2.4. It follows from 2.4.5
and 2.4.7 that𝑀 ⊗𝑅 𝜍Σ

𝑠𝑁
−𝑠 is a degree−𝑠 invertible chain map with inverse𝑀 ⊗𝑅 𝜍𝑁𝑠 .

Thus, the composite 𝜍𝑀⊗𝑁𝑠 ◦ (𝑀 ⊗𝑅 𝜍Σ
𝑠𝑁
−𝑠 ) is an invertible chain map of degree 0,

i.e. an isomorphism in the category C(𝕜).
To prove that this isomorphism is natural in 𝑀 and 𝑁 , let 𝛼 : 𝑀 → 𝑀 ′ and

𝛽 : 𝑁 → 𝑁 ′ be morphisms of complexes. It suffices to show that the following
diagram of homomorphisms of 𝕜-complexes is commutative,

𝑀 ⊗𝑅 Σ𝑠𝑁

𝛼⊗Σ𝑠𝛽
��

𝑀⊗ 𝜍Σ𝑠𝑁
−𝑠

// 𝑀 ⊗𝑅 𝑁
𝜍𝑀⊗𝑁𝑠

//

𝛼⊗𝛽
��

Σ𝑠 (𝑀 ⊗𝑅 𝑁)

Σ𝑠 (𝛼⊗𝛽)
��

𝑀 ′ ⊗𝑅 Σ𝑠𝑁 ′
𝑀′⊗ 𝜍Σ𝑠𝑁 ′

−𝑠
// 𝑀 ′ ⊗𝑅 𝑁 ′

𝜍𝑀
′ ⊗𝑁 ′

𝑠
// Σ𝑠 (𝑀 ′ ⊗𝑅 𝑁 ′) .

The equality 𝛽𝜍Σ𝑠𝑁−𝑠 = 𝜍Σ
𝑠𝑁 ′
−𝑠 Σ𝑠𝛽 from (2.2.5.1) conspires with 2.4.5 to give

(𝛼 ⊗𝑅 𝛽) (𝑀 ⊗𝑅 𝜍Σ
𝑠𝑁
−𝑠 ) = 𝛼 ⊗𝑅 (𝛽𝜍Σ

𝑠𝑁
−𝑠 )

= 𝛼 ⊗𝑅 (𝜍Σ
𝑠𝑁 ′
−𝑠 Σ𝑠𝛽)

= (𝑀 ′ ⊗𝑅 𝜍Σ
𝑠𝑁 ′
−𝑠 ) (𝛼 ⊗𝑅 Σ𝑠𝛽) .

This shows that the left-hand square is commutative. The right-hand square is com-
mutative by (2.2.5.1). □

If one suppresses the degree changing chain maps 𝜍 defined in 2.2.4, then the
isomorphism in 2.4.14 below is an equality.
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2.4.14 Proposition. Let 𝑀 be an 𝑅o-complex, 𝑁 an 𝑅-complex, and 𝑠 an integer.
The composite 𝜍𝑀⊗𝑁𝑠 ◦ (𝜍Σ𝑠𝑀−𝑠 ⊗𝑅 𝑁) is an isomorphism of 𝕜-complexes,

Σ𝑠𝑀 ⊗𝑅 𝑁 �−−−→ Σ𝑠 (𝑀 ⊗𝑅 𝑁) ,

and it is natural in 𝑀 and 𝑁 .

Proof. An argument parallel to the proof of 2.4.13 applies. □

Exactness

2.4.15 Proposition. Let 𝑀 be an 𝑅o-complex and 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 a
sequence of 𝑅-complexes. If for all 𝑣, 𝑖 ∈ ℤ the sequence of modules,

0 −→ 𝑀𝑣 ⊗𝑅 𝑁 ′𝑖 −→ 𝑀𝑣 ⊗𝑅 𝑁𝑖 −→ 𝑀𝑣 ⊗𝑅 𝑁 ′′𝑖 −→ 0 ,

is exact, then the sequence 0→ 𝑀 ⊗𝑅 𝑁 ′ → 𝑀 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 ′′ → 0 is exact.

Proof. By 2.1.40 exactness of a sequence of complexes can be verified degree-
wise. Fix 𝑝 ∈ ℤ; it follows from 2.1.14 and 2.4.4 that the sequence of modules,
0→ (𝑀 ⊗𝑅 𝑁 ′)𝑝 → (𝑀 ⊗𝑅 𝑁)𝑝 → (𝑀 ⊗𝑅 𝑁 ′′)𝑝 → 0, is the coproduct of the se-
quences 0→ 𝑀𝑣 ⊗𝑅 𝑁 ′𝑣−𝑝 → 𝑀𝑣 ⊗𝑅 𝑁𝑣−𝑝 → 𝑀𝑣 ⊗𝑅 𝑁 ′′𝑣−𝑝 → 0 for all 𝑣 ∈ ℤ. By
assumption each of these sequences is exact, hence so is the coproduct. □

2.4.16 Proposition. Let 𝑁 be an 𝑅-complex and 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 a
sequence of 𝑅o-complexes. If for all 𝑣, 𝑖 ∈ ℤ the sequence of modules,

0 −→ 𝑀 ′𝑣 ⊗𝑅 𝑁𝑖 −→ 𝑀𝑣 ⊗𝑅 𝑁𝑖 −→ 𝑀 ′′𝑣 ⊗𝑅 𝑁𝑖 −→ 0 ,

is exact, then the sequence 0→ 𝑀 ′ ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 → 𝑀 ′′ ⊗𝑅 𝑁 → 0 is exact.

Proof. An argument parallel to the proof of 2.4.15 applies. □

2.4.17 Example. Let 𝐹 be a complex of flat 𝑅-modules. For every exact sequence
0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 of 𝑅o-complexes the induced sequence of 𝕜-complexes,
0→ 𝑀 ′ ⊗𝑅 𝐹 → 𝑀 ⊗𝑅 𝐹 → 𝑀 ′′ ⊗𝑅 𝐹 → 0, is exact.

Exercises

E 2.4.1 Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. Consider the degree −1 homomorphisms
𝜕𝑀⊗𝑅𝑁 , 𝜕𝑀 ⊗𝑅 𝑁 , and 𝑀 ⊗𝑅 𝜕𝑁 from 𝑀 ⊗𝑅 𝑁 to itself. Verify the identity

𝜕𝑀⊗𝑅𝑁 = 𝜕𝑀 ⊗𝑅 𝑁 +𝑀 ⊗𝑅 𝜕𝑁 .
E 2.4.2 Give a proof of part (b) in 2.4.8.
E 2.4.3 (Cf. 2.4.10) Let 𝛼 be a homomorphism of complexes of 𝑄–𝑅o-bimodules and 𝛽 a

homomorphism of complexes of 𝑅–𝑆o-bimodules. Show that 𝛼 ⊗𝑅 𝛽 is a homomorphism
of complexes of 𝑄–𝑆o-bimodules.

E 2.4.4 Let 𝑀 be an 𝑅o-module and consider the functor 𝑀 ⊗𝑅 : M(𝑅) →M(𝕜) . Show that
the extended functor C(𝑅) → C(𝕜) described in 2.1.48 agrees with the functor 𝑀 ⊗𝑅
defined in this section. Is the similar statement true for an 𝑅-module 𝑁 and ⊗𝑅 𝑁?
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2.5 Boundedness and Finiteness

Synopsis. Degreewise finite generation/presentation; boundedness (above/below); supremum; infi-
mum; amplitude; boundedness of Hom complex; boundedness of tensor product complex; hard/soft
truncation; graded basis; graded-free module.

In this section, we examine conditions on complexes that naturally extend finite
generation and finite presentation of modules.

2.5.1 Definition. An 𝑅-complex 𝑀 is called degreewise finitely generated if the
𝑅-module 𝑀𝑣 is finitely generated for every 𝑣 ∈ ℤ. Similarly, 𝑀 is called degreewise
finitely presented if the 𝑅-module 𝑀𝑣 is finitely presented for every 𝑣 ∈ ℤ.

2.5.2 Definition. An 𝑅-complex 𝑀 is called bounded above if 𝑀𝑣 = 0 holds for
𝑣 ≫ 0, bounded below if 𝑀𝑣 = 0 holds for 𝑣 ≪ 0, and bounded if it is bounded
above and below.

Remark. Other terms for bounded above/below are ‘left/right bounded’.

2.5.3. Suppressing the full and faithful functors M(𝑅) −−→ Mgr (𝑅) −−→ C(𝑅),
see 2.1.13 and 2.1.35, an 𝑅-module 𝑀 is considered as an 𝑅-complex 0→ 𝑀 → 0
concentrated in degree 0. Conversely, an 𝑅-complex 𝑀 that is concentrated in degree
0 is identified with the module 𝑀0; this amounts to suppressing the forgetful functors
C(𝑅) −−→Mgr (𝑅) −−→M(𝑅).

More generally, a diagram in M(𝑅),

𝑀0 𝛼0

−−−→ · · · −→ 𝑀 𝑝−1 𝛼𝑝−1

−−−−→ 𝑀 𝑝 ,

such that 𝛼𝑛𝛼𝑛−1 = 0 holds for all 𝑛 ∈ {1, . . . , 𝑝 − 1}, can be considered, for every
𝑢 ∈ ℤ, as an 𝑅-complex concentrated in degrees 𝑝 + 𝑢, . . . , 𝑢.

Remark. A complex 0→ 𝑀 → 0 with the module 𝑀 in degree zero is called a ‘stalk complex’.

The supremum and infimum of a complex, which are defined next, capture its
homological position; the amplitude captures its homological size.

2.5.4 Definition. Let 𝑀 be an 𝑅-complex. The supremum and infimum of 𝑀 are
defined as follows,

sup𝑀 = sup{𝑣 ∈ ℤ | H𝑣 (𝑀) ≠ 0} and inf 𝑀 = inf{𝑣 ∈ ℤ | H𝑣 (𝑀) ≠ 0} .

Adopting the conventions sup∅ = −∞ and inf ∅ = −∞ one has sup𝑀 = −∞ and
inf 𝑀 = ∞ if 𝑀 is acyclic. The amplitude of 𝑀 is the difference

amp𝑀 = sup𝑀 − inf 𝑀 ;

by the conventions above one has amp𝑀 = −∞ if 𝑀 is acyclic.

Remark. Given a complex 𝑀 one may, depending on the context, take more interest in the extent
of the underlying graded module 𝑀♮ or the extent of the homology H(𝑀 ) . Some authors define
the supremum and infimum of a complex 𝑀 based on 𝑀♮ as opposed to the homology. With that
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definition the invariants defined above are the supremum and infimum of H(𝑀 ) . With 2.5.4 we
claim the simpler notation for the notion used more frequently in this book; as a graded module is
equal to its homology it only takes addition of the symbold ♮ to make the switch; see 2.5.5 below.

2.5.5. Let 𝑀 be an 𝑅-complex. For every integer 𝑠 one evidently has

supΣ𝑠𝑀 = sup𝑀 + 𝑠 , inf Σ𝑠𝑀 = inf 𝑀 + 𝑠 , and ampΣ𝑠𝑀 = amp𝑀 .

Moreover, one has H(𝑀♮) = 𝑀♮ and, therefore,

sup𝑀♮ = sup{𝑣 ∈ ℤ | 𝑀𝑣 ≠ 0} and inf 𝑀♮ = inf{𝑣 ∈ ℤ | 𝑀𝑣 ≠ 0} .

Thus, a complex 𝑀 ≠ 0 is bounded above if and only if sup𝑀♮ is not ∞, and 𝑀 is
bounded below if and only if inf 𝑀♮ is not −∞.

2.5.6 Proposition. Let 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be an exact sequence of
𝑅-complexes. The following inequalities hold.

sup𝑀 ′ ⩽ max{sup𝑀, sup𝑀 ′′ − 1} , inf 𝑀 ′ ⩾ min{inf 𝑀, inf 𝑀 ′′ − 1} ,
sup𝑀 ⩽ max{sup𝑀 ′, sup𝑀 ′′} , inf 𝑀 ⩾ min{inf 𝑀 ′, inf 𝑀 ′′} ,

sup𝑀 ′′ ⩽ max{sup𝑀 ′ + 1, sup𝑀 } , and inf 𝑀 ′′ ⩾ min{inf 𝑀 ′ + 1, inf 𝑀 } .

In particular, if two of the complexes 𝑀 ′, 𝑀 , and 𝑀 ′′ are acyclic, then so is the third.

Proof. The inequalities follow from the exact sequence (2.2.20.2). □

2.5.7 Proposition. Let 𝑀 be an 𝑅-complex.
(a) For every projective 𝑅-module 𝑃 the next inequalities hold,

− sup Hom𝑅 (𝑃, 𝑀) ⩾ − sup𝑀 and − inf Hom𝑅 (𝑃, 𝑀) ⩽ − inf 𝑀 ;

if 𝑃 is faithfully projective, then equalities hold. In particular, if 𝑃 is faithfully
projective, then Hom𝑅 (𝑃, 𝑀) is acyclic if and only if 𝑀 is acyclic.

(b) For every injective 𝑅-module 𝐸 the next inequalities hold,

− sup Hom𝑅 (𝑀, 𝐸) ⩾ inf 𝑀 and − inf Hom𝑅 (𝑀, 𝐸) ⩽ sup𝑀 ;

if 𝐸 is faithfully injective, then equalities hold. In particular, if 𝐸 is faithfully
injective, then Hom𝑅 (𝑀, 𝐸) is acyclic if and only if 𝑀 is acyclic.

(c) For every flat 𝑅o-module 𝐹 the next inequalities hold,

inf (𝐹 ⊗𝑅 𝑀) ⩾ inf 𝑀 and sup (𝐹 ⊗𝑅 𝑀) ⩽ sup𝑀 ;

if 𝐹 is faithfully flat, then equalities hold. In particular, if 𝐹 is faithfully flat,
then 𝐹 ⊗𝑅 𝑀 is acyclic if and only if 𝑀 is acyclic.

Proof. The assertions are immediate from 2.2.19. □
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Hom Complex

The Hom functor does not commute with homology, but a map compares the homo-
logy of a Hom complex to Hom of the homology complexes. This map is sometimes
referred to as the Künneth map for Hom because of its resemblance to 2.5.14.

2.5.8 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. There is a morphism,

H(Hom𝑅 (𝑀, 𝑁)) −→ Hom𝑅 (H(𝑀),H(𝑁)) ,

of 𝕜-complexes with degree 𝑣 component

H𝑣 (Hom𝑅 (𝑀, 𝑁)) →
∏
𝑖∈ℤ

Hom𝑅 (H𝑖 (𝑀),H𝑖+𝑣 (𝑁)) given by [𝛼] ↦→ (H𝑖 (𝛼))𝑖∈ℤ .

Proof. Let 𝛼 be a chain map of degree 𝑣; it can by 2.2.5 be seen as a morphism
𝛼 : 𝑀 → Σ−𝑣𝑁 . For every 𝑖 ∈ ℤ it induces by 2.2.15 a homomorphism of 𝑅-modules,

H𝑖 (𝛼) : H𝑖 (𝑀) −→ H𝑖 (Σ−𝑣𝑁) = H𝑖+𝑣 (𝑁) .

In view of this and 2.3.3(a) there is for every 𝑖 ∈ ℤ a homomorphism of k-modules,

Z𝑣 (Hom𝑅 (𝑀, 𝑁)) −→ Hom𝑅 (H𝑖 (𝑀),H𝑖+𝑣 (𝑁)) given by 𝛼 ↦→ H𝑖 (𝛼) .

By 2.3.3(b) and 2.2.26 the submodule B𝑣 (Hom𝑅 (𝑀, 𝑁)) = B0 (Hom𝑅 (𝑀, Σ−𝑣𝑁)) is
contained in the kernel of this homomorphism, and hence there are homomorphisms

H𝑣 (Hom𝑅 (𝑀, 𝑁)) −→ Hom𝑅 (H𝑖 (𝑀),H𝑖+𝑣 (𝑁)) given by [𝛼] ↦→ H𝑖 (𝛼) .

The assertion now follows from 1.1.19. □

Remark. If 𝑅 is semi-simple, then the morphism from 2.5.8 is an isomorphism; see E 2.5.3. In
general, if all the modules 𝑀𝑣 and B𝑣 (𝑀 ) are projective, then this morphism is surjective and its
kernel can be explicitly described; this is the content of the Universal Coefficient Theorem. It is in
some places called the Künneth Formula for Cohomology; see also the Remark after 2.5.14.

The map in 2.5.8 need neither be surjective nor injective.

2.5.9 Example. Let𝑀 be theℤ-moduleℤ/2ℤ and𝑁 the complex 0→ ℤ
2→ ℤ→ 0,

concentrated in degrees 1 and 0. Evidently, Homℤ (𝑀, 𝑁) = 0 holds and, therefore,
H0 (Homℤ (𝑀, 𝑁)) = 0. At the same time, one has

Homℤ (H0 (𝑀),H0 (𝑁)) = Homℤ (ℤ/2ℤ,ℤ/2ℤ) � ℤ/2ℤ ,

so the map from 2.5.8 is not surjective in degree 0. With 𝑁 ′ = 0→ ℤ↠ ℤ/2ℤ→ 0,
concentrated in degrees 0 and −1, one has Homℤ (𝑀, 𝑁 ′) � Σ−1(ℤ/2ℤ) and, there-
fore, H−1 (Homℤ (𝑀, 𝑁 ′)) � ℤ/2ℤ compared to

Homℤ (H0 (𝑀),H−1 (𝑁 ′)) = Homℤ (ℤ/2ℤ, 0) = 0 .

Thus the map from 2.5.8 is not injective in degree −1.

2.5.10 Lemma. Let 𝑀 and 𝑁 be 𝑅-complexes with 𝑀𝑣 = 0 for all 𝑣 < 0 and 𝑁𝑣 = 0
for all 𝑣 > 0. The homomorphism of 𝕜-modules,
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H0 (Hom𝑅 (𝑀, 𝑁)) −→ Hom𝑅 (H0 (𝑀),H0 (𝑁)) given by [𝛼] ↦−→ H0 (𝛼)

is an isomorphism.

Proof. It follows from the assumptions on 𝑀 and 𝑁 that the map in question is the
degree 0 component of the morphism from 2.5.8. It further follows that the only
degree 1 homomorphism from 𝑀 to 𝑁 is the zero map. In particular, the only null-
homotopic morphism 𝑀 → 𝑁 is the zero map. Hence one has H0 (Hom𝑅 (𝑀, 𝑁)) =
C(𝑅) (𝑀, 𝑁) by 2.3.10. This k-module may be identified with

{𝛽 ∈ Hom𝑅 (𝑀0, 𝑁0) | 𝛽𝜕𝑀1 = 0 = 𝜕𝑁0 𝛽} ,

again by the assumptions on 𝑀 and 𝑁 , which also yield H0 (𝑀) = C0 (𝑀) and
H0 (𝑁) = Z0 (𝑁). Let 𝜋0 : 𝑀0 ↠ C0 (𝑀) be the quotient map and 𝜄0 : Z0 (𝑁)↣ 𝑁0
the embedding; the homomorphism in question is now identified with

(★) {𝛽 ∈ Hom𝑅 (𝑀0, 𝑁0) | 𝛽𝜕𝑀1 = 0 = 𝜕𝑁0 𝛽} −→ Hom𝑅 (C0 (𝑀),Z0 (𝑁))

which maps 𝛽 to the unique homomorphism 𝛽 that makes the diagram

𝑀0

𝜋0
����

𝛽
// 𝑁0

C0 (𝑀)
𝛽
// Z0 (𝑁)
OO

𝜄0

OO

commutative. It remains to note that (★) is an isomorphism; its inverse maps an
element 𝛾 ∈ Hom𝑅 (C0 (𝑀),Z0 (𝑁)) to the composite 𝜄0𝛾𝜋0. □

2.5.11. Let 𝑀 and 𝑁 be 𝑅-complexes. Suppose there exist integers 𝑤 and 𝑢 such that
one has 𝑀𝑣 = 0 for all 𝑣 < 𝑢 and 𝑁𝑣 = 0 for all 𝑣 > 𝑤. For each 𝑣 ∈ ℤ the module
Hom𝑅 (𝑀, 𝑁)𝑣 is then a direct sum

Hom𝑅 (𝑀, 𝑁)𝑣 =
∏
𝑖∈ℤ

Hom𝑅 (𝑀𝑖 , 𝑁𝑖+𝑣) =
𝑤−𝑣⊕
𝑖=𝑢

Hom𝑅 (𝑀𝑖 , 𝑁𝑖+𝑣) .

If one has 𝑤 − 𝑣 < 𝑢, then Hom𝑅 (𝑀, 𝑁)𝑣 = 0 holds.

2.5.12 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. If 𝑀 is bounded below and 𝑁 is
bounded above, then the complex Hom𝑅 (𝑀, 𝑁) is bounded above. More precisely, if
one has 𝑀𝑣 = 0 for all 𝑣 < 𝑢 and 𝑁𝑣 = 0 for all 𝑣 > 𝑠, then the next assertions hold.

(a) Hom𝑅 (𝑀, 𝑁)−𝑣 = 0 for 𝑣 < 𝑢 − 𝑠 .
(b) Hom𝑅 (𝑀, 𝑁)−(𝑢−𝑠) = Hom𝑅 (𝑀𝑢, 𝑁𝑠) .
(c) H−(𝑢−𝑠) (Hom𝑅 (𝑀, 𝑁)) � Hom𝑅 (H𝑢 (𝑀),H𝑠 (𝑁)) .

Proof. Parts (a) and (b) are immediate from 2.5.11.
(c): By 2.2.15, 2.3.14, and 2.3.16 there is an isomorphism

H−(𝑢−𝑠) (Hom𝑅 (𝑀, 𝑁)) = H0 (Σ𝑢−𝑠Hom𝑅 (𝑀, 𝑁)) � H0 (Hom𝑅 (Σ−𝑢𝑀, Σ−𝑠𝑁)) .
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The complexes Σ−𝑢𝑀 and Σ−𝑠𝑁 are concentrated in non-negative and non-positive
degrees, respectively, so by 2.5.10 there is an isomorphism

H0 (Hom𝑅 (Σ−𝑢𝑀, Σ−𝑠𝑁)) � Hom𝑅 (H0 (Σ−𝑢𝑀),H0 (Σ−𝑠𝑁))
= Hom𝑅 (H𝑢 (𝑀),H𝑠 (𝑁)) . □

2.5.13 Proposition. Assume that 𝑆 is right Noetherian. Let 𝑀 be a bounded below
𝑅-complex and 𝑋 a bounded above complex of 𝑅–𝑆o-bimodules. If 𝑀 is degreewise
finitely generated and 𝑋 is degreewise finitely generated over 𝑆o, then the 𝑆o-complex
Hom𝑅 (𝑀, 𝑋) is bounded above and degreewise finitely generated.

Proof. For every 𝑣 ∈ ℤ and 𝑖 ∈ ℤ the 𝑆o-module Hom𝑅 (𝑀𝑖 , 𝑋𝑖+𝑣) is finitely gener-
ated; see 1.3.13. By assumption there exist integers 𝑤 and 𝑢 such that 𝑀𝑣 = 0 for all
𝑣 < 𝑢 and 𝑋𝑣 = 0 for all 𝑣 > 𝑤. It follows from 2.5.11 that the module Hom𝑅 (𝑀, 𝑋)𝑣
is finitely generated for every 𝑣, and by 2.5.12 it is zero for 𝑣 > 𝑤 − 𝑢. □

Tensor Product Complex

The tensor product does not commute with homology, but the so-called Künneth
map compares the homology of a tensor product complex to the tensor product of
the homology complexes.

2.5.14 Proposition. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. There is a
morphism of 𝕜-complexes,

H(𝑀) ⊗𝑅 H(𝑁) −→ H(𝑀 ⊗𝑅 𝑁) ,

with degree 𝑣 component∐
𝑖∈ℤ
(H𝑖 (𝑀) ⊗𝑅 H𝑣−𝑖 (𝑁)) −→ H𝑣 (𝑀 ⊗𝑅 𝑁) given by 𝜀𝑖 ( [𝑚] ⊗ [𝑛]) ↦−→ [𝑚 ⊗ 𝑛] .

Proof. From the definition of the differential on the complex 𝑀 ⊗𝑅 𝑁 , see 2.4.1, it
follows for every 𝑖 ∈ ℤ that the middle 𝑅-linear map 𝑀𝑖 ×𝑁𝑣−𝑖 → (𝑀 ⊗𝑅 𝑁)𝑣 given
by (𝑚, 𝑛) ↦→ 𝑚 ⊗ 𝑛 restrict to maps

(†) Z𝑖 (𝑀) × Z𝑣−𝑖 (𝑁) → Z𝑣 (𝑀 ⊗𝑅 𝑁) and B𝑖 (𝑀) × B𝑣−𝑖 (𝑁) → B𝑣 (𝑀 ⊗𝑅 𝑁) .

For the second map, note that for 𝑚 = 𝜕𝑀
𝑖+1 (𝑚

′) in B𝑖 (𝑀) and 𝑛 = 𝜕𝑁
𝑣−𝑖+1 (𝑛

′) in
B𝑣−𝑖 (𝑁) one has

𝜕
𝑀⊗𝑅𝑁
𝑣+1 (𝑚′ ⊗ 𝑛) = 𝜕𝑀𝑖+1 (𝑚

′) ⊗ 𝑛 + (−1)𝑖+1𝑚′ ⊗ 𝜕𝑁𝑣−𝑖 (𝑛)
= 𝑚 ⊗ 𝑛 + (−1)𝑖+1𝑚′ ⊗ 𝜕𝑁𝑣−𝑖 (𝜕𝑁𝑣−𝑖+1 (𝑛

′))
= 𝑚 ⊗ 𝑛 ,

so 𝑚 ⊗ 𝑛 belongs to B𝑣 (𝑀 ⊗𝑅 𝑁). For every 𝑖 ∈ ℤ it follows from (†) that there is
a well-defined middle 𝑅-linear map H𝑖 (𝑀) × H𝑣−𝑖 (𝑁) → H𝑣 (𝑀 ⊗𝑅 𝑁) given by
( [𝑚], [𝑛]) ↦→ [𝑚 ⊗ 𝑛], which by the universal property of the tensor product, 2.1.15,
induces a homomorphism
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H𝑖 (𝑀) ⊗𝑅 H𝑣−𝑖 (𝑁) −→ H𝑣 (𝑀 ⊗𝑅 𝑁) given by [𝑚] ⊗ [𝑛] ↦−→ [𝑚 ⊗ 𝑛] .

The assertion now follows from 1.1.20. □

Remark. If 𝑅 is semi-simple, then the morphism from 2.5.14 is an isomorphism; see E 2.5.4. In
general, if all the modules 𝑀𝑣 and B𝑣 (𝑀 ) are flat, then this morphism is injective and its cokernel
can be explicitly described; this is the content of the Künneth Formula, see e.g. Weibel [253, 3.6].
It is in some places called the Universal Coefficient Theorem for Homology; see also the Remark
after 2.5.8.

The map in 2.5.14 need neither be surjective nor injective.

2.5.15 Example. Let𝑀 be theℤ-moduleℤ/2ℤ and𝑁 the complex 0→ℤ
2→ ℤ→ 0,

concentrated in degrees 1 and 0. One has 𝑀 ⊗ℤ 𝑁 � Σ (ℤ/2ℤ) ⊕ ℤ/2ℤ and, there-
fore, H1 (𝑀 ⊗ℤ 𝑁) � ℤ/2ℤ. At the same time, one has

H0 (𝑀) ⊗ℤ H1 (𝑁) = ℤ/2ℤ ⊗ℤ 0 = 0 ,

so the map from 2.5.14 is not surjective in degree 1. With𝑁 ′ = 0→ ℤ↠ ℤ/2ℤ→ 0,
concentrated in degrees 0 and −1, one has 𝑀 ⊗ℤ 𝑁 � 0 → ℤ/2ℤ =→ ℤ/2ℤ → 0
and, therefore, H0 (𝑀 ⊗ℤ 𝑁) = 0 compared to

H0 (𝑀) ⊗ℤ H0 (𝑁) = ℤ/2ℤ ⊗ℤ 2ℤ � ℤ/2ℤ ⊗ℤ ℤ � ℤ/2ℤ .

Thus the map from 2.5.14 is not injective in degree 0.

2.5.16 Lemma. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex with 𝑀𝑣 = 0 = 𝑁𝑣
for all 𝑣 < 0. The homomorphism of k-modules,

H0 (𝑀) ⊗𝑅 H0 (𝑁) −→ H0 (𝑀 ⊗𝑅 𝑁) given by [𝑚] ⊗ [𝑛] ↦−→ [𝑚 ⊗ 𝑛] ,

is an isomorphism.

Proof. It follows from the assumptions on 𝑀 and 𝑁 that the map in question is
the degree 0 component of the morphism from 2.5.14; we proceed to establish an
inverse. The assumptions further yield H0 (𝑀) = C0 (𝑀), H0 (𝑁) = C0 (𝑁), and
H0 (𝑀 ⊗𝑅 𝑁) = C0 (𝑀 ⊗𝑅 𝑁) = (𝑀0 ⊗𝑅 𝑁0)/B0 (𝑀 ⊗𝑅 𝑁); see 2.4.1. The map

(♭) 𝑀0 ⊗𝑅 𝑁0 → C0 (𝑀) ⊗𝑅 C0 (𝑁) given by 𝑚 ⊗ 𝑛 ↦→ [𝑚]B0 (𝑀 ) ⊗ [𝑛]B0 (𝑁 )

is zero on B0 (𝑀 ⊗𝑅 𝑁). Indeed, one has (𝑀 ⊗𝑅 𝑁)1 = (𝑀1 ⊗𝑅 𝑁0) ⊕ (𝑀0 ⊗𝑅 𝑁1)
and for 𝑚′ ⊗ 𝑛 ∈ (𝑀1 ⊗𝑅 𝑁0) and 𝑚 ⊗ 𝑛′ ∈ (𝑀0 ⊗𝑅 𝑁1) there are equalities,

𝜕
𝑀⊗𝑅𝑁
1 (𝑚′ ⊗ 𝑛) = 𝜕𝑀1 (𝑚

′) ⊗ 𝑛 − 𝑚′ ⊗ 𝜕𝑁0 (𝑛) = 𝜕𝑀1 (𝑚
′) ⊗ 𝑛 and

𝜕
𝑀⊗𝑅𝑁
1 (𝑚 ⊗ 𝑛′) = 𝜕𝑀0 (𝑚) ⊗ 𝑛

′ + 𝑚 ⊗ 𝜕𝑁1 (𝑛
′) = 𝑚 ⊗ 𝜕𝑁1 (𝑛

′) .

Both elements 𝜕𝑀1 (𝑚
′) ⊗ 𝑛 and𝑚 ⊗ 𝜕𝑁1 (𝑛

′) are mapped to zero by (♭). It follows that
(♭) induces a homomorphism C0 (𝑀 ⊗𝑅 𝑁) → C0 (𝑀) ⊗𝑅 C0 (𝑁), which is given by
[𝑚 ⊗ 𝑛]B0 (𝑀⊗𝑅𝑁 ) ↦→ [𝑚]B0 (𝑀 ) ⊗ [𝑛]B0 (𝑁 ) ; this is the desired inverse. □

8-Mar-2024 Draft - use at own risk



88 2 Complexes

2.5.17. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. Suppose there exist integers
𝑢 and 𝑤 such that 𝑀𝑣 = 0 for 𝑣 < 𝑢 and 𝑁𝑣 = 0 for 𝑣 < 𝑤. For each 𝑣 ∈ ℤ the module
(𝑀 ⊗𝑅 𝑁)𝑣 is then a direct sum

(𝑀 ⊗𝑅 𝑁)𝑣 =
∐
𝑖∈ℤ

𝑀𝑖 ⊗𝑅 𝑁𝑣−𝑖 =
𝑣−𝑤⊕
𝑖=𝑢

𝑀𝑖 ⊗𝑅 𝑁𝑣−𝑖 .

If one has 𝑣 − 𝑤 < 𝑢, then (𝑀 ⊗𝑅 𝑁)𝑣 = 0 holds.

2.5.18 Proposition. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. If 𝑀 and 𝑁 are
bounded below, then the complex 𝑀 ⊗𝑅 𝑁 is a bounded below. More precisely, if
one has 𝑀𝑣 = 0 for 𝑣 < 𝑢 and 𝑁𝑣 = 0 for 𝑣 < 𝑤, then the next assertions hold.

(a) (𝑀 ⊗𝑅 𝑁)𝑣 = 0 for 𝑣 < 𝑢 + 𝑤.
(b) (𝑀 ⊗𝑅 𝑁)𝑢+𝑤 = 𝑀𝑢 ⊗𝑅 𝑁𝑤 .
(c) H𝑢+𝑤(𝑀 ⊗𝑅 𝑁) � H𝑢 (𝑀) ⊗𝑅 H𝑤(𝑁) .

Proof. Parts (a) and (b) are immediate from 2.5.17.
(c): By 2.2.15, 2.4.13, and 2.4.14 there is an isomorphism

H𝑢+𝑤(𝑀 ⊗𝑅 𝑁) = H0 (Σ−𝑢−𝑤(𝑀 ⊗𝑅 𝑁)) � H0 ((Σ−𝑢𝑀) ⊗𝑅 (Σ−𝑤𝑁)) .

The complexes Σ−𝑢𝑀 and Σ−𝑤𝑁 are concentrated in non-negative degrees, so by
2.5.16 there is an isomorphism

H0 ((Σ−𝑢𝑀) ⊗𝑅 (Σ−𝑤𝑁)) � H0 (Σ−𝑢𝑀) ⊗𝑅 H0 (Σ−𝑤𝑁)
= H𝑢 (𝑀) ⊗𝑅 H𝑤(𝑁) . □

2.5.19 Proposition. Let 𝑁 be a bounded below 𝑆-complex and 𝑋 a bounded below
complex of 𝑅–𝑆o-bimodules. If 𝑁 is degreewise finitely generated and 𝑋 is degree-
wise finitely generated over 𝑅, then the 𝑅-complex 𝑋 ⊗𝑆 𝑁 is bounded below and
degreewise finitely generated.

Proof. For every 𝑣 ∈ ℤ and 𝑖 ∈ ℤ the 𝑅-module 𝑋𝑖 ⊗𝑆 𝑁𝑣−𝑖 is finitely generated;
see 1.3.14. By assumption there exist integers 𝑢 and 𝑤 such that 𝑋𝑣 = 0 for 𝑣 < 𝑢

and 𝑁𝑣 = 0 for 𝑣 < 𝑤. It follows from 2.5.17 that the module (𝑋 ⊗𝑆 𝑁)𝑣 is finitely
generated for every 𝑣, and by 2.5.18 it is zero for 𝑣 < 𝑢 + 𝑤. □

Truncations

To handle unbounded complexes it is at times convenient to cut them into bounded
pieces. The instruments for such procedures are known as truncations.

2.5.20 Definition. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. The hard truncation
above of 𝑀 at 𝑛 is the complex 𝑀ď𝑛 defined by

(𝑀ď𝑛)𝑣 =

{
0 for 𝑣 > 𝑛
𝑀𝑣 for 𝑣 ⩽ 𝑛

and 𝜕
𝑀ď𝑛
𝑣 =

{
0 for 𝑣 > 𝑛
𝜕𝑀𝑣 for 𝑣 ⩽ 𝑛 .

It can be visualized as follows,
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𝑀ď𝑛 = 0 −→ 𝑀𝑛
𝜕𝑀𝑛−−−→ 𝑀𝑛−1

𝜕𝑀
𝑛−1−−−→ 𝑀𝑛−2 −→ · · · .

Similarly, the hard truncation below of 𝑀 at 𝑛 is the complex 𝑀ě𝑛 defined by

(𝑀ě𝑛)𝑣 =

{
𝑀𝑣 for 𝑣 ⩾ 𝑛
0 for 𝑣 < 𝑛

and 𝜕
𝑀ě𝑛
𝑣 =

{
𝜕𝑀𝑣 for 𝑣 > 𝑛
0 for 𝑣 ⩽ 𝑛 .

It can be visualized as follows,

𝑀ě𝑛 = · · · −→ 𝑀𝑛+2
𝜕𝑀
𝑛+2−−−→ 𝑀𝑛+1

𝜕𝑀
𝑛+1−−−→ 𝑀𝑛 −→ 0 .

Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes and 𝑛 an integer. The symbol 𝛼ď𝑛

denotes the induced morphism 𝑀ď𝑛 → 𝑁ď𝑛, and 𝛼ě𝑛 is defined similarly.

2.5.21. Let 𝑛 be an integer. Hard truncation above ( )ď𝑛 and hard truncation below
( )ě𝑛 are evidently 𝕜-linear ♮-functors from C(𝑅) to C(𝑅).

2.5.22. Let𝑀 be an 𝑅-complex and 𝑛 an integer. The truncation𝑀ď𝑛 is a subcomplex
of 𝑀 , and the quotient complex 𝑀/𝑀ď𝑛 is the truncation 𝑀ě𝑛+1. In particular, there
is a degreewise split exact sequence of 𝑅-complexes,

0 −→ 𝑀ď𝑛 −→ 𝑀 −→ 𝑀ě𝑛+1 −→ 0 .

2.5.23 Definition. Let 𝑀 be an 𝑅-complex and 𝑛 an integer.
The soft truncation above of 𝑀 at 𝑛 is the 𝑅-complex 𝑀Ď𝑛 defined by

(𝑀Ď𝑛)𝑣 =


0 for 𝑣 > 𝑛

C𝑛 (𝑀) for 𝑣 = 𝑛
𝑀𝑣 for 𝑣 < 𝑛

and 𝜕
𝑀Ď𝑛
𝑣 =


0 for 𝑣 > 𝑛
𝜕𝑀𝑛 for 𝑣 = 𝑛
𝜕𝑀𝑣 for 𝑣 < 𝑛

where 𝜕𝑀𝑛 : C𝑛 (𝑀) → 𝑀𝑛−1 is the homomorphism induced by 𝜕𝑀𝑛 . The truncated
complex can be visualized as follows,

𝑀Ď𝑛 = 0 −→ C𝑛 (𝑀)
�̄�𝑀𝑛−−−→ 𝑀𝑛−1

𝜕𝑀
𝑛−1−−−→ 𝑀𝑛−2 −→ · · · .

The canonical map 𝑀 ↠ 𝑀Ď𝑛 is denoted 𝜏𝑀Ď𝑛.
Similarly, the soft truncation below of 𝑀 at 𝑛 is the 𝑅-complex 𝑀Ě𝑛 defined by:

(𝑀Ě𝑛)𝑣 =


𝑀𝑣 for 𝑣 > 𝑛

Z𝑛 (𝑀) for 𝑣 = 𝑛
0 for 𝑣 < 𝑛

and 𝜕
𝑀Ě𝑛
𝑣 =

{
𝜕𝑀𝑣 for 𝑣 > 𝑛
0 for 𝑣 ⩽ 𝑛 .

The truncated complex can be visualized as follows,

𝑀Ě𝑛 = · · · −→ 𝑀𝑛+2
𝜕𝑀
𝑛+2−−−→ 𝑀𝑛+1

𝜕𝑀
𝑛+1−−−→ Z𝑛 (𝑀) −→ 0 .

The canonical map 𝑀Ě𝑛 ↣ 𝑀 is denoted 𝜏𝑀Ě𝑛.
Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes and 𝑛 an integer. The symbol 𝛼Ď𝑛

denotes the induced morphism 𝑀Ď𝑛 → 𝑁Ď𝑛, and 𝛼Ě𝑛 is defined similarly.
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2.5.24 Proposition. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. Soft truncation above
( )Ď𝑛 is a 𝕜-linear endofunctor on C(𝑅), and the following assertions hold.

(a) The canonical map 𝜏𝑀Ď𝑛 : 𝑀 ↠ 𝑀Ď𝑛 from 2.5.23 is a surjective morphism of
𝑅-complexes, i.e. 𝑀Ď𝑛 is a quotient complex of 𝑀 .

(b) For every 𝑣 ⩽ 𝑛 the induced map H𝑣 (𝜏𝑀Ď𝑛) is an isomorphism of 𝑅-modules.
(c) One has

Ker(𝜏𝑀Ď𝑛) = · · · −→ 𝑀𝑛+2
𝜕𝑀
𝑛+2−−−→ 𝑀𝑛+1

𝜕𝑀
𝑛+1−−−→ B𝑛 (𝑀) −→ 0 ,

and if H𝑛 (𝑀) = 0 holds, then Ker(𝜏𝑀Ď𝑛) is the complex 𝑀Ě𝑛 .

Proof. It is immediate from the definition that ( )Ď𝑛 is a 𝕜-linear functor.
(a): To see that the surjective map 𝜏𝑀Ď𝑛 : 𝑀 ↠ 𝑀Ď𝑛 is a morphism of 𝑅-complexes,

notice that the composite (𝜏𝑀Ď𝑛)𝑛𝜕𝑀𝑛+1 is zero and recall that the definition of 𝜕𝑀𝑛 is
𝜕𝑀𝑛 ( [𝑥]B𝑛 (𝑀 ) ) = 𝜕𝑀𝑛 (𝑥) for 𝑥 ∈ 𝑀𝑛.

(b): One has H𝑛 (𝑀Ď𝑛) = Ker 𝜕𝑀𝑛 = H𝑛 (𝑀) and H𝑣 (𝜏𝑀Ď𝑛) = H𝑣 (1𝑀 ) for 𝑣 < 𝑛.
(c): It is evident from the definition that the kernel of 𝜏𝑀Ď𝑛 has the asserted form.

Finally, H𝑛 (𝑀) = 0 means B𝑛 (𝑀) = Z𝑛 (𝑀), so the kernel complex is 𝑀Ě𝑛. □

2.5.25 Proposition. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. Soft truncation below
( )Ě𝑛 is a 𝕜-linear endofunctor on C(𝑅), and the following assertions hold.

(a) The canonical map 𝜏𝑀Ě𝑛 : 𝑀Ě𝑛 ↣ 𝑀 from 2.5.23 is an injective morphism of
𝑅-complexes, i.e. 𝑀Ě𝑛 is a subcomplex of 𝑀 .

(b) For every 𝑣 ⩾ 𝑛 the induced map H𝑣 (𝜏𝑀Ě𝑛) is an isomorphism of 𝑅-modules.
(c) There is an isomorphism,

Coker(𝜏𝑀Ě𝑛) � 0 −→ B𝑛−1 (𝑀) −→ 𝑀𝑛−1
𝜕𝑀
𝑛−1−−−→ 𝑀𝑛−2 −→ · · · ,

and if H𝑛 (𝑀) = 0 holds, then Coker(𝜏𝑀Ě𝑛) is isomorphic to the complex 𝑀Ď𝑛 .

Proof. It is immediate from the definition that ( )Ě𝑛 is a 𝕜-linear functor.
(a): To see that the injective map 𝜏𝑀Ě𝑛 : 𝑀Ě𝑛 ↣ 𝑀 is a morphism of 𝑅-complexes,

notice that the composite 𝜕𝑀𝑛 (𝜏𝑀Ě𝑛)𝑛 is zero.
(b): Evidently one has H𝑛 (𝑀Ě𝑛) = H𝑛 (𝑀) and H𝑣 (𝜏𝑀Ě𝑛) = H𝑣 (1𝑀 ) for 𝑣 > 𝑛.
(c): It follows from 2.2.12(a) that the cokernel of 𝜏𝑀Ě𝑛 has the asserted form.

Finally, if H𝑛 (𝑀) = 0 holds, then one has B𝑛−1 (𝑀) � C𝑛 (𝑀) by 2.2.12(d). □

Graded-Free Modules

Free modules play a pivotal role in the development of homological algebra in module
categories. Complexes of free modules play a similar central role in the homological
theory of complexes. For now we contend ourselves with realizing every complex
𝑀 as a homomorphic image of a complex 𝐿 of free modules. Later, in Chap. 5, we
refine this construction to ensure that 𝐿 is homologically indistinguishable from 𝑀 .
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2.5 Boundedness and Finiteness 91

2.5.26 Definition. Let 𝐿 be a graded 𝑅-module. A set 𝐸 = {𝑒𝑢}𝑢∈𝑈 of generators
for 𝐿, a basis for 𝐿 in particular, is called graded if each element 𝑒𝑢 is homogeneous.
The module 𝐿 is called graded-free if has a graded basis.

For a graded set 𝐸 , not a priori assumed to be a subset of a module, the graded-free
𝑅-module with graded basis 𝐸 is denoted 𝑅⟨𝐸 ⟩.

2.5.27 Proposition. A graded 𝑅-module 𝐿 is graded-free if and only if the 𝑅-module
𝐿𝑣 is free for every 𝑣 ∈ ℤ.

Proof. If each module 𝐿𝑣 is free with basis 𝐸𝑣, then 𝐸 =
⋃
𝑣∈ℤ 𝐸𝑣 is a graded basis

for 𝐿. For the converse, let 𝐸 be a graded basis for 𝐿 and fix 𝑣. Every element in 𝐿𝑣
is a unique linear combination of elements in 𝐸 . Only elements of degree 𝑣 occur
with non-zero coefficients, so the elements of degree 𝑣 in 𝐸 form a basis for 𝐿𝑣. □

2.5.28. Let 𝑀 be a graded 𝑅-module. In view of 2.5.27 it follows from 1.3.12 that
there is a surjective morphism 𝐿 → 𝑀 of graded 𝑅-modules with 𝐿 graded-free.
If 𝑀 is degreewise finitely generated, then 𝐿 can be chosen degreewise finitely
generated.

To realize a complex as the image of a complex of free modules, one has to take
the differentials into account. To this end, the next construction is key.

2.5.29 Construction. For an 𝑅-module 𝐹 and an integer 𝑣, let D𝑣 (𝐹) denote the
disk complex 0 −−→ 𝐹

=−−→ 𝐹 −−→ 0 concentrated in degrees 𝑣 and 𝑣 − 1.
Let 𝑀 be an 𝑅-complex. For every homomorphism 𝜑 : 𝐹 → 𝑀𝑣 of 𝑅-modules,

there is a morphism of 𝑅-complexes, D𝑣 (𝐹) → 𝑀 , given by the diagram

0 // 𝐹

𝜑

��

1𝐹
// 𝐹

𝜕𝑀𝑣 𝜑

��

// 0

· · · // 𝑀𝑣+1
𝜕𝑀
𝑣+1
// 𝑀𝑣

𝜕𝑀𝑣
// 𝑀𝑣−1

𝜕𝑀
𝑣−1
// 𝑀𝑣−2 // · · · .

Choose for every 𝑣 ∈ ℤ a surjective homomorphism 𝜑𝑣 : 𝐹𝑣 → 𝑀𝑣 with 𝐹𝑣 free, and
do it such that 𝐹𝑣 has a basis with 𝑛 ⩾ 0 elements if 𝑀𝑣 is generated by 𝑛 elements;
cf. 1.3.12. Consider the complex 𝐿 given by

𝐿𝑣 =

𝐹𝑣

⊕
𝐹𝑣+1

and 𝜕𝐿𝑣 =

(
0 0

1𝐹𝑣 0

)
,

and the map 𝜋 : 𝐿 → 𝑀 given by 𝜋𝑣 = (𝜑𝑣 𝜕𝑀𝑣+1𝜑
𝑣+1); it is straightforward to verify

that 𝜋 is a morphism of complexes.

Remark. Presumably, disk complexes are called so because they are basic examples of contractible
complexes, see 4.3.23, just as topological disks are elementary examples of contractible spaces.

2.5.30 Lemma. Let 𝑀 be an 𝑅-complex. The complex 𝐿 and morphism 𝜋 : 𝐿 → 𝑀

constructed in 2.5.29 have the following properties.
(a) The morphism 𝜋 is surjective.
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(b) The complex 𝐿 is acyclic, and the graded module 𝐿♮ is graded-free.
(c) If 𝑀 is degreewise finitely generated, then 𝐿 is degreewise finitely generated.
(d) If 𝑀 is bounded (above/below), then 𝐿 is bounded (above/below).

Proof. As the morphisms 𝜑𝑣 are surjective, so is 𝜋; this proves part (a).
It is evident from the definition of 𝜕𝐿 that 𝐿 is acyclic. Each module 𝐿𝑣 is a

direct sum of free modules, 𝐹𝑣 and 𝐹𝑣+1, and hence free. Thus 𝐿♮ is graded-free by
2.5.27; this proves (b). Moreover, if 𝑀𝑣 is finitely generated (zero), then 𝐹𝑣 is finitely
generated (zero), and parts (c) and (d) follow. □

Notice that in each degree 𝑣 the exact sequence of 𝑅-complexes in part (iii) below
affords a free presentation of the module 𝑀𝑣.

2.5.31 Proposition. For an 𝑅-complex 𝑀 , the following conditions are equivalent.
(i) 𝑀 is degreewise finitely presented.
(ii) There exists an 𝑅-complex 𝐿 of finitely generated free modules and a surjective

morphism 𝐿 → 𝑀 whose kernel is degreewise finitely generated.
(iii) There exist 𝑅-complexes 𝐿 and 𝐿′ of finitely generated free modules and an

exact sequence of 𝑅-complexes 𝐿′ → 𝐿 → 𝑀 → 0.
Moreover, if 𝑀 is bounded (above/below) and degreewise finitely presented, then
the complexes 𝐿 and 𝐿′ in (iii) can be chosen to be bounded (above/below).

Proof. The implication (iii)⇒ (i) is trivial.
(i)⇒ (ii): By 2.5.30 there exists a surjective morphism 𝜋 : 𝐿 → 𝑀 where 𝐿 is

a complex of finitely generated free 𝑅-modules and, moreover, if 𝑀 is bounded
(above/below), then so is 𝐿. Since each 𝑀𝑣 is finitely presented, it follows from
1.3.40 that Ker 𝜋 is degreewise finitely generated.

(ii)⇒ (iii): By assumption there exists a short exact sequence of 𝑅-complexes
0→ 𝐾 → 𝐿 → 𝑀 → 0 where 𝐿 is a complex of finitely generated free modules, and
𝐾 is degreewise finitely generated. By 2.5.30 there is a surjective morphism 𝐿′ → 𝐾

where 𝐿′ is a complex of finitely generated free modules. Moreover, if 𝑀 and hence
𝐿 and 𝐾 are bounded (above/below), then so is 𝐿′. The composite 𝐿′ ↠ 𝐾 ↣ 𝐿

now yields the left-hand morphism in an exact sequence 𝐿′ → 𝐿 → 𝑀 → 0. □

Exercises

E 2.5.1 Let 𝑀 be an 𝑅-complex. Show that if 𝑀♮ is finitely generated in Mgr (𝑅) , then 𝑀 is
degreewise finitely generated. Show that the converse is not true.

E 2.5.2 Show that the isomorphism classes of degreewise finitely presented complexes form a set.
E 2.5.3 Assume that 𝑅 is semi-simple. Show that the morphism in 2.5.8 is an isomorphism for

all 𝑅-complexes.
E 2.5.4 Assume that 𝑅 is semi-simple. Show that the morphism in 2.5.14 is an isomorphism for

all 𝑅-complexes.
E 2.5.5 Let 𝑀 be a bounded above 𝑅-complex and 𝑁 a bounded below 𝑅-complex. Establish a

result about Hom𝑅 (𝑀, 𝑁 ) akin to 2.5.12(a,b); how about part (c)?

8-Mar-2024 Draft - use at own risk



2.5 Boundedness and Finiteness 93

E 2.5.6 Let 𝑀 be a bounded above 𝑅o-complex and 𝑁 a bounded above 𝑅-complex. Establish
a result about 𝑀 ⊗𝑅 𝑁 akin to 2.5.18(a,b); how about part (c)?

E 2.5.7 (Cf. 2.5.22) Let 𝑀 be an 𝑅-complex and 𝑛 an integer. Show that the canonical sequence
0→ 𝑀ď𝑛 → 𝑀 → 𝑀ě𝑛+1 → 0 is degreewise split exact and decide if it is split exact.

E 2.5.8 For 𝑛 ∈ ℤ define full subcategories of C(𝑅) by specifying their objects as follows,
C⩽𝑛 (𝑅) = {𝑀 ∈ C(𝑅) | 𝑀𝑣 = 0 for all 𝑣 > 𝑛 } and
C⩾𝑛 (𝑅) = {𝑀 ∈ C(𝑅) | 𝑀𝑣 = 0 for all 𝑣 < 𝑛 } .

Show that the functors ( )ď𝑛 and ( )ě𝑛 are right and left adjoints for the inclusion
functors C⩽𝑛 (𝑅) → C(𝑅) and C⩾𝑛 (𝑅) → C(𝑅) , respectively.

E 2.5.9 Show that soft truncation above and below are right and left exact, respectively, endo-
functors on C(𝑅) .

E 2.5.10 Show that soft truncations are not ♮-functors.
E 2.5.11 Show that soft truncations commute with homology.
E 2.5.12 Let 𝑀 and 𝑁 be 𝑅-complexes, the former concentrated in non-negative degrees. Show

that for integers 𝑚 ⩾ 𝑛 one has
Hom𝑅 (𝑀, 𝑁 )ě𝑚 = Hom𝑅 (𝑀, 𝑁ě𝑛 )ě𝑚 and
Hom𝑅 (𝑁, 𝑀 )ď𝑛 = Hom𝑅 (𝑁ě−𝑚, 𝑀 )ď𝑛 .

E 2.5.13 Let 𝑀 and 𝑁 be 𝑅-complexes, the latter concentrated in non-positive degrees. Show
that for integers 𝑚 ⩾ 𝑛 one has

Hom𝑅 (𝑀, 𝑁 )ě𝑚 = Hom𝑅 (𝑀ď−𝑛 , 𝑁 )ě𝑚 and
Hom𝑅 (𝑁, 𝑀 )ď𝑛 = Hom𝑅 (𝑁, 𝑀ď𝑚 )ď𝑛 .

E 2.5.14 Let 𝑀 and 𝑁 be 𝑅-complexes, the former concentrated in non-negative degrees. Show
that for integers 𝑚 ⩾ 𝑛 one has (𝑀 ⊗𝑅 𝑁 )ď𝑛 = (𝑀 ⊗𝑅 𝑁ď𝑚 )ď𝑛.

E 2.5.15 Let 𝑀 and 𝑁 be 𝑅-complexes, the latter concentrated in non-positive degrees. Show
that for integers 𝑚 ⩾ 𝑛 one has (𝑀 ⊗𝑅 𝑁 )ě𝑚 = (𝑀ě𝑛 ⊗𝑅 𝑁 )ě𝑚.

E 2.5.16 Let 𝑀 be an 𝑅-complex. Show that for every integer 𝑛 with H𝑛 (𝑀 ) = 0 there is an
exact sequence 0→ 𝑀Ě𝑛 → 𝑀 → 𝑀Ď𝑛 → 0.

E 2.5.17 Give an example of a graded 𝑅-module that is free but not graded-free.
E 2.5.18 Let 𝐿 be a graded 𝑅-module and 𝐸 = {𝑒𝑢 }𝑢∈𝑈 a subset of 𝐿 consisting of homogeneous

elements. Show that 𝐿 is graded-free with graded basis𝐸 if and only if it has the following
graded unique extension property: Given a graded 𝑅-module 𝑀 and a graded map
𝛼 : 𝐸 → 𝑀 there exists a unique graded homomorphism 𝛼 : 𝐿 → 𝑀 with 𝛼 |𝐸 = 𝛼.
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Chapter 3
Categorical Constructions

Products and coproducts are categorical devices defined by universal properties. In
the first section of this chapter, it is established that the category of 𝑅-complexes has
products and coproducts. As this category is Abelian, it then follows from general
principles that it has limits and colimits. In the remaining sections we give a detailed
treatment of (co)limits over preordered sets, which is sufficient for our purposes.

3.1 Products and Coproducts

Synopsis. (Co)product; universal property; functor that preserves (co)products; direct sum.

In the category of complexes, like in the category of modules, products and co-
products are palpable objects. After describing their construction, we consider their
interactions with the functors from Chap. 2. Homology and shift preserve products
and coproducts alike. The Hom functor preserves products, while the tensor product
functor preserves coproducts. Under assumptions of boundedness and finiteness,
Hom also preserves coproducts and the tensor product preserves products.

Coproducts

3.1.1 Construction. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes. One defines an
𝑅-complex

∐
𝑢∈𝑈 𝑀

𝑢 by setting( ∐
𝑢∈𝑈

𝑀𝑢
)
𝑣
=

∐
𝑢∈𝑈

𝑀𝑢
𝑣 and 𝜕

∐
𝑢∈𝑈 𝑀

𝑢

𝑣 =
∐
𝑢∈𝑈

𝜕𝑀
𝑢

𝑣 ,

where the right-hand side of either equality is given by the coproduct in M(𝑅). For
each 𝑢 ∈ 𝑈 the injections 𝜀𝑢𝑣 : 𝑀𝑢

𝑣 ↣
∐
𝑢∈𝑈 𝑀

𝑢
𝑣 inM(𝑅) yield an injective morphism

(3.1.1.1) 𝜀𝑢 : 𝑀𝑢 ↣→
∐
𝑢∈𝑈

𝑀𝑢
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96 3 Categorical Constructions

of 𝑅-complexes given by 𝜀𝑢 (𝑚𝑢𝑣 ) = 𝜀𝑢𝑣 (𝑚𝑢𝑣 ) on homogeneous elements 𝑚𝑢𝑣 ∈ 𝑀𝑢
𝑣 .

It is straightforward to verify that every element in 𝑀𝑢 has the form ∑
𝑢∈𝑈 𝜀

𝑢 (𝑚𝑢)
for a unique family of elements𝑚𝑢 ∈ 𝑀𝑢 with𝑚𝑢 = 0 for all but finitely many 𝑢 ∈ 𝑈.

The next theorem confirms that the complex constructed above indeed has the
universal property of a coproduct in the category of complexes. Notice from the
statement that for a morphism

∐
𝑢∈𝑈 𝑀

𝑢 → 𝑁 the image of an element∑𝑢∈𝑈 𝜀
𝑢 (𝑚𝑢)

in the coproduct is fully determined by the images of the components 𝜀𝑢 (𝑚𝑢).
Hereafter we mostly describe morphisms out of coproducts in that way, see e.g. 3.1.8.

3.1.2 Theorem. For a family {𝑀𝑢}𝑢∈𝑈 in C(𝑅), the complex
∐
𝑢∈𝑈 𝑀

𝑢 together
with the morphisms {𝜀𝑢}𝑢∈𝑈 , constructed in 3.1.1, is the coproduct of {𝑀𝑢}𝑢∈𝑈 .

For every family {𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 of morphisms inC(𝑅), the unique morphism
𝛼 that makes the diagram

𝑀𝑢 // 𝜀
𝑢
//

𝛼𝑢

��

∐
𝑢∈𝑈

𝑀𝑢

𝛼
||

𝑁

commutative for every 𝑢 ∈ 𝑈 is given by ∑
𝑢∈𝑈 𝜀

𝑢 (𝑚𝑢) ↦→ ∑
𝑢∈𝑈 𝛼

𝑢 (𝑚𝑢).

Proof. The assignment ∑
𝑢∈𝑈 𝜀

𝑢 (𝑚𝑢) ↦→ ∑
𝑢∈𝑈 𝛼

𝑢 (𝑚𝑢) yields by 3.1.1 a well-
defined map 𝛼 :

∐
𝑢∈𝑈 𝑀

𝑢 → 𝑁 , and it is straightforward to verify that it is a mor-
phism of 𝑅-complexes. The equality 𝛼𝑢 = 𝛼𝜀𝑢 holds for all 𝑢 ∈ 𝑈 by definition
of 𝛼. Any morphism 𝛼′ :

∐
𝑢∈𝑈 𝑀

𝑢 → 𝑁 with 𝛼𝑢 = 𝛼′𝜀𝑢 for all 𝑢 ∈ 𝑈 satisfies
𝛼′ (∑𝑢∈𝑈 𝜀

𝑢 (𝑚𝑢)) = ∑
𝑢∈𝑈 𝛼

′𝜀𝑢 (𝑚𝑢) = ∑
𝑢∈𝑈 𝛼

𝑢 (𝑚𝑢), and hence 𝛼′ = 𝛼. □

3.1.3. It follows from 3.1.1 and 3.1.2 that the full subcategory Mgr (𝑅) of C(𝑅) is
closed under coproducts in C(𝑅). In particular, the category Mgr (𝑅) has coproducts.

3.1.4 Definition. Let 𝑀 be an 𝑅-complex and {𝑀𝑢}𝑢∈𝑈 a family of subcomplexes
of 𝑀 . The sum of the family, written ∑

𝑢∈𝑈 𝑀
𝑢, is the image of the morphism,∐

𝑢∈𝑈
𝑀𝑢 −→ 𝑀 given by

∑︁
𝑢∈𝑈

𝜀𝑢 (𝑚𝑢) ↦−→
∑︁
𝑢∈𝑈

𝑚𝑢 ;

if it is injective, then the family {𝑀𝑢}𝑢∈𝑈 is called independent.

Below, and throughout this chapter, we use the same symbol, 𝜀𝑢, for the injections
in all coproducts.

3.1.5. As is the case for the coproduct in any category, the coproduct in C(𝑅)
acts on morphisms: If {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 is a family of morphisms of com-
plexes, then

∐
𝑢∈𝑈 𝛼

𝑢 :
∐
𝑢∈𝑈𝑀

𝑢→∐
𝑢∈𝑈 𝑁

𝑢 is the unique morphism given by
𝜀𝑢 (𝑚𝑢) ↦→ 𝜀𝑢𝛼𝑢 (𝑚𝑢) for every 𝑢 ∈ 𝑈 and 𝑚𝑢 ∈ 𝑀𝑢; see 3.1.2.

3.1.6 Proposition. Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 and {𝛽𝑢 : 𝑁𝑢 → 𝑋𝑢}𝑢∈𝑈 be families
of morphisms of 𝑅-complexes. The sequence
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3.1 Products and Coproducts 97∐
𝑢∈𝑈

𝑀𝑢
∐
𝑢∈𝑈 𝛼

𝑢

−−−−−−−→
∐
𝑢∈𝑈

𝑁𝑢
∐
𝑢∈𝑈 𝛽

𝑢

−−−−−−−→
∐
𝑢∈𝑈

𝑋𝑢

is exact if and only if the sequence 𝑀𝑢 𝛼𝑢−−→ 𝑁𝑢
𝛽𝑢−−→ 𝑋𝑢 is exact for every 𝑢 ∈ 𝑈.

Proof. The assertion is immediate from the definitions of the involved complexes
and morphisms; see 3.1.1 and 3.1.5. □

3.1.7 Proposition. Let {𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 be a family of morphisms in C(𝑅). If
each 𝛼𝑢 is null-homotopic, then so is the canonical morphism 𝛼 :

∐
𝑢∈𝑈 𝑀

𝑢 → 𝑁 .
Furthermore, a coproduct of null-homotopic morphisms is null-homotopic.

Proof. By assumption there are degree 1 homomorphisms 𝜏𝑢 : 𝑀𝑢 → 𝑁 such that
𝛼𝑢 = 𝜕𝑁 𝜏𝑢 + 𝜏𝑢𝜕𝑀𝑢 holds for every 𝑢 ∈ 𝑈. Consider each homomorphism 𝜏𝑢 as a
morphism 𝑀𝑢♮ → Σ−1𝑁 ♮ of graded 𝑅-modules; cf. 2.2.5. Set 𝑀 =

∐
𝑢∈𝑈 𝑀

𝑢; as
𝑀♮ together with the injections {𝜀𝑢 : 𝑀𝑢♮ ↣ 𝑀♮ }𝑢∈𝑈 is the coproduct of {𝑀𝑢♮ }𝑢∈𝑈
in Mgr (𝑅), see 3.1.3, there is a morphism 𝜏 : 𝑀♮ → Σ−1𝑁 ♮ with 𝜏𝜀𝑢 = 𝜏𝑢 for all
𝑢 ∈ 𝑈. Viewing 𝜏 as a degree 1 homomorphism 𝑀 → 𝑁 , one has

𝛼𝜀𝑢 = 𝛼𝑢 = 𝜕𝑁 𝜏𝑢 + 𝜏𝑢𝜕𝑀𝑢

= 𝜕𝑁 𝜏𝜀𝑢 + 𝜏𝜀𝑢𝜕𝑀𝑢

= (𝜕𝑁 𝜏 + 𝜏𝜕𝑀 )𝜀𝑢

for every 𝑢 ∈ 𝑈; here the third equality holds by definition of 𝜏, and the last equality
holds as 𝜀𝑢 is a morphism. Since 𝜕𝑁 𝜏 + 𝜏𝜕𝑀 is a morphism of 𝑅-complexes, the
universal property of coproducts yields 𝛼 = 𝜕𝑁 𝜏+𝜏𝜕𝑀 . That is,𝛼 is null-homotopic.

If {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 is a family of null-homotopic morphisms, then the com-
posites 𝑀𝑢 → 𝑁𝑢 ↣

∐
𝑢∈𝑈 𝑁

𝑢 are null-homotopic by 2.2.25. Thus, the canonical
morphism

∐
𝑢∈𝑈 𝛼

𝑢 :
∐
𝑢∈𝑈 𝑀

𝑢 → ∐
𝑢∈𝑈 𝑁

𝑢 is null-homotopic; cf. 3.1.5. □

Functors that Preserve Coproducts

3.1.8. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes and F: C(𝑅) → C(𝑆) a functor.
The universal property of the coproduct yields is a canonical morphism in C(𝑆),

(3.1.8.1)
∐
𝑢∈𝑈

F(𝑀𝑢) −→ F
( ∐
𝑢∈𝑈

𝑀𝑢
)

given by 𝜀𝑢 (𝑥𝑢) ↦−→ F(𝜀𝑢) (𝑥𝑢)

for 𝑢 ∈ 𝑈 and 𝑥𝑢 ∈ F(𝑀𝑢); see 3.1.2. Recall that F is said to preserve coproducts if
this map is an isomorphism for every family {𝑀𝑢}𝑢∈𝑈 . In this case, F also preserves
coproducts of morphisms; cf. 3.1.5. Further, given a natural transformation 𝜏 : E→ F
of functors C(𝑅) → C(𝑆), it is straightforward to verify that there is a commutative
diagram in C(𝑆),

(3.1.8.2)

∐
𝑢∈𝑈

E(𝑀𝑢)

��

∐
𝑢∈𝑈 𝜏

𝑀𝑢

//
∐
𝑢∈𝑈

F(𝑀𝑢)

��

E
( ∐
𝑢∈𝑈

𝑀𝑢
)

𝜏
∐
𝑢∈𝑈 𝑀𝑢

// F
( ∐
𝑢∈𝑈

𝑀𝑢
)
,
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where the vertical maps are the canonical morphisms.

The next result shows that the shift functor from 2.2.1 preserves coproducts.

3.1.9 Proposition. Let 𝑠 be an integer and {𝑀𝑢}𝑢∈𝑈 a family of 𝑅-complexes. The
canonical morphism in C(𝑅),

(3.1.9.1)
∐
𝑢∈𝑈

Σ𝑠𝑀𝑢 −→ Σ𝑠
∐
𝑢∈𝑈

𝑀𝑢 ,

given by 𝜀𝑢 (𝑥𝑢) ↦→ (Σ𝑠𝜀𝑢) (𝑥𝑢) for 𝑢 ∈ 𝑈 and 𝑥𝑢 ∈ Σ𝑠𝑀𝑢, is an isomorphism.

Proof. The morphism (3.1.9.1) is the identity map. □

The next result shows that the cycle, boundary, cokernel, and homology functors
from 2.2.7 preserve coproducts.

3.1.10 Proposition. For every family {𝑀𝑢}𝑢∈𝑈 of 𝑅-complexes, the following four
canonical morphisms in C(𝑅) are isomorphisms:∐

𝑢∈𝑈
Z(𝑀𝑢) −→ Z

( ∐
𝑢∈𝑈

𝑀𝑢
)

given by 𝜀𝑢 (𝑧𝑢) ↦−→ Z(𝜀𝑢) (𝑧𝑢) .(a)

∐
𝑢∈𝑈

B(𝑀𝑢) −→ B
( ∐
𝑢∈𝑈

𝑀𝑢
)

given by 𝜀𝑢 (𝑏𝑢) ↦−→ B(𝜀𝑢) (𝑏𝑢) .(b)

∐
𝑢∈𝑈

C(𝑀𝑢) −→ C
( ∐
𝑢∈𝑈

𝑀𝑢
)

given by 𝜀𝑢 (𝑐𝑢) ↦−→ C(𝜀𝑢) (𝑐𝑢) .(c)

∐
𝑢∈𝑈

H(𝑀𝑢) −→ H
( ∐
𝑢∈𝑈

𝑀𝑢
)

given by 𝜀𝑢 (ℎ𝑢) ↦−→ H(𝜀𝑢) (ℎ𝑢) .(d)

Proof. The morphisms (a) and (b) are the identity maps. The short exact sequences
0→ B(𝑀𝑢) → 𝑀𝑢 → C(𝑀𝑢) → 0, see 2.2.12(b), yield a commutative diagram,

0 //
∐
𝑢∈𝑈

B(𝑀𝑢) //

��

∐
𝑢∈𝑈

𝑀𝑢 //
∐
𝑢∈𝑈

C(𝑀𝑢) //

��

0

0 // B
( ∐
𝑢∈𝑈

𝑀𝑢
)

//
∐
𝑢∈𝑈

𝑀𝑢 // C
( ∐
𝑢∈𝑈

𝑀𝑢
)

// 0 .

In this diagram, the rows are exact by 3.1.6 and 2.2.12(b). The leftmost vertical map
is (b), which is an isomorphism, and the rightmost vertical map (c). It now follows
from the Five Lemma 2.1.41 that (c) is an isomorphism. A similar argument, using
the exact sequences 0→ B(𝑀𝑢) → Z(𝑀𝑢) → H(𝑀𝑢) → 0 from 2.2.12(c), shows
that (d) is an isomorphism. □

3.1.11 Corollary. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes. There are equalities,

sup
( ∐
𝑢∈𝑈

𝑀𝑢
)
= sup
𝑢∈𝑈
{sup𝑀𝑢} and inf

( ∐
𝑢∈𝑈

𝑀𝑢
)
= inf
𝑢∈𝑈
{inf 𝑀𝑢} ;

in particular,
∐
𝑢∈𝑈 𝑀

𝑢 is acyclic if and only if each complex 𝑀𝑢 is acyclic.
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Proof. The isomorphism H(∐𝑢∈𝑈 𝑀
𝑢) � ∐

𝑢∈𝑈 H(𝑀𝑢) from 3.1.10(d) yields both
equalities. □

The next results show that the tensor product functor 2.4.9 preserves coproducts.

3.1.12 Proposition. Let 𝑁 be an 𝑅-complex and {𝑀𝑢}𝑢∈𝑈 a family of 𝑅o-complexes.
The canonical morphism in C(𝕜),

(3.1.12.1)
∐
𝑢∈𝑈
(𝑀𝑢 ⊗𝑅 𝑁) −→

( ∐
𝑢∈𝑈

𝑀𝑢
)
⊗𝑅 𝑁 ,

given by 𝜀𝑢 (𝑡𝑢) ↦→ (𝜀𝑢 ⊗𝑅 𝑁) (𝑡𝑢) for 𝑢 ∈ 𝑈 and 𝑡𝑢 ∈ 𝑀𝑢 ⊗𝑅 𝑁 , is an isomorphism.

Proof. To show that (3.1.12.1) is an isomorphism, it suffices to construct an inverse at
the level of graded modules. The map ⊎

𝑖∈ℤ (
∐
𝑢∈𝑈𝑀

𝑢)𝑖×𝑁𝑣−𝑖 →
∐
𝑢∈𝑈 (𝑀𝑢 ⊗𝑅 𝑁)𝑣

defined by (𝜀𝑢 (𝑚𝑢), 𝑛) ↦→ 𝜀𝑢 (𝑚𝑢 ⊗ 𝑛) is 𝕜-bilinear and middle 𝑅-linear. By 2.1.15
there is a unique morphism ((∐𝑢∈𝑈 𝑀

𝑢) ⊗𝑅 𝑁)♮ →
∐
𝑢∈𝑈 (𝑀𝑢 ⊗𝑅 𝑁)♮ of graded

𝕜-modules that maps the element 𝜀𝑢 (𝑚𝑢) ⊗ 𝑛 to 𝜀𝑢 (𝑚𝑢 ⊗ 𝑛). This gives the desired
inverse of the canonical morphism. □

3.1.13 Proposition. Let𝑀 be an 𝑅o-complex and {𝑁𝑢}𝑢∈𝑈 a family of 𝑅-complexes.
The canonical morphism in C(𝕜),

(3.1.13.1)
∐
𝑢∈𝑈
(𝑀 ⊗𝑅 𝑁𝑢) −→ 𝑀 ⊗𝑅

∐
𝑢∈𝑈

𝑁𝑢 ,

given by 𝜀𝑢 (𝑡𝑢) ↦→ (𝑀 ⊗𝑅 𝜀𝑢) (𝑡𝑢) for 𝑢 ∈ 𝑈 and 𝑡𝑢 ∈ 𝑀 ⊗𝑅 𝑁𝑢, is an isomorphism.

Proof. The assertion follows from an argument similar to the proof of 3.1.12. □

Remark. For an 𝑅o-complex 𝑀, the functor 𝑀 ⊗𝑅 : C(𝑅) → C(𝕜) has a right adjoint, namely
the functor Hom𝕜 (𝑀, ); see 4.5.14. From this fact alone, it follows that 𝑀 ⊗𝑅 preserves
coproducts; see E 3.1.6.

Products

3.1.14 Construction. Let {𝑁𝑢}𝑢∈𝑈 be a family of 𝑅-complexes. One defines an
𝑅-complex

∏
𝑢∈𝑈 𝑁

𝑢 by setting( ∏
𝑢∈𝑈

𝑁𝑢
)
𝑣
=

∏
𝑢∈𝑈

𝑁𝑢𝑣 and 𝜕
∏
𝑢∈𝑈 𝑁

𝑢

𝑣 =
∏
𝑢∈𝑈

𝜕𝑁
𝑢

𝑣 ,

where the right-hand side of either equality is given by the product inM(𝑅). For every
𝑢 ∈ 𝑈 the projections 𝜛𝑢

𝑣 :
∏
𝑢∈𝑈 𝑁

𝑢
𝑣 ↠ 𝑁𝑢𝑣 in M(𝑅) yield a surjective morphism

(3.1.14.1) 𝜛𝑢 :
∏
𝑢∈𝑈

𝑁𝑢 −↠ 𝑁𝑢

of 𝑅-complexes given by 𝜛𝑢 ((𝑛𝑢𝑣 )𝑢∈𝑈) = 𝜛𝑢
𝑣 ((𝑛𝑢𝑣 )𝑢∈𝑈) = 𝑛𝑢𝑣 on homogeneous

elements (𝑛𝑢𝑣 )𝑢∈𝑈 ∈ (
∏
𝑢∈𝑈 𝑁

𝑢)𝑣 =
∏
𝑢∈𝑈 𝑁

𝑢
𝑣 .

It is straightforward to verify that every element 𝑛 ∈ ∏
𝑢∈𝑈 𝑁

𝑢 has the form
𝑛 = (𝑛𝑢)𝑢∈𝑈 = (𝜛𝑢 (𝑛))𝑢∈𝑈 , where 𝑛𝑢 = 𝜛𝑢 (𝑛) belongs to 𝑁𝑢.

8-Mar-2024 Draft - use at own risk



100 3 Categorical Constructions

The next theorem confirms that the complex constructed above indeed has the
universal property of a product in the category of complexes.

3.1.15 Theorem. For a family {𝑁𝑢}𝑢∈𝑈 in C(𝑅), the complex
∏
𝑢∈𝑈 𝑁

𝑢 together
with the morphisms {𝜛𝑢}𝑢∈𝑈 , constructed in 3.1.14, is the product of {𝑁𝑢}𝑢∈𝑈 .

For every family {𝛼𝑢 : 𝑀 → 𝑁𝑢}𝑢∈𝑈 of morphisms inC(𝑅), the unique morphism
𝛼 that makes the diagram ∏

𝑢∈𝑈
𝑁𝑢

𝜛𝑢

����

𝑀

𝛼

??

𝛼𝑢
// 𝑁𝑢

commutative for every 𝑢 ∈ 𝑈 is given by 𝑚 ↦→ (𝛼𝑢 (𝑚))𝑢∈𝑈 .

Proof. The assignment 𝑚 ↦→ (𝛼𝑢 (𝑚))𝑢∈𝑈 yields a map 𝛼 : 𝑀 → ∏
𝑢∈𝑈 𝑁

𝑢, see
3.1.14, and it is straightforward to verify that it is a morphism of 𝑅-complexes.
The equality 𝛼𝑢 = 𝜛𝑢𝛼 holds for all 𝑢 ∈ 𝑈 by definition of 𝛼. Any mor-
phism 𝛼′ : 𝑀 → ∏

𝑢∈𝑈 𝑁
𝑢 with 𝛼𝑢 = 𝜛𝑢𝛼′ for all 𝑢 ∈ 𝑈 satisfies 𝛼′ (𝑚) =

(𝜛𝑢𝛼′ (𝑚))𝑢∈𝑈 = (𝛼𝑢 (𝑚))𝑢∈𝑈 , and hence 𝛼′ = 𝛼. □

3.1.16. It follows from 3.1.14 and 3.1.15 that the full subcategory Mgr (𝑅) of C(𝑅)
is closed under products in C(𝑅). In particular, the category Mgr (𝑅) has products.

3.1.17. As is the case for the product in any category, the product in C(𝑅) also
acts on morphisms: If {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 is a family of morphisms of 𝑅-com-
plexes, then

∏
𝑢∈𝑈 𝛼

𝑢 :
∏
𝑢∈𝑈 𝑀

𝑢 → ∏
𝑢∈𝑈 𝑁

𝑢 is the unique morphism given by
(𝑚𝑢)𝑢∈𝑈 ↦→ (𝛼𝑢 (𝑚𝑢))𝑢∈𝑈 for every (𝑚𝑢)𝑢∈𝑈 ∈

∏
𝑢∈𝑈 𝑀

𝑢; see 3.1.15.

3.1.18 Proposition. Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 and {𝛽𝑢 : 𝑁𝑢 → 𝑋𝑢}𝑢∈𝑈 be families
of morphisms of 𝑅-complexes. The sequence∏

𝑢∈𝑈
𝑀𝑢

∏
𝑢∈𝑈 𝛼

𝑢

−−−−−−−→
∏
𝑢∈𝑈

𝑁𝑢
∏
𝑢∈𝑈 𝛽

𝑢

−−−−−−−→
∏
𝑢∈𝑈

𝑋𝑢

is exact if and only if the sequence 𝑀𝑢 𝛼𝑢−−→ 𝑁𝑢
𝛽𝑢−−→ 𝑋𝑢 is exact for every 𝑢 ∈ 𝑈.

Proof. The assertion is immediate from the definitions of the involved complexes
and morphisms; see 3.1.14 and 3.1.17. □

3.1.19 Proposition. Let {𝛼𝑢 : 𝑀 → 𝑁𝑢}𝑢∈𝑈 be a family of morphisms in C(𝑅). If
each 𝛼𝑢 is null-homotopic, then so is the canonical morphism 𝛼 : 𝑀 → ∏

𝑢∈𝑈 𝑁
𝑢.

Moreover, a product of null-homotopic morphisms is null-homotopic.

Proof. By assumption there are degree 1 homomorphisms 𝜏𝑢 : 𝑀 → 𝑁𝑢 such that
𝛼𝑢 = 𝜕𝑁

𝑢

𝜏𝑢 + 𝜏𝑢𝜕𝑀 holds for every 𝑢 ∈ 𝑈. Consider each homomorphism 𝜏𝑢 as a
morphism Σ𝑀♮ → 𝑁𝑢♮ of graded 𝑅-modules; cf. 2.2.5. Set 𝑁 =

∏
𝑢∈𝑈 𝑁

𝑢; as 𝑁 ♮
together with the projections {𝜛𝑢 : 𝑁 ♮ ↠ 𝑁𝑢♮ }𝑢∈𝑈 is the product of {𝑁𝑢♮ }𝑢∈𝑈 in
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3.1 Products and Coproducts 101

Mgr (𝑅), there is a morphism 𝜏 : Σ𝑀♮ → 𝑁 ♮ with 𝜛𝑢𝜏 = 𝜏𝑢 for all 𝑢 ∈ 𝑈. Viewing
𝜏 as a degree 1 homomorphism 𝑀 → 𝑁 , one has

𝜛𝑢𝛼 = 𝛼𝑢 = 𝜕𝑁
𝑢

𝜏𝑢 + 𝜏𝑢𝜕𝑀 = 𝜕𝑁
𝑢

𝜛𝑢𝜏 +𝜛𝑢𝜏𝜕𝑀 = 𝜛𝑢 (𝜕𝑁 𝜏 + 𝜏𝜕𝑀 )

for every 𝑢 ∈ 𝑈; here the third equality holds by definition of 𝜏, and the last equality
holds as 𝜛𝑢 is a morphism. Since 𝜕𝑁 𝜏 + 𝜏𝜕𝑀 is a morphism of 𝑅-complexes, the
universal property of products yields 𝛼 = 𝜕𝑁 𝜏 + 𝜏𝜕𝑀 . That is, 𝛼 is null-homotopic.

If {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 is a family of null-homotopic morphisms, then the com-
posites

∏
𝑢∈𝑈 𝑀

𝑢 ↠ 𝑀𝑢 → 𝑁𝑢 are null-homotopic by 2.2.25. Thus, the canonical
morphism

∏
𝑢∈𝑈 𝛼

𝑢 :
∏
𝑢∈𝑈 𝑀

𝑢 → ∏
𝑢∈𝑈 𝑁

𝑢 is null-homotopic; cf. 3.1.17. □

Functors that Preserve Products

Below, and throughout this chapter, we use the same symbol 𝜛𝑢 for the projections
in all products.

3.1.20. Let {𝑁𝑢}𝑢∈𝑈 be a family of 𝑅-complexes and F: C(𝑅) → C(𝑆) a functor.
The universal property of the product yields a canonical morphism in C(𝑆),

(3.1.20.1) F
( ∏
𝑢∈𝑈

𝑁𝑢
)
−→

∏
𝑢∈𝑈

F(𝑁𝑢) given by 𝑥 ↦−→ (F(𝜛𝑢) (𝑥))𝑢∈𝑈 ;

see 3.1.15. Recall that F is said to preserve products if this map is an isomorphism
for every family {𝑁𝑢}𝑢∈𝑈 . In this case, F also preserves products of morphisms; cf.
3.1.17. Further, given a natural transformation 𝜏 : E→ F of functors C(𝑅) → C(𝑆),
it is straightforward to verify that there is a commutative diagram in C(𝑆),

(3.1.20.2)

E
( ∏
𝑢∈𝑈

𝑁𝑢
)

��

𝜏
∏
𝑢∈𝑈 𝑁𝑢

// F
( ∏
𝑢∈𝑈

𝑁𝑢
)

��∏
𝑢∈𝑈

E(𝑁𝑢)
∏
𝑢∈𝑈 𝜏

𝑁𝑢

//
∏
𝑢∈𝑈

F(𝑁𝑢) ,

where the vertical maps are the canonical morphisms.

The next result shows that the shift functor from 2.2.1 preserves products.

3.1.21 Proposition. Let 𝑠 be an integer and {𝑁𝑢}𝑢∈𝑈 a family of 𝑅-complexes. The
canonical morphism in C(𝑅),

(3.1.21.1) Σ𝑠
∏
𝑢∈𝑈

𝑁𝑢 −→
∏
𝑢∈𝑈

Σ𝑠𝑁𝑢 ,

given by 𝑥 ↦→ ((Σ𝑠𝜛𝑢) (𝑥))𝑢∈𝑈 for 𝑥 ∈ Σ𝑠∏𝑢∈𝑈 𝑁
𝑢, is an isomorphism.

Proof. The morphism (3.1.21.1) is the identity map. □
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The next result shows that the cycle, boundary, cokernel, and homology functors
from 2.2.7 preserve products.

3.1.22 Proposition. For every family {𝑁𝑢}𝑢∈𝑈 of 𝑅-complexes, the following four
canonical morphisms in C(𝑅) are isomorphisms:

Z
( ∏
𝑢∈𝑈

𝑁𝑢
)
−→

∏
𝑢∈𝑈

Z(𝑁𝑢) given by 𝑧 ↦−→ (Z(𝜛𝑢) (𝑧))𝑢∈𝑈 .(a)

B
( ∏
𝑢∈𝑈

𝑁𝑢
)
−→

∏
𝑢∈𝑈

B(𝑁𝑢) given by 𝑏 ↦−→ (B(𝜛𝑢) (𝑏))𝑢∈𝑈 .(b)

C
( ∏
𝑢∈𝑈

𝑁𝑢
)
−→

∏
𝑢∈𝑈

C(𝑁𝑢) given by 𝑐 ↦−→ (C(𝜛𝑢) (𝑐))𝑢∈𝑈 .(c)

H
( ∏
𝑢∈𝑈

𝑁𝑢
)
−→

∏
𝑢∈𝑈

H(𝑁𝑢) given by ℎ ↦−→ (H(𝜛𝑢) (ℎ))𝑢∈𝑈 .(d)

Proof. The morphisms (a) and (b) are the identity maps. The short exact sequences
0→ B(𝑁𝑢) → 𝑁𝑢 → C(𝑁𝑢) → 0, see 2.2.12(b), yield a commutative diagram,

0 // B
( ∏
𝑢∈𝑈

𝑁𝑢
)

//

��

∏
𝑢∈𝑈

𝑁𝑢 // C
( ∏
𝑢∈𝑈

𝑁𝑢
)

//

��

0

0 //
∏
𝑢∈𝑈

B(𝑁𝑢) //
∏
𝑢∈𝑈

𝑁𝑢 //
∏
𝑢∈𝑈

C(𝑁𝑢) // 0 .

In this diagram, the rows are exact by 2.2.12(b) and 3.1.18. The leftmost vertical
map is (b), which is an isomorphism, and the rightmost vertical map is (c). It now
follows from the Five Lemma 2.1.41 that (c) is an isomorphism. A similar argument,
using the exact sequences 0 → B(𝑁𝑢) → Z(𝑁𝑢) → H(𝑁𝑢) → 0 from 2.2.12(c),
shows that (d) is an isomorphism. □

3.1.23 Corollary. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes. There are equalities,

sup
( ∏
𝑢∈𝑈

𝑀𝑢
)
= sup
𝑢∈𝑈
{sup𝑀𝑢} and inf

( ∏
𝑢∈𝑈

𝑀𝑢
)
= inf
𝑢∈𝑈
{inf 𝑀𝑢} ;

in particular,
∏
𝑢∈𝑈 𝑀

𝑢 is acyclic if and only if each complex 𝑀𝑢 is acyclic.

Proof. The isomorphism H(∏𝑢∈𝑈 𝑀
𝑢) � ∏

𝑢∈𝑈 H(𝑀𝑢) from 3.1.22(d) yields both
equalities. □

If 𝑀 is an object in a 𝕜-linear category U, then the functor U(𝑀, ) : U→M(𝕜)
preserves products. In particular, for every 𝑀 in C(𝑅), the functor C(𝑅) (𝑀, ) =
Z0 (Hom𝑅 (𝑀, )) from C(𝑅) to M(𝕜) preserves products; cf. 2.3.10. The next result
is stronger, it shows that the functor Hom𝑅 (𝑀, ) preserves products.

3.1.24 Proposition. Let 𝑀 be an 𝑅-complex and {𝑁𝑢}𝑢∈𝑈 a family of 𝑅-complexes.
The canonical morphism in C(𝕜),
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3.1 Products and Coproducts 103

(3.1.24.1) Hom𝑅

(
𝑀,

∏
𝑢∈𝑈

𝑁𝑢
)
−→

∏
𝑢∈𝑈

Hom𝑅 (𝑀, 𝑁𝑢) ,

given by 𝜗 ↦→ (Hom𝑅 (𝑀,𝜛𝑢) (𝜗))𝑢∈𝑈 = (𝜛𝑢𝜗)𝑢∈𝑈 , is an isomorphism.

Proof. Assign to an element (𝜗𝑢)𝑢∈𝑈 in
∏
𝑢∈𝑈 Hom𝑅 (𝑀, 𝑁𝑢) the homomorphism

𝜗 in Hom𝑅 (𝑀,
∏
𝑢∈𝑈 𝑁

𝑢) that maps an element𝑚 ∈ 𝑀 to (𝜗𝑢 (𝑚))𝑢∈𝑈 in
∏
𝑢∈𝑈 𝑁

𝑢.
This assignment defines an inverse to (3.1.24.1). □

Remark. For an 𝑅-complex 𝑀, the functor Hom𝑅 (𝑀, ) : C(𝑅) → C(𝕜) has a left adjoint,
namely the functor𝑀 ⊗𝕜 ; see 4.5.14. From this fact alone, it follows that Hom𝑅 (𝑀, ) preserves
products; see E 3.1.12.

3.1.25. Coproducts in C(𝑅) correspond to products in C(𝑅)op. I.e. let {𝑀𝑢}𝑢∈𝑈 be a
family of 𝑅-complexes whose coproduct in C(𝑅) is 𝑀 with injections 𝜀𝑢 : 𝑀𝑢 → 𝑀 .
The 𝑅-complex 𝑀 is also an object in C(𝑅)op and the morphisms 𝜀𝑢 in C(𝑅) corre-
spond to morphisms 𝜀𝑢 : 𝑀 → 𝑀𝑢 in C(𝑅)op. Since the family {𝜀𝑢 : 𝑀𝑢 → 𝑀 }𝑢∈𝑈
in C(𝑅) has the universal property of a coproduct, the family {𝜀𝑢 : 𝑀 → 𝑀𝑢}𝑢∈𝑈
in C(𝑅)op has the universal property of a product in C(𝑅)op and vice versa.

3.1.26. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes and G: C(𝑅)op → C(𝑆) a functor.
The canonical morphism from G of the product of {𝑀𝑢}𝑢∈𝑈 in C(𝑅)op to the product
of {G(𝑀𝑢)}𝑢∈𝑈 in C(𝑅) takes per 3.1.25 the form

(3.1.26.1) G
( ∐
𝑢∈𝑈

𝑀𝑢
)
−→

∏
𝑢∈𝑈

G(𝑀𝑢) given by 𝑥 ↦−→ (G(𝜀𝑢) (𝑥))𝑢∈𝑈 ,

where
∐
𝑢∈𝑈 𝑀

𝑢 is the coproduct in C(𝑅) with injections 𝜀𝑢 : 𝑀𝑢 → ∐
𝑢∈𝑈 𝑀

𝑢.
Recall that G: C(𝑅)op → C(𝑆) is said to preserve products if this morphism is an
isomorphism for every family {𝑀𝑢}𝑢∈𝑈 of 𝑅-complexes. Further, given a natural
transformation 𝜏 : G→ J of functors C(𝑅)op → C(𝑆), the diagram in 3.1.20 takes
the form

G
( ∐
𝑢∈𝑈

𝑀𝑢
)

��

𝜏
∐
𝑢∈𝑈 𝑀𝑢

// J
( ∐
𝑢∈𝑈

𝑀𝑢
)

��∏
𝑢∈𝑈

G(𝑀𝑢)
∏
𝑢∈𝑈 𝜏

𝑀𝑢

//
∏
𝑢∈𝑈

J(𝑀𝑢) ,

where the vertical maps are the canonical morphisms.

The next result and 3.1.24 show that the functor Hom𝑅 ( , ) preserves products
in each variable.

3.1.27 Proposition. Let 𝑁 be an 𝑅-complex and {𝑀𝑢}𝑢∈𝑈 a family of 𝑅-complexes.
The canonical morphism in C(𝕜),

(3.1.27.1) Hom𝑅

( ∐
𝑢∈𝑈

𝑀𝑢, 𝑁

)
−→

∏
𝑢∈𝑈

Hom𝑅 (𝑀𝑢, 𝑁) ,

given by 𝜗 ↦→ (Hom𝑅 (𝜀𝑢, 𝑁) (𝜗))𝑢∈𝑈 = (𝜗𝜀𝑢)𝑢∈𝑈 , is an isomorphism.
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Proof. Assign to every family (𝜗𝑢)𝑢∈𝑈 in
∏
𝑢∈𝑈 Hom𝑅 (𝑀𝑢, 𝑁) the homomorphism

in Hom𝑅 (
∐
𝑢∈𝑈 𝑀

𝑢, 𝑁) given by 𝜀𝑢 (𝑚𝑢) ↦→ 𝜗𝑢 (𝑚𝑢). This assignment defines an
inverse to (3.1.27.1). □

Boundedness and Finiteness

3.1.28. For every family {𝑀𝑢}𝑢∈𝑈 of 𝑅-complexes, the coproduct
∐
𝑢∈𝑈 𝑀

𝑢 is a
subcomplex of the product

∏
𝑢∈𝑈 𝑀

𝑢, cf. 1.1.20. If𝑈 is a finite set, then the product
and the coproduct of {𝑀𝑢}𝑢∈𝑈 in C(𝑅) coincide, and this complex

∏
𝑢∈𝑈 𝑀

𝑢 =∐
𝑢∈𝑈 𝑀

𝑢 is the iterated biproduct 𝑀 =
⊕
𝑢∈𝑈 𝑀

𝑢. Per 1.1.14 one calls 𝑀 the direct
sum of the family {𝑀𝑢}𝑢∈𝑈 and each complex 𝑀𝑢 is called a direct summand of 𝑀 .

3.1.29 Example. There is no isomorphism of ℤ-modules,

ℚ ⊗ℤ
∏
𝑛∈ℕ

ℤ/2𝑛ℤ −→
∏
𝑛∈ℕ
(ℚ ⊗ℤ ℤ/2𝑛ℤ) .

Indeed, one has
∏
𝑛∈ℤ (ℚ ⊗ℤ ℤ/2𝑛ℤ) = 0, see 1.1.10. The family {ℤ↠ ℤ/2𝑛ℤ}𝑛∈ℕ

of canonical homomorphisms induces by the universal property of the product
an injective homomorphism ℤ → ∏

𝑛∈ℕ ℤ/2𝑛ℤ. As the ℤ-module ℚ is flat, see
1.3.42, there is an injective homomorphism ℚ→ ℚ ⊗ℤ

∏
𝑛∈ℕ ℤ/2𝑛ℤ , in particular,

ℚ ⊗ℤ
∏
𝑛∈ℕ ℤ/2𝑛ℤ is non-zero.

Under suitable finiteness conditions on 𝑀 the functor 𝑀 ⊗𝑅 preserves products.

3.1.30 Proposition. Let 𝑀 be a bounded and degreewise finitely presented 𝑅o-com-
plex and {𝑁𝑢}𝑢∈𝑈 a family of 𝑅-complexes. The canonical morphism in C(𝕜),

(3.1.30.1) 𝑀 ⊗𝑅
∏
𝑢∈𝑈

𝑁𝑢 −→
∏
𝑢∈𝑈
(𝑀 ⊗𝑅 𝑁𝑢) ,

given by 𝑡 ↦→ ((𝑀 ⊗𝑅 𝜛𝑢) (𝑡))𝑢∈𝑈 , is an isomorphism.

Proof. First we prove the result in the special case where 𝑀 = 𝐿 is a bounded
complex of finitely generated free 𝑅o-modules. Write 𝜘𝐿 for the morphism (3.1.30.1);
we argue that 𝜘𝐿𝑣 is an isomorphism for every 𝑣 ∈ ℤ. One can assume that 𝐿 is non-
zero, and since 𝐿 is bounded, the quantities 𝒾 = inf 𝐿♮ and 𝒿 = sup 𝐿♮ from 2.5.5
are integers. For every 𝑣 ∈ ℤ one has(

𝐿 ⊗𝑅
∏
𝑢∈𝑈

𝑁𝑢
)
𝑣
=

𝒿⊕
𝑖=𝒾

(
𝐿𝑖 ⊗𝑅

( ∏
𝑢∈𝑈

𝑁𝑢
)
𝑣−𝑖

)
=

𝒿⊕
𝑖=𝒾

(
𝐿𝑖 ⊗𝑅

∏
𝑢∈𝑈

𝑁𝑢𝑣−𝑖
)

and ( ∏
𝑢∈𝑈
(𝐿 ⊗𝑅 𝑁𝑢)

)
𝑣
=

∏
𝑢∈𝑈

𝒿⊕
𝑖=𝒾
(𝐿𝑖 ⊗𝑅 𝑁𝑢𝑣−𝑖) �

𝒿⊕
𝑖=𝒾

∏
𝑢∈𝑈
(𝐿𝑖 ⊗𝑅 𝑁𝑢𝑣−𝑖) ,

where the isomorphism follows as it is elementary to check that a product and a
direct sum may be interchanged, cf. 3.4.14. Via these isomorphisms, 𝜘𝐿𝑣 is identi-
fied with ⊕𝒿

𝑖=𝒾
𝜘𝑣,𝑖 where 𝜘𝑣,𝑖 is the canonical morphism 𝐿𝑖 ⊗𝑅 (

∏
𝑢∈𝑈 𝑁

𝑢)𝑣−𝑖 →∏
𝑢∈𝑈 (𝐿𝑖 ⊗𝑅 𝑁𝑢𝑣−𝑖). To see that each 𝜘𝑣,𝑖 is an isomorphism, assume that the finitely
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generated free 𝑅o-module 𝐿𝑖 has a basis with 𝑛𝑖 elements. Write 𝐿𝑖 =
⊕𝑛𝑖
ℓ=1 𝐿𝑖,ℓ

where each 𝐿𝑖,ℓ is a free 𝑅o-module having a basis with one element. Now one has

𝐿𝑖 ⊗𝑅
( ∏
𝑢∈𝑈

𝑁𝑢
)
𝑣−𝑖 �

𝑛𝑖⊕
ℓ=1

(
𝐿𝑖,ℓ ⊗𝑅

( ∏
𝑢∈𝑈

𝑁𝑢
)
𝑣−𝑖

)
and

∏
𝑢∈𝑈
(𝐿𝑖 ⊗𝑅 𝑁𝑢𝑣−𝑖) �

𝑛𝑖⊕
ℓ=1

∏
𝑢∈𝑈
(𝐿𝑖,ℓ ⊗𝑅 𝑁𝑢𝑣−𝑖) ,

and via these isomorphisms 𝜘𝑣,𝑖 is identified with ⊕𝑛𝑖
ℓ=1 𝜘𝑣,𝑖,ℓ where 𝜘𝑣,𝑖,ℓ is

the canonical morphism 𝐿𝑖,ℓ ⊗𝑅 (
∏
𝑢∈𝑈 𝑁

𝑢)𝑣−𝑖 →
∏
𝑢∈𝑈 (𝐿𝑖,ℓ ⊗𝑅 𝑁𝑢𝑣−𝑖). Using the

unitor 1.2.1 and the fact that each 𝐿𝑖,ℓ is isomorphic to 𝑅 (as an 𝑅o-module), it
follows that each 𝜘𝑣,𝑖,ℓ is an isomorphism, and hence so is 𝜘𝑣,𝑖 =

⊕𝑛𝑖
ℓ=1 𝜘𝑣,𝑖,ℓ .

In the general case where 𝑀 is bounded and degreewise finitely presented, apply
2.5.31 to get an exact sequence 𝐿′ → 𝐿 → 𝑀 → 0 where 𝐿 and 𝐿′ are bounded
complexes of finitely generated free 𝑅o-modules. In the commutative diagram below,
the vertical maps are the canonical morphisms (3.1.30.1) and the rows are exact by
right exactness of the tensor products 2.4.9 and exactness of products 3.1.18,

𝐿′ ⊗𝑅
∏
𝑢∈𝑈

𝑁𝑢 //

�

��

𝐿 ⊗𝑅
∏
𝑢∈𝑈

𝑁𝑢 //

�

��

𝑀 ⊗𝑅
∏
𝑢∈𝑈

𝑁𝑢 //

��

0

∏
𝑢∈𝑈
(𝐿′ ⊗𝑅 𝑁𝑢) //

∏
𝑢∈𝑈
(𝐿 ⊗𝑅 𝑁𝑢) //

∏
𝑢∈𝑈
(𝑀 ⊗𝑅 𝑁𝑢) // 0 .

As argued above, the left-hand and middle vertical maps are isomorphisms, and
hence, by the Five Lemma 2.1.41, so is the right-hand vertical map. □

Remark. An 𝑅o-module 𝑀 is finitely presented if and only if (3.1.30.1) is an isomorphism for
every family {𝑁𝑢 }𝑢∈𝑈 of 𝑅-complexes; see E 3.1.15. There exists a ℚ-module 𝑀 such that
𝑀 ⊗ℚ ℚℕ and (𝑀 ⊗ℚ ℚ)ℕ are isomorphic whilst the canonical map 𝑀 ⊗ℚ ℚℕ → (𝑀 ⊗ℚ ℚ)ℕ is
not an isomorphism; see E 3.1.13.

3.1.31 Proposition. Let 𝑁 be a bounded and degreewise finitely presented 𝑅-com-
plex and {𝑁𝑢}𝑢∈𝑈 a family of 𝑅o-complexes. The canonical morphism in C(𝕜),

(3.1.31.1)
( ∏
𝑢∈𝑈

𝑀𝑢
)
⊗𝑅 𝑁 −→

∏
𝑢∈𝑈
(𝑀𝑢 ⊗𝑅 𝑁) ,

given by 𝑡 ↦→ ((𝜛𝑢 ⊗𝑅 𝑁) (𝑡))𝑢∈𝑈 , is an isomorphism.

Proof. The assertion follows from an argument similar to the proof of 3.1.30. □

3.1.32 Example. The canonical homomorphism of 𝑅-modules,

(3.1.32.1) Hom𝑅 (𝑅 (ℕ) , 𝑅) (ℕ) −→ Hom𝑅 (𝑅 (ℕ) , 𝑅 (ℕ) ) ,

given by 𝜀𝑛 (𝜗𝑛) ↦→ Hom𝑅 (𝑅 (ℕ) , 𝜀𝑛) (𝜗𝑛) = 𝜀𝑛𝜗𝑛 for elements 𝑛 ∈ ℕ and 𝜗𝑛 ∈
Hom𝑅 (𝑅 (ℕ) , 𝑅), is not surjective. Indeed, the identity map on 𝑅 (ℕ) is not in the
image of (3.1.32.1).
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Under suitable conditions on 𝑀 , the functor Hom𝑅 (𝑀, ) preserves coproducts.

3.1.33 Proposition. Let 𝑀 be a bounded and degreewise finitely generated 𝑅-com-
plex and {𝑁𝑢}𝑢∈𝑈 a family of 𝑅-complexes. The canonical morphism in C(𝕜),

(3.1.33.1)
∐
𝑢∈𝑈

Hom𝑅 (𝑀, 𝑁𝑢) −→ Hom𝑅

(
𝑀,

∐
𝑢∈𝑈

𝑁𝑢
)
,

given by 𝜀𝑢 (𝜗𝑢) ↦→ Hom𝑅 (𝑀, 𝜀𝑢) (𝜗𝑢) = 𝜀𝑢𝜗𝑢 for 𝑢 ∈ 𝑈 and 𝜗𝑢 ∈ Hom𝑅 (𝑀, 𝑁𝑢),
is an isomorphism.

Proof. Assume that 𝑀 is bounded and degreewise finitely generated. The module
𝑀♮ is finitely generated, so a homomorphism 𝜗 : 𝑀 → ∐

𝑢∈𝑈 𝑁
𝑢 factors through a

subcomplex ⊕
𝑢∈𝑈′ 𝑁

𝑢, where𝑈′ is a finite subset of𝑈. Let 𝜛𝑢 : ⊕
𝑢∈𝑈′ 𝑁

𝑢 ↠ 𝑁𝑢

be the projection for 𝑢 ∈ 𝑈′. Assign to a homomorphism 𝜗 in Hom𝑅 (𝑀,
∐
𝑢∈𝑈 𝑁

𝑢)
the element ∑𝑢∈𝑈 𝜀

𝑢 (𝜗𝑢) in
∐
𝑢∈𝑈 Hom𝑅 (𝑀, 𝑁𝑢) where 𝜗𝑢 = 𝜛𝑢𝜗 for 𝑢 ∈ 𝑈′ and

𝜗𝑢 = 0 for 𝑢 ∉ 𝑈′. This defines an inverse to (3.1.33.1). □

Remark. Rentschler [211] says that a module 𝑀 is of type 𝛴 if the functor Hom (𝑀, ) preserves
coproducts. More recent names used in the literature for such modules are ‘small’ and ‘dually
slender’, see for example Eklof, Goodearl, and Trlifaj [80]. A dually slender module need not be
finitely generated, however, if 𝑅 is left Noetherian, then every dually slender 𝑅-module is finitely
generated. See E 3.1.19–E 3.1.22.

Exercises

E 3.1.1 Let { �̃�𝑢 : 𝑀𝑢 → 𝐶 }𝑢∈𝑈 be a family of morphisms in C(𝑅) with the property that
for every family {𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 of morphisms in C(𝑅) there is a unique mor-
phism 𝛼 :𝐶 → 𝑁 with 𝛼�̃�𝑢 = 𝛼𝑢 for all 𝑢 ∈ 𝑈. Show that there is an isomorphism
𝜑 :

∐
𝑢∈𝑈 𝑀

𝑢 → 𝐶 with 𝜑𝜀𝑢 = �̃�𝑢 for all 𝑢 ∈ 𝑈. Conclude that the universal property
determines the coproduct uniquely up to isomorphism.

E 3.1.2 Let 𝛼 :
∐
𝑢∈𝑈 𝑀

𝑢 → 𝑁 be the morphism induced by a family {𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 of
morphisms in C(𝑅) . Show that 𝛼 is surjective if ⋃

𝑢∈𝑈 Im 𝛼𝑢 = 𝑁 holds.
E 3.1.3 (Cf. 3.1.3) Show that the coproduct in C(𝑅) of a family of graded 𝑅-modules is a graded

𝑅-module. Conclude, in particular, that the category Mgr (𝑅) has coproducts.
E 3.1.4 Let𝑈 be a set. Show that𝑈-indexed families of 𝑅-complexes form an Abelian category

and that the product and coproduct are exact functors from this category to C(𝑅) .
E 3.1.5 (Cf. 3.1.8) Verify that the diagram (3.1.8.2) is commutative.
E 3.1.6 Show that every functor F: C(𝑅) → C(𝑆) that has a right adjoint preserves coproducts.
E 3.1.7 Show that for every complex 𝑁 one has isomorphisms

∐
𝑣∈ℤ Σ𝑣𝑁𝑣 � 𝑁

♮ �
∏
𝑣∈ℤ Σ𝑣𝑁𝑣.

E 3.1.8 Let { �̃�𝑢 : 𝑃 → 𝑁𝑢 }𝑢∈𝑈 be a family of morphisms in C(𝑅) with the property that for
every family {𝛼𝑢 : 𝑀 → 𝑁𝑢 }𝑢∈𝑈 of morphisms in C(𝑅) there is a unique morphism
𝛼 : 𝑀 → 𝑃 with �̃�𝑢𝛼 = 𝛼𝑢 for all 𝑢 ∈ 𝑈. Show that there is an isomorphism
𝜑 : 𝑃 → ∏

𝑢∈𝑈 𝑁
𝑢 with 𝜛𝑢𝜑 = �̃�𝑢 for all 𝑢 ∈ 𝑈. Conclude that the universal

property determines the product uniquely up to isomorphism.
E 3.1.9 Let 𝛼 : 𝑀 → ∏

𝑢∈𝑈 𝑁
𝑢 be the morphism induced by a family {𝛼𝑢 : 𝑀 → 𝑁𝑢 }𝑢∈𝑈 of

morphisms in C(𝑅) . Show that 𝛼 is injective if ⋂
𝑢∈𝑈 Ker 𝛼𝑢 = 0 holds.

E 3.1.10 (Cf. 3.1.16) Show that the product in C(𝑅) of a family of graded 𝑅-modules is a graded
𝑅-module. Conclude, in particular, that the category Mgr (𝑅) has products.

E 3.1.11 (Cf. 3.1.20) Verify that the diagram (3.1.20.2) is commutative.
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E 3.1.12 Show that every functor F: C(𝑅) → C(𝑆) that has a left adjoint preserves products.
E 3.1.13 Let 𝕜 be a field. Show that the canonical homomorphism 𝕜ℕ ⊗𝕜 𝕜ℕ → (𝕜ℕ ⊗𝕜 𝕜)ℕ is

not an isomorphism. Show that 𝕜ℕ ⊗𝕜 𝕜ℕ and (𝕜ℕ ⊗𝕜 𝕜)ℕ are isomorphic.
E 3.1.14 Let 𝑀 be an 𝑅o-module. Show that the next conditions are equivalent. (i) 𝑀 is finitely

generated. (ii) The morphism (3.1.30.1) is surjective for every family {𝑁𝑢 }𝑢∈𝑈 . (iii) The
morphism (3.1.30.1) is surjective for every family {𝑁𝑢 }𝑢∈𝑈 with 𝑁𝑢 = 𝑅 for all 𝑢 ∈ 𝑈.

E 3.1.15 Let 𝑀 be an 𝑅o-module. Show that the next conditions are equivalent. (i) 𝑀 is finitely
presented. (ii) The morphism (3.1.30.1) is bĳective for every family {𝑁𝑢 }𝑢∈𝑈 . (iii) The
morphism (3.1.30.1) is bĳective for every family {𝑁𝑢 }𝑢∈𝑈 with 𝑁𝑢 = 𝑅 for all 𝑢 ∈ 𝑈.

E 3.1.16 Show that the canonical morphism (3.1.33.1) is always injective.
E 3.1.17 Let 𝑀 be a degreewise finitely presented 𝑅o-complex and {𝑁𝑢 }𝑢∈𝑈 a family of 𝑅-

complexes. Show that if there exists 𝑛 ∈ ℕ such that 𝑛 ⩾ sup (𝑁𝑢 )♮ and inf (𝑁𝑢 )♮ ⩾ −𝑛
hold for all 𝑢 ∈ 𝑈, then the canonical morphism (3.1.30.1) is an isomorphism.

E 3.1.18 Let 𝑀 be a degreewise finitely generated 𝑅-complex and {𝑁𝑢 }𝑢∈𝑈 a family of 𝑅-
complexes. Show that if there exist 𝑛 ∈ ℕ such that 𝑛 ⩾ sup (𝑁𝑢 )♮ and inf (𝑁𝑢 )♮ ⩾ −𝑛
hold for all 𝑢 ∈ 𝑈, then the canonical morphism (3.1.33.1) is an isomorphism.

E 3.1.19 Let 𝑀 be an 𝑅-module. Show that Hom𝑅 (𝑀, ) preserves coproducts if and only if for
every ascending chain 𝑀1 ⊆ 𝑀2 ⊆ · · · of submodules of 𝑀 with 𝑀 =

⋃
𝑛∈ℕ 𝑀

𝑛 one
has 𝑀 = 𝑀𝑛 for some 𝑛 ∈ ℕ.

E 3.1.20 Let 𝑀 be an 𝑅-module. Show that if Hom𝑅 (𝑀, ) preserves coproducts and 𝑀 is
countably generated, then 𝑀 is finitely generated.

E 3.1.21 Give an example of an 𝑅-module 𝑀 such that 𝑀 is not finitely generated and
Hom𝑅 (𝑀, ) preserves coproducts. Hint: See e.g. Head [116] or Rentschler [211].

E 3.1.22 Assume that 𝑅 is left Noetherian and let 𝑀 be an 𝑅-module. Show that Hom𝑅 (𝑀, )
preserves coproducts if and only if 𝑀 is finitely generated.

E 3.1.23 Let V be a category. Show that products in V correspond to coproducts in the opposite
category Vop and that coproducts in V correspond to products in Vop.

E 3.1.24 Show that for a family {𝑅𝑢 }𝑢∈𝑈 of 𝕜-algebras the ring �
𝑢∈𝑈 𝑅

𝑢 is the product in the
category of 𝕜-algebras.

E 3.1.25 Show that for commutative 𝕜-algebras 𝑅 and 𝑆 the ring 𝑅 ⊗𝕜 𝑆 is the coproduct in the
category of commutative 𝕜-algebras.

3.2 Colimits

Synopsis. Direct system; colimit; universal property; functor that preserves colimits; pushout.

A colimit is a quotient of a coproduct. Structurally, our treatment of colimits follows
the pattern established in Sect. 3.1. Recall that a set endowed with a reflexive and
transitive binary relation ‘⩽’ is called preordered. Partially ordered sets are, in
particular, preordered.

3.2.1 Definition. Let (𝑈, ⩽) be a preordered set. A 𝑈-direct system in C(𝑅) is a
family {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 of morphisms in C(𝑅) with the following properties.

(1) 𝜇𝑢𝑢 = 1𝑀𝑢 for all 𝑢 ∈ 𝑈.
(2) 𝜇𝑤𝑣𝜇𝑣𝑢 = 𝜇𝑤𝑢 for all 𝑢 ⩽ 𝑣 ⩽ 𝑤 in𝑈.

Any mention of a 𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 includes the tacit assump-
tion that (𝑈, ⩽) is a preordered set.
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3.2.2. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a 𝑈-direct system of 𝑅-complexes. Notice that
even if 𝑢 ⩽ 𝑣 and 𝑣 ⩽ 𝑢 hold, one may not have 𝑢 = 𝑣 as the relation on 𝑈 is not
assumed to be antisymmetric; however, it follows from 3.2.1 that 𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣 is
an isomorphism with inverse 𝜇𝑢𝑣 : 𝑀𝑣 → 𝑀𝑢, so one has 𝑀𝑢 � 𝑀𝑣.

3.2.3 Construction. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a 𝑈-direct system in C(𝑅). We
describe the quotient of the coproduct

∐
𝑢∈𝑈 𝑀

𝑢 by the subcomplex generated by
the set of elements {𝜀𝑢 (𝑚𝑢) − 𝜀𝑣𝜇𝑣𝑢 (𝑚𝑢) | 𝑚𝑢 ∈ 𝑀𝑢, 𝑢 ⩽ 𝑣} as the cokernel of a
morphism between coproducts in C(𝑅).

Set ∇(𝑈) = { (𝑢, 𝑣) ∈ 𝑈 ×𝑈 | 𝑢 ⩽ 𝑣} and set 𝑀 (𝑢,𝑣) = 𝑀𝑢 for all (𝑢, 𝑣) ∈ ∇(𝑈).
The assignment

𝜀 (𝑢,𝑣) (𝑚 (𝑢,𝑣) ) ↦−→ 𝜀𝑢 (𝑚 (𝑢,𝑣) ) − 𝜀𝑣𝜇𝑣𝑢 (𝑚 (𝑢,𝑣) ) ,

where (𝑢, 𝑣) ∈ ∇(𝑈), 𝑚 (𝑢,𝑣) ∈ 𝑀 (𝑢,𝑣) = 𝑀𝑢, and 𝜀 is the injection (3.1.1.1), defines
by 3.1.2 a morphism of 𝑅-complexes

𝛥𝜇 :
∐

(𝑢,𝑣) ∈∇(𝑈)
𝑀 (𝑢,𝑣) −→

∐
𝑢∈𝑈

𝑀𝑢 .

Set
colim
𝑢∈𝑈

𝑀𝑢 = Coker 𝛥𝜇 .

Notice that for every 𝑢 ∈ 𝑈 the composite of the injection 𝜀𝑢 with the canonical
map onto colim𝑢∈𝑈 𝑀𝑢 is a morphism of 𝑅-complexes,

(3.2.3.1) 𝜇𝑢 : 𝑀𝑢 −→ colim
𝑢∈𝑈

𝑀𝑢 ,

and 𝜇𝑢 = 𝜇𝑣𝜇𝑣𝑢 holds for all 𝑢 ⩽ 𝑣 in 𝑈. Every element in colim𝑢∈𝑈 𝑀𝑢 has the
form ∑

𝑢∈𝑈 𝜇
𝑢 (𝑚𝑢) for some element ∑𝑢∈𝑈 𝜀

𝑢 (𝑚𝑢) in
∐
𝑢∈𝑈 𝑀

𝑢, and one has

𝜕colim𝑢∈𝑈 𝑀𝑢 (𝜇𝑢 (𝑚𝑢)) = 𝜇𝑢 (𝜕𝑀𝑢 (𝑚𝑢)) .

If𝑈 is filtered, then every element in colim𝑢∈𝑈 𝑀𝑢 has the form 𝜇𝑣 (𝑚𝑣) for some
𝑣 ∈ 𝑈 and 𝑚𝑣 ∈ 𝑀𝑣; see 3.3.2.
Remark. Though the complex colim𝑢∈𝑈 𝑀𝑢 depends on the morphisms 𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣, it is
standard to use this symbol that suppresses the morphisms.

The next definition is justified by 3.2.5; it shows that the complex colim𝑢∈𝑈 𝑀𝑢

and the canonical morphisms 𝜇𝑢 have the universal property of a colimit. In any
category, this property determines the colimit uniquely up to isomorphism.

3.2.4 Definition. For a𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 in C(𝑅) the complex
colim𝑢∈𝑈 𝑀𝑢 together with the canonical morphisms {𝜇𝑢}𝑢∈𝑈 , constructed in 3.2.3,
is called the colimit of {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 in C(𝑅).

Remark. Other names for the colimit defined above are ‘inductive limit’ and ‘injective limit’; other
symbols used for this gadget are lim−→ and inj lim.
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3.2.5 Theorem. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a𝑈-direct system in C(𝑅). The colimit
from 3.2.4 has the following universal property: For every family of morphisms
{𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 in C(𝑅) with 𝛼𝑢 = 𝛼𝑣𝜇𝑣𝑢 for all 𝑢 ⩽ 𝑣, there is a unique
morphism 𝛼 that makes the next diagram commutative for all 𝑢 ⩽ 𝑣,

𝑀𝑣

𝜇𝑣

&&

𝛼𝑣

$$

colim
𝑢∈𝑈

𝑀𝑢 𝛼
// 𝑁

𝑀𝑢

𝜇𝑢

88
𝜇𝑣𝑢

OO

𝛼𝑢

::

The morphism 𝛼 is given by ∑
𝑢∈𝑈 𝜇

𝑢 (𝑚𝑢) ↦→ ∑
𝑢∈𝑈 𝛼

𝑢 (𝑚𝑢).

Proof. Let {𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 be a family of morphisms with 𝛼𝑢 = 𝛼𝑣𝜇𝑣𝑢 for
all 𝑢 ⩽ 𝑣. The equalities 𝛼𝑢 = 𝛼𝑣𝜇𝑣𝑢 ensure that the morphism

∐
𝑢∈𝑈 𝑀

𝑢 → 𝑁

from 3.1.2 factors through colim𝑢∈𝑈 𝑀𝑢 to yield a morphism 𝛼 with the stipulated
definition.

It is evident from the definition that 𝛼 satisfies 𝛼𝑢 = 𝛼𝜇𝑢 for all 𝑢 ∈ 𝑈. Moreover,
for any morphism 𝛼′ : colim𝑢∈𝑈 𝑀𝑢 → 𝑁 that satisfies 𝛼𝑢 = 𝛼′𝜇𝑢 for all 𝑢 ∈ 𝑈,
one has 𝛼′ (∑𝑢∈𝑈 𝜇

𝑢 (𝑚𝑢)) = ∑
𝑢∈𝑈 𝛼

′𝜇𝑢 (𝑚𝑢) = ∑
𝑢∈𝑈 𝛼

𝑢 (𝑚𝑢), hence 𝛼′ = 𝛼. □

3.2.6. With the notation from 3.1.4 and 3.2.5, notice that one has Im𝛼 =∑
𝑢∈𝑈 Im𝛼𝑢; in particular, 𝛼 is surjective if ⋃

𝑢∈𝑈 Im𝛼𝑢 = 𝑁 holds.

3.2.7. It follows readily from 3.2.3 and 3.2.5 that the full subcategories M(𝑅) and
Mgr (𝑅) of C(𝑅) are closed under colimits, that is, if {𝜇𝑣𝑢𝑛 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 is a 𝑈-
direct system inM(𝑅) or inMgr (𝑅), then colim𝑢∈𝑈 𝑀𝑢 belongs toM(𝑅) orMgr (𝑅).
It follows that for every𝑈-direct system {𝜇𝑣𝑢𝑛 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 in C(𝑅) one has(

colim
𝑢∈𝑈

𝑀𝑢
)
𝑖
= colim

𝑢∈𝑈
(𝑀𝑢

𝑖 ) and
(
colim
𝑢∈𝑈

𝑀𝑢
) ♮

= colim
𝑢∈𝑈

(𝑀𝑢)♮ .

See 3.2.2 to reconcile the next example with the fact that a greatest element of a
preordered set need not be unique.

3.2.8 Example. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a 𝑈-direct system of 𝑅-complexes. If
𝑈 has a greatest element, 𝑤, then there is an isomorphism,

colim
𝑢∈𝑈

𝑀𝑢 � 𝑀𝑤 .

Indeed, the family {𝜇𝑤𝑢 : 𝑀𝑢 → 𝑀𝑤}𝑢∈𝑈 satisfies 𝜇𝑤𝑢 = 𝜇𝑤𝑣𝜇𝑣𝑢 for 𝑢 ⩽ 𝑣 in𝑈, so
3.2.5 yields a unique morphism 𝜑 : colim𝑢∈𝑈 𝑀𝑢 → 𝑀𝑤 with 𝜑𝜇𝑢 = 𝜇𝑤𝑢 for 𝑢 ∈ 𝑈.
Evidently 𝜑𝜇𝑤 = 𝜇𝑤𝑤 = 1𝑀𝑤 holds. To see that 𝜑 is an isomorphism with inverse
𝜇𝑤, notice that for every 𝑢 ∈ 𝑈 one has 𝜇𝑤𝜑𝜇𝑢 = 𝜇𝑤𝜇𝑤𝑢 = 𝜇𝑢, so the uniqueness
statement in 3.2.5 implies that 𝜇𝑤𝜑 is the identity on colim𝑢∈𝑈 𝑀𝑢.

3.2.9 Example. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes. Endowed with the
discrete order,𝑈 is a preordered set, and {𝜇𝑢𝑢 = 1𝑀𝑢 }𝑢∈𝑈 is a𝑈-direct system with
colim𝑢∈𝑈 𝑀𝑢 =

∐
𝑢∈𝑈 𝑀

𝑢 and 𝜇𝑢 = 𝜀𝑢 for all 𝑢 ∈ 𝑈. Thus, a coproduct is a colimit.
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110 3 Categorical Constructions

As is the case for the colimit in any category, the colimit in C(𝑅) also acts on
morphisms. This is explained in the following definition.

3.2.10 Definition. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 and {𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁𝑣}𝑢⩽𝑣 be 𝑈-direct
systems in C(𝑅). A family of morphisms {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 in C(𝑅) that satisfy
𝜈𝑣𝑢𝛼𝑢 = 𝛼𝑣𝜇𝑣𝑢 for all 𝑢 ⩽ 𝑣 in 𝑈 is called a morphism of 𝑈-direct systems. Such a
morphism is called injective (surjective) if each map 𝛼𝑢 is injective (surjective).

Given a morphism {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 of𝑈-direct systems, it follows from the
universal property of colimits 3.2.5 that the map given by 𝜇𝑢 (𝑚𝑢) ↦→ 𝜈𝑢𝛼𝑢 (𝑚𝑢) is
the unique morphism that makes the next diagram commutative for all 𝑢 ⩽ 𝑣,

𝑀𝑣

𝜇𝑣

%%

𝛼𝑣
// 𝑁𝑣

𝜈𝑣

yy

colim
𝑢∈𝑈

𝑀𝑢 // colim
𝑢∈𝑈

𝑁𝑢

𝑀𝑢

𝜇𝑢

99
𝜇𝑣𝑢

OO

𝛼𝑢
// 𝑁𝑢 .

𝜈𝑣

ee
𝜈𝑣𝑢

OO

This map is called the colimit of {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 and denoted colim𝑢∈𝑈 𝛼𝑢.

3.2.11 Example. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a𝑈-direct system in C(𝑅). The maps
𝜇𝑣𝑢 are morphisms in C(𝑅), so the family {𝜕𝑀𝑢 : 𝑀𝑢 → Σ𝑀𝑢}𝑢∈𝑈 is a morphism
of𝑈-direct systems. From the definitions one gets colim𝑢∈𝑈 𝜕𝑀

𝑢

= 𝜕colim𝑢∈𝑈 𝑀𝑢 .

The next result shows that colimits are right exact. While general colimits are not
exact—see 3.2.29 for an example—we show in 3.3.10 that colimits over filtered sets
are exact.

3.2.12 Lemma. Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 and {𝛽𝑢 : 𝑁𝑢 → 𝑋𝑢}𝑢∈𝑈 be morphisms
of𝑈-direct systems in C(𝑅). If the sequence

𝑀𝑢 𝛼𝑢−−−→ 𝑁𝑢
𝛽𝑢−−−→ 𝑋𝑢 −→ 0

is exact for every 𝑢 ∈ 𝑈, then the next sequence is exact,

colim
𝑢∈𝑈

𝑀𝑢 colim𝑢∈𝑈 𝛼𝑢−−−−−−−−−−→ colim
𝑢∈𝑈

𝑁𝑢
colim𝑢∈𝑈 𝛽𝑢−−−−−−−−−−→ colim

𝑢∈𝑈
𝑋𝑢 −→ 0 .

Proof. Let∇(𝑈) be as in 3.2.3 and set𝛼 (𝑢,𝑣) = 𝛼𝑢 and 𝛽 (𝑢,𝑣) = 𝛽𝑢 for (𝑢, 𝑣) ∈ ∇(𝑈).
By 3.1.6 there is a commutative diagram with exact rows,

∐
(𝑢,𝑣) ∈∇(𝑈)

𝑀 (𝑢,𝑣)
∐
(𝑢,𝑣) ∈∇(𝑈) 𝛼

(𝑢,𝑣)
//

𝛥𝜇
��

∐
(𝑢,𝑣) ∈∇(𝑈)

𝑁 (𝑢,𝑣)
∐
(𝑢,𝑣) ∈∇(𝑈) 𝛽

(𝑢,𝑣)
//

𝛥𝜈
��

∐
(𝑢,𝑣) ∈∇(𝑈)

𝑋 (𝑢,𝑣) //

𝛥𝜒
��

0

∐
𝑢∈𝑈

𝑀𝑢

∐
𝑢∈𝑈 𝛼

𝑢

//
∐
𝑢∈𝑈

𝑁𝑢
∐
𝑢∈𝑈 𝛽

𝑢

//
∐
𝑢∈𝑈

𝑋𝑢 // 0 ,
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3.2 Colimits 111

where the vertical morphisms 𝛥 are defined in 3.2.3. It follows from 2.1.43 that there
is an exact sequence Coker 𝛥𝜇 → Coker 𝛥𝜈 → Coker 𝛥𝜒 → 0 in C(𝑅), which in
view of 3.2.3 is the desired one. □

The product of preordered sets𝑈 and𝑈′ is the cartesian product𝑈×𝑈′ equipped
with the product order, i.e. (𝑢, 𝑢′) ⩽ (𝑣, 𝑣′) holds in 𝑈 ×𝑈′ if and only if one has
𝑢 ⩽ 𝑣 in𝑈 and 𝑢′ ⩽ 𝑣′ in𝑈′. It is straightforward to verify that𝑈×𝑈′ is a preordered
set.

3.2.13 Proposition. Let𝑈 and𝑈′ be preordered sets and{
𝜇 (𝑣,𝑣

′ ) (𝑢,𝑢′ ) : 𝑀 (𝑢,𝑢
′ ) → 𝑀 (𝑣,𝑣

′ )}
(𝑢,𝑢′ )⩽ (𝑣,𝑣′ )

a (𝑈 ×𝑈′)-direct system in C(𝑅). There are isomorphisms,

colim
𝑢′∈𝑈′

(
colim
𝑢∈𝑈

𝑀 (𝑢,𝑢
′ ) ) � colim

(𝑢,𝑢′ ) ∈𝑈×𝑈′
𝑀 (𝑢,𝑢

′ ) � colim
𝑢∈𝑈

(
colim
𝑢′∈𝑈′

𝑀 (𝑢,𝑢
′ ) ) .

Proof. Due to the symmetry, it suffices to prove the first isomorphism.
Let 𝑢′ ∈ 𝑈′ and note that {𝜇 (𝑣,𝑢′ ) (𝑢,𝑢′ ) : 𝑀 (𝑢,𝑢′ ) → 𝑀 (𝑣,𝑢

′ ) }𝑢⩽𝑣 is a 𝑈-direct
system; set 𝑋𝑢′ = colim𝑢∈𝑈 𝑀 (𝑢,𝑢

′ ) and write {𝜑𝑢,𝑢′ : 𝑀 (𝑢,𝑢′ ) → 𝑋𝑢
′ }𝑢∈𝑈 for the

canonical morphisms; so 𝜑𝑣,𝑢′𝜇 (𝑣,𝑢′ ) (𝑢,𝑢′ ) = 𝜑𝑢,𝑢′ holds for 𝑢 ⩽ 𝑣 in 𝑈. Let 𝑢′ ⩽ 𝑣′
in𝑈′ be given. For all 𝑢 ⩽ 𝑣 in𝑈 the next diagram is, by assumption, commutative,

𝑀 (𝑢,𝑢
′ ) 𝜇 (𝑢,𝑣

′ ) (𝑢,𝑢′ )
//

𝜇 (𝑣,𝑢
′ ) (𝑢,𝑢′ )

��

𝑀 (𝑢,𝑣
′ )

𝜇 (𝑣,𝑣
′ ) (𝑢,𝑣′ )

��

𝑀 (𝑣,𝑢
′ ) 𝜇 (𝑣,𝑣

′ ) (𝑣,𝑢′ )
// 𝑀 (𝑣,𝑣

′ ) .

Thus {𝜇 (𝑢,𝑣′ ) (𝑢,𝑢′ ) : 𝑀 (𝑢,𝑢′ ) → 𝑀 (𝑢,𝑣
′ ) }𝑢∈𝑈 is a morphism from the 𝑈-direct sys-

tem {𝜇 (𝑣,𝑢′ ) (𝑢,𝑢′ ) : 𝑀 (𝑢,𝑢′ ) → 𝑀 (𝑣,𝑢
′ ) }𝑢⩽𝑣 to {𝜇 (𝑣,𝑣′ ) (𝑢,𝑣′ ) : 𝑀 (𝑢,𝑣′ ) → 𝑀 (𝑣,𝑣

′ ) }𝑢⩽𝑣,
so 3.2.10 yields an induced morphism 𝜒𝑣

′𝑢′ = colim𝑢∈𝑈 𝜇 (𝑢,𝑣
′ ) (𝑢,𝑢′ ) : 𝑋𝑢′ → 𝑋𝑣

′ ,
which is the unique morphism that makes the diagram

(♭)
𝑀 (𝑢,𝑢

′ ) 𝜇 (𝑢,𝑣
′ ) (𝑢,𝑢′ )

//

𝜑𝑢,𝑢
′

��

𝑀 (𝑢,𝑣
′ )

𝜑𝑢,𝑣
′

��

𝑋𝑢
′ 𝜒𝑣

′𝑢′
// 𝑋𝑣

′

commutative for every 𝑢 ∈ 𝑈. From the uniqueness of this morphism, it follows that
{𝜒𝑣′𝑢′ : 𝑋𝑢′ → 𝑋𝑣

′ }𝑢′⩽𝑣′ is a 𝑈′-direct system. Set 𝑋 = colim𝑢′∈𝑈′ 𝑋𝑢
′ and write

{𝜒𝑢′ : 𝑋𝑢′ → 𝑋 }𝑢′∈𝑈′ for the canonical morphisms.
Notice that 𝑋 is the iterated colimit on the left-hand side of the asserted isomor-

phism. Set 𝑀 = colim(𝑢,𝑢′ ) ∈𝑈×𝑈′ 𝑀 (𝑢,𝑢
′ ) and write

{𝜇 (𝑢,𝑢′ ) : 𝑀 (𝑢,𝑢′ ) → 𝑀 } (𝑢,𝑢′ ) ∈𝑈×𝑈′

for the canonical morphisms. Next we show that𝑀 is isomorphic to 𝑋 by constructing
a pair of mutually inverse morphisms 𝛼 : 𝑀 → 𝑋 and 𝛽 : 𝑋 → 𝑀 .
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For every (𝑢, 𝑢′) ∈ 𝑈 × 𝑈′ set 𝛼 (𝑢,𝑢′ ) = 𝜒𝑢′𝜑𝑢,𝑢′ : 𝑀 (𝑢,𝑢′ ) → 𝑋 . For (𝑢, 𝑢′) ⩽
(𝑣, 𝑣′) in𝑈 ×𝑈′ the definitions and commutativity of (♭) yield:

𝛼 (𝑣,𝑣
′ )𝜇 (𝑣,𝑣

′ ) (𝑢,𝑢′ ) = 𝜒𝑣
′
𝜑𝑣,𝑣

′
𝜇 (𝑣,𝑣

′ ) (𝑢,𝑣′ )𝜇 (𝑢,𝑣
′ ) (𝑢,𝑢′ )

= 𝜒𝑣
′
𝜑𝑢,𝑣

′
𝜇 (𝑢,𝑣

′ ) (𝑢,𝑢′ )

= 𝜒𝑣
′
𝜒𝑣
′𝑢′𝜑𝑢,𝑢

′

= 𝜒𝑢
′
𝜑𝑢,𝑢

′

= 𝛼 (𝑢,𝑢
′ ) .

Thus 3.2.5 yields a unique morphism 𝛼 : 𝑀 → 𝑋 with 𝛼𝜇 (𝑢,𝑢′ ) = 𝛼 (𝑢,𝑢′ ) = 𝜒𝑢′𝜑𝑢,𝑢′

for every (𝑢, 𝑢′) ∈ 𝑈 ×𝑈′.
Let 𝑢′ ∈ 𝑈′; for all 𝑢 ⩽ 𝑣 in 𝑈 one has 𝜇 (𝑣,𝑢′ )𝜇 (𝑣,𝑢′ ) (𝑢,𝑢′ ) = 𝜇 (𝑢,𝑢

′ ) , so by 3.2.5
there exists a unique morphism 𝛽𝑢

′ : 𝑋𝑢′ → 𝑀 with 𝛽𝑢
′
𝜑𝑢,𝑢

′
= 𝜇 (𝑢,𝑢

′ ) for every
𝑢 ∈ 𝑈. Let 𝑢′ ⩽ 𝑣′ in𝑈′ be given; from the definitions and (♭) it follows that

𝛽𝑣
′
𝜒𝑣
′𝑢′𝜑𝑢,𝑢

′
= 𝛽𝑣

′
𝜑𝑢,𝑣

′
𝜇 (𝑢,𝑣

′ ) (𝑢,𝑢′ ) = 𝜇 (𝑢,𝑣
′ )𝜇 (𝑢,𝑣

′ ) (𝑢,𝑢′ ) = 𝜇 (𝑢,𝑢
′ ) = 𝛽𝑢

′
𝜑𝑢,𝑢

′

holds for every 𝑢 ∈ 𝑈. Thus there is an identity 𝛽𝑣′ 𝜒𝑣′𝑢′ = 𝛽𝑢′ of maps from 𝑋𝑢
′ to𝑀 ,

as 𝑋𝑢′ is a colimit with canonical maps 𝜑𝑢,𝑢′ : 𝑀 (𝑢,𝑢′ ) → 𝑋𝑢
′ . Another application

of 3.2.5 yields a unique morphism 𝛽 : 𝑋 → 𝑀 with 𝛽𝜒𝑢′ = 𝛽𝑢′ for every 𝑢′ ∈ 𝑈′.
To verify 𝛼𝛽 = 1𝑋, it is enough to prove 𝛼𝛽𝜒𝑢′ = 𝜒𝑢

′ for every 𝑢′ ∈ 𝑈′, and to
that end it suffices to argue that 𝛼𝛽𝜒𝑢′𝜑𝑢,𝑢′ = 𝜒𝑢′𝜑𝑢,𝑢′ for every 𝑢 ∈ 𝑈. And indeed,

𝛼𝛽𝜒𝑢
′
𝜑𝑢,𝑢

′
= 𝛼𝛽𝑢

′
𝜑𝑢,𝑢

′
= 𝛼𝜇 (𝑢,𝑢

′ ) = 𝛼 (𝑢,𝑢
′ ) = 𝜒𝑢

′
𝜑𝑢,𝑢

′
.

To verify 𝛽𝛼 = 1𝑀 , it suffices to prove 𝛽𝛼𝜇 (𝑢,𝑢′ ) = 𝜇 (𝑢,𝑢′ ) for every (𝑢, 𝑢′) ∈ 𝑈×𝑈′.
This hold as 𝛽𝛼𝜇 (𝑢,𝑢′ ) = 𝛽𝜒𝑢′𝜑𝑢,𝑢′ = 𝛽𝑢′𝜑𝑢,𝑢′ = 𝜇 (𝑢,𝑢′ ) . □

3.2.14 Corollary. Let 𝑈 and 𝑈′ be sets and {𝑀 (𝑢,𝑢′ ) } (𝑢,𝑢′ ) ∈𝑈×𝑈′ a family of 𝑅-
complexes. There are isomorphisms,∐

𝑢′∈𝑈′

( ∐
𝑢∈𝑈

𝑀 (𝑢,𝑢
′ )
)
�

∐
(𝑢,𝑢′ ) ∈𝑈×𝑈′

𝑀 (𝑢,𝑢
′ ) �

∐
𝑢∈𝑈

( ∐
𝑢′∈𝑈′

𝑀 (𝑢,𝑢
′ )
)
.

Proof. The isomorphisms follow immediately from 3.2.9 and 3.2.13. □

Functors that Preserve Colimits

3.2.15 Construction. Let F: C(𝑅) → C(𝑆) be a functor and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 a
𝑈-direct system in C(𝑅). The maps {F(𝜇𝑣𝑢) : F(𝑀𝑢) → F(𝑀𝑣)}𝑢⩽𝑣 form a𝑈-direct
system in C(𝑆); write 𝜆𝑢 : F(𝑀𝑢) → colim𝑢∈𝑈 F(𝑀𝑢) for the canonical morphisms,
see (3.2.3.1). As F(𝜇𝑢) = F(𝜇𝑣) F(𝜇𝑣𝑢) holds for all 𝑢 ⩽ 𝑣 in 𝑈, the universal
property of colimits 3.2.5 yields a unique morphism

(3.2.15.1) colim
𝑢∈𝑈

F(𝑀𝑢) −→ F
(
colim
𝑢∈𝑈

𝑀𝑢
)

given by 𝜆𝑢 (𝑥𝑢) ↦−→ F(𝜇𝑢) (𝑥𝑢)

for 𝑢 ∈ 𝑈 and 𝑥𝑢 ∈ F(𝑀𝑢), that makes the next diagram commutative for all 𝑢 ⩽ 𝑣,
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3.2 Colimits 113

F(𝑀𝑣)
𝜆𝑣

''

F(𝜇𝑣 )

&&

colim
𝑢∈𝑈

F(𝑀𝑢) // F
(
colim
𝑢∈𝑈

𝑀𝑢
)

F(𝑀𝑢)
𝜆𝑢

77
F(𝜇𝑣𝑢 )

OO

F(𝜇𝑢 )

88

3.2.16 Definition. A functor F: C(𝑅) → C(𝑆) preserves colimits if the morphism
(3.2.15.1) is an isomorphism for every𝑈-direct system {𝜇𝑣𝑢: 𝑀𝑢→ 𝑀𝑣}𝑢⩽𝑣 inC(𝑅).

Remark. A functor that preserves colimits is also called ‘cocontinuous’.

Even if a functor does not preserve (all) colimits in the sense of 3.2.16, it may
still preserve certain types of colimits, meaning that the morphism (3.2.15.1) is an
isomorphism for a 𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢→ 𝑀𝑣}𝑢⩽𝑣 provided that 𝑈 is of a
certain type. For example, a functor that preserves coproducts, see 3.1.8, preserves
colimits over discrete sets. Every right exact functor preserves pushouts, that is,
colimits formed over the preordered set in 3.2.24. By 3.3.15 the homology functor
preserves colimits over filtered sets, but it does not preserve all colimits.

While 3.2.16 is a condition on objects, it carries over to morphisms.

3.2.17. Let F: C(𝑅) → C(𝑆) be a functor and {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 a morphism of
𝑈-direct systems in C(𝑅). It is elementary to see that there is a commutative diagram,

colim
𝑢∈𝑈

F(𝑀𝑢)

��

colim𝑢∈𝑈 F(𝛼𝑢 )
// colim
𝑢∈𝑈

F(𝑁𝑢)

��

F
(
colim
𝑢∈𝑈

𝑀𝑢
) F(colim𝑢∈𝑈 𝛼𝑢 )

// F
(
colim
𝑢∈𝑈

𝑁𝑢
)
,

where the vertical maps are the canonical morphisms (3.2.15.1). Thus, if F preserves
colimits, then the morphisms colim𝑢∈𝑈 F(𝛼𝑢) and F(colim𝑢∈𝑈 𝛼𝑢) are isomorphic.

3.2.18. Let 𝜏 : E→ F be a natural transformation of functors C(𝑅) → C(𝑆) and
{𝑀𝑢}𝑢∈𝑈 a family of 𝑅-complexes. It is straightforward to verify that there is a
commutative diagram in C(𝑆),

colim
𝑢∈𝑈

E(𝑀𝑢)

��

colim𝑢∈𝑈 𝜏𝑀
𝑢

// colim
𝑢∈𝑈

F(𝑀𝑢)

��

E
(
colim
𝑢∈𝑈

𝑀𝑢
) 𝜏 (colim𝑢∈𝑈 𝑀𝑢 )

// F
(
colim
𝑢∈𝑈

𝑀𝑢
)
,

where the vertical maps are the canonical morphisms see (3.2.15.1).

3.2.19 Lemma. Let F: C(𝑅) → C(𝑆) be a functor. If F is right exact and preserves
coproducts, then it preserves colimits.
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Proof. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a 𝑈-direct system in C(𝑅). Consider the fol-
lowing commutative diagram in C(𝑆) where the left-hand and middle vertical maps
are given by (3.1.8.1) and the right-hand vertical map is given by (3.2.15.1),

∐
(𝑢,𝑣) ∈∇(𝑈)

F(𝑀 (𝑢,𝑣) )
𝛥F(𝜇)

//

��

∐
𝑢∈𝑈

F(𝑀𝑢) //

��

colim
𝑢∈𝑈

F(𝑀𝑢) //

��

0

F
( ∐
(𝑢,𝑣) ∈∇(𝑈)

𝑀 (𝑢,𝑣)
) F(𝛥𝜇 )

// F
( ∐
𝑢∈𝑈

𝑀𝑢
)

// F
(
colim
𝑢∈𝑈

𝑀𝑢
)

// 0 .

The rows in this diagram are exact by 3.2.3 and right exactness of F. The left-hand
and middle vertical maps are isomorphisms by assumption, so it follows from the
Five Lemma 2.1.41 that the right-hand vertical map is an isomorphism. □

The next two results show that the shift and cokernel functors preserve colimits.

3.2.20 Proposition. Let 𝑠 be an integer and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 a𝑈-direct system
in C(𝑅). The canonical morphism in C(𝑅),

colim
𝑢∈𝑈

Σ𝑠𝑀𝑢 −→ Σ𝑠colim
𝑢∈𝑈

𝑀𝑢 ,

given by 𝜆𝑢 (𝑥𝑢) ↦→ (Σ𝑠𝜇𝑢) (𝑥𝑢) for 𝑢 ∈ 𝑈 and 𝑥𝑢 ∈ Σ𝑠𝑀𝑢, is an isomorphism.

Proof. The assertion follows immediately from 3.2.19 and 3.1.9. □

3.2.21 Proposition. For every 𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 in C(𝑅), the
canonical morphism in C(𝑅),

colim
𝑢∈𝑈

C(𝑀𝑢) −→ C
(
colim
𝑢∈𝑈

𝑀𝑢
)
,

given by 𝜆𝑢 (𝑥𝑢) ↦→ C(𝜇𝑢) (𝑥𝑢) for 𝑢 ∈ 𝑈 and 𝑥𝑢 ∈ C(𝑀𝑢), is an isomorphism.

Proof. The assertion follows immediately from 3.2.19, 2.2.16, and 3.1.10(c). □

The next results show that the tensor product functor 2.4.9 preserves colimits.

3.2.22 Proposition. Let 𝑁 be an 𝑅-complex and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 a 𝑈-direct
system in C(𝑅o). The canonical morphism in C(𝕜),

(3.2.22.1) colim
𝑢∈𝑈

(𝑀𝑢 ⊗𝑅 𝑁) −→
(
colim
𝑢∈𝑈

𝑀𝑢
)
⊗𝑅 𝑁 ,

given by 𝜆𝑢 (𝑡𝑢) ↦→ (𝜇𝑢 ⊗𝑅 𝑁) (𝑡𝑢) for 𝑢 ∈ 𝑈 and 𝑡𝑢 ∈ 𝑀𝑢 ⊗𝑅 𝑁 , is an isomorphism.

Proof. The assertion follows immediately from 3.2.19, 2.4.9, and 3.1.12. □

3.2.23 Proposition. Let 𝑀 be an 𝑅o-complex and {𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁𝑣}𝑢∈𝑈 a 𝑈-direct
system in C(𝑅). The canonical morphism in C(𝕜),

(3.2.23.1) colim
𝑢∈𝑈

(𝑀 ⊗𝑅 𝑁𝑢) −→ 𝑀 ⊗𝑅
(
colim
𝑢∈𝑈

𝑁𝑢
)
,

given by 𝜆𝑢 (𝑡𝑢) ↦→ (𝑀 ⊗𝑅 𝜈𝑢) (𝑡𝑢) for 𝑢 ∈ 𝑈 and 𝑡𝑢 ∈ 𝑀 ⊗𝑅 𝑁𝑢, is an isomorphism.
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Proof. The assertion follows immediately from 3.2.19, 2.4.9, and 3.1.13. □

Pushouts

Simple non-trivial colimits arise from three term direct systems 𝑀 ← 𝑋 → 𝑁 .

3.2.24 Construction. Let 𝑈 = {𝑢, 𝑣, 𝑤} be a set, preordered as follows 𝑣 ⩾ 𝑢 ⩽ 𝑤.
Given a diagram 𝑀

𝛼←−− 𝑋 𝛽−−→ 𝑁 in C(𝑅), set

𝑀𝑣 = 𝑀 , 𝑀𝑢 = 𝑋 , 𝑀𝑤 = 𝑁 ,

𝜇𝑣𝑣 = 1𝑀 , 𝜇𝑣𝑢 = 𝛼 , 𝜇𝑢𝑢 = 1𝑋 , 𝜇𝑤𝑢 = 𝛽 , and 𝜇𝑤𝑤 = 1𝑁 .

This defines a𝑈-direct system in C(𝑅). It is straightforward to verify that the colimit
of this system is the cokernel of the morphism (−𝛼 𝛽) : 𝑋 → 𝑀 ⊕ 𝑁 .

3.2.25 Definition. For a diagram 𝑀
𝛼←−− 𝑋

𝛽−−→ 𝑁 in C(𝑅), the colimit of the
𝑈-direct system in 3.2.24 is called the pushout of (𝛼, 𝛽) and denoted 𝑀 ⊔𝑋 𝑁 . Let

𝛼′ : 𝑁 −→ 𝑀 ⊔𝑋 𝑁 and 𝛽′ : 𝑀 −→ 𝑀 ⊔𝑋 𝑁

be the canonical morphisms from (3.2.3.1); they are given by 𝑛 ↦→ [(0, 𝑛)]Im(−𝛼 𝛽)
and 𝑚 ↦→ [(𝑚, 0)]Im(−𝛼 𝛽) .

Remark. As for the colimit, the notation for the pushout suppresses the morphisms. Other names
for the pushout are ‘fibered coproduct’, ‘fibered sum’, ‘Cocartesian square’, and ‘amalgamated
product’.

3.2.26. Given morphisms 𝛼 : 𝑋 → 𝑀 and 𝛽 : 𝑋 → 𝑁 inC(𝑅), the pushouts of (𝛼, 𝛽)
and (𝛽, 𝛼) are isomorphic via the map that comes from the canonical isomorphism
𝑀 ⊕ 𝑁 � 𝑁 ⊕ 𝑀 .

3.2.27. Adopt the notation from 3.2.25. Given a diagram 𝑀
𝛽′′−−→ 𝑌

𝛼′′←−− 𝑁 in C(𝑅)
with 𝛽′′𝛼 = 𝛼′′𝛽, it follows from 3.2.5 that the assignment

[(𝑚, 𝑛)]Im(−𝛼 𝛽) = 𝛼′ (𝑛) + 𝛽′ (𝑚) ↦−→ 𝛼′′ (𝑛) + 𝛽′′ (𝑚)

defines the unique morphism 𝑀 ⊔𝑋 𝑁 → 𝑌 that makes the next diagram commute,

𝑋
𝛽
//

𝛼

��

𝑁

𝛼′

��

𝛼′′

��

𝑀
𝛽′
//

𝛽′′
//

𝑀 ⊔𝑋 𝑁

##

𝑌 .

3.2.28 Theorem. Adopt the notation from 3.2.25. There is a commutative diagram
in C(𝑅) with exact rows and columns,
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0
��

0
��

0
��

0
��

0 // 𝑍 //

��

Ker𝛼
𝛽
//

��

Ker𝛼′ //

��

0 //

��

0

0 // Ker 𝛽 //

�̄�
��

𝑋
𝛽

//

𝛼
��

𝑁

𝛼′
��

// Coker 𝛽 //

¯̄𝛼
��

0

0 // Ker 𝛽′ //

��

𝑀

��

𝛽′
// 𝑀 ⊔𝑋 𝑁

��

// Coker 𝛽′

��

// 0

0 // 0
��

// Coker𝛼
��

¯̄𝛽
// Coker𝛼′

��

// 0
��

// 0

0 0 0 0 ,

where �̄� and 𝛽 are the induced morphisms on kernels, and ¯̄𝛼 and ¯̄𝛽 are the in-
duced morphisms on cokernels. In particular, �̄� and 𝛽 are surjective, ¯̄𝛼 and ¯̄𝛽 are
isomorphisms, and the following assertions hold.

(a) If 𝛼 is injective, then 𝛼′ is injective.
(b) 𝛼 is surjective if and only if 𝛼′ is surjective.
(c) If 𝛽 is injective, then 𝛽′ is injective.
(d) 𝛽 is surjective if and only if 𝛽′ is surjective.

Proof. With 𝑍 = Ker �̄� the sequence 0→ 𝑍 → Ker𝛼→ Ker𝛼′ is exact by 2.1.42.
For 𝑚 ∈ 𝑀 one has 𝛽′ (𝑚) = [(𝑚, 0)]Im(−𝛼 𝛽) ; so if 𝑚 is in Ker 𝛽′, then there

exists 𝑥 ∈ 𝑋 with (𝑚, 0) = (−𝛼(𝑥), 𝛽(𝑥)). Thus−𝑥 belongs to Ker 𝛽with𝛼(−𝑥) = 𝑚,
which shows that �̄� is surjective. By symmetry, see 3.2.26, 𝛽 is surjective.

For 𝑛 ∈ 𝑁 one has ¯̄𝛼( [𝑛]Im 𝛽) = [𝛼′ (𝑛)]Im 𝛽′ . Thus, if [𝑛]Im 𝛽 belongs to Ker ¯̄𝛼,
then 𝛼′ (𝑛) = 𝛽′ (𝑚) holds for some 𝑚 ∈ 𝑀 . Consequently, [(−𝑚, 𝑛)]Im(−𝛼 𝛽) =
𝛼′ (𝑛) − 𝛽′ (𝑚) = 0 and hence also 𝑛 ∈ Im 𝛽. This proves that ¯̄𝛼 is injective. Notice
that every element 𝑧 ∈ 𝑀 ⊔𝑋 𝑁 has the form 𝑧 = 𝛼′ (𝑛) + 𝛽′ (𝑚) for some 𝑚 ∈ 𝑀
and 𝑛 ∈ 𝑁 . It follows that [𝑧]Im 𝛽′ = [𝛼′ (𝑛)]Im 𝛽′ = ¯̄𝛼( [𝑛]Im 𝛽), so ¯̄𝛼 is surjective and
hence an isomorphism. By symmetry, ¯̄𝛽 is an isomorphim as well.

The assertions (a)–(d) are direct consequences of the established diagram. □

The following example shows that colimits are not left exact.

3.2.29 Example. The embeddings below form an injective morphism of pushout
diagrams of ℤ-modules; that is, an injective morphism of 𝑈-direct systems as in
3.2.10, where𝑈 is the preordered set described in 3.2.24.

ℤ

��

// 0

2ℤ
==
==

��

// 0
AA

AA

ℤ

ℤ
==

==

The colimitℤ⊔2ℤ0→ ℤ⊔ℤ0 of this morphism isℤ/2ℤ→ 0, which is not injective.
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Exercises

E 3.2.1 Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣 }𝑢⩽𝑣 be a𝑈-direct system in C(𝑅) . Let {𝜇𝑢 : 𝑀𝑢 → 𝐶 }𝑢∈𝑈 be a
family of morphisms that satisfy the following conditions. (1) One has 𝜇𝑢 = 𝜇𝑣𝜇𝑣𝑢 for all
𝑢 ⩽ 𝑣. (2) For every family {𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 of morphisms with 𝛼𝑢 = 𝛼𝑣𝜇𝑣𝑢 for all
𝑢 ⩽ 𝑣 there exists a unique morphism 𝛼 :𝐶 → 𝑁 with 𝛼𝜇𝑢 = 𝛼𝑢 for all 𝑢 ∈ 𝑈. Show
that there is an isomorphism 𝜑 : colim𝑢∈𝑈 𝑀𝑢 → 𝐶 with 𝜑𝜇𝑢 = 𝜇𝑢 for every 𝑢 ∈ 𝑈.
Conclude that the universal property determines the colimit uniquely up to isomorphism.

E 3.2.2 (Cf. 3.2.7) Show that the colimit in C(𝑅) of a direct system of morphisms of graded
𝑅-modules is a graded 𝑅-module. Conclude, in particular, that Mgr (𝑅) has colimits.

E 3.2.3 (Cf. 3.2.7) Show that the colimit in C(𝑅) of a direct system of homomorphisms of 𝑅-
modules is an 𝑅-module. Conclude, in particular, that the category M(𝑅) has colimits.

E 3.2.4 Fix a preordered set𝑈. Show that𝑈-direct systems in C(𝑅) and their morphisms form an
Abelian category and that the colimit is a right exact functor from this category to C(𝑅) .

E 3.2.5 Generalize the result in E 3.1.6 by showing that every functor F: C(𝑅) → C(𝑆) that has
a right adjoint preserves colimits.

E 3.2.6 (Cf. 3.2.24) Verify the isomorphism colim𝑢∈𝑈 𝑀𝑢 � Coker(−𝛼 𝛽) in 3.2.24.
E 3.2.7 (a) Consider the diagram in 3.2.28 in the case where 𝔞 and 𝔟 are left ideals in 𝑅 and

𝛼 : 𝑅 ↠ 𝑅/𝔞 and 𝛽 : 𝑅 ↠ 𝑅/𝔟 are the canonical homomorphisms. Show that 𝑍 ≠ 0.
(b) In the following two diagrams, the solid parts are given. Show that they can be
completed to commutative diagrams with exact rows and columns, as depicted.

0

��

0

��

0 // 𝑋 //

��

𝑁 //

��

𝐷 // 0

0 // 𝑀 //

��

𝑀 ⊔𝑋 𝑁 //

��

𝐷 // 0

𝐶

��

𝐶

��

0 0

0

��

0

��

0 // 𝐿 // 𝑋 //

��

𝑁 //

��

0

0 // 𝐿 // 𝑀 //

��

𝑀 ⊔𝑋 𝑁 //

��

0

𝐶

��

𝐶

��

0 0 .
E 3.2.8 (Cf. 3.2.17) Verify that the diagram in 3.2.17 is commutative.
E 3.2.9 (Cf. 3.2.18) Verify that the diagram in 3.2.18 is commutative.

3.3 Filtered Colimits

Synopsis. Filtered colimit; functor that preserves filtered colimits; well-ordered colimit; telescope.

Additional properties of the index set 𝑈, beyond being preordered, can translate
into additional properties of the colimit of a𝑈-direct system. We consider the cases
where the index set is filtered, well-ordered, or simply ℤ.

3.3.1 Definition. A colimit of a 𝑈-direct system is called filtered if the preordered
set (𝑈, ⩽) is filtered.

Remark. Another name used for a filtered colimit is ‘direct limit’.
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3.3.2 Lemma. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a 𝑈-direct system in C(𝑅). If 𝑈 is
filtered, then the following assertions hold.

(a) For every𝑚 ∈ colim𝑢∈𝑈 𝑀𝑢 there exist 𝑣 ∈ 𝑈 and𝑚𝑣 ∈ 𝑀𝑣 with 𝜇𝑣 (𝑚𝑣) = 𝑚.
(b) If 𝑚𝑣 ∈ 𝑀𝑣 satisfies 𝜇𝑣 (𝑚𝑣) = 0, then one has 𝜇𝑤𝑣 (𝑚𝑣) = 0 for some 𝑤 ∈ 𝑈

with 𝑣 ⩽ 𝑤.
(c) If 𝑚𝑢 ∈ 𝑀𝑢 and 𝑚𝑣 ∈ 𝑀𝑣 satisfy 𝜇𝑢 (𝑚𝑢) = 𝜇𝑣 (𝑚𝑣), then there exists 𝑤 ∈ 𝑈

with 𝑢 ⩽ 𝑤 and 𝑣 ⩽ 𝑤 such that 𝜇𝑤𝑢 (𝑚𝑢) = 𝜇𝑤𝑣 (𝑚𝑣) holds.

Proof. (a): By 3.2.3 every𝑚 ∈ colim𝑢∈𝑈 𝑀𝑢 has the form𝑚 =
∑
𝑢∈𝑈 𝜇

𝑢 (𝑚𝑢)where
𝑚𝑢 ≠ 0 for only finitely many 𝑢 ∈ 𝑈. As𝑈 is filtered there exists 𝑣 ∈ 𝑈 such that 𝑣 ⩾ 𝑢
holds for all 𝑢 ∈ 𝑈 with 𝑚𝑢 ≠ 0. Now 𝑚 =

∑
𝑢⩽𝑣 𝜇

𝑣𝜇𝑣𝑢 (𝑚𝑢) = 𝜇𝑣 (∑𝑢⩽𝑣 𝜇
𝑣𝑢 (𝑚𝑢)).

(b): If 𝜇𝑣 (𝑚𝑣) = 0 holds in colim𝑢∈𝑈 𝑀𝑢, then by 3.2.3 there is an equality

(⋄) 𝜀𝑣 (𝑚𝑣) = ∑
(𝑡 ,𝑢) ∈∇(𝑈)

𝜀𝑡 (𝑚 (𝑡 ,𝑢) ) − 𝜀𝑢𝜇𝑢𝑡 (𝑚 (𝑡 ,𝑢) )

in
∐
𝑠∈𝑈 𝑀

𝑠 where 𝑚 (𝑡 ,𝑢) ≠ 0 holds for only finitely many (𝑡, 𝑢) ∈ ∇(𝑈). As 𝑈
is filtered there exists 𝑤 ∈ 𝑈 such that 𝑤 ⩾ 𝑣 and 𝑤 ⩾ 𝑢 for all 𝑢 ∈ 𝑈 satisfying
𝑚 (𝑡 ,𝑢) ≠ 0 (for some 𝑡). Now apply the morphism

∐
𝑠∈𝑈 𝑀

𝑠 → 𝑀𝑤, given by
𝜀𝑠 (𝑚𝑠) ↦→ 𝜇𝑤𝑠 (𝑚𝑠) for 𝑠 ⩽ 𝑤 and 𝜀𝑠 (𝑚𝑠) ↦→ 0 otherwise, to both sides in (⋄) to get

𝜇𝑤𝑣 (𝑚𝑣) = ∑
(𝑡 ,𝑢) ∈∇(𝑈)

𝜇𝑤𝑡 (𝑚 (𝑡 ,𝑢) ) − 𝜇𝑤𝑢𝜇𝑢𝑡 (𝑚 (𝑡 ,𝑢) ) = 0 .

(c): Choose 𝑡 ∈ 𝑈 with 𝑡 ⩾ 𝑢, 𝑣; now one has

𝜇𝑡 (𝜇𝑡𝑢 (𝑚𝑢) − 𝜇𝑡𝑣 (𝑚𝑣)) = 𝜇𝑢 (𝑚𝑢) − 𝜇𝑣 (𝑚𝑣) = 0 .

By part (b) there exists 𝑤 ∈ 𝑈 with 𝑤 ⩾ 𝑡 and

0 = 𝜇𝑤𝑡 (𝜇𝑡𝑢 (𝑚𝑢) − 𝜇𝑡𝑣 (𝑚𝑣)) = 𝜇𝑤𝑢 (𝑚𝑢) − 𝜇𝑤𝑣 (𝑚𝑣) . □

3.3.3 Example. Let (𝑈, ⩽) be a preordered filtered set and {𝑀𝑢}𝑢∈𝑈 a family
of subcomplexes of an 𝑅-complex 𝑀 with 𝑀𝑢 ⊆ 𝑀𝑣 for 𝑢 ⩽ 𝑣 in 𝑈. There is a
𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 where 𝜇𝑣𝑢 is the embedding, and one has

colim
𝑢∈𝑈

𝑀𝑢 �
⋃
𝑢∈𝑈

𝑀𝑢 .

Indeed, for 𝑢 in𝑈 let 𝜄𝑢 : 𝑀𝑢 → ⋃
𝑢∈𝑈 𝑀

𝑢 be the embedding. One has 𝜄𝑣𝜇𝑣𝑢 = 𝜄𝑢 for
𝑢 ⩽ 𝑣 in 𝑈, so 3.2.5 yields a unique morphism 𝜄 : colim𝑢∈𝑈 𝑀𝑢 → ⋃

𝑢∈𝑈 𝑀
𝑢 with

𝜄𝜇𝑢 = 𝜄𝑢 for 𝑢 ∈ 𝑈; it is surjective by 3.2.6. To see that 𝜄 is injective note that by
3.3.2(a) every element 𝑥 ∈ colim𝑢∈𝑈 𝑀𝑢 has the form 𝑥 = 𝜇𝑢 (𝑚) for some 𝑢 ∈ 𝑈
and 𝑚 ∈ 𝑀𝑢. Now one has 𝜄(𝑥) = 𝜄𝜇𝑢 (𝑚) = 𝜄𝑢 (𝑚), so 𝜄(𝑥) = 0 implies 𝑚 = 0 and
hence 𝑥 = 𝜇𝑢 (𝑚) = 0.

Every complex is a filtered colimit of bounded above subcomplexes.

3.3.4 Example. Let 𝑀 be an 𝑅-complex and consider the ℤ-direct system of sub-
complexes {𝜇𝑣𝑢 : 𝑀ď𝑢 ↣ 𝑀ď𝑣}𝑢⩽𝑣 where 𝑀ď𝑢 is the hard truncation, see 2.5.20,
and 𝜇𝑣𝑢 is the embedding. By 3.3.3 one has
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colim
𝑢∈ℤ

𝑀ď𝑢 �
⋃
𝑢∈ℤ

𝑀ď𝑢 = 𝑀 .

A classic application of colimits is to write an arbitrary module as a filtered
colimit of finitely generated (sub)modules. A version of this for complexes is given
in the next example. Stronger results can be found in 3.3.21 and 3.3.22.

3.3.5 Example. Let𝑀 be an 𝑅-complex and𝑈 the set of all bounded and degreewise
finitely generated subcomplexes of 𝑀 . The set (𝑈, ⊆) is partially ordered, and for
subcomplexes 𝑀 ′ and 𝑀 ′′ in 𝑈 also the subcomplex 𝑀 ′ + 𝑀 ′′ is in 𝑈, so 𝑈 is
filtered. For the 𝑈-direct system {𝑀 ′ ↣ 𝑀 ′′}𝑀′⊆𝑀′′ of embeddings, 3.3.3 yields
an isomorphism,

colim
𝑀′∈𝑈

𝑀 ′ �
⋃
𝑀′∈𝑈

𝑀 ′ = 𝑀 .

The equality holds as each homogeneous element 𝑚′ in 𝑀 belongs to some 𝑀 ′ ∈ 𝑈;
for example, with 𝑑 = |𝑚′ | one can take 𝑀 ′ to be the subcomplex

𝑀 ′ = 0 −→ 𝑅⟨𝑚′ ⟩
𝜕𝑀
𝑑−−−→ 𝑅⟨𝜕𝑀𝑑 (𝑚

′) ⟩ −→ 0 .

Every subsequence of a convergent sequence of numbers is convergent with the
same limit; colimits of complexes behave similarly.

3.3.6 Definition. Let (𝑈, ⩽) be a preordered filtered set. A subset 𝑉 of 𝑈 is called
cofinal if for every 𝑢 ∈ 𝑈 there is a 𝑣 ∈ 𝑉 with 𝑢 ⩽ 𝑣.

Note that if𝑈 and 𝑉 are as in the definition, then 𝑉 is filtered.

3.3.7 Proposition. Let (𝑈, ⩽) be a preordered filtered set and 𝑉 a cofinal subset of
𝑈. For every𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 in C(𝑅) there is an isomorphism
colim𝑣∈𝑉 𝑀𝑣 � colim𝑢∈𝑈 𝑀𝑢.

Proof. For 𝑢 ∈ 𝑈 denote by 𝜇𝑢 is the canonical morphism 𝑀𝑢 → colim𝑢∈𝑈 𝑀𝑢,
and for 𝑣 ∈ 𝑉 denote by �̃�𝑣 the canonical morphism 𝑀𝑣 → colim𝑣∈𝑉 𝑀𝑣. For 𝑣 ⩽ 𝑤
in𝑉 one has 𝜇𝑣 = 𝜇𝑤𝜇𝑤𝑣, so by the universal property of colimits there is a morphism
𝜇 : colim𝑣∈𝑉 𝑀𝑣 → colim𝑢∈𝑈 𝑀𝑢. For every 𝑚 in colim𝑢∈𝑈 𝑀𝑢 there is by 3.3.2 a
𝑢 in 𝑈 and an element 𝑚𝑢 in 𝑀𝑢 with 𝜇𝑢 (𝑚𝑢) = 𝑚. As 𝑉 is cofinal in 𝑈, there is a
𝑣 ∈ 𝑉 with 𝑣 ⩾ 𝑢, such that 𝑚 = 𝜇𝑣𝜇𝑣𝑢 (𝑚𝑢) holds. Thus 𝜇 is surjective; see 3.2.6.

Let 𝑚 be an element in Ker 𝜇. As𝑉 is filtered, there exists a 𝑣 ∈ 𝑉 and an element
𝑚𝑣 in 𝑀𝑣 with �̃�𝑣 (𝑚𝑣) = 𝑚. Now one has 0 = 𝜇(𝑚) = 𝜇�̃�𝑣 (𝑚𝑣) = 𝜇𝑣 (𝑚𝑣). It follows
from 3.3.2 that there is a 𝑤 in 𝑈 with 𝜇𝑤𝑣 (𝑚𝑣) = 0. As 𝑉 is cofinal in 𝑈 one may
assume that 𝑤 is in 𝑉 , and then 𝑚 = �̃�𝑣 (𝑚𝑣) = �̃�𝑤𝜇𝑤𝑣 (𝑚𝑣) = 0 holds. □

3.3.8 Proposition. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a 𝑈-direct system in C(𝑅) and
{𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 a family of morphisms with 𝛼𝑢 = 𝛼𝑣𝜇𝑣𝑢 for all 𝑢 ⩽ 𝑣. If 𝑈
is filtered and the subset {𝑢 ∈ 𝑈 | 𝛼𝑢 is injective} is cofinal, then the morphism
𝛼 : colim𝑢∈𝑈 𝑀𝑢 → 𝑁 from 3.2.5 is injective.

Proof. Let 𝑚 be an element in Ker𝛼. By 3.3.2 there is a 𝑢 ∈ 𝑈 and an 𝑚𝑢 ∈ 𝑀𝑢

with 𝜇𝑢 (𝑚𝑢) = 𝑚; by assumption there is a 𝑣 ⩾ 𝑢 such that 𝛼𝑣 is injective. Now one
has 𝑚 = 𝜇𝑣𝜇𝑣𝑢 (𝑚𝑢) and 0 = 𝛼(𝑚) = 𝛼𝜇𝑣𝜇𝑣𝑢 (𝑚𝑢) = 𝛼𝑣𝜇𝑣𝑢 (𝑚𝑢), so 𝑚 = 0. □
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A coproduct is a special case of a filtered colimit.

3.3.9 Example. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes and Υ the set of all
finite subsets of 𝑈; it is partially ordered under inclusion and filtered. For the Υ-
direct system {𝜇𝑊𝑉 : ⊕

𝑢∈𝑉 𝑀
𝑢 →⊕

𝑢∈𝑊 𝑀𝑢}𝑉⊆𝑊 of subcomplexes of
∐
𝑢∈𝑈 𝑀

𝑢,
where 𝜇𝑊𝑉 is the embedding, 3.3.3 yields an isomorphism,

colim
𝑉∈Υ

(⊕
𝑢∈𝑉

𝑀𝑢
)
�

⋃
𝑉∈Υ

(⊕
𝑢∈𝑉

𝑀𝑢
)
=

∐
𝑢∈𝑈

𝑀𝑢 .

Thus, a coproduct is a filtered colimit.

The next result shows that filtered colimits are exact.

3.3.10 Proposition. Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 and {𝛽𝑢 : 𝑁𝑢 → 𝑋𝑢}𝑢∈𝑈 be mor-
phisms of𝑈-direct systems in C(𝑅). If𝑈 is filtered and the sequence

0 −→ 𝑀𝑢 𝛼𝑢−−−→ 𝑁𝑢
𝛽𝑢−−−→ 𝑋𝑢 −→ 0

is exact for every 𝑢 ∈ 𝑈, then the following sequence is exact,

0 −→ colim
𝑢∈𝑈

𝑀𝑢 colim𝑢∈𝑈 𝛼𝑢−−−−−−−−−−→ colim
𝑢∈𝑈

𝑁𝑢
colim𝑢∈𝑈 𝛽𝑢−−−−−−−−−−→ colim

𝑢∈𝑈
𝑋𝑢 −→ 0 .

Proof. By 3.2.12 it is sufficient to prove that 𝛼 = colim𝑢∈𝑈 𝛼𝑢 is injective. Write
𝜇𝑢𝑣 : 𝑀𝑢 → 𝑀𝑣 and 𝜈𝑢𝑣 : 𝑁𝑢 → 𝑁𝑣 for the morphisms in the direct systems. Let
𝑚 ∈ Ker𝛼 and choose by 3.3.2 a 𝑣 in𝑈 and an element 𝑚𝑣 in 𝑀𝑣 with 𝜇𝑣 (𝑚𝑣) = 𝑚;
now one has 0 = 𝛼𝜇𝑣 (𝑚𝑣) = 𝜈𝑣𝛼𝑣 (𝑚𝑣). By 3.3.2 there is a 𝑤 ∈ 𝑈 with 𝑤 ⩾ 𝑣 and
0 = 𝜈𝑤𝑣𝛼𝑣 (𝑚𝑣) = 𝛼𝑤𝜇𝑤𝑣 (𝑚𝑣). Since 𝛼𝑤 is injective, one has 𝜇𝑤𝑣 (𝑚𝑣) = 0 and,
therefore, 𝑚 = 𝜇𝑣 (𝑚𝑣) = 𝜇𝑤𝜇𝑤𝑣 (𝑚𝑣) = 0. □

3.3.11 Proposition. Let (𝑈, ⩽) be a preordered filtered set and {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈
and {𝛽𝑢 : 𝑋𝑢 → 𝑌𝑢}𝑢∈𝑈 be morphisms of𝑈-direct systems in C(𝑅). The morphism

colim
𝑢∈𝑈

(𝛼𝑢 ⊗𝑅 𝛽𝑢) : colim
𝑢∈𝑈

(𝑀𝑢 ⊗𝑅 𝑋𝑢) −→ colim
𝑢∈𝑈

(𝑁𝑢 ⊗𝑅 𝑌𝑢)

is isomorphic to

(
colim𝑢∈𝑈 𝑀𝑢

)
⊗𝑅

(
colim𝑣∈𝑈 𝑋𝑣

)(colim𝑢∈𝑈 𝛼𝑢 ) ⊗𝑅 (colim𝑣∈𝑈 𝛽𝑣 )
//
(
colim𝑢∈𝑈 𝑁𝑢

)
⊗𝑅

(
colim𝑣∈𝑈 𝑌 𝑣

)
.

Proof. Let Δ(𝑈) ⊆ 𝑈×𝑈 be the diagonal, that is, Δ(𝑈) = { (𝑢, 𝑢) | 𝑢 ∈ 𝑈 }. Clearly,
the first morphism colim𝑢∈𝑈 (𝛼𝑢 ⊗𝑅 𝛽𝑢) is the same as colim(𝑢,𝑣) ∈Δ(𝑈) (𝛼𝑢 ⊗𝑅 𝛽𝑣).
For the second morphism there are by 3.2.22, 3.2.23, and 3.2.13 identifications,(

colim
𝑢∈𝑈

𝛼𝑢
)
⊗𝑅

(
colim
𝑣∈𝑈

𝛽𝑣
)
� colim

𝑢∈𝑈

(
𝛼𝑢 ⊗𝑅

(
colim
𝑣∈𝑈

𝛽𝑣
) )

� colim
𝑢∈𝑈

(
colim
𝑣∈𝑈

(𝛼𝑢 ⊗𝑅 𝛽𝑣)
)

� colim
(𝑢,𝑣) ∈𝑈×𝑈

(𝛼𝑢 ⊗𝑅 𝛽𝑣) .
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3.3 Filtered Colimits 121

Thus, to finish the proof it must be argued that the maps colim(𝑢,𝑣) ∈Δ(𝑈) (𝛼𝑢 ⊗𝑅 𝛽𝑣)
and colim(𝑢,𝑣) ∈𝑈×𝑈 (𝛼𝑢 ⊗𝑅 𝛽𝑣) are isomorphic. To this end it suffices by 3.3.7 to
show that the diagonal Δ(𝑈) is cofinal in the product 𝑈 × 𝑈 equipped with the
product order. This is straightforward to verify. Indeed, given (𝑢, 𝑣) ∈ 𝑈 ×𝑈 there
exists, as𝑈 is filtered, 𝑤 ∈ 𝑈 with 𝑢 ⩽ 𝑤 and 𝑣 ⩽ 𝑤. Now (𝑤, 𝑤) is in Δ(𝑈) and one
has (𝑢, 𝑣) ⩽ (𝑤, 𝑤) in𝑈 ×𝑈. □

Functors that Preserve Filtered Colimits

The following definition shoul be compared to 3.2.16.

3.3.12 Definition. A functor F: C(𝑅) → C(𝑆) said to preserve filtered colimits if the
map (3.2.15.1) is an isomorphism for every 𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣
in C(𝑅) with𝑈 filtered.

3.3.13 Definition. Let E, F,G: C(𝑅) → C(𝑆) be functors and let 𝜎 : E→ F and
𝜏 : F→ G be natural transformations. The sequence of functors E 𝜎−−→ F 𝜏−−→ G is
said to be exact if the sequence

E(𝑀) 𝜎
𝑀

−−−→ F(𝑀) 𝜏
𝑀

−−−→ G(𝑀)

in C(𝑆) is exact for every 𝑅-complex 𝑀 .

Remark. Functors C(𝑅) → C(𝑆) and natural transformations among them constitute an Abelian
category, and thus one can talk about exact sequences in this category in the sense of 1.1.43. One
can verify that exactness in this sense agrees with the definition above.

3.3.14 Lemma. Let E, F, and G be functors from C(𝑅) to C(𝑆).
(a) If the sequence 0 → E → F → G is exact and F and G preserve filtered

colimits, then E preserves filtered colimits.
(b) If the sequence 0→ E→ F→ G→ 0 is exact and E and G preserve filtered

colimits, then F preserves filtered colimits.
(c) If the sequence E→ F→ G→ 0 is exact and E and F preserve colimits, then

G preserves filtered colimits.

Proof. (a): Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a𝑈-direct system in C(𝑅) with𝑈 filtered.
Write 𝜎 : E→ F and 𝜏 : F→ G for the given natural transformations and notice that
{𝜎𝑀𝑢 : E(𝑀𝑢) → F(𝑀𝑢)}𝑢∈𝑈 and {𝜏𝑀𝑢 : F(𝑀𝑢) → G(𝑀𝑢)}𝑢∈𝑈 are morphisms
of 𝑈-direct systems in C(𝑆). In the commutative diagram below, the vertical mor-
phisms are given by (3.2.15.1) and the rows are exact by assumption and 3.3.10.

0 // colim
𝑢∈𝑈

E(𝑀𝑢) colim𝑢∈𝑈 𝜎𝑀
𝑢

//

��

colim
𝑢∈𝑈

F(𝑀𝑢) colim𝑢∈𝑈 𝜏𝑀
𝑢

//

��

colim
𝑢∈𝑈

G(𝑀𝑢)

��

0 // E
(
colim
𝑢∈𝑈

𝑀𝑢
) 𝜎 (colim𝑢∈𝑈 𝑀𝑢 )

// F
(
colim
𝑢∈𝑈

𝑀𝑢
) 𝜏 (colim𝑢∈𝑈 𝑀𝑢 )

// G
(
colim
𝑢∈𝑈

𝑀𝑢
)
.
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The assertion now follows from the Five Lemma 2.1.41.
(b): An argument similar to the proof of part (a) applies.
(c): An argument similar to the proof of part (a) applies, but in this case only right

exactness of colimits is needed, so one appeals to 3.2.12 in place of 3.3.10. □

The next result shows that the cycle, the boundary, the cokernel, and the homology
functors from 2.2.7 preserve filtered colimits.

3.3.15 Proposition. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a𝑈-direct system in C(𝑅). If𝑈 is
filtered, then the following four canonical morphisms in C(𝑅) are isomorphisms:

colim
𝑢∈𝑈

Z(𝑀𝑢) −→ Z
(
colim
𝑢∈𝑈

𝑀𝑢
)

given by 𝜆𝑢 (𝑧𝑢) ↦−→ Z(𝜇𝑢) (𝑧𝑢) .(a)

colim
𝑢∈𝑈

B(𝑀𝑢) −→ B
(
colim
𝑢∈𝑈

𝑀𝑢
)

given by 𝜆𝑢 (𝑏𝑢) ↦−→ B(𝜇𝑢) (𝑏𝑢) .(b)

colim
𝑢∈𝑈

C(𝑀𝑢) −→ C
(
colim
𝑢∈𝑈

𝑀𝑢
)

given by 𝜆𝑢 (𝑐𝑢) ↦−→ C(𝜇𝑢) (𝑐𝑢) .(c)

colim
𝑢∈𝑈

H(𝑀𝑢) −→ H
(
colim
𝑢∈𝑈

𝑀𝑢
)

given by 𝜆𝑢 (ℎ𝑢) ↦−→ H(𝜇𝑢) (ℎ𝑢) .(d)

Proof. It follows from 3.2.21 that the cokernel functor, C, preserves (filtered) col-
imits, and hence the leftmost map in (c) is an isomorphism. By 2.2.12(b) there
is an exact sequence 0 → B → IdC(𝑅) → C → 0 of endofunctors on C(𝑅), so
by 3.3.14(a) the boundary functor, B, preserves filtered colimits. By 2.2.12(a) and
2.2.12(d) there are also exact sequences of functors 0→ Z→ IdC(𝑅) → ΣB→ 0,
and 0→ H→ C→ ΣB→ 0; thus 3.2.20 and 3.3.14(a) imply that the cycle functor,
Z, and the homology functor, H, preserve filtered colimits. □

3.3.16 Corollary. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a 𝑈-direct system in C(𝑅). If 𝑈 is
filtered, then there are inequalities,

sup
(
colim
𝑢∈𝑈

𝑀𝑢
)
⩽ sup

𝑢∈𝑈
{sup𝑀𝑢} and inf

(
colim
𝑢∈𝑈

𝑀𝑢
)
⩾ inf

𝑢∈𝑈
{inf 𝑀𝑢} ;

in particular, if each complex 𝑀𝑢 is acyclic, then colim𝑢∈𝑈 𝑀𝑢 is acyclic.

Proof. By 3.3.15(d) there is for every 𝑣 ∈ ℤ an isomorphism H𝑣 (colim𝑢∈𝑈 𝑀𝑢) �
colim𝑢∈𝑈 H𝑣 (𝑀𝑢). Thus, if H𝑣 (colim𝑢∈𝑈 𝑀𝑢) ≠ 0 holds, then one has H𝑣 (𝑀𝑢) ≠ 0
for some 𝑢 ∈ 𝑈 and, therefore,

𝑣 ⩽ sup{sup𝑀𝑢 | 𝑢 ∈ 𝑈 } and 𝑣 ⩾ inf{inf 𝑀𝑢 | 𝑢 ∈ 𝑈 } . □

Under conditions on 𝑀 the functor Hom𝑅 (𝑀, ) preserves filtered colimits.

3.3.17 Proposition. Let 𝑀 be an 𝑅-complex and {𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁𝑣}𝑢⩽𝑣 a 𝑈-direct
system in C(𝑅). If𝑈 is filtered and 𝑀 is bounded and degreewise finitely presented,
then the canonical morphism in C(𝕜),

(3.3.17.1) colim
𝑢∈𝑈

Hom𝑅 (𝑀, 𝑁𝑢) −→ Hom𝑅

(
𝑀, colim

𝑢∈𝑈
𝑁𝑢

)
,

given by 𝜆𝑢 (𝜗𝑢) ↦→ Hom𝑅 (𝑀, 𝜈𝑢) (𝜗𝑢) = 𝜈𝑢𝜗𝑢 for 𝑢 ∈ 𝑈 and 𝜗𝑢 ∈ Hom𝑅 (𝑀, 𝑁𝑢),
is an isomorphism.
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Proof. Let 𝐿 be a bounded complex of finitely generated projective 𝑅-modules.
The functor Hom𝑅 (𝐿, ) is exact by 2.3.18 and it preserves coproducts by 3.1.33;
hence it also preserves (filtered) colimits by 3.2.19. If 𝑀 is bounded and degreewise
finitely presented, then by 2.5.31 there exists an exact sequence 𝐿′ → 𝐿 → 𝑀 → 0
where 𝐿 and 𝐿′ are bounded complexes of finitely generated free 𝑅-modules. Hence
there is an exact sequence 0 → Hom𝑅 (𝑀, ) → Hom𝑅 (𝐿, ) → Hom𝑅 (𝐿′, ) of
functors from C(𝑅) to C(𝕜), and the assertion now follows from 3.3.14(a). □

The requirement in 3.3.17 that 𝑀 be bounded and degreewise finitely presented
cannot be relaxed; see 3.3.23.

Bounded and Degreewise Finitely Presented Complexes

The next construction is the first step towards a theorem that says that every complex
is a filtered colimit of bounded and degreewise finitely presented complexes.

3.3.18 Construction. Let 𝑀 be an 𝑅-complex and Δ a set of 𝑅-complexes. Denote
by Ξ the set of all morphisms 𝜉 : 𝐷 𝜉 → 𝑀 whose domain 𝐷 𝜉 belongs to Δ. Set
𝑋 =

∐
𝜉 ∈Ξ 𝐷 𝜉 and let 𝜋 : 𝑋 → 𝑀 be the unique morphism whose composite with

the injection 𝐷 𝜉 ↣ 𝑋 equals 𝜉 for every 𝜉 ∈ Ξ; see 3.1.2. Set 𝑋 = 𝑋 (ℕ) and let
�̂� : 𝑋 → 𝑀 be the morphism whose composite with every injection 𝑋 ↣ 𝑋 is 𝜋.

A family 𝐾 = {𝐾𝑛}𝑛∈ℕ of finite subsets 𝐾𝑛 ⊆ Ξ, such that 𝐾𝑛 is non-empty for
only finitely many 𝑛 ∈ ℕ, is called a string. To a string 𝐾 one associates the following
subcomplex of 𝑋 ,

𝑋𝐾 =
∐
𝑛∈ℕ

( ⊕
𝜉 ∈𝐾𝑛

𝐷 𝜉

)
.

Let𝑈 be the set of pairs (𝐾,𝑌 ) where 𝐾 is a string and 𝑌 is a degreewise finitely
generated subcomplex of 𝑋𝐾 ∩Ker �̂�. For elements (𝐾,𝑌 ) and (𝐾 ′, 𝑌 ′) in𝑈 declare
(𝐾,𝑌 ) ⩽ (𝐾 ′, 𝑌 ′) if one has 𝐾𝑛 ⊆ 𝐾 ′𝑛 for all 𝑛 ∈ ℕ and 𝑌 ⊆ 𝑌 ′. Evidently, the
set (𝑈, ⩽) is partially ordered. It is also filtered as (𝐾 ∪ 𝐾 ′, 𝑌 + 𝑌 ′), where 𝐾 ∪ 𝐾 ′
is the string {𝐾𝑛 ∪ 𝐾 ′𝑛}𝑛∈ℕ, dominates both (𝐾,𝑌 ) and (𝐾 ′, 𝑌 ′). For every element
(𝐾,𝑌 ) in𝑈 set 𝑀 (𝐾,𝑌 ) = 𝑋𝐾/𝑌 . For (𝐾,𝑌 ) ⩽ (𝐾 ′, 𝑌 ′) there is a morphism,

𝜇 (𝐾
′ ,𝑌 ′ ) (𝐾,𝑌 ) : 𝑀 (𝐾,𝑌 ) −→ 𝑀 (𝐾

′ ,𝑌 ′ ) given by [𝑥]𝑌 ↦−→ [𝑥]𝑌 ′ .

It is straightforward to verify that these morphisms form a𝑈-direct system in C(𝑅).
For every (𝐾,𝑌 ) in𝑈 the restriction of �̂� : 𝑋 → 𝑀 to 𝑋𝐾 is zero on𝑌 , and thus there
is a morphism,

𝛼 (𝐾,𝑌 ) : 𝑀 (𝐾,𝑌 ) −→ 𝑀 given by [𝑥]𝑌 ↦−→ �̂�(𝑥) .

For elements (𝐾,𝑌 ) ⩽ (𝐾 ′, 𝑌 ′) in𝑈 one clearly has 𝛼 (𝐾,𝑌 ) = 𝛼 (𝐾 ′ ,𝑌 ′ )𝜇 (𝐾 ′ ,𝑌 ′ ) (𝐾,𝑌 ) ,
so by the universal property of colimits 3.2.5 there is a morphism,

𝛼 : colim
(𝐾,𝑌 ) ∈𝑈

𝑀 (𝐾,𝑌 ) −→ 𝑀 ,

that satisfies 𝛼𝜇 (𝐾,𝑌 ) = 𝛼 (𝐾,𝑌 ) for all (𝐾,𝑌 ) ∈ 𝑈.
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3.3.19 Proposition. Let 𝑀 be an 𝑅-complex and Δ a set of 𝑅-complexes. The
complexes and morphisms constructed in 3.3.18 have the following properties.

(a) The morphism 𝛼 is injective.
(b) If every homogeneous element 𝑚 ∈ 𝑀 belongs to the image of a morphism

𝐷 → 𝑀 with 𝐷 ∈ Δ, then the morphism 𝛼 is surjective.
(c) If every complex 𝐷 in Δ is bounded (above/below), then the complex 𝑀 (𝐾,𝑌 )

is bounded (above/below) for every (𝐾,𝑌 ) ∈ 𝑈.
(d) If every complex 𝐷 in Δ is degreewise finitely presented, then the complex

𝑀 (𝐾,𝑌 ) is degreewise finitely presented for every (𝐾,𝑌 ) ∈ 𝑈.

Proof. (a): Since 𝛼 is, in particular, a morphism of graded modules, it suffices to
show that 𝑧 = 0 is the only homogeneous element in colim(𝐾,𝑌 ) ∈𝑈 𝑀 (𝐾,𝑌 ) with
𝛼(𝑧) = 0. Set 𝑤 = |𝑧 | and assume that 𝛼(𝑧) = 0 holds. By 3.3.2 there is an element
(𝐾,𝑌 ) in 𝑈 and a 𝑧′ in 𝑀 (𝐾,𝑌 ) with |𝑧′ | = 𝑤 and 𝜇 (𝐾,𝑌 ) (𝑧′) = 𝑧. It follows that
one has

(†) 𝛼 (𝐾,𝑌 ) (𝑧′) = 𝛼𝜇 (𝐾,𝑌 ) (𝑧′) = 𝛼(𝑧) = 0 .

Write 𝑧′ = [𝑥]𝑌 for some homogeneous element 𝑥 ∈ 𝑋𝐾 with |𝑥 | = 𝑤. Now

𝑌 ′ = 0 −→ 𝑅⟨𝑥 ⟩
𝜕𝑋𝑤−−−→ 𝑅⟨𝜕𝑋𝑤 (𝑥) ⟩ −→ 0

is a subcomplex of 𝑋𝐾 , concentrated in degrees𝑤 and𝑤−1; evidently it is degreewise
finitely generated. By definition, 𝛼 (𝐾,𝑌 ) (𝑧′) = �̂�(𝑥) holds, so it follows from (†) that
𝑥 belongs to Ker �̂�. As �̂� : 𝑋 → 𝑀 is a morphism of complexes, it follows that𝑌 ′ is a
subcomplex of Ker �̂�. Consequently, (𝐾,𝑌 +𝑌 ′) is an element in𝑈. By construction
one has

𝜇 (𝐾,𝑌+𝑌
′ ) (𝐾,𝑌 ) (𝑧′) = [𝑥]𝑌+𝑌 ′ = 0 ,

and therefore also

𝑧 = 𝜇 (𝐾,𝑌 ) (𝑧′) = 𝜇 (𝐾,𝑌+𝑌
′ )𝜇 (𝐾,𝑌+𝑌

′ ) (𝐾,𝑌 ) (𝑧′) = 𝜇 (𝐾,𝑌+𝑌
′ ) (0) = 0 .

(b): Let 𝑚 be in 𝑀 . One can assume that 𝑚 is homogeneous, and it is enough to
argue that𝑚 is in the image of one of the morphisms 𝛼 (𝐾,𝑌 ) ; see 3.2.6. By definition,
𝛼 (𝐾,0) is the restricted morphism �̂� : 𝑋𝐾 → 𝑀 , so it suffices to show that 𝑚 is in
the image of this map for some string 𝐾 . By assumption there exists a morphism
𝜉 : 𝐷 𝜉 → 𝑀 with 𝐷 𝜉 ∈ Δ such that 𝑚 is in Im 𝜉. Define a string 𝐾 by setting
𝐾1 = {𝜉} and 𝐾𝑛 = ∅ for 𝑛 > 1. For this string one has 𝑋𝐾 = 𝐷 𝜉 , and the restriction
of �̂� to this subcomplex is the morphism 𝜉, which has 𝑚 in its image.

(c): For every (𝐾,𝑌 ) in 𝑈 the complex 𝑀 (𝐾,𝑌 ) is a quotient of a direct sum of
complexes from Δ, so if they are all bounded (above/below) then so is 𝑀 (𝐾,𝑌 ) .

(d): Assume that every complex 𝐷 in Δ is degreewise finitely presented. For a
string 𝐾 , the complex 𝑋𝐾 is a direct sum of complexes from Δ and hence degreewise
finitely presented. For every degreewise finitely generated subcomplex of 𝑌 of 𝑋 it
follows from 1.3.40 that 𝑀 (𝐾,𝑌 ) = 𝑋𝐾/𝑌 is degreewise finitely presented. □
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3.3.20. Let 𝑀 be an 𝑅-complex and 𝑚 a homogeneous element in 𝑀 . Denote by 𝑀 ′
the subcomplex of 𝑀 whose underlying graded module is 𝑅⟨𝑚, 𝜕𝑀 (𝑚) ⟩. It follows
from 2.5.30 that 𝑚 is in the image of a morphism D |𝑚 | (𝑅) → 𝑀 ′ ↣ 𝑀 .

3.3.21 Theorem. Every 𝑅-complex is isomorphic to a filtered colimit of bounded
and degreewise finitely presented 𝑅-complexes.

Proof. Let Δ be the set {D𝑢 (𝑅) | 𝑢 ∈ ℤ} of bounded degreewise finitely presented
𝑅-complexes. Let 𝑀 be an 𝑅-complex; by 3.3.20 every homogeneous element 𝑚 in
𝑀 is in the image of a morphism D |𝑚 | (𝑅) → 𝑀 . The assertion now follows from
3.3.19. □

The next corollary also follows directly from 3.3.19 applied with Δ = {𝑅}.

3.3.22 Corollary. Every 𝑅-module is isomorphic to a filtered colimit of finitely
presented 𝑅-modules.

Proof. Let 𝑀 be an 𝑅-module. By 3.3.21 there is an isomorphism of 𝑅-complexes
𝑀 � colim𝑢∈𝑈 𝑀𝑢 where {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 is a filtered 𝑈-direct system of
degreewise finitely presented complexes. The degree 0 component yields an isomor-
phism between 𝑀 and the colimit of the𝑈-direct system {𝜇𝑣𝑢0 : 𝑀𝑢

0 → 𝑀𝑣
0 }𝑢⩽𝑣. □

Before proving a more detailed version of 3.3.21 we supplement 3.3.17.

3.3.23 Theorem. For an 𝑅-complex 𝑀 , the following conditions are equivalent.
(i) 𝑀 is bounded and degreewise finitely presented.
(ii) The functor Hom𝑅 (𝑀, ) preserves filtered colimits.
(iii) The functor C(𝑅) (𝑀, ) preserves filtered colimits.

Proof. The implication (i)⇒ (ii) is proved in 3.3.17.
(ii)⇒ (iii): By 3.3.15(a) the functor Z0 preserves filtered colimits. From this fact

and (ii), it follows that the composite functor Z0 (Hom𝑅 (𝑀, )) preserves filtered
colimits, and by 2.3.10 this functor is nothing but C(𝑅) (𝑀, ).

(iii)⇒ (i): By 3.3.21 there is a filtered 𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 of
bounded degreewise finitely presented 𝑅-complexes with 𝑀 � colim𝑢∈𝑈 𝑀𝑢. By
assumption, the canonical morphism

𝜑 : colim
𝑢∈𝑈

C(𝑅) (𝑀, 𝑀𝑢) −→ C(𝑅)
(
𝑀, colim

𝑢∈𝑈
𝑀𝑢

)
� C(𝑅) (𝑀, 𝑀)

is an isomorphism. Write

𝜇𝑢 : 𝑀𝑢 −→ colim
𝑢∈𝑈

𝑀𝑢 � 𝑀 and 𝜆𝑢 : C(𝑅) (𝑀, 𝑀𝑢) −→ colim
𝑢∈𝑈

C(𝑅) (𝑀, 𝑀𝑢)

for the canonical morphisms. By the diagram in 3.2.15 one has 𝜑𝜆𝑢 = C(𝑅) (𝑀, 𝜇𝑢)
for all 𝑢 ∈ 𝑈. Surjectivity of 𝜑 yields an element 𝜘 ∈ colim𝑢∈𝑈 C(𝑅) (𝑀, 𝑀𝑢) with
𝜑(𝜘) = 1𝑀 . By 3.3.2 one has 𝜘 = 𝜆𝑢 (𝜓𝑢) for some 𝑢 ∈ 𝑈 and 𝜓𝑢 ∈ C(𝑅) (𝑀, 𝑀𝑢).
Consequently, there are equalities 𝜇𝑢𝜓𝑢 = C(𝑅) (𝑀, 𝜇𝑢) (𝜓𝑢) = 𝜑𝜆𝑢 (𝜓𝑢) = 𝜑(𝜘) =
1𝑀 . It follows that 𝑀 is a direct summand of 𝑀𝑢, and since 𝑀𝑢 is bounded and
degreewise finitely presented, so is 𝑀 . □
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Remark. Following the standard definition—see for example Crawley-Boevey [71] or Krause
[159]—the finitely presented objects in C(𝑅) are exactly the complexes 𝑀 that satisfy condition
(iii) in 3.3.23. Thus by 3.3.21 the category C(𝑅) is locally finitely presented.

The next result, which subsumes 3.3.21, lays the foundation for the proof of
Govorov and Lazard’s theorem in Sect. 5.5.

3.3.24 Theorem. Let 𝑀 be an 𝑅-complex and Λ a class of degreewise finitely
presented 𝑅-complexes. If every morphism of 𝑅-complexes 𝜑 : 𝑁 → 𝑀 where 𝑁 is
degreewise finitely presented admits a factorization in C(𝑅),

𝑁

𝜅
��

𝜑
// 𝑀

𝐿

𝜆

??

with 𝐿 in Λ, then 𝑀 is isomorphic to a filtered colimit of complexes from Λ.
Moreover, if the complexes in Λ are bounded (above/below) then it is sufficient

that the factorization exists for morphisms 𝜑 : 𝑁 → 𝑀 where the degreewise finitely
resented complex 𝑁 is bounded (above/below).

Proof. Every homogeneous element 𝑚 ∈ 𝑀 is, as noted in 3.3.20, in the image of a
morphism D |𝑚 | (𝑅) → 𝑀 . It follows from the assumptions that𝑚 is in the image of a
morphism 𝐿 → 𝑀 with 𝐿 ∈ Λ. Let Δ be a set of representatives for the isomorphism
classes in Λ. It follows from 3.3.19 that 𝑀 is isomorphic to the colimit of the filtered
𝑈-direct system of degreewise finitely presented 𝑅-complexes{

𝜇 (𝐾
′ ,𝑌 ′ ) (𝐾,𝑌 ) : 𝑀 (𝐾,𝑌 ) −→ 𝑀 (𝐾

′ ,𝑌 ′ ) }
(𝐾,𝑌 )⩽ (𝐾 ′ ,𝑌 ′ )

constructed in 3.3.18. Notice, also from 3.3.19, that if the complexes in Λ are
bounded (above/below) then also the complexes in this𝑈-direct system are bounded
(above/below). To prove the assertion, it suffices by 3.3.7 to show that the subset of
𝑈 of elements (𝐾,𝑌 ) such that 𝑀 (𝐾,𝑌 ) belongs to Δ is cofinal in 𝑈. To this end, let
(𝐾,𝑌 ) be in𝑈; by assumption there exists a factorization,

𝑀 (𝐾,𝑌 )

𝜅
��

𝛼(𝐾,𝑌 )
// 𝑀

𝐿

𝜆

??

with 𝐿 in Λ. One can assume that 𝐿 is in Δ. Pick any 𝑝 ∈ ℕ such that 𝐾𝑝 = ∅ holds.
Define a string 𝐾 ′ by setting 𝐾 ′𝑝 = {𝜆} and 𝐾 ′𝑛 = 𝐾𝑛 for 𝑛 ≠ 𝑝. With the notation
from 3.3.18 one has 𝑋𝐾 ′ = 𝑋𝐾 ⊕ 𝐿, where 𝐿 is considered as a subcomplex of the
𝑝th copy of 𝑋 in 𝑋 . Let 𝜚 : 𝑋𝐾 ↠ 𝑋𝐾/𝑌 = 𝑀 (𝐾,𝑌 ) be the canonical morphism. The
morphism

(♭) 𝑋𝐾 ′ = 𝑋𝐾 ⊕ 𝐿 −→ 𝐿 given by (𝑥, 𝑙) ↦−→ 𝜅𝜚(𝑥) + 𝑙

has as kernel the subcomplex

𝑌 ′ = { (𝑥,−𝜅𝜚(𝑥)) ∈ 𝑋𝐾 ⊕ 𝐿 | 𝑥 ∈ 𝑋𝐾 } .
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Since 𝑋𝐾 is degreewise finitely generated, so is 𝑌 ′. By definition, �̂� = 𝛼 (𝐾,𝑌 ) 𝜚 on
𝑋𝐾 , and the restriction of �̂� to 𝐿 is 𝜆. For every (𝑥,−𝜅𝜚(𝑥)) in 𝑌 ′ there are now
equalities,

�̂�(𝑥,−𝜅𝜚(𝑥)) = �̂�(𝑥) − �̂�𝜅𝜚(𝑥) = �̂�(𝑥) − 𝜆𝜅𝜚(𝑥) = �̂�(𝑥) − 𝛼 (𝐾,𝑌 ) 𝜚(𝑥) = 0 .

Thus 𝑌 ′ is contained in Ker �̂� and, therefore, (𝐾 ′, 𝑌 ′) is an element in 𝑈. For 𝑥 in
𝑌 one has 𝜅𝜚(𝑥) = 𝜅(0) = 0, so 𝑌 is contained in 𝑌 ′ and (𝐾,𝑌 ) ⩽ (𝐾 ′, 𝑌 ′) holds.
It remains to see that 𝑀 (𝐾 ′ ,𝑌 ′ ) belongs to Δ. As the morphism (♭) is surjective with
kernel 𝑌 ′, it follows that there is an isomorphism 𝑀 (𝐾

′ ,𝑌 ′ ) = 𝑋𝐾 ′/𝑌 ′ � 𝐿. □

Well-Ordered Colimits

3.3.25 Definition. Let λ be an ordinal. A λ-sequence of 𝑅-complexes is a λ-direct
system {𝜇βα : 𝑀α → 𝑀β }α⩽β<λ in C(𝑅) as in 3.2.1, indexed by the well-ordered set
λ, with the additional property that for every limit ordinal β < λ the canonical mor-
phism 𝜑β : colimα<β 𝑀

α → 𝑀β is an isomorphism.

3.3.26. Let λ be an ordinal and {𝜇βα : 𝑀α → 𝑀β }α⩽β<λ a λ-sequence. If β < λ is
a limit ordinal and 𝜇α

β
: 𝑀α → colimα<β 𝑀

α for α < β is the canonical morphism,
then 𝜑β from 3.3.25 is the unique morphism with 𝜑β𝜇αβ = 𝜇βα for α < β, see 3.2.4.

3.3.27 Example. A continuous chain {𝑀α }α<λ of subcomplexes of an 𝑅-complex
𝑀 , see D.1, yields in view of 3.3.3 a λ-sequence {𝜇βα : 𝑀α ↣ 𝑀β }α⩽β<λ where
𝜇βα is the embedding. On the other hand, if {𝜇βα : 𝑀α → 𝑀β }α⩽β<λ a λ-sequence
with colimit 𝑀 and canonical maps 𝜇α : 𝑀α → 𝑀 , then {Im 𝜇α }α<λ is a continuous
chain of subcomplexes of 𝑀 with ⋃

α<λ Im 𝜇α = 𝑀 , see 3.3.2 and 3.3.26.

A subset 𝑉 of a preordered set (𝑈, ⩽) is preordered with the induced order, but
notice that (𝑉, ⩽) need not be filtered even if (𝑈, ⩽) is filtered. However, a modest
enlargement of 𝑉 will, in fact, be filtered. The next lemmas go back to Maeda [177,
Appn. II]; we learned it from Jensen [148, §1] and Enochs and López-Ramos [88].
The proofs below follow Adámek and Rosický [2, 1.A].

3.3.28 Lemma. Let (𝑈, ⩽) be a preordered filtered set and 𝑉 ⊆ 𝑈 a subset.
(a) If 𝑉 is finite, then there exists a finite subset 𝑉 ⊆ 𝑉 ′ ⊆ 𝑈 with (𝑉 ′, ⩽) filtered.
(b) If 𝑉 is infinite, then there exists a subset 𝑉 ⊆ 𝑉 ′ ⊆ 𝑈 with card𝑉 ′ = card𝑉

and (𝑉 ′, ⩽) filtered.

Proof. (a): As 𝑉 is finite and𝑈 is filtered there exists an element 𝑢 ∈ 𝑈 with 𝑣 ⩽ 𝑢
for every 𝑣 ∈ 𝑉 . Now set 𝑉 ′ = 𝑉 ∪ {𝑢}.

(b): Set𝑉0 = 𝑉 . Let 𝑛 ∈ ℕ0 and assume that a subset𝑉𝑛 ⊆ 𝑈 has been constructed.
As 𝑈 is filtered there exists for each pair of elements 𝑥, 𝑦 ∈ 𝑉𝑛 an element 𝑢𝑥,𝑦 ∈ 𝑈
with 𝑥 ⩽ 𝑢𝑥,𝑦 and 𝑦 ⩽ 𝑢𝑥,𝑦. Set 𝑉𝑛+1 = 𝑉𝑛 ∪ {𝑢𝑥,𝑦 | 𝑥, 𝑦 ∈ 𝑉𝑛 } and note that one has
card𝑉𝑛+1 = card𝑉𝑛. The set 𝑉 ′ = ⋃

𝑛∈ℕ0 𝑉𝑛 has the asserted properties. □
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Note that in the next result we slightly abuse notation: The symbol “⩽” is used
both for the preorder on the set𝑈 and the well-order on the limit ordinal 𝜆.

3.3.29 Lemma. Let (𝑈, ⩽) an infinite preordered filtered set and λ the initial ordinal
of cardinality card𝑈. There is a family {𝑈α}α<λ of subsets of𝑈 with these properties:

(a) 𝑈0 = ∅ and ⋃
α<λ𝑈α = 𝑈.

(b) For all ordinals α ⩽ β < λ one has𝑈α ⊆ 𝑈β .

(c) For each limit ordinal β < λ one has𝑈β =
⋃

α<β𝑈α .

(d) For each ordinal α < λ the set (𝑈α , ⩽) is filtered with card𝑈α < card𝑈.

Proof. To each subset 𝑉 ⊆ 𝑈 associate a subset 𝑉 ′ ⊆ 𝑈 as described in 3.3.28.
Further, well-order 𝑈 and write 𝑈 = {𝑢α | α < λ}. By transfinite induction one
defines the family {𝑈α}α<λ as follows:
• 𝑈0 = ∅ .
• 𝑈α+1 = (𝑈α ∪ {𝑢α})′ for every ordinal α with α + 1 < λ .

• 𝑈β =
⋃

α<β𝑈α for every limit ordinal β < λ .

Now every element 𝑢α in𝑈 is an element of the set𝑈α+1. The sets𝑈α+1 are filtered by
construction, and a union of an increasing chain of filtered sets is filtered. Finally, for
infinite sets 𝑈α one has card𝑈α+1 = card𝑈α , and for β < λ the the union ⋃

α<β𝑈α ,
where each set𝑈α has card𝑈α < card𝑈, again has cardinality less than card𝑈. □

The gist of the next result is that filtered colimits can be reduced to well-ordered
colimits, and filtered colimits of monomorphisms can be reduced to unions of con-
tinuous chains; we learned this from Enochs and López-Ramos [88]. The proof we
give follows Adámek and Rosický [2, 1.A]. To parse conditions (ii) and (ii′), recall
from 3.3.25 and D.1 the definitions of λ-sequences and continuous chains.

3.3.30 Theorem. Let X be a class of 𝑅-complexes.
(a) The following conditions are equivalent.

(i) For every𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 of complexes in X with
𝑈 filtered, one has colim𝑢∈𝑈 𝑀𝑢 ∈ X .

(ii) For every ordinal λ and λ-sequence {𝜇βα : 𝑀α → 𝑀β }α⩽β<λ of com-
plexes in X, one has colimα<λ 𝑀

α ∈ X .
(b) The following conditions are equivalent.

(i′) For every𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 ↣ 𝑀𝑣}𝑢⩽𝑣 of complexes in X with
𝑈 filtered and each 𝜇𝑣𝑢 is injective, one has colim𝑢∈𝑈 𝑀𝑢 ∈ X .

(ii′) For every 𝑅-complex𝑀 that is the union of a continuous chain {𝑀α }α<λ
of subcomplexes with 𝑀α ∈ X for every α < λ, one has 𝑀 ∈ X .

Proof. The implication (i)⇒ (ii) is trivial. To show that condition (ii) implies (i) we
argue by transfinite induction on the cardinality of the preordered filtered set (𝑈, ⩽).
If𝑈 is finite, then𝑈 has a greatest element, 𝑤, so one has colim𝑢∈𝑈 𝑀𝑢 � 𝑀𝑤 ∈ X
by 3.2.8. Now let 𝑈 be infinite and assume that for every preordered filtered set 𝑉
with card𝑉 < card𝑈 the colimit of every 𝑉-direct system in X belongs to X. Let λ
be the initial ordinal of cardinality card𝑈 and let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a𝑈-direct
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system in X. The goal is to show that colim𝑢∈𝑈 𝑀𝑢 is in X. Let {𝑈𝛼}α<λ be a family
as in 3.3.29 and set𝑈λ = 𝑈. For α ⩽ λ set

𝑀α = colim
𝑢∈𝑈α

𝑀𝑢 with canonical maps 𝜇𝑢α : 𝑀𝑢 → 𝑀α for α ⩽ λ and 𝑢 ∈ 𝑈α .

Note that one has 𝑀λ = colim𝑢∈𝑈 𝑀𝑢, so the goal is to prove that 𝑀λ belongs to X.
Recall from 3.3.29(d) that for α < λ the set (𝑈α , ⩽) is filtered with card𝑈α < card𝑈,
so the induction hypothesis yields 𝑀α ∈ X for every α < λ. By 3.2.3 the canonical
morphisms above satisfy

(♭) 𝜇𝑣α𝜇
𝑣𝑢 = 𝜇𝑢α for α ⩽ λ and 𝑢 ⩽ 𝑣 in𝑈α .

For α ⩽ β ⩽ λ one has𝑈α ⊆ 𝑈β; indeed, for β < λ this inclusion holds by 3.3.29(b),
and for β = λ it holds by 3.3.29(a) as one has 𝑈λ = 𝑈. Thus (♭) and the universal
property 3.2.5 yield a unique morphism,

(⋄) 𝜎βα : 𝑀α → 𝑀β satisfying 𝜎βα𝜇
𝑢
α = 𝜇𝑢

β
for α ⩽ β ⩽ λ and 𝑢 ∈ 𝑈α .

By assumption,𝑀α ∈ X holds for α < λ. We now show that {𝜎βα : 𝑀α → 𝑀β }α⩽β<λ
is a λ-sequence, and hence a λ-sequence in X. For ordinals α ⩽ β ⩽ γ ⩽ λ and
𝑢 ∈ 𝑈α there are by (⋄) equalities,

𝜎αα𝜇
𝑢
α = 𝜇𝑢α = 1𝑀α 𝜇𝑢α and 𝜎γβ𝜎βα𝜇

𝑢
α = 𝜎γβ𝜇

𝑢
β
= 𝜇𝑢γ = 𝜎γα𝜇

𝑢
α ,

so the uniqueness of the morphisms in (⋄) implies that one has

(★) 𝜎αα = 1𝑀α and 𝜎γβ𝜎βα = 𝜎γα for α ⩽ β ⩽ γ ⩽ λ .

This shows that {𝜎βα : 𝑀α → 𝑀β }α⩽β<λ is a λ-direct system, see 3.2.1. Now, let
κ ⩽ λ be a limit ordinal and notice that λ itself is a limit ordinal. With a slight
variation of the notation from 3.3.25 and 3.3.26 there are canonical morphisms,

𝜎κ
α : 𝑀α → colim

α<κ
𝑀α satisfying 𝜎κ

β 𝜎βα = 𝜎κ
α for α ⩽ β < κ ⩽ λ ,(††)

𝜑κ : colim
α<κ

𝑀α → 𝑀κ satisfying 𝜑κ𝜎κ
α = 𝜎κα for α < κ ⩽ λ .(‡‡)

Next we argue that 𝜑κ from (‡‡) is an isomorphism for every limit ordinal κ ⩽ λ.
Once this has been shown, the proof of the implication (ii)⇒ (i) is complete. Indeed,
the fact that 𝜑κ is an isomorphism for all limit ordinals κ < λ shows that the already
constructed λ-direct system {𝜎βα : 𝑀α → 𝑀β }α⩽β<λ inX is a λ-sequence, see 3.3.25
and 3.3.26, and condition (ii) therefore implies that colimα<λ 𝑀α is in X. As also 𝜑λ
is an isomorphism, it follows that 𝑀λ is in X, as desired.

Let κ ⩽ λ be a limit ordinal; to show that 𝜑κ from (‡‡) is an isomorphism we
construct its inverse. To this end, note that one has𝑈κ =

⋃
α<κ 𝑈α; indeed, for κ < λ

this equality holds by 3.3.29(c), and for κ = λ it holds by 3.3.29(a) as 𝑈λ = 𝑈.
Thus, every element 𝑢 ∈ 𝑈κ is in 𝑈α for some α < κ. If 𝑢 is in both 𝑈α and 𝑈β

for α, β < κ there is an equality 𝜎κ
α 𝜇

𝑢
α = 𝜎κ

β
𝜇𝑢
β

of morphisms 𝑀𝑢 → colimα<κ 𝑀α;
indeed, as λ well-ordered one can assume that α ⩽ β holds, so (††) and (⋄) yield
𝜎κ
α 𝜇

𝑢
α = 𝜎κ

β
𝜎βα𝜇

𝑢
α = 𝜎κ

β
𝜇𝑢
β
. Thus for every 𝑢 ∈ 𝑈κ we can define a morphism
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(♭♭) 𝜓𝑢 : 𝑀𝑢 → colim
α<κ

𝑀α by setting 𝜓𝑢 = 𝜎κ
α 𝜇

𝑢
α for α < κ with 𝑢 ∈ 𝑈α .

For 𝑢 ⩽ 𝑣 in𝑈κ one has 𝜓𝑣𝜇𝑣𝑢 = 𝜓𝑢; indeed, for any choice of α < κ with 𝑢, 𝑣 ∈ 𝑈α

one gets from (♭♭) and (♭) the equalities 𝜓𝑣𝜇𝑣𝑢 = 𝜎κ
α 𝜇

𝑣
α𝜇
𝑣𝑢 = 𝜎κ

α 𝜇
𝑢
α = 𝜓𝑢. By

definition, one has 𝑀κ = colim𝑢∈𝑈κ
𝑀𝑢 with canonical morphisms 𝜇𝑢κ : 𝑀𝑢 → 𝑀κ

for 𝑢 ∈ 𝑈κ , so the universal property 3.2.5 yields a unique morphism,

(⋄⋄) 𝜓κ : 𝑀κ → colim
α<κ

𝑀α satisfying 𝜓κ𝜇𝑢κ = 𝜓𝑢 for 𝑢 ∈ 𝑈κ .

We now show that𝜓κ is the inverse of 𝜑κ from (‡‡). To see that𝜓κ𝜑κ is the identity on
colimα<κ 𝑀α it suffices by (††) and the uniqueness part of 3.2.5 to show that for every
α < κ there is an equality 𝜓κ𝜑κ𝜎κ

α = 𝜎κ
α of morphisms 𝑀α → colimα<κ 𝑀α . Recall

that one has 𝑀α = colim𝑢∈𝑈α
𝑀𝑢 with canonical morphisms 𝜇𝑢α : 𝑀𝑢 → 𝑀α for

𝑢 ∈ 𝑈α . Thus, to prove 𝜓κ𝜑κ𝜎κ
α = 𝜎κ

α it is enough to argue that 𝜓κ𝜑κ𝜎κ
α 𝜇

𝑢
α = 𝜎κ

α 𝜇
𝑢
α

holds for every 𝑢 ∈ 𝑈α . This equality follows from (‡‡), (⋄), (⋄⋄), and (♭♭):

𝜓κ𝜑κ𝜎κ
α 𝜇

𝑢
α = 𝜓κ𝜎κα𝜇

𝑢
α = 𝜓κ𝜇𝑢κ = 𝜓𝑢 = 𝜎κ

α 𝜇
𝑢
α .

Similarly, to see that 𝜑κ𝜓κ is the identity on 𝑀κ = colim𝑢∈𝑈κ
𝑀𝑢 it suffices to show

that for each 𝑢 ∈ 𝑈κ one has 𝜑κ𝜓κ𝜇𝑢κ = 𝜇𝑢κ . Given 𝑢 ∈ 𝑈κ choose α < κ with
𝑢 ∈ 𝑈α; now (⋄⋄), (♭♭), (‡‡), and (⋄) yield equalities,

𝜑κ𝜓κ𝜇𝑢κ = 𝜑κ𝜓𝑢 = 𝜑κ𝜎κ
α 𝜇

𝑢
α = 𝜎κα𝜇

𝑢
α = 𝜇𝑢κ .

This completes the proof of part (a).
For part (b) we first show that (ii′) is equivalent to the following condition:

(ii′′) For every ordinal λ and λ-sequence {𝜇βα : 𝑀α ↣ 𝑀β }α⩽β<λ of complexes in
X where each morphism 𝜇βα is injective, one has colimα<λ 𝑀

α ∈ X .
The implication (ii′′)⇒ (ii′) follows from 3.3.27 and 3.3.3. To show the converse
implication, let {𝜇βα : 𝑀α ↣ 𝑀β }α⩽β<λ be a λ-sequence in X where each 𝜇βα is
injective. Set 𝑀 = colimα<λ 𝑀

α and for α < λ let 𝜇α : 𝑀α → 𝑀 be the canonical
morphism. Each 𝜇α is injective by 3.3.2(b), so one has Im 𝜇α � 𝑀α ∈ X. Further,
{Im 𝜇α }α<λ is a continuous chain of subcomplexes of 𝑀 with and ⋃

α<λ Im 𝜇α = 𝑀 ,
see 3.3.27. Thus, if (ii′) holds it follows that the complex 𝑀 = colimα<λ 𝑀

α is in X.
We finish the proof by showing that conditions (i′) and (ii′′) are equivalent. The

implication (i′)⇒ (ii′′) is trivial. To see that (ii′′) implies (i′), recall that in the
proof of part (a) we constructed from a𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 in X a
λ-sequence {𝜎βα : 𝑀α → 𝑀β }α⩽β<λ inXwith colim𝑢∈𝑈 𝑀𝑢 � colimα<λ 𝑀α . Thus,
to prove the implication (ii′′)⇒ (i′) it suffices to show that if each morphism 𝜇𝑣𝑢

is injective, then so is every morphism 𝜎βα . If each 𝜇𝑣𝑢 is injective it follows from
3.3.2(b) that the canonical morphism 𝜇𝑢

β
: 𝑀𝑢 → 𝑀β = colim𝑢∈𝑈β

𝑀𝑢 is injective
for every β < λ and 𝑢 ∈ 𝑈β . Let α ⩽ β < λ be given. By construction, see (⋄), the
morphism 𝜎βα : 𝑀α = colim𝑢∈𝑈α

𝑀𝑢 → 𝑀β is the unique one induced per 3.2.5 by
the family {𝜇𝑢

β
: 𝑀𝑢 → 𝑀β }𝑢∈𝑈α

, so it follows from 3.3.8 that 𝜎βα is injective. □
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Telescopes

A frequently occurring form of colimits stems from sequences of morphisms.

3.3.31 Construction. Let {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢+1}𝑢∈ℤ be a sequence of morphisms in
C(𝑅). It determines a ℤ-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 as follows: set

𝜇𝑢𝑢 = 1𝑀
𝑢

for all 𝑢 in ℤ and 𝜇𝑣𝑢 = 𝜅𝑣−1 · · · 𝜅𝑢 for all 𝑢 < 𝑣 in ℤ .

Given additional sequences {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢+1}𝑢∈ℤ and {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈ℤ of mor-
phisms, such that 𝛼𝑢+1𝜅𝑢 = 𝜆𝑢𝛼𝑢 holds for all 𝑢 ∈ ℤ, it is elementary to verify that
{𝛼𝑢}𝑢∈ℤ is a morphism of the direct systems determined by {𝜅𝑢}𝑢∈ℤ and {𝜆𝑢}𝑢∈ℤ .

For example, the ℤ-direct system in 3.3.4 arises, as described above, from the
sequence · · ·↣ 𝑀ď−1 ↣ 𝑀ď0 ↣ 𝑀ď1 ↣ · · · .

3.3.32 Definition. A sequence {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢+1}𝑢∈ℤ of morphisms in C(𝑅) with
𝑀𝑢 = 0 for 𝑢 ≪ 0 is called a telescope in C(𝑅). The colimit, colim𝑢∈ℤ 𝑀𝑢, of the
associated ℤ-direct system, see 3.3.31, is called the colimit of the telescope.

Given telescopes {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢+1}𝑢∈ℤ and {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢+1}𝑢∈ℤ , a sequence
of morphisms {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈ℤ that satisfy 𝛼𝑢+1𝜅𝑢 = 𝜆𝑢𝛼𝑢 for all 𝑢 ∈ ℤ is
called a morphism of telescopes. The morphism,

colim
𝑢∈ℤ

𝛼𝑢 : colim
𝑢∈ℤ

𝑀𝑢 −→ colim
𝑢∈ℤ

𝑁𝑢 ,

see 3.3.31 and 3.2.10, is called the colimit of {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈ℤ .

3.3.33. Let {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢+1}𝑢∈ℤ be a telescope and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 the
associated ℤ-direct system in C(𝑅). Given an 𝑅-complex 𝑁 and a sequence of
morphisms {𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈ℤ that satisfy 𝛼𝑢 = 𝛼𝑢+1𝜅𝑢 for all 𝑢 ∈ ℤ, one has
𝛼𝑢 = 𝛼𝑣𝜇𝑣𝑢 for all 𝑢 ⩽ 𝑣. By the universal property of colimits, there is a morphism
𝛼 : colim𝑢∈ℤ 𝑀𝑢 → 𝑁 in C(𝑅) with properties as described in 3.2.5.

3.3.34 Example. Let𝑀0 ⊆ 𝑀1 ⊆ 𝑀2 ⊆ · · · be an ascending chain of subcomplexes
of an 𝑅-complex 𝑀 . The embeddings 𝑀𝑢 ↣ 𝑀𝑢+1 define a telescope whose colimit
is isomorphic to the subcomplex ⋃

𝑢∈ℤ 𝑀
𝑢. This is a special case of 3.3.3.

3.3.35 Example. Assume that 𝑅 is commutative. Let 𝑀 be an 𝑅-module and 𝑥 an
element in 𝑅; set 𝑋 = {𝑥𝑛 | 𝑛 ⩾ 0}. Consider the following commutative diagram
of 𝑅-modules,

𝐶

𝛼

��

𝑀

𝜇0
,,

𝛼0 = 1
11

𝜅0 = 𝑥
// 𝑀

𝜇1

..

𝛼1 = 1
𝑥

//

𝜅1 = 𝑥
// 𝑀

𝜇2

22

𝛼2 = 1
𝑥2

++

𝜅2 = 𝑥
// · · ·

𝑋−1𝑀
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The row is the telescope where each homomorphism 𝜅𝑢 is the homothety 𝑥𝑀 , the
module 𝐶 is the colimit of the telescope with canonical homomorphisms 𝜇𝑢 and
𝛼𝑢 multiplies with 1

𝑥𝑢
. As one has 𝛼𝑢 = 𝛼𝑢+1𝜅𝑢 there is a unique homomorphism

𝛼 : 𝐶 → 𝑋−1𝑀 with 𝛼𝜇𝑢 = 𝛼𝑢 for all 𝑢; see 3.3.33. We argue that 𝛼 is an isomor-
phism. Note that 𝛼𝜇𝑢 (𝑚) = 𝛼𝑢 (𝑚) = 𝑚

𝑥𝑢
, so 𝛼 is surjective. By 3.3.2 every element

𝑧 ∈ 𝐶 has the form 𝑧 = 𝜇𝑢 (𝑚) for some 𝑢 and some 𝑚 ∈ 𝑀 , so if 𝑧 is in the kernel
of 𝛼, then 0 = 𝛼(𝑧) = 𝛼𝜇𝑢 (𝑚) = 𝛼𝑢 (𝑚) = 𝑚

𝑥𝑢
holds in 𝑋−1𝑀 . This means that

𝑥𝑣𝑚 = 0 in 𝑀 for some 𝑣, and it follows that

𝑧 = 𝜇𝑢 (𝑚) = 𝜇𝑢+𝑣𝜅𝑢+𝑣−1 · · · 𝜅𝑢+1𝜅𝑢 (𝑚) = 𝜇𝑢+𝑣 (𝑥𝑣𝑚) = 𝜇𝑢+𝑣 (0) = 0

holds, so 𝛼 is injective.

3.3.36 Proposition. Let {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢+1}𝑢∈ℤ be a telescope in C(𝑅).
(a) If 𝜅𝑢 = 0 holds for infinitely many 𝑢 > 0, then one has colim𝑢∈ℤ 𝑀𝑢 = 0 .
(b) If there exists an integer 𝑤 such that 𝜅𝑢 is bĳective for all 𝑢 ⩾ 𝑤, then the

canonical map 𝑀𝑤 → colim𝑢∈ℤ 𝑀𝑢 is an isomorphism.

Proof. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢∈ℤ be the direct system associated to the telescope.
(a): By 3.3.2 every element 𝑚 in colim𝑢∈ℤ 𝑀𝑢 has the form 𝑚 = 𝜇𝑢 (𝑚𝑢) for

some 𝑢 ∈ ℤ and 𝑚𝑢 ∈ 𝑀𝑢. It follows from the assumption that the map 𝜇𝑣𝑢 is zero
for some 𝑣 ⩾ 𝑢, and consequently one has 𝑚 = 𝜇𝑢 (𝑚𝑢) = 𝜇𝑣 (𝜇𝑣𝑢 (𝑚𝑢)) = 0.

(b): Define a sequence {𝛼𝑢 : 𝑀𝑢 → 𝑀𝑤}𝑢∈ℤ of morphisms in C(𝑅) as follows:
Set 𝛼𝑤 = 1𝑀𝑤 , set 𝛼𝑢 = 𝜅𝑤−1 · · · 𝜅𝑢 for 𝑢 < 𝑤 and 𝛼𝑢 = (𝜅𝑢−1 · · · 𝜅𝑤)−1 for
𝑢 > 𝑤. By construction 𝛼𝑢 = 𝛼𝑢+1𝜅𝑢 holds for all 𝑢 ∈ ℤ, so by 3.3.33 there is
a morphism 𝛼 : colim𝑢∈ℤ 𝑀𝑢 → 𝑀𝑤, given by 𝜇𝑢 (𝑚𝑢) ↦→ 𝛼𝑢 (𝑚𝑢). Evidently one
has 𝛼𝜇𝑤 = 𝛼𝑤 = 1𝑀𝑤 . It follows from 3.3.8 that 𝛼 is injective, and hence it is the
inverse of 𝜇𝑤. □

3.3.37 Proposition. Let {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢+1}𝑢∈ℤ be a telescope in C(𝑅). With

𝛥0
𝜅 :

∐
𝑢∈ℤ

𝑀𝑢 −→
∐
𝑢∈ℤ

𝑀𝑢 given by 𝜀𝑢 (𝑚𝑢) ↦−→ 𝜀𝑢 (𝑚𝑢) − 𝜀𝑢+1𝜅𝑢 (𝑚𝑢)

one has colim𝑢∈ℤ 𝑀𝑢 = Coker 𝛥0
𝜅 . Moreover, the morphism 𝛥0

𝜅 is injective.

Proof. As in 3.3.31 let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be the direct system associated with
the telescope and consider the morphism 𝛥𝜇; see 3.2.3. Evidently, the image of 𝛥𝜇 in∐
𝑢∈ℕ 𝑀

𝑢 contains the image of 𝛥0
𝜅 . On the other hand, for integers 𝑢 ⩽ 𝑣 an element

𝜀𝑢 (𝑚 (𝑢,𝑣) ) − 𝜀𝑣𝜇𝑣𝑢 (𝑚 (𝑢,𝑣) ) in the image of 𝛥𝜇 can with 𝑚 = 𝑚 (𝑢,𝑣) be rewritten as

𝜀𝑢 (𝑚) − 𝜀𝑣𝜇𝑣𝑢 (𝑚) = 𝜀𝑢 (𝑚) − 𝜀𝑣𝜅𝑣−1 · · · 𝜅𝑢 (𝑚)
= 𝜀𝑢 (𝑚) − 𝜀𝑢+1𝜅𝑢 (𝑚) + 𝜀𝑢+1𝜅𝑢 (𝑚) −
· · · + 𝜀𝑣−1𝜅𝑣−2 · · · 𝜅𝑢 (𝑚) − 𝜀𝑣𝜅𝑣−1 · · · 𝜅𝑢 (𝑚)

= 𝛥0
𝜅 (𝜀𝑢 (𝑚) + 𝜀𝑢+1𝜅𝑢 (𝑚) + · · · + 𝜀𝑣−1𝜅𝑣−2 · · · 𝜅𝑢 (𝑚)) .

Thus, the morphisms 𝛥𝜇 and 𝛥0
𝜅 have the same image and hence the same cokernel.

To see that 𝛥0
𝜅 is injective, let 𝑠 = ∑

𝑢∈ℤ 𝜀
𝑢 (𝑚𝑢) be a non-zero element in

∐
𝑢∈ℤ 𝑀

𝑢
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and 𝑤 the least index with 𝑚𝑤 ≠ 0. It is now immediate from the definition of the
map that 𝑤th term of 𝛥0

𝜅 (𝑠) is 𝑚𝑤 − 𝜅𝑤−1 (𝑚𝑤−1) = 𝑚𝑤 ≠ 0. □

Exercises

E 3.3.1 Let𝑀 be a finitely presented 𝑅-module and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣 }𝑢⩽𝑣 a𝑈-direct system of
𝑅-modules. Show that if𝑈 is filtered and there is an isomorphism colim𝑢∈𝑈 𝑀𝑢 � 𝑀,
then 𝑀 is a direct summand of one of the modules 𝑀𝑢. Hint: 3.3.17.

E 3.3.2 Show that an 𝑅-module 𝐹 is flat if and only if the morphism 𝜄 ⊗𝑅 𝐹 induced by the
embedding 𝜄 : 𝔟→ 𝑅 is injective for every finitely generated right ideal 𝔟 in 𝑅.

E 3.3.3 Assume that 𝑅 is right coherent; let 𝐼 be an 𝑅o-module and 𝐸 an injective 𝕜-module.
Show: (a) If 𝐼 is injective, then the 𝑅-module Hom𝕜 (𝐼, 𝐸 ) is flat. (b) If 𝐸 is faithfully
injective, then the 𝑅-module Hom𝕜 (𝐼, 𝐸 ) is (faithfully) flat, if and only if 𝐼 is (faithfully)
injective.

E 3.3.4 Assume that 𝑅 is right coherent; let 𝐹 be an 𝑅-module and 𝑃 a projective 𝕜-module.
Show: (a) If 𝐹 is flat, then the 𝑅-module Hom𝕜 (𝑃, 𝐹 ) is flat. (b) If 𝑃 is faithfully
projective, then the 𝑅-module Hom𝕜 (𝑃, 𝐹 ) is (faithfully) flat, if and only if 𝐹 is
(faithfully) flat.

E 3.3.5 Show that every 𝑅-module is a filtered colimit of finitely presented modules. Hint: Let
{𝑚𝑢 }𝑢∈𝑈 generate 𝑀, let 𝐿 be free with basis {𝑒𝑢 }𝑢∈𝑈 , and consider the canonical
exact sequence 0→ 𝐾 → 𝐿

𝜋→ 𝑀 → 0. For subsets 𝑉 ⊆ 𝑈 set 𝐿𝑉 = 𝑅⟨𝑒𝑢 | 𝑢 ∈ 𝑉 ⟩.
Put a partial order on the set of all pairs (𝑉, 𝐻 ) where𝑉 ⊆ 𝑈 is finite and𝐻 ⊆ 𝐾 ∩ 𝐿𝑉
is a finitely generated submodule, such that it becomes filtered. Set 𝑀 (𝑉,𝐻) = 𝐿𝑉/𝐻
and show that 𝑀 is the colimit of a direct system of these modules.

E 3.3.6 Assume that 𝑅 is left Noetherian. Show that every filtered colimit of injective 𝑅-modules
is an injective 𝑅-module.

E 3.3.7 Show that a filtered colimit of flat 𝑅-modules is flat.
E 3.3.8 Show that the following conditions on 𝑅 are equivalent. (i) 𝑅 is von Neumann regular.

(ii) 𝑅/𝔟 is a flat 𝑅o-module for every (finitely generated) right ideal 𝔟 in 𝑅. (iii) Every
𝑅-module is flat.

E 3.3.9 Show that a left Noetherian and von Neumann regular ring is semi-simple.
E 3.3.10 As in 3.3.31 let {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢+1 }𝑢∈ℤ be a sequence (not necessarily a telescope)

of morphisms in C(𝑅) . Show that the colimit of the associated direct system does not
depend on 𝜅𝑢 for 𝑢 ≪ 0.

E 3.3.11 Show that every complex is the colimit of a telescope of bounded below complexes.
E 3.3.12 Show that for a𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣 }𝑢⩽𝑣 , the morphism 𝛥𝜇 is not injec-

tive.
E 3.3.13 Let {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢+1 }𝑢∈ℤ be a telescope in C(𝑅) with colimit 𝑀. Set 𝑁𝑢 = 𝑀𝑢+1

and 𝜆𝑢 = 𝜅𝑢+1; show that {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢+1 }𝑢∈ℤ is a telescope with colimit 𝑀 and
that the morphisms 𝛼𝑢 = 𝜅𝑢 from 𝑀𝑢 to 𝑁𝑢 form a morphism of telescopes with
colimit 1𝑀 .

E 3.3.14 Let 𝑀 be an 𝑅-module. Show that 𝑀 is finitely presented if and only if (3.3.17.1) is
bĳective for every𝑈-direct system {𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁 𝑣 }𝑢⩽𝑣. Hint: E 3.3.5 and E 3.3.1.

E 3.3.15 Let 𝑀 be an 𝑅-module. Show that 𝑀 is finitely generated if and only if (3.3.17.1) is
injective for every𝑈-direct system {𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁 𝑣 }𝑢⩽𝑣.
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3.4 Limits

Synopsis. Inverse system; limit; universal property; functor that preserves limits; pullback.

Limits are categorically dual to colimits; they are subcomplexes of products. Their
theory starts out parallel to the theory for colimits, however, the two deviate at one
important point: While colimits often are exact, limits rarely are.

3.4.1 Definition. Let (𝑈, ⩽) be a preordered set. A 𝑈-inverse system in C(𝑅) is a
family {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 of morphisms in C(𝑅) with the following properties.

(1) 𝜈𝑢𝑢 = 1𝑁𝑢 for all 𝑢 ∈ 𝑈.
(2) 𝜈𝑢𝑣𝜈𝑣𝑤 = 𝜈𝑢𝑤 for all 𝑢 ⩽ 𝑣 ⩽ 𝑤 in𝑈.

Any mention of a 𝑈-inverse system {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 includes the tacit assump-
tion that (𝑈, ⩽) is a preordered set.

3.4.2. Let {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 be a 𝑈-inverse system of 𝑅-complexes. Notice that
even if 𝑢 ⩽ 𝑣 and 𝑣 ⩽ 𝑢 hold, one may not have 𝑢 = 𝑣 as the relation on 𝑈 is not
assumed to be antisymmetric; however, it follows from 3.4.1 that 𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢 is
an isomorphism with inverse 𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁𝑣, so one has 𝑁𝑢 � 𝑁𝑣.

3.4.3 Construction. Let {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 be a 𝑈-inverse system in C(𝑅). We
describe the subcomplex of the product

∏
𝑢∈𝑈 𝑁

𝑢 generated by the elements (𝑛𝑢)𝑢∈𝑈
with 𝑛𝑢 = 𝜈𝑢𝑣 (𝑛𝑣) for 𝑢 ⩽ 𝑣 as the kernel of a morphism between products in C(𝑅).

Indeed, let ∇(𝑈) be as in 3.2.3 and set 𝑁 (𝑢,𝑣) = 𝑁𝑢 for all (𝑢, 𝑣) ∈ ∇(𝑈). The
assignment

(𝑛𝑢)𝑢∈𝑈 ↦−→ (𝑛𝑢 − 𝜈𝑢𝑣 (𝑛𝑣)) (𝑢,𝑣) ∈∇(𝑈)
defines by 3.1.15 a morphism of 𝑅-complexes

𝛥𝜈 :
∏
𝑢∈𝑈

𝑁𝑢 −→
∏

(𝑢,𝑣) ∈∇(𝑈)
𝑁 (𝑢,𝑣) .

Set
lim
𝑢∈𝑈

𝑁𝑢 = Ker 𝛥𝜈 .

Note that for every 𝑢 ∈ 𝑈, restriction of the projection (3.1.14.1) yields a morphism
of 𝑅-complexes,

(3.4.3.1) 𝜈𝑢 : lim
𝑢∈𝑈

𝑁𝑢 −→ 𝑁𝑢 ,

and 𝜈𝑢 = 𝜈𝑢𝑣𝜈𝑣 holds for all 𝑢 ⩽ 𝑣.

Remark. As for colimits, the standard notation suppresses the morphisms 𝜈𝑢𝑣 : 𝑁 𝑣 → 𝑁𝑢, though
the complex lim𝑢∈𝑈 𝑁𝑢 depends on them.

The next definition is justified by 3.4.5, which shows that the complex lim𝑢∈𝑈 𝑀𝑢

and the projections 𝜈𝑢 have the universal property that defines a limit. In any category,
this property determines the limit uniquely up to isomorphism.
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3.4 Limits 135

3.4.4 Definition. For a𝑈-inverse system {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 in C(𝑅) the complex
lim𝑢∈𝑈 𝑁𝑢 together with the canonical morphisms {𝜈𝑢}𝑢∈𝑈 , constructed in 3.4.3, is
called the limit of {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 in C(𝑅).

Remark. Other names for the limit defined above are ‘inverse limit’ and ‘projective limit’; other
symbols used for this gadget are lim←− and proj lim.

3.4.5 Theorem. Let {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 be a 𝑈-inverse system in C(𝑅). The limit
from 3.4.4 has the following universal property: For every family of morphisms
{𝛼𝑢 : 𝑀 → 𝑁𝑢}𝑢∈𝑈 in C(𝑅) with 𝛼𝑢 = 𝜈𝑢𝑣𝛼𝑣 for all 𝑢 ⩽ 𝑣, there is a unique
morphism 𝛼 that makes the next diagram commutative for all 𝑢 ⩽ 𝑣,

𝑁𝑣

𝜈𝑢𝑣

��

𝑀

𝛼𝑢
//

𝛼𝑣 //

𝛼
// lim
𝑢∈𝑈

𝑁𝑢

𝜈𝑣
;;

𝜈𝑢 ##

𝑁𝑢 .

The morphism 𝛼 is given by 𝑚 ↦→ (𝛼𝑢 (𝑚))𝑢∈𝑈 .

Proof. Let {𝛼𝑢 : 𝑀 → 𝑁𝑢}𝑢∈𝑈 be a family of morphisms with 𝛼𝑢 = 𝜈𝑢𝑣𝛼𝑣 for all
𝑢 ⩽ 𝑣. The equalities 𝛼𝑢 = 𝜈𝑢𝑣𝛼𝑣 ensure that the morphism 𝛼 : 𝑀 → ∏

𝑢∈𝑈 𝑁
𝑢 from

3.1.15, given by 𝑚 ↦→ (𝛼𝑢 (𝑚))𝑢∈𝑈 , maps to the subcomplex lim𝑢∈𝑈 𝑁𝑢.
It is evident from the definition that 𝛼 satisfies 𝛼𝑢 = 𝜈𝑢𝛼 for all 𝑢 ∈ 𝑈. Moreover,

for any morphism 𝛼′ : 𝑀 → lim𝑢∈𝑈 𝑁𝑢 that satisfies 𝛼𝑢 = 𝜈𝑢𝛼′ for all 𝑢 ∈ 𝑈, one
has 𝛼′ (𝑚) = (𝜈𝑢 (𝛼′ (𝑚))𝑢∈𝑈 = (𝛼𝑢 (𝑚))𝑢∈𝑈 = 𝛼(𝑚), so 𝛼 is unique. □

3.4.6. With the notation from 3.4.5, notice that one has Ker𝛼 =
⋂
𝑢∈𝑈 Ker𝛼𝑢; in

particular, 𝛼 is injective if and only if ⋂
𝑢∈𝑈 Ker𝛼𝑢 = 0 holds.

3.4.7. It follows readily from 3.4.3 and 3.4.5 that the full subcategories M(𝑅) and
Mgr (𝑅) of C(𝑅) are closed under limits, that is, if {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 is a 𝑈-
inverse system in M(𝑅) or in Mgr (𝑅), then lim𝑢∈𝑈 𝑁𝑢 belongs to M(𝑅) or Mgr (𝑅).
It follows that for every𝑈-inverse system {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 in C(𝑅) one has(

lim
𝑢∈𝑈

𝑁𝑢
)
𝑖
= lim
𝑢∈𝑈
(𝑁𝑢𝑖 ) and

(
lim
𝑢∈𝑈

𝑁𝑢
) ♮

= lim
𝑢∈𝑈
(𝑁𝑢)♮ .

3.4.8 Example. Let {𝑁𝑢}𝑢∈𝑈 be a family of 𝑅-complexes. Endowed with the discrete
order, 𝑈 is a preordered set, and {𝜈𝑢𝑢 = 1𝑁𝑢 }𝑢∈𝑈 is a 𝑈-inverse system with
lim𝑢∈𝑈 𝑁𝑢 =

∏
𝑢∈𝑈 𝑁

𝑢 and 𝜈𝑢 = 𝜛𝑢 for all 𝑢 ∈ 𝑈. Thus, every product is a limit.

Every complex is a limit of bounded below quotient complexes.

3.4.9 Example. Let 𝑁 be an 𝑅-complex; there is a ℤ-inverse system in C(𝑅),

{𝜈𝑢𝑣 : 𝑁ě−𝑣 −↠ 𝑁ě−𝑢}𝑢⩽𝑣 .

The canonical surjections 𝛽𝑢 : 𝑁 ↠ 𝑁ě−𝑢 satisfy 𝛽𝑢 = 𝜈𝑢𝑣𝛽𝑣 for all 𝑢 ⩽ 𝑣, so by the
universal property of limits 3.4.5 there is a unique morphism 𝛽 : 𝑁 → lim𝑢∈ℤ 𝑁ě−𝑢
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given by 𝛽(𝑛) = (𝛽𝑢 (𝑛))𝑢∈ℤ for 𝑛 ∈ 𝑁 . It is injective by 3.4.6. To see that 𝛽 is
surjective, let (𝑛𝑢)𝑢∈ℤ in lim𝑢∈ℤ 𝑁ě−𝑢 be homogeneous of degree −𝑤. In particular,
every 𝑛𝑢 is a homogeneous element in 𝑁ě−𝑢 of degree −𝑤, that is, 𝑛𝑢 ∈ (𝑁ě−𝑢)−𝑤.
It follows that 𝑛𝑢 = 0 holds if 𝑤 > 𝑢. For 𝑤 ⩽ 𝑢 one has 𝜈𝑤𝑢 (𝑛𝑢) = 𝑛𝑤 by 3.4.3,
which just means that 𝑛𝑢 = 𝑛𝑤 as 𝜈𝑤𝑢−𝑤 : (𝑁ě−𝑢)−𝑤 → (𝑁ě−𝑤)−𝑤 is the identity map.
The element 𝑛 = 𝑛𝑤 is in (𝑁ě−𝑤)−𝑤 = 𝑁−𝑤, that is, 𝑛 is a homogeneous element in
𝑁 of degree −𝑤, and one has 𝛽(𝑛) = (𝑛𝑢)𝑢∈ℤ . Indeed, 𝛽𝑢 (𝑛) = 0 = 𝑛𝑢 holds for
𝑤 > 𝑢, and 𝛽𝑢 (𝑛) = 𝑛 = 𝑛𝑤 = 𝑛𝑢 holds for 𝑤 ⩽ 𝑢. Thus, 𝛽 is an isomorphism.

As is the case for the limit in any category, the limit in C(𝑅) also acts on
morphisms. This is explained in the following definition.

3.4.10 Definition. Let {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 and {𝜇𝑢𝑣 : 𝑀𝑣 → 𝑀𝑢}𝑢⩽𝑣 be𝑈-inverse
systems in C(𝑅). A family of morphisms {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈𝑈 in C(𝑅) that satisfies
𝛽𝑢𝜈𝑢𝑣 = 𝜇𝑢𝑣𝛽𝑣 for all 𝑢 ⩽ 𝑣 is called a morphism of 𝑈-inverse systems. Such a
morphism is called injective (surjective) if each map 𝛽𝑢 is injective (surjective).

Given a morphism {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈𝑈 of𝑈-inverse systems, it follows from the
universal property of limits 3.4.5 that the map given by (𝑛𝑢)𝑢∈𝑈 ↦→ (𝛽𝑢 (𝑛𝑢))𝑢∈𝑈 is
the unique morphism that makes the next diagram commutative for all 𝑢 ⩽ 𝑣 in𝑈,

𝑁𝑣

𝜈𝑢𝑣

��

𝛽𝑣
// 𝑀𝑣

𝜇𝑢𝑣

��

lim
𝑢∈𝑈

𝑁𝑢 //

𝜈𝑣
cc

𝜈𝑢{{

lim
𝑢∈𝑈

𝑀𝑢

𝜇𝑢 ##

𝜇𝑣
;;

𝑁𝑢
𝛽𝑢

// 𝑀𝑢 .

This morphism is called the limit of {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈𝑈 and denoted lim𝑢∈𝑈 𝛽𝑢.

3.4.11 Example. Let {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 be a𝑈-inverse system. Because the maps
𝜈𝑢𝑣 are morphisms in C(𝑅), the family {𝜕𝑁𝑢 : 𝑁𝑢 → Σ𝑁𝑢}𝑢∈𝑈 is a morphism of
𝑈-inverse systems. From the definitions one has lim𝑢∈𝑈 𝜕𝑁

𝑢

= 𝜕lim𝑢∈𝑈 𝑁𝑢 .

The next result shows that limits are left exact. Exactness of limits is a delicate
issue, not to say a rare occurrence. A sufficient condition for exactness of certain
limits is given in 3.5.17, and an example of a non-exact limit is given in 3.5.18.

3.4.12 Lemma. Let {𝛼𝑢 : 𝑋𝑢 → 𝑁𝑢}𝑢∈𝑈 and {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈𝑈 be morphisms
of𝑈-inverse systems in C(𝑅). If the sequence

0 −→ 𝑋𝑢
𝛼𝑢−−−→ 𝑁𝑢

𝛽𝑢−−−→ 𝑀𝑢

is exact for every 𝑢 ∈ 𝑈, then the next sequence is exact,

0 −→ lim
𝑢∈𝑈

𝑋𝑢
lim𝑢∈𝑈 𝛼𝑢−−−−−−−−→ lim

𝑢∈𝑈
𝑁𝑢

lim𝑢∈𝑈 𝛽𝑢−−−−−−−−→ lim
𝑢∈𝑈

𝑀𝑢 .

Proof. Let∇(𝑈) be as in 3.2.3 and set𝛼 (𝑢,𝑣) = 𝛼𝑢 and 𝛽 (𝑢,𝑣) = 𝛽𝑢 for (𝑢, 𝑣) ∈ ∇(𝑈).
In view of 3.1.18 and 3.4.10 there is a commutative diagram with exact rows,
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3.4 Limits 137

0 //
∏
𝑢∈𝑈

𝑋𝑢

𝛥𝜒

��

∏
𝑢∈𝑈 𝛼

𝑢

//
∏
𝑢∈𝑈

𝑁𝑢

𝛥𝜈

��

∏
𝑢∈𝑈 𝛽

𝑢

//
∏
𝑢∈𝑈

𝑀𝑢

𝛥𝜇

��

0 //
∏

(𝑢,𝑣) ∈∇(𝑈)
𝑋 (𝑢,𝑣)

∏
(𝑢,𝑣) ∈∇(𝑈) 𝛼

(𝑢,𝑣)
//

∏
(𝑢,𝑣) ∈∇(𝑈)

𝑁 (𝑢,𝑣)
∏
(𝑢,𝑣) ∈∇(𝑈) 𝛽

(𝑢,𝑣)
//

∏
(𝑢,𝑣) ∈∇(𝑈)

𝑀 (𝑢,𝑣) ,

where the vertical morphisms 𝛥 are defined in 3.4.3. It follows from 2.1.42 that there
is an exact sequence 0 → Ker 𝛥𝜒 → Ker 𝛥𝜈 → Ker 𝛥𝜇 in C(𝑅), which in view of
3.4.3 is the desired one. □

The product of preordered sets𝑈 and𝑈′ is the cartesian product𝑈×𝑈′ equipped
with the product order, i.e. (𝑢, 𝑢′) ⩽ (𝑣, 𝑣′) holds in 𝑈 ×𝑈′ if and only if one has
𝑢 ⩽ 𝑣 in𝑈 and 𝑢′ ⩽ 𝑣′ in𝑈′. It is elementary to see that𝑈 ×𝑈′ is a preordered set.

3.4.13 Proposition. Let𝑈 and𝑈′ be preordered sets and{
𝜈 (𝑢,𝑢

′ ) (𝑣,𝑣′ ) : 𝑁 (𝑣,𝑣
′ ) → 𝑁 (𝑢,𝑢

′ )}
(𝑢,𝑢′ )⩽ (𝑣,𝑣′ )

a (𝑈 ×𝑈′)-inverse system in C(𝑅). There are isomorphisms,

lim
𝑢′∈𝑈′

(
lim
𝑢∈𝑈

𝑁 (𝑢,𝑢
′ ) ) � lim

(𝑢,𝑢′ ) ∈𝑈×𝑈′
𝑁 (𝑢,𝑢

′ ) � lim
𝑢∈𝑈

(
lim
𝑢′∈𝑈′

𝑁 (𝑢,𝑢
′ ) ) .

Proof. Due to the symmetry, it suffices to prove the first isomorphism.
Let 𝑢′ ∈ 𝑈′ and note that {𝜈 (𝑢,𝑢′ ) (𝑣,𝑢′ ) : 𝑁 (𝑣,𝑢′ ) → 𝑁 (𝑢,𝑢

′ ) }𝑢⩽𝑣 is a 𝑈-inverse
system. Set 𝑋𝑢′ = lim𝑢∈𝑈 𝑁 (𝑢,𝑢

′ ) and write {𝜑𝑢,𝑢′ : 𝑋𝑢′ → 𝑁 (𝑢,𝑢
′ ) }𝑢∈𝑈 for the ca-

nonical morphisms; now 𝜈 (𝑢,𝑢
′ ) (𝑣,𝑢′ )𝜑𝑣,𝑢

′
= 𝜑𝑢,𝑢

′ holds for 𝑢 ⩽ 𝑣 in 𝑈. Let 𝑢′ ⩽ 𝑣′
in𝑈′ be given. For all 𝑢 ⩽ 𝑣 in𝑈 the next diagram is, by assumption, commutative,

𝑁 (𝑣,𝑣
′ ) 𝜈 (𝑣,𝑢

′ ) (𝑣,𝑣′ )
//

𝜈 (𝑢,𝑣
′ ) (𝑣,𝑣′ )

��

𝑁 (𝑣,𝑢
′ )

𝜈 (𝑢,𝑢
′ ) (𝑣,𝑢′ )

��

𝑁 (𝑢,𝑣
′ ) 𝜈 (𝑢,𝑢

′ ) (𝑢,𝑣′ )
// 𝑁 (𝑢,𝑢

′ ) .

Thus {𝜈 (𝑢,𝑢′ ) (𝑢,𝑣′ ) : 𝑁 (𝑢,𝑢′ ) → 𝑁 (𝑢,𝑣
′ ) }𝑢∈𝑈 is a morphism from the 𝑈-inverse sys-

tem {𝜈 (𝑢,𝑣′ ) (𝑣,𝑣′ ) : 𝑁 (𝑣,𝑣′ ) → 𝑁 (𝑢,𝑣
′ ) }𝑢⩽𝑣 to {𝜈 (𝑢,𝑢′ ) (𝑣,𝑢′ ) : 𝑁 (𝑣,𝑢′ ) → 𝑁 (𝑢,𝑢

′ ) }𝑢⩽𝑣, so
3.4.10 yields an induced morphism 𝜒𝑢

′𝑣′ = lim𝑢∈𝑈 𝜈 (𝑢,𝑢
′ ) (𝑢,𝑣′ ) : 𝑁𝑣′ → 𝑁𝑢

′ , which
is the unique morphism that makes the diagram

(★)
𝑋𝑣
′

𝜑𝑢,𝑣
′

��

𝜒𝑢
′𝑣′

// 𝑋𝑢
′

𝜑𝑢,𝑢
′

��

𝑁 (𝑢,𝑣
′ ) 𝜈 (𝑢,𝑢

′ ) (𝑢,𝑣′ )
// 𝑁 (𝑢,𝑢

′ )

commutative for every 𝑢 ∈ 𝑈. From the uniqueness of this morphism, it follows
that {𝜒𝑢′𝑣′ : 𝑋𝑣′ → 𝑋𝑢

′ }𝑢′⩽𝑣′ is a𝑈′-inverse system. Set 𝑋 = lim𝑢′∈𝑈′ 𝑋𝑢
′ and write

{𝜒𝑢′ : 𝑋 → 𝑋𝑢
′ }𝑢′∈𝑈′ for the canonical morphisms.
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138 3 Categorical Constructions

Notice that 𝑋 is the iterated limit on the left-hand side of the desired isomorphism.
Set 𝑁 = lim(𝑢,𝑢′ ) ∈𝑈×𝑈′ 𝑁 (𝑢,𝑢

′ ) and write {𝜈 (𝑢,𝑢′ ) : 𝑁 → 𝑁 (𝑢,𝑢
′ ) } (𝑢,𝑢′ ) ∈𝑈×𝑈′ for the

canonical morphisms. Next we show that 𝑁 is isomorphic to 𝑋 by constructing a
pair of mutually inverse morphisms 𝛼 : 𝑋 → 𝑁 and 𝛽 : 𝑁 → 𝑋 .

For every (𝑢, 𝑢′) ∈ 𝑈 × 𝑈′ set 𝛼 (𝑢,𝑢′ ) = 𝜑𝑢,𝑢′ 𝜒𝑢′ : 𝑋 → 𝑁 (𝑢,𝑢
′ ) . For (𝑢, 𝑢′) ⩽

(𝑣, 𝑣′) in𝑈 ×𝑈′ the definitions and commutativity of (★) yield:

𝜈 (𝑢,𝑢
′ ) (𝑣,𝑣′ )𝛼 (𝑣,𝑣

′ ) = 𝜈 (𝑢,𝑢
′ ) (𝑢,𝑣′ )𝜈 (𝑢,𝑣

′ ) (𝑣,𝑣′ )𝜑𝑣,𝑣
′
𝜒𝑣
′

= 𝜈 (𝑢,𝑢
′ ) (𝑢,𝑣′ )𝜑𝑢,𝑣

′
𝜒𝑣
′

= 𝜑𝑢,𝑢
′
𝜒𝑢
′𝑣′ 𝜒𝑣

′

= 𝜑𝑢,𝑢
′
𝜒𝑢
′

= 𝛼 (𝑢,𝑢
′ ) .

Thus 3.4.5 yields a unique morphism 𝛼 : 𝑋 → 𝑁 with 𝜈 (𝑢,𝑢′ )𝛼 = 𝛼 (𝑢,𝑢
′ ) = 𝜑𝑢,𝑢

′
𝜒𝑢
′

for every (𝑢, 𝑢′) ∈ 𝑈 ×𝑈′.
Let 𝑢′ ∈ 𝑈′. For all 𝑢 ⩽ 𝑣 in 𝑈 one has 𝜈 (𝑢,𝑢′ ) (𝑣,𝑢′ )𝜈 (𝑣,𝑢′ ) = 𝜈 (𝑢,𝑢′ ) , so by 3.4.5

there exists a unique morphism 𝛽𝑢
′ : 𝑁 → 𝑋𝑢

′ with 𝜑𝑢,𝑢
′
𝛽𝑢
′
= 𝜈 (𝑢,𝑢

′ ) for every
𝑢 ∈ 𝑈. Let 𝑢′ ⩽ 𝑣′ in𝑈′ be given; it follows from (★) and the definitions that

𝜑𝑢,𝑢
′
𝜒𝑢
′𝑣′ 𝛽𝑣

′
= 𝜈 (𝑢,𝑢

′ ) (𝑢,𝑣′ )𝜑𝑢,𝑣
′
𝛽𝑣
′
= 𝜈 (𝑢,𝑢

′ ) (𝑢,𝑣′ )𝜈 (𝑢,𝑣
′ ) = 𝜈 (𝑢,𝑢

′ ) = 𝜑𝑢,𝑢
′
𝛽𝑢
′

holds for every 𝑢 ∈ 𝑈. Thus there is an identity 𝜒𝑢′𝑣′ 𝛽𝑣′ = 𝛽𝑢
′ of maps from 𝑁 to

𝑋𝑢
′ , as 𝑋𝑢′ is a limit with canonical morphisms 𝜑𝑢,𝑢′ . Another application of 3.4.5

yields a unique morphism 𝛽 : 𝑁 → 𝑋 with 𝜒𝑢′ 𝛽 = 𝛽𝑢
′ for every 𝑢′ ∈ 𝑈′.

To verify 𝛽𝛼 = 1𝑋, it is enough to prove 𝜒𝑢′ 𝛽𝛼 = 𝜒𝑢
′ for every 𝑢′ ∈ 𝑈′, and to

that end it suffices to argue that 𝜑𝑢,𝑢′ 𝜒𝑢′ 𝛽𝛼 = 𝜑𝑢,𝑢
′
𝜒𝑢
′ for every 𝑢 ∈ 𝑈. And indeed,

𝜑𝑢,𝑢
′
𝜒𝑢
′
𝛽𝛼 = 𝜑𝑢,𝑢

′
𝛽𝑢
′
𝛼 = 𝜈 (𝑢,𝑢

′ )𝛼 = 𝛼 (𝑢,𝑢
′ ) = 𝜑𝑢,𝑢

′
𝜒𝑢
′
.

To verify 𝛼𝛽 = 1𝑁 , it suffices to prove 𝜈 (𝑢,𝑢′ )𝛼𝛽 = 𝜈 (𝑢,𝑢
′ ) for every (𝑢, 𝑢′) ∈ 𝑈×𝑈′.

This hold as 𝜈 (𝑢,𝑢′ )𝛼𝛽 = 𝜑𝑢,𝑢
′
𝜒𝑢
′
𝛽 = 𝜑𝑢,𝑢

′
𝛽𝑢
′
= 𝜈 (𝑢,𝑢

′ ) . □

3.4.14 Corollary. Let 𝑈 and 𝑈′ be sets and {𝑀 (𝑢,𝑢′ ) } (𝑢,𝑢′ ) ∈𝑈×𝑈′ a family of 𝑅-
complexes. There are isomorphisms,∏

𝑢′∈𝑈′

( ∏
𝑢∈𝑈

𝑀 (𝑢,𝑢
′ )
)
�

∏
(𝑢,𝑢′ ) ∈𝑈×𝑈′

𝑀 (𝑢,𝑢
′ ) �

∏
𝑢∈𝑈

( ∏
𝑢′∈𝑈′

𝑀 (𝑢,𝑢
′ )
)
.

Proof. The isomorphisms follow immediately from 3.4.8 and 3.4.13. □

3.4.15 Proposition. Let (𝑈, ⩽) be a preordered filtered set and𝑉 a cofinal subset of
𝑈. For every𝑈-inverse system {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 in C(𝑅) there is an isomorphism
lim𝑣∈𝑉 𝑁𝑣 � lim𝑢∈𝑈 𝑁𝑢.

Proof. For 𝑢 ∈ 𝑈 denote by 𝜈𝑢 the canonical morphism lim𝑢∈𝑈 𝑁𝑢 → 𝑁𝑢, and
for 𝑣 ∈ 𝑉 denote by �̃�𝑣 the canonical morphism lim𝑣∈𝑉 𝑁𝑣 → 𝑁𝑣. For 𝑣 ⩽ 𝑤 in
𝑉 one has 𝜈𝑣 = 𝜈𝑣𝑤𝜈𝑤, so by the universal property of limits there is a morphism
𝜈 : lim𝑢∈𝑈 𝑁𝑢 → lim𝑣∈𝑉 𝑁𝑣 with �̃�𝑣𝜈 = 𝜈𝑣 for all 𝑣 ∈ 𝑉 . To see that 𝜈 is injective,
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3.4 Limits 139

let 𝑛 ∈ Ker 𝜈 and 𝑢 ∈ 𝑈; we verify that 𝜈𝑢 (𝑛) = 0 holds. As 𝑉 is cofinal in 𝑈 there
exits a 𝑤 in𝑉 with 𝑢 ⩽ 𝑤, and now one has 𝜈𝑢 (𝑛) = 𝜈𝑢𝑤𝜈𝑤(𝑛) = 𝜈𝑢𝑤 �̃�𝑤𝜈(𝑛) = 0. To
see that 𝜈 is surjective, let 𝑥 = (𝑥𝑣)𝑣∈𝑉 be an element in lim𝑣∈𝑉 𝑁𝑣. For every 𝑢 ∈ 𝑈
and elements 𝑣 and 𝑤 in 𝑉 with 𝑢 ⩽ 𝑣 ⩽ 𝑤 one has

𝜈𝑢𝑣 (𝑥𝑣) − 𝜈𝑢𝑤(𝑥𝑤) = 𝜈𝑢𝑣 (𝑥𝑣) − 𝜈𝑢𝑣𝜈𝑣𝑤(𝑥𝑤) = 𝜈𝑢𝑣 (𝑥𝑣 − 𝜈𝑣𝑤(𝑥𝑤)) = 0 .

As 𝑉 is filtered it follows that for every 𝑢 ∈ 𝑈 one has 𝜈𝑢𝑣 (𝑥𝑣) = 𝜈𝑢𝑣
′ (𝑥𝑣′ ) for all

elements 𝑣 and 𝑣′ in𝑉 with 𝑢 ⩽ 𝑣 and 𝑢 ⩽ 𝑣′; indeed, 𝜈𝑢𝑣 (𝑥𝑣) = 𝜈𝑢𝑤(𝑥𝑤) = 𝜈𝑢𝑣′ (𝑥𝑣′ )
holds for every 𝑤 ∈ 𝑉 with 𝑣 ⩽ 𝑤 and 𝑣′ ⩽ 𝑤. Now consider the element 𝑛 = (𝑛𝑢)𝑢∈𝑈
in

∏
𝑢∈𝑈 𝑁

𝑢 given by 𝑛𝑢 = 𝜈𝑢𝑣 (𝑥𝑣) for any choice of 𝑣 ∈ 𝑉 with 𝑢 ⩽ 𝑣. For
(𝑢, 𝑣) ∈ ∇(𝑈) choose 𝑤 in 𝑉 with 𝑣 ⩽ 𝑤. One now has

𝑛𝑢 − 𝜈𝑢𝑣 (𝑛𝑣) = 𝜈𝑢𝑤(𝑥𝑤) − 𝜈𝑢𝑣𝜈𝑣𝑤(𝑥𝑤) = 𝜈𝑢𝑤(𝑥𝑤) − 𝜈𝑢𝑤(𝑥𝑤) = 0 ,

so 𝑛 belongs to lim𝑢∈𝑈 𝑁𝑢. For 𝑣 ∈ 𝑉 one has �̃�𝑣𝜈(𝑛) = 𝜈𝑣 (𝑛) = 𝑛𝑣 = 𝜈𝑣𝑣 (𝑥𝑣) = 𝑥𝑣,
so 𝜈(𝑛) = 𝑥 holds as desired. □

Functors that Preserve Limits

3.4.16. Let F: C(𝑅) → C(𝑆) be a functor and {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 a 𝑈-inverse
system in C(𝑅) with limit as in 3.4.4. The maps {F(𝜈𝑢𝑣) : F(𝑁𝑣) → F(𝑁𝑢)}𝑢⩽𝑣 form
a 𝑈-inverse system in C(𝑆); write 𝜆𝑢 : lim𝑢∈𝑈 F(𝑁𝑢) → F(𝑁𝑢) for the canonical
morphism, see (3.4.3.1). As F(𝜈𝑢) = F(𝜈𝑢𝑣) F(𝜈𝑣) holds for all 𝑢 ⩽ 𝑣 in 𝑈, the
universal property of limits 3.4.5 yields a unique morphism

(3.4.16.1) F
(

lim
𝑢∈𝑈

𝑁𝑢
)
−→ lim

𝑢∈𝑈
F(𝑁𝑢) given by 𝑥 ↦−→ (F(𝜈𝑢) (𝑥))𝑢∈𝑈

for 𝑥 ∈ F(lim𝑢∈𝑈 𝑁𝑢), that makes the next diagram commutative for all 𝑢 ⩽ 𝑣,

F(𝑁𝑣)

F(𝜈𝑢𝑣 )

��

F
(

lim
𝑢∈𝑈

𝑁𝑢
)

F(𝜈𝑢 ) ..

F(𝜈𝑣 ) 00

// lim
𝑢∈𝑈

F(𝑁𝑢)

𝜆𝑣
88

𝜆𝑢
&&

F(𝑁𝑢) .

3.4.17 Definition. A functor F: C(𝑅) → C(𝑆) preserves limits if the morphism in
(3.4.16.1) is an isomorphism for every𝑈-inverse system {𝜈𝑢𝑣: 𝑁𝑣→ 𝑁𝑢}𝑢⩽𝑣 inC(𝑅).

Remark. A functor that preserves limits is also called ‘continuous’.

Even if a functor does not preserve (all) limits in the sense of 3.4.17, it may still
preserve certain types of limits, meaning that the morphism in (3.4.16.1) is an
isomorphism for every 𝑈-inverse system {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 provided that 𝑈 is of
a certain type. For example, every left exact functor preserves pullbacks, that is,
limits formed over the preordered set in 3.4.30.

While 3.4.17 is a condition on objects, it carries over to morphisms.
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3.4.18. Let F: C(𝑅) → C(𝑆) be a functor and {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈𝑈 a morphism of
𝑈-inverse systems in C(𝑅). It is easy to see that there is a commutative diagram,

F
(

lim
𝑢∈𝑈

𝑁𝑢
)

��

F(lim𝑢∈𝑈 𝛽𝑢 )
// F

(
lim
𝑢∈𝑈

𝑀𝑢
)

��

lim
𝑢∈𝑈

F(𝑁𝑢)
lim𝑢∈𝑈 F(𝛽𝑢 )

// lim
𝑢∈𝑈

F(𝑀𝑢) ,

where the vertical maps are the canonical morphisms (3.4.16.1). Thus, if F preserves
limits, then the morphisms F(lim𝑢∈𝑈 𝛽𝑢) and lim𝑢∈𝑈 F(𝛽𝑢) are isomorphic.

3.4.19. Let 𝜏 : E→ F be a natural transformation of functors C(𝑅) → C(𝑆) and
{𝑁𝑢}𝑢∈𝑈 a family of 𝑅-complexes. It is straightforward to verify that there is a
commutative diagram in C(𝑆),

E
(

lim
𝑢∈𝑈

𝑁𝑢
)

��

𝜏 (lim𝑢∈𝑈 𝑁𝑢 )
// F

(
lim
𝑢∈𝑈

𝑁𝑢
)

��

lim
𝑢∈𝑈

E(𝑁𝑢) lim𝑢∈𝑈 𝜏𝑁
𝑢

// lim
𝑢∈𝑈

F(𝑁𝑢) ,

where the vertical maps are the canonical morphisms; see (3.4.16.1).

3.4.20 Lemma. Let F: C(𝑅) → C(𝑆) be a functor. If F is left exact and preserves
products, then it preserves limits.

Proof. Let {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 be a 𝑈-inverse system in C(𝑅). Consider the fol-
lowing commutative diagram in C(𝑆) where the middle and right-hand vertical maps
are given by (3.1.20.1) and the left-hand vertical map is given by (3.4.16.1),

0 // F
(

lim
𝑢∈𝑈

𝑁𝑢
)

//

��

F
( ∏
𝑢∈𝑈

𝑁𝑢
) F(𝛥𝜈 )

//

��

F
( ∏
(𝑢,𝑣) ∈∇(𝑈)

𝑁 (𝑢,𝑣)
)

��

0 // lim
𝑢∈𝑈

F(𝑁𝑢) //
∏
𝑢∈𝑈

F(𝑁𝑢) 𝛥F(𝜈)
//

∏
(𝑢,𝑣) ∈∇(𝑈)

F(𝑁 (𝑢,𝑣) ) .

The rows in this diagram are exact by 3.4.3 and left exactness of F. The middle and
right-hand vertical maps are isomorphisms by assumption, so it follows from the
Five Lemma 2.1.41 that the left-hand vertical map is an isomorphism. □

The next two results show that the shift and kernel functors preserves limits.

3.4.21 Proposition. Let 𝑠 be an integer and {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 a𝑈-inverse system
in C(𝑅). The canonical morphism in C(𝑅),

Σ𝑠 lim
𝑢∈𝑈

𝑁𝑢 −→ lim
𝑢∈𝑈

Σ𝑠𝑁𝑢 ,
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given by 𝑥 ↦→ ((Σ𝑠𝜈𝑢) (𝑥))𝑢∈𝑈 , is an isomorphism.

Proof. The assertion is immediate from 3.4.20 and 3.1.21. □

3.4.22 Proposition. For every 𝑈-inverse system {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 in C(𝑅), the
canonical morphism in C(𝑅),

Z
(

lim
𝑢∈𝑈

𝑁𝑢
)
−→ lim

𝑢∈𝑈
Z(𝑁𝑢) ,

given by 𝑥 ↦→ (Z(𝜈𝑢) (𝑥))𝑢∈𝑈 , is an isomorphism.

Proof. The assertion is immediate from 3.4.20, 2.2.16, and 3.1.22(a). □

3.4.23 Proposition. Let 𝑀 be an 𝑅-complex and {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 a 𝑈-inverse
system in C(𝑅). The canonical morphism in C(𝕜),

Hom𝑅

(
𝑀, lim

𝑢∈𝑈
𝑁𝑢

)
−→ lim

𝑢∈𝑈
Hom𝑅 (𝑀, 𝑁𝑢) ,

given by 𝜗 ↦→ (Hom𝑅 (𝑀, 𝜈𝑢) (𝜗))𝑢∈𝑈 = (𝜈𝑢𝜗)𝑢∈𝑈 , is an isomorphism.

Proof. The assertion is immediate from 3.4.20, 2.3.10, and 3.1.24. □

3.4.24. Let G: C(𝑅)op → C(𝑆) be a functor and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 a 𝑈-direct
system in C(𝑅) with colimit as in 3.2.4. The maps {G(𝜇𝑣𝑢) : G(𝑀𝑣) → G(𝑀𝑢)}𝑢⩽𝑣
form a𝑈-inverse system inC(𝑆); write 𝜆𝑢 : lim𝑢∈𝑈 G(𝑀𝑢) → G(𝑀𝑢) for the canon-
ical morphisms, see (3.4.3.1). As G(𝜇𝑢) = G(𝜇𝑣𝑢) G(𝜇𝑣) holds for all 𝑢 ⩽ 𝑣 in 𝑈,
the universal property of limits 3.4.5 yields a unique morphism

(3.4.24.1) G
(
colim
𝑢∈𝑈

𝑀𝑢
)
−→ lim

𝑢∈𝑈
G(𝑀𝑢) given by 𝑥 ↦−→ (G(𝜇𝑢) (𝑥))𝑢∈𝑈

for 𝑥 ∈ G(colim𝑢∈𝑈 𝑀𝑢), that makes the next diagram commutative for all 𝑢 ⩽ 𝑣,

G(𝑀𝑣)

G(𝜇𝑣𝑢 )

��

G
(
colim
𝑢∈𝑈

𝑀𝑢
)

G(𝜇𝑢 ) ..

G(𝜇𝑣 ) 00

// lim
𝑢∈𝑈

G(𝑀𝑢)

𝜆𝑣
88

𝜆𝑢
&&

G(𝑀𝑢) .

3.4.25 Definition. A functor G: C(𝑅)op → C(𝑆) preserves limits if the morphism in
(3.4.24.1) is an isomorphism for every𝑈-direct system {𝜇𝑣𝑢: 𝑀𝑢→ 𝑀𝑣}𝑢⩽𝑣 inC(𝑅).

While 3.4.25 is a condition on objects, it carries over to morphisms.

3.4.26. Let G: C(𝑅)op → C(𝑆) be a functor and {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 a morphism
of𝑈-direct systems in C(𝑅). It is easy to verify that there is a commutative diagram,
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G
(
colim
𝑢∈𝑈

𝑁𝑢
)

��

G(colim𝑢∈𝑈 𝛼𝑢 )
// G

(
colim
𝑢∈𝑈

𝑀𝑢
)

��

lim
𝑢∈𝑈

G(𝑁𝑢) lim𝑢∈𝑈 G(𝛼𝑢 )
// lim
𝑢∈𝑈

G(𝑀𝑢) ,

where the vertical maps are the canonical morphisms (3.4.24.1). Thus, if G preserves
limits, then the morphisms G(colim𝑢∈𝑈 𝛼𝑢) and lim𝑢∈𝑈 G(𝛼𝑢) are isomorphic.

3.4.27. Let 𝜏 : G→ J be a natural transformation of functors C(𝑅)op → C(𝑆) and
{𝑀𝑢}𝑢∈𝑈 a family of 𝑅-complexes. It is straightforward to verify that there is a
commutative diagram in C(𝑆),

G
(
colim
𝑢∈𝑈

𝑀𝑢
)

��

𝜏 (colim𝑢∈𝑈 𝑀𝑢 )
// J

(
colim
𝑢∈𝑈

𝑀𝑢
)

��

lim
𝑢∈𝑈

G(𝑀𝑢) lim𝑢∈𝑈 𝜏𝑀
𝑢

// lim
𝑢∈𝑈

J(𝑀𝑢) ,

where the vertical maps are the canonical morphisms (3.4.24.1).

3.4.28 Lemma. Let G: C(𝑅)op → C(𝑆) be a functor. If G is left exact and preserves
products, then it preserves limits.

Proof. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a 𝑈-direct system in C(𝑅). Consider the fol-
lowing commutative diagram in C(𝑆) where the middle and right-hand vertical maps
are given by (3.1.26.1) and the left-hand vertical map is given by (3.4.24.1),

0 // G
(
colim
𝑢∈𝑈

𝑀𝑢
)

//

��

G
( ∐
𝑢∈𝑈

𝑀𝑢
) G(𝛥𝜇 )

//

��

G
( ∐
(𝑢,𝑣) ∈∇(𝑈)

𝑀 (𝑢,𝑣)
)

��

0 // lim
𝑢∈𝑈

G(𝑀𝑢) //
∏
𝑢∈𝑈

G(𝑀𝑢) 𝛥G(𝜇)
//

∏
(𝑢,𝑣) ∈∇(𝑈)

G(𝑀 (𝑢,𝑣) ) .

The rows in this diagram are exact by 3.2.3, 3.4.3, and left exactness of G. The
middle and right-hand vertical maps are isomorphisms by assumption, so it follows
from the Five Lemma 2.1.41 that the left-hand vertical map is an isomorphism. □

Together with 3.4.23 the next result shows that the Hom functor preserves limits.

3.4.29 Proposition. Let 𝑁 be an 𝑅-complex and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 a 𝑈-direct
system in C(𝑅). The canonical morphism in C(𝕜),

Hom𝑅

(
colim
𝑢∈𝑈

𝑀𝑢, 𝑁
)
−→ lim

𝑢∈𝑈
Hom𝑅 (𝑀𝑢, 𝑁) ,

given by 𝜗 ↦→ (Hom𝑅 (𝜇𝑢, 𝑁) (𝜗))𝑢∈𝑈 = (𝜗𝜇𝑢)𝑢∈𝑈 , is an isomorphism.

Proof. The assertion is immediate from 3.4.28, 2.3.10, and 3.1.27. □
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Pullbacks

Simple non-trivial limits arise from three term inverse systems 𝑁 → 𝑌 ← 𝑀 .

3.4.30 Construction. Let 𝑈 = {𝑢, 𝑣, 𝑤} be a set, preordered as follows 𝑣 ⩾ 𝑢 ⩽ 𝑤.
Given a diagram 𝑁

𝛽−−→ 𝑌
𝛼←−− 𝑀 in C(𝑅), set

𝑁𝑣 = 𝑁 , 𝑁𝑢 = 𝑌 , 𝑁𝑤 = 𝑀 ,

𝜈𝑣𝑣 = 1𝑁 , 𝜈𝑢𝑣 = 𝛽 , 𝜈𝑢𝑢 = 1𝑌 , 𝜈𝑢𝑤 = 𝛼 , and 𝜈𝑤𝑤 = 1𝑀 .

This defines a𝑈-inverse system in C(𝑅). It is straightforward to verify that the limit
of this system is the kernel of the morphism (𝛽 −𝛼)t : 𝑁 ⊕ 𝑀 → 𝑌 .

3.4.31 Definition. For a diagram 𝑁
𝛽−−→ 𝑌

𝛼←−− 𝑀 in C(𝑅), the limit of the𝑈-inverse
system in 3.4.30 is called the pullback of (𝛽, 𝛼) and denoted 𝑁 ⊓𝑌 𝑀 . Let

𝛼′ : 𝑁 ⊓𝑌 𝑀 −→ 𝑁 and 𝛽′ : 𝑁 ⊓𝑌 𝑀 −→ 𝑀

be the canonical morphisms (3.4.3.1); they are given by (𝑛, 𝑚) ↦→ 𝑛 and (𝑛, 𝑚) ↦→ 𝑚.

Remark. As for the limit, the notation for the pullback suppresses the morphisms. Other names
for the pullback are ‘fibered product’ and ‘Cartesian square’.

3.4.32. Given morphisms 𝛼 :𝑀 → 𝑌 and 𝛽 :𝑁 → 𝑌 in C(𝑅), the pullbacks of (𝛽, 𝛼)
and (𝛼, 𝛽) are isomorphic via the map that comes from the canonical isomorphism
𝑁 ⊕ 𝑀 � 𝑀 ⊕ 𝑁 .

3.4.33. Adopt the notation from 3.4.31. Given a diagram 𝑁
𝛼′′←−− 𝑋 𝛽′′−−→ 𝑀 in C(𝑅)

with 𝛽𝛼′′ = 𝛼𝛽′′, it follows from 3.4.5 that the assignment

𝑥 ↦−→ (𝛼′′ (𝑛), 𝛽′′ (𝑚))

defines the unique morphism that makes the next diagram commutative,

𝑋

$$

𝛽′′

��

𝛼′′

--

𝑁 ⊓𝑌 𝑀
𝛽′
//

𝛼′

��

𝑀

𝛼

��

𝑁
𝛽
// 𝑌 .

3.4.34 Theorem. Adopt the notation from 3.4.31. There is a commutative diagram
in C(𝑅) with exact rows and columns,
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0
��

0
��

0
��

0
��

0 // 0 //

��

Ker𝛼′
𝛽
//

��

Ker𝛼 //

��

0 //

��

0

0 // Ker 𝛽′ //

�̄�
��

𝑁 ⊓𝑌 𝑀
𝛽′
//

𝛼′
��

𝑀

𝛼
��

// Coker 𝛽′ //

¯̄𝛼
��

0

0 // Ker 𝛽 //

��

𝑁

��

𝛽
// 𝑌

��

// Coker 𝛽
��

// 0

0 // 0
��

// Coker𝛼′

��

¯̄𝛽
// Coker𝛼
��

// 𝑊

��

// 0

0 0 0 0 ,

where �̄� and 𝛽 are the induced morphisms on kernels and ¯̄𝛼 and ¯̄𝛽 are the induced
morphisms on cokernels. In particular, �̄� and 𝛽 are isomorphisms, ¯̄𝛼 and ¯̄𝛽 are
injective, and the following assertions hold.

(a) If 𝛼 is surjective, then 𝛼′ is surjective.
(b) 𝛼 is injective if and only if 𝛼′ is injective.
(c) If 𝛽 is surjective, then 𝛽′ is surjective.
(d) 𝛽 is injective if and only if 𝛽′ is injective.

Proof. With 𝑊 = Coker ¯̄𝛼 the sequence Coker𝛼′ → Coker𝛼 → 𝑊 → 0 is exact
by 2.1.43.

For 𝑚 ∈ 𝑀 one has ¯̄𝛼( [𝑚]Im 𝛽′ ) = [𝛼(𝑚)]Im 𝛽 , so if [𝑚]Im 𝛽′ is in Ker ¯̄𝛼, then
there exists 𝑛 ∈ 𝑁 with 𝛽(𝑛) = 𝛼(𝑚). Thus (𝑛, 𝑚) is an element in 𝑁 ⊓𝑌 𝑀 with
𝛽′ (𝑛, 𝑚) = 𝑚, so 𝑚 ∈ Im 𝛽′. Therefore ¯̄𝛼 is injective. By symmetry, ¯̄𝛽 is injective,
see 3.4.32.

The kernel of 𝛽′ consists of all pairs (𝑛, 0) in 𝑁 ⊕ 𝑀 with 𝛽(𝑛) = 0, so evi-
dently the homomorphism �̄� : Ker 𝛽′ → Ker 𝛽, which is given by (𝑛, 0) ↦→ 𝑛, is an
isomorphism. By symmetry, 𝛽 is an isomorphism as well.

The assertions (a)–(d) are direct consequences of the established diagram. □

Exercises

E 3.4.1 Let {𝜈𝑢𝑣 : 𝑁 𝑣 → 𝑁𝑢 }𝑢⩽𝑣 be a𝑈-inverse system in C(𝑅) . Let { �̃�𝑢 : 𝐿 → 𝑁𝑢 }𝑢∈𝑈 be
a family of morphisms that satisfy the next conditions. (1) One has �̃�𝑣 = 𝜈𝑢𝑣 �̃�𝑣 for all
𝑢 ⩽ 𝑣. (2) For every family {𝛼𝑢 : 𝑀 → 𝑁𝑢 }𝑢∈𝑈 of morphisms with 𝛼𝑢 = 𝜈𝑢𝑣𝛼𝑣 for all
𝑢 ⩽ 𝑣 there exists a unique morphism 𝛼 : 𝑀 → 𝐿 with �̃�𝑢𝛼 = 𝛼𝑢 for all 𝑢 ∈ 𝑈. Show
that there is an isomorphism 𝜑 : 𝐿 → lim𝑢∈𝑈 𝑁𝑢 with 𝜈𝑢𝜑 = �̃�𝑢 for every 𝑢 ∈ 𝑈.
Conclude that the universal property determines the limit uniquely up to isomorphism.

E 3.4.2 (Cf. 3.4.7) Show that the limit in C(𝑅) of an inverse system of morphisms of graded
𝑅-modules is a graded 𝑅-module. Conclude, in particular, that Mgr (𝑅) has limits.

E 3.4.3 (Cf. 3.4.7) Show that the limit in C(𝑅) of a inverse system of homomorphisms of
𝑅-modules is an 𝑅-module. Conclude, in particular, that the category M(𝑅) has limits.

E 3.4.4 Fix a preordered set𝑈. Show that𝑈-inverse systems in C(𝑅) and their morphisms form
an Abelian category and that the limit is a left exact functor from this category to C(𝑅) .

8-Mar-2024 Draft - use at own risk



3.4 Limits 145

E 3.4.5 Let {𝜈𝑢𝑣 : 𝑁 𝑣 → 𝑁𝑢 }𝑢⩽𝑣 be a𝑈-inverse system in C(𝑅) . Show that if𝑈 has a greatest
element, 𝑤, then there is an isomorphism lim𝑢∈𝑈 𝑁𝑢 � 𝑁𝑤.

E 3.4.6 Let (𝑈, ⩽) be a preordered filtered set and {𝑁𝑢 }𝑢∈𝑈 a family of subcomplexes of an
𝑅-complex 𝑁 with 𝑁 𝑣 ⊆ 𝑁𝑢 for 𝑢 ⩽ 𝑣 in 𝑈. Show that there is a 𝑈-inverse system
{𝜈𝑢𝑣 : 𝑁 𝑣 → 𝑁𝑢 }𝑢⩽𝑣 with lim𝑢∈𝑈 𝑁𝑢 �

⋂
𝑢∈𝑈 𝑁

𝑢.
E 3.4.7 Generalize the result in E 3.1.12 by showing that every functor F: C(𝑅) → C(𝑆) that

has a left adjoint preserves limits.
E 3.4.8 (a) Show that𝑈-inverse systems in C(𝑅)op correspond to𝑈-direct systems in C(𝑅) and

that 𝑈-direct systems in C(𝑅)op correspond to 𝑈-inverse systems in C(𝑅) . (b) Show
limits inC(𝑅)op correspond to colimits inC(𝑅) and that colimits inC(𝑅)op correspond
to limits in C(𝑅) .

E 3.4.9 (Cf. 3.4.30) Verify the isomorphism lim𝑢∈𝑈 𝑁𝑢 � Ker(𝛽 −𝛼) in 3.4.30.
E 3.4.10 (a) Consider the diagram in 3.4.34 in the case where 𝔞 and 𝔟 are left ideals in 𝑅 and

𝛼 : 𝔞↣ 𝑅 and 𝛽 : 𝔟↣ 𝑅 are the canonical homomorphisms. Show that𝑊 ≠ 0.
(b) In the following two diagrams, the solid parts are given. Show that they can be
completed to commutative diagrams with exact rows and columns, as depicted.

0

��

0

��

𝐾

��

𝐾

��

0 // 𝐿 // 𝑁 ⊓𝑌 𝑀 //

��

𝑀

��

// 0

0 // 𝐿 // 𝑁

��

// 𝑌

��

// 0

0 0

0

��

0

��

𝐾

��

𝐾

��

0 // 𝑁 ⊓𝑌 𝑀 //

��

𝑀

��

// 𝐷 // 0

0 // 𝑁

��

// 𝑌

��

// 𝐷 // 0

0 0 .
E 3.4.11 Consider a diagram of 𝑅-complexes, not a priori assumed to be commutative,

𝑋

𝛼

��

𝛽
// 𝑀

𝛾

��

𝑁
𝛿
// 𝑌 .

(a) Show that it is a pushout diagram if and only if the next sequence is exact,

𝑋

(
𝛽
𝛼

)
−−−→

𝑀
⊕
𝑁

( 𝛾 −𝛿 )−−−−−−→ 𝑌 −→ 0 .

(b) Show that it is a pullback diagram if and only if the next sequence is exact,

0 −→ 𝑋

(
𝛽
𝛼

)
−−−→

𝑀
⊕
𝑁

( 𝛾 −𝛿 )−−−−−−→ 𝑌 .

(c) Show that if it is a pushout diagram and 𝛼 is injective, then it is a pullback diagram.
(d) Show that if it is a pullback diagram and 𝛿 is surjective, then it is a pushout diagram.

E 3.4.12 (Cf. 3.4.18) Verify that the diagram in 3.4.18 is commutative.
E 3.4.13 (Cf. 3.4.19) Verify that the diagram in 3.4.19 is commutative.
E 3.4.14 Let 𝕜 be a field and L the category of commutative local 𝕜-algebras. (a) Show that 𝕜 is a

zero object in L. (b) For 𝑅 and 𝑆 in L, show that the pullback 𝑅⊓𝕜 𝑆 in the category of
𝕜-modules yields a product in L. (c) Show that the full subcategory of L whose objects
are integral domains does not have a product.
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3.5 Towers and the Mittag-Leffler Condition

Synopsis. Tower; (trivial) Mittag-Leffler Condition.

Inverse systems that are, essentially, sequences of morphisms play a special role for
at least two reasons: they occur frequently and they come with a simple sufficient
condition for exactness.

3.5.1 Construction. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a sequence of morphisms in
C(𝑅). It determines a ℤ-inverse system {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 as follows: set

𝜈𝑢𝑢 = 1𝑁
𝑢

for all 𝑢 in ℤ and 𝜈𝑢𝑣 = 𝜆𝑢+1 · · · 𝜆𝑣 for all 𝑢 < 𝑣 in ℤ .

Given additional sequences {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢−1}𝑢∈ℤ and {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈ℤ of
morphisms with 𝛽𝑢−1𝜆𝑢 = 𝜅𝑢𝛽𝑢 for all 𝑢 ∈ ℤ, it is elementary to see that {𝛽𝑢}𝑢∈ℤ
is a morphism of the inverse systems determined by {𝜆𝑢}𝑢∈ℤ and {𝜅𝑢}𝑢∈ℤ .

For example, the ℤ-inverse system in 3.4.9 arises, as described above, from the
sequence · · ·↠ 𝑁ě−1 ↠ 𝑁ě0 ↠ 𝑁ě1 ↠ · · · (where 𝑁ě−𝑢 is the 𝑢th complex).

3.5.2 Definition. A sequence {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ of morphisms in C(𝑅) with
𝑁𝑢 = 0 for 𝑢 ≪ 0 is called a tower in C(𝑅). The limit, lim𝑢∈ℤ 𝑁𝑢, of the associated
ℤ-inverse system, see 3.5.1, is called the limit of the tower in C(𝑅).

Given towers {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ and {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢−1}𝑢∈ℤ in C(𝑅), a se-
quence of morphisms {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈ℤ that satisfy 𝛽𝑢−1𝜆𝑢 = 𝜅𝑢𝛽𝑢 for all 𝑢 ∈ ℤ
is called a morphism of towers. The morphism lim𝑢∈ℤ 𝛽𝑢 : lim𝑢∈ℤ 𝑁𝑢 → lim𝑢∈ℤ 𝑀𝑢,
see 3.5.1 and 3.4.10, is called the limit of {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈ℤ .

3.5.3 Example. Let 𝑝 ∈ ℕ. The sequence · · · ↠ ℤ/𝑝3ℤ ↠ ℤ/𝑝2ℤ ↠ ℤ/𝑝ℤ is a
tower whose limit is the ℤ-module ℤ̂𝑝 of 𝑝-adic integers. It is, in fact, a ring, see
11.1.18; it is mostly studied in the case where 𝑝 is a prime.

3.5.4. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑛∈ℤ be a tower in C(𝑅) and {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 the
associated ℤ-inverse system. Given an 𝑅-complex 𝑀 and a sequence of morphisms
{𝛼𝑢 : 𝑀 → 𝑁𝑢}𝑢∈ℤ that satisfy𝛼𝑢−1 = 𝜆𝑢𝛼𝑢 for all 𝑢 ∈ ℤ, one has𝛼𝑢 = 𝜈𝑢𝑣𝛼𝑣 for all
𝑢 ⩽ 𝑣. By the universal property of limits, there is a morphism 𝛼 : 𝑀 → lim𝑢∈ℤ 𝑁𝑢

in C(𝑅) with properties as described in 3.4.5.

3.5.5 Proposition. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a tower in C(𝑅). With

𝛥𝜆0 :
∏
𝑢∈ℤ

𝑁𝑢 −→
∏
𝑢∈ℤ

𝑁𝑢 given by (𝑛𝑢)𝑢∈ℤ ↦−→ (𝑛𝑢 − 𝜆𝑢+1 (𝑛𝑢+1))𝑢∈ℤ

one has lim𝑢∈ℤ 𝑁𝑢 = Ker 𝛥𝜆0 .

Proof. As in 3.5.1 let {𝜈𝑢𝑣 : 𝑁𝑣 → 𝑁𝑢}𝑢⩽𝑣 be the inverse system associated with
the tower and consider the morphism 𝛥𝜈; see 3.4.3. Since 𝜈𝑢𝑣 = 𝜆𝑢+1 · · · 𝜆𝑣 holds,
an element (𝑛𝑢)𝑢∈ℤ ∈

∏
𝑢∈ℤ 𝑁

𝑢 satisfies 𝑛𝑢 = 𝜆𝑢+1 (𝑛𝑢+1) for all 𝑢 in ℤ if and only
if 𝑛𝑢 = 𝜈𝑢𝑣 (𝑛𝑣) holds for all 𝑢 ⩽ 𝑣 in ℤ, and hence Ker 𝛥𝜆0 = Ker 𝛥𝜈 . □
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3.5 Towers and the Mittag-Leffler Condition 147

3.5.6 Example. Let 𝑁0 ⊇ 𝑁1 ⊇ 𝑁2 ⊇ · · · be a descending chain of 𝑅-complexes.
The embeddings 𝜆𝑢 : 𝑁𝑢 ↣ 𝑁𝑢−1 define a tower. It is evident that the morphism
from ⋂

𝑢∈ℤ 𝑁
𝑢 to Ker 𝛥𝜆0 that maps an element 𝑛 to the sequence with 𝑛𝑢 = 𝑛 for all

𝑢 ⩾ 0 is an isomorphism. Thus lim𝑢∈ℤ 𝑁𝑢 is the intersection ⋂
𝑢∈ℤ 𝑁

𝑢.

3.5.7 Example. Let {𝑀 𝑖}𝑖∈ℕ be a sequence of 𝑅-complexes. Set 𝑁𝑢 = ⊕𝑢
𝑖=1 𝑀

𝑖 for
𝑢 > 0 and 𝑁𝑢 = 0 for 𝑢 ⩽ 0; let 𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1 be the canonical projections. The
limit of the tower {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ is 𝑀 =

∏
𝑖∈ℕ 𝑀

𝑖 . Indeed, the morphism
𝛼 : 𝑀 → lim𝑢∈ℤ 𝑁𝑢 determined by the canonical projections 𝑀 ↠ 𝑁𝑢 maps a
sequence (𝑥𝑖)𝑖⩾1 to the family of truncated sequences ((𝑥1, . . . , 𝑥𝑢))𝑢⩾1; see 3.4.5. It
is injective, and from 3.5.5 evidently also surjective.

3.5.8 Proposition. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a tower in C(𝑅).
(a) If 𝜆𝑢 = 0 holds for infinitely many 𝑢 > 0, then one has lim𝑢∈ℤ 𝑁𝑢 = 0 .
(b) If there exists an integer 𝑤 such that 𝜆𝑢 is bĳective for all 𝑢 > 𝑤, then the

canonical map lim𝑢∈ℤ 𝑁𝑢 → 𝑁𝑤 is an isomorphism.

Proof. (a): Let 𝑛 = (𝑛𝑢)𝑢∈ℤ be an element in lim𝑢∈ℤ 𝑁𝑢; for 𝑤 > 𝑢 one then has
𝑛𝑢 = 𝜆𝑢+1 · · · 𝜆𝑤(𝑛𝑤). For every 𝑢 ∈ ℤ there is by assumption an integer 𝑤 > 𝑢 with
𝜆𝑤 = 0, whence one has 𝑛𝑢 = 0 and, consequently, 𝑛 = 0.

(b): Define a sequence of morphisms {𝛼𝑢 : 𝑁𝑤 → 𝑁𝑢}𝑢∈ℤ in C(𝑅) as follows: set
𝛼𝑤 = 1𝑁𝑤 , set 𝛼𝑢 = 𝜆𝑢+1 · · · 𝜆𝑤 for 𝑢 < 𝑤, and set 𝛼𝑢 = (𝜆𝑤+1 · · · 𝜆𝑢)−1 for 𝑢 > 𝑤.
By construction 𝛼𝑢−1 = 𝜆𝑢𝛼𝑢 hoolds for all 𝑢 ∈ ℤ, so by 3.5.4 there is a morphism
𝛼 : 𝑁𝑤 → lim𝑢∈ℤ 𝑁𝑢 given by 𝛼(𝑛) = (𝛼𝑢 (𝑛))𝑢∈ℤ . Evidently there are equalities
𝜈𝑤𝛼 = 𝛼𝑤 = 1𝑁𝑤 . For 𝑛 = (𝑛𝑢)𝑢∈ℤ in lim𝑢∈ℤ 𝑁𝑢 one has 𝛼𝜈𝑤(𝑛) = 𝛼(𝑛𝑤) =
(𝛼𝑢 (𝑛𝑤))𝑢∈ℤ = (𝑛𝑢)𝑢∈ℤ = 𝑛, where the penultimate equality holds by definition of
the maps 𝛼𝑢 and the complex lim𝑢∈ℤ 𝑁𝑢. □

The Mittag-Leffler Condition

The next definition allows for formulations of criteria on towers that ensure that
limits are exact and commute with homology.

3.5.9 Definition. A tower {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ of 𝑅-complexes is said to satisfy
the Mittag-Leffler Condition if for every 𝑢 ∈ ℤ the descending chain

Im𝜆𝑢+1 ⊇ Im(𝜆𝑢+1𝜆𝑢+2) ⊇ Im(𝜆𝑢+1𝜆𝑢+2𝜆𝑢+3) ⊇ · · ·

of subcomplexes of 𝑁𝑢 becomes stationary, that is, there exists 𝑣 > 𝑢 such that for
every 𝑤 ⩾ 𝑣 one has Im(𝜆𝑢+1 · · · 𝜆𝑣 · · · 𝜆𝑤) = Im(𝜆𝑢+1 · · · 𝜆𝑣). This subcomplex of
𝑁𝑢 is called the stable image of the tower at stage 𝑢.

If for every 𝑢 ∈ ℤ there exists 𝑣 > 𝑢with𝜆𝑢+1 · · · 𝜆𝑣 = 0, then the condition clearly
holds; in this case the tower is said to satisfy the trivial Mittag-Leffler Condition.

Remark. A trivial tower is one in which all the morphisms are trivial, that is, zero. A trivial tower
trivially satisfies the trivial Mittag-Leffler Condition. Another word for a trivial tower is ‘trump’.
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3.5.10 Example. A tower {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ in which every morphism 𝜆𝑢 is
surjective evidently satisfies the Mittag-Leffler Condition.

The next two results give some basic properties of the Mittag-Leffler Condition.

3.5.11 Proposition. Consider towers in C(𝑅),

{𝑋𝑢 → 𝑋𝑢−1}𝑢∈ℤ , {𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ , and {𝑀𝑢 → 𝑀𝑢−1}𝑢∈ℤ .

Let {𝛼𝑢 : 𝑋𝑢 → 𝑁𝑢}𝑢∈ℤ and {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈ℤ be morphisms of towers such that

0 −→ 𝑋𝑢
𝛼𝑢−−−→ 𝑁𝑢

𝛽𝑢−−−→ 𝑀𝑢 −→ 0

is an exact sequence for every 𝑢 ∈ 𝑈.
(a) If the tower {𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ satisfies the Mittag-Leffler Condition, then so

does {𝑀𝑢 → 𝑀𝑢−1}𝑢∈ℤ .
(b) If the towers {𝑋𝑢 → 𝑋𝑢−1}𝑢∈ℤ and {𝑀𝑢 → 𝑀𝑢−1}𝑢∈ℤ satisfy the Mittag-

Leffler Condition, then so does {𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ .

Proof. Write 𝜉𝑢 : 𝑋𝑢 → 𝑋𝑢−1, 𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1, and 𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢−1 for the mor-
phisms in the given towers.

(a): For every 𝑢 ∈ ℤ and every 𝑤 > 𝑢, surjectivity of 𝛽𝑤 yields

Im(𝜅𝑢+1 · · · 𝜅𝑤) = Im(𝜅𝑢+1 · · · 𝜅𝑤𝛽𝑤)
= Im(𝛽𝑢𝜆𝑢+1 · · · 𝜆𝑤)
= 𝛽𝑢 (Im(𝜆𝑢+1 · · · 𝜆𝑤)) .

The assertion immediately follows from this identity.
(b): Given 𝑢 ∈ ℤ choose 𝑣 > 𝑢 such that Im(𝜉𝑢+1 · · · 𝜉𝑣 · · · 𝜉𝑤) = Im(𝜉𝑢+1 · · · 𝜉𝑣)

holds for 𝑤 ⩾ 𝑣 and choose 𝑞 > 𝑣 such that Im(𝜅𝑣+1 · · · 𝜅𝑞 · · · 𝜅𝑤) = Im(𝜅𝑣+1 · · · 𝜅𝑞)
holds for 𝑤 ⩾ 𝑞. For every 𝑤 ⩾ 𝑞 one now has

𝛽𝑣 (Im(𝜆𝑣+1 · · · 𝜆𝑞 · · · 𝜆𝑤)) = Im(𝜅𝑣+1 · · · 𝜅𝑞 · · · 𝜅𝑤𝛽𝑤) = Im(𝜅𝑣+1 · · · 𝜅𝑞) ,

where the last equality holds as 𝛽𝑤 is surjective and by the choice of 𝑞. In particular,
one has 𝛽𝑣 (Im(𝜆𝑣+1 · · · 𝜆𝑞)) = 𝛽𝑣 (Im(𝜆𝑣+1 · · · 𝜆𝑞 · · · 𝜆𝑤)) for 𝑤 ⩾ 𝑞, and hence also
Im(𝜆𝑣+1 · · · 𝜆𝑞) ⊆ Im(𝜆𝑣+1 · · · 𝜆𝑞 · · · 𝜆𝑤) + Im𝛼𝑣. Applying 𝜆𝑢+1 · · · 𝜆𝑣 to this yields

(♭) Im(𝜆𝑢+1 · · · 𝜆𝑞) ⊆ Im(𝜆𝑢+1 · · · 𝜆𝑞 · · · 𝜆𝑤) + Im(𝜆𝑢+1 · · · 𝜆𝑣𝛼𝑣) .

The choice of 𝑣 explains the second equality below,

Im(𝜆𝑢+1 · · · 𝜆𝑣𝛼𝑣) = 𝛼𝑢 (Im(𝜉𝑢+1 · · · 𝜉𝑣))
= 𝛼𝑢 (Im(𝜉𝑢+1 · · · 𝜉𝑣 · · · 𝜉𝑤))
= Im(𝜆𝑢+1 · · · 𝜆𝑣 · · · 𝜆𝑤𝛼𝑤)
⊆ Im(𝜆𝑢+1 · · · 𝜆𝑣 · · · 𝜆𝑤) .

Thus (♭) shows that Im(𝜆𝑢+1 · · · 𝜆𝑞) ⊆ Im(𝜆𝑢+1 · · · 𝜆𝑞 · · · 𝜆𝑤) holds for all𝑤 ⩾ 𝑞. □
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3.5.12 Proposition. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a tower that satisfies the Mittag-
Leffler Condition. There is a tower {�̃�𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ with every �̃�𝑢 surjective, a
tower {�̄�𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ that satisfies the trivial Mittag-Leffler Condition, and
morphisms of towers {𝜄𝑢 : 𝑁𝑢 ↣ 𝑁𝑢}𝑢∈ℤ and {𝜋𝑢 : 𝑁𝑢 ↠ 𝑁𝑢}𝑢∈ℤ such that

0 −→ 𝑁𝑢
𝜄𝑢−−−→ 𝑁𝑢

𝜋𝑢−−−→ 𝑁𝑢 −→ 0

is an exact sequence for every 𝑢 ∈ ℤ.

Proof. Let 𝑁𝑢 be the stable image of the given tower at stage 𝑢; see 3.5.9. Note that
𝜆𝑢 (𝑁𝑢) = 𝑁𝑢−1 whence 𝜆𝑢 restricts to a surjective morphism 𝑁𝑢 → 𝑁𝑢−1; denote
it by �̃�𝑢. Let 𝜄𝑢 : 𝑁𝑢 ↣ 𝑁𝑢 be the embedding. Set 𝑁𝑢 = 𝑁𝑢/𝑁𝑢, let 𝜋𝑢 : 𝑁𝑢 ↠ 𝑁𝑢

be the quotient map and �̄�𝑢 : 𝑁𝑢 → 𝑁𝑢−1 the map induced by 𝜆𝑢. For every 𝑢 ∈ ℤ

one has Im(𝜆𝑢+1 · · · 𝜆𝑣) = 𝑁𝑢 for some 𝑣 > 𝑢, and hence �̄�𝑢+1 · · · �̄�𝑣 = 0. □

3.5.13 Lemma. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a tower in C(𝑅) that satisfies the
trivial Mittag-Leffler Condition. The map 𝛥𝜆0 from 3.5.5 is bĳective, in particular,
one has lim𝑢∈ℤ 𝑁𝑢 = 0.

Proof. Let 𝑛 = (𝑛𝑢)𝑢∈ℤ be an element in
∏
𝑢∈ℤ 𝑁

𝑢. For every 𝑢 ∈ ℤ the sum

𝛼𝑢 (𝑛) = 𝑛𝑢 + 𝜆𝑢+1 (𝑛𝑢+1) + 𝜆𝑢+1𝜆𝑢+2 (𝑛𝑢+2) + · · ·

is finite as the tower satisfies the trivial Mittag-Leffler Condition, and thus 𝛼𝑢 (𝑛) is
a well-defined element in 𝑁𝑢. The map 𝛼 :

∏
𝑢∈ℤ 𝑁

𝑢 → ∏
𝑢∈ℤ 𝑁

𝑢 that sends 𝑛 to
𝛼(𝑛) = (𝛼𝑢 (𝑛))𝑢∈ℤ is an inverse of 𝛥𝜆0 . Indeed, the 𝑢th component of 𝛥𝜆0𝛼(𝑛) is

𝛼𝑢 (𝑛) − 𝜆𝑢+1 (𝛼𝑢+1 (𝑛)) = 𝑛𝑢 + 𝜆𝑢+1 (𝑛𝑢+1) + 𝜆𝑢+1𝜆𝑢+2 (𝑛𝑢+2) + · · ·
− 𝜆𝑢+1 (𝑛𝑢+1 + 𝜆𝑢+2 (𝑛𝑢+2) + 𝜆𝑢+2𝜆𝑢+3 (𝑛𝑢+3) + · · · ) ,

which is 𝑛𝑢, and the 𝑢th component of 𝛼 𝛥𝜆0 (𝑛) is

(𝑛𝑢−𝜆𝑢+1 (𝑛𝑢+1)) + 𝜆𝑢+1 (𝑛𝑢+1−𝜆𝑢+2 (𝑛𝑢+2)) + 𝜆𝑢+1𝜆𝑢+2 (𝑛𝑢+2−𝜆𝑢+3 (𝑛𝑢+3)) + · · · ,

which is also 𝑛𝑢. In particular, lim𝑢∈ℤ 𝑁𝑢 = 0 holds by 3.5.5. □

3.5.14 Lemma. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a tower in C(𝑅). If every morphism
𝜆𝑢 is surjective, then the map 𝛥𝜆0 from 3.5.5 is surjective.

Proof. Given 𝑛 = (𝑛𝑢)𝑢∈ℤ in
∏
𝑢∈ℤ 𝑁

𝑢 we seek an element 𝑥 = (𝑥𝑢)𝑢∈ℤ with
𝛥𝜆0 (𝑥) = 𝑛, that is, a solution to the equations 𝑥𝑢 − 𝜆𝑢+1 (𝑥𝑢+1) = 𝑛𝑢 for 𝑢 ∈ ℤ.
By the definition of a tower, 𝑛𝑢 = 0 holds for 𝑢 ≪ 0, so set 𝑥𝑢 = 0 for 𝑢 ≪ 0.
Now let 𝑣 ∈ ℤ and assume that 𝑥𝑢 for 𝑢 ⩽ 𝑣 have been constructed such that
𝑥𝑢 − 𝜆𝑢+1 (𝑥𝑢+1) = 𝑛𝑢 holds for all 𝑢 < 𝑣. Surjectivity of 𝜆𝑣+1 yields an element 𝑥𝑣+1
with 𝑥𝑣 − 𝜆𝑣+1 (𝑥𝑣+1) = 𝑛𝑣. This procedure yields the desired element 𝑥. □

3.5.15 Proposition. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a tower in C(𝑅) that satisfies the
Mittag-Leffler Condition. The map 𝛥𝜆0 from 3.5.5 is surjective.
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Proof. By 3.5.12 there exists a tower {�̃�𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ with every �̃�𝑢 surjec-
tive, a tower {�̄�𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ that satisfies the trivial Mittag-Leffler Condition,
and morphisms of towers {𝜄𝑢 : 𝑁𝑢 ↣ 𝑁𝑢}𝑢∈ℤ and {𝜋𝑢 : 𝑁𝑢 ↠ 𝑁𝑢}𝑢∈ℤ such that

0 −→ 𝑁𝑢
𝜄𝑢−−−→ 𝑁𝑢

𝜋𝑢−−−→ 𝑁𝑢 −→ 0

is an exact sequence for every 𝑢 ∈ ℤ. In the commutative diagram below, the vertical
morphisms come from 3.5.5 and the rows are exact by 3.1.18,

0 //
∏
𝑢∈ℤ

𝑁𝑢

𝛥�̃�0
��

∏
𝑢∈ℤ 𝜄

𝑢

//
∏
𝑢∈ℤ

𝑁𝑢

𝛥𝜆0
��

∏
𝑢∈ℤ 𝜋

𝑢

//
∏
𝑢∈ℤ

𝑁𝑢

𝛥�̄�0
��

// 0

0 //
∏
𝑢∈ℤ

𝑁𝑢
∏
𝑢∈ℤ 𝜄

𝑢

//
∏
𝑢∈ℤ

𝑁𝑢
∏
𝑢∈ℤ 𝜋

𝑢

//
∏
𝑢∈ℤ

𝑁𝑢 // 0 .

The morphism 𝛥�̃�0 is surjective by 3.5.14, and 𝛥�̄�0 is surjective (even bĳective) by
3.5.13. It now follows from the Snake Lemma 2.1.45 that 𝛥𝜆0 is surjective. □

3.5.16 Corollary. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a tower in C(𝑅) that satisfies the
Mittag-Leffler Condition. There are inequalities,

sup
(

lim
𝑢∈ℤ

𝑁𝑢
)
⩽ sup

𝑢∈ℤ
{sup 𝑁𝑢} and inf

(
lim
𝑢∈ℤ

𝑁𝑢
)
⩾ inf

𝑢∈ℤ
{inf 𝑁𝑢} − 1 .

In particular, if 𝑁𝑢 is acyclic for every 𝑢 ∈ ℤ, then lim𝑢∈ℤ 𝑁𝑢 is acyclic.

Proof. By 3.5.5 and 3.5.15 there is an exact sequence

(†) 0 −→ lim
𝑢∈ℤ

𝑁𝑢 −→ ∏
𝑢∈ℤ

𝑁𝑢
𝛥𝜆0−−−→ ∏

𝑢∈ℤ
𝑁𝑢 −→ 0 .

As one has

sup
( ∏
𝑢∈𝑈

𝑁𝑢
)
= sup
𝑢∈𝑈
{sup 𝑁𝑢} and inf

( ∏
𝑢∈𝑈

𝑁𝑢
)
= inf
𝑢∈𝑈
{inf 𝑁𝑢}

by 3.1.23, the asserted inequalities hold by 2.5.6. □

3.5.17 Theorem. Consider towers in C(𝑅),

{𝑋𝑢 → 𝑋𝑢−1}𝑢∈ℤ , {𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ , and {𝑀𝑢 → 𝑀𝑢−1}𝑢∈ℤ .

Let {𝛼𝑢 : 𝑋𝑢 → 𝑁𝑢}𝑢∈ℤ and {𝛽𝑢 : 𝑁𝑢 → 𝑀𝑢}𝑢∈ℤ be morphisms of towers such that

0 −→ 𝑋𝑢
𝛼𝑢−−−→ 𝑁𝑢

𝛽𝑢−−−→ 𝑀𝑢 −→ 0

is an exact sequence for every 𝑢 ∈ 𝑈. If the tower {𝑋𝑢 → 𝑋𝑢−1}𝑢∈ℤ satisfies the
Mittag-Leffler Condition, then the following sequence is exact,

0 −→ lim
𝑢∈ℤ

𝑋𝑢
lim𝑢∈ℤ 𝛼𝑢−−−−−−−−→ lim

𝑢∈ℤ
𝑁𝑢

lim𝑢∈ℤ 𝛽𝑢−−−−−−−−→ lim
𝑢∈ℤ

𝑀𝑢 −→ 0 .
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Proof. Write 𝜉𝑢 : 𝑋𝑢 → 𝑋𝑢−1, 𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1, and 𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢−1 for the maps
in the given towers. In the commutative diagram below, the vertical morphisms come
from 3.5.5 and the rows are exact by 3.1.18,

0 //
∏
𝑢∈𝑈

𝑋𝑢

𝛥
𝜉

0
��

∏
𝑢∈𝑈 𝛼

𝑢

//
∏
𝑢∈𝑈

𝑁𝑢

𝛥𝜆0
��

∏
𝑢∈𝑈 𝛽

𝑢

//
∏
𝑢∈𝑈

𝑀𝑢

𝛥𝜅0
��

// 0

0 //
∏
𝑢∈𝑈

𝑋𝑢
∏
𝑢∈𝑈 𝛼

𝑢

//
∏
𝑢∈𝑈

𝑁𝑢
∏
𝑢∈𝑈 𝛽

𝑢

//
∏
𝑢∈𝑈

𝑀𝑢 // 0 .

By 3.5.5 and the Snake Lemma 2.1.45 there is an exact sequence,

0 −→ lim
𝑢∈ℤ

𝑋𝑢
lim 𝛼𝑢−−−−−→ lim

𝑢∈ℤ
𝑁𝑢

lim 𝛽𝑢−−−−−→ lim
𝑢∈ℤ

𝑀𝑢 −→ Coker 𝛥𝜉0 .

As {𝜉𝑢 : 𝑋𝑢 → 𝑋𝑢−1}𝑢∈ℤ satisfies the Mittag-Leffler Condition, Coker 𝛥𝜉0 = 0 holds
by 3.5.15, and the desired conclusion follows. □

3.5.18 Example. Let 𝑚, 𝑛 > 1 be integers and relatively prime. Consider the fol-
lowing commutative diagram of ℤ-modules,

...

𝑚

��

...

𝑚

��

...

𝑚�

��

0 // ℤ

𝑚

��

𝑛
// ℤ

𝑚

��

// ℤ/𝑛ℤ
𝑚�
��

// 0

0 // ℤ

𝑚

��

𝑛
// ℤ

𝑚

��

// ℤ/𝑛ℤ
𝑚�
��

// 0

0 // ℤ
𝑛
// ℤ // ℤ/𝑛ℤ // 0 .

The rows are exact and the vertical maps define towers with limits 0, 0, and ℤ/𝑛ℤ,
respectively; cf. 3.5.5 and 3.5.8(b). Thus the sequence 0 → 0 → 0 → ℤ/𝑛ℤ → 0
of limits is not exact.

The Mittag-Leffler Condition facilitates computation of homology of limits.

3.5.19 Theorem. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a tower in C(𝑅) and consider the
canonical morphism in C(𝑅),

(3.5.19.1) H
(

lim
𝑢∈ℤ

𝑁𝑢
)
−→ lim

𝑢∈ℤ
H(𝑁𝑢) ,

given by ℎ ↦→ (H(𝜈𝑢) (ℎ))𝑢∈ℤ . If the tower {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ satisfies the
Mittag-Leffler Condition, then the following assertions hold.

(a) The morphism (3.5.19.1) is surjective.
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(b) Let 𝑣 ∈ ℤ. If the tower {H𝑣+1 (𝜆𝑢) : H𝑣+1 (𝑁𝑢) → H𝑣+1 (𝑁𝑢−1)}𝑢∈ℤ satisfies
the Mittag-Leffler Condition, then the degree 𝑣 component of (3.5.19.1) is an
isomorphism; that is, one has H𝑣 (lim𝑢∈ℤ 𝑁𝑢) � lim𝑢∈ℤ H𝑣 (𝑁𝑢) .

Proof. (a): As the tower {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ satisfies the Mittag-Leffler Condi-
tion, so does {B(𝜆𝑢) : B(𝑁𝑢) → B(𝑁𝑢−1)}𝑢∈ℤ by 3.5.11 and 2.2.12(a). Thus, in the
commutative diagram below, where the vertical maps are the canonical morphisms,
see (3.4.16.1), the rows are exact by 2.2.12(c) and 3.5.17.

0 // B
(

lim
𝑢∈ℤ

𝑁𝑢
)

//

𝜘B

��

C
(

lim
𝑢∈ℤ

𝑁𝑢
)

//

� 𝜘Z

��

H
(

lim
𝑢∈ℤ

𝑁𝑢
)

//

𝜘H

��

0

0 // lim
𝑢∈ℤ

B(𝑁𝑢) // lim
𝑢∈ℤ

Z(𝑁𝑢) // lim
𝑢∈ℤ

H(𝑁𝑢) // 0

As 𝜘Z is an isomorphism by 3.4.22, the morphism 𝜘H is surjective.
(b): By the Snake Lemma 2.1.45 applied to the diagram above, proving that

the degree 𝑣 component 𝜘H
𝑣 is injective, and hence by part (a) an isomorphism, is

equivalent to showing that 𝜘B
𝑣 is surjective. Consider the towers determined by the

families of morphisms {B𝑣+1 (𝜆𝑢)}𝑢∈ℤ , {Z𝑣+1 (𝜆𝑢)}𝑢∈ℤ , and {H𝑣+1 (𝜆𝑢)}𝑢∈ℤ . The
canonical exact sequences,

0 −→ B𝑣+1 (𝑁𝑢) −→ Z𝑣+1 (𝑁𝑢) −→ H𝑣+1 (𝑁𝑢) −→ 0 ,

yield morphisms of towers. As in the proof of part (a), the tower {B𝑣+1 (𝜆𝑢)}𝑢∈ℤ
satisfies the Mittag-Leffler Condition, and so does {H𝑣+1 (𝜆𝑢)}𝑢∈ℤ by assumption.
Hence 3.5.11 implies that {Z𝑣+1 (𝜆𝑢)}𝑖∈ℤ satisfies the Mittag-Leffler Condition. The
short exact sequences from 2.2.12(a),

0 −→ Z𝑣+1 (𝑁𝑢) −→ 𝑁𝑢𝑣+1 −→ B𝑣 (𝑁𝑢) −→ 0 ,

induce by 3.5.17 the lower exact row in the following commutative diagram,

0 // C𝑣+1
(

lim
𝑢∈ℤ

𝑁𝑢
)

𝜘Z
𝑣+1�

��

//
(

lim
𝑢∈ℤ

𝑁𝑢
)
𝑣+1

// B𝑣
(

lim
𝑢∈ℤ

𝑁𝑢
)

𝜘B
𝑣

��

// 0

0 // lim
𝑢∈ℤ

Z𝑣+1 (𝑁𝑢) // lim
𝑢∈ℤ
(𝑁𝑢𝑣+1) // lim

𝑢∈ℤ
B𝑣 (𝑁𝑢) // 0 .

The upper row is exact by 2.2.12(a). As the middle map in this diagram is an equality,
see 3.4.7, it follows that 𝜘B

𝑣 is surjective, as desired. □

For ease of reference, we record a frequently used corollary to 3.5.19.

3.5.20 Corollary. Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be a tower in C(𝑅). If this tower and
{H(𝜆𝑢) : H(𝑁𝑢) → H(𝑁𝑢−1)}𝑢∈ℤ both satisfy the Mittag-Leffler Condition, then the
canonical map H(lim𝑢∈ℤ 𝑁𝑢) → lim𝑢∈ℤ H(𝑁𝑢) from (3.5.19.1) is an isomorphism.

Proof. The assertion is immediate from 3.5.19. □

8-Mar-2024 Draft - use at own risk



3.5 Towers and the Mittag-Leffler Condition 153

3.5.21 Example. The diagram in 3.5.18 can be interpreted as a tower of identical
acyclic complexes. The morphisms in the tower are multiplication by 𝑚, so it does
not satisfy the Mittag-Leffler Condition and, indeed, the limit is not acyclic.

Exercises

E 3.5.1 As in 3.5.1 let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1 }𝑢∈ℤ be a sequence (not necessarily a tower) of
morphisms in C(𝑅) . Show that the limit of the associated inverse system does not
depend on 𝜆𝑢 for 𝑢 ≪ 0.

E 3.5.2 Show that every complex is the limit of a tower of bounded above complexes.
E 3.5.3 Show that for a𝑈-inverse system {𝜈𝑢𝑣 : 𝑁 𝑣 → 𝑁𝑢 }𝑢⩽𝑣 the map 𝛥𝜈 is not surjective.
E 3.5.4 Show that the 𝑝-adic integers ℤ̂𝑝 from 3.5.3 form a ring isomorphic to ℤ⟦𝑥⟧/(𝑥 − 𝑝) .
E 3.5.5 Let 𝑅 be a countable integral domain. Consider the set 𝑈 = { (𝑢) | 𝑢 ∈ 𝑅 \ {0} }

of principal ideals ordered under reverse inclusion. Show that lim𝑢∈𝑈 𝑅/(𝑢) is not
countable. Hint: Enumerate the non-units in 𝑈 and construct a totally ordered cofinal
subset of𝑈.

E 3.5.6 Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1 }𝑢∈ℤ be a tower in C(𝑅) and {𝛼𝑢 : 𝑀 → 𝑁𝑢 }𝑢∈ℤ a sequence
of morphisms with 𝛼𝑢−1 = 𝜆𝑢𝛼𝑢 for all 𝑢 ∈ ℤ; denote by 𝛼 : 𝑀 → lim𝑢∈ℤ 𝑁𝑢 the
canonical morphism. Assume that 𝛼𝑢 is surjective and Ker 𝛼𝑢 = Ker 𝛼𝑢−1 holds for
𝑢 ≫ 0. Show that 𝛼 is surjective.

E 3.5.7 Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1 }𝑢∈ℤ be a tower in C(𝑅) with limit 𝑁 . Set 𝑀𝑢 = 𝑁𝑢−1 and
𝜅𝑢 = 𝜆𝑢−1; show that {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢−1 }𝑢∈ℤ is a tower with colimit 𝑁 and that the
morphisms 𝛽𝑢 = 𝜆𝑢 from 𝑁𝑢 to 𝑀𝑢 form a morphism of towers with limit 1𝑁 .

E 3.5.8 Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1 }𝑢∈ℤ be a tower in C(𝑅) with 𝜆𝑢 surjective for all 𝑢 ∈ ℤ.
Assume that 𝑁𝑢 is acyclic for infinitely many 𝑢 > 0. Show that lim𝑢∈ℤ 𝑁𝑢 is acyclic.

E 3.5.9 Let {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1 }𝑢∈ℤ be a tower in C(𝑅) with 𝜆𝑢 surjective for all 𝑢 ∈ ℤ.
Assume that for every 𝑛 ∈ ℤ there is a 𝑢𝑛 > 0 such that H𝑛 (𝑁𝑢 ) = 0 for all 𝑢 > 𝑢𝑛.
Show that lim𝑢∈ℤ 𝑁𝑢 is acyclic.

E 3.5.10 Show that the conclusion in 3.5.16 may fail if the homomorphisms 𝜆𝑢 are surjective for
infinitely many but not all 𝑢 ∈ ℤ. Hint: Set 𝑁 = 0 −→ ℤ

𝑛−→ ℤ −→ ℤ/𝑛ℤ −→ 0 and
consider the tower given by · · · 𝑚−→ 𝑁

=−→ 𝑁
𝑚−→ 𝑁

=−→ 𝑁 ; cf. 3.5.18.
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Chapter 4
Equivalences and Isomorphisms

This chapter opens with the mapping cone construction. It attaches to every morphism
a complex that reflects essential properties of the morphism. The utility of this
construction stretches far beyond the category of complexes, indeed, it is the key to
defining a triangulated structure on the derived category. Another notion that points
towards the derived category is quasi-isomorphisms; these are morphisms that induce
isomorphisms in homology. They are introduced in the second section, and homotopy
equivalences—an especially robust subclass of quasi-isomorphisms—are treated in
Sect. 4.3.

In Sects. 4.4 and 4.5 we extend the standard isomorphisms and evaluation ho-
momorphisms for modules treated in Chap. 1 to the realm of complexes. To some
extent this is an exercise in bootstrapping; but it is a critical one as these maps are
among our tools of choice when it comes to applications of homological algebra in
ring theory.

4.1 Mapping Cone

Synopsis. Mapping cone; ∼ sequence; homotopy; Σ-functor.

The mapping cone of a continuous map 𝑓 : 𝑋 → 𝑌 between topological spaces is a
space glued together from 𝑋 and 𝑌 via the map 𝑓 . Here we explore the algebraic
version of this construction. In Chap. 6 the mapping cone is key to the construction
of triangulated structures on the homotopy and derived categories.

4.1.1 Definition. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes. The mapping cone
of 𝛼 is the complex with underlying graded module

(Cone𝛼)♮ =

𝑁 ♮

⊕
Σ𝑀♮

and differential 𝜕Cone 𝛼 =

(
𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

)
.
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156 4 Equivalences and Isomorphisms

4.1.2. A straightforward computation shows that 𝜕Cone 𝛼 is square zero,

𝜕Cone 𝛼𝜕Cone 𝛼 =

(
𝜕𝑁𝜕𝑁 𝜕𝑁𝛼𝜍Σ𝑀−1 + 𝛼𝜍

Σ𝑀
−1 𝜕Σ𝑀

0 𝜕Σ𝑀𝜕Σ𝑀

)
= 0 ;

it uses that 𝛼 is a morphism and that 𝜍Σ𝑀−1 is a degree −1 chain map.

4.1.3 Lemma. Let 𝑀 be an 𝑅-complex. For every 𝑥 ∈ 𝕜 one has 𝑥H(Cone 𝑥𝑀 ) = 0.
In particular, Cone 1𝑀 is acyclic.

Proof. The goal is to show that 𝑥𝑧 is a boundary for every homogeneous cycle 𝑧 in
the complex Cone 𝑥𝑀 . For such a cycle 𝑧 = (𝑚 𝜍𝑀1 (𝑚

′))t one has 𝜕𝑀 (𝑚) +𝑥𝑚′ = 0
in 𝑀 , and hence −𝜍𝑀1 𝜕𝑀 (𝑚) = 𝑥𝜍𝑀1 (𝑚

′) in Σ𝑀 . In the computation,(
𝜕𝑀 𝑥𝜍Σ𝑀−1
0 𝜕Σ𝑀

) (
0

𝜍𝑀1 (𝑚)

)
=

(
𝑥𝑚

𝜕Σ𝑀𝜍𝑀1 (𝑚)

)
=

(
𝑥𝑚

−𝜍𝑀1 𝜕𝑀 (𝑚)

)
=

(
𝑥𝑚

𝑥𝜍𝑀1 (𝑚
′)

)
= 𝑥𝑧 ,

the second equality holds as 𝜍𝑀1 is a degree 1 chain map. □

In 4.3.31 we show that Cone 1𝑀 more than acyclic, namely so-called contractible.

4.1.4. For an 𝑅-module 𝑀 the disk complex D𝑣 (𝑀) from 2.5.29 is Σ𝑣−1Cone 1𝑀 .

Given a morphism 𝛼 : 𝑀 → 𝑁 of 𝑅-complexes, the embedding of 𝑁 into Cone𝛼
and the projection of Cone𝛼 onto Σ𝑀 are evidently morphisms of 𝑅-complexes.

4.1.5 Definition. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes. The degreewise
split exact sequence of 𝑅-complexes,

0 −→ 𝑁

(
1𝑁
0

)
−−−−−→ Cone𝛼 ( 0 1Σ𝑀 )−−−−−−−→ Σ𝑀 −→ 0 ,

is called the mapping cone sequence of 𝛼.

4.1.6 Theorem. Let 𝛼, 𝛼′ : 𝑀 → 𝑁 be morphisms of 𝑅-complexes and consider the
following diagram whose rows are the mapping cone sequences of 𝛼 and 𝛼′,

0 // 𝑁 // Cone𝛼 //

𝛾

��

Σ𝑀 // 0

0 // 𝑁 // Cone𝛼′ // Σ𝑀 // 0 .

The morphisms 𝛼 and 𝛼′ are homotopic if and only if there exists a morphism 𝛾 that
makes the diagram commutative; moreover, such a morphism is an isomorphism.

Proof. It follows from the Five Lemma 2.1.41 that a morphism 𝛾 that makes the
diagram commutative is an isomorphism. The assignment 𝜎 ↦→ 𝛾𝜎 , where

𝛾𝜎 =

(
1𝑁 𝜎𝜍Σ𝑀−1
0 1Σ𝑀

)
,
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4.1 Mapping Cone 157

yields a one-to-one correspondence between degree 1 homomorphisms 𝜎 : 𝑀 → 𝑁

and degree 0 homomorphisms that make the diagram commutative. Now one has

𝛾𝜎𝜕
Cone 𝛼 − 𝜕Cone 𝛼′𝛾𝜎 =

(
1𝑁 𝜎𝜍Σ𝑀−1
0 1Σ𝑀

) (
𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

)
−

(
𝜕𝑁 𝛼′𝜍Σ𝑀−1
0 𝜕Σ𝑀

) (
1𝑁 𝜎𝜍Σ𝑀−1
0 1Σ𝑀

)
=

(
0 (𝛼 − 𝜎𝜕𝑀 − 𝜕𝑁𝜎 − 𝛼′)𝜍Σ𝑀−1
0 0

)
,

so 𝛾𝜎 is a morphism if and only if 𝛼 − 𝛼′ = 𝜕𝑁𝜎 + 𝜎𝜕𝑀 holds; that is, if and only
if 𝜎 is a homotopy from 𝛼 to 𝛼′. □

An immediate consequence of the theorem is a characterization of null-homotopic
maps; related characterizations of other distinguished types of morphisms are given
in 4.2.16 and 4.3.30.

4.1.7 Corollary. A morphism 𝛼 : 𝑀 → 𝑁 of 𝑅-complexes is null-homotopic if and
only if the mapping cone sequence from 4.1.5 is split exact.

Proof. The mapping cone of the zero morphism is the direct sum 𝑁 ⊕ Σ𝑀 , whence
the claim is immediate from 4.1.6 and 2.1.47. □

Σ-Functors

This section closes with four technical results whose utility only becomes fully
apparent in Chap. 6. The gist is that the mapping cone construction commutes with
Hom and tensor product in such a way that mapping cone sequences are preserved.

4.1.8 Definition. A functor F: C(𝑅) → C(𝑆) is called a Σ-functor if it is additive
and there exists a natural isomorphism 𝜙 : FΣ→ ΣF of functors, such that for every
morphism 𝛼 : 𝑀 → 𝑁 in C(𝑅) there exists an isomorphism �̆� that makes the diagram

F(𝑁)
F
(

1𝑁
0

)
// F(Cone𝛼)

� �̆�

��

F( 0 1Σ𝑀 )
// F(Σ𝑀)

𝜙𝑀�

��

F(𝑁)

(
1F(𝑁 )

0

)
// Cone F(𝛼) ( 0 1ΣF(𝑀) )

// ΣF(𝑀)

in C(𝑆) commutative.

4.1.9 Definition. Let E, F: C(𝑅) → C(𝑆) be Σ-functors with associated natural iso-
morphisms 𝜙 : EΣ→ ΣE and 𝜓 : FΣ→ ΣF. A natural transformation 𝜏 : E→ F is
called a Σ-transformation if the next diagram is commutative for every 𝑀 in C(𝑅),

E(Σ𝑀)

𝜏Σ𝑀

��

�

𝜙𝑀
// ΣE(𝑀)

Σ𝜏𝑀

��

F(Σ𝑀)
�

𝜓𝑀
// ΣF(𝑀) .
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158 4 Equivalences and Isomorphisms

That is, 𝜏Σ𝑀 and Σ𝜏𝑀 are isomorphic, and the isomorphism is natural in 𝑀 .

4.1.10 Definition. A functor G: C(𝑅)op → C(𝑆) is called a Σ-functor if it is additive
and there is a natural isomorphism 𝜓 : Σ−1G→ GΣ of functors, such that for every
morphism 𝛼 : 𝑀 → 𝑁 in C(𝑅) there exists an isomorphism �̆� that makes the diagram

Σ−1G(𝑀)

𝜓𝑀�

��

Σ−1
(

1G(𝑀)
0

)
// Σ−1Cone G(𝛼)

�̆��

��

( 0 1G(𝑁 ) )
// G(𝑁)

G(Σ𝑀) G( 0 1Σ𝑀 )
// G(Cone𝛼)

G
(

1𝑁
0

)
// G(𝑁)

in C(𝑆) commutative.

4.1.11 Definition. Let G, J : C(𝑅)op → C(𝑆) be Σ-functors with associated natu-
ral isomorphisms 𝜓 : Σ−1G→ GΣ and 𝜙 : Σ−1J→ JΣ. A natural transformation
𝜏 : G→ J is called a Σ-transformation if the next diagram is commutative for every
𝑀 in C(𝑅),

Σ−1G(𝑀)

Σ−1𝜏𝑀

��

�

𝜓𝑀
// G(Σ𝑀)

𝜏Σ𝑀

��

Σ−1J(𝑀)
�

𝜙𝑀
// J(Σ𝑀) .

That is, 𝜏Σ𝑀 and Σ𝜏𝑀 are isomorphic, and the isomorphism is natural in 𝑀 .

4.1.12. The following assertions are immediate from the definitions of Σ-functors.

(a) Let C(𝑄) F1−−→ C(𝑅) F2−−→ C(𝑆) be Σ-functors with associated natural isomor-
phisms 𝜙1 and 𝜙2. The composite F2 F1 : C(𝑄) → C(𝑆) is a Σ-functor with
associated natural isomorphism 𝜙 where 𝜙𝑀 is the composite

F2 F1 (Σ𝑀)
F2 (𝜙𝑀1 )−−−−−−−→ F2ΣF1 (𝑀)

𝜙
F1 (𝑀)
2−−−−−−→ ΣF2 F1 (𝑀) .

(b) Let C(𝑄)op G−−→ C(𝑅) F−−→ C(𝑆) be Σ-functors with associated natural iso-
morphisms 𝜙 and 𝜓. The composite FG: C(𝑄)op → C(𝑆) is a Σ-functor with
associated natural isomorphism 𝜓 where 𝜓𝑀 is the composite

Σ−1FG(𝑀) Σ−1𝜙Σ−1G(𝑀)
−−−−−−−−−−−→ FΣ−1G(𝑀) F(𝜓𝑀 )−−−−−−→ FG(Σ𝑀) .

(c) Let C(𝑄) F−−→ C(𝑅) and C(𝑅)op G−−→ C(𝑆) be Σ-functors with associated
natural isomorphisms 𝜙 and 𝜓. The composite GFop : C(𝑄)op → C(𝑆) is a
Σ-functor with associated natural isomorphism 𝜓 where 𝜓𝑀 is the composite

Σ−1GFop (𝑀) 𝜓F(𝑀)
−−−−−→ GΣFop (𝑀) G(𝜙𝑀 )−−−−−−→ GFop (Σ𝑀) .
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4.1 Mapping Cone 159

(d) Let C(𝑄)op G1−−→ C(𝑅) and C(𝑅)op G2−−→ C(𝑆) be Σ-functors with associated
natural isomorphisms 𝜓1 and 𝜓2. The composite G2 Gop

1 : C(𝑄) → C(𝑆) is a
Σ-functor with associated natural isomorphism 𝜙 where 𝜙𝑀 is the composite

G2 Gop
1 (Σ𝑀)

G2 (𝜓𝑀1 )−−−−−−−→ G2Σ
−1Gop

1 (𝑀)
Σ𝜓

Σ−1G1 (𝑀)
2−−−−−−−−−−→ ΣG2 Gop

1 (𝑀) .

4.1.13 Proposition. Let E, F: M(𝑅) →M(𝑆) be additive functors and 𝜏 : E→ F a
natural transformation. The extended functors E, F: C(𝑅) → C(𝑆) from 2.1.48 are
Σ-functors, and the extended natural transformation 𝜏 is a Σ-transformation.

Proof. The extended functor E is additive, see 2.1.48, and there is an equality
E(Σ𝑀) = ΣE(𝑀) for every 𝑅-complex 𝑀; see 2.2.2. For a morphism 𝛼 : 𝑀 → 𝑁 ,
the definition of the extended functor yields the following identifications,

E(Cone𝛼) = Cone E(𝛼) , E
(
1𝑁
0

)
=

(
1E(𝑁 )

0

)
, and E

(
0 1Σ𝑀

)
=

(
0 1ΣE(𝑀 ) ) .

Thus, the identity maps 𝜑𝑀 : E(Σ𝑀) → ΣE(𝑀) and �̆� : E(Cone𝛼) → Cone E(𝛼)
make the diagram in 4.1.8 commutative. This shows that E is a Σ-functor and similarly
so is F. That the extended natural transformation 𝜏 is a Σ-transformation now follows
immediately from 2.2.2 and 4.1.9. □

4.1.14 Proposition. Let G, J : M(𝑅)op →M(𝑆) be additive functors and 𝜏 : G→ J
a natural transformation. The extended functors G, J : C(𝑅)op → C(𝑆) from 2.1.48
are Σ-functors, and the extended natural transformation 𝜏 is a Σ-transformation.

Proof. The assertions follow from an argument parallel to the proof of 4.1.14. □

We prove below that the Hom and tensor product functors are Σ-functors. The
homology functor is 𝕜-linear and commutes withΣ by 2.2.15; but it is not a Σ-functor:

4.1.15 Example. Let 𝑀 be an 𝑅-complex. One has H(Cone 1𝑀 ) = 0 by 4.1.3;
however, if H(𝑀) is non-zero, then one has Cone H(1𝑀 ) = Cone 1H (𝑀 ) ≠ 0; in
particular H(Cone 1𝑀 ) and Cone H(1𝑀 ) are not isomorphic.

4.1.16 Proposition. Let𝑀 be an 𝑅-complex. The functor Hom𝑅 (𝑀, ) is a Σ-functor
with associated natural isomorphism 𝜙 : Hom𝑅 (𝑀, Σ ) → ΣHom𝑅 (𝑀, ) given by

𝜙𝑁 = 𝜍
Hom𝑅 (𝑀,𝑁 )
1 Hom𝑅 (𝑀, 𝜍Σ𝑁−1 )

for every 𝑅-complex 𝑁 . In particular, there is an isomorphism of 𝕜-complexes,

Cone Hom𝑅 (𝑀, 𝛽) � Hom𝑅 (𝑀,Cone 𝛽) ,

for every morphism 𝛽 of 𝑅-complexes.

Proof. The functor Hom𝑅 (𝑀, ) is additive by 2.3.10, and 𝜙𝑁 is by 2.3.16 an iso-
morphism and natural in 𝑁 . To prove that Hom𝑅 (𝑀, ) is a Σ-functor, it must be
shown that for every morphism 𝛽 : 𝑁 → 𝑁 ′ of 𝑅-complexes there exists an isomor-
phism 𝛽 that makes the following diagram in C(𝕜) commutative.
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(†)

Hom𝑅 (𝑀, 𝑁 ′)
Hom

(
𝑀,

(
1𝑁 ′

0

) )
// Hom𝑅 (𝑀,Cone 𝛽)

� 𝛽

��

Hom (𝑀, ( 0 1Σ𝑁 ) )
// Hom𝑅 (𝑀, Σ𝑁)

𝜙𝑁�

��

Hom𝑅 (𝑀, 𝑁 ′)

(
1Hom (𝑀,𝑁 ′ )

0

)
// Cone Hom𝑅 (𝑀, 𝛽)

( 0 1ΣHom (𝑀,𝑁 ) )
// ΣHom𝑅 (𝑀, 𝑁) .

For reasons of simplicity, we construct an isomorphism

𝛾 : Cone Hom𝑅 (𝑀, 𝛽) −→ Hom𝑅 (𝑀,Cone 𝛽)

with 𝛾−1 = 𝛽. To this end, observe that on the level of graded modules one has

Hom𝑅 (𝑀,Cone 𝛽)♮ = Hom𝑅 (𝑀♮, (Cone 𝛽)♮) = Hom𝑅 (𝑀♮, 𝑁 ′♮ ⊕ Σ𝑁 ♮) ,

and similarly,

(Cone Hom𝑅 (𝑀, 𝛽))♮ = Hom𝑅 (𝑀♮, 𝑁 ′♮) ⊕ ΣHom𝑅 (𝑀♮, 𝑁 ♮) .

These equalities, combined with the fact that the functor Hom𝑅 (𝑀♮, ) is additive
and 𝜙𝑁 is an isomorphism, show that one gets an isomorphism of graded modules,
𝛾 : (Cone Hom𝑅 (𝑀, 𝛽))♮ → Hom𝑅 (𝑀,Cone 𝛽)♮, by setting

(‡) 𝛾

(
𝜗

𝜉

)
=

(
𝜗

(𝜙𝑁 )−1 (𝜉)

)
for homogeneous elements 𝜗 ∈ Hom𝑅 (𝑀, 𝑁 ′) and 𝜉 ∈ ΣHom𝑅 (𝑀, 𝑁) of the
same degree, say, 𝑑. Notice that the left-hand column (𝜗 𝜉)t in (‡) is a pair of
homomorphisms, whereas the right-hand column is a homomorphism𝑀 → 𝑁 ′⊕Σ𝑁
of degree 𝑑. To show that 𝛾 is a morphism, and hence an isomorphism of complexes,
note first that the definition of 𝜙𝑁 and (2.2.5.1) yield

Hom𝑅 (𝑀, 𝛽)𝜍ΣHom (𝑀,𝑁 )
−1 = Hom𝑅 (𝑀, 𝛽𝜍Σ𝑁−1 ) ◦ (𝜙

𝑁 )−1 .

Using this identity and the fact that (𝜙𝑁 )−1 is a morphism of complexes, one gets

𝜕Hom (𝑀,Cone 𝛽)𝛾

(
𝜗

𝜉

)
=

(
𝜕𝑁

′
𝛽𝜍Σ𝑁−1

0 𝜕Σ𝑁

) (
𝜗

(𝜙𝑁 )−1 (𝜉)

)
− (−1)𝑑

(
𝜗

(𝜙𝑁 )−1 (𝜉)

)
𝜕𝑀

=

(
𝜕𝑁

′
𝜗 + 𝛽𝜍Σ𝑁−1 (𝜙

𝑁 )−1 (𝜉) − (−1)𝑑𝜗𝜕𝑀

𝜕Σ𝑁 (𝜙𝑁 )−1 (𝜉) − (−1)𝑑 (𝜙𝑁 )−1 (𝜉)𝜕𝑀
)

=

((𝜕𝑁 ′𝜗 − (−1)𝑑𝜗𝜕𝑀 ) + 𝛽𝜍Σ𝑁−1 (𝜙
𝑁 )−1 (𝜉)

𝜕Hom (𝑀,Σ𝑁 ) ((𝜙𝑁 )−1 (𝜉))

)
=

(
𝜕Hom (𝑀,𝑁 ′ ) (𝜗) + Hom (𝑀, 𝛽𝜍Σ𝑁−1 ) ((𝜙

𝑁 )−1 (𝜉))
(𝜙𝑁 )−1 (𝜕ΣHom (𝑀,𝑁 ) (𝜉))

)
= 𝛾

(
𝜕Hom (𝑀,𝑁 ′ ) (𝜗) + Hom (𝑀, 𝛽)𝜍ΣHom𝑅 (𝑀,𝑁 )

−1 (𝜉)
𝜕ΣHom (𝑀,𝑁 ) (𝜉)

)
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= 𝛾𝜕Cone Hom (𝑀,𝛽)
(
𝜗

𝜉

)
.

Thus 𝛾 is a morphism of complexes.
It remains to verify that the diagram (†) is commutative. The computation

Hom𝑅 (𝑀, (0 1Σ𝑁 ))𝛾
(
𝜗

𝜉

)
=

(
0 1Σ𝑁

) (
𝜗

(𝜙𝑁 )−1 (𝜉)

)
= (𝜙𝑁 )−1 (𝜉)

= (𝜙𝑁 )−1 (
0 1ΣHom (𝑀,𝑁 ) ) (

𝜗

𝜉

)
shows that the right-hand square in (†) is commutative. A similar simple computation
shows that the left-hand square is commutative. □

4.1.17 Proposition. Let 𝑁 be an 𝑅-complex. The functor Hom𝑅 ( , 𝑁) is a Σ-functor
with associated natural isomorphism𝜓 : Σ−1Hom𝑅 ( , 𝑁) → Hom𝑅 (Σ , 𝑁) given by

𝜓𝑀 = Hom𝑅 (𝜍Σ𝑀−1 , 𝑁)𝜍
Σ−1Hom𝑅 (𝑀,𝑁 )
1

for every 𝑅-complex 𝑀 . In particular there is an isomorphism of 𝕜-complexes,

Σ−1Cone Hom𝑅 (𝛼, 𝑁) � Hom𝑅 (Cone𝛼, 𝑁) ,

for every morphism 𝛼 of 𝑅-complexes.

Proof. The functor Hom𝑅 ( , 𝑁) is additive by 2.3.10, and 𝜓𝑀 is by 2.3.14 an
isomorphism and natural in 𝑀 . To prove that Hom𝑅 ( , 𝑁) is a Σ-functor, one argues
as in the proof of 4.1.16. □

Remark. The natural transformation 𝜙 in 4.1.16 depends on 𝑀. The notation does not reflect this
because there is no formal requirement of naturalness in 𝑀. Nevertheless, 𝜙 is natural in 𝑀; see
E 4.1.5. A similar comment applies to the transformation 𝜓 in 4.1.17. Moreover, the transformations
𝜙 and 𝜓 are compatible in a sense that is also clarified in E 4.1.5.

4.1.18 Proposition. Let 𝑀 be an 𝑅o-complex. The functor 𝑀 ⊗𝑅 is a Σ-functor
with associated natural transformation 𝜙 : 𝑀 ⊗𝑅 Σ → Σ (𝑀 ⊗𝑅 ) given by

𝜙𝑁 = 𝜍
𝑀⊗𝑅𝑁
1 (𝑀 ⊗𝑅 𝜍Σ𝑁−1 )

for every 𝑅-complex 𝑁 . In particular, there is an isomorphism of 𝕜-complexes,

Cone(𝑀 ⊗𝑅 𝛽) � 𝑀 ⊗𝑅 Cone 𝛽 ,

for every morphism 𝛽 of 𝑅-complexes.

Proof. The functor𝑀 ⊗𝑅 is additive by 2.4.9, and 𝜙𝑁 is by 2.4.13 an isomorphism
and natural in 𝑁 . To prove that 𝑀 ⊗𝑅 is a Σ-functor, it must be shown that for every
morphism 𝛽 : 𝑁 → 𝑁 ′ of 𝑅-complexes there exists an isomorphism 𝛽 that makes the
following diagram in C(𝕜) commutative.
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(†)

𝑀 ⊗𝑅 𝑁 ′
𝑀⊗

(
1𝑁 ′

0

)
// 𝑀 ⊗𝑅 Cone 𝛽

� 𝛽

��

𝑀⊗ ( 0 1Σ𝑁 )
// 𝑀 ⊗𝑅 Σ𝑁

𝜙𝑁�

��

𝑀 ⊗𝑅 𝑁 ′
(

1𝑀⊗𝑁 ′
0

)
// Cone(𝑀 ⊗𝑅 𝛽)

( 0 1Σ (𝑀⊗𝑁 ) )
// Σ (𝑀 ⊗𝑅 𝑁) .

To define 𝛽, note that on the level of graded modules one has

(𝑀 ⊗𝑅 Cone 𝛽)♮ = 𝑀♮ ⊗𝑅 (Cone 𝛽)♮ = 𝑀♮ ⊗𝑅 (𝑁 ′♮ ⊕ Σ𝑁 ♮) ,

and
(Cone(𝑀 ⊗𝑅 𝛽))♮ = (𝑀♮ ⊗𝑅 𝑁 ′♮) ⊕ Σ (𝑀♮ ⊗𝑅 𝑁 ♮) .

These equalities, combined with the fact that the functor 𝑀♮ ⊗𝑅 is additive and
𝜙𝑁 is an isomorphism, show that one defines an isomorphism of graded modules,
𝛽 : (𝑀 ⊗𝑅 Cone 𝛽)♮ → (Cone(𝑀 ⊗𝑅 𝛽))♮, by setting

𝛽

(
𝑚 ⊗

(
𝑛′

𝑛

) )
=

(
𝑚 ⊗ 𝑛′

𝜙𝑁 (𝑚 ⊗ 𝑛)

)
for an elementary tensor in 𝑀 ⊗𝑅 Cone 𝛽 with 𝑛 ∈ Σ𝑁 and 𝑛′ ∈ 𝑁 ′. To show that 𝛽
is a morphism, and hence an isomorphism of complexes, note first that the definition
of 𝜙𝑁 and (2.2.5.1) yield

(𝑀 ⊗𝑅 𝛽)𝜍Σ (𝑀⊗𝑁 )−1 𝜙𝑁 = 𝑀 ⊗𝑅 (𝛽𝜍Σ𝑁−1 ) .

Using this identity and the fact that 𝜙𝑁 is a morphism of complexes, one gets

𝜕Cone(𝑀⊗𝛽) 𝛽

(
𝑚 ⊗

(
𝑛′

𝑛

) )
=

(
𝜕𝑀⊗𝑁

′ (𝑀 ⊗ 𝛽)𝜍Σ (𝑀⊗𝑁 )−1
0 𝜕Σ (𝑀⊗𝑁 )

) (
𝑚 ⊗ 𝑛′

𝜙𝑁 (𝑚 ⊗ 𝑛)

)
=

(
𝜕𝑀⊗𝑁

′ (𝑚 ⊗ 𝑛′) + (𝑀 ⊗ (𝛽𝜍Σ𝑁−1 )) (𝑚 ⊗ 𝑛)
𝜕Σ (𝑀⊗𝑁 )𝜙𝑁 (𝑚 ⊗ 𝑛)

)
=

(
𝜕𝑀 (𝑚) ⊗ 𝑛′ + (−1) |𝑚 |𝑚 ⊗ 𝜕𝑁 ′ (𝑛′) + (−1) |𝑚 |𝑚 ⊗ 𝛽𝜍Σ𝑁−1 (𝑛)

𝜙𝑁𝜕𝑀⊗Σ𝑁 (𝑚 ⊗ 𝑛)

)
=

(
𝜕𝑀 (𝑚) ⊗ 𝑛′ + (−1) |𝑚 |𝑚 ⊗ (𝜕𝑁 ′ (𝑛′) + 𝛽𝜍Σ𝑁−1 (𝑛))

𝜙𝑁 (𝜕𝑀 (𝑚) ⊗ 𝑛 + (−1) |𝑚 |𝑚 ⊗ 𝜕Σ𝑁 (𝑛))

)
= 𝛽

(
𝜕𝑀 (𝑚) ⊗

(
𝑛′

𝑛

)
+ (−1) |𝑚 |𝑚 ⊗

(
𝜕𝑁

′ (𝑛′) + 𝛽𝜍Σ𝑁−1 (𝑛)
𝜕Σ𝑁 (𝑛)

))
= 𝛽𝜕𝑀⊗Cone 𝛽

(
𝑚 ⊗

(
𝑛′

𝑛

) )
.

Thus 𝛽 is a morphism of complexes.
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It remains to verify that the diagram (†) is commutative. The computation(
0 1Σ (𝑀⊗𝑁 )

)
𝛽

(
𝑚 ⊗

(
𝑛′

𝑛

) )
=

(
0 1Σ (𝑀⊗𝑁 )

) (
𝑚 ⊗ 𝑛′

𝜙𝑁 (𝑚 ⊗ 𝑛)

)
= 𝜙𝑁 (𝑚 ⊗ 𝑛)

= 𝜙𝑁
(
𝑀 ⊗ (0 1Σ𝑁 )

) (
𝑚 ⊗

(
𝑛′

𝑛

) )
shows that the right-hand square in (†) is commutative. A similar simple computation
shows that the left-hand square is commutative. □

Remark. The natural transformation 𝜙 in 4.1.18 depends on 𝑀. The notation does not reflect this
because there is no formal requirement of naturalness in 𝑀. Nevertheless, 𝜙 is natural in 𝑀; see
E 4.1.6. A similar comment applies to the transformation 𝜓 in 4.1.19. Moreover, the transformations
𝜙 and 𝜓 are compatible in a sense that is also clarified in E 4.1.6.

4.1.19 Proposition. Let 𝑁 be an 𝑅-complex. The functor ⊗𝑅 𝑁 is a Σ-functor with
associated natural transformation 𝜓 : Σ ⊗𝑅 𝑁 → Σ ( ⊗𝑅 𝑁) given by

𝜓𝑀 = 𝜍
𝑀⊗𝑅𝑁
1 (𝜍Σ𝑀−1 ⊗𝑅 𝑁)

for every 𝑅o-complex 𝑀 . In particular, there is an isomorphism of 𝕜-complexes,

Cone(𝛼 ⊗𝑅 𝑁) � (Cone𝛼) ⊗𝑅 𝑁 ,

for every morphism 𝛼 of 𝑅o-complexes.

Proof. The functor ⊗𝑅 𝑁 is additive by 2.4.9, and𝜓𝑀 is by 2.4.14 an isomorphism
and natural in𝑀 . To see that ⊗𝑅 𝑁 is a Σ-functor, argue as in the proof of 4.1.18. □

Exercises

E 4.1.1 Let 𝛼 : 𝑀 → 𝑁 be a homomorphism of 𝑅-modules; examine the homology of Cone 𝛼.
E 4.1.2 Let 𝛼 be a morphism of 𝑅-complexes; establish an isomorphism Cone(Σ𝛼) � ΣCone 𝛼.
E 4.1.3 Let 𝛼 : 𝑀 → 𝑁 be a morphism in C(𝑅) . Show that for isomorphisms 𝜑 : 𝑀 ′ → 𝑀 and

𝜓 : 𝑁 → 𝑁 ′ the complexes Cone 𝛼 and Cone(𝜓𝛼𝜑) are isomorphic.
E 4.1.4 Assume that 𝑅 is commutative. For elements 𝑥1 and 𝑥2 in 𝑅, examine the mapping cones

𝐾 = Cone 𝑥𝑅1 and 𝐾 ′ = Cone 𝑥𝐾2 of the homotheties 𝑥𝑅1 and 𝑥𝐾2 . Compare with the
Koszul complexes K𝑅 (𝑥1 ) and K𝑅 (𝑥1, 𝑥2 ); see 2.1.25.

E 4.1.5 Let 𝑀 and 𝑁 be 𝑅-complexes. Denote the natural transformations from 4.1.16 and 4.1.17
by 𝜙𝑀 and 𝜓𝑁 , respectively.

(a) Show that 𝜙 and 𝜓 are natural in 𝑀 and 𝑁 ; that is, show that the diagrams

Hom𝑅 (𝑀, Σ𝑁 )
Hom (𝛼,Σ𝑁 )

��

𝜙𝑁
𝑀
// ΣHom𝑅 (𝑀, 𝑁 )

ΣHom (𝛼,𝑁 )
��

Hom𝑅 (𝑀 ′, Σ𝑁 )
𝜙𝑁
𝑀′
// ΣHom𝑅 (𝑀 ′, 𝑁 )

and
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Σ−1Hom𝑅 (𝑀, 𝑁 )
𝜓𝑀
𝑁
//

Σ−1Hom (𝑀,𝛽)
��

Hom𝑅 (Σ𝑀, 𝑁 )

Hom𝑅 (Σ𝑀,𝛽)
��

Σ−1Hom𝑅 (𝑀, 𝑁 ′ )
𝜓𝑀
𝑁 ′
// Hom𝑅 (Σ𝑀, 𝑁 ′ )

are commutative for all morphisms 𝛼 : 𝑀 ′ → 𝑀 and 𝛽 : 𝑁 → 𝑁 ′ in C(𝑅) .
(b) Show that the transformations 𝜙 and 𝜓 are compatible in the sense that the next

diagram is commutative,

Σ−1Hom𝑅 (𝑀, Σ𝑁 )
Σ−1𝜙𝑁

𝑀
//

𝜓𝑀
Σ𝑁
��

Hom𝑅 (𝑀, 𝑁 )
Σ𝜓𝑀

𝑁
��

Hom𝑅 (Σ𝑀, Σ𝑁 )
𝜙𝑁
Σ𝑀
// ΣHom𝑅 (Σ𝑀, 𝑁 ) .

E 4.1.6 Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. Denote the natural transformations from
4.1.18 and 4.1.19 by 𝜙𝑀 and 𝜓𝑁 , respectively.

(a) Show that 𝜙 and 𝜓 are natural in 𝑀 and 𝑁 ; that is, show that the diagrams

𝑀 ⊗𝑅 Σ𝑁

𝛼⊗Σ𝑁
��

𝜙𝑁
𝑀
// Σ (𝑀 ⊗𝑅 𝑁 )

Σ (𝛼⊗𝑁 )
��

𝑀 ′ ⊗𝑅 Σ𝑁
𝜙𝑁
𝑀′
// Σ (𝑀 ′ ⊗𝑅 𝑁 )

and
Σ𝑀 ⊗𝑅 𝑁

𝜓𝑀
𝑁
//

Σ𝑀⊗𝛽
��

Σ (𝑀 ⊗𝑅 𝑁 )
Σ (𝑀⊗𝛽)
��

Σ𝑀 ⊗𝑅 𝑁 ′
𝜓𝑀
𝑁 ′
// Σ (𝑀 ⊗𝑅 𝑁 ′ )

are commutative for all morphisms 𝛼 : 𝑀 → 𝑀 ′ in C(𝑅o) and 𝛽 : 𝑁 → 𝑁 ′ in C(𝑅) .
(b) Show that the transformations 𝜙 and 𝜓 are compatible in the sense that the next

diagram is commutative,

Σ𝑀 ⊗𝑅 Σ𝑁
𝜙𝑁
Σ𝑀
//

𝜓𝑀
Σ𝑁

��

Σ (Σ𝑀 ⊗𝑅 𝑁 )
Σ𝜓𝑀

𝑁
��

Σ (𝑀 ⊗𝑅 Σ𝑁 )
Σ𝜙𝑁

𝑀
// Σ2 (𝑀 ⊗𝑅 𝑁 ) .

E 4.1.7 Show that truncations are not Σ-functors.
E 4.1.8 Let 𝛼 : 𝑀 → 𝑁 be an isomorphism of 𝑅-complexes. Show that 1Cone 𝛼 is null-homotopic.

4.2 Quasi-Isomorphisms

Synopsis. Quasi-isomorphism; functor that preserves quasi-isomorphisms; semi-simple module.

More often than not, it is the homology of a complex that one is interested in; more so
than the complex itself. For example, it is the homology of the singular chain complex
S(𝑋) that yields information about holes in the space 𝑋 , and it is the homology of
the Koszul complex K (𝑥) that tells whether the element 𝑥 is a zerodivisor.

Quasi-isomorphisms are morphisms that preserve homology.

4.2.1 Definition. A morphism 𝛼 : 𝑀 → 𝑁 in C(𝑅) is called a quasi-isomorphism if
the induced morphism H(𝛼) : H(𝑀) → H(𝑁) is an isomorphism.

A quasi-isomorphism is marked by a ‘≃’ next to the arrow.

Remark. Other words for quasi-isomorphism are ‘homology equivalence’ and ‘homology isomor-
phism’.
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Given a quasi-isomorphism of 𝑅-complexes 𝛼 : 𝑀 → 𝑁 there need not exist a
morphism 𝛽 : 𝑁 → 𝑀 with H(𝛽) = H(𝛼)−1. Moreover, for 𝑅-complexes 𝑀 and 𝑁
with H(𝑀) � H(𝑁) there need not exist a quasi-isomorphism 𝑀 → 𝑁 or 𝑁 → 𝑀 .
Examples follow below.

4.2.2 Example. There is a quasi-isomorphism of ℤ-complexes,

0 // ℤ
2
//

��

ℤ //

����

0

0 // 0 // ℤ/2ℤ // 0 ,

but there is not even a non-zero morphism in the opposite direction, as the zero map
is the only homomorphism from ℤ/2ℤ to ℤ.

4.2.3 Example. Set 𝑅 = 𝕜 [𝑥, 𝑦]. The 𝑅-complexes

𝑀 = 0 −→ 𝑅/(𝑥) 𝑦−−−→ 𝑅/(𝑥) −→ 0

𝑁 = 0 −→ 𝑅/(𝑦) 𝑥−−−→ 𝑅/(𝑦) −→ 0

concentrated in degrees 1 and 0 have isomorphic homology H(𝑀) � 𝕜 � H(𝑁), but
there are no non-zero morphisms between them and hence no quasi-isomorphism.

Quasi-isomorphisms between complexes allow for considerable leeway in the
structure of the underlying graded modules. Via quasi-isomorphisms one can thus
hope to replace a complex by one with better properties.

A quasi-isomorphism between complexes that originate from independent con-
structions may have conceptual significance. For example, De Rham’s theorem as-
serts that for a smooth real manifold 𝑀 , the embedding S∞ (𝑀) ↣ S(𝑀) from
2.1.34 is a quasi-isomorphism; see Massey [178, A§2]. If 𝑀 is paracompact, then
the morphismΩ(𝑀) → Homℤ (S∞ (𝑀),ℝ) from 2.1.34 is also a quasi-isomorphism;
combining these results one arrives at de Rham’s theorem: The de Rham cohomo-
logy, which is defined in terms of the smooth structure on 𝑀 , is isomorphic to the
singular cohomology of 𝑀 , whose definition involves only the structure of 𝑀 as a
topological space.

Soft truncations induce quasi-isomorphisms.

4.2.4 Proposition. Let 𝑀 be an 𝑅-complex and 𝑛 an integer.
(a) If 𝑛 ⩾ sup𝑀 , then the surjection 𝜏𝑀Ď𝑛 : 𝑀 ↠ 𝑀Ď𝑛 is a quasi-isomorphism.
(b) If 𝑛 ⩽ inf 𝑀 , then the embedding 𝜏𝑀Ě𝑛 : 𝑀Ě𝑛 ↣ 𝑀 is a quasi-isomorphism.

Proof. The assertions follow immediately from 2.5.24(b) and 2.5.25(b). □

Quasi-isomorphisms have the following convenient two-out-of-three property.

4.2.5 Proposition. Consider a commutative diagram in C(𝑅) with exact rows,
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0 // 𝑀 ′ //

𝜑′

��

𝑀 //

𝜑

��

𝑀 ′′ //

𝜑′′

��

0

0 // 𝑁 ′ // 𝑁 // 𝑁 ′′ // 0 .

If two of the morphisms 𝜑′, 𝜑, and 𝜑′′ are quasi-isomorphisms, then so is the third.

Proof. The assertion follows immediately from 2.2.21 and the Five Lemma 2.1.41.
□

4.2.6 Proposition. Let 0 −−→ 𝑀 ′
𝛼′−−→ 𝑀

𝛼−−→ 𝑀 ′′ −−→ 0 be an exact sequence of
𝑅-complexes.

(a) The complex 𝑀 ′ is acyclic if and only if 𝛼 is a quasi-isomorphism.
(b) The complex 𝑀 ′′ is acyclic if and only if 𝛼′ is a quasi-isomorphism.

Proof. Both assertions are immediate from the exact sequence (2.2.20.1) and the
definition, 4.2.1, of a quasi-isomorphism. □

Recall from 2.2.13 that a morphism 𝛼 : 𝑀 → 𝑁 of complexes restricts to a mor-
phism on cycles, Z(𝑀) → Z(𝑁), and to a morphism on boundaries B(𝑀) → B(𝑁).
Surjectivity of a quasi-isomorphism can be detected on boundaries and on cycles.

4.2.7 Lemma. Let 𝛼 : 𝑀 → 𝑁 be a quasi-isomorphism of 𝑅-complexes. The follow-
ing conditions are equivalent.

(i) 𝛼 is surjective.
(ii) 𝛼 is surjective on boundaries.
(iii) 𝛼 is surjective on cycles.
(iv) 𝛼 is surjective on cycles and boundaries.

Proof. It is immediate from 2.1.28 that a surjective morphism is surjective on
boundaries, whence (i) implies (ii). An application of the Snake Lemma 2.1.45
to the diagram (2.2.14.1) shows that conditions (ii) and (iii) are equivalent and,
therefore, that they both imply (iv). To prove that (iv) implies (i), apply the Snake
Lemma to the following commutative diagram in C(𝑅),

0 // Z(𝑀) //

𝛼

��

𝑀
𝜕𝑀
//

𝛼

��

ΣB(𝑀) //

Σ𝛼

��

0

0 // Z(𝑁) // 𝑁
𝜕𝑁
// ΣB(𝑁) // 0 . □

Remark. Injectivity of a quasi-isomorphism can, by a result dual to 4.2.7, be detected on boundaries
and on cokernels; see E 4.2.6.

Preservation of Quasi-Isomorphisms

4.2.8 Definition. Let F: C(𝑅) → C(𝑆) be a functor. One says that F preserves quasi-
isomorphisms if for every quasi-isomorphism 𝛼 in C(𝑅) the morphism F(𝛼) is C(𝑆)
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is a quasi-isomorphism. One says that F reflects quasi-isomorphisms if a morphism 𝛼

in C(𝑅) is a quasi-isomorphism provided that F(𝛼) is C(𝑆) is a quasi-isomorphism.

4.2.9 Example. By 2.2.15 the shift functor, Σ, preserves quasi-isomorphisms.

Recall from 2.5.24 and 2.5.25 that soft truncations are functors.

4.2.10 Proposition. For every integer 𝑛, the functors ( )Ď𝑛 and ( )Ě𝑛 preserve
quasi-isomorphisms.

Proof. Let 𝛼 : 𝑀 → 𝑁 be a quasi-isomorphism. In each degree 𝑣 ⩾ 𝑛 one has
H𝑣 (𝛼Ě𝑛) = H𝑣 (𝛼), which is an isomorphism by assumption. For 𝑣 < 𝑛 the homo-
morphisms H𝑣 (𝛼Ě𝑛) are isomorphisms as the truncated complexes are zero in those
degrees. A similar argument shows that ( )Ď𝑛 preserves quasi-isomorphisms. □

Several categorical constructions preserve quasi-isomorphisms.

4.2.11 Proposition. Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 be a family of morphisms in C(𝑅). If
𝛼𝑢 is a quasi-isomorphism for every 𝑢 ∈ 𝑈, then the coproduct

∐
𝑢∈𝑈 𝛼

𝑢 and the
product

∏
𝑢∈𝑈 𝛼

𝑢 are quasi-isomorphisms.

Proof. Homology preserves coproducts and products by 3.1.10(d) and 3.1.22(d),
and the assertions now follow as a (co)product of isomorphisms is an isomorphism.

□

4.2.12 Proposition. Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 be a morphism of 𝑈-direct systems
in C(𝑅). If 𝑈 is filtered and 𝛼𝑢 is a quasi-isomorphism for every 𝑢 ∈ 𝑈, then the
colimit colim𝑢∈𝑈 𝛼𝑢 is a quasi-isomorphism.

Proof. A colimit of isomorphisms is an isomorphism. Homology, as a functor, pre-
serves filtered colimits by 3.3.15(d), and the assertion now follows from 3.2.17. □

4.2.13 Proposition. Let {𝜅𝑢 : 𝑀𝑢 → 𝑀𝑢−1}𝑢∈ℤ and {𝜆𝑢 : 𝑁𝑢 → 𝑁𝑢−1}𝑢∈ℤ be tow-
ers in C(𝑅) and {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈ℤ a morphism of towers. If for all 𝑢 ∈ ℤ the
morphisms 𝜅𝑢, 𝜆𝑢, H(𝜅𝑢), and H(𝜆𝑢) are surjective and 𝛼𝑢 is a quasi-isomorphism,
then the limit lim𝑢∈ℤ 𝛼𝑢 is a quasi-isomorphism.

Proof. A limit of isomorphisms in C(𝑅) is an isomorphism. The canonical mor-
phisms H(lim𝑢∈ℤ 𝑁𝑢) → lim𝑢∈ℤ H(𝑁𝑢) and H(lim𝑢∈ℤ 𝑀𝑢) → lim𝑢∈ℤ H(𝑀𝑢) are
isomorphisms by 3.5.20, and the assertion now follows from 3.4.18. □

A functor F that commutes with homology clearly preserves quasi-isomorphisms.
For ease of reference, we spell out an important special case.

4.2.14 Example. Let F be a functor on 𝑅-complexes extended from an exact functor
on 𝑅-modules as in 2.1.48. By 2.2.19 one has HF = FH. From this identity it follows
that F preserves quasi-isomorphisms. An example of such a functor is localization
at a multiplicative subset of a commutative ring, see 2.1.50. It also follows that if F
is conservative, then it reflects quasi-isomorphisms. An example of such a functor is
restriction of scalars from 2.1.49.
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The Hom and tensor product functors do not commute with homology, and they
also fail to preserve quasi-isomorphisms. Indeed, let 𝛼 be the quasi-isomorphism
of ℤ-complexes from 4.2.2. Not one of the induced morphisms Homℤ (𝛼,ℤ/2ℤ),
Homℤ (ℤ/2ℤ, 𝛼), or 𝛼 ⊗ℤ ℤ/2ℤ is a quasi-isomorphism.

In the next section we shall see that there are non-trivial quasi-isomorphisms 𝛼
with the property that every morphism Hom (𝛼, 𝑋), Hom (𝑋, 𝛼), and𝛼 ⊗ 𝑋 is a quasi-
isomorphism. Complexes 𝑋 with the property that, say, Hom (𝛼, 𝑋) is a quasi-
isomorphism for every quasi-isomorphism 𝛼 also exist; they are studied in Chap. 5.

Mapping Cone of a Quasi-Isomorphism

4.2.15 Proposition. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes. The mapping
cone sequence 0 −−→ 𝑁

𝜀−−→ Cone𝛼 𝜛−−→ Σ𝑀 −−→ 0 from 4.1.5 yields an exact
sequence

H(𝑁) H (𝜀)−−−−→ H(Cone𝛼) H (𝜛 )−−−−−→ ΣH(𝑀) ΣH (𝛼)−−−−−−→ ΣH(𝑁) ΣH (𝜀)−−−−−−→ ΣH(Cone𝛼) .

Proof. By (2.2.20.1) the mapping cone sequence induces an exact sequence,

H(𝑁) H (𝜀)−−−−→ H(Cone𝛼) H (𝜛 )−−−−−→ H(Σ𝑀) ð−−−→ ΣH(𝑁) ΣH (𝜀)−−−−−−→ ΣH(Cone𝛼) ,

where ð is the connecting morphism in homology. Recall from 4.1.5 that one has
𝜀 = (1𝑁 0)t and 𝜛 = (0 1Σ𝑀 ). For [𝑧] in H(Σ𝑀) one has 𝑧 = (0 1Σ𝑀 ) (0 𝑧)t and

𝜍Cone 𝛼
1 𝜕Cone 𝛼

(
0
𝑧

)
=

(
𝜍𝑁1 0
0 𝜍Σ𝑀1

) (
𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

) (
0
𝑧

)
=

(
𝜍𝑁1 𝛼𝜍

Σ𝑀
−1 (𝑧)
0

)
= Σ

(
1𝑁
0

)
((Σ𝛼) (𝑧)) ,

so ð( [𝑧]) = [(Σ𝛼) (𝑧)] holds by 2.2.20. Thus, one has ð = H(Σ𝛼) = ΣH(𝛼). □

The exact sequence in 4.2.15 establishes a crucial connection between preserva-
tion of homology and vanishing of homology.

4.2.16 Theorem. A morphism 𝛼 of 𝑅-complexes is a quasi-isomorphism if and only
if the complex Cone𝛼 is acyclic.

Proof. For a morphism 𝛼 : 𝑀 → 𝑁 the exact sequence in 4.2.15 shows that Cone𝛼
is acyclic, i.e. H(Cone𝛼) = 0, if and only if H(𝛼) is an isomorphism. □

Semi-Simple Modules

A graded 𝑅-module is called semi-simple if every graded submodule is a graded
direct summand.
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4.2 Quasi-Isomorphisms 169

4.2.17 Proposition. Let 𝑀 be an 𝑅-complex. If the graded 𝑅-module 𝑀♮ is semi-
simple, then there is an isomorphism of 𝑅-complexes 𝑀 � H(𝑀) ⊕ Cone 1B (𝑀 ) .

Proof. Set 𝑍 = Z(𝑀), 𝐵 = B(𝑀), and 𝐻 = H(𝑀); recall from 2.2.12 the short
exact sequences of 𝑅-complexes,

0 −→ 𝐵
𝜄−−−→ 𝑍

𝜋−−−→ 𝐻 −→ 0 and 0 −→ 𝑍
𝜀−−−→ 𝑀

𝜍𝐵1 𝜕
𝑀

−−−−−−→ Σ𝐵 −→ 0 .

By assumption 𝑀♮ is semi-simple, and hence so is the graded submodule 𝑍 ♮. It
follows that both sequences are degreewise split. In particular, there are morphisms
𝜎 : 𝐻♮ → 𝑍 ♮ and 𝜏 : Σ𝐵♮ → 𝑀♮ with 𝜋𝜎 = 1𝐻♮ and 𝜍𝐵1 𝜕

𝑀𝜏 = 1Σ𝐵♮ . Thus, the map

𝐻♮ ⊕ Cone 1𝐵♮ = 𝐻♮ ⊕ 𝐵♮ ⊕ Σ𝐵♮ −→ 𝑀♮

given by (𝜀𝜎 𝜀𝜄 𝜏) is an isomorphism of graded 𝑅-modules. In fact, it is an isomor-
phism of complexes as one has

𝜕𝑀
(
𝜀𝜎 𝜀𝜄 𝜏

)
=

(
0 0 𝜕𝑀𝜏

)
=

(
𝜀𝜎 𝜀𝜄 𝜏

) ©«
0 0 0
0 0 𝜍Σ𝐵−1
0 0 0

ª®¬ =
(
𝜀𝜎 𝜀𝜄 𝜏

)
𝜕𝐻 ⊕ Cone 1𝐵 . □

4.2.18 Corollary. Let 𝑅 be semi-simple. For every 𝑅-complex 𝑀 there are quasi-
isomorphisms H(𝑀) → 𝑀 and 𝑀 → H(𝑀).

Proof. This follows from 4.2.17, as the complex Cone 1B (𝑀 ) is acyclic by 4.2.16.
□

For use in Chap. 6 we record another case of complexes that can be compared to
their homology via quasi-isomorphisms.

4.2.19 Lemma. Assume that 𝑅 is a principal left ideal domain. For every complex
𝐿 of free 𝑅-modules there is a quasi-isomorphism 𝐿 → H(𝐿).

Proof. For every 𝑣 ∈ ℤ let𝐾𝑣 be the complex 0→ B𝑣 (𝐿) → Z𝑣 (𝐿) → 0 concentra-
ted in degrees 𝑣 + 1 and 𝑣. There is a quasi-isomorphism 𝐾𝑣 → Σ𝑣H𝑣 (𝐿) and hence
by 4.2.11 a quasi-isomorphism 𝐾 → ∐

𝑣∈ℤ Σ𝑣H𝑣 (𝐿) = H(𝐿) where 𝐾 =
∐
𝑣∈ℤ 𝐾

𝑣.
For every 𝑣 ∈ ℤ the exact sequence 0 → Z𝑣 (𝐿) → 𝐿𝑣 → B𝑣−1 (𝐿) → 0 is split in
M(𝑅). Indeed, B𝑣−1 (𝐿) is a submodule of the free module 𝐿𝑣−1, so by 1.3.11 it is
itself free and, in particular, projective. Thus, by 1.3.17 there are isomorphisms

𝐿𝑣 −→ Z𝑣 (𝐿) ⊕ B𝑣−1 (𝐿) ,

which yield an isomorphism of complexes 𝐿 → 𝐾 . By composing this with the
already established quasi-isomorphism 𝐾 → H(𝐿) the assertion follows. □

Remark. The proof of 4.2.19 only uses that submodules of free modules are free over a principal
left ideal domain. In view of E 1.3.17 one can repurpose the argument to prove that there is a
quasi-isomorphism 𝑃 −→ H(𝑃) for every complex 𝑃 of projective modules over a left hereditary
ring; see E 5.2.3.
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Exercises

E 4.2.1 Show that a homomorphism of 𝑅-modules is an isomorphism if and only if it is a
quasi-isomorphism when considered as a morphism of complexes.

E 4.2.2 Let 𝛼, 𝛽, and 𝛾 be morphisms of 𝑅-complexes. Show that if 𝛼𝛽 and 𝛽𝛾 are quasi-iso-
morphisms, then 𝛼, 𝛽, and 𝛾 are quasi-isomorphisms.

E 4.2.3 Show that a sequence of 𝑅-modules 0 −→ 𝑀 ′
𝛼′−→ 𝑀

𝛼−→ 𝑀 ′′ −→ 0 with 𝛼𝛼′ = 0 is
exact if one of the morphisms of complexes defined by the diagrams

0 //

��

𝑀 ′ //

𝛼′

��

0

��

0 // 𝑀
𝛼
// 𝑀 ′′ // 0

and
0 // 𝑀 ′

𝛼′
//

��

𝑀

𝛼

��

// 0

��

0 // 𝑀 ′′ // 0
is a quasi-isomorphism and only if they both are quasi-isomorphisms.

E 4.2.4 Show that the ℤ/4ℤ-complexes
0 −→ ℤ/4ℤ 2−−→ ℤ/4ℤ −→ 0 and 0 −→ ℤ/2ℤ 0−−→ ℤ/2ℤ −→ 0

have isomorphic homology but that there is no quasi-isomorphism in either direction.
E 4.2.5 Show that there are surjective quasi-isomorphisms from the Koszul complex K𝑅 (𝑥, 𝑦)

to each of the complexes 𝑀 and 𝑁 in 4.2.3. Decide if there are quasi-isomorphisms in
the opposite direction 𝑀 → K𝑅 (𝑥, 𝑦) and 𝑁 → K𝑅 (𝑥, 𝑦) .

E 4.2.6 Let 𝛼 be a quasi-isomorphism of 𝑅-complexes. Show that the following conditions are
equivalent: (i) 𝛼 is injective; (ii) 𝛼 is injective on boundaries; (iii) 𝛼 is injective on
cokernels; (iv) 𝛼 is injective on boundaries and on cokernels.

E 4.2.7 Show that the Koszul complexes Kℤ (2, 3) and Kℤ (4, 5) are acyclic. Decide if there
is a non-zero quasi-isomorphism Kℤ (2, 3) → Kℤ (4, 5) or Kℤ (4, 5) → Kℤ (2, 3);
cf. E 2.1.11.

E 4.2.8 Assume that 𝑅 is commutative. For elements 𝑥1, . . . , 𝑥𝑚 and 𝑦1, . . . , 𝑦𝑛 in 𝑅, show that if
the Koszul complexes K𝑅 (𝑥1, . . . , 𝑥𝑚 ) and K𝑅 (𝑦1, . . . , 𝑦𝑛 ) have isomorphic homology,
then they are acyclic or one has (𝑥1, . . . , 𝑥𝑚 ) = (𝑦1, . . . , 𝑦𝑛 ) and 𝑚 = 𝑛.

E 4.2.9 Show that a graded 𝑅-module 𝑀 is semi-simple if and only if each 𝑀𝑣 is semi-simple.
E 4.2.10 Let 𝑀 and 𝑁 be 𝑅-complexes such that H(𝑀 ) is a complex of projective 𝑅-modules.

Show that there is an isomorphism H(Hom𝑅 (H(𝑀 ) , 𝑁 ) ) � Hom𝑅 (H(𝑀 ) ,H(𝑁 ) )
given by [𝛼] ↦→ H(𝛼) . Conclude that there is a quasi-isomorphism H(𝑀 ) → 𝑀.

E 4.2.11 Let 𝑀 and 𝑁 be 𝑅-complexes such that H(𝑁 ) is a complex of injective 𝑅-modules.
Show that there is an isomorphism H(Hom𝑅 (𝑀,H(𝑁 ) ) ) � Hom𝑅 (H(𝑀 ) ,H(𝑁 ) )
given by [𝛼] ↦→ H(𝛼) . Conclude that there is a quasi-isomorphism 𝑁 → H(𝑁 ) .

4.3 Homotopy Equivalences

Synopsis. Homotopy equivalence; functor that preserves homotopy; contractible complex; mapping
cylinder; ∼ sequence.

The class of morphisms treated in this section sits in between isomorphisms and
quasi-isomorphisms. While isomorphisms are preserved by all functors and quasi-
isomorphisms only by special functors, these morphisms are preserved by the func-
tors we care most about, among them the Hom and tensor product functors.
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4.3.1 Definition. A morphism of 𝑅-complexes 𝛼 : 𝑀 → 𝑁 is called a homotopy
equivalence if there is a morphism 𝛽 : 𝑁 → 𝑀 such that 1𝑀 − 𝛽𝛼 and 1𝑁 − 𝛼𝛽
are null-homotopic, that is, 𝛽𝛼 ∼ 1𝑀 and 𝛼𝛽 ∼ 1𝑁 ; such a morphism 𝛽 is called a
homotopy inverse of 𝛼. A homotopy equivalence is marked by a ‘≊’ next to the arrow.

If there exists a homotopy equivalence 𝛼 : 𝑀 → 𝑁 , then the complexes 𝑀 and 𝑁
are called homotopy equivalent.

4.3.2 Example. Let 𝑀 be an 𝑅-module and 𝑣 an integer. Consider the disk complex
from 2.5.29; the morphism D𝑣 (𝑀) → 0 is a homotopy equivalence by 2.2.24.

A homotopy inverse is unique up to homotopy.

4.3.3 Lemma. Let 𝛼 : 𝑀 → 𝑁 and 𝛽, 𝛽′ : 𝑁 → 𝑀 be morphisms in C(𝑅). If 1𝑀 ∼
𝛽𝛼 and 1𝑁 ∼ 𝛼𝛽′ hold, then 𝛽 and 𝛽′ are homotopy inverses of 𝛼 and they are
homotopic.

Proof. By 2.2.25 one has 𝛽 = 𝛽1𝑁 ∼ 𝛽𝛼𝛽′ ∼ 1𝑀 𝛽′ = 𝛽′. Another application of
2.2.25 yields 1𝑁 ∼ 𝛼𝛽′ ∼ 𝛼𝛽, so 𝛽 is a homotopy inverse of 𝛼; a similar computation
shows that 𝛽′ is a homotopy inverse of 𝛼. □

4.3.4 Lemma. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes.
(a) If 𝛼 is an isomorphism, then 𝛼−1 is a homotopy inverse of 𝛼.
(b) If 𝛼 is a homotopy equivalence with homotopy inverse 𝛽, then 𝛼 is a quasi-

isomorphism with H(𝛼)−1 = H(𝛽) .

Proof. Part (a) is evident as the composites 𝛼−1𝛼 and 𝛼𝛼−1 even equal the identities
on 𝑀 and 𝑁 . Part (b) follows from 2.2.26. □

Notice that the quasi-isomorphism in 4.2.2 is not a homotopy equivalence.
Homotopy equivalences constitute an important class of quasi-isomorphisms;

one reason is that they are often easier to detect than general quasi-isomorphisms.
Indeed, to confirm that a morphism is a quasi-isomorphism, one has to compute
homology: either to check directly that the induced morphism in homology is an
isomorphism or to check that the mapping cone is acyclic. To detect a homotopy
equivalence, one only has to find a homotopy inverse.

A quasi-isomorphism between complexes with different levels of complication
can simplify the task of computing homology. To compute the singular homology of,
say, some convex subset 𝑋 of ℝ𝑛 directly from the definition could be complicated.
The next example, however, shows that the singular chain complexes S(𝑝𝑡) and
S(𝑋) are homotopy equivalent, in particular they have isomorphic homology, and
the singular homology of the one-point space 𝑝𝑡 was computed with ease in 2.2.10.

4.3.5 Example. Let 𝑋 be a contractible topological space. That is, there is a point
𝑥0 in 𝑋 such that the identity map 1𝑋 : 𝑋 → 𝑋 and the constant map 𝑐 : 𝑋 → 𝑋 with
value 𝑥0 are homotopic, meaning that there is a continuous map 𝐻 : 𝑋 × [0, 1] → 𝑋

with 𝐻 (𝑥, 0) = 𝑥 and 𝐻 (𝑥, 1) = 𝑥0 for all 𝑥 ∈ 𝑋 . The continuous map 𝜋 : 𝑋 → {𝑥0}
induces a morphism of singular chain complexes, see 2.1.26 and 2.2.10,
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S(𝑋) = · · ·

𝜋∗

��

// ℤ⟨C(Δ2, 𝑋) ⟩

𝜋◦
��

𝜕𝑋2
// ℤ⟨C(Δ1, 𝑋) ⟩

𝜋◦
��

𝜕𝑋1
// ℤ⟨C(Δ0, 𝑋) ⟩

𝜋◦
��

// 0

S({𝑥0}) = · · · // ℤ⟨𝜎2 ⟩
𝜕
{𝑥0 }
2

// ℤ⟨𝜎1 ⟩
𝜕
{𝑥0 }
1

// ℤ⟨𝜎0 ⟩ // 0 .

The morphism 𝜋∗ is a homotopy equivalence with homotopy inverse 𝜄∗ induced by
the embedding 𝜄 : {𝑥0}↣ 𝑋 . In particular, the spaces 𝑋 and {𝑥0} have isomorphic
singular homology by 4.3.4. Moreover, it follows from 2.2.10 and 4.3.2 that the
complex S({𝑥0}), and hence also S(𝑋), is homotopy equivalent to the complex with
ℤ in degree 0 and zero elsewhere.

To describe the functors that preserve homotopy equivalences, we use a technical
construction known as the mapping cylinder. Before starting down that road we
notice that homotopy equivalences are preserved by (co)products.

4.3.6 Proposition. Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 be a family or morphisms in C(𝑅). If
𝛼𝑢 is a homotopy equivalence for every 𝑢 ∈ 𝑈, then the coproduct

∐
𝑢∈𝑈 𝛼

𝑢 and the
product

∏
𝑢∈𝑈 𝛼

𝑢 are homotopy equivalences.

Proof. Let 𝛽𝑢 be a homotopy inverse to 𝛼𝑢. It follows from 3.1.7 that the morphism∐
𝑢∈𝑈 (1𝑀

𝑢 − 𝛽𝑢𝛼𝑢) is null-homotopic, and by 3.1.5 one has∐
𝑢∈𝑈
(1𝑀𝑢 − 𝛽𝑢𝛼𝑢) = ∐

𝑢∈𝑈
1𝑀

𝑢 − ∐
𝑢∈𝑈

𝛽𝑢𝛼𝑢 = 1
∐
𝑢∈𝑈 𝑀

𝑢 −
( ∐
𝑢∈𝑈

𝛽𝑢
) ( ∐
𝑢∈𝑈

𝛼𝑢
)
.

By symmetry, the morphism 1
∐
𝑢∈𝑈 𝑁

𝑢 − (∐𝑢∈𝑈 𝛼
𝑢) (∐𝑢∈𝑈 𝛽

𝑢) is null-homotopic,
so

∐
𝑢∈𝑈 𝛼

𝑢 is a homotopy equivalence with homotopy inverse
∐
𝑢∈𝑈 𝛽

𝑢.
A parallel argument based on 3.1.19 and 3.1.17 shows that the morphism

∏
𝑢∈𝑈 𝛼

𝑢

is a homotopy equivalence. □

Mapping Cylinder

4.3.7 Definition. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes. The mapping
cylinder of 𝛼 is the complex with underlying graded module

(Cyl𝛼)♮ =

𝑁 ♮

⊕
Σ𝑀♮

⊕
𝑀♮

and differential 𝜕Cyl 𝛼 =
©«
𝜕𝑁 𝛼𝜍Σ𝑀−1 0
0 𝜕Σ𝑀 0
0 −𝜍Σ𝑀−1 𝜕𝑀

ª®¬ .
4.3.8. A straightforward computation shows that 𝜕Cyl 𝛼 is square zero,

𝜕Cyl 𝛼𝜕Cyl 𝛼 =
©«
𝜕𝑁𝜕𝑁 𝜕𝑁𝛼𝜍Σ𝑀−1 + 𝛼𝜍

Σ𝑀
−1 𝜕Σ𝑀 0

0 𝜕Σ𝑀𝜕Σ𝑀 0
0 −𝜍Σ𝑀−1 𝜕Σ𝑀 − 𝜕𝑀𝜍Σ𝑀−1 𝜕𝑀𝜕𝑀

ª®¬ = 0 ;

it uses that 𝛼 is a morphism and that 𝜍Σ𝑀−1 is a degree −1 chain map.
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Given a morphism 𝛼 : 𝑀 → 𝑁 of 𝑅-complexes, the embedding of 𝑀 into Cyl𝛼
is evidently a morphism, and an elementary computation shows that the surjection
onto Cone𝛼 is a morphism as well.

4.3.9 Definition. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes. The degreewise
split exact sequence of 𝑅-complexes,

0 −→ 𝑀

( 0
0

1𝑀

)
−−−−−→ Cyl𝛼

(
1𝑁 0 0
0 1Σ𝑀 0

)
−−−−−−−−−−→ Cone𝛼 −→ 0 ,

is called the mapping cylinder sequence of 𝛼.

4.3.10 Lemma. For every short exact sequence 0 −−→ 𝑀
𝛼−−→ 𝑁

𝛽−−→ 𝑋 −−→ 0 of
𝑅-complexes, there is a commutative diagram with exact rows,

0 // 𝑀

𝜄 =

( 0
0

1𝑀

)
// Cyl𝛼

𝜋 =

(
1𝑁 0 0
0 1Σ𝑀 0

)
//

𝛼 = ( 1𝑁 0 𝛼 )
��

Cone𝛼 //

𝛽 = ( 𝛽 0 )
��

0

0 // 𝑀
𝛼

// 𝑁
𝛽

// 𝑋 // 0 .

The morphism 𝛼 is a homotopy equivalence with homotopy inverse 𝜀 = (1𝑁 0 0)t
and 𝛽 is a quasi-isomorphism.

Proof. The upper row is the mapping cylinder sequence of 𝛼 from 4.3.9 and the
lower row is exact by assumption. The next computations show that 𝛼 and 𝛽 are
morphisms. One has

𝜕𝑁
(
1𝑁 0 𝛼

)
=

(
𝜕𝑁 0 𝜕𝑁𝛼

)
=

(
𝜕𝑁 0 𝛼𝜕𝑀

)
=

(
1𝑁 0 𝛼

) ©«
𝜕𝑁 𝛼𝜍Σ𝑀−1 0
0 𝜕Σ𝑀 0
0 −𝜍Σ𝑀−1 𝜕𝑀

ª®¬
and

𝜕𝑋
(
𝛽 0

)
=

(
𝜕𝑋𝛽 0

)
=

(
𝛽𝜕𝑁 0

)
=

(
𝛽 0

) (
𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

)
.

As the composite 𝛽𝛼 is zero, it is evident that the diagram is commutative. It is
evident that 𝜀 is a morphism; to see that it is a homotopy inverse of 𝛼, consider the
degree 1 homomorphism,

𝜚 : Cyl𝛼 −→ Cyl𝛼 given by ©«
0 0 0
0 0 𝜍𝑀1
0 0 0

ª®¬ .
A simple calculation yields

𝜕Cyl 𝛼𝜚 + 𝜚𝜕Cyl 𝛼 =
©«
0 0 𝛼

0 −1Σ𝑀 0
0 0 −1𝑀

ª®¬ = 𝜀𝛼 − 1Cyl 𝛼 ;
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together with the identity 𝛼𝜀 = 1𝑁 it shows that 𝜀 is a homotopy inverse of 𝛼.
Note that 𝛽 is surjective with (Ker 𝛽)♮ = (Im𝛼)♮ ⊕ Σ𝑀♮. Let 𝜗 be the inverse to

𝛼 considered as an isomorphism 𝑀 → Im𝛼. Consider the degree 1 homomorphism,

𝜎 : Ker 𝛽 −→ Ker 𝛽 given by
(

0 0
𝜍𝑀1 𝜗 0

)
.

There are equalities,

𝜕
Ker 𝛽

𝜎 + 𝜎𝜕Ker 𝛽
=

(
𝛼𝜗 0

𝜕Σ𝑀𝜍𝑀1 𝜗 + 𝜍𝑀1 𝜗𝜕𝑁 𝜍𝑀1 𝜗𝛼𝜍Σ𝑀−1

)
= 1Ker 𝛽 ;

the last one follows as 𝜍𝑀1 𝜗 is a chain map of degree 1 and one has 𝛼𝜗 = 1Im 𝛼 and
𝜗𝛼 = 1Σ𝑀 . Thus, 1Ker 𝛽 is null-homotopic; in particular Ker 𝛽 is acyclic by 2.2.26,
whence it follows from 4.2.6 that 𝛽 is a quasi-isomorphism. □

4.3.11 Proposition. For every commutative diagram of 𝑅-complexes,

0 // 𝑀
𝛼
//

𝜑

��

𝑁
𝛽
//

𝜓

��

𝑋 //

𝜒

��

0

0 // 𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′ // 0 ,

with exact rows, there is a commutative diagram with exact rows,

0 // 𝑀 //

𝜑

��

Cyl𝛼 //(
𝜓 0 0
0 Σ𝜑 0
0 0 𝜑

)
= 𝜅

��
𝛼≊

��

Cone𝛼 //(
𝜓 0
0 Σ𝜑

)
=𝜆

��
𝛽≃

��

0

0 // 𝑀 ′ // Cyl𝛼′ //

𝛼′≊

��

Cone𝛼′ //

𝛽′≃

��

0

0 // 𝑀
𝛼

//

𝜑

��

𝑁
𝛽

//

𝜓

��

𝑋 //

𝜒

��

0 ,

0 // 𝑀 ′
𝛼′

// 𝑁 ′
𝛽′

// 𝑋 ′ // 0

where the upper rows and vertical morphisms are as in 4.3.10.

Proof. It is straightforward to verify that the maps 𝜅 and 𝜆 are morphisms of 𝑅-
complexes, and the top is evidently a commutative diagram. The front and back
are commutative diagrams by 4.3.10, and the bottom is a commutative diagram by
assumption. It follows immediately from the definitions of 𝛼, 𝛼′, 𝛽, and 𝛽′ that the
walls are commutative as well. □

Remark. If the exact sequence 0 −→ 𝑀
𝛼−→ 𝑁

𝛽−→ 𝑋 −→ 0 is degreewise split, then the morphism
𝛽 in 4.3.11 i a homotopy equivalence; see E 4.3.23.
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Functors that Preserve Homotopy

4.3.12 Definition. A functor F: C(𝑅) → C(𝑆) is said to preserve homotopy if for
every pair of morphisms 𝛼 ∼ 𝛽 in C(𝑅) one has F(𝛼) ∼ F(𝛽) in C(𝑆).

Preserving the homotopy relation is equivalent to preserving homotopy equiva-
lences, and for an additive functor it is the same as preserving null-homotopy.

4.3.13 Proposition. Let F: C(𝑅) → C(𝑆) be a functor. The following conditions are
equivalent.

(i) F preserves homotopy.
(ii) For every homotopy equivalence 𝛼 in C(𝑅) the morphism F(𝛼) in C(𝑆) is a

homotopy equivalence.
Moreover, if F is additive, then conditions (i) and (ii) are equivalent to
(iii) For every null-homotopic morphism 𝛼 in C(𝑅) the morphism F(𝛼) in C(𝑆) is

null-homotopic.

Proof. (i)⇒ (ii): Let𝛼 : 𝑀 → 𝑁 be a homotopy equivalence with homotopy inverse
𝛽. The assumptions yield F(𝛽) F(𝛼) ∼ 1F(𝑀 ) and F(𝛼) F(𝛽) ∼ 1F(𝑁 ) . Thus, F(𝛼) is
a homotopy equivalence with homotopy inverse F(𝛽).

(ii)⇒ (i): First, consider the following morphisms in C(𝑅),

𝑀

𝜀 =

(
1𝑀
0
0

)
//

𝜄 =

( 0
0

1𝑀

) // Cyl 1𝑀
𝜋 = ( 1𝑀 0 1𝑀 )

// 𝑀 .

Note that one has 𝜋𝜀 = 1𝑀 = 𝜋𝜄 and, consequently, F(𝜋) F(𝜀) = 1F(𝑀 ) = F(𝜋) F(𝜄)
in C(𝑆). The morphism 𝜋 is by 4.3.10 a homotopy equivalence, and hence so is F(𝜋)
by the assumption. Now, 4.3.3 yields F(𝜀) ∼ F(𝜄).

Let 𝛼, 𝛽 : 𝑀 → 𝑁 be homotopic morphisms of 𝑅-complexes and 𝜚 be a homotopy
from 𝛼 to 𝛽; that is, one has 𝛼 − 𝛽 = 𝜕𝑁 𝜚 + 𝜚𝜕𝑀 . The degree 0 homomorphism
𝛾 = (𝛼 𝜚𝜍Σ𝑀−1 𝛽) : Cyl 1𝑀 → 𝑁 is a morphism by the following computation,

𝜕𝑁
(
𝛼 𝜚𝜍Σ𝑀−1 𝛽

)
=

(
𝜕𝑁𝛼 (𝛼 − 𝛽 − 𝜚𝜕𝑀 )𝜍Σ𝑀−1 𝜕𝑁 𝛽

)
=

(
𝛼𝜕𝑀 𝛼𝜍Σ𝑀−1 + 𝜚𝜍

Σ𝑀
−1 𝜕Σ𝑀 − 𝛽𝜍Σ𝑀−1 𝛽𝜕𝑀

)
=

(
𝛼 𝜚𝜍Σ𝑀−1 𝛽

) ©«
𝜕𝑀 𝜍Σ𝑀−1 0
0 𝜕Σ𝑀 0
0 −𝜍Σ𝑀−1 𝜕𝑀

ª®¬ ,
which uses 2.2.5. Finally, the equalities 𝛼 = 𝛾𝜀 and 𝛾𝜄 = 𝛽 and 2.2.25 yield
F(𝛼) = F(𝛾) F(𝜀) ∼ F(𝛾) F(𝜄) = F(𝛽).

Assuming that F is additive, it follows immediately from the definition 2.2.23 of
‘∼’ that conditions (i) and (iii) are equivalent. □
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4.3.14 Definition. A morphism 𝑀 ′ → 𝑀 in C(𝑅)op is called null-homotopic
(a quasi-isomorphism, a homotopy equivalence) if the corresponding morphism
𝑀 → 𝑀 ′ inC(𝑅) is null-homotopic (a quasi-isomorphism, a homotopy equivalence)
as defined in 2.2.23 (in 4.2.1, in 4.3.1). Accordingly, morphisms 𝛼, 𝛽 : 𝑀 ′ → 𝑀 in
C(𝑅)op are called homotopic, and one writes 𝛼 ∼ 𝛽, if the corresponding morphisms
𝑀 → 𝑀 ′ in C(𝑅) are homotopic per 2.2.23.

A functor G: C(𝑅)op → C(𝑆) is said to preserve homotopy if for every pair of
morphisms 𝛼 ∼ 𝛽 in C(𝑅)op one has G(𝛼) ∼ G(𝛽) in C(𝑆).

4.3.15 Proposition. Let G: C(𝑅)op → C(𝑆) be a functor. The following conditions
are equivalent.

(i) G preserves homotopy.
(ii) For every homotopy equivalence 𝛼 in C(𝑅)op the morphism G(𝛼) in C(𝑆) is a

homotopy equivalence.
Moreover, if G is additive, then conditions (i) and (ii) are equivalent to
(iii) For every null-homotopic morphism 𝛼 in C(𝑅)op the morphism G(𝛼) in C(𝑆)

is null-homotopic.

Proof. The assertions follow from an argument parallel to the proof of 4.3.13. □

4.3.16 Example. The shift functor, Σ, preserves homotopy.

4.3.17 Example. The homology functor, H, preserves homotopy by 2.2.26.

4.3.18 Example. A functor on 𝑅-complexes that is extended from an additive functor
on 𝑅-modules, as described in 2.1.48, preserves homotopy. One example of such a
functor is localization at a multiplicative subset of a commutative ring, see 2.1.50.

See 4.3.28 for examples of functors do not preserve homotopy.

4.3.19 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. The functors Hom𝑅 (𝑀, ) and
Hom𝑅 ( , 𝑁) preserve homotopy.

Proof. The assertions follow immediately from 2.3.8. □

4.3.20 Proposition. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. The functors
𝑀 ⊗𝑅 and ⊗𝑅 𝑁 preserve homotopy.

Proof. The assertions follow immediately from 2.4.7. □

4.3.21 Proposition. For all 𝑛 ∈ ℤ, the functors ( )Ď𝑛 and ( )Ě𝑛 preserve homotopy.

Proof. Let 𝛼 : 𝑀 → 𝑁 be null-homotopic and 𝜎 : 𝑀 → 𝑁 a degree 1 homomor-
phism with 𝛼 = 𝜕𝑁𝜎+𝜎𝜕𝑀 . The degree 1 homomorphism𝜎 : 𝑀Ě𝑛 → 𝑁Ě𝑛 defined
by 𝜎𝑣 = 𝜎𝑣 for 𝑣 > 𝑛 and 𝜎𝑛 = 𝜎𝑛 |Z𝑛 (𝑀 ) , and of course 𝜎𝑣 = 0 for 𝑣 < 𝑛, satisfies
𝛼Ě𝑛 = 𝜕

𝑁Ě𝑛𝜎 + 𝜎𝜕𝑀Ě𝑛 ; thus 𝛼Ě𝑛 is null-homotopic.
A similar argument shows that 𝛼Ď𝑛 is null-homotopic. □
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Contractible Complexes

An acyclic complex 𝐴 is characterized by the unique morphism 𝐴→ 0 being a quasi-
isomorphism. Next we consider complexes for which it is a homotopy equivalence.

4.3.22 Definition. An 𝑅-complex 𝑀 is called contractible if the identity morphism
1𝑀 is null-homotopic; a homotopy between 1𝑀 and 0 is called a contraction of 𝑀 .

Remark. Other words for contractible are ‘split exact’ and ‘homotopically trivial’.

4.3.23 Example. Let 𝑀 be an 𝑅-module and 𝑣 and integer. The disk complex D𝑣 (𝑀)
is contractible; see 4.3.2.

The disk complexes are atomic contractible complexes in the sense that every such
complex is a coproduct of countably many disk complexes. By 4.3.6 a coproduct of
disk complexes is contractible, and the converse comes in 4.3.32; cf. 4.1.4.

4.3.24. The complex 𝐿 constructed in 2.5.29 is a coproduct
∐
𝑣∈ℤ D𝑣 (𝐹𝑣). Thus, for

every 𝑅-complex 𝑀 there is by 2.5.30 a surjective morphism 𝐿 → 𝑀 where 𝐿 is a
contractible complex of free 𝑅-modules.

4.3.25 Example. Assume that 𝑅 is commutative. Let 𝑥1 and 𝑥2 be elements in 𝑅
with (𝑥1, 𝑥2) = 𝑅 and choose 𝑙1, 𝑙2 ∈ 𝑅 with 𝑙1𝑥1 + 𝑙2𝑥2 = 1. Set 𝐾 = K𝑅 (𝑥1, 𝑥2);
cf. 2.1.25. The degree 1 homomorphism 𝜎 : 𝐾 → 𝐾 whose non-zero components
𝜎0 and 𝜎1 are given by

1 ↦−→ 𝑙1𝑒1 + 𝑙2𝑒2 and
𝑒1 ↦−→ −𝑙2𝑒1 ∧ 𝑒2

𝑒2 ↦−→ 𝑙1𝑒1 ∧ 𝑒2

satisfies 𝜕𝐾𝜎 + 𝜎𝜕𝐾 = 1𝐾 , whence 𝐾 is contractible.

4.3.26 Example. If 𝑀 is a contractible 𝑅-complex, then 1H (𝑀 ) = H(1𝑀 ) = 0 holds,
see 2.2.26, so 𝑀 is acyclic.

4.3.27. Every additive functor F: C(𝑅) → C(𝑆), or G: C(𝑅)op → C(𝑆), that pre-
serves homotopy preserves contractability of complexes; see 4.3.13 and 4.3.15.

4.3.28 Example. The functors B,C,Z: C(𝑅) → C(𝑅), see 2.2.13, are 𝕜-linear but
do not preserve homotopy. Indeed, let 𝑀 ≠ 0 be an 𝑅-module and consider the
contractible complex 𝐷 = D1 (𝑀) from 4.3.23. The complexes B(𝐷) = Z(𝐷) = 𝑀
and C(𝐷) = Σ𝑀 are not acyclic and hence not contractible by 4.3.26. The assertion
now follows from 4.3.27.

The Hom functor not only preserves contractability, it detects it in a strong sense.

4.3.29 Proposition. For an 𝑅-complex 𝑀 , the following conditions are equivalent.
(i) 𝑀 is contractible.
(ii) Hom𝑅 (𝐾, 𝑀) is contractible for every 𝑅-complex 𝐾 .
(iii) Hom𝑅 (𝐾, 𝑀) is acyclic for every 𝑅-complex 𝐾 .
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(iv) Hom𝑅 (𝑀, 𝑁) is contractible for every 𝑅-complex 𝑁 .
(v) Hom𝑅 (𝑀, 𝑁) is acyclic for every 𝑅-complex 𝑁 .
(vi) Hom𝑅 (𝑀, 𝑀) is acyclic.
(vii) H0 (Hom𝑅 (𝑀, 𝑀)) = 0 .

Proof. Condition (i) implies (ii), and (iv) by 4.3.19. The implications (ii)⇒ (iii)
and (iv)⇒ (v) are evident, see 4.3.26, and (iii)⇒ (vi), (v)⇒ (vi), and (vi)⇒ (vii)
are trivial. It follows from (vii) and 2.3.10 that the morphism 1𝑀 is null-homotopic;
this proves (vii)⇒ (i). □

Remark. Given a contractible 𝑅-complex 𝑀 it follows from 4.3.20 that 𝑁 ⊗𝑅 𝑀 is contractible
for every 𝑅o-complex 𝑁 . The converse fails: Let 0 → 𝑀2 → 𝑀1 → 𝑀0 → 0 be a sequence in
M(𝑅) that is pure exact but not split. Considered as a complex 𝑀 of 𝑅-modules it is thus acyclic
but not contractible, see 2.2.27. For every 𝑅o-complex 𝑁 the 𝕜-complex 𝑁 ⊗𝑅 𝑀 is acyclic by
5.5.14 and A.10, so if 𝕜 is semi-simple, e.g. a field, then 𝑁 ⊗𝑅 𝑀 is contractible; see E 4.3.3.

Mapping Cone of a Homotopy Equivalence

Homotopy equivalences are a robust type of quasi-isomorphisms and their mapping
cones are likewise acyclic for a prominent reason.

4.3.30 Theorem. A morphism 𝛼 of 𝑅-complexes is a homotopy equivalence if and
only if the complex Cone𝛼 is contractible.

Proof. Let 𝛼 : 𝑀 → 𝑁 be a morphism and set 𝐶 = Cone𝛼.
If 𝛼 is a homotopy equivalence, then by 4.3.19 so is Hom𝑅 (𝐶, 𝛼). In particular,

Hom𝑅 (𝐶, 𝛼) is a quasi-isomorphism by 4.3.4, and it follows from 4.2.16 that the
complex Cone Hom𝑅 (𝐶, 𝛼) is acyclic. Since Hom𝑅 (𝐶,𝐶) � Cone Hom𝑅 (𝐶, 𝛼)
holds by 4.1.16, the complex Hom𝑅 (𝐶,𝐶) is acyclic; thus𝐶 is contractible by 4.3.29.

For the converse, assume that Cone𝛼 is contractible and let 𝜐 : Cone𝛼→ Cone𝛼
be a degree 1 homomorphism with 1Cone 𝛼 = 𝜕Cone 𝛼𝜐 + 𝜐𝜕Cone 𝛼. It has the form

𝜐 =

(
𝜈 𝜎

𝜏 Σ𝜇

)
for homomorphisms 𝜈 : 𝑁 → 𝑁 , 𝜎 : Σ𝑀 → 𝑁 , 𝜏 : 𝑁 → Σ𝑀 , and 𝜇 : 𝑀 → 𝑀 of
degree 1. There are equalities,(

1𝑁 0
0 1Σ𝑀

)
=

(
𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

) (
𝜈 𝜎

𝜏 Σ𝜇

)
+

(
𝜈 𝜎

𝜏 Σ𝜇

) (
𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

)
=

(
𝜕𝑁 𝜈 + 𝛼𝜍Σ𝑀−1 𝜏 + 𝜈𝜕

𝑁 𝜕𝑁𝜎 + 𝛼𝜍Σ𝑀−1 Σ𝜇 + 𝜈𝛼𝜍Σ𝑀−1 + 𝜎𝜕
Σ𝑀

𝜕Σ𝑀𝜏 + 𝜏𝜕𝑁 𝜕Σ𝑀Σ𝜇 + 𝜏𝛼𝜍Σ𝑀−1 + (Σ𝜇)𝜕
Σ𝑀

)
.

Comparison of entries yields

0 = 𝜕Σ𝑀𝜏 + 𝜏𝜕𝑁 ,
1𝑁 = 𝜕𝑁 𝜈 + 𝛼𝜍Σ𝑀−1 𝜏 + 𝜈𝜕

𝑁 , and
1Σ𝑀 = 𝜕Σ𝑀Σ𝜇 + 𝜏𝛼𝜍Σ𝑀−1 + (Σ𝜇)𝜕

Σ𝑀 .
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The first equality shows that 𝜏 is a chain map, whence 𝜍Σ𝑀−1 𝜏 : 𝑁 → 𝑀 is a morphism.
The second equality yields 1𝑁 ∼ 𝛼𝜍Σ𝑀−1 𝜏. An application of Σ−1 to the third equality
yields 1𝑀 = −𝜕𝑀𝜇 + 𝜍Σ𝑀−1 𝜏𝛼 − 𝜇𝜕

𝑀 ; that is, 1𝑀 ∼ 𝜍Σ𝑀−1 𝜏𝛼, whence the morphism
𝜍Σ𝑀−1 𝜏 is a homotopy inverse of 𝛼. □

4.3.31 Corollary. If 𝛼 is an isomorphism of 𝑅-complexes, then the complex Cone𝛼
is contractible.

While a morphism with contractible mapping cone need not be an isomorphism,
every contractible complex is isomorphic to the mapping cone of an isomorphism.

4.3.32 Proposition. For an 𝑅-complex 𝑀 , the following conditions are equivalent.
(i) 𝑀 is contractible.
(ii) There is a graded 𝑅-module 𝑁 with 𝑀 � Cone 1𝑁 .
(iii) There are graded 𝑅-modules𝑀 ′ and𝑀 ′′ with𝑀♮ = 𝑀 ′⊕𝑀 ′′ and 𝜕𝑀 |𝑀′ = 0,

such that 𝜕𝑀 |𝑀′′ yields an isomorphism 𝑀 ′′ � Σ𝑀 ′.

Proof. Condition (ii) implies (i) by 4.3.31.
(i)⇒ (iii): By assumption there is a homomorphism 𝜎 : 𝑀 → 𝑀 of degree 1

such that 𝜕𝑀𝜎 + 𝜎𝜕𝑀 = 1𝑀 holds. The endomorphism 𝜀 = 𝜎𝜕𝑀 of 𝑀♮ satisfies

𝜀2 = (𝜎𝜕𝑀 ) (1𝑀 − 𝜕𝑀𝜎) = 𝜀 and 1𝑀 − 𝜀 = 𝜕𝑀𝜎 ,

whence there is an equality 𝑀♮ = 𝑀 ′ ⊕ 𝑀 ′′ with 𝑀 ′ = Im 𝜕𝑀𝜎 and 𝑀 ′′ = Im 𝜀.
Evidently, one has 𝜕𝑀 |𝑀′ = 0 and, therefore,

𝑀 ′ ⊆ B(𝑀) = 𝜕𝑀 (𝑀 ′′) = 𝜕𝑀𝜎𝜕𝑀 (𝑀) ⊆ 𝜕𝑀𝜎(𝑀) = 𝑀 ′ .

It follows that 𝜕𝑀 |𝑀′′ is a surjective homomorphism 𝑀 ′′ → 𝑀 ′ of degree −1.
To see that 𝜕𝑀 |𝑀′′ is injective, let 𝑚′′ = 𝜀(𝑚) be an element in 𝑀 ′′ with 0 =

𝜕𝑀 (𝑚′′) = 𝜕𝑀𝜎𝜕𝑀 (𝑚). Now one has 0 = 𝜎𝜕𝑀𝜎𝜕𝑀 (𝑚) = 𝜀2 (𝑚) = 𝜀(𝑚) = 𝑚′′.
Thus, 𝜕𝑀 |𝑀′′ : 𝑀 ′′ → Σ𝑀 ′ is an isomorphism of graded modules.

(iii)⇒ (ii): It is straightforward to verify that the map given by the assignment
(𝑚′, 𝑚′′) ↦→ (𝑚′, 𝜕𝑀 (𝑚′′)) is an isomorphism of 𝑅-complexes𝑀 → Cone 1𝑀′ . □

4.3.33 Corollary. Let 𝑀 be an 𝑅-complex; it is contractible if and only if it is acyclic
and the exact sequence 0→ Z𝑣 (𝑀) → 𝑀𝑣 → Z𝑣−1 (𝑀) → 0 is split for every 𝑣 ∈ ℤ.

Proof. If 𝑀 is contractible then, per 4.3.26, it is acyclic, so one has B(𝑀) = Z(𝑀),
and the sequence

(†) 0 −→ Z𝑣 (𝑀) −→ 𝑀𝑣 −→ Z𝑣−1 (𝑀) −→ 0

is the degree 𝑣 part of the exact sequence 2.2.12(a). Further,𝑀 is by 4.3.32 isomorphic
to Cone 1𝑁 for a graded 𝑅-module 𝑁 . It follows that (†) is isomorphic to the sequence
0→ 𝑁𝑣 → 𝑁𝑣 ⊕ 𝑁𝑣−1 → 𝑁𝑣−1 → 0, see 4.1.1, whence (†) is split by 2.1.47.

Conversely, if 𝑀 is acyclic and the exact sequence (†) is split for every 𝑣 ∈ ℤ,
then there is a homomorphism 𝜎 : ΣZ(𝑀) → 𝑀 with 𝜎𝜕𝑀 = 1ΣZ (𝑀 ) . Thus, there
is an equality 𝑀♮ = Z(𝑀) ⊕ 𝜎(ΣZ(𝑀)), and so 𝑀 is contractible by 4.3.32. □
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Exercises

E 4.3.1 Let 𝛼, 𝛽, and 𝛾 be morphisms of 𝑅-complexes. Show that if 𝛼𝛽 and 𝛽𝛾 are homotopy
equivalences, then 𝛼, 𝛽, and 𝛾 are homotopy equivalences.

E 4.3.2 Let 𝛼 be a morphism in K(𝑅) . Show that if 𝛼 considered in K(𝕜) is a quasi-
isomorphism, then 𝛼 is a quasi-isomorphism. If 𝛼 considered in K(𝕜) is an iso-
morphism, is 𝛼 then an isomorphism?

E 4.3.3 Assume that 𝑅 is semi-simple. Show that every acyclic 𝑅-complex is contractible and
conclude that every quasi-isomorphism of 𝑅-complexes is a homotopy equivalence.

E 4.3.4 Let 𝑓 : 𝑋 → 𝑌 be a continuous map of topological spaces. The mapping cone, Cone 𝑓 ,
is defined as the quotient space of (𝑋 × [0, 1] )⊎𝑌 with respect to the equivalence
relation (𝑥, 0) ∼ (𝑥′, 0) and (𝑥, 1) ∼ 𝑓 (𝑥 ) for all 𝑥, 𝑥′ ∈ 𝑋. Denote by S the singular
chain complex functor, cf. 2.1.26 and E 2.1.14. Show that the complexes S(Cone 𝑓 ) and
Cone S( 𝑓 ) are homotopy equivalent.

E 4.3.5 Show that every morphism that is homotopic to a homotopy equivalence is a homotopy
equivalence.

E 4.3.6 Let 𝛼 be a morphism of 𝑅-complexes; establish an isomorphism Cyl(Σ𝛼) � ΣCyl 𝛼.
E 4.3.7 Show that hard truncations do not preserve homotopy.
E 4.3.8 Consider a commutative diagram of 𝑅-complexes,

0 // 𝑀 ′ //

𝜑′

��

𝑀 //

𝜑

��

𝑀 ′′ //

𝜑′′

��

0

0 // 𝑁 ′ // 𝑁 // 𝑁 ′′ // 0 ,
with exact rows. Show that if two of the morphisms 𝜑′, 𝜑, and 𝜑′′ are homotopy
equivalences, the third need not be a homotopy equivalence.

E 4.3.9 (Cf. 4.3.18) Show that every functor on 𝑅-complexes that is extended from an additive
functor on 𝑅-modules preserves homotopy.

E 4.3.10 Show that an 𝑅-complex may be contractible as a 𝕜-complex but not as an 𝑅-complex.
E 4.3.11 Show that the ℤ/6ℤ-complex · · · −→ ℤ/6ℤ 2−→ ℤ/6ℤ 3−→ ℤ/6ℤ 2−→ ℤ/6ℤ 3−→ · · ·

is contractible.
E 4.3.12 Assume that 𝑅 is commutative. For elements 𝑥1, . . . , 𝑥𝑛 in 𝑅 with (𝑥1, . . . , 𝑥𝑛 ) = 𝑅,

show that the Koszul complex K𝑅 (𝑥1, . . . , 𝑥𝑛 ) is contractible.
E 4.3.13 Let 𝑀 be an 𝑅-complex; show that it is contractible if and only if the canonical sequence

0→ Z(𝑀 ) → 𝑀 → ΣZ(𝑀 ) → 0 is degreewise split exact.
E 4.3.14 Let 𝑀 be a contractible 𝑅-complex. Show that if 𝑀 is a complex of projective/injective/

flat modules, then so are the complexes B(𝑀 ) = Z(𝑀 ) and C(𝑀 ) .
E 4.3.15 Let 𝑀 be an 𝑅-complex such that the exact sequence 0→ Z(𝑀 ) → 𝑀 → ΣB(𝑀 ) →

0 is degreewise split. Show that 𝑀 is contractible if and only if it is acyclic. Conclude
that an acyclic complex 𝑀 is contractible if B(𝑀 ) = Z(𝑀 ) is a complex of projective
modules or a complex of injective modules.

E 4.3.16 Let 𝑅 be left hereditary. (a) Show that every acyclic complex of projective 𝑅-modules is
contractible. (b) Show that every acyclic complex of injective 𝑅-modules is contractible.

E 4.3.17 Let𝑀 be an 𝑅-complex. Show that if𝑀 is bounded above and H−𝑣 (Hom𝑅 (𝑀, 𝑀𝑣 ) ) =
0 holds for all 𝑣 ∈ ℤ, then 𝑀 is contractible. Hint: E A.1

E 4.3.18 Let𝑀 be an 𝑅-complex. Show that if𝑀 is bounded below and H𝑣 (Hom𝑅 (𝑀𝑣 , 𝑀 ) ) = 0
holds for all 𝑣 ∈ ℤ, then 𝑀 is contractible. Hint: E A.2

E 4.3.19 Show that a bounded below complex of projective 𝑅-modules is contractible if and only
if it is acyclic.

E 4.3.20 Show that a bounded above complex of injective 𝑅-modules is contractible if and only
if it is acyclic.
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E 4.3.21 Let 𝑀 be an 𝑅-complex. Show that there is an injective morphism 𝑀 → 𝐶 and a
surjective morphism 𝐶′ → 𝑀 in C(𝑅) with 𝐶 and 𝐶′ contractible.

E 4.3.22 Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes. (a) Show that 𝛼 factors as follows:
𝑀

𝜄−→ 𝑀 ′
𝛽−→ 𝑁 , where 𝜄 is an injective homotopy equivalence and 𝛽 is surjective.

(b) Show that 𝛼 factors as follows: 𝑀 𝛾−→ 𝑁 ′
𝜋−→ 𝑁 , where 𝛾 is injective and 𝜋 is a

surjective homotopy equivalence.
E 4.3.23 Let 0 −→ 𝑀

𝛼−→ 𝑁
𝛽−→ 𝑋 −→ 0 be a degreewise split exact sequence of 𝑅-complexes.

Show that the morphism 𝛽 in 4.3.11 is a homotopy equivalence with homotopy inverse
(𝜎 −𝜍𝑀1 𝜚𝜕𝑁𝜎)t where 𝜚 : 𝑁 → 𝑀 and 𝜎 : 𝑋 → 𝑁 are the splitting homomor-
phisms.

4.4 Standard Isomorphisms for Complexes

Synopsis. Unitor; counitor; commutativity; associativity; swap; adjunction.

Categories and functors were introduced in a 1945 paper by Eilenberg and MacLane
[76]. The title “General Theory of Natural Equivalences” is suggestive and MacLane
went on to write: “category” has been defined in order to be able to define “functor”
and “functor” has been defined in order to be able to define “natural transformation”
[175, I.4]. While category theory has evolved to become much more than a language
of “abstract nonsense”, natural transformations have not lost standing.

The standard isomorphisms from Sect. 1.2 are natural transformations of functors
on modules, in this section they are extended to complexes.

Unitor and Counitor

4.4.1. Let 𝑀 be an 𝑅-complex. There is an isomorphism in C(𝑅),

𝜇𝑀𝑅 : 𝑅 ⊗𝑅 𝑀 −→ 𝑀 given by 𝜇𝑀𝑅 (𝑟 ⊗ 𝑚) = 𝑟𝑚 ,

where 𝑚 ∈ 𝑀 is a homogeneous element. It is called the unitor, and it is natural
in 𝑀 . Moreover, if 𝑀 is a complex of 𝑅–𝑆o-bimodules, then it is an isomorphism
in C(𝑅–𝑆o). Finally, it follows from 2.2.5 and 4.1.18 that 𝜇

𝑅
as a natural transfor-

mation of functors is a Σ-transformation.

4.4.2. Let 𝑀 be an 𝑅-complex. There is an isomorphism in C(𝑅),

𝜖𝑀𝑅 : 𝑀 −→ Hom𝑅 (𝑅, 𝑀) given by 𝜖𝑀𝑅 (𝑚) (𝑟) = 𝑟𝑚 ,

where 𝑚 ∈ 𝑀 is a homogeneous element. It is called the counitor, and it is natural
in 𝑀 . Moreover, if 𝑀 is a complex of 𝑅–𝑆o-bimodules, then it is an isomorphism
in C(𝑅–𝑆o). Finally, it follows from 2.2.5 and 4.1.16 that 𝜖

𝑅
as a natural transforma-

tion of functors is a Σ-transformation.
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Commutativity

The next construction and the proposition that follows establish a commutativity
isomorphism for tensor products of complexes. It is based on, and it extends, the
isomorphism from 1.2.3.

4.4.3 Construction. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. The commu-
tativity isomorphism for modules 1.2.3 induces a natural isomorphism of graded
𝕜-modules, 𝑀 ⊗𝑅 𝑁 −−→ 𝑁 ⊗𝑅o 𝑀 , with the isomorphism in degree 𝑣 given by

(𝑀 ⊗𝑅 𝑁)𝑣 =
∐
𝑖∈ℤ

𝑀𝑖 ⊗𝑅 𝑁𝑣−𝑖
∐
𝑖∈ℤ (−1) (𝑣−𝑖)𝑖𝜐𝑀𝑖𝑁𝑣−𝑖−−−−−−−−−−−−−−−−−−→

∐
𝑖∈ℤ

𝑁𝑣−𝑖 ⊗𝑅o 𝑀𝑖 = (𝑁 ⊗𝑅o 𝑀)𝑣.

This isomorphism is also denoted 𝜐𝑀𝑁 . For homogeneous elements 𝑚 ∈ 𝑀 and
𝑛 ∈ 𝑁 it is given by

(4.4.3.1) 𝜐𝑀𝑁 (𝑚 ⊗ 𝑛) = (−1) |𝑛 | |𝑚 |𝑛 ⊗ 𝑚 .

Note that (4.4.3.1) agrees with the definition in 1.2.3 for modules 𝑀 and 𝑁 .

4.4.4 Proposition. Let𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. The commutativity
map defined in 4.4.3,

𝜐𝑀𝑁 : 𝑀 ⊗𝑅 𝑁 −→ 𝑁 ⊗𝑅o 𝑀 ,

is an isomorphism in C(𝕜), and it is natural in 𝑀 and 𝑁 . Moreover, if 𝑀 is in
C(𝑄–𝑅o) and 𝑁 is in C(𝑅–𝑆o), then 𝜐𝑀𝑁 is an isomorphism in C(𝑄–𝑆o). Finally,
as a natural transformation of functors, 𝜐 is a Σ-transformation in each variable.

Proof. By construction, 𝜐𝑀𝑁 is an isomorphism of graded 𝕜-modules and natural
in 𝑀 and 𝑁 . If 𝑀 is in C(𝑄–𝑅o) and 𝑁 is in C(𝑅–𝑆o), then 𝜐𝑀𝑁 is a natural iso-
morphism of graded𝑄–𝑆o-bimodules. This follows from 1.2.3 and the construction.
For homogeneous elements 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 one has

𝜐𝑀𝑁 (𝜕𝑀⊗𝑅𝑁 (𝑚 ⊗ 𝑛))
= 𝜐𝑀𝑁 (𝜕𝑀 (𝑚) ⊗ 𝑛 + (−1) |𝑚 |𝑚 ⊗ 𝜕𝑁 (𝑛))
= (−1) |𝑛 | ( |𝑚 |−1)𝑛 ⊗ 𝜕𝑀 (𝑚) + (−1) |𝑚 |+( |𝑛 |−1) |𝑚 |𝜕𝑁 (𝑛) ⊗ 𝑚
= (−1) |𝑛 | |𝑚 | (𝜕𝑁 (𝑛) ⊗ 𝑚 + (−1) |𝑛 |𝑛 ⊗ 𝜕𝑀 (𝑚))
= (−1) |𝑛 | |𝑚 | (𝜕𝑁⊗𝑅o𝑀 (𝑛 ⊗ 𝑚))
= 𝜕𝑁⊗𝑅o𝑀 (𝜐𝑀𝑁 (𝑚 ⊗ 𝑛)) .

Thus, 𝜐𝑀𝑁 is a morphism, and hence an isomorphism, of complexes. It follows from
2.2.5 combined with 4.1.18 and 4.1.19 that 𝜐 as a natural transformation of functors
is a Σ-transformation in each variable. □

4.4.5 Example. Assume that 𝑅 is commutative. For elements 𝑥1 and 𝑥2 in 𝑅 it is
immediate from 2.4.3 and commutativity 4.4.4 that the Koszul complexes K𝑅 (𝑥1, 𝑥2)
and K𝑅 (𝑥2, 𝑥1) are isomorphic.

8-Mar-2024 Draft - use at own risk



4.4 Standard Isomorphisms for Complexes 183

Associativity

We extend associativity 1.2.4 to an isomorphism of complexes and apply it to
describe the Koszul complex on a sequence of elements as the tensor poduct of
Koszul complexes on the individual elements.

4.4.6 Construction. Let 𝑀 be an 𝑅o-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules,
and 𝑁 an 𝑆-complex. The associativity isomorphism for modules 1.2.4 induces a
natural isomorphism (𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁 → 𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁) of graded 𝕜-modules. The
component in degree 𝑣 is induced by

∐
𝑖∈ℤ

∐
𝑗∈ℤ 𝜔

𝑀 𝑗𝑋𝑖− 𝑗𝑁𝑣−𝑖 . Indeed, it maps

((𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁)𝑣 =
∐
𝑖∈ℤ

( ∐
𝑗∈ℤ

𝑀 𝑗 ⊗𝑅 𝑋𝑖− 𝑗
)
⊗𝑆 𝑁𝑣−𝑖

�
∐
𝑖∈ℤ

∐
𝑗∈ℤ
(𝑀 𝑗 ⊗𝑅 𝑋𝑖− 𝑗 ) ⊗𝑆 𝑁𝑣−𝑖 ,

where the isomorphism follows from 3.1.12, isomorphically to

(𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁))𝑣 =
∐
𝑗∈ℤ

𝑀 𝑗 ⊗𝑅
(∐
𝑖∈ℤ

𝑋𝑖− 𝑗 ⊗𝑆 𝑁𝑣−𝑖
)

�
∐
𝑖∈ℤ

∐
𝑗∈ℤ

𝑀 𝑗 ⊗𝑅 (𝑋𝑖− 𝑗 ⊗𝑆 𝑁𝑣−𝑖) ,

where the isomorphism follows from 3.1.13. The resulting isomorphism of graded
modules (𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁 → 𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁) is also denoted 𝜔𝑀𝑋𝑁 . On homoge-
neous elements 𝑚 ∈ 𝑀 , 𝑥 ∈ 𝑋 , and 𝑛 ∈ 𝑁 it is given by

(4.4.6.1) 𝜔𝑀𝑋𝑁 ((𝑚 ⊗ 𝑥) ⊗ 𝑛) = 𝑚 ⊗ (𝑥 ⊗ 𝑛) .

Note that (4.4.6.1) agrees with the definition in 1.2.4 for modules 𝑀 , 𝑋 , and 𝑁 .

4.4.7 Proposition. Let 𝑀 be an 𝑅o-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules, and
𝑁 an 𝑆-complex. The associativity map defined in 4.4.6,

𝜔𝑀𝑋𝑁 : (𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁 −→ 𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁) ,

is an isomorphism in C(𝕜), and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀 is in
C(𝑄–𝑅o) and 𝑁 is in C(𝑆–𝑇o), then 𝜔𝑀𝑋𝑁 is an isomorphism in C(𝑄–𝑇o). Finally,
as a natural transformation of functors, 𝜔 is a Σ-transformation in each variable.

Proof. By construction,𝜔𝑀𝑋𝑁 is an isomorphism of graded 𝕜-modules and natural
in 𝑀 , 𝑋 , and 𝑁 . If 𝑀 is in C(𝑄–𝑅o) and 𝑁 is in C(𝑆–𝑇o), then 𝜔𝑀𝑋𝑁 is a
natural isomorphism of graded 𝑄–𝑇o-bimodules. This follows from 1.2.4 and the
construction. A straightforward computation, similar to the one in the proof of 4.4.4,
shows that𝜔𝑀𝑋𝑁 is a morphism, and hence an isomorphism, of complexes. It follows
from 2.2.5 combined with 4.1.18 and 4.1.19 that 𝜔 as a natural transformation of
functors is a Σ-transformation in each variable. □

For elements 𝑥1, . . . , 𝑥𝑛 in 𝑅 the notation K𝑅 (𝑥1) ⊗𝑅 · · · ⊗𝑅 K𝑅 (𝑥𝑛) is unambigu-
ous by associativity 4.4.7. The next proposition generalizes 2.4.3.
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4.4.8 Proposition. Assume that 𝑅 is commutative. For every sequence 𝑥1, . . . , 𝑥𝑛 in
𝑅, there is an isomorphism of 𝑅-complexes

K𝑅 (𝑥1, . . . , 𝑥𝑛) � K𝑅 (𝑥1) ⊗𝑅 · · · ⊗𝑅 K𝑅 (𝑥𝑛) .

Proof. By induction on 𝑛. The case 𝑛 = 1 is trivial, so it suffices for 𝑛 > 1 to prove
that there is an isomorphism

(⋄) 𝜓 : K𝑅 (𝑥1, . . . , 𝑥𝑛−1) ⊗𝑅 K𝑅 (𝑥𝑛) −→ K𝑅 (𝑥1, . . . , 𝑥𝑛) .

For clarity, consider K𝑅 (𝑥1, . . . , 𝑥𝑛−1) and K𝑅 (𝑥𝑛) to be generated by the free mod-
ules 𝑅⟨𝑒1, . . . , 𝑒𝑛−1 ⟩ and 𝑅⟨𝑒𝑛 ⟩ while K𝑅 (𝑥1, . . . , 𝑥𝑛) is generated by 𝑅⟨ 𝑓1, . . . , 𝑓𝑛 ⟩.
Let 𝑣 ∈ {0, . . . , 𝑛} and recall from 2.1.25 that K𝑅

𝑣 (𝑥1, . . . , 𝑥𝑛) is a free 𝑅-module of
rank

(𝑛
𝑣

)
with basis elements 𝑓ℎ1 ∧ · · · ∧ 𝑓ℎ𝑣 . The module in degree 𝑣 in the left-hand

complex in (⋄) is a direct sum

(K𝑅
𝑣 (𝑥1, . . . , 𝑥𝑛−1) ⊗𝑅 𝑅) ⊕ (K𝑅

𝑣−1 (𝑥1, . . . , 𝑥𝑛−1) ⊗𝑅 𝑅⟨𝑒𝑛 ⟩)

of free 𝑅-modules of rank
(𝑛−1
𝑣

)
and

(𝑛−1
𝑣−1

)
, so of total rank

(𝑛
𝑣

)
. Let 𝜓𝑣 be given by

(𝑒ℎ1 ∧ · · · ∧ 𝑒ℎ𝑣 ) ⊗ 1 ↦−→ 𝑓ℎ1 ∧ · · · ∧ 𝑓ℎ𝑣 and
(𝑒ℎ1 ∧ · · · ∧ 𝑒ℎ𝑣−1 ) ⊗ 𝑒𝑛 ↦−→ 𝑓ℎ1 ∧ · · · ∧ 𝑓ℎ𝑣−1 ∧ 𝑓𝑛

and extended by 𝑅-linerarity. It is straightforward to verify that 𝜓 = (𝜓𝑣)0⩽𝑣⩽𝑛 is a
morphism of 𝑅-complexes, and each component 𝜓𝑣 has an obvious inverse, so 𝜓 is
an isomorphism. □

Swap

We go on to extend swap 1.2.5 to an isomorphism of complexes.

4.4.9 Construction. Let 𝑀 be an 𝑅-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules, and
𝑁 an 𝑆o-complex. By 3.1.24 one has

Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋))𝑣 =
∏
𝑖∈ℤ

Hom𝑅

(
𝑀𝑖 ,

∏
𝑗∈ℤ

Hom𝑆o (𝑁 𝑗 , 𝑋 𝑗+𝑖+𝑣)
)

�
∏
𝑖∈ℤ

∏
𝑗∈ℤ

Hom𝑅 (𝑀𝑖 ,Hom𝑆o (𝑁 𝑗 , 𝑋𝑖+ 𝑗+𝑣)) ,

and similarly,

Hom𝑆o (𝑁,Hom𝑅 (𝑀, 𝑋))𝑣 �
∏
𝑖∈ℤ

∏
𝑗∈ℤ

Hom𝑆o (𝑁 𝑗 ,Hom𝑅 (𝑀𝑖 , 𝑋𝑖+ 𝑗+𝑣)) .

It follows from swap for modules 1.2.5 that the map

Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)) −→ Hom𝑆o (𝑁,Hom𝑅 (𝑀, 𝑋))

with degree 𝑣 component induced by
∏
𝑖∈ℤ

∏
𝑗∈ℤ (−1)𝑖 𝑗 𝜁𝑀𝑖𝑋𝑖+ 𝑗+𝑣𝑁 𝑗 is a natural iso-

morphism of graded 𝕜-modules; it is denoted by 𝜁𝑀𝑋𝑁 . On homogeneous elements
𝜓 ∈ Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)), 𝑚 ∈ 𝑀 , and 𝑛 ∈ 𝑁 it is given by
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(4.4.9.1) 𝜁𝑀𝑋𝑁 (𝜓) (𝑛) (𝑚) = (−1) |𝑚 | |𝑛 |𝜓(𝑚) (𝑛) .

Note that (4.4.9.1) agrees with the definition in 1.2.5 for modules 𝑀 , 𝑋 , and 𝑁 .

4.4.10 Proposition. Let 𝑀 be an 𝑅-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules, and
𝑁 an 𝑆o-complex. The swap map defined in 4.4.9,

𝜁𝑀𝑋𝑁 : Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)) −→ Hom𝑆o (𝑁,Hom𝑅 (𝑀, 𝑋)) ,

is an isomorphism in C(𝕜), and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀 is in
C(𝑅–𝑄o) and 𝑁 is in C(𝑇–𝑆o), then 𝜁𝑀𝑋𝑁 is an isomorphism in C(𝑄–𝑇o). Finally,
as a natural transformation of functors, 𝜁 is a Σ-transformation in each variable.

Proof. By construction, 𝜁𝑀𝑋𝑁 is an isomorphism of graded 𝕜-modules and natural
in 𝑀 , 𝑋 , and 𝑁 . If 𝑀 is in C(𝑅–𝑄o) and 𝑁 is in C(𝑇–𝑆o), then 𝜁𝑀𝑋𝑁 is an
isomorphism of graded 𝑄–𝑇o-bimodules; this follows from the construction and
1.2.5. For homogeneous elements 𝜓 ∈ Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)), 𝑚 ∈ 𝑀 , and
𝑛 ∈ 𝑁 one has

𝜁𝑀𝑋𝑁 (𝜕Hom𝑅 (𝑀,Hom𝑆o (𝑁,𝑋) ) (𝜓)) (𝑛) (𝑚)
= 𝜁𝑀𝑋𝑁 (𝜕Hom𝑆o (𝑁,𝑋)𝜓 − (−1) |𝜓 |𝜓𝜕𝑀 ) (𝑛) (𝑚)
= (−1) |𝑚 | |𝑛 | (𝜕Hom𝑆o (𝑁,𝑋) (𝜓(𝑚)) − (−1) |𝜓 |𝜓(𝜕𝑀 (𝑚))) (𝑛)
= (−1) |𝑚 | |𝑛 | (𝜕𝑋𝜓(𝑚) − (−1) |𝜓 (𝑚) |𝜓(𝑚)𝜕𝑁 − (−1) |𝜓 |𝜓(𝜕𝑀 (𝑚))) (𝑛)
= (−1) |𝑚 | |𝑛 | (𝜕𝑋 (𝜓(𝑚) (𝑛)) − (−1) |𝜓 |+|𝑚 |𝜓(𝑚) (𝜕𝑁 (𝑛)) − (−1) |𝜓 |𝜓(𝜕𝑀 (𝑚)) (𝑛))

and

(𝜕Hom𝑆o (𝑁,Hom𝑅 (𝑀,𝑋) ) (𝜁𝑀𝑋𝑁 (𝜓))) (𝑛) (𝑚)

= (𝜕Hom𝑅 (𝑀,𝑋) 𝜁𝑀𝑋𝑁 (𝜓) − (−1) |𝜁𝑀𝑋𝑁 (𝜓) | 𝜁𝑀𝑋𝑁 (𝜓)𝜕𝑁 ) (𝑛) (𝑚)
= (𝜕Hom𝑅 (𝑀,𝑋) (𝜁𝑀𝑋𝑁 (𝜓) (𝑛)) − (−1) |𝜓 | 𝜁𝑀𝑋𝑁 (𝜓) (𝜕𝑁 (𝑛))) (𝑚)

= 𝜕𝑋 (𝜁𝑀𝑋𝑁 (𝜓) (𝑛) (𝑚)) − (−1) |𝜁𝑀𝑋𝑁 (𝜓) (𝑛) | 𝜁𝑀𝑋𝑁 (𝜓) (𝑛) (𝜕𝑀 (𝑚))
− (−1) |𝜓 |+|𝑚 | ( |𝑛 |−1)𝜓(𝑚) (𝜕𝑁 (𝑛))

= (−1) |𝑚 | |𝑛 |𝜕𝑋 (𝜓(𝑚) (𝑛)) − (−1) |𝜓 |+|𝑛 |+( |𝑚 |−1) |𝑛 |𝜓(𝜕𝑀 (𝑚)) (𝑛)
− (−1) |𝜓 |+|𝑚 | |𝑛 |− |𝑚 |𝜓(𝑚) (𝜕𝑁 (𝑛)) .

Thus, 𝜁𝑀𝑋𝑁 is a morphism, hence an isomorphism, of complexes.
It follows from 2.2.5 combined with 4.1.16 and 4.1.17 that 𝜁 as a natural transfor-

mation of functors is a Σ-transformation in each variable. For the convenience of the
reader we include the computation that shows that 𝜁 is a Σ-transformationin the first
variable. Fix complexes 𝑁 and 𝑋 . To verify that 𝜁 𝑋𝑁 is a Σ-transformation, recall
from 4.1.17 that the natural isomorphism

𝜓𝑀1 : Σ−1Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)) → Hom𝑅 (Σ𝑀,Hom𝑆o (𝑁, 𝑋)) ,
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upon suppression of the degree shifting chain maps, is given by 𝜗 ↦→ (−1) |𝜗 |𝜗 for a
homogeneous element 𝜗 in Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)). Similarly, upon suppression
of the degree shifting chain maps, the composite

𝜓𝑀2 : Σ−1Hom𝑆o (𝑁,Hom𝑅 (𝑀, 𝑋)) −→ Hom𝑆o (𝑁, Σ−1Hom𝑅 (𝑀, 𝑋))
−→ Hom𝑆o (𝑁,Hom𝑅 (Σ𝑀, 𝑋))

maps a homogeneous element 𝜑 in Hom𝑆o (𝑁,Hom𝑅 (𝑀, 𝑋)) to the homomorphism
given by 𝑛 ↦→ (−1) |𝜑 |+|𝑛 |𝜑(𝑛) for 𝑛 ∈ 𝑁 . Thus, for homogeneous elements 𝑚 ∈ 𝑀 ,
𝑛 ∈ 𝑁 , and 𝜗 in Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)) one has

(𝜁 (Σ𝑀 )𝑋𝑁𝜓𝑀1 ) (𝜗) (𝑛) (𝑚) = 𝜁 (Σ𝑀 )𝑋𝑁 ((−1) |𝜗 |𝜗) (𝑛) (𝑚)
= (−1) |𝜗 | (−1) ( |𝑚 |+1) |𝑛 |𝜗(𝑚) (𝑛)

= (−1) |𝜁𝑀𝑋𝑁 (𝜗) |+|𝑛 | (−1) |𝑚 | |𝑛 |𝜗(𝑚) (𝑛)
= (𝜓𝑀2 Σ−1𝜁𝑀𝑋𝑁 ) (𝜗) (𝑛) (𝑚) .

Thus, 𝜁 𝑋𝑁 is a Σ-transformation. □

Adjunction

Finally, we extend adjunction 1.2.6 to an isomorphism of complexes.

4.4.11 Construction. Let 𝑀 be an 𝑅-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules,
and 𝑁 an 𝑆-complex. By 3.1.27 one has

Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀)𝑣 =
∏
ℎ∈ℤ

Hom𝑅

( ∐
𝑗∈ℤ

𝑋 𝑗 ⊗𝑆 𝑁ℎ− 𝑗 , 𝑀ℎ+𝑣
)

�
∏
ℎ∈ℤ

∏
𝑗∈ℤ

Hom𝑅 (𝑋 𝑗 ⊗𝑆 𝑁ℎ− 𝑗 , 𝑀ℎ+𝑣)

=
∏
𝑖∈ℤ

∏
𝑗∈ℤ

Hom𝑅 (𝑋 𝑗 ⊗𝑆 𝑁𝑖 , 𝑀𝑖+ 𝑗+𝑣) ,

and 3.1.24 yields

Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀))𝑣 =
∏
𝑖∈ℤ

Hom𝑆

(
𝑁𝑖 ,

∏
𝑗∈ℤ

Hom𝑅 (𝑋 𝑗 , 𝑀 𝑗+𝑖+𝑣)
)

=
∏
𝑖∈ℤ

∏
𝑗∈ℤ

Hom𝑆 (𝑁𝑖 ,Hom𝑅 (𝑋 𝑗 , 𝑀𝑖+ 𝑗+𝑣)) .

It follows from adjunction for modules 1.2.6 that the map

Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀) −→ Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀))

with degree 𝑣 component induced by
∏
𝑖∈ℤ

∏
𝑗∈ℤ (−1)𝑖 𝑗 𝜌𝑀𝑖+ 𝑗+𝑣𝑋 𝑗𝑁𝑖 is a natural

isomorphism of graded 𝕜-modules; this isomorphism is denoted by 𝜌𝑀𝑋𝑁 . On
homogeneous elements 𝜓 ∈ Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀), 𝑛 ∈ 𝑁 , and 𝑥 ∈ 𝑋 it is given by

(4.4.11.1) 𝜌𝑀𝑋𝑁 (𝜓) (𝑛) (𝑥) = (−1) |𝑥 | |𝑛 |𝜓(𝑥 ⊗ 𝑛) .
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Note that (4.4.11.1) agrees with the definition in 1.2.6 for modules 𝑀 , 𝑋 , and 𝑁 .

4.4.12 Proposition. Let 𝑀 be an 𝑅-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules, and
𝑁 an 𝑆-complex. The adjunction map defined in 4.4.11,

𝜌𝑀𝑋𝑁 : Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀) −→ Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀)) ,

is an isomorphism in C(𝕜), and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀 is in
C(𝑅–𝑄o) and 𝑁 is in C(𝑆–𝑇o), then 𝜌𝑀𝑋𝑁 is an isomorphism in C(𝑇–𝑄o). Finally,
as a natural transformation of functors, 𝜌 is a Σ-transformation in each variable.

Proof. By construction, 𝜌𝑀𝑋𝑁 is an isomorphism of graded 𝕜-modules and natural
in 𝑀 , 𝑋 , and 𝑁 . If 𝑀 is in C(𝑅–𝑇o) and 𝑁 is in C(𝑆–𝑄o), then 𝜌𝑀𝑋𝑁 is an isomor-
phism of graded 𝑄–𝑇o-bimodules; this follows from 1.2.6 and the construction. For
homogeneous elements 𝜓 ∈ Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀), 𝑛 ∈ 𝑁 , and 𝑥 ∈ 𝑋 one has

𝜌𝑀𝑋𝑁 (𝜕Hom𝑅 (𝑋⊗𝑆𝑁,𝑀 ) (𝜓)) (𝑛) (𝑥)
= 𝜌𝑀𝑋𝑁 (𝜕𝑀𝜓 − (−1) |𝜓 |𝜓𝜕𝑋⊗𝑆𝑁 ) (𝑛) (𝑥)
= (−1) |𝑥 | |𝑛 | (𝜕𝑀𝜓(𝑥 ⊗ 𝑛) − (−1) |𝜓 |𝜓𝜕𝑋⊗𝑆𝑁 (𝑥 ⊗ 𝑛))
= (−1) |𝑥 | |𝑛 |𝜕𝑀𝜓(𝑥 ⊗ 𝑛) − (−1) |𝜓 |+|𝑥 | |𝑛 |𝜓(𝜕𝑋 (𝑥) ⊗ 𝑛 + (−1) |𝑥 |𝑥 ⊗ 𝜕𝑁 (𝑛))

and

(𝜕Hom𝑆 (𝑁,Hom𝑅 (𝑋,𝑀 ) ) (𝜌𝑀𝑋𝑁 (𝜓))) (𝑛) (𝑥)

= (𝜕Hom𝑅 (𝑋,𝑀 ) 𝜌𝑀𝑋𝑁 (𝜓) − (−1) |𝜌𝑀𝑋𝑁 (𝜓) | 𝜌𝑀𝑋𝑁 (𝜓)𝜕𝑁 ) (𝑛) (𝑥)

= 𝜕𝑀 (𝜌𝑀𝑋𝑁 (𝜓) (𝑛) (𝑥)) − (−1) |𝜌𝑀𝑋𝑁 (𝜓) (𝑛) | 𝜌𝑀𝑋𝑁 (𝜓) (𝑛) (𝜕𝑋 (𝑥))
− (−1) |𝜓 | 𝜌𝑀𝑋𝑁 (𝜓) (𝜕𝑁 (𝑛)) (𝑥)

= (−1) |𝑥 | |𝑛 |𝜕𝑀𝜓(𝑥 ⊗ 𝑛) − (−1) |𝜓 |+|𝑛 |+( |𝑥 |−1) |𝑛 |𝜓(𝜕𝑋 (𝑥) ⊗ 𝑛)
− (−1) |𝜓 |+|𝑥 | ( |𝑛 |−1)𝜓(𝑥 ⊗ 𝜕𝑁 (𝑛))

= (−1) |𝑥 | |𝑛 |𝜕𝑀𝜓(𝑥 ⊗ 𝑛) − (−1) |𝜓 |+|𝑥 | |𝑛 |𝜓(𝜕𝑋 (𝑥) ⊗ 𝑛 + (−1) |𝑥 |𝑥 ⊗ 𝜕𝑁 (𝑛)) .

Thus, 𝜌𝑀𝑋𝑁 is a morphism, and hence an isomorphism, of complexes. It follows
from 2.2.5 combined with 4.1.16, 4.1.17, 4.1.18, and 4.1.19 that 𝜌 as a natural trans-
formation of functors is a Σ-transformation in each variable. The detailed argument
follows the template from the proof of swap 4.4.10. □

Exercises

E 4.4.1 Apply 2.4.13 and commutativity 4.4.4 to give a proof of 2.4.14.
E 4.4.2 Apply 3.2.22 and commutativity 4.4.4 to give a proof of 3.2.23.
E 4.4.3 Assume that 𝑅 is commutative. Let 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 and 𝜎 a permu-

tation of the set {1, . . . , 𝑛}. Show that there is an isomorphism K𝑅 (𝑥1, . . . , 𝑥𝑛 ) �
K𝑅 (𝑥𝜎 (1) , . . . , 𝑥𝜎 (𝑛) ) .
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E 4.4.4 Let 𝑀 be an 𝑅-complex and consider the map 𝑅 → Hom𝑅 (𝑀, 𝑀 ) that maps 𝑟 to
multiplication by 𝑟 on 𝑀. (a) Show that it is a morphism of 𝕜-complexes. (b) Show that
it is a morphism of 𝕜-algebras.

E 4.4.5 Show that the isomorphism in 4.4.8 is an isomorphism of (differential) graded 𝕜-algebras.
E 4.4.6 Let E, F: C(𝑅) → C(𝑅) be functors. Assume that F has a right adjoint F∗ and that

there is a natural isomorphism 𝜁 : F∗E→ EF∗. Show that there is a canonical natural
transformation 𝜃 : FE→ EF.

Assume that 𝑅 is commutative. Let 𝑀 and 𝑁 be 𝑅-complexes and use adjunc-
tion 4.4.12 and swap 4.4.10 to show that the result above applies with F = 𝑀 ⊗𝑅
and E = Hom𝑅 (𝑁, ) .

E 4.4.7 Let F: C(𝑅) → C(𝑅) and G: C(𝑅)op → C(𝑅) be functors. Assume that F has a right
adjoint F∗ and that there is a natural isomorphism 𝜌 : GFop→ F∗G. Show that there is a
canonical natural transformation 𝜂 : FG→ GFop

∗ .
Assume that 𝑅 is commutative. Let𝑀 and 𝑁 be 𝑅-complexes and use adjunction 4.4.12

to show that the result above applies with F = 𝑀 ⊗𝑅 and G = Hom𝑅 ( , 𝑁 ) .

4.5 Evaluation Morphisms for Complexes

Synopsis. Biduality; homothety formation; (co)unit of Hom–Hom adjunction; tensor evaluation;
homomorphism evaluation; (co)unit of Hom–tensor adjunction.

In this section, the evaluation homomorphisms from Sect. 1.4 are extended to mor-
phisms of complexes. The process is the same as in the previous section, but bound-
edness conditions now enter the picture when we consider the question of invertibility
of thse maps.

Biduality

The next construction and the results that follow it extend 1.4.2 to complexes.

4.5.1 Construction. Let 𝑀 be an 𝑅-complex and 𝑋 a complex of 𝑅–𝑆o-bimodules.
For every 𝑣 ∈ ℤ one has

Hom𝑆o (Hom𝑅 (𝑀, 𝑋), 𝑋)𝑣 =
∏
𝑖∈ℤ

Hom𝑆o
( ∏
𝑗∈ℤ

Hom𝑅 (𝑀 𝑗 , 𝑋𝑖+ 𝑗 ), 𝑋𝑖+𝑣
)
.

To define a map from 𝑀𝑣 to Hom𝑆o (Hom𝑅 (𝑀, 𝑋), 𝑋)𝑣 it suffices, in view of 3.1.15,
to define, for every integer 𝑖, a map

𝑀𝑣 −→ Hom𝑆o
( ∏
𝑗∈ℤ

Hom𝑅 (𝑀 𝑗 , 𝑋𝑖+ 𝑗 ), 𝑋𝑖+𝑣
)
.

This is achieved by postcomposing biduality 1.4.2, adjusted by a sign,

(−1)𝑖𝑣𝛿𝑀𝑣
𝑋𝑖+𝑣

: 𝑀𝑣 −→ Hom𝑆o (Hom𝑅 (𝑀𝑣, 𝑋𝑖+𝑣), 𝑋𝑖+𝑣) ,

with the map induced by the projection
∏
𝑗∈ℤ Hom𝑅 (𝑀 𝑗 , 𝑋𝑖+ 𝑗 ) ↠ Hom𝑅 (𝑀𝑣, 𝑋𝑖+𝑣).

The map of complexes 𝑀 → Hom𝑆o (Hom𝑅 (𝑀, 𝑋), 𝑋), defined hereby, is denoted
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𝛿𝑀
𝑋

. It follows from 1.4.2 that it is a natural morphism of graded 𝑅-modules. On
homogeneous elements 𝑚 ∈ 𝑀 and 𝜓 ∈ Hom𝑅 (𝑀, 𝑋) it is given by

(4.5.1.1) 𝛿𝑀𝑋 (𝑚) (𝜓) = (−1) |𝜓 | |𝑚 |𝜓(𝑚) .

Note that (4.5.1.1) agrees with the definition in 1.4.2 for modules 𝑀 and 𝑋 .

4.5.2 Proposition. Let 𝑋 be a complex of 𝑅–𝑆o-bimodules. For an 𝑅-complex 𝑀
the biduality map defined in 4.5.1,

𝛿𝑀𝑋 : 𝑀 −→ Hom𝑆o (Hom𝑅 (𝑀, 𝑋), 𝑋) ,

is a morphism in C(𝑅), and it is natural in 𝑀 . Moreover, if 𝑀 is in C(𝑅–𝑄o), then
𝛿𝑀
𝑋

is a morphism in C(𝑅–𝑄o). Finally, as a natural transformation of functors, 𝛿
is a Σ-transformation.

Proof. By construction, 𝛿𝑀
𝑋

is a morphism of graded 𝑅-modules and natural in
𝑀 . If 𝑀 is in C(𝑅–𝑄o), then 𝛿𝑀

𝑋
is a morphism of graded 𝑅–𝑄o-bimodules; this

follows from 1.4.2 and the construction above. For homogeneous elements 𝑚 ∈ 𝑀
and 𝜓 ∈ Hom𝑅 (𝑀, 𝑋) one has

(𝜕Hom𝑆o (Hom𝑅 (𝑀,𝑋) ,𝑋)𝛿𝑀𝑋 (𝑚)) (𝜓)

= (𝜕𝑋𝛿𝑀𝑋 (𝑚) − (−1) | 𝛿𝑀𝑋 (𝑚) |𝛿𝑀𝑋 (𝑚)𝜕Hom𝑅 (𝑀,𝑋) ) (𝜓)
= (−1) |𝜓 | |𝑚 |𝜕𝑋𝜓(𝑚) − (−1) |𝑚 |𝛿𝑀𝑋 (𝑚) (𝜕𝑋𝜓 − (−1) |𝜓 |𝜓𝜕𝑀 )
= (−1) |𝜓 | |𝑚 |𝜕𝑋𝜓(𝑚) − (−1) |𝑚 |+( |𝜓 |−1) |𝑚 | (𝜕𝑋𝜓(𝑚) − (−1) |𝜓 |𝜓𝜕𝑀 (𝑚))
= (−1) |𝜓 | ( |𝑚 |−1)𝜓𝜕𝑀 (𝑚)
= 𝛿𝑀𝑋 (𝜕𝑀 (𝑚)) (𝜓) .

Thus, 𝛿𝑀
𝑋

is a morphism of complexes. It follows from 2.2.5 combined with 4.1.17
that 𝛿

𝑋
as a natural transformation of functors is a Σ-transformation. □

4.5.3 Proposition. Let 𝑀 be an 𝑅-complex and 𝑋 a complex of 𝑅–𝑆o-bimodules. If
one module 𝑋𝑝 is faithfully injective as an 𝑅-module, then biduality 4.5.2,

𝛿𝑀𝑋 : 𝑀 −→ Hom𝑆o (Hom𝑅 (𝑀, 𝑋), 𝑋) ,

is injective.

Proof. It is sufficient to show that 𝛿𝑀
𝑋

is injective on homogeneous elements. Let
𝑚 ≠ 0 be homogeneous of degree 𝑞. By assumption, 𝑋𝑝 is faithfully injective
as an 𝑅-module, whence there is a non-zero homomorphism from the submodule
𝑅⟨𝑚 ⟩ of 𝑀𝑞 to 𝑋𝑝 . By the lifting property 1.3.26 there is then a homomorphism 𝜓 in
Hom𝑅 (𝑀𝑞 , 𝑋𝑝) with 𝜓(𝑚) ≠ 0. Let 𝜓 : 𝑀 → 𝑋 be the degree 𝑝−𝑞 homomorphism
with 𝜓𝑞 = 𝜓 and 𝜓𝑣 = 0 for 𝑣 ≠ 𝑞. One now has 𝛿𝑀

𝑋
(𝑚) (𝜓) = 𝜓(𝑚) = 𝜓(𝑚) ≠ 0,

so 𝛿𝑀
𝑋
(𝑚) is non-zero. □

4.5.4 Theorem. For every complex 𝑃 of finitely generated projective 𝑅-modules,
Hom𝑅 (𝑃, 𝑅) is a complex of finitely generated projective 𝑅o-modules, and biduality
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𝛿𝑃𝑅 : 𝑃 −→ Hom𝑅o (Hom𝑅 (𝑃, 𝑅), 𝑅)

is an isomorphism.

Proof. For 𝑣 ∈ ℤ one has Hom𝑅 (𝑃, 𝑅)𝑣 = Hom𝑅 (𝑃−𝑣, 𝑅) and (𝛿𝑃
𝑅
)𝑣 = (−1)𝑣2

𝛿
𝑃𝑣
𝑅

,
see 4.5.1, so the assertions follow from 1.4.3. □

Homothety Formation

Let 𝑋 be a complex of 𝑅–𝑆o-bimodules and 𝑠 an element in 𝑆. It follows from
the definition of an 𝑅–𝑆o-bimodule that the homothety 𝑠𝑋, see 2.1.9, is 𝑅-linear.
Similarly, for an element 𝑟 in 𝑅 the homothety 𝑟𝑋 is 𝑆o-linear. We now consider the
maps that to a ring element assigns the corresponding homothety.

4.5.5 Proposition. For a complex 𝑋 of 𝑅–𝑆o-bimodules the homothety formation
map,

𝜒𝑋𝑆o𝑅 : 𝑆 −→ Hom𝑅 (𝑋, 𝑋) given by 𝜒𝑋𝑆o𝑅 (𝑠) = 𝑠𝑋 ,

is a morphism in C(𝑆–𝑆o), and

𝜒𝑋𝑅𝑆o : 𝑅 −→ Hom𝑆o (𝑋, 𝑋) given by 𝜒𝑋𝑅𝑆o (𝑟) = 𝑟𝑋 ,

is a morphism in C(𝑅–𝑅o).

Proof. Both 𝑆 and Hom𝑅 (𝑋, 𝑋) are complexes of 𝑆–𝑆o-bimodules; see 2.3.11. The
computations below, where 𝑠, 𝑢 ∈ 𝑆 and 𝑥 ∈ 𝑋 , show that the map 𝜒 = 𝜒𝑋

𝑆o𝑅 is both
𝑆- and 𝑆o-linear.

𝜒(𝑢𝑠) (𝑥) = 𝑥(𝑢𝑠) = (𝑥𝑢)𝑠 = 𝜒(𝑠) (𝑥𝑢) = (𝑢𝜒(𝑠)) (𝑥) and
𝜒(𝑠𝑢) (𝑥) = 𝑥(𝑠𝑢) = (𝑥𝑠)𝑢 = (𝜒(𝑠) (𝑥))𝑢 = (𝜒(𝑠)𝑢) (𝑥) .

As 𝜒 is graded of degree 0, it remains to show that it commutes with the differentials.
On 𝑆 the differential is zero, and 𝑆o-linearity of the differential on 𝑋 yields

𝜕Hom (𝑋,𝑋) 𝜒(𝑠) = 𝜕𝑋𝑠𝑋 − 𝑠𝑋𝜕𝑋 = 0 .

Since a complex of 𝑅–𝑆o-bimodules is a complex of 𝑆o–𝑅-bimodules, and since
𝑅 = 𝑅o as 𝑅–𝑅o-bimodules, it follows by symmetry that 𝜒𝑋

𝑅𝑆o : 𝑅 → Hom𝑆o (𝑋, 𝑋)
is a morphism in C(𝑅–𝑅o). □

Remark. Homothety formation is, in fact, a morphism of 𝕜-algebras; see E 4.5.2.

4.5.6 Example. The maps 𝜒𝑅
𝑅o𝑅 : 𝑅 → Hom𝑅 (𝑅, 𝑅) and 𝜒𝑅

𝑅𝑅o : 𝑅 → Hom𝑅o (𝑅, 𝑅)
are isomorphisms of 𝑅–𝑅o-bimodules. Indeed, they are 𝜖𝑅

𝑅
and 𝜖𝑅

𝑅o from 4.4.2.

Unit and Counit of Hom–Hom Adjunction

The next result is not needed before Chap. 10, but it is natural to record it here.
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4.5.7 Proposition. Let 𝑋 be a complex of 𝑅–𝑆o-bimodules; there is an adjunction,

C(𝑆o)
Hom𝑆o ( ,𝑋)op

//
C(𝑅)op .

Hom𝑅 ( ,𝑋)
oo

For an 𝑆o-complex 𝑁 the unit of the adjunction is biduality in C(𝑆o),

𝛿𝑁𝑋 : 𝑁 −→ Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑋) ,

and for 𝑅-complex 𝑀 the counit, viewed as a morphism in C(𝑅), is biduality

𝛿𝑀𝑋 : 𝑀 −→ Hom𝑆o (Hom𝑅 (𝑀, 𝑋), 𝑋) .

Proof. Let 𝑀 be an 𝑅-complex and 𝑁 an 𝑆o-complex. By 2.3.10 and swap 4.4.10
there are natural isomorphisms,

C(𝑅)op (Hom𝑆o (𝑁, 𝑋), 𝑀) � Z0 (Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)))
� Z0 (Hom𝑆o (𝑁,Hom𝑅 (𝑀, 𝑋)))
� C(𝑆o) (𝑁,Hom𝑅 (𝑀, 𝑋)) .

This establishes the asserted adjunction. Note that under the isomorphisms above,
a morphism 𝜓 : Hom𝑆o (𝑁, 𝑋) → 𝑀 in C(𝑅)op, i.e. 𝜓 : 𝑀 → Hom𝑆o (𝑁, 𝑋) in
C(𝑅), is mapped to the morphism 𝜁𝑀𝑋𝑁 (𝜓) : 𝑁 → Hom𝑅 (𝑀, 𝑋) in C(𝑆o). Con-
versely, a morphism 𝜑 : 𝑁 → Hom𝑅 (𝑀, 𝑋) in C(𝑆o) gets mapped to the mor-
phism 𝜁𝑁𝑋𝑀 (𝜑) : 𝑀 → Hom𝑆o (𝑁, 𝑋) in C(𝑅). With 𝑀 = Hom𝑆o (𝑁, 𝑋) and
𝜓 = 1Hom (𝑁,𝑋) one obtains, by definition, the unit of the adjunction,

𝛼𝑁𝑋 = 𝜁Hom (𝑁,𝑋)𝑋𝑁 (1Hom (𝑁,𝑋) ) : 𝑁 −→ Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑋) .

By (4.4.9.1) it is given by

𝛼𝑁𝑋 (𝑛) (𝜗) = 𝜁Hom (𝑁,𝑋)𝑋𝑁 (1Hom (𝑁,𝑋) ) (𝑛) (𝜗)
= (−1) |𝜗 | |𝑛 |1Hom (𝑁,𝑋) (𝜗) (𝑛)
= (−1) |𝜗 | |𝑛 |𝜗(𝑛)

for 𝑛 ∈ 𝑁 and 𝜗 ∈ Hom𝑆o (𝑁, 𝑋), so 𝛼𝑁
𝑋

is the biduality morphism 𝛿𝑁
𝑋

, see (4.5.1.1).
A parallel argument shows that the counit of the adjunction is biduality 𝛿𝑀

𝑋
. □

Remark. The biduality morphism 𝛿𝑀
𝑋

respects extra ring actions on 𝑀; see 4.5.2. One can use
this to extend the adjunction from 4.5.7 to an adjunction C(𝑄–𝑆o ) ⇆ C(𝑅–𝑄o ); see E 4.5.7.

Tensor Evaluation

The next construction and the results that follow it extend 1.4.4 and 1.4.6 to com-
plexes.

4.5.8 Construction. Let 𝑀 be an 𝑅-complex, 𝑋 be a complex of 𝑅–𝑆o-bimodules,
and 𝑁 an 𝑆-complex. There are equalities,
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(Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁)𝑣 =
∐
𝑖∈ℤ

( ∏
ℎ∈ℤ

Hom𝑅 (𝑀ℎ, 𝑋ℎ+𝑖)
)
⊗𝑆 𝑁𝑣−𝑖(4.5.8.1)

and

Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁)𝑣 =
∏
𝑗∈ℤ

Hom𝑅

(
𝑀 𝑗 ,

∐
𝑘∈ℤ

𝑋𝑘 ⊗𝑆 𝑁 𝑗+𝑣−𝑘
)
.(4.5.8.2)

To define a map from (Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁)𝑣 to Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁)𝑣 it suffices, in
view of 3.1.2 and 3.1.15, to define, for all integers 𝒾 and 𝒿, a map( ∏

ℎ∈ℤ
Hom𝑅 (𝑀ℎ, 𝑋ℎ+𝒾)

)
⊗𝑆 𝑁𝑣−𝒾 −→ Hom𝑅

(
𝑀𝒿,

∐
𝑘∈ℤ

𝑋𝒿+𝑘 ⊗𝑆 𝑁𝑣−𝑘
)
.

This is done by precomposing tensor evaluation 1.4.4, adjusted by a sign,

Hom𝑅 (𝑀𝒿, 𝑋𝒿+𝒾) ⊗𝑆 𝑁𝑣−𝒾
(−1)𝒿 (𝑣−𝒾) 𝜃𝑀𝒿𝑋𝒿+𝒾𝑁𝑣−𝒾
−−−−−−−−−−−−−−−−−−−−→ Hom𝑅 (𝑀𝒿, 𝑋𝒿+𝒾 ⊗𝑆 𝑁𝑣−𝒾) ,

with the map induced by the projection,∏
ℎ∈ℤ

Hom𝑅 (𝑀ℎ, 𝑋ℎ+𝒾) −↠ Hom𝑅 (𝑀𝒿, 𝑋𝒿+𝒾) ,

and postcomposing it with the map induced by the injection,

𝑋𝒿+𝒾 ⊗𝑆 𝑁𝑣−𝒾 ↣→
∐
𝑘∈ℤ

𝑋𝒿+𝑘 ⊗𝑆 𝑁𝑣−𝑘 .

The map of complexes defined hereby, Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 → Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁),
is denoted 𝜃𝑀𝑋𝑁 . Per 1.4.4 it is a natural morphism of graded 𝕜-modules. On
homogeneous elements 𝜓 ∈ Hom𝑅 (𝑀, 𝑋), 𝑚 ∈ 𝑀 , and 𝑛 ∈ 𝑁 it is given by

(4.5.8.3) 𝜃𝑀𝑋𝑁 (𝜓 ⊗ 𝑛) (𝑚) = (−1) |𝑚 | |𝑛 |𝜓(𝑚) ⊗ 𝑛 .

Note that (4.5.8.3) agrees with the definition in 1.4.4 for modules 𝑀 , 𝑋 , and 𝑁 .

4.5.9 Proposition. Let 𝑀 be an 𝑅-complex, 𝑋 be a complex of 𝑅–𝑆o-bimodules,
and 𝑁 an 𝑆-complex. The tensor evaluation map defined in 4.5.8,

𝜃𝑀𝑋𝑁 : Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 −→ Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁) ,

is a morphism in C(𝕜), and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀 is in
C(𝑅–𝑄o) and 𝑁 is in C(𝑆–𝑇o), then 𝜃𝑀𝑋𝑁 is a morphism in C(𝑄–𝑇o). Finally, as
a natural transformation of functors, 𝜃 is a Σ-transformation in each variable.

Proof. By construction, 𝜃𝑀𝑋𝑁 is a morphism of graded 𝕜-modules and natural
in 𝑀 , 𝑋 , and 𝑁 . If 𝑀 is in C(𝑅–𝑄o) and 𝑁 is in C(𝑆–𝑇o), then 𝜃𝑀𝑋𝑁 is a mor-
phism of graded 𝑄–𝑇o-bimodules; this follows from 1.4.4 and the construction. For
homogeneous elements 𝜓 ∈ Hom𝑅 (𝑀, 𝑋), 𝑚 ∈ 𝑀 , and 𝑛 ∈ 𝑁 one has

(𝜕Hom𝑅 (𝑀,𝑋⊗𝑆𝑁 ) (𝜃𝑀𝑋𝑁 (𝜓 ⊗ 𝑛))) (𝑚)
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= (𝜕𝑋⊗𝑆𝑁 𝜃𝑀𝑋𝑁 (𝜓 ⊗ 𝑛) − (−1) | 𝜃𝑀𝑋𝑁 (𝜓⊗𝑛) |𝜃𝑀𝑋𝑁 (𝜓 ⊗ 𝑛)𝜕𝑀 ) (𝑚)
= (−1) |𝑚 | |𝑛 |𝜕𝑋⊗𝑆𝑁 (𝜓(𝑚) ⊗ 𝑛) − (−1) |𝜓 |+|𝑛 |+( |𝑚 |−1) |𝑛 |𝜓𝜕𝑀 (𝑚) ⊗ 𝑛
= (−1) |𝑚 | |𝑛 | (𝜕𝑋𝜓(𝑚) ⊗ 𝑛 + (−1) |𝜓 (𝑚) |𝜓(𝑚) ⊗ 𝜕𝑁 (𝑛))

− (−1) |𝜓 |+|𝑚 | |𝑛 |𝜓(𝜕𝑀 (𝑚)) ⊗ 𝑛
= (−1) |𝑚 | |𝑛 |𝜕𝑋𝜓(𝑚) ⊗ 𝑛 + (−1) |𝑚 | |𝑛 |+|𝜓 |+|𝑚 |𝜓(𝑚) ⊗ 𝜕𝑁 (𝑛)

− (−1) |𝜓 |+|𝑚 | |𝑛 |𝜓𝜕𝑀 (𝑚) ⊗ 𝑛
and

𝜃𝑀𝑋𝑁 (𝜕Hom𝑅 (𝑀,𝑋)⊗𝑆𝑁 (𝜓 ⊗ 𝑛)) (𝑚)
= 𝜃𝑀𝑋𝑁 (𝜕Hom𝑅 (𝑀,𝑋) (𝜓) ⊗ 𝑛 + (−1) |𝜓 |𝜓 ⊗ 𝜕𝑁 (𝑛)) (𝑚)
= 𝜃𝑀𝑋𝑁 ((𝜕𝑋𝜓 − (−1) |𝜓 |𝜓𝜕𝑀 ) ⊗ 𝑛 + (−1) |𝜓 |𝜓 ⊗ 𝜕𝑁 (𝑛)) (𝑚)
= (−1) |𝑚 | |𝑛 |𝜕𝑋𝜓(𝑚) ⊗ 𝑛 − (−1) |𝜓 |+|𝑚 | |𝑛 |𝜓𝜕𝑀 (𝑚) ⊗ 𝑛

+ (−1) |𝜓 |+|𝑚 | ( |𝑛 |−1)𝜓(𝑚) ⊗ 𝜕𝑁 (𝑛) .

These two computations show that 𝜃𝑀𝑋𝑁 is a morphism of complexes. It follows
from 2.2.5 combined with 4.1.16, 4.1.17, 4.1.18, and 4.1.19 that 𝜃 as a natural trans-
formation of functors is a Σ-transformation in each variable. The detailed argument
follows the template from the proof of swap 4.4.10. □

4.5.10 Theorem. Let 𝑀 be an 𝑅-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules, and 𝑁
an 𝑆-complex. Tensor evaluation 4.5.9,

𝜃𝑀𝑋𝑁 : Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 −→ Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁) ,

is an isomorphism if the complexes meet one of the boundedness conditions (1)–(3)
and one of the conditions (a)–(c) on their modules.

(1) 𝑀 is bounded below, and 𝑋 and 𝑁 are bounded above.
(2) 𝑀 is bounded above, and 𝑋 and 𝑁 are bounded below.
(3) Two of the complexes 𝑀 , 𝑋 , and 𝑁 are bounded.
(a) 𝑀 or 𝑁 is a complex of finitely generated projective modules.
(b) 𝑀 is a complex of projective modules and 𝑁 is degreewise finitely presented.
(c) 𝑀 is degreewise finitely presented and 𝑁 is a complex of flat modules.
Furthermore, 𝜃𝑀𝑋𝑁 is an isomorphism if 𝑀 or 𝑁 is a bounded complex of finitely

presented modules and one of the following conditions is satisfied.
(d) 𝑀 is a complex of projective modules.
(e) 𝑁 is a complex of flat modules.

Proof. Under any one of the conditions (a)–(c), each homomorphism 𝜃𝑀ℎ𝑋𝑖𝑁 𝑗 is
an isomorphism of modules by 1.4.6. To prove the first assertion, it is now sufficient
to show that under each of the boundedness conditions (1)–(3), every component of
𝜃𝑀𝑋𝑁 is given by a direct sum of homomorphisms 𝜃𝑀ℎ𝑋𝑖𝑁 𝑗 .
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The products and coproducts in (4.5.8.1) and (4.5.8.2) are finite under any one of
the conditions (1)–(3). Indeed, under (1), assume without loss of generality that
one has 𝑀𝑣 = 0 for all 𝑣 < 0 and 𝑋𝑣 = 0 = 𝑁𝑣 for all 𝑣 > 0; cf. 2.3.14,
2.3.16, 2.4.13, and 2.4.14. Now 2.5.12 and 2.5.18 yield (Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁)𝑣 =

0 = Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁)𝑣 for all 𝑣 > 0. For 𝑣 ⩽ 0 equation (4.5.8.1) yields

(Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁)𝑣 =
∐
𝑖⩾𝑣

( −𝑖∏
𝑗=0

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖)
)
⊗𝑆 𝑁𝑣−𝑖

�
0⊕
𝑖=𝑣

−𝑖⊕
𝑗=0

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖) ⊗𝑆 𝑁𝑣−𝑖 ,

and from (4.5.8.2) one gets

Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁)𝑣 =
∏
𝑗⩾0

Hom𝑅

(
𝑀 𝑗 ,

− 𝑗∐
𝑖=𝑣

𝑋 𝑗+𝑖 ⊗𝑆 𝑁𝑣−𝑖
)

�
−𝑣⊕
𝑗=0

− 𝑗⊕
𝑖=𝑣

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖 ⊗𝑆 𝑁𝑣−𝑖)

=
0⊕
𝑖=𝑣

−𝑖⊕
𝑗=0

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖 ⊗𝑆 𝑁𝑣−𝑖) .

In particular, the 𝑣th component of the morphism 𝜃𝑀𝑋𝑁 is given by

𝜃𝑀𝑋𝑁𝑣 =
0⊕
𝑖=𝑣

−𝑖⊕
𝑗=0
(−1) 𝑗 (𝑣−𝑖)𝜃𝑀 𝑗𝑋 𝑗+𝑖𝑁𝑣−𝑖 .

Parallel arguments apply under conditions (2) and (3). Thus, 𝜃𝑀𝑋𝑁 is an isomor-
phism when one of (1)–(3) and one of (a)–(c) holds.

If 𝑀 or 𝑁 is a bounded complex of finitely presented modules, then under either
one of the conditions (d) and (e), each homomorphism 𝜃𝑀ℎ𝑋𝑖𝑁 𝑗 is an isomorphism
of modules by 1.4.6. To prove the second assertion, it is now sufficient to prove that
every component of 𝜃𝑀𝑋𝑁 is a product or a coproduct of homomorphisms 𝜃𝑀ℎ𝑋𝑖𝑁 𝑗 .

First, let 𝑀 be a bounded complex of finitely presented modules and assume
without loss of generality that one has 𝑀𝑣 = 0 for all 𝑣 < 0 and for all 𝑣 > 𝑢, for
some 𝑢 ⩾ 0. From (4.5.8.1) one gets

(Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁)𝑣 =
∐
𝑖∈ℤ

( 𝑢∏
𝑗=0

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖)
)
⊗𝑆 𝑁𝑣−𝑖

�
∐
𝑖∈ℤ

𝑢⊕
𝑗=0

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖) ⊗𝑆 𝑁𝑣−𝑖 ,

and (4.5.8.2) yields

Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁)𝑣 =
𝑢∏
𝑗=0

Hom𝑅

(
𝑀 𝑗 ,

∐
𝑖∈ℤ

𝑋 𝑗+𝑖 ⊗𝑆 𝑁𝑣−𝑖
)

�
∐
𝑖∈ℤ

𝑢⊕
𝑗=0

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖 ⊗𝑆 𝑁𝑣−𝑖) ,
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where the isomorphism follows from 3.1.33, as 𝑀 is bounded and the modules 𝑀 𝑗

are finitely generated. It follows that the 𝑣th component of the morphism 𝜃𝑀𝑋𝑁 is
given by

𝜃𝑀𝑋𝑁𝑣 =
∐
𝑖∈ℤ

𝑢⊕
𝑗=0
(−1) 𝑗 (𝑣−𝑖)𝜃𝑀 𝑗𝑋 𝑗+𝑖𝑁𝑣−𝑖 .

Finally, let 𝑁 be a bounded complex of finitely presented modules and assume
without loss of generality that one has 𝑁𝑣 = 0 for all 𝑣 < 0 and for all 𝑣 > 𝑢, for
some 𝑢 ⩾ 0. Now (4.5.8.1) yields

(Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁)𝑣 =
𝑣∐

𝑖=𝑣−𝑢

( ∏
𝑗∈ℤ

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖)
)
⊗𝑆 𝑁𝑣−𝑖

�
∏
𝑗∈ℤ

𝑣⊕
𝑖=𝑣−𝑢

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖) ⊗𝑆 𝑁𝑣−𝑖 ,

where the isomorphism follows from 3.1.31, as the modules 𝑁𝑣−𝑖 are finitely pre-
sented. Further, (4.5.8.2) yields

Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁)𝑣 =
∏
𝑗∈ℤ

Hom𝑅

(
𝑀 𝑗 ,

𝑣∐
𝑖=𝑣−𝑢

𝑋 𝑗+𝑖 ⊗𝑆 𝑁𝑣−𝑖
)

�
∏
𝑗∈ℤ

𝑣⊕
𝑖=𝑣−𝑢

Hom𝑅 (𝑀 𝑗 , 𝑋 𝑗+𝑖 ⊗𝑆 𝑁𝑣−𝑖) .

It follows that the 𝑣th component of the morphism 𝜃𝑀𝑋𝑁 is given by

𝜃𝑀𝑋𝑁𝑣 =
∏
𝑗∈ℤ

𝑣⊕
𝑖=𝑣−𝑢
(−1) 𝑗 (𝑣−𝑖)𝜃𝑀 𝑗𝑋 𝑗+𝑖𝑁𝑣−𝑖 . □

Homomorphism Evaluation

The next construction and the subsequent results extend 1.4.7 and 1.4.9 to complexes.

4.5.11 Construction. Let 𝑀 be an 𝑅-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules,
and 𝑁 an 𝑆o-complex. There are equalities,

(𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀))𝑣 =
∐
𝑖∈ℤ

𝑁𝑖 ⊗𝑆
( ∏
ℎ∈ℤ

Hom𝑅 (𝑋ℎ, 𝑀ℎ+𝑣−𝑖)
)

(4.5.11.1)

and

Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀)𝑣 =
∏
𝑗∈ℤ

Hom𝑅

(∏
𝑘∈ℤ

Hom𝑆o (𝑁𝑘 , 𝑋𝑘+ 𝑗 ), 𝑀 𝑗+𝑣
)
.(4.5.11.2)

To define a map from (𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀))𝑣 to Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀)𝑣 it suffices,
in view of 3.1.2 and 3.1.15, to define, for all integers 𝒾 and 𝒿, a map

𝑁𝒾 ⊗𝑆
( ∏
ℎ∈ℤ

Hom𝑅 (𝑋ℎ, 𝑀ℎ+𝑣−𝒾)
)
−→ Hom𝑅

( ∏
𝑘∈ℤ

Hom𝑆o (𝑁𝑘 , 𝑋𝑘+𝒿), 𝑀𝒿+𝑣
)
.

This is done by precomposing homomorphism evaluation 1.4.7, adjusted by a sign,
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𝑁𝒾⊗𝑆Hom𝑅 (𝑋𝒾+𝒿,𝑀𝒿+𝑣)
(−1) (𝑣−𝒾+𝒿)𝒾 𝜂𝑀𝒿+𝑣𝑋𝒾+𝒿𝑁𝒾

−−−−−−−−−−−−−−−−−−−→ Hom𝑅 (Hom𝑆o (𝑁𝒾 ,𝑋𝒾+𝒿), 𝑀𝒿+𝑣) ,

with the map induced the projection,∏
ℎ∈ℤ

Hom𝑅 (𝑋ℎ, 𝑀ℎ+𝑣−𝒾) −↠ Hom𝑅 (𝑋𝒾+𝒿, 𝑀𝒿+𝑣) ,

and postcomposing it with the map induced by∏
𝑘∈ℤ

Hom𝑆o (𝑁𝑘 , 𝑋𝑘+𝒿) −↠ Hom𝑆o (𝑁𝒾 , 𝑋𝒾+𝒿) .

The map of complexes, 𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) → Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀), defined
hereby, is denoted 𝜂𝑀𝑋𝑁 . It follows from 1.4.7 that it is a natural morphism of
graded 𝕜-modules. On homogeneous elements 𝑛 ∈ 𝑁 , 𝜓 ∈ Hom𝑅 (𝑋, 𝑀), and
𝜗 ∈ Hom𝑆o (𝑁, 𝑋) it is given by

(4.5.11.3) 𝜂𝑀𝑋𝑁 (𝑛 ⊗ 𝜓) (𝜗) = (−1) ( |𝜓 |+|𝜗 | ) |𝑛 |𝜓𝜗(𝑛) .

Note that (4.5.11.3) agrees with the definition in 1.4.7 for modules 𝑀 , 𝑋 and 𝑁 .

4.5.12 Proposition. Let 𝑀 be an 𝑅-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules, and
𝑁 an 𝑆o-complex. The homomorphism evaluation map defined in 4.5.11,

𝜂𝑀𝑋𝑁 : 𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) −→ Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀) ,

is a morphism in C(𝕜), and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, if 𝑀 is in
C(𝑅–𝑄o) and 𝑁 is in C(𝑇–𝑆o), then 𝜂𝑀𝑋𝑁 is a morphism in C(𝑇–𝑄o). Finally, as
a natural transformation of functors, 𝜂 is a Σ-transformation in each variable.

Proof. By construction, 𝜂𝑀𝑋𝑁 is a morphism of graded 𝕜-modules and natural
in 𝑀 , 𝑋 , and 𝑁 . If 𝑀 is in C(𝑅–𝑄o) and 𝑁 is in C(𝑇–𝑆o), then 𝜂𝑀𝑋𝑁 is a mor-
phism of graded 𝑇–𝑄o-bimodules; this follows from 1.4.4 and the construction. For
homogeneous elements 𝑛 ∈ 𝑁 , 𝜓 ∈ Hom𝑅 (𝑋, 𝑀), and 𝜗 ∈ Hom𝑆o (𝑁, 𝑋) one has

(𝜕Hom𝑅 (Hom𝑆o (𝑁,𝑋) ,𝑀 ) (𝜂𝑀𝑋𝑁 (𝑛 ⊗ 𝜓))) (𝜗)

= (𝜕𝑀𝜂𝑀𝑋𝑁 (𝑛 ⊗ 𝜓) − (−1) |𝜂𝑀𝑋𝑁 (𝑛⊗𝜓) |𝜂𝑀𝑋𝑁 (𝑛 ⊗ 𝜓)𝜕Hom𝑆o (𝑁,𝑋) ) (𝜗)
= (−1) ( |𝜓 |+|𝜗 | ) |𝑛 |𝜕𝑀𝜓𝜗(𝑛)

− (−1) |𝑛 |+|𝜓 |𝜂𝑀𝑋𝑁 (𝑛 ⊗ 𝜓) (𝜕𝑋𝜗 − (−1) |𝜗 |𝜗𝜕𝑁 )
= (−1) ( |𝜓 |+|𝜗 | ) |𝑛 |𝜕𝑀𝜓𝜗(𝑛)

− (−1) |𝑛 |+|𝜓 |+( |𝜓 |+|𝜗 |−1) |𝑛 |𝜓(𝜕𝑋𝜗(𝑛) − (−1) |𝜗 |𝜗𝜕𝑁 (𝑛))
= (−1) ( |𝜓 |+|𝜗 | ) |𝑛 | (𝜕𝑀𝜓𝜗(𝑛) − (−1) |𝜓 |𝜓𝜕𝑋𝜗(𝑛) + (−1) |𝜓 |+|𝜗 |𝜓𝜗𝜕𝑁 (𝑛))

and

𝜂𝑀𝑋𝑁 (𝜕𝑁⊗𝑆Hom𝑅 (𝑋,𝑀 ) (𝑛 ⊗ 𝜓)) (𝜗)
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= 𝜂𝑀𝑋𝑁 (𝜕𝑁 (𝑛) ⊗ 𝜓 + (−1) |𝑛 |𝑛 ⊗ 𝜕Hom𝑅 (𝑋,𝑀 ) (𝜓)) (𝜗)
= (−1) ( |𝜓 |+|𝜗 | ) ( |𝑛 |−1)𝜓𝜗𝜕𝑁 (𝑛) + (−1) |𝑛 |𝜂𝑀𝑋𝑁 (𝑛 ⊗ (𝜕𝑀𝜓 − (−1) |𝜓 |𝜓𝜕𝑋)) (𝜗)
= (−1) ( |𝜓 |+|𝜗 | ) |𝑛 | ((−1) |𝜓 |+|𝜗 |𝜓𝜗𝜕𝑁 (𝑛) + 𝜕𝑀𝜓𝜗(𝑛) − (−1) |𝜓 |𝜓𝜕𝑋𝜗(𝑛)) .

These two computations show that 𝜂𝑀𝑋𝑁 is a morphism of complexes. It follows
from 2.2.5 combined with 4.1.16, 4.1.17, 4.1.18, and 4.1.19 that 𝜂 as a natural trans-
formation of functors is a Σ-transformation in each variable. The detailed argument
follows the template from the proof of swap 4.4.10. □

4.5.13 Theorem. Let 𝑀 be an 𝑅-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules, and 𝑁
an 𝑆o-complex. Homomorphism evaluation 4.5.12,

𝜂𝑀𝑋𝑁 : 𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) −→ Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀) ,

is an isomorphism if the complexes meet one of the boundedness conditions (1)–(3)
and condition (a) or (b) on their modules.

(1) 𝑀 and 𝑁 are bounded below, and 𝑋 is bounded above.
(2) 𝑀 and 𝑁 are bounded above, and 𝑋 is bounded below.
(3) Two of the complexes 𝑀 , 𝑋 , and 𝑁 are bounded.
(a) 𝑁 is a complex of finitely generated projective modules.
(b) 𝑁 is degreewise finitely presented and 𝑀 is a complex of injective modules.
Furthermore, 𝜂𝑀𝑋𝑁 is an isomorphism if 𝑁 is a bounded complex of finitely

presented modules and one of the following conditions are satisfied.
(c) 𝑁 is a complex of projective modules.
(d) 𝑀 is a complex of injective modules.

Proof. Under either condition (a) or (b), each homomorphism 𝜂𝑀 𝑗𝑋ℎ𝑁𝑖 is an iso-
morphism of modules by 1.4.9. To prove the first assertion, it is now sufficient to
show that under any one of the boundedness conditions (1)–(3), every component of
𝜂𝑀𝑋𝑁 is given by a direct sum of homomorphisms 𝜂𝑀 𝑗𝑋ℎ𝑁𝑖 .

The products and coproducts in (4.5.11.1) and (4.5.11.2) are finite under any
one of the conditions (1)–(3). Indeed, under (1), assume without loss of generality
that one has 𝑀𝑣 = 0 = 𝑁𝑣 for all 𝑣 < 0 and 𝑋𝑣 = 0 for all 𝑣 > 0; cf. 2.3.14,
2.3.16, 2.4.13, and 2.4.14. It follows that one has (𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀))𝑣 = 0 =

Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀)𝑣 for all 𝑣 < 0. For 𝑣 ⩾ 0 equation (4.5.11.1) yields

(𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀))𝑣 =
∐
𝑖⩾0

𝑁𝑖 ⊗𝑆
( 0∏
𝑗=𝑖−𝑣

Hom𝑅 (𝑋 𝑗 , 𝑀 𝑗+𝑣−𝑖)
)

�
𝑣⊕
𝑖=0

0⊕
𝑗=𝑖−𝑣

𝑁𝑖 ⊗𝑆 Hom𝑅 (𝑋 𝑗 , 𝑀 𝑗+𝑣−𝑖) ,

and from (4.5.11.2) one gets

Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀)𝑣 =
∏
ℎ⩾−𝑣

Hom𝑅

( −ℎ∏
𝑖=0

Hom𝑆o (𝑁𝑖 , 𝑋𝑖+ℎ), 𝑀ℎ+𝑣
)
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�
0⊕

ℎ=−𝑣

−ℎ⊕
𝑖=0

Hom𝑅 (Hom𝑆o (𝑁𝑖 , 𝑋𝑖+ℎ), 𝑀ℎ+𝑣)

�
𝑣⊕
𝑖=0

−𝑖⊕
ℎ=−𝑣

Hom𝑅 (Hom𝑆o (𝑁𝑖 , 𝑋𝑖+ℎ), 𝑀ℎ+𝑣)

�
𝑣⊕
𝑖=0

0⊕
𝑗=𝑖−𝑣

Hom𝑅 (Hom𝑆o (𝑁𝑖 , 𝑋 𝑗 ), 𝑀 𝑗+𝑣−𝑖) .

In particular, the 𝑣th component of the morphism 𝜂𝑀𝑋𝑁 is

𝜂𝑀𝑋𝑁𝑣 =
𝑣⊕
𝑖=0

0⊕
𝑗=𝑖−𝑣

(−1) ( 𝑗+𝑣)𝑖𝜂𝑀 𝑗+𝑣−𝑖𝑋 𝑗𝑁𝑖 .

Parallel arguments apply under conditions (2) and (3). Thus, 𝜂𝑀𝑋𝑁 is an isomor-
phism when one of (1)–(3) and (a) or (b) hold.

If 𝑁 is a bounded complex of finitely presented modules, then under either one
of the conditions (c) and (d), each homomorphism 𝜂𝑀𝑝𝑋𝑞𝑁𝑟 is an isomorphism of
modules by 1.4.9. To prove the second assertion, it is now sufficient to prove that
every component of 𝜂𝑀𝑋𝑁 is given by a product of homomorphisms 𝜂𝑀𝑝𝑋𝑞𝑁𝑟 .
Assume without loss of generality that one has 𝑁𝑣 = 0 for all 𝑣 < 0 and for all 𝑣 > 𝑢,
for some 𝑢 ⩾ 0. From (4.5.11.1) one gets

(𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀))𝑣 =
𝑢∐
𝑖=0

(
𝑁𝑖 ⊗𝑆

∏
𝑗∈ℤ

Hom𝑅 (𝑋 𝑗 , 𝑀 𝑗+𝑣−𝑖)
)

�
𝑢⊕
𝑖=0

∏
𝑗∈ℤ
(𝑁𝑖 ⊗𝑆 Hom𝑅 (𝑋 𝑗 , 𝑀 𝑗+𝑣−𝑖)) ,

where the isomorphism follows from 3.1.30, as 𝑁 is a bounded complex of finitely
presented modules. Further, (4.5.11.2) yields

Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀)𝑣 =
∏
ℎ∈ℤ

Hom𝑅

( 𝑢∏
𝑖=0

Hom𝑆o (𝑁𝑖 , 𝑋𝑖+ℎ), 𝑀ℎ+𝑣
)

�
𝑢⊕
𝑖=0

∏
ℎ∈ℤ

Hom𝑅 (Hom𝑆o (𝑁𝑖 , 𝑋𝑖+ℎ), 𝑀ℎ+𝑣)

�
𝑢⊕
𝑖=0

∏
𝑗∈ℤ

Hom𝑅 (Hom𝑆o (𝑁𝑖 , 𝑋 𝑗 ), 𝑀 𝑗+𝑣−𝑖) .

It follows that the 𝑣th component of the morphism 𝜂𝑀𝑋𝑁 is

𝜂𝑀𝑋𝑁𝑣 =
𝑢⊕
𝑖=0

∏
𝑗∈ℤ
(−1) ( 𝑗+𝑣)𝑖𝜂𝑀 𝑗+𝑣−𝑖𝑋 𝑗𝑁𝑖 . □

Unit and Counit of Hom–Tensor Adjunction

The next result is not needed before Chap. 10, but it is natural to record it here.

4.5.14 Proposition. Let 𝑋 be a complex of 𝑅–𝑆o-bimodules. There is an adjunction,
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C(𝑆)
𝑋⊗𝑆

//
C(𝑅) .

Hom𝑅 (𝑋, )
oo

For an 𝑆-complex 𝑁 the unit 𝛼𝑁
𝑋

is the unique morphism in C(𝑆) that makes the
following diagram commutative,

(4.5.14.1)
𝑆 ⊗𝑆 𝑁

�𝜇𝑁

��

𝜒𝑋⊗𝑁
// Hom𝑅 (𝑋, 𝑋) ⊗𝑆 𝑁

𝜃𝑋𝑋𝑁

��

𝑁
𝛼𝑁
𝑋

// Hom𝑅 (𝑋, 𝑋 ⊗𝑆 𝑁) .

It is given by
𝛼𝑁𝑋 (𝑛) (𝑥) = (−1) |𝑥 | |𝑛 |𝑥 ⊗ 𝑛 ,

and if 𝑁 is in C(𝑆–𝑇o) then 𝛼𝑁
𝑋

is a morphism in C(𝑆–𝑇o). Moreover, 𝛼
𝑋

is a
Σ-transformation.

For an 𝑅-complex 𝑀 the counit 𝛽𝑀
𝑋

is the unique morphism in C(𝑅) that makes
the following diagram commutative,

(4.5.14.2)
𝑋 ⊗𝑆 Hom𝑅 (𝑋, 𝑀)

𝜂𝑀𝑋𝑋

��

𝛽𝑀
𝑋

// 𝑀

𝜖𝑀�

��

Hom𝑅 (Hom𝑆o (𝑋, 𝑋), 𝑀)
Hom (𝜒𝑋 ,𝑀 )

// Hom𝑅 (𝑅, 𝑀) .

It is given by
𝛽𝑀𝑋 (𝑥 ⊗ 𝜙) = (−1) |𝑥 | |𝜙 |𝜙(𝑥) ,

and if 𝑀 is in C(𝑅–𝑄o) then 𝛽𝑀
𝑋

is a morphism in C(𝑅–𝑄o). Moreover, 𝛽
𝑋

is a
Σ-transformation.

Proof. Let 𝑀 be an 𝑅-complex and 𝑁 an 𝑆-complex. By 2.3.10 and adjunc-
tion 4.4.12 there are natural isomorphisms,

C(𝑅) (𝑋 ⊗𝑆 𝑁, 𝑀) � Z0 (Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀))
� Z0 (Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀)))
� C(𝑆) (𝑁,Hom𝑅 (𝑋, 𝑀)) .

This establishes the asserted adjunction. Under the isomorphisms above a morphism
𝜓 : 𝑋 ⊗𝑆 𝑁 → 𝑀 in C(𝑅) is sent to the morphism 𝜌𝑀𝑋𝑁 (𝜓) : 𝑁 → Hom𝑅 (𝑋, 𝑀)
in C(𝑆), and a morphism 𝜑 : 𝑁 → Hom𝑅 (𝑋, 𝑀) in C(𝑆) is mapped to the morphism
(𝜌𝑀𝑋𝑁 )−1 (𝜑) : 𝑋 ⊗𝑆 𝑁 → 𝑀 in C(𝑅). With 𝑀 = 𝑋 ⊗𝑆 𝑁 and 𝜓 = 1𝑋⊗𝑁 one
obtains, by definition, the unit of the adjunction,

𝛼𝑁𝑋 = 𝜌 (𝑋⊗𝑁 )𝑋𝑁 (1𝑋⊗𝑁 ) : 𝑁 −→ Hom𝑅 (𝑋, 𝑋 ⊗𝑆 𝑁) .

By (4.4.11.1) it is given by

𝛼𝑁𝑋 (𝑛) (𝑥) = 𝜌 (𝑋⊗𝑁 )𝑋𝑁 (1𝑋⊗𝑁 ) (𝑛) (𝑥) = (−1) |𝑥 | |𝑛 |1𝑋⊗𝑁 (𝑥⊗𝑛) = (−1) |𝑥 | |𝑛 |𝑥⊗𝑛
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for 𝑛 ∈ 𝑁 and 𝑥 ∈ 𝑋 . Commutativity of (4.5.14.1) follows from the next computation,
which uses the definition of 𝛼𝑁

𝑋
, homothety formation 4.5.5, and (4.5.8.3).

(𝛼𝑁𝑋 ◦ 𝜇
𝑁
𝑆 ) (𝑠 ⊗ 𝑛) (𝑥) = 𝛼𝑁𝑋 (𝑠𝑛) (𝑥)

= (−1) |𝑥 | |𝑛 |𝑥 ⊗ 𝑠𝑛
= (−1) |𝑥 | |𝑛 |𝑥𝑠 ⊗ 𝑛
= (−1) |𝑥 | |𝑛 | 𝜒𝑋𝑆o𝑅 (𝑠) (𝑥) ⊗ 𝑛
= 𝜃𝑋𝑋𝑁 (𝜒𝑋𝑆o𝑅 (𝑠) ⊗ 𝑛) (𝑥)
= (𝜃𝑋𝑋𝑁 ◦ (𝜒𝑋𝑆o𝑅 ⊗𝑆 𝑁)) (𝑠 ⊗ 𝑛) (𝑥) .

As 𝜇𝑁 is an isomorphism, 𝛼𝑁
𝑋

is the unique morphism in C(𝑆) that makes the
diagram (4.5.14.1) commutative.

For a complex 𝑁 of 𝑆–𝑇o-bimodules it is elementary to verify that 𝛼𝑁
𝑋

is a
morphism inC(𝑆–𝑇o); this also follows from commutativity of (4.5.14.1) as the other
morphisms in the diagram per 2.4.10, 4.4.1, and 4.5.9 are morphisms in C(𝑆–𝑇o). It
follows from 4.1.16, 4.1.18, and 2.2.5 that Hom𝑅 (𝑋, 𝑋 ⊗𝑆 ) is a Σ-functor, and the
action of 𝛼

𝑋
is explicitly described above. It is now straightforward to verify that 𝛼

𝑋

is a Σ-transformation, see 4.1.9.
Going back to the first part of the proof with 𝑁 = Hom𝑅 (𝑋, 𝑀) and 𝜑 =

1Hom (𝑋,𝑀 ) one obtains, by definition, the counit of the adjunction,

𝛽𝑀𝑋 = (𝜌𝑀𝑋Hom (𝑋,𝑀 ) )−1 (1Hom (𝑋,𝑀 ) ) : 𝑋 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) −→ 𝑀 .

As 𝜌𝑀𝑋Hom (𝑋,𝑀 ) (𝛽𝑀
𝑋
) = 1Hom (𝑋,𝑀 ) holds one gets 𝜌𝑀𝑋Hom (𝑋,𝑀 ) (𝛽𝑀

𝑋
) (𝜙) = 𝜙

for every 𝜙 ∈ Hom𝑅 (𝑋, 𝑀). Thus, for every 𝑥 ∈ 𝑋 the second equality below holds
and the first one follows from (4.4.11.1),

(−1) |𝑥 | |𝜙 | 𝛽𝑀𝑋 (𝑥 ⊗ 𝜙) = 𝜌𝑀𝑋Hom (𝑋,𝑀 ) (𝛽𝑀𝑋 ) (𝜙) (𝑥) = 𝜙(𝑥) .

Consequently, the counit is given by the formula 𝛽𝑀
𝑋
(𝑥 ⊗ 𝜙) = (−1) |𝑥 | |𝜙 |𝜙(𝑥).

Commutativity of (4.5.14.2) now follows from the next computation, which uses
homothety formation 4.5.5, the fact that 𝑟𝑋 has degree zero, and (4.5.11.3).

(𝜖𝑀𝑅 ◦ 𝛽𝑀𝑋 ) (𝑥 ⊗ 𝜙) (𝑟) = (−1) |𝑥 | |𝜙 |𝑟𝜙(𝑥)
= (−1) |𝑥 | |𝜙 |𝜙(𝑟𝑥)

= (−1) ( |𝜙 |+|𝑟𝑋 | ) |𝑥 |𝜙𝑟𝑋 (𝑥)
= 𝜂𝑀𝑋𝑋 (𝑥 ⊗ 𝜙) (𝑟𝑋)
= (𝜂𝑀𝑋𝑋 (𝑥 ⊗ 𝜙) ◦ 𝜒𝑋𝑅𝑆o) (𝑟)
= (Hom (𝜒𝑋𝑅𝑆o, 𝑀) ◦ 𝜂𝑀𝑋𝑋) (𝑥 ⊗ 𝜙) (𝑟) .

As 𝜖𝑀
𝑅

is an isomorphism, 𝛽𝑀
𝑋

is the unique morphism in C(𝑅) that makes the
diagram (4.5.14.2) commutative.

For a complex 𝑀 of 𝑅–𝑄o-bimodules it is elementary to verify that 𝛽𝑀
𝑋

is a
morphism in C(𝑅–𝑄o); this also follows from commutativity of (4.5.14.2) as the
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other morphisms in the diagram per 2.3.11, 4.4.2, and 4.5.12 are morphisms in
C(𝑅–𝑄o). It follows from 4.1.16, 4.1.18, and 2.2.5 that 𝑋 ⊗𝑆 Hom𝑅 (𝑋, ) is a Σ-
functor, and the action of 𝛽

𝑋
is explicitly described above. It is now straightforward

to verify that 𝛽
𝑋

is a Σ-transformation, see 4.1.9. □

Exercises

E 4.5.1 Let 𝐿 be a complex of finitely generated free 𝑅-modules. Show that 𝛿Hom𝑅 (𝐿,𝑅)
𝑅

is an
isomorphism of 𝑅o-complexes with inverse Hom𝑅 (𝛿𝐿𝑅 , 𝑅) .

E 4.5.2 Let 𝑋 be a complex of 𝑅–𝑆o-bimodules. Show that the maps 𝜒𝑋
𝑅𝑆o : 𝑅 → Hom𝑆o (𝑋, 𝑋)

and 𝜒𝑋
𝑆o𝑅 : 𝑆o→ Hom𝑅 (𝑋, 𝑋) are morphisms of 𝕜-algebras.

E 4.5.3 Let 𝑃 be a projective 𝑅-module, 𝑋 a complex of 𝑅–𝑆o-bimodules, and 𝑁 a complex of
finitely presented 𝑆-modules; show that 𝜃𝑃𝑋𝑁 is injective.

E 4.5.4 Let 𝑁 be a complex of finitely presented 𝑆o-modules, 𝑋 a complex of 𝑅–𝑆o-bimodules,
and 𝐸 an injective 𝑅-module; show that 𝜂𝐸𝑋𝑁 is injective.

E 4.5.5 Let 𝑀 be an 𝑅-complex. Show that biduality 𝛿𝑀
𝑅

is an isomorphism if and only if
homomorphism evaluation 𝜂𝑅𝑅𝑀 is an isomorphism.

E 4.5.6 Let 𝑀 be an 𝑅-complex. Show that if the 𝑅o-complex Hom𝕜 (𝑀, 𝔼) is contractible, then
biduality 𝛿𝑀

𝔼
is null-homotopic.

E 4.5.7 Let 𝑋 be a complex of 𝑅–𝑆o-bimodules. Show that there are adjunctions
Hom𝑆o ( , 𝑋)op : C(𝑄–𝑆o ) −−→←−− C(𝑅–𝑄o )op : Hom𝑅 ( , 𝑋)

and
𝑋 ⊗𝑆 : C(𝑆–𝑇o ) −−→←−− C(𝑅–𝑇o ) : Hom𝑅 (𝑋, ) .

Hint: Zigzag identities.
E 4.5.8 Show that the natural transformation 𝑀 ⊗𝑅 Hom𝑅 (𝑁, ) → Hom𝑅 (𝑁, 𝑀 ⊗𝑅 ) in

E 4.4.6 is tensor evaluation, up to an application of commutativity 4.4.4.
E 4.5.9 Show that the natural transformation 𝑀 ⊗𝑅 Hom𝑅 ( , 𝑁 ) → Hom𝑅 (Hom𝑅 ( , 𝑀 ) , 𝑁 )

in E 4.4.7 is homomorphism evaluation.
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Chapter 5
Resolutions

A resolution of a complex is a quasi-isomorphism between the given complex and
one that is distinguished by amenable homological properties. Resolutions come in
several flavors; in Chap. 7 they are used to compute derived functors, and in later
chapters they are used to attach homological invariants to complexes.

For example, one can build a resolution of a module by taking a projective pre-
cover, see 1.3.12, and then a projective precover of the kernel of that homomorphism
and so on. This technique can be extended to build a resolution by projective modules
of a bounded below complex, and Spaltenstein [239] shows how a resolution of any
complex can be obtained from resolutions of truncations through a limiting process.
Here we take a different approach, developed by Avramov, Halperin, and Foxby in
[25], that is based on a technique colloquially referred to as “killing cycles”.

5.1 Semi-Freeness

Synopsis. Semi-basis; semi-free complex; semi-free resolution; free resolution of module.

There are several ways in which the notion of freeness for modules can be extended
to complexes; the simplest of these, graded-freeness of the underlying module, was
treated in Sect. 2.5. The goal of this section is to show that the homological data of
any complex can be encoded into one whose underlying module is graded-free.

5.1.1 Definition. An 𝑅-complex 𝐿 is called semi-free if the graded 𝑅-module 𝐿♮ is
graded-free with a graded basis 𝐸 that can be written as a disjoint union

𝐸 =
⊎
𝑛⩾0

𝐸𝑛 with 𝐸0 ⊆ Z(𝐿) and 𝜕𝐿 (𝐸𝑛) ⊆ 𝑅

〈 𝑛−1⋃
𝑖=0

𝐸 𝑖
〉

for every 𝑛 ⩾ 1 .

Such a basis is called a semi-basis for 𝐿.

5.1.2. Let 𝐿 be a graded 𝑅-module. A graded basis for 𝐿 is trivially a semi-basis
for the 𝑅-complex 𝐿. Thus, a graded 𝑅-module is graded-free if and only if it is
semi-free as an 𝑅-complex.
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5.1.3 Example. Let 𝐿 be a bounded below complex of free 𝑅-modules and set
𝑤 = inf 𝐿♮. For every 𝑛 ⩾ 0, let 𝐸𝑛 be a basis for the free module 𝐿𝑤+𝑛, the union⋃
𝑛⩾0 𝐸

𝑛 is now a semi-basis for 𝐿. Thus 𝐿 is semi-free.

5.1.4 Example. The Dold complex from 2.1.23 is a complex of free ℤ/4ℤ-modules.
It has no semi-basis, as no graded basis for this complex contains a cycle.

5.1.5. Note that if an 𝑅-complex 𝐿 is semi-free, then so is Σ𝑠𝐿 for every integer 𝑠.

Remark. It follows from the proof of 4.2.19 that every complex of free modules over a principal
left ideal domain is isomorphic to a coproduct of bounded complexes of free modules and hence
semi-free by 5.1.3 and E 5.1.4.

Existence of Semi-Free Resolutions

5.1.6 Definition. A semi-free resolution of an 𝑅-complex 𝑀 is a quasi-isomorphism
𝐿 −−→ 𝑀 of 𝑅-complexes where 𝐿 is semi-free.

The next theorem achieves the goal of this section.

5.1.7 Theorem. Every 𝑅-complex 𝑀 has a semi-free resolution 𝜋 : 𝐿 ≃−−−→ 𝑀 with
𝐿𝑣 = 0 for all 𝑣 < inf 𝑀♮. Moreover, 𝜋 can be chosen surjective.

The proof relies on the next construction and follows after the proof of 5.1.9.

5.1.8 Construction. Given an 𝑅-complex 𝑀 ≠ 0, we proceed to construct a com-
mutative diagram in C(𝑅),

(5.1.8.1)
𝐿0 // 𝜄

0
//

𝜋0
((

· · · // // 𝐿𝑛−1 // 𝜄
𝑛−1
//

𝜋𝑛−1

��

𝐿𝑛 //
𝜄𝑛
//

𝜋𝑛

||

· · · // 𝐿 .

𝜋

oo𝑀

For 𝑛 = 0, choose a set 𝑍0 of homogeneous cycles in 𝑀 whose homology classes
generate H(𝑀). Let 𝐸0 = {𝑒𝑧 | |𝑒𝑧 | = |𝑧 |, 𝑧 ∈ 𝑍0 } be a graded set and define an
𝑅-complex 𝐿0 as follows:

(5.1.8.2) (𝐿0)♮ = 𝑅⟨𝐸0 ⟩ and 𝜕𝐿
0
= 0 .

To see that the map 𝜋0 : 𝐿0 → 𝑀 given by the assignment 𝑒𝑧 ↦→ 𝑧 is a morphism
of complexes, notice that the differential on 𝐿0 is 0 and that 𝜋0 maps to Z(𝑀), the
kernel of 𝜕𝑀 .

For 𝑛 ⩾ 1 let a morphism 𝜋𝑛−1 : 𝐿𝑛−1 → 𝑀 be given. Choose a set 𝑍𝑛 of ho-
mogeneous cycles in 𝐿𝑛−1 whose homology classes generate the kernel of H(𝜋𝑛−1).
Let 𝐸𝑛 = {𝑒𝑧 | |𝑒𝑧 | = |𝑧 | + 1, 𝑧 ∈ 𝑍𝑛 } be a graded set and set

(𝐿𝑛)♮ = (𝐿𝑛−1)♮ ⊕ 𝑅⟨𝐸𝑛 ⟩ and

𝜕𝐿
𝑛
(
𝑥 +

∑︁
𝑧∈𝑍𝑛

𝑟𝑧𝑒𝑧

)
= 𝜕𝐿

𝑛−1 (𝑥) +
∑︁
𝑧∈𝑍𝑛

𝑟𝑧𝑧 .
(5.1.8.3)
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This defines an 𝑅-complex. For each 𝑧 ∈ 𝑍𝑛 choose an element 𝑚𝑧 ∈ 𝑀 such that
𝜋𝑛−1 (𝑧) = 𝜕𝑀 (𝑚𝑧). It is elementary to verify that the map 𝜋𝑛 : 𝐿𝑛 → 𝑀 defined by

𝜋𝑛
(
𝑥 +

∑︁
𝑧∈𝑍𝑛

𝑟𝑧𝑒𝑧

)
= 𝜋𝑛−1 (𝑥) +

∑︁
𝑧∈𝑍𝑛

𝑟𝑧𝑚𝑧

is a morphism of 𝑅-complexes. Moreover, it agrees with 𝜋𝑛−1 on the subcomplex
𝐿𝑛−1 of 𝐿𝑛. That is, there is an equality of morphisms 𝜋𝑛−1 = 𝜋𝑛𝜄𝑛−1, where 𝜄𝑛−1 is
the embedding of 𝐿𝑛−1 into 𝐿𝑛; cf. (5.1.8.3).

For 𝑛 < 0 set 𝐿𝑛 = 0, 𝜄𝑛 = 0, and 𝜋𝑛 = 0, then the family {𝜄𝑛 : 𝐿𝑛 → 𝐿𝑛+1}𝑛∈ℤ
is a telescope in C(𝑅), and 𝜋𝑛 = 𝜋𝑛+1𝜄𝑛 holds for all 𝑛 ∈ ℤ. Set 𝐿 = colim𝑛∈ℤ 𝐿𝑛,
by 3.3.33 there is a morphism of 𝑅-complexes 𝜋 : 𝐿 → 𝑀 , such that the diagram
(5.1.8.1) is commutative.

5.1.9 Proposition. Let𝑀 ≠ 0 be an 𝑅-complex. The sets, morphisms, and complexes
constructed in 5.1.8 have the following properties.

(a) Each set 𝐸𝑛 consists of homogeneous elements of degree at least 𝑛 + inf 𝑀♮ .

(b) Each complex 𝐿𝑛 is semi-free with semi-basis ⊎𝑛
𝑖=0 𝐸

𝑖 .
(c) The complex 𝐿 is semi-free with semi-basis 𝐸 =

⊎
𝑛⩾0 𝐸

𝑛.
(d) The morphism 𝜋 : 𝐿 → 𝑀 is a quasi-isomorphism.
(e) If 𝜋𝑛 is surjective for some 𝑛 ⩾ 0, then 𝜋 is surjective.

Proof. Parts (a) and (b) are immediate from the definition of the sets 𝐸𝑛 and
(5.1.8.3); part (e) follows from commutativity of the diagram (5.1.8.1).

(c): The morphisms 𝜄𝑛 are embeddings, so 𝐿 = colim𝑛∈ℤ 𝐿𝑛 is by 3.3.34 simply
the union ⋃

𝑛⩾0 𝐿
𝑛; in particular, ⊎𝑛⩾0 𝐸

𝑛 is a graded basis for 𝐿♮. By (5.1.8.3) there
are inclusions 𝜕𝐿 (𝐸𝑛) = 𝜕𝐿

𝑛 (𝐸𝑛) ⊆ 𝑅⟨⋃𝑛−1
𝑖=0 𝐸

𝑖 ⟩ for 𝑛 ⩾ 1, and (5.1.8.2) yields
𝜕𝐿 (𝐸0) = 𝜕𝐿0 (𝐸0) = 0, so 𝐸0 consists of cycles.

(d): For each 𝑛 ⩾ 0 there is a commutative diagram

H(𝐿0) //

H (𝜋0 )
##

H(𝐿𝑛) //

H (𝜋𝑛 )

��

H(𝐿)

H (𝜋 )
{{

H(𝑀) ,

induced from (5.1.8.1) By the choice of 𝑍0, the morphism H(𝜋0) is surjective and
hence so is H(𝜋). To see that H(𝜋) is injective, let 𝑦 be a cycle in 𝐿 and assume that
H(𝜋) ( [𝑦]) = 0. Choose an integer 𝑛 such that 𝑦 ∈ 𝐿𝑛−1; now one has

0 = H(𝜋) ( [𝑦]) = [𝜋(𝑦)] = [𝜋𝑛−1 (𝑦)] = H(𝜋𝑛−1) ( [𝑦]) ,

so [𝑦] is in Ker H(𝜋𝑛−1). By the choice of 𝑍𝑛 there exists a element 𝑥 ∈ 𝐿𝑛−1 such
that one has

𝑦 =
∑
𝑧∈𝑍𝑛

𝑟𝑧𝑧 + 𝜕𝐿
𝑛−1 (𝑥) = 𝜕𝐿

𝑛 (
𝑥 + ∑

𝑧∈𝑍𝑛
𝑟𝑧𝑒𝑧

)
,

where the second equality follows from (5.1.8.3). It follows that [𝑦] is 0 in H(𝐿𝑛)
and hence also in H(𝐿). Thus, H(𝜋) is injective, and 𝜋 is a quasi-isomorphism. □
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Proof of 5.1.7. The identity morphism 0 −−→ 0 is a semi-free resolution of the zero
complex. For an 𝑅-complex 𝑀 ≠ 0, apply the construction 5.1.8. It follows from
parts (c) and (d) in 5.1.9 that 𝜋 : 𝐿 ≃−−→ 𝑀 is a semi-free resolution. Parts (a) and (c)
ensure that 𝐿𝑣 = 0 holds for all 𝑣 < inf 𝑀♮. Finally, notice that choosing 𝑍0 as a set
of generators for Z(𝑀) makes the morphism 𝜋0 is surjective on cycles, and then 𝜋
is surjective on cycles by commutativity of (5.1.8.1). As 𝜋 is a quasi-isomorphism,
it follows from 4.2.7 that it is surjective. □

5.1.10 Proposition. Let 𝐿 be a semi-free 𝑆-complex and 𝑋 a complex of 𝑅–𝑆o-
bimodules. If 𝑋 is a semi-free over 𝑅, then the 𝑅-complex 𝑋 ⊗𝑆 𝐿 is semi-free.

Proof. Let 𝐸 =
⊎
𝑛⩾0 𝐸

𝑛 be a semi-basis for 𝑋 over 𝑅 and 𝐹 =
⊎
𝑛⩾0 𝐹

𝑛 a semi-basis
for 𝐿. For 𝑛 ⩾ 0 set 𝐺𝑛 = {𝑒 ⊗ 𝑓 | 𝑒 ∈ 𝐸 𝑖 , 𝑓 ∈ 𝐹 𝑗 , 𝑖 + 𝑗 = 𝑛}. It is elementary to
verify that the graded 𝑅-module (𝑋 ⊗𝑆 𝐿)♮ is graded-free with basis 𝐺 =

⊎
𝑛⩾0 𝐺

𝑛,
and it follows from 2.4.1 that 𝐺 is a semi-basis for 𝑋 ⊗𝑆 𝐿. □

5.1.11 Corollary. Let 𝑅 → 𝑆 be a ring homomorphism.
(a) For a semi-free 𝑅-complex 𝐿 the 𝑆-complex 𝑆 ⊗𝑅 𝐿 is semi-free.
(b) If 𝑆 is free as an 𝑅-module, then a semi-free 𝑆-complex is semi-free over 𝑅 .

Proof. For (b) apply 5.1.10 with 𝑋 = 𝑆 viewed as an 𝑅–𝑆o-bimodule and note that
𝑋 ⊗𝑆 is the restriction of scalars functor C(𝑆) → C(𝑅). For (a) interchange the
roles of 𝑅 and 𝑆 in 5.1.10 and apply it with 𝑋 = 𝑆 viewed as an 𝑆–𝑅o-bimodule. □

Boundedness and Finiteness

A suitably bounded and/or finite complex has a semi-free resolution with similar
properties. The construction of such a resolution could also be performed degreewise,
thus resembling the classic construction of a free resolution of a module.

5.1.12 Theorem. Every 𝑅-complex 𝑀 has a semi-free resolution 𝐿
≃−−→ 𝑀 with

𝐿𝑣 = 0 for all 𝑣 < inf 𝑀 .

Proof. If 𝑀 is acyclic, then the morphism 0 ≃−−→ 𝑀 is the desired resolution. If
H(𝑀) is not bounded below, then any semi-free resolution of 𝑀 has the desired
property. Assume now that H(𝑀) is bounded below and set 𝑤 = inf 𝑀 . By 4.2.4
there is a quasi-isomorphism 𝑀Ě𝑤 → 𝑀 , and by 5.1.7 the truncated complex 𝑀Ě𝑤

has a semi-free resolution 𝐿 ≃−−→ 𝑀Ě𝑤 with 𝐿𝑣 = 0 for 𝑣 < 𝑤. The desired semi-free
resolution is the composite 𝐿 ≃−−→ 𝑀Ě𝑤

≃−−→ 𝑀 . □

5.1.13 Theorem. Assume that 𝑅 is left Noetherian. Every bounded below and
degreewise finitely generated 𝑅-complex 𝑀 has a semi-free resolution 𝜋 : 𝐿 ≃−−→ 𝑀

with 𝐿 degreewise finitely generated and 𝐿𝑣 = 0 for all 𝑣 < inf 𝑀♮. Moreover, 𝜋 can
be chosen surjective.
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Proof. The identity morphism 0 −−→ 0 is a semi-free resolution of the zero complex.
Assume now that𝑀 is non-zero and set 𝑤 = inf 𝑀♮; it is an integer by the assumption
on 𝑀 . Apply the construction 5.1.8 to 𝑀 and notice the following.

As 𝑅 is left Noetherian, and 𝑀 is a complex of finitely generated 𝑅-modules,
the set 𝑍0 can be chosen such that it contains only finitely many elements of each
degree. Doing so ensures that 𝐸0 = {𝑒𝑧 | |𝑒𝑧 | = |𝑧 |, 𝑧 ∈ 𝑍0 } contains only finitely
many elements of each degree 𝑣 and no elements of degree 𝑣 < 𝑤; see 5.1.9(a).

As 𝑅 is left Noetherian, it follows by induction that Ker H(𝜋𝑛−1) is degreewise
finitely generated for every 𝑛 > 1. Choosing the set 𝑍𝑛 such that it has only finitely
many elements of each degree ensures that the set 𝐸𝑛 = {𝑒𝑧 | |𝑒𝑧 | = |𝑧 | +1, 𝑧 ∈ 𝑍𝑛 }
contains only finitely many elements of each degree 𝑣 and no elements of degree
𝑣 < 𝑤 + 𝑛; see 5.1.9(a).

From 5.1.9 it follows that 𝜋 : 𝐿 ≃−−→ 𝑀 is a semi-free resolution of 𝑀 , and that
𝐸 =

⊎
𝑛⩾0 𝐸

𝑛 is a semi-basis for 𝐿. For each 𝑣 ∈ ℤ the subset 𝐸𝑣 ⊆ 𝐸 of basis
elements of degree 𝑣 is a basis for 𝐿𝑣, and it is finite as one has

𝐸𝑣 =
( ⊎
𝑛⩾0

𝐸𝑛
)
𝑣
=
𝑣−𝑤⊎
𝑛=0
(𝐸𝑛)𝑣 .

Thus, each free module 𝐿𝑣 is finitely generated, and 𝐿𝑣 = 0 holds for all 𝑣 < 𝑤.
Finally, as 𝑅 is left Noetherian, one can choose as 𝑍0 a set of generators for Z(𝑀)

with the additional property that it contains only finitely many elements of each
degree. With this choice, the quasi-isomorphism 𝜋 is surjective on cycles by 5.1.9(e)
and, therefore, surjective by 4.2.7. □

5.1.14 Theorem. Assume that 𝑅 is left Noetherian. Every 𝑅-complex 𝑀 with H(𝑀)
bounded below and degreewise finitely generated has a semi-free resolution 𝐿 ≃−−→ 𝑀

with 𝐿 degreewise finitely generated and 𝐿𝑣 = 0 for all 𝑣 < inf 𝑀 .

Proof. If 𝑀 is acyclic, then the morphism 0 ≃−−→ 𝑀 is the desired resolution.
Assume now that 𝑀 is not acyclic. Set 𝑤 = inf 𝑀 and apply 5.1.13 to the truncated
complex 𝑀Ě𝑤 to obtain a semi-free resolution 𝐿 ≃−−→ 𝑀Ě𝑤 with each module 𝐿𝑣
finitely generated and 𝐿𝑣 = 0 for all 𝑣 < 𝑤. By 4.2.4 there is a quasi-isomorphism
𝑀Ě𝑤

≃−−→ 𝑀 , and the desired resolution is the composite 𝐿 ≃−−→ 𝑀Ě𝑤
≃−−→ 𝑀 . □

Without the assumption that H(𝑀) is bounded below, a semi-free resolution
𝐿
≃−−→ 𝑀 with 𝐿 degreewise finitely generated may not necessarily exist; an example

is provided in 20.1.20. Under the additional assumption that 𝑅 is local, the semi-free
resolution in 5.1.14 can be chosen to be minimal, see B.63.

The Case of Modules

5.1.15 Proposition. Let 𝑅 → 𝑆 be a ring homomorphism and 𝐿 an 𝑅-module.
(a) If 𝐿 is free, then the 𝑆-module 𝑆 ⊗𝑅 𝐿 is free.
(b) If 𝑆 is free as an 𝑅-module, then a free 𝑆-module is free over 𝑅 .

Proof. The assertion follows, in view of 5.1.2, immediately from 5.1.11. □
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Recall from 5.1.2 that a module is free if and only if it is semi-free as a complex.
Semi-free resolutions of complexes subsume the classic notion of free resolutions of
modules from Cartan and Eilenberg [48].

5.1.16 Theorem. Let 𝑀 be an 𝑅-module. There is an exact sequence of 𝑅-modules,

· · · −→ 𝐿𝑣 −→ 𝐿𝑣−1 −→ · · · −→ 𝐿0 −→ 𝑀 −→ 0 ,

where each module 𝐿𝑣 is free.

Proof. Choose by 5.1.7 a surjective semi-free resolution 𝜋 : 𝐿 ≃−−→ 𝑀 with 𝐿𝑣 = 0
for all 𝑣 < 0. The displayed sequence of 𝑅-modules is the complex Σ−1Cone 𝜋; in
particular, the map 𝐿0 ↠ 𝑀 is the homomorphism −𝜋0. The cone is acyclic because
𝜋 is a quasi-isomorphism; see 4.2.16. □

5.1.17 Definition. Let 𝑀 be an 𝑅-module. Together, the surjective homomorphism
𝐿0 → 𝑀 and the 𝑅-complex · · · → 𝐿𝑣 → 𝐿𝑣−1 → · · · → 𝐿0 → 0 in 5.1.16 is
called a free resolution of 𝑀 .

5.1.18. Let 𝑀 be an 𝑅-module. By 5.1.3 a free resolution of 𝑀 is a semi-free
resolution of 𝑀 as an 𝑅-complex. Only a semi-free resolution 𝐿

≃−−→ 𝑀 with 𝐿

concentrated in non-negative degrees is a free resolution of 𝑀 .

5.1.19 Theorem. Assume that 𝑅 is left Noetherian. Every finitely generated 𝑅-
module 𝑀 has a free resolution

· · · −→ 𝐿𝑣 −→ 𝐿𝑣−1 −→ · · · −→ 𝐿0 −→ 𝑀 −→ 0

where each module 𝐿𝑣 is finitely generated.

Proof. Choose by 5.1.13 a surjective semi-free resolution 𝜋 : 𝐿 ≃−−→ 𝑀 , where each
free module 𝐿𝑣 is finitely generated and 𝐿𝑣 = 0 holds for all 𝑣 < 0. The displayed
sequence is the acyclic complex Σ−1Cone 𝜋; cf. the proof of 5.1.16. □

Exercises

E 5.1.1 A semi-free filtration of an 𝑅-complex 𝐿 is a sequence · · · ⊆ 𝐿𝑢−1 ⊆ 𝐿𝑢 ⊆ 𝐿𝑢+1 ⊆ · · ·
of subcomplexes, such that the graded module underlying each quotient 𝐿𝑢/𝐿𝑢−1 is
graded-free and one has 𝐿 =

⋃
𝑢∈ℤ 𝐿

𝑢, 𝐿−1 = 0, and 𝜕𝐿 (𝐿𝑢 ) ⊆ 𝐿𝑢−1 for all 𝑢 ∈ ℤ.
Show that an 𝑅-complex is semi-free if and only if it admits a semi-free filtration.

E 5.1.2 Show that a complex 𝐿 of free 𝑅-modules is semi-free if 𝜕𝐿𝑣 = 0 holds for 𝑣 ≪ 0.
E 5.1.3 Let 𝐿 be a semi-free 𝑅-complex; show that every subcomplex 𝐿ď𝑛 is semi-free.
E 5.1.4 Show that a coproduct of semi-free 𝑅-complexes is semi-free.
E 5.1.5 Show that a direct summand of a semi-free 𝑅-complex need not be semi-free.
E 5.1.6 Let 𝐿 be a semi-free 𝑅-complex and 𝑁 a bounded and degreewise finitely generated

subcomplex of 𝐿. Show that 𝑁 is contained in bounded and degreewise finitely generated
semi-free subcomplex of 𝐿.
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E 5.1.7 Let 𝐿 be a semi-free 𝑅-complex and 𝛼 : 𝐿 → 𝑁 a morphism in C(𝑅) . Show that for
every surjective quasi-isomorphism 𝛽 : 𝑀 → 𝑁 there is a morphism 𝛾 : 𝐿 → 𝑀 with
𝛼 = 𝛽𝛾. Hint: For each 𝑛 let 𝐿𝑛 be the semi-free subcomplex with semi-basis ⊎𝑛

𝑖=0 𝐸
𝑖

and construct morphisms 𝛾𝑛 : 𝐿𝑛 → 𝑀 compatible with the embeddings 𝐿𝑛 ↣ 𝐿𝑛+1.
E 5.1.8 Apply 5.1.8 to construct a free resolution of the ℤ/4ℤ-module ℤ/2ℤ.
E 5.1.9 Construct semi-free resolutions of the complexes in 4.2.3.
E 5.1.10 Show that every morphism 𝛼 : 𝑀 → 𝑁 of 𝑅-complexes admits factorizations in C(𝑅) ,

𝑀
��

𝜄
��

𝛼
// 𝑁

𝑋

𝜋
≃
CC CC

and
𝑀
��

𝜀
≃
��

𝛼
// 𝑁

𝑌

𝜑

CC CC

where 𝜄 and 𝜀 are injective with semi-free cokernels, 𝜋 and 𝜑 are surjective, and 𝜋 and
𝜀 are quasi-isomorphisms. Hint: Modify the first step in 5.1.8; apply 4.3.24.

E 5.1.11 Give alternative proofs of 5.1.16 and 5.1.19 based on 1.3.12.

5.2 Semi-Projectivity

Synopsis. Graded-projective module; complex of projective modules; semi-projective complex;
semi-projective resolution; lifting property; projective resolution of module.

For a module 𝑃, the functor Hom (𝑃, ) preserves short exact sequences of complexes
if and only if it preserves acyclicity of complexes, and these properties characterize
projective modules. Any complex 𝑃 of projective modules has the first of these
properties, see 2.3.18, but not the second; adding the requirement that the functor
Hom (𝑃, ) preserves acyclicity of complexes leads to the notion of semi-projectivity.
We start by studying complexes of projective modules.

5.2.1. Lifting properties are a central theme in this section, and several key results
can be interpreted in terms of the diagram

(5.2.1.1)

𝑃

��~~

𝑀 // 𝑁

where the solid arrows represent given maps of certain sorts, and a lifting property
of 𝑃 ensures the existence of a dotted map of a specific sort such that the diagram is
commutative, or commutative up to homotopy.

Complexes of Projective Modules

Part (iii) below can be interpreted in terms of the diagram (5.2.1.1).

5.2.2 Proposition. For an 𝑅-complex 𝑃, the following conditions are equivalent.
(i) Each 𝑅-module 𝑃𝑣 is projective.
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(ii) The functor Hom𝑅 (𝑃, ) is exact.
(iii) For every homomorphism 𝛼 : 𝑃→ 𝑁 and every surjective homomorphism

𝛽 : 𝑀 → 𝑁 , there exists a homomorphism 𝛾 : 𝑃→ 𝑀 such that 𝛼 = 𝛽𝛾 holds.
(iv) Every exact sequence 0→ 𝑀 ′ → 𝑀 → 𝑃→ 0 in C(𝑅) is degreewise split.
(v) The graded module 𝑃♮ is a graded direct summand of a graded-free 𝑅-module.

Proof. The implication (i)⇒ (ii) is immediate from 2.3.18.
(ii)⇒ (iii): The homomorphism 𝛽 yields a morphism 𝜍𝑁−|𝛽 | 𝛽 : 𝑀♮ → Σ−|𝛽 |𝑁 ♮

and by exactness of the functor Hom𝑅 (𝑃, ) there exists a homomorphism 𝛾 ∈
Hom𝑅 (𝑃, 𝑀♮) with 𝜍𝑁−|𝛽 |𝛼 = 𝜍𝑁−|𝛽 | 𝛽𝛾 and hence 𝛼 = 𝛽𝛾.

(iii)⇒ (iv): Let 𝛽 denote the morphism 𝑀 ↠ 𝑃. By (iii) there exists a homo-
morphism 𝛾 : 𝑃→ 𝑀 such that 1𝑃 = Hom𝑅 (𝑃, 𝛽) (𝛾) = 𝛽𝛾. As 𝛽 is a morphism of
complexes, also the degree of 𝛾 must be 0, that is, 𝛾 is a morphism of the underlying
graded modules. Hence, the sequence 0→ 𝑀 ′ → 𝑀 → 𝑃→ 0 is degreewise split.

(iv)⇒ (v): Choose by 5.1.7 a surjective semi-free resolution 𝜋 : 𝐿 → 𝑃 and apply
(iv) to the associated exact sequence 0→ Ker 𝜋 → 𝐿 → 𝑃 → 0 in C(𝑅). It follows
that 𝑃♮ is a graded direct summand of the graded-free 𝑅-module 𝐿♮.

(v)⇒ (i): Each module 𝑃𝑣 is a direct summand of a free 𝑅-module and, therefore,
projective by 1.3.17. □

Caveat. The complexes described in 5.2.2 are not the projective objects in the category C(𝑅);
see E 5.2.1 and E 5.2.6.

5.2.3 Corollary. Let 0→ 𝑃′ → 𝑃→ 𝑃′′ → 0 be an exact sequence of 𝑅-complexes.
If 𝑃′′ is a complex of projective modules, then 𝑃 is a complex of projective modules
if and only if 𝑃′ is a complex of projective of modules.

Proof. If 𝑃′′ is a complex of projective modules, then 0→ 𝑃′ → 𝑃 → 𝑃′′ → 0 is
degreewise split, and the assertion follows from 1.3.24. □

5.2.4 Definition. A graded 𝑅-module 𝑃 is called graded-projective if the 𝑅-complex
𝑃 satisfies the conditions in 5.2.2.

Existence of Semi-Projective Resolutions

5.2.5 Definition. An 𝑅-complex 𝑃 is called semi-projective if Hom𝑅 (𝑃, 𝛽) is a
surjective quasi-isomorphism for every surjective quasi-isomorphism 𝛽 in C(𝑅).

Remark. Another word for semi-projective is ‘DG-projective’.

5.2.6. It follows from 2.3.14 that if an 𝑅-complex 𝑃 is semi-projective, then so is
Σ𝑠𝑃 for every integer 𝑠.

5.2.7 Example. A contractible complex of projective 𝑅-modules is semi-projective
by 5.2.2 and 4.3.29.

8-Mar-2024 Draft - use at own risk



5.2 Semi-Projectivity 211

5.2.8 Example. Let 𝑃 be a bounded below complex of projective 𝑅-modules and 𝛽
a surjective quasi-isomorphism. The morphism Hom𝑅 (𝑃, 𝛽) is surjective by 5.2.2.
The complex Cone 𝛽 is acyclic by 4.2.16, and hence so is Hom𝑅 (𝑃𝑣,Cone 𝛽)
for every 𝑣 ∈ ℤ. As 𝑃 is bounded below, it follows from 4.1.16 and A.5 that
Cone Hom𝑅 (𝑃, 𝛽) � Hom𝑅 (𝑃,Cone 𝛽) is acyclic, whence 𝛽 is a quasi-isomorphism.
Thus, 𝑃 is semi-projective.

5.2.9 Lemma. For a semi-free 𝑅-complex 𝐿, the functor Hom𝑅 (𝐿, ) is exact and
preserves acyclicity of complexes.

Proof. Let 𝐿 be a semi-free 𝑅-complex; by 2.5.27 it is a complex of free 𝑅-modules,
so the functor Hom𝑅 (𝐿, ) is exact by 5.2.2. Choose a semi-basis 𝐸 =

⊎
𝑖⩾0 𝐸

𝑖 for
𝐿. For 𝑛 < 0 set 𝐿𝑛 = 0. For 𝑛 ⩾ 0 let 𝐿𝑛 be the semi-free subcomplex of 𝐿 with
semi-basis ⊎𝑛

𝑖=0 𝐸
𝑖 . Now one has 𝐿 =

⋃
𝑛⩾0 𝐿

𝑛 � colim𝑛∈ℤ 𝐿𝑛, and for every 𝑛 ⩾ 0
there is an exact sequence

(†) 0 −→ 𝐿𝑛−1 −→ 𝐿𝑛 −→ 𝐿𝑛/𝐿𝑛−1 −→ 0 .

The induced differential on the subquotient 𝐿𝑛/𝐿𝑛−1 is 0, so it is isomorphic to the
graded-free 𝑅-module 𝑅⟨𝐸𝑛 ⟩. In particular, (†) is degreewise split by 5.2.2.

Let 𝐴 be an acyclic 𝑅-complex. For every 𝑛 ⩾ 0 the complex Hom𝑅 (𝑅⟨𝐸𝑛 ⟩, 𝐴) is
acyclic; cf. 3.1.27. It follows by induction that Hom𝑅 (𝐿𝑛, 𝐴) is acyclic for all 𝑛 ⩾ 0.
The morphisms in the tower {Hom𝑅 (𝐿𝑛, 𝐴) → Hom𝑅 (𝐿𝑛−1, 𝐴)}𝑛∈ℤ are surjective
because the sequence (†) is degreewise split, and the Hom functor preserves degree-
wise split exact sequences; see 2.3.13. Now it follows from 3.4.29, 3.5.10, and 3.5.16
that the complex

Hom𝑅 (𝐿, 𝐴) = Hom𝑅

(
colim
𝑛∈ℤ

𝐿𝑛, 𝐴
)
� lim

𝑛∈ℤ
Hom𝑅 (𝐿𝑛, 𝐴)

is acyclic. □

The next result offers useful characterizations of semi-projective complexes. The
lifting property in part (𝑖𝑖𝑖) can be interpreted in terms of the diagram (5.2.1.1).

5.2.10 Proposition. For an 𝑅-complex 𝑃, the following conditions are equivalent.
(i) 𝑃 is semi-projective.
(ii) The functor Hom𝑅 (𝑃, ) is exact and preserves quasi-isomorphisms.
(iii) For every chain map 𝛼 : 𝑃→ 𝑁 and for every surjective quasi-isomorphism

𝛽 : 𝑀 → 𝑁 there exists a chain map 𝛾 : 𝑃→ 𝑀 such that 𝛼 = 𝛽𝛾 holds.
(iv) Every exact sequence 0 → 𝑀 ′ → 𝑀 → 𝑃 → 0 in C(𝑅) with 𝑀 ′ acyclic is

split.
(v) For every morphism 𝛼 : 𝑁 → 𝑃 and for every surjective quasi-isomorphism

𝛽 : 𝑀 → 𝑃 there exists a morphism 𝛾 : 𝑁 → 𝑀 such that 𝛼 = 𝛽𝛾 holds.
(vi) 𝑃 is a direct summand of a semi-free 𝑅-complex.
(vii) 𝑃 is a complex of projective 𝑅-modules, and the functor Hom𝑅 (𝑃, ) preserves

acyclicity of complexes.
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Proof. The implication (ii)⇒ (i) is evident.
(i)⇒ (iii): The morphism Hom𝑅 (𝑃, 𝛽) is a surjective quasi-isomorphism. In

particular, it is surjective on cycles by 4.2.7. Thus, in view of 2.3.3 there exists a
chain map 𝛾 : 𝑃→ 𝑀 such that 𝛼 = Hom𝑅 (𝑃, 𝛽) (𝛾) = 𝛽𝛾.

(iii)⇒ (iv): By 4.2.6 the morphism 𝛽 : 𝑀 ↠ 𝑃 is a quasi-isomorphism, so there
exists a chain map 𝛾 : 𝑃→ 𝑀 with 1𝑃 = 𝛽𝛾. As 𝛽 is of degree 0, so is 𝛾. That is, 𝛾
is a morphism in C(𝑅), whence the sequence is split.

(iv)⇒ (v): By (iv) there is a morphism 𝜎 : 𝑃→ 𝑀 with 𝛽𝜎 = 1𝑃 . The desired
morphism is thus 𝛾 = 𝜎𝛼.

(v)⇒ (vi): By 5.1.7 there exists a surjective quasi-isomorphism 𝛽 : 𝐿 → 𝑃 where
𝐿 is a semi-free complex. By (v) there is a morphism 𝛾 : 𝑃→ 𝐿 with 1𝑃 = 𝛽𝛾, so 𝑃
is a direct summand of 𝐿 by 2.1.47.

(vi)⇒ (vii): Immediate from 5.2.2 and 5.2.9, as the Hom functor is additive.
(vii)⇒ (ii): The functor Hom𝑅 (𝑃, ) is exact by 5.2.2. For a quasi-isomorphism

𝛽, the complex Cone 𝛽 is acyclic by 4.2.16. Hence the complex Hom𝑅 (𝑃,Cone 𝛽) �
Cone Hom𝑅 (𝑃, 𝛽) is acyclic; here the isomorphism follows from 4.1.16. Thus, the
map Hom𝑅 (𝑃, 𝛽) is a quasi-isomorphism. □

5.2.11 Corollary. A semi-free 𝑅-complex is semi-projective.

Caveat. A semi-projective complex of free modules need not be semi-free; see E 5.2.4.

5.2.12 Corollary. A graded 𝑅-module is graded-projective if and only if it is semi-
projective as an 𝑅-complex.

Proof. Let 𝑃 be a graded 𝑅-module. If 𝑃 is semi-projective as an 𝑅-complex, then
each module 𝑃𝑣 is projective, whence 𝑃 is graded-projective.

If 𝑃 is graded-projective, then it is a graded direct summand of a graded-free 𝑅-
module; see 5.2.2. A graded-free 𝑅-module is semi-free as an 𝑅-complex by 5.1.2,
and then 𝑃 is semi-free as an 𝑅-complex by 5.2.10. □

5.2.13 Definition. A semi-projective resolution of an 𝑅-complex 𝑀 is a quasi-
isomorphism 𝑃→ 𝑀 of 𝑅-complexes where 𝑃 is semi-projective.

Existence of semi-free resolutions implies the existence of semi-projective ones.

5.2.14 Theorem. Every 𝑅-complex 𝑀 has a semi-projective resolution 𝜋 : 𝑃 ≃−−→ 𝑀

with 𝑃𝑣 = 0 for all 𝑣 < inf 𝑀♮. Moreover, 𝜋 can be chosen surjective.

Proof. Combine 5.1.7 and 5.2.11. □

5.2.15 Theorem. Every 𝑅-complex 𝑀 has a semi-projective resolution 𝑃 ≃−−→ 𝑀

with 𝑃𝑣 = 0 for all 𝑣 < inf 𝑀 .

Proof. Combine 5.1.12 and 5.2.11. □

Under the assumption that 𝑅 is perfect, the semi-projective resolution in 5.2.15
can be chosen to be minimal, see B.60.
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5.2.16 Theorem. Assume that 𝑅 is left Noetherian. Every 𝑅-complex 𝑀 with H(𝑀)
bounded below and degreewise finitely generated has a semi-projective resolution
𝑃
≃−−→ 𝑀 with 𝑃 degreewise finitely generated and 𝑃𝑣 = 0 for all 𝑣 < inf 𝑀 .

Proof. Combine 5.1.14 and 5.2.11. □

Under the additional assumption that 𝑅 is semi-perfect, the semi-projective reso-
lution in 5.2.16 can be chosen to be minimal, see B.61.

Properties of Semi-Projective Complexes

The class of semi-projective complexes over a ring is closed under extensions, kernels
of surjective morphisms, direct summands, and coproducts. Semi-projectivity is also
preserved under base change.

5.2.17 Proposition. Let 0 → 𝑃′ → 𝑃 → 𝑃′′ → 0 be an exact sequence of 𝑅-
complexes. If 𝑃′′ is semi-projective, then 𝑃′ is semi-projective if and only if 𝑃 is
semi-projective.

Proof. First note that since 𝑃′′ is a complex of projective modules, it follows from
5.2.3 that 𝑃 is a complex of projective modules if and only if 𝑃′ is so. Next, let 𝐴 be
an acyclic 𝑅-complex. The sequence 0 → 𝑃′ → 𝑃 → 𝑃′′ → 0 is degreewise split
by 5.2.2, and hence so is the induced sequence

0 −→ Hom𝑅 (𝑃′′, 𝐴) −→ Hom𝑅 (𝑃, 𝐴) −→ Hom𝑅 (𝑃′, 𝐴) −→ 0 ;

see 2.3.13. As 𝑃′′ is semi-projective, the complex Hom𝑅 (𝑃′′, 𝐴) is acyclic by the
equivalence of (i) and (vi) in 5.2.10. It follows from 2.5.6 that Hom𝑅 (𝑃, 𝐴) is acyclic
if and only if Hom𝑅 (𝑃′, 𝐴) is acyclic. Now 5.2.10 yields the desired conclusion. □

5.2.18 Proposition. Let {𝑃𝑢}𝑢∈𝑈 be a family of 𝑅-complexes. The coproduct∐
𝑢∈𝑈𝑃

𝑢 is semi-projective if and only if each complex 𝑃𝑢 is semi-projective.

Proof. Let 𝛽 : 𝑀 → 𝑁 be a surjective quasi-isomorphism. There is a commutative
diagram in C(𝕜),

Hom𝑅

( ∐
𝑢∈𝑈

𝑃𝑢, 𝑀
) Hom (∐𝑢∈𝑈 𝑃𝑢 ,𝛽)

//

�

��

Hom𝑅

( ∐
𝑢∈𝑈

𝑃𝑢, 𝑁
)

�

��∏
𝑢∈𝑈

Hom𝑅 (𝑃𝑢, 𝑀)
∏
𝑢∈𝑈 Hom (𝑃𝑢 ,𝛽)

//
∏
𝑢∈𝑈

Hom𝑅 (𝑃𝑢, 𝑁) ,

where the vertical maps are the canonical isomorphisms from 3.1.27. It follows that
Hom𝑅 (

∐
𝑢∈𝑈 𝑃

𝑢, 𝛽) is a surjective quasi-isomorphism if and only if each morphism
Hom𝑅 (𝑃𝑢, 𝛽) is a surjective quasi-isomorphism. □

Also the next result can be interpreted in terms of the diagram (5.2.1.1).
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5.2.19 Proposition. Let 𝑃 be a semi-projective 𝑅-complex, 𝛼 : 𝑃→ 𝑁 a chain map,
and 𝛽 : 𝑀 → 𝑁 a quasi-isomorphism. There exists a chain map 𝛾 : 𝑃→ 𝑀 such that
𝛼 ∼ 𝛽𝛾. Moreover, 𝛾 is homotopic to any other chain map 𝛾′ with 𝛼 ∼ 𝛽𝛾′.

Proof. Recall from 2.3.3 the characterization of (null-homotopic) chain maps
as (boundaries) cycles in Hom complexes. By 5.2.10 the induced morphism
Hom𝑅 (𝑃, 𝛽) is a quasi-isomorphism, so there exists a 𝛾 ∈ Z(Hom𝑅 (𝑃, 𝑀)) such that

[𝛼] = H(Hom𝑅 (𝑃, 𝛽)) ( [𝛾]) = [𝛽𝛾] ;

that is, 𝛼− 𝛽𝛾 is in B(Hom𝑅 (𝑃, 𝑁)). Given another morphism 𝛾′ such that 𝛼 ∼ 𝛽𝛾′,
one has [𝛼] = [𝛽𝛾′] and, therefore 0 = [𝛽(𝛾 − 𝛾′)] = H(Hom𝑅 (𝑃, 𝛽)) ( [𝛾 − 𝛾′]). It
follows that the homology class [𝛾 − 𝛾′] is 0 as H(Hom𝑅 (𝑃, 𝛽)) is an isomorphism,
so 𝛾 − 𝛾′ is in B(Hom𝑅 (𝑃, 𝑀)). That is, 𝛾 and 𝛾′ are homotopic. □

Remark. Existence and uniqueness of lifts up to homotopy, as described in 5.2.19, is an important
property of semi-projective complexes, but it does not characterize them. Complexes with this
property are examined in exercises, starting with E 5.2.18.

5.2.20 Corollary. Let 𝑃 be a semi-projective 𝑅-complex and 𝛽 : 𝑀 → 𝑃 a quasi-
isomorphism. There exists a quasi-isomorphism 𝛾 : 𝑃→ 𝑀 with 1𝑃 ∼ 𝛽𝛾.

Proof. By 5.2.19 there is a chain map 𝛾 : 𝑃→ 𝑀 with 1𝑃 ∼ 𝛽𝛾; comparison
of degrees shows that 𝛾 is a morphism. Moreover, by 2.2.26 one has 1H (𝑃) =

H(𝛽) H(𝛾), whence H(𝛾) is an isomorphism. □

Recall from 4.3.4 that every homotopy equivalence is a quasi-isomorphism. The
next result is a partial converse.

5.2.21 Corollary. A quasi-isomorphism of semi-projective 𝑅-complexes is a homo-
topy equivalence.

Proof. Let 𝛽 : 𝑃′ → 𝑃 be a quasi-isomorphism of semi-projective 𝑅-complexes.
By 5.2.20 there are morphisms 𝛾 : 𝑃→ 𝑃′ and 𝛽′ : 𝑃′ → 𝑃 such that 1𝑃 ∼ 𝛽𝛾 and
1𝑃′ ∼ 𝛾𝛽′ hold. It now follows from 4.3.3 that 𝛽 is a homotopy equivalence. □

5.2.22 Proposition. Let 𝑃 be an 𝑆-complex and 𝑋 a complex of 𝑅–𝑆o-bimodules. If
𝑃 is semi-projective and 𝑋 is semi-projective over 𝑅, then the 𝑅-complex 𝑋 ⊗𝑆 𝑃 is
semi-projective.

Proof. Adjunction 4.4.12 yields a natural isomorphism,

Hom𝑅 (𝑋 ⊗𝑆 𝑃, ) � Hom𝑆 (𝑃,Hom𝑅 (𝑋, )) ,

of functors from C(𝑅) to C(𝕜). It follows from the assumptions on 𝑃 and 𝑋 that the
functor Hom𝑆 (𝑃,Hom𝑅 (𝑋, )) is exact and preserves quasi-isomorphisms. □

5.2.23 Corollary. Let 𝑅 → 𝑆 be a ring homomorphism and 𝑃 an 𝑅-complex.
(a) If 𝑃 is semi-projective, then the 𝑆-complex 𝑆 ⊗𝑅 𝑃 is semi-projective.
(b) If 𝑆 is projective as an 𝑅-module, then a semi-projective 𝑆-complex is semi-

projective over 𝑅 .
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Proof. For (b) apply 5.2.22 with 𝑋 = 𝑆 viewed as an 𝑅–𝑆o-bimodule and note that
𝑋 ⊗𝑆 is the restriction of scalars functor C(𝑆) → C(𝑅). For (a) interchange the
roles of 𝑅 and 𝑆 in 5.2.22 and apply it with 𝑋 = 𝑆 viewed as an 𝑆–𝑅o-bimodule. □

The Case of Modules

Notice that 1.3.17 is a special case of 5.2.2. Further, since a module by 5.2.12 is
projective if and only if it is semi-projective as a complex, one recovers 1.3.24 from
5.2.18 by specialization to modules.

5.2.24 Proposition. Let 0 → 𝑃′ → 𝑃 → 𝑃′′ → 0 be an exact sequence of
𝑅-modules. If 𝑃′′ is projective, then 𝑃′ is projective if and only if 𝑃 is projective.

Proof. The assertion follows by specialization of 5.2.3 to modules. □

5.2.25 Proposition. Let 𝑃 be an 𝑆-module and 𝑋 an 𝑅–𝑆o-bimodule. If 𝑃 is projective
and 𝑋 is projective over 𝑅, then the 𝑅-module 𝑋 ⊗𝑆 𝑃 is projective.

Proof. The assertion follows, in view of 5.2.12, immediately from 5.2.22. □

The next result follows from 5.2.25 but is more easily recovered from 5.2.23.

5.2.26 Corollary. Let 𝑅 → 𝑆 be a ring homomorphism and 𝑃 an 𝑅-module.
(a) If 𝑃 is projective, then the 𝑆-module 𝑆 ⊗𝑅 𝑃 is projective.
(b) If 𝑆 is projective as an 𝑅-module, then a projective 𝑆-module is projective

over 𝑅 .

Proof. The assertion follows, in view of 5.2.12, immediately from 5.2.23. □

Semi-projective resolutions of complexes subsume the classic notion of projective
resolutions of modules.

5.2.27 Theorem. Let 𝑀 be an 𝑅-module. There is an exact sequence of 𝑅-modules,

· · · −→ 𝑃𝑣 −→ 𝑃𝑣−1 −→ · · · −→ 𝑃0 −→ 𝑀 −→ 0 ,

where each module 𝑃𝑣 is projective.

Proof. The assertion follows immediately from 5.1.16 and 1.3.18. □

5.2.28 Definition. Let 𝑀 be an 𝑅-module. Together, the surjective homomorphism
𝑃0 → 𝑀 and the 𝑅-complex · · · → 𝑃𝑣 → 𝑃𝑣−1 → · · · → 𝑃0 → 0 in 5.2.27 is
called a projective resolution of 𝑀 .

5.2.29. Let 𝑀 be an 𝑅-module. By 5.2.8 a projective resolution of 𝑀 is a semi-
projective resolution of 𝑀 as an 𝑅-complex. Only a semi-projective resolution
𝑃
≃−−→ 𝑀 with 𝑃 concentrated in non-negative degrees is a projective resolution.

Remark. Let 𝑃 ≃−→ 𝑀 be a projective resolution of an 𝑅-module. It is standard to refer to the
module Coker(𝑃𝑛+1 → 𝑃𝑛 ) = C𝑛 (𝑃) as an 𝑛th syzygy of 𝑀. By Schanuel’s lemma 8.1.12 it is
“essentially” unique. In the case the complex 𝑃 is minimal, the module C𝑛 (𝑃) may be referred to
as the 𝑛th syzygy of 𝑀.
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Exercises

E 5.2.1 Show that a graded 𝑅-module is graded-projective if and only if it is a projective object
in the category Mgr (𝑅) .

E 5.2.2 Show that a graded 𝑅-module is graded-projective if and only if it is projective as an
𝑅-module.

E 5.2.3 Assume that 𝑅 is left hereditary. Show that for every complex 𝑃 of projective 𝑅-modules
there is a quasi-isomorphism 𝑃 ≃−→ H(𝑃) . Hint: E 1.3.17.

E 5.2.4 Theℤ/6ℤ-complex · · · −→ ℤ/6ℤ 2−→ ℤ/6ℤ 3−→ ℤ/6ℤ 2−→ ℤ/6ℤ 3−→ · · · is contract-
ible; see E 4.3.11. Show that it is a semi-projective complex but not semi-free.

E 5.2.5 Let 𝐿 be the ℤ/4ℤ-complex · · · −→ ℤ/4ℤ 2−→ ℤ/4ℤ 2−→ ℤ/4ℤ −→ 0 concentrated in
non-negative degrees. Set 𝑃 =

∐
𝑢<0 Σ

𝑢𝐿, show that the complex 𝑃ď0 is semi-projective,
and compute its homology.

E 5.2.6 For an 𝑅-complex 𝑃, show that the following conditions are equivalent. (i) 𝑃 is a
projective object in the category C(𝑅) . (ii) 𝑃 is a contractible complex of projective 𝑅-
modules. (iii) 𝑃 is semi-projective and acyclic. (iv) 𝑃 is an acyclic complex of projective
𝑅-modules and B(𝑃) = Z(𝑃) is a complex of projective 𝑅-modules. Conclude from
4.3.24 that the category C(𝑅) has enough projectives.

E 5.2.7 Show that the Dold complex from 5.1.4 is acyclic but not contractible; conclude that it
is not semi-projective.

E 5.2.8 Show that a complex 𝑃 of projective 𝑅-modules is semi-projective if Hom𝑅 (𝑃, 𝐴) is
acyclic for every acyclic 𝑅-complex 𝐴 that is bounded above.

E 5.2.9 Assume that 𝑅 is commutative and 𝑆 an 𝑅-algebra that is faithfully projective as an
𝑅-module. Show that an 𝑅-complex 𝑃 is semi-projective if (and only if) the 𝑆-complex
𝑆 ⊗𝑅 𝑃 is semi-projective.

E 5.2.10 Show that the mapping cone of a morphism between semi-projective 𝑅-complexes is
semi-projective.

E 5.2.11 Let 𝑃 be a semi-projective 𝑅-complex. Show that for 𝑣 ⩽ inf 𝑃 the module Z𝑣 (𝑃) is
projective. Conclude that if 𝜋 : 𝑃 ≃−→ 𝑀 is a semi-projective resolution, then so is 𝜋Ě𝑣

for 𝑣 ⩽ inf 𝑀. Show that if 𝑀 is a module, then 𝜋Ě0 yields a projective resolution of 𝑀.
E 5.2.12 Show that every complex over a semi-simple ring is semi-projective.
E 5.2.13 Show that a complex of projective modules over a left hereditary ring is semi-projective.
E 5.2.14 Let 0 → 𝑃′ → 𝑃 → 𝑃′′ → 0 be a degreewise split exact sequence of 𝑅-complexes.

Show that if two of the complexes 𝑃′, 𝑃, and 𝑃′′ are semi-projective, then so is the third.
E 5.2.15 Show that the following conditions are equivalent for an 𝑅-complex 𝑃. (i) 𝑃 is semi-

projective. (ii) The complex 𝑃ď𝑛 is semi-projective for every 𝑛 ∈ ℤ. (iii) 𝑃 is a complex
of projective 𝑅-modules and 𝑃ď𝑛 is semi-projective for some 𝑛 ∈ ℤ.

E 5.2.16 Let 𝐿 be a bounded complex of finitely generated projective 𝑆o-modules and 𝑃 a complex
of 𝑅–𝑆o-bimodules. Show that if 𝑃 is a semi-projective over 𝑅, then the 𝑅-complex
Hom𝑆o (𝐿, 𝑃) is semi-projective.

E 5.2.17 Let 𝐿 be a bounded above complex of finitely generated projective 𝑆o-modules and 𝑃
a bounded below complex of 𝑅–𝑆o-bimodules that are projective over 𝑅. Show that the
𝑅-complex Hom𝑆o (𝐿, 𝑃) is semi-projective.

E 5.2.18 Show that the following conditions are equivalent for an 𝑅-complex 𝑋. (i) For every
chain map 𝛼 : 𝑋 → 𝑁 and every quasi-isomorphism 𝛽 : 𝑀 → 𝑁 there exists a chain
map 𝛾 : 𝑋 → 𝑀, unique up to homotopy, such that 𝛼 ∼ 𝛽𝛾. (ii) For every quasi-
isomorphism 𝛽 the induced morphism Hom𝑅 (𝑋, 𝛽) is a quasi-isomorphism. (iii) For
every acyclic complex 𝐴, the complex Hom𝑅 (𝑋, 𝐴) is acyclic.

A complex with these properties is called K-projective; Avramov, Foxby, and Halperin
[25] use the term ‘homotopically projective’.

E 5.2.19 Show that a quasi-isomorphism of K-projective 𝑅-complexes is a homotopy equivalence.
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E 5.2.20 Let 𝐾 be an acyclic K-projective 𝑅-complex. Show that Hom𝑅 (𝐾, 𝑀 ) is acyclic for
every 𝑅-complex 𝑀.

E 5.2.21 Show that an 𝑅-complex is semi-projective if and only if it is a complex of projective
modules and K-projective. Show that a K-projective complex need not be semi-projective.

E 5.2.22 Show that a graded 𝑅-module is graded-projective if and only if it is K-projective as an
𝑅-complex.

E 5.2.23 Consider a homotopy equivalence𝑀 → 𝑁 of𝑅-complexes. Show that𝑀 is K-projective
if and only if 𝑁 is K-projective. Is the same true for semi-projectivity?

E 5.2.24 Let 𝛼 : 𝑀 → 𝑁 be a morphism in C(𝑅) . (a) Show that for any two semi-projective
resolutions 𝜋 : 𝑃 ≃−→ 𝑀 and 𝜆 : 𝐿 ≃−→ 𝑁 there is a morphism �̃� : 𝑃 → 𝐿 such that the
following diagram is commutative up to homotopy,

𝑃
𝜋

≃
//

�̃�
��

𝑀

𝛼

��

𝐿
𝜆

≃
// 𝑁 .

(b) Show that if 𝜆 is surjective, then �̃� can be chosen so that the diagram is commutative.
E 5.2.25 Let 𝑥 be a central element in 𝑅 and 𝑃 ≃−→ 𝑀 a semi-projective resolution in C(𝑅) .

Show that if the homothety 𝑥𝑀 is null-homotopic, then 𝑥𝑃 is null-homotopic.
E 5.2.26 Let 0 −→ 𝑀 ′

𝛼′−→ 𝑀
𝛼−→ 𝑀 ′′ −→ 0 be an exact sequence of 𝑅-complexes. Show

that there is a commutative diagram in C(𝑅) in which the columns are semi-projective
resolutions,

0 // 𝑃′
𝛼′
//

𝜋′≃
��

𝑃
�̃�
//

𝜋≃
��

𝑃′′ //

𝜋′′≃
��

0

0 // 𝑀 ′
𝛼′
// 𝑀

𝛼
// 𝑀 ′′ // 0 .

This is known as the Horseshoe Lemma (for semi-projective resolutions).
E 5.2.27 Let 𝑃 be a complex of projective𝑅-modules. Show that for every 𝑛 ⩾ sup 𝑃 the truncated

complex 𝑃ě𝑛 yields a projective resolution of the module C𝑛 (𝑃) .

5.3 Semi-Injectivity

Synopsis. Character complex; graded-injective module; complex of injective modules; semi-
injective complex; semi-injective resolution; lifting property; injective resolution of module.

Semi-injectivity is dual to semi-projectivity and defined in terms of the functor
Hom𝑅 ( , 𝐼) from C(𝑅)op to C(𝕜). The goal of this section is show that every
complex has a semi-injective resolution.

Character Complex

Semi-injective resolutions come from semi-free resolutions via character complexes.
Recall from 1.3.37 that 𝔼 denotes a faithfully injective 𝕜-module.

5.3.1 Definition. Let 𝑀 be an 𝑅-complex. The 𝑅o-complex Hom𝕜 (𝑀,𝔼) is called
the character complex of 𝑀 . The graded 𝑅-module Hom𝕜 (𝑀♮,𝔼) = Hom𝕜 (𝑀,𝔼)♮
is called the character module of the graded 𝑅-module 𝑀♮.
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5.3.2 Lemma. If 𝐿 is a semi-free 𝑅o-complex, then Hom𝕜 (𝐿,𝔼) is a complex of
injective 𝑅-modules, and the functor Hom𝑅 ( ,Hom𝕜 (𝐿,𝔼)) preserves acyclicity of
complexes.

Proof. By 1.3.50 each module Hom𝕜 (𝐿,𝔼)𝑣 = Hom𝕜 (𝐿−𝑣,𝔼) is an injective 𝑅-
module. Let 𝐴 be an acyclic 𝑅-complex; adjunction 4.4.12 and commutativity 4.4.4
yield isomorphisms

Hom𝑅 (𝐴,Hom𝕜 (𝐿,𝔼)) � Hom𝕜 (𝐿 ⊗𝑅 𝐴,𝔼) � Hom𝑅o (𝐿,Hom𝕜 (𝐴,𝔼)) ,

and Hom𝑅o (𝐿,Hom𝕜 (𝐴,𝔼)) is acyclic by 5.2.9 and exactness of Hom𝕜 ( ,𝔼). □

5.3.3 Construction. Let 𝑀 be an 𝑅-complex and choose by 5.1.7 a semi-free reso-
lution 𝜋 : 𝐿 ≃−−→ Hom𝕜 (𝑀,𝔼) with 𝐿𝑣 = 0 for all 𝑣 < inf Hom𝕜 (𝑀,𝔼)♮. Precompose
the induced morphism Hom𝕜 (𝜋,𝔼) : Hom𝕜 (Hom𝕜 (𝑀,𝔼),𝔼) → Hom𝕜 (𝐿,𝔼) with
biduality 𝛿𝑀

𝔼
: 𝑀 → Hom𝕜 (Hom𝕜 (𝑀,𝔼),𝔼) to get a morphism of 𝑅-complexes

𝜀𝑀 = Hom𝕜 (𝜋,𝔼)𝛿𝑀𝔼 : 𝑀 −→ 𝐸 ,

where 𝐸 is the character complex Hom𝕜 (𝐿,𝔼).

5.3.4 Proposition. Let 𝑀 be an 𝑅-complex. The morphisms and complexes con-
structed in 5.3.3 have the following properties.

(a) 𝐸 is a complex of injective 𝑅-modules with 𝐸𝑣 = 0 for 𝑣 > sup𝑀♮, and the
functor Hom𝑅 ( , 𝐸) preserves acyclicity of complexes.

(b) The morphism H(𝜀𝑀 ) is injective.
(c) The morphism 𝜋 can be chosen such that 𝜀𝑀 is injective.

Proof. (a): By 2.5.7(b) one has inf Hom𝕜 (𝑀,𝔼)♮ = − sup𝑀♮ and, therefore, 𝐸𝑣 =
Hom𝕜 (𝐿−𝑣,𝔼) = 0 for all 𝑣 > sup𝑀♮. The other assertions follow from 5.3.2.

(b): One has H(𝜀𝑀 ) = H(Hom𝕜 (𝜋,𝔼))H(𝛿𝑀𝔼 ), and the map H(Hom𝕜 (𝜋,𝔼)) is
an isomorphism by 4.2.14. It follows from 2.2.19 and 4.5.1 that the map H(𝛿𝑀

𝔼
) is

biduality 𝛿H (𝑀 )
𝔼

, which is injective by 4.5.3. Thus H(𝜀𝑀 ) is injective.
(c): By 5.1.7 one can choose 𝜋 surjective, and then it follows by exactness of

Hom𝕜 ( ,𝔼) that the morphism Hom𝕜 (𝜋,𝔼) is injective. By 4.5.3 the morphism 𝛿𝑀
𝔼

is injective, and hence so is the composite 𝜀𝑀 . □

Complexes of Injective Modules

5.3.5. Lifting properties are also central to this section; key results can be interpreted
in terms of the diagram

(5.3.5.1)

𝐾 //

��

𝑀

~~

𝐼
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where the solid arrows represent given maps of certain sorts, and a lifting property
of 𝐼 ensures the existence of a dotted map of a specific sort such that the diagram is
commutative, or commutative up to homotopy.

Part (𝑖𝑖𝑖) below can be interpreted in terms of the diagram (5.3.5.1).

5.3.6 Proposition. For an 𝑅-complex 𝐼, the following conditions are equivalent.
(i) Each 𝑅-module 𝐼𝑣 is injective.
(ii) The functor Hom𝑅 ( , 𝐼) is exact.
(iii) For every homomorphism 𝛼 : 𝐾 → 𝐼 and for every injective homomorphism

𝛽 : 𝐾 → 𝑀 , there exists a homomorphism 𝛾 : 𝑀 → 𝐼 such that 𝛾𝛽 = 𝛼 holds.
(iv) Every exact sequence 0→ 𝐼 → 𝑀 → 𝑀 ′′ → 0 in C(𝑅) is degreewise split.
(v) The graded module 𝐼♮ is a graded direct summand of the character module

Hom𝕜 (𝐿,𝔼) of a graded-free 𝑅o-module 𝐿 .

Proof. The implication (i)⇒ (ii) is immediate from 2.3.20.
(ii)⇒ (iii): The homomorphism 𝛽 yields a morphism 𝛽(𝜍𝐾|𝛽 | )

−1 : Σ |𝛽 |𝐾♮ → 𝑀♮

and by exactness of the functor Hom𝑅 ( , 𝐼) there exists a homomorphism 𝛾 ∈
Hom𝑅 (𝑀♮, 𝐼) with 𝛾𝛽(𝜍𝐾|𝛽 | )

−1 = 𝛼(𝜍𝐾|𝛽 | )
−1 and hence 𝛾𝛽 = 𝛼.

(iii)⇒ (iv): Let 𝛽 denote the morphism 𝐼 ↣ 𝑀 . By (iii) there exists a homomor-
phism 𝛾 : 𝑀 → 𝐼 such that 1𝐼 = Hom𝑅 (𝛽, 𝐼) (𝛾) = 𝛾𝛽 holds. As 𝛽 is a morphism,
also the degree of 𝛾 must be 0; that is, 𝛾 is a morphism of the underlying graded
modules. Hence, the sequence 0→ 𝐼 → 𝑀 → 𝑀 ′′ → 0 is degreewise split.

(iv)⇒ (v): Choose by 5.3.4 an injective morphism 𝜀 : 𝐼 → 𝐸 , where 𝐸 is the
character complex Hom𝕜 (𝐿,𝔼) of a semi-free 𝑅o-complex 𝐿. Apply (iv) to the exact
sequence 0 → 𝐼 → 𝐸 → Coker 𝜀 → 0 in C(𝑅). It follows that 𝐼♮ is a graded
direct summand of the graded module 𝐸 ♮ = Hom𝕜 (𝐿♮,𝔼), and 𝐿♮ is a graded-free
𝑅o-module by 2.5.27.

(v)⇒ (i): The character module of a free 𝑅o-module is an injective 𝑅-module
by 1.3.50. A direct summand of an injective module is injective by additivity of the
Hom functor. Thus, each module 𝐼𝑣 is an injective 𝑅-module. □

Caveat. The complexes described in 5.3.6 are not the injective objects in the category C(𝑅); see
E 5.3.1 and E 5.3.4.

5.3.7 Corollary. Let 0→ 𝐼 ′ → 𝐼 → 𝐼 ′′ → 0 be an exact sequence of 𝑅-complexes.
If 𝐼 ′ is a complex of injective modules, then 𝐼 is a complex of injective modules if
and only if 𝐼 ′′ is a complex of injective modules.

Proof. If 𝐼 ′ is a complex of injective modules, then 0 → 𝐼 ′ → 𝐼 → 𝐼 ′′ → 0 is
degreewise split, and the assertion follows from 1.3.27. □

5.3.8 Definition. A graded 𝑅-module 𝐼 is called graded-injective if the 𝑅-complex
𝐼 satisfies the conditions in 5.3.6.
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Existence of Semi-Injective Resolutions

5.3.9 Definition. An 𝑅-complex 𝐼 is called semi-injective if Hom𝑅 (𝛼, 𝐼) is an
surjective quasi-isomorphism for every injective quasi-isomorphism 𝛼 in C(𝑅).

Remark. Another word for semi-injective is ‘DG-injective’.

5.3.10. It follows from 2.3.16 that if an 𝑅-complex 𝐼 is semi-injective, then so is
Σ𝑠𝐼 for every integer 𝑠.

5.3.11 Example. A contractible complex of injective 𝑅-modules is semi-injective
by 5.3.6 and 4.3.29.

5.3.12 Example. Let 𝐼 be a bounded above complex of injective 𝑅-modules and 𝛽
an injective quasi-isomorphism. The morphism Hom𝑅 (𝛽, 𝐼) is surjective by 5.3.6,
and it follows from 4.2.16, 4.1.17, and A.2 that it is a quasi-isomorphism; cf. 5.2.8.
Thus 𝐼 is semi-injective.

5.3.13 Definition. A semi-injective resolution of an 𝑅-complex 𝑀 is a quasi-
isomorphism 𝑀 → 𝐼 of 𝑅-complexes where 𝐼 is semi-injective.

Remark. In some texts a semi-injective resolution is called a semi-injective ‘coresolution’.

The goal of this section is obtained by 5.3.19; it relies on the next construction.

5.3.14 Construction. Given an 𝑅-complex 𝑀 , we proceed to construct a commu-
tative diagram in C(𝑅),

(5.3.14.1)

𝑀

𝜄0

((

𝜄𝑛−1

��

𝜄𝑛

}}

𝜄

		

𝐼 // · · · // // 𝐼𝑛
𝜋𝑛
// // 𝐼𝑛−1 𝜋𝑛−1

// // · · · // // 𝐼0 .

For 𝑛 = 0 choose by 5.3.4 an injective morphism 𝜄0 : 𝑀 → 𝐼0, where 𝐼0 is the
character complex of a semi-free 𝑅o-complex.

For 𝑛 ⩾ 1 let a morphism 𝜄𝑛−1 : 𝑀 → 𝐼𝑛−1 be given. Choose by 5.3.4 an injective
morphism 𝜀𝑛 : Coker H(𝜄𝑛−1) → 𝐸𝑛, where 𝐸𝑛 is the character complex of a semi-
free 𝑅o-complex. The induced morphism Z(𝐼𝑛−1) → 𝐸𝑛 is zero on boundaries
and on 𝜄𝑛−1 (Z(𝑀)); see (5.3.14.2) below. It extends by 5.3.6 to a homomorphism
𝛿𝑛 : 𝐼𝑛−1 → 𝐸𝑛 with B(𝐼𝑛−1) + 𝜄𝑛−1 (Z(𝑀)) contained in Ker 𝛿𝑛 ∩ Z(𝐼𝑛−1).

(5.3.14.2)

Z(𝐼𝑛−1) // //

��

��

H(𝐼𝑛−1) // // Coker H(𝜄𝑛−1)
��

𝜀𝑛

��

𝐼𝑛−1 𝛿𝑛
// 𝐸𝑛 .

Conversely, let 𝑧 be a cycle in 𝐼𝑛−1. If 𝑧 is in Ker 𝛿𝑛, then the element [𝑧]+Im H(𝜄𝑛−1)
in Coker H(𝜄𝑛−1) is in the kernel of 𝜀𝑛, whence the homology class [𝑧] is in the
image of H(𝜄𝑛−1). Thus, there is an equality

8-Mar-2024 Draft - use at own risk



5.3 Semi-Injectivity 221

(5.3.14.3) B(𝐼𝑛−1) + 𝜄𝑛−1 (Z(𝑀)) = Ker 𝛿𝑛 ∩ Z(𝐼𝑛−1) .

Consider 𝛿𝑛 as a degree −1 homomorphism: 𝐼𝑛−1 → Σ−1𝐸𝑛; cf. 2.2.5. Set

(5.3.14.4) (𝐼𝑛)♮ = (𝐼𝑛−1)♮ ⊕ (Σ−1𝐸𝑛)♮ and 𝜕𝐼
𝑛 (𝑖 + 𝑒) = 𝜕𝐼

𝑛−1 (𝑖) + 𝛿𝑛 (𝑖) .

This defines an 𝑅-complex, as 𝛿𝑛 is zero on boundaries in 𝐼𝑛−1. Notice that the
projection 𝜋𝑛 : 𝐼𝑛 ↠ 𝐼𝑛−1 is a morphism of complexes.

For each boundary 𝑏 ∈ B(𝑀) choose a preimage 𝑚𝑏. The assignment

(5.3.14.5) 𝑏 ↦−→ 𝛿𝑛𝜄𝑛−1 (𝑚𝑏)

is independent of the choice of preimage. Indeed, if 𝑚𝑏 is another preimage of 𝑏,
then 𝑚𝑏 − 𝑚𝑏 is a cycle in 𝑀 , and (5.3.14.3) yields the first equality in the next
computation

0 = 𝛿𝑛𝜄𝑛−1 (𝑚𝑏 − 𝑚𝑏) = 𝛿𝑛𝜄𝑛−1 (𝑚𝑏) − 𝛿𝑛𝜄𝑛−1 (𝑚𝑏) .

Thus, (5.3.14.5) defines a (degree 0) homomorphism from B(𝑀) to Σ−1𝐸𝑛. It
extends by 5.3.6 to a homomorphism 𝜎𝑛 : 𝑀 → Σ−1𝐸𝑛, and there is an equality

(5.3.14.6) 𝜎𝑛𝜕𝑀 = 𝛿𝑛𝜄𝑛−1 .

Define a map 𝜄𝑛 : 𝑀 → 𝐼𝑛 as follows:

𝜄𝑛 (𝑚) = 𝜄𝑛−1 (𝑚) + 𝜎𝑛 (𝑚) .

The next computation shows that it is a morphism of 𝑅-complexes; the penultimate
equality uses (5.3.14.6).

𝜕𝐼
𝑛

𝜄𝑛 = 𝜕𝐼
𝑛 (𝜄𝑛−1 + 𝜎𝑛) = 𝜕𝐼

𝑛−1
𝜄𝑛−1 + 𝛿𝑛𝜄𝑛−1 = 𝜄𝑛−1𝜕𝑀 + 𝜎𝑛𝜕𝑀 = 𝜄𝑛𝜕𝑀 .

For 𝑛 < 0 set 𝐼𝑛 = 0, 𝜄𝑛 = 0, and 𝜋𝑛+1 = 0, then the family {𝜋𝑛 : 𝐼𝑛 → 𝐼𝑛−1}𝑛∈ℤ
is a tower in C(𝑅), and 𝜄𝑛−1 = 𝜋𝑛𝜄𝑛 holds for all 𝑛 ∈ ℤ. Set 𝐼 = lim𝑛∈ℤ 𝐼𝑛, by 3.5.4
there is a morphism of 𝑅-complexes 𝜄 : 𝑀 → 𝐼, given by 𝑚 ↦→ (𝜄𝑛 (𝑚))𝑛∈ℤ.

5.3.15 Proposition. Let 𝑀 be an 𝑅-complex. The complexes and morphisms con-
structed in 5.3.14 have the following properties.

(a) Each 𝐼𝑛 is a complex of injective 𝑅-modules with 𝐼𝑛𝑣 = 0 for 𝑣 > sup𝑀♮ .

(b) 𝐼 is a complex of injective 𝑅-modules with 𝐼𝑣 = 0 for all 𝑣 > sup𝑀♮, and the
functor Hom𝑅 ( , 𝐼) preserves acyclicity of complexes.

(c) The morphism 𝜄 : 𝑀 → 𝐼 is an injective quasi-isomorphism.

Proof. Part (a) follows from 5.3.4 and (5.3.14.4).
(b): One has 𝐼𝑣 = 0 for all 𝑣 > sup𝑀♮ by part (a) and the definition 3.4.3 of limits.

Let 0→ 𝐾 → 𝑀 → 𝑁 → 0 be an exact sequence in C(𝑅). For every 𝑛 ⩾ 0 there is
an exact sequence

0 −→ Hom𝑅 (𝑁, 𝐼𝑛) −→ Hom𝑅 (𝑀, 𝐼𝑛) −→ Hom𝑅 (𝐾, 𝐼𝑛) −→ 0 ;

this follows from (a) and 5.3.6. Because of the degreewise split exact sequences
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(★) 0 −→ (Σ−1𝐸𝑛)♮ −→ 𝐼𝑛
𝜋𝑛−−−→ 𝐼𝑛−1 −→ 0 ,

the morphisms in the tower {Hom𝑅 (𝑁, 𝜋𝑛) : Hom𝑅 (𝑁, 𝐼𝑛) → Hom𝑅 (𝑁, 𝐼𝑛−1)}𝑛∈ℤ
are surjective; see 2.3.12. It now follows from 3.5.17 that the lower row in the
commutative diagram below is exact.

Hom𝑅 (𝑀, 𝐼) //

�

��

Hom𝑅 (𝐾, 𝐼)

�

��

lim
𝑛∈ℤ

Hom𝑅 (𝑀, 𝐼𝑛) // lim
𝑛∈ℤ

Hom𝑅 (𝐾, 𝐼𝑛) // 0

The vertical maps are the isomorphisms from 3.4.23; the diagram shows that the
functor Hom𝑅 ( , 𝐼) is exact, whence 𝐼 is a complex of injective modules by 5.3.6.

Let 𝐴 be an acyclic 𝑅-complex. As above the morphisms in the induced tower
{Hom𝑅 (𝐴, 𝜋𝑛) : Hom𝑅 (𝐴, 𝐼𝑛) → Hom𝑅 (𝐴, 𝐼𝑛−1)}𝑛∈ℤ are surjective. By 5.3.4, the
functors Hom𝑅 ( , (𝐸𝑛)♮) preserve acyclicity, so by induction it follows from (★) and
2.5.6 that the functors Hom𝑅 ( , 𝐼𝑛) preserve acyclicity; in particular Hom𝑅 (𝐴, 𝐼𝑛)
is acyclic for every 𝑛. By 3.4.23 and 3.5.16 the complex

Hom𝑅 (𝐴, 𝐼) = Hom𝑅

(
𝐴, lim
𝑛∈ℤ

𝐼𝑛
)
� lim

𝑛∈ℤ
Hom𝑅 (𝐴, 𝐼𝑛)

is acyclic.
(c): As 𝜄0 is injective, commutativity of (5.3.14.1) shows that 𝜄 is injective as well.

By 5.3.4 the morphism H(𝜄0) is injective, and the commutative diagram

(⋄)

H(𝑀)
H ( 𝜄)

||
H ( 𝜄𝑛 )
��

H ( 𝜄0 )

##

H(𝐼) // H(𝐼𝑛) // H(𝐼0) ,

which is induced from (5.3.14.1), shows that H(𝜄) is injective. To see that it is
surjective, let 𝑧 = (𝑧𝑛)𝑛∈ℤ be a cycle in 𝐼; the goal is to show that there exist
elements 𝑚 ∈ Z(𝑀) and 𝑖 = (𝑖𝑛)𝑛∈ℤ in 𝐼 with 𝑧 = 𝜕𝐼 (𝑖) + 𝜄(𝑚). From (5.3.14.4) one
gets

(♭) 0 = 𝜕𝐼 (𝑧) = (𝜕𝐼0 (𝑧0), . . . , 𝜕𝐼𝑛−1 (𝑧𝑛−1) + 𝛿𝑛 (𝑧𝑛−1), 𝜕𝐼𝑛 (𝑧𝑛) + 𝛿𝑛+1 (𝑧𝑛), . . . ) .

It follows for each 𝑛 ⩾ 1 that the element 𝑧𝑛−1 is a cycle in 𝐼𝑛−1 with 𝛿𝑛 (𝑧𝑛−1) = 0,
whence 𝑧𝑛−1 belongs B(𝐼𝑛−1) + 𝜄𝑛−1 (Z(𝑀)) by (5.3.14.3).

Choose elements 𝑗2 in 𝐼2 and𝑚 ∈ Z(𝑀) such that 𝑧2 = 𝜕𝐼
2 ( 𝑗2)+𝜄2 (𝑚) holds. The

sequence (𝑖𝑛)𝑛∈ℤ is constructed by induction. Set 𝑖1 = 𝜋2 ( 𝑗2) and 𝑖0 = 𝜋1 (𝑖1), then
there are equalities 𝑧1 = 𝜋2 (𝑧2) = 𝜕𝐼1 (𝑖1) + 𝜄1 (𝑚) and 𝑧0 = 𝜋1 (𝑧1) = 𝜕𝐼0 (𝑖0) + 𝜄0 (𝑚).
Set 𝑖𝑛 = 0 for 𝑛 < 0. Fix 𝑛 ⩾ 2 and assume that elements 𝑖𝑢 ∈ 𝐼𝑢 for 𝑢 < 𝑛 and
𝑗𝑛 ∈ 𝐼𝑛 have been constructed, such that one has

𝑧𝑛 = 𝜕𝐼
𝑛 ( 𝑗𝑛) + 𝜄𝑛 (𝑚) and 𝑧𝑢 = 𝜕𝐼

𝑢 (𝑖𝑢) + 𝜄𝑢 (𝑚) for 𝑢 < 𝑛 ;
𝜋𝑛 ( 𝑗𝑛) = 𝑖𝑛−1 and 𝜋𝑢 (𝑖𝑢) = 𝑖𝑢−1 for 𝑢 < 𝑛 .
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Choose 𝑗 ′ in 𝐼𝑛+1 and 𝑚′ ∈ Z(𝑀) with 𝑧𝑛+1 = 𝜕𝐼
𝑛+1 ( 𝑗 ′) + 𝜄𝑛+1 (𝑚′). The equalities

𝜕𝐼
𝑛 ( 𝑗𝑛) + 𝜄𝑛 (𝑚) = 𝑧𝑛 = 𝜋𝑛+1 (𝑧𝑛+1) = 𝜕𝐼

𝑛 (𝜋𝑛+1 ( 𝑗 ′)) + 𝜄𝑛 (𝑚′)

show that 𝜄𝑛 (𝑚′ − 𝑚) is a boundary in 𝐼𝑛. It follows from commutativity of the
diagram (⋄) that H(𝜄𝑛) is injective, so𝑚′−𝑚 is in B(𝑀) and, therefore, 𝜄𝑛+1 (𝑚′−𝑚)
is in B(𝐼𝑛+1). Thus, there exists 𝑗 ′′ ∈ 𝐼𝑛+1 with 𝜕𝐼𝑛+1 ( 𝑗 ′′) = 𝜕𝐼𝑛+1 ( 𝑗 ′) + 𝜄𝑛+1 (𝑚′ − 𝑚)
and, therefore, 𝑧𝑛+1 = 𝜕𝐼

𝑛+1 ( 𝑗 ′′) + 𝜄𝑛+1 (𝑚). The equalities

𝜕𝐼
𝑛 ( 𝑗𝑛) + 𝜄𝑛 (𝑚) = 𝑧𝑛 = 𝜋𝑛+1 (𝑧𝑛+1) = 𝜕𝐼

𝑛 (𝜋𝑛+1 ( 𝑗 ′′)) + 𝜄𝑛 (𝑚)

show that 𝑗𝑛 − 𝜋𝑛+1 ( 𝑗 ′′) is a cycle in 𝐼𝑛 and, therefore, 𝜋𝑛 ( 𝑗𝑛 − 𝜋𝑛+1 ( 𝑗 ′′)) is a
cycle in 𝐼𝑛−1. Now (5.3.14.4) yields 𝛿𝑛 (𝜋𝑛 ( 𝑗𝑛 − 𝜋𝑛+1 ( 𝑗 ′′))) = 0, and it follows from
(5.3.14.3) that there are elements 𝑖′ ∈ 𝐼𝑛−1 and 𝑐 ∈ Z(𝑀) with

(†) 𝜋𝑛 ( 𝑗𝑛 − 𝜋𝑛+1 ( 𝑗 ′′)) = 𝜕𝐼
𝑛−1 (𝑖′) + 𝜄𝑛−1 (𝑐) .

Choose 𝑖′′ ∈ 𝐼𝑛+1 with 𝜋𝑛𝜋𝑛+1 (𝑖′′) = 𝑖′ and set 𝑗𝑛+1 = 𝑗 ′′ + 𝜕𝐼𝑛+1 (𝑖′′) + 𝜄𝑛+1 (𝑐). As
𝜕𝐼

𝑛+1 (𝑖′′) + 𝜄𝑛+1 (𝑐) is a cycle in 𝐼𝑛+1, the equality

(‡) 𝑧𝑛+1 = 𝜕𝐼
𝑛+1 ( 𝑗𝑛+1) + 𝜄𝑛+1 (𝑚)

holds. Set 𝑖𝑛 = 𝜋𝑛+1 ( 𝑗𝑛+1); now (‡) yields 𝑧𝑛 = 𝜋𝑛+1 (𝑧𝑛+1) = 𝜕𝐼𝑛 (𝑖𝑛) + 𝜄𝑛 (𝑚), and
the third equality below follows from (†),

𝜋𝑛 (𝑖𝑛) = 𝜋𝑛𝜋𝑛+1 ( 𝑗𝑛+1)

= 𝜋𝑛𝜋𝑛+1 ( 𝑗 ′′) + 𝜕𝐼𝑛−1
𝜋𝑛𝜋𝑛+1 (𝑖′′) + 𝜄𝑛−1 (𝑐)

= 𝜋𝑛 ( 𝑗𝑛)
= 𝑖𝑛−1 .

Thus, for 𝑢 < 𝑛 + 1 one has

(||) 𝑧𝑢 = 𝜕𝐼
𝑢 (𝑖𝑢) + 𝜄𝑢 (𝑚) and 𝑖𝑢−1 = 𝜋𝑢 (𝑖𝑢) .

From (‡) and (||) it now follows that the desired element 𝑖 = (𝑖𝑛)𝑛∈ℤ in 𝐼 with
𝑧 = 𝜄(𝑚) + 𝜕𝐼 (𝑖) exists. □

The next result offers useful characterizations of semi-injective complexes. The
lifting property in part (iii) can be interpreted in terms of the diagram (5.3.5.1).

5.3.16 Proposition. For an 𝑅-complex 𝐼, the following conditions are equivalent.
(i) 𝐼 is semi-injective.
(ii) The functor Hom𝑅 ( , 𝐼) is exact and preserves quasi-isomorphisms.
(iii) For every chain map 𝛼 : 𝐾 → 𝐼 and for every injective quasi-isomorphism

𝛽 : 𝐾 → 𝑀 there exists a chain map 𝛾 : 𝑀 → 𝐼 such that 𝛾𝛽 = 𝛼 holds.
(iv) Every exact sequence 0 → 𝐼 → 𝑀 → 𝑀 ′′ → 0 in C(𝑅) with 𝑀 ′′ acyclic is

split.
(v) For every morphism 𝛼 : 𝐼 → 𝐾 and for every injective quasi-isomorphism

𝛽 : 𝐼 → 𝑀 there exists a morphism 𝛾 : 𝑀 → 𝐾 such that 𝛾𝛽 = 𝛼 holds.
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(vi) 𝐼 is a complex of injective 𝑅-modules, and the functor Hom𝑅 ( , 𝐼) preserves
acyclicity of complexes.

Proof. The implication (ii)⇒ (i) is evident.
(i)⇒ (iii): The morphism Hom𝑅 (𝛽, 𝐼) is a surjective quasi-isomorphism. In

particular, it is surjective on cycles; see 4.2.7. Thus, in view of 2.3.3 there exists a
chain map 𝛾 : 𝑀 → 𝐼 such that 𝛼 = Hom𝑅 (𝛽, 𝐼) (𝛾) = 𝛾𝛽 holds.

(iii)⇒ (iv): By 4.2.6 the morphism 𝛽 : 𝐼 ↣ 𝑀 is a quasi-isomorphism, so there
exists a chain map 𝛾 : 𝑀 → 𝐼 with 𝛾𝛽 = 1𝐼 . As 𝛽 is of degree 0, so is 𝛾. That is, 𝛾
is a morphism in C(𝑅), whence the sequence is split.

(iv)⇒ (v): By (iv) there is a morphism 𝜚 : 𝑀 → 𝐼 with 𝜚𝛽 = 1𝐼 . The desired
morphism is thus 𝛾 = 𝛼𝜚.

(v)⇒ (vi): Chose by 5.3.15 an injective quasi-isomorphism 𝛽 : 𝐼 → 𝐼 ′, where
𝐼 ′ is a complex of injective modules such that the functor Hom𝑅 ( , 𝐼 ′) preserves
acyclicity of complexes. By (v) there is a morphism 𝛾 : 𝐼 ′ → 𝐼 with 𝛾𝛽 = 1𝐼 . Thus
𝐼 is a direct summand of 𝐼 ′, see 2.1.47, and by additivity of the Hom functor, 𝐼 is a
complex of injective modules and Hom𝑅 ( , 𝐼) preserves acyclicity of complexes.

(vi)⇒ (ii): The functor Hom𝑅 ( , 𝐼) is exact by 5.3.6. For a quasi-isomorphism
𝛼, the complex Cone𝛼 is acyclic by 4.2.16, and hence so is Hom𝑅 (Cone𝛼, 𝐼). By
4.1.17 the latter complex is isomorphic to ΣCone Hom𝑅 (𝛼, 𝐼), and it follows that
Hom𝑅 (𝛼, 𝐼) is a quasi-isomorphism. □

5.3.17 Corollary. Let 𝑃 be an 𝑅o-complex. If 𝑃 is semi-projective, then the 𝑅-
complex Hom𝕜 (𝑃,𝔼) is semi-injective.

Proof. It follows from 1.3.48 that Hom𝕜 (𝑃,𝔼) is a complex of injective 𝑅-modules.
By adjunction 4.4.12 and commutativity 4.4.4 there are natural isomorphisms

Hom𝑅 ( ,Hom𝕜 (𝑃,𝔼)) � Hom𝕜 (𝑃 ⊗𝑅 ,𝔼) � Hom𝑅o (𝑃,Hom𝕜 ( ,𝔼))

of functors from C(𝑅)op to C(𝕜). By assumption, Hom𝑅o (𝑃,Hom𝕜 ( ,𝔼)) preserves
acyclicity of complexes. Thus, Hom𝕜 (𝑃,𝔼) is semi-injective. □

5.3.18 Corollary. A graded 𝑅-module is graded-injective if and only if it is semi-
injective as an 𝑅-complex.

Proof. Let 𝐼 be a graded 𝑅-module. If 𝐼 is semi-injective as an 𝑅-complex, then
each module 𝐼𝑣 is injective and hence 𝐼 is graded-injective.

If 𝐼 is a graded-injective 𝑅-module, then by 5.3.6 it is a direct summand of the
character module of a graded-free 𝑅o-module. By 5.1.2 and 5.2.11 a graded-free
module is semi-projective. Thus 5.3.17 shows that 𝐼 is a direct summand of a semi-
injective 𝑅-complex and hence semi-injective by additivity of the Hom functor. □

5.3.19 Theorem. Every 𝑅-complex 𝑀 has a semi-injective resolution 𝜄 : 𝑀 ≃−−→ 𝐼

with 𝐼𝑣 = 0 for all 𝑣 > sup𝑀♮. Moreover, 𝜄 can be chosen injective.

Proof. Apply 5.3.15 to get an injective quasi-isomorphism 𝜄 : 𝑀 → 𝐼. The complex
𝐼 has 𝐼𝑣 = 0 for 𝑣 > sup𝑀♮, and it is semi-injective by 5.3.15 and 5.3.16. □
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Properties of Semi-Injective Complexes

The class of semi-injective complexes over a ring is closed under extensions, cok-
ernels of injective morphisms, direct summands, and products. Semi-injectivity is
also preserved under cobase change, but we postpone that to 5.4.26.

5.3.20 Proposition. Let 0 → 𝐼 ′ → 𝐼 → 𝐼 ′′ → 0 be an exact sequence of 𝑅-
complexes. If 𝐼 ′ is semi-injective, then 𝐼 is semi-injective if and only if 𝐼 ′′ is semi-
injective.

Proof. First note that since 𝐼 ′ is a complex of injective modules, it follows from
5.3.7 that 𝐼 is a complex of injective modules if and only if 𝐼 ′′ is so. Next, let 𝐴 be
an acyclic 𝑅-complex. The sequence 0 → 𝐼 ′ → 𝐼 → 𝐼 ′′ → 0 is degreewise split
by 5.3.6, so by applying Hom𝑅 (𝐴, ) one obtains an exact sequence; see 2.3.12. As
𝐼 ′ is semi-injective, the complex Hom𝑅 (𝐴, 𝐼 ′) is acyclic by the equivalence of (i)
and (v) in 5.3.16. It follows from 2.5.6 that Hom𝑅 (𝐴, 𝐼) is acyclic if and only if
Hom𝑅 (𝐴, 𝐼 ′′) is acyclic. Now 5.3.16 yields the desired conclusion. □

5.3.21 Proposition. Let {𝐼𝑢}𝑢∈𝑈 be a family of 𝑅-complexes. The product
∏
𝑢∈𝑈 𝐼

𝑢

is semi-injective if and only if each complex 𝐼𝑢 is semi-injective.

Proof. Let 𝛽 : 𝐾 → 𝑀 be an injective quasi-isomorphism. There is a commutative
diagram in C(𝕜),

Hom𝑅

(
𝑀,

∏
𝑢∈𝑈

𝐼𝑢
) Hom (𝛽,∏𝑢∈𝑈 𝐼𝑢 )

//

�

��

Hom𝑅

(
𝐾,

∏
𝑢∈𝑈

𝐼𝑢
)

�

��∏
𝑢∈𝑈

Hom𝑅 (𝑀, 𝐼𝑢)
∏
𝑢∈𝑈 Hom (𝛽,𝐼𝑢 )

//
∏
𝑢∈𝑈

Hom𝑅 (𝑀, 𝐼𝑢) ,

where the vertical maps are the canonical isomorphisms from 3.1.27. It follows that
Hom𝑅 (𝛽,

∏
𝑢∈𝑈 𝐼

𝑢) is a surjective quasi-isomorphism if and only if each morphism
Hom𝑅 (𝛽, 𝐼𝑢) is a surjective quasi-isomorphism. □

Also the next result can be interpreted in terms of the diagram (5.3.5.1).

5.3.22 Proposition. Let 𝐼 be a semi-injective 𝑅-complex, 𝛼 : 𝐾 → 𝐼 a chain map,
and 𝛽 : 𝐾 → 𝑀 a quasi-isomorphism. There exists a chain map 𝛾 : 𝑀 → 𝐼 such that
𝛾𝛽 ∼ 𝛼. Moreover, 𝛾 is homotopic to any other chain map 𝛾′ with 𝛾′𝛽 ∼ 𝛼.

Proof. Recall from 2.3.3 the characterization of (null-homotopic) chain maps as
(boundaries) cycles in Hom complexes. By 5.3.16 the induced morphism Hom𝑅 (𝛽, 𝐼)
is a quasi-isomorphism, so there exists a 𝛾 ∈ Z(Hom𝑅 (𝑀, 𝐼)) such that

[𝛼] = H(Hom𝑅 (𝛽, 𝐼)) ( [𝛾]) = [𝛾𝛽] ;

that is, 𝛼− 𝛾𝛽 is in B(Hom𝑅 (𝐾, 𝐼)). Given another morphism 𝛾′ such that 𝛾′𝛽 ∼ 𝛼,
one has [𝛼] = [𝛾′𝛽] and, therefore 0 = [(𝛾 − 𝛾′)𝛽] = H(Hom𝑅 (𝛽, 𝐼)) ( [𝛾 − 𝛾′]). It
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follows that the homology class [𝛾 − 𝛾′] is 0 as H(Hom𝑅 (𝛽, 𝐼)) is an isomorphism,
so 𝛾 − 𝛾′ is in B(Hom𝑅 (𝑀, 𝐼)). That is, 𝛾 and 𝛾′ are homotopic. □

Remark. Existence and uniqueness of lifts up to homotopy, as described in 5.3.22, is an important
property of semi-injective complexes, but it does not characterize them. Complexes with this
property are examined in exercises, starting with E 5.3.19.

5.3.23 Corollary. Let 𝐼 be a semi-injective 𝑅-complex and 𝛽 : 𝐼 → 𝑀 a quasi-
isomorphism. There exists a quasi-isomorphism 𝛾 : 𝑀 → 𝐼 such that 𝛾𝛽 ∼ 1𝐼 .

Proof. By 5.3.22 there exists a chain map 𝛾 : 𝑀 → 𝐼 with 𝛾𝛽 ∼ 1𝐼 ; comparison of
degrees shows that 𝛾 is a morphism. Moreover, by 2.2.26 one has H(𝛾) H(𝛽) = 1H (𝐼 ) ,
whence H(𝛾) is an isomorphism. □

Recall from 4.3.4 that every homotopy equivalence is a quasi-isomorphism. The
next result is a partial converse and akin to 5.2.21.

5.3.24 Corollary. A quasi-isomorphism of semi-injective 𝑅-complexes is a homotopy
equivalence.

Proof. Let 𝛽 : 𝐼 → 𝐼 ′ is a quasi-isomorphism of semi-injective 𝑅-complexes. By
5.3.23 there are morphisms 𝛾 : 𝐼 ′ → 𝐼 and 𝛽′ : 𝐼 → 𝐼 ′ such that 𝛾𝛽 ∼ 1𝐼 and 𝛽′𝛾 ∼
1𝐼 ′ hold. It now follows from 4.3.3 that 𝛽 is a homotopy equivalence. □

5.3.25 Proposition. Let 𝑃 be an 𝑅-complex and 𝑋 a complex of 𝑅–𝑆o-bimodules.
If 𝑃 is semi-projective and 𝑋 is semi-injective over 𝑆o, then Hom𝑅 (𝑃, 𝑋) is a semi-
injective 𝑆o-complex.

Proof. By swap 4.4.10 there is a natural isomorphism

Hom𝑆o ( ,Hom𝑅 (𝑃, 𝑋)) � Hom𝑅 (𝑃,Hom𝑆o ( , 𝑋))

of functors from C(𝑆o)op to C(𝕜). It follows from the assumptions on 𝑃 and 𝑋 that
the functor Hom𝑅 (𝑃,Hom𝑆o ( , 𝑋)) is exact and preserves quasi-isomorphisms. □

Boundedness

A complex with homology bounded above can be resolved by a bounded above
semi-injective complex. Such a resolution could, in fact, be constructed degreewise,
mimicking the classic construction of an injective resolution of a module.

5.3.26 Theorem. Every 𝑅-complex 𝑀 has a semi-injective resolution 𝑀 ≃−−→ 𝐼 with
𝐼𝑣 = 0 for all 𝑣 > sup𝑀 .

Proof. If 𝑀 is acyclic, then the morphism 𝑀
≃−−→ 0 is the desired resolution. If

H(𝑀) is not bounded above, then any semi-injective resolution of 𝑀 has the desired
property. Assume now that H(𝑀) is bounded above and set 𝑢 = sup𝑀 . By 4.2.4
there is a quasi-isomorphism 𝑀 → 𝑀Ď𝑢. By 5.3.19 the truncated complex 𝑀Ď𝑢

has a semi-injective resolution 𝑀Ď𝑢
≃−−→ 𝐼 with 𝐼𝑣 = 0 for 𝑣 > 𝑢. The desired

semi-injective resolution is the composite 𝑀 ≃−−→ 𝑀Ď𝑢
≃−−→ 𝐼. □
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It is proved in B.26 that the resolution in 5.3.26 can be chosen to be minimal.

The Case of Modules

Part (ii) in the next result recovers the lifting property of injective modules 1.3.26; it
can be interpreted in terms of the diagram (5.3.5.1). Further, it follows from 5.3.18
that a module is injective if and only if it is semi-injective as a complex. Thus one
recovers 1.3.27 from 5.3.21.

5.3.27 Proposition. For an 𝑅-module 𝐼, the following conditions are equivalent.
(i) 𝐼 is injective.
(ii) For every homomorphism 𝛼 : 𝐾 → 𝐼 and for every injective homomorphism

𝛽 : 𝐾 → 𝑀 , there exists a homomorphism 𝛾 : 𝑀 → 𝐼 such that 𝛾𝛽 = 𝛼 holds.
(iii) Every exact sequence 0→ 𝐼 → 𝑀 → 𝑀 ′′ → 0 of 𝑅-modules is split.
(iv) 𝐼 is a direct summand of the character module of a free 𝑅o-module.

Proof. Specialize 5.3.6 to modules. □

5.3.28 Proposition. Let 0→ 𝐼 ′ → 𝐼 → 𝐼 ′′ → 0 be an exact sequence of 𝑅-modules.
If 𝐼 ′ is injective, then 𝐼 is injective if and only if 𝐼 ′′ is injective.

Proof. Specialize 5.3.7 to modules. □

5.3.29 Proposition. Let 𝑃 be an 𝑅-module and 𝑋 an 𝑅–𝑆o-bimodule. If 𝑃 is projec-
tive and 𝑋 is injective over 𝑆o, then the 𝑆o-module Hom𝑅 (𝑃, 𝑋) is injective.

Proof. The assertion follows, per 5.2.12 and 5.3.18, immediately from 5.3.25. □

Semi-injective resolutions of complexes subsume the classic notion of injective
resolutions of modules. The next result is dual to 1.3.12. A homomorphism 𝑀 ↣ 𝐼

as below is called an injective preenvelope of 𝑀; cf. D.19.

5.3.30 Proposition. Let 𝑀 be an 𝑅-module. There is an injective homomorphism of
𝑅-modules 𝑀 → 𝐼 where 𝐼 is injective.

Proof. The assertion is immediate from 5.3.4. □

5.3.31 Theorem. Let 𝑀 be an 𝑅-module. There is an exact sequence of 𝑅-modules,

0 −→ 𝑀 −→ 𝐼0 −→ · · · −→ 𝐼𝑣 −→ 𝐼𝑣−1 −→ · · · ,

where each module 𝐼𝑣 is injective.

Proof. Choose by 5.3.19 a semi-injective resolution 𝜄 : 𝑀 ≃−−→ 𝐼 with 𝐼𝑣 = 0 for all
𝑣 > 0 and 𝜄 injective. The displayed sequence of 𝑅-modules is the complex Cone 𝜄; in
particular, the map 𝑀0 ↣ 𝐼0 is the homomorphism 𝜄0. The cone is acyclic because
𝜄 is a quasi-isomorphism; see 4.2.16. □
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5.3.32 Definition. Let 𝑀 be an 𝑅-module. Together, the injective homomorphism
𝑀 → 𝐼0 and the 𝑅-complex 0→ 𝐼0 → · · · → 𝐼𝑣 → 𝐼𝑣−1 → · · · in 5.3.31 is called
an injective resolution of 𝑀 .

5.3.33. Let 𝑀 be an 𝑅-module. By 5.3.12 an injective resolution of 𝑀 is a semi-
injective resolution of 𝑀 as an 𝑅-complex. Only a semi-injective resolution 𝑀 ≃−−→ 𝐼

with 𝐼 concentrated in non-positive degrees is an injective resolution of 𝑀 .

Remark. Let 𝑀 ≃−→ 𝐼 be an injective resolution of an 𝑅-module. It is standard to refer to the
module Ker(𝐼𝑛 → 𝐼𝑛−1 ) = Z𝑛 (𝐼 ) as an 𝑛th cosyzygy of 𝑀. By Schanuel’s lemma 8.2.13 it is
“essentially” unique. In the case the complex 𝐼 is minimal, the module Z𝑛 (𝐼 ) may be referred to
as the 𝑛th cosyzygy of 𝑀.

Exercises

E 5.3.1 Show that a graded 𝑅-module is graded-injective if and only if it is an injective object
in the category Mgr (𝑅) .

E 5.3.2 Show that a graded 𝑅-module is graded-injective if it is injective as an 𝑅-module. Is the
converse true?

E 5.3.3 Assume that 𝑅 is left hereditary. Show that for every complex 𝐼 of injective 𝑅-modules
there is a quasi-isomorphism H(𝐼 ) ≃−→ 𝐼 . Hint: See E 1.4.8.

E 5.3.4 For an 𝑅-complex 𝐼 , show that the following conditions are equivalent. (i) 𝐼 is an injective
object in the category C(𝑅) . (ii) 𝐼 is a contractible complex complex of injective 𝑅-
modules. (iii) 𝐼 is semi-injective and acyclic. (iv) 𝐼 is an acyclic complex of injective
𝑅-modules and B(𝐼 ) = Z(𝐼 ) is a complex of injective 𝑅-modules. Dualize 4.3.24 and
conclude that the category C(𝑅) has enough injectives.

E 5.3.5 Show that the Dold complex from 5.1.4 is an acyclic complex of injective modules. Show
that it is not contractible and conclude that it is not semi-injective.

E 5.3.6 Let 𝐼 be the ℤ/4ℤ-complex 0 −→ ℤ/4ℤ 2−→ ℤ/4ℤ 2−→ ℤ/4ℤ −→ · · · concentrated in
non-positive degrees. Set 𝐽 =

∏
𝑢>0 Σ

𝑢𝐼 , show that the complex 𝐽ě0 is semi-injective,
and compute its homology.

E 5.3.7 Show that a complex 𝐼 of injective 𝑅-modules is semi-injective if Hom𝑅 (𝐴, 𝐼 ) is acyclic
for every acyclic 𝑅-complex 𝐴 that is bounded below.

E 5.3.8 Let 𝑅 → 𝑆 be a ring homomorphism. Show that for a semi-injective 𝑅-complex 𝐼 , the
𝑆-complex Hom𝑅 (𝑆, 𝐼 ) is semi-injective.

E 5.3.9 Assume that 𝑅 is commutative and 𝑆 an 𝑅-algebra that is faithfully projective as an
𝑅-module. Show that an 𝑅-complex 𝐼 is semi-injective if (and only if) the 𝑆-complex
Hom𝑅 (𝑆, 𝐼 ) is semi-injective.

E 5.3.10 Show that the mapping cone of a morphism between semi-injective 𝑅-complexes is
semi-injective.

E 5.3.11 Let 𝐼 be a semi-injective 𝑅-complex. Show that for 𝑣 ⩾ sup𝑀 the module C𝑣 (𝐼 ) is
injective. Conclude that if 𝜄 : 𝑀 ≃−→ 𝐼 is a semi-injective resolution, then so is 𝜄Ď𝑣 for
𝑣 ⩾ sup𝑀. Show that if 𝑀 is a module, then 𝜄Ď0 yields an injective resolution of 𝑀.

E 5.3.12 Show that every complex over a semi-simple ring is semi-injective.
E 5.3.13 Show that a complex of injective modules over a left hereditary ring is semi-injective.
E 5.3.14 Let 0 → 𝐼 ′ → 𝐼 → 𝐼 ′′ → 0 be a degreewise split exact sequence of 𝑅-complexes.

Show that if two of the complexes 𝐼 ′, 𝐼 , and 𝐼 ′′ are semi-injective, then so is the third.
E 5.3.15 Show that the following conditions are equivalent for an 𝑅-complex 𝐼 . (i) 𝐼 is semi-

injective. (ii) The complex 𝐼ě𝑛 is semi-injective for every 𝑛 ∈ ℤ. (iii) 𝐼 is a complex of
injective 𝑅-modules and 𝐼ě𝑛 is semi-injective for some 𝑛 ∈ ℤ.
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E 5.3.16 Let 𝑃 be a bounded complex of finitely generated projective 𝑆-modules and 𝐼 a complex
of 𝑅–𝑆o-bimodules. Show that if 𝐼 is a semi-injective over 𝑅, then the 𝑅-complex 𝐼 ⊗𝑆 𝑃
is semi-injective.

E 5.3.17 Let 𝑃 be a bounded above complex of finitely generated projective 𝑆-modules and 𝐼
a bounded above complex of 𝑅–𝑆o-bimodules that are injective over 𝑅. Show that the
𝑅-complex 𝐼 ⊗𝑆 𝑃 is semi-injective.

E 5.3.18 Let 𝐹 be a bounded above complex of flat 𝑆-modules and 𝐼 a bounded above complex
of 𝑅–𝑆o-bimodules that are injective over 𝑅. Show that if 𝑅 is left Noetherian, then the
𝑅-complex 𝐼 ⊗𝑆 𝐹 is semi-injective. Hint: E 1.4.11.

E 5.3.19 Show that the following conditions are equivalent for an 𝑅-complex 𝑌 . (i) For every
chain map 𝛼 : 𝐾 → 𝑌 and every quasi-isomorphism 𝛽 : 𝐾 → 𝑀 there exists a chain
map 𝛾 : 𝑀 → 𝑌 , unique up to homotopy, such that 𝛾𝛽 ∼ 𝛼. (ii) For every quasi-
isomorphism 𝛽 the induced morphism Hom𝑅 (𝛽,𝑌 ) is a quasi-isomorphism. (iii) For
every acyclic complex 𝐴, the complex Hom𝑅 (𝐴,𝑌 ) is acyclic.

A complex with these properties is called K-injective; Avramov, Foxby, and Halperin
[25] use the term ‘homotopically injective’.

E 5.3.20 Show that a quasi-isomorphism of K-injective 𝑅-complexes is a homotopy equivalence.
E 5.3.21 Let 𝐾 be an acyclic K-injective 𝑅-complex. Show that Hom𝑅 (𝑀, 𝐾 ) is acyclic for

every 𝑅-complex 𝑀.
E 5.3.22 Show that an 𝑅-complex is semi-injective if and only if it is a complex of injective

modules and K-injective. Show that a K-injective complex need not be semi-injective.
E 5.3.23 Show that a graded 𝑅-module is graded-injective if and only if it is K-injective as an

𝑅-complex.
E 5.3.24 Consider a homotopy equivalence 𝑀 → 𝑁 of 𝑅-complexes. Show that 𝑀 is K-injective

if and only if 𝑁 is K-injective. Is the same true for semi-injectivity?
E 5.3.25 Let 𝛼 : 𝑀 → 𝑁 be a morphism in C(𝑅) . (a) Show that for any two semi-injective

resolutions 𝜄 : 𝑀 ≃−→ 𝐼 and 𝜀 : 𝑁 ≃−→ 𝐸 there is a morphism �̃� : 𝐼 → 𝐸 such that the
next diagram is commutative up to homotopy,

𝑀
𝜄

≃
//

𝛼

��

𝐼

�̃�
��

𝑁
𝜀

≃
// 𝐸 .

(b) Show that if 𝜄 is injective, then �̃� can be chosen so that the diagram is commutative.
E 5.3.26 Let 𝑥 be a central element in 𝑅 and 𝑀 ≃−→ 𝐼 a semi-injective resolution in C(𝑅) . Show

that if the homothety 𝑥𝑀 is null-homotopic, then 𝑥𝐼 is null-homotopic.
E 5.3.27 Show that every morphism 𝛼 : 𝑀 → 𝑁 of 𝑅-complexes admits factorizations in C(𝑅) ,

𝑀
��

𝜀
��

𝛼
// 𝑁

𝑋

𝜑
≃
CC CC

and
𝑀
��

𝜄
≃
��

𝛼
// 𝑁

𝑌

𝜋

CC CC

where 𝜀 and 𝜄 are injective, 𝜑 and 𝜋 are surjective with semi-injective kernels, and 𝜑
and 𝜄 are quasi-isomorphisms. Hint: Apply E 5.3.4. Modify the first step in 5.3.14.

E 5.3.28 Give an alternative proof of 5.3.31 based on 5.3.30.

E 5.3.29 Let 0 −→ 𝑀 ′
𝛼′−→ 𝑀

𝛼−→ 𝑀 ′′ −→ 0 be an exact sequence of 𝑅-complexes. Show
that there is a commutative diagram in C(𝑅) in which the columns are semi-injective
resolutions,

0 // 𝑀 ′
𝛼′
//

𝜄′≃
��

𝑀
𝛼
//

𝜄≃
��

𝑀 ′′ //

𝜄′′≃
��

0

0 // 𝐼 ′
�̃�′
// 𝐼

�̃�
// 𝐼 ′′ // 0 .
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This is known as the Horseshoe Lemma for semi-injective resolutions.
E 5.3.30 Let 𝐼 be a complex of injective 𝑅-modules. Show that for every integer 𝑛 ⩽ inf 𝐼 the

truncated complex 𝐼ď𝑛 yields an injective resolution of the module Z𝑛 (𝐼 ) .

5.4 Semi-Flatness

Synopsis. Graded-flat module; complex of flat modules; semi-flat complex; semi-injective complex.

For every complex of flat modules, the functor ⊗ 𝐹 preserves short exact sequences
of complexes, see 2.4.17, but not necessarily acyclicity of complexes. Adding this
as a requirement, one arrives at the notion of semi-flatness.

Complexes of Flat Modules

5.4.1 Proposition. For an 𝑅-complex 𝐹, the following conditions are equivalent.
(i) Each 𝑅-module 𝐹𝑣 is flat.
(ii) The functor ⊗𝑅 𝐹 is exact.
(iii) For every exact sequence 0 → 𝑀 ′ → 𝑀 → 𝐹 → 0 in C(𝑅) the exact se-

quence 0→ Hom𝕜 (𝐹,𝔼) → Hom𝕜 (𝑀,𝔼) → Hom𝕜 (𝑀 ′,𝔼) → 0 is degree-
wise split.

(iv) The character complex Hom𝕜 (𝐹,𝔼) is a complex of injective 𝑅o-modules; that
is, the graded module Hom𝕜 (𝐹,𝔼)♮ is graded-injective.

Proof. Conditions (i) and (iv) are equivalent by 1.3.48.
(ii)⇔ (iv): By adjunction 4.4.12 and commutativity 4.4.4 there is a natural iso-

morphism of functors from C(𝑅o)op to C(𝕜),

Hom𝑅o ( ,Hom𝕜 (𝐹,𝔼)) � Hom𝕜 ( ⊗𝑅 𝐹,𝔼) .

By 5.3.6 the functor on the left-hand side is exact if and only if Hom𝕜 (𝐹,𝔼) is
a complex of injective 𝑅o-modules. As 𝔼 is faithfully injective, the functor on the
right-hand side is exact if and only if ⊗𝑅 𝐹 is exact.

(iv)⇒ (iii): This implication is immediate from 5.3.6.
(iii)⇒ (i): Choose by 5.1.7 a surjective semi-free resolution 𝜋 : 𝐿 ≃−−→ 𝐹 and

consider the associated short exact sequence 0 → Ker 𝜋 → 𝐿 → 𝐹 → 0. By 5.3.2
the complex Hom𝕜 (𝐿,𝔼) consists of injective 𝑅o-modules, so it follows from 5.3.6
and split exactness of the sequence

0 −→ Hom𝕜 (𝐹,𝔼)♮ −→ Hom𝕜 (𝐿,𝔼)♮ −→ Hom𝕜 (Ker 𝜋,𝔼)♮ −→ 0

that each module Hom𝕜 (𝐹,𝔼)−𝑣 = Hom𝕜 (𝐹𝑣,𝔼) is an injective 𝑅o-module, whence
each 𝐹𝑣 is a flat 𝑅-module by 1.3.48. □

5.4.2 Corollary. Let 0 → 𝐹′ → 𝐹 → 𝐹′′ → 0 be an exact sequence of 𝑅-
complexes. If 𝐹′′ is a complex of flat modules, then 𝐹 is a complex of flat modules if
and only if 𝐹′ is a complex of flat modules.
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Proof. Apply 5.4.1 and 5.3.7 to the exact sequence of 𝑅o-complexes

0 −→ Hom𝕜 (𝐹′′,𝔼) −→ Hom𝕜 (𝐹,𝔼) −→ Hom𝕜 (𝐹′,𝔼) −→ 0 . □

A short exact sequence that starts in a complex of injective modules or ends in a
complex of projective modules is degreewise split, see 5.3.6 and 5.2.2. A short exact
sequence that ends in a complex of flat modules exhibits a weaker form of stability.

5.4.3 Corollary. Let 0 → 𝑀 ′ → 𝑀 → 𝐹 → 0 be an exact sequence of 𝑅-
complexes and 𝑁 an 𝑅o-complex. If 𝐹 is a complex of flat 𝑅-modules, then the
sequence 0→ 𝑁 ⊗𝑅 𝑀 ′ → 𝑁 ⊗𝑅 𝑀 → 𝑁 ⊗𝑅 𝐹 → 0 is exact.

Proof. Assume that 𝐹 is a complex of flat 𝑅-modules and let 𝑁 be an 𝑅o-complex.
As the tensor product is right exact, it is sufficient to show that the induced morphism
𝑁 ⊗𝑅 𝑀 ′ → 𝑁 ⊗𝑅 𝑀 is injective. There is a commutative diagram in C(𝕜),

Hom𝕜 (𝑀 ⊗𝑅o 𝑁,𝔼) //

𝜌𝑁𝑀𝔼�

��

Hom𝕜 (𝑀 ′ ⊗𝑅o 𝑁,𝔼) //

𝜌𝑁𝑀
′𝔼�

��

0

Hom𝑅o (𝑁,Hom𝕜 (𝑀,𝔼)) // Hom𝑅o (𝑁,Hom𝕜 (𝑀 ′,𝔼)) // 0 .

The vertical maps are adjunction isomorphisms. The lower row is exact by 5.4.1
and the fact that the functor Hom𝑅 (𝑁, ) preserves degreewise split exactness of
sequences; cf. 2.3.12. By commutativity of the diagram, the upper row is also exact.
As𝔼 is faithfully injective, this implies that the sequence 0→ 𝑀 ′ ⊗𝑅o 𝑁 → 𝑀 ⊗𝑅o 𝑁

is exact, and commutativity 4.4.4 finishes the proof. □

5.4.4 Definition. A graded 𝑅-module 𝐹 is called graded-flat if the 𝑅-complex 𝐹
satisfies the conditions in 5.4.1.

Characterization of Semi-Flat Complexes

5.4.5 Definition. An 𝑅-complex 𝐹 is called semi-flat if 𝛽 ⊗𝑅 𝐹 is an injective quasi-
isomorphism for every injective quasi-isomorphism 𝛽 in C(𝑅o).

Remark. Another word for semi-flat is ‘DG-flat’.

5.4.6. It follows from 2.4.13 that if an 𝑅-complex 𝐹 is semi-flat, then so is Σ𝑠𝐹 for
every integer 𝑠.

5.4.7 Example. A contractible complex of flat 𝑅-modules is semi-flat by 5.4.1,
4.3.20, and 4.3.27.

Remark. While a semi-projective/injective complex is acyclic if and only if it is contractible, see
E 5.2.6/E 5.3.4, an acyclic semi-flat complex need not be contractible, see E 8.3.8. The character
complex of such a complex is, however, contractible, see 5.5.22 and the subsequent Remark.
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5.4.8 Example. Let 𝐹 be a bounded below complex of flat 𝑅-modules and 𝛽 an
injective quasi-isomorphism in C(𝑅o). The morphism 𝛽 ⊗𝑅 𝐹 is injective by 5.4.1.
The complex Cone 𝛽 is acyclic by 4.2.16, and hence so is (Cone 𝛽) ⊗𝑅 𝐹𝑣 for every
𝑣 ∈ ℤ. As 𝐹 is bounded below, it follows from 4.1.19 and A.9 that the complex
Cone(𝛽 ⊗𝑅 𝐹) � (Cone 𝛽) ⊗𝑅 𝐹 is acyclic, whence 𝛽 ⊗𝑅 𝐹 is a quasi-isomorphism.
Thus, 𝐹 is semi-flat.

Semi-projectivity and semi-injectivity are categorically dual notions. By adjoint-
ness of Hom and tensor product, semi-flatness is also, in a different sense, dual
to semi-injectivity. The next result gives useful characterizations of semi-flat com-
plexes.

5.4.9 Proposition. For an 𝑅-complex 𝐹, the following conditions are equivalent.
(i) 𝐹 is semi-flat.
(ii) The functor ⊗𝑅 𝐹 is exact and preserves quasi-isomorphisms.
(iii) The character complex Hom𝕜 (𝐹,𝔼) is a semi-injective 𝑅o-complex.
(iv) 𝐹 is a complex of flat 𝑅-modules and the functor ⊗𝑅 𝐹 preserves acyclicity

of complexes.

Proof. The implication (ii)⇒ (i) is trivial. By commutativity 4.4.4 and adjunc-
tion 4.4.12 there is a natural isomorphism of functors from C(𝑅o)op to C(𝕜),

Hom𝕜 ( ⊗𝑅 𝐹,𝔼) � Hom𝑅o ( ,Hom𝕜 (𝐹,𝔼)) .

Thus it follows from 2.5.7(b) and 5.3.16 and that (ii) and (iii) are equivalent.
(iii)⇒ (iv): It follows from 5.3.16 that Hom𝕜 (𝐹,𝔼) is a complex of injective

𝑅o-modules, so 𝐹 is a complex of flat 𝑅-modules by 5.4.1. Let 𝐴 be an acyclic
𝑅o-complex; by adjunction 4.4.12 and commutativity 4.4.4 there is an isomorphism
Hom𝑅o (𝐴,Hom𝕜 (𝐹,𝔼)) � Hom𝕜 (𝐴 ⊗𝑅 𝐹,𝔼). The left-hand complex is acyclic by
5.3.16, so it follows by faithfulness of the functor Hom𝕜 ( ,𝔼) that 𝐴 ⊗𝑅 𝐹 is acyclic.

(iv)⇒ (i): Let 𝛽 be an injective quasi-isomorphism. The morphism 𝛽 ⊗𝑅 𝐹 is
then injective by 5.4.1. The complex Cone 𝛽 is acyclic by 4.2.16, and hence so is
the complex (Cone 𝛽) ⊗𝑅 𝐹 � Cone(𝛽 ⊗𝑅 𝐹), where the isomorphism comes from
4.1.19. It follows that 𝛽 ⊗𝑅 𝐹 is a quasi-isomorphism. □

The characterizations of semi-projective 5.2.10 and semi-injective 5.3.16 com-
plexes include lifting statements, but 5.4.9 does not. As far as it is possible, 5.5.3
makes up for this.

5.4.10 Corollary. Every semi-projective 𝑅-complex is semi-flat; in particular, every
semi-free 𝑅-complex is semi-flat.

Proof. The assertion follows immediately from 5.3.17 and 5.2.9. □

It is proved in the next section, in 5.5.27 to be exact, that a semi-flat complex of
projective modules is semi-projective.

5.4.11 Corollary. A graded 𝑅-module is graded-flat if and only if it is semi-flat as
an 𝑅-complex.
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Proof. If 𝐹 is semi-flat as an 𝑅-complex, then each module 𝐹𝑣 is flat by 5.4.9,
whence 𝐹 is graded-flat. If 𝐹 is graded-flat, then the character module Hom𝕜 (𝐹,𝔼)
is graded-injective by 5.4.1 and hence semi-injective as an 𝑅o-complex; see 5.3.18.
As an 𝑅-complex, 𝐹 is then semi-flat. □

Properties of Semi-Flat Complexes

The class of semi-flat complexes over a ring is closed under extensions, kernels of
surjective morphisms, direct summands, and filtered colimits. Semi-flatness is also
preserved under base change.

5.4.12 Proposition. Let 0 → 𝐹′ → 𝐹 → 𝐹′′ → 0 be an exact sequence of
𝑅-complexes. If 𝐹′′ is semi-flat, then 𝐹 is semi-flat if and only if 𝐹′ is semi-flat.

Proof. Apply 5.4.9 and 5.3.20 to the exact sequence of 𝑅o-complexes

0 −→ Hom𝕜 (𝐹′′,𝔼) −→ Hom𝕜 (𝐹,𝔼) −→ Hom𝕜 (𝐹′,𝔼) −→ 0 . □

5.4.13 Proposition. Let {𝜇𝑣𝑢 : 𝐹𝑢 → 𝐹𝑣}𝑢⩽𝑣 be a 𝑈-direct system of semi-flat 𝑅-
complexes. If𝑈 is filtered, then colim𝑢∈𝑈 𝐹𝑢 is semi-flat.

Proof. Let 𝛽 : 𝐾 → 𝑀 be an injective quasi-isomorphism in C(𝑅o). There is a
commutative diagram in C(𝕜),

colim
𝑢∈𝑈

(𝐾 ⊗𝑅 𝐹𝑢)
colim𝑢∈𝑈 (𝛽⊗𝐹𝑢 )

//

�

��

colim
𝑢∈𝑈

(𝑀 ⊗𝑅 𝐹𝑢)

�

��

𝐾 ⊗𝑅
(
colim
𝑢∈𝑈

𝐹𝑢
) 𝛽⊗ (colim𝑢∈𝑈 𝐹𝑢 )

// 𝑀 ⊗𝑅
(
colim
𝑢∈𝑈

𝐹𝑢
)
,

where the vertical maps are the canonical isomorphisms (3.2.23.1). In view of 3.3.10
and 3.3.15(d) it follows that 𝛽 ⊗𝑅 (colim 𝐹𝑢) is an injective quasi-isomorphism if
each map 𝛽 ⊗𝑅 𝐹𝑢 is an injective quasi-isomorphism. □

Direct sums and direct summands of semi-flat complexes are semi-flat, and so
are coproducts of semi-flat complexes.

5.4.14 Corollary. Let {𝐹𝑢}𝑢∈𝑈 be a family of 𝑅-complexes. The coproduct
∐
𝑢∈𝑈 𝐹

𝑢

is semi-flat if and only if each complex 𝐹𝑢 is semi-flat.

Proof. It is immediate from 3.3.9 and 5.4.13 that a coproduct of semi-flat complexes
is semi-flat, and it is evident from the definition that a direct summand of a semi-flat
complex is semi-flat. □

Contrary to the situation for semi-projective and semi-injective complexes, a
quasi-isomorphism of semi-flat 𝑅-complexes need not be a homotopy equivalence.
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5.4.15 Example. It follows from 1.3.11, 1.3.12, and 5.1.18 that the ℤ-module ℚ

has a free resolution 𝜋 : 𝐿 ≃−−→ ℚ with 𝐿𝑣 = 0 for 𝑣 ≠ 0, 1. Both ℤ-complexes ℚ and
𝐿 are semi-flat. Suppose 𝛾 : ℚ→ 𝐿 were a homotopy inverse of 𝜋, then one would
have 1ℚ ∼ 𝜋𝛾, and hence 1ℚ = 𝜋𝛾 as 𝜕ℚ = 0. This would imply that ℚ is a direct
summand of 𝐿0 and hence a free ℤ-module, but it is not.

Quasi-isomorphisms between semi-flat complexes still exhibit some robustness;
two important instances are captured by the next proposition and 5.5.23.

5.4.16 Theorem. Let 𝛼 : 𝐹 → 𝐹′ be a quasi-isomorphism of semi-flat 𝑅-complexes.
For every 𝑅o-complex 𝑀 , the morphism 𝑀 ⊗𝑅 𝛼 is a quasi-isomorphism.

Proof. By 5.3.16 and 5.4.9 the morphism Hom𝕜 (𝛼,𝔼) is a quasi-isomorphism of
semi-injective 𝑅o-complexes and hence a homotopy equivalence by 5.3.24. There-
fore, the upper horizontal map in the following commutative diagram is also a
homotopy equivalence; see 4.3.19.

Hom𝑅o (𝑀,Hom𝕜 (𝐹′,𝔼))
Hom (𝑀,Hom (𝛼,𝔼) )

≊
// Hom𝑅o (𝑀,Hom𝕜 (𝐹,𝔼))

Hom𝕜 (𝐹′ ⊗𝑅o 𝑀,𝔼)
𝜌𝑀𝐹

′𝔼 �

OO

Hom (𝜐𝑀𝐹′ ,𝔼) �
��

Hom𝕜 (𝐹 ⊗𝑅o 𝑀,𝔼)

𝜌𝑀𝐹𝔼�

OO

Hom (𝜐𝑀𝐹 ,𝔼)�
��

Hom𝕜 (𝑀 ⊗𝑅 𝐹′,𝔼)
Hom (𝑀⊗𝛼,𝔼)

// Hom𝕜 (𝑀 ⊗𝑅 𝐹,𝔼)

The diagram shows that Hom𝕜 (𝑀 ⊗𝑅 𝛼,𝔼) is a quasi-isomorphism, and by faithful
injectivity of 𝔼 it follows that 𝑀 ⊗𝑅 𝛼 is a quasi-isomorphism; cf. 4.2.14. □

5.4.17 Proposition. Let 𝐹 be an 𝑆-complex and 𝑋 a complex of 𝑅–𝑆o-bimodules. If
𝐹 is semi-flat and 𝑋 is semi-flat over 𝑅, then the 𝑅-complex 𝑋 ⊗𝑆 𝐹 is semi-flat.

Proof. Associativity 4.4.7 yields a natural isomorphism,

⊗𝑅 (𝑋 ⊗𝑆 𝐹) � ( ⊗𝑅 𝑋) ⊗𝑆 𝐹 ,

of functors from C(𝑅o) to C(𝕜). By the assumptions on 𝐹 and 𝑋 , the functor
( ⊗𝑅 𝑋) ⊗𝑆 𝐹 is exact and preserves quasi-isomorphisms. □

5.4.18 Corollary. Let 𝑅 → 𝑆 be a ring homomorphism and 𝐹 an 𝑅-complex.
(a) If 𝐹 is semi-flat, then the 𝑆-complex 𝑆 ⊗𝑅 𝐹 is semi-flat.
(b) If 𝑆 is flat as an 𝑅-module, then a semi-flat 𝑆-complex is semi-flat over 𝑅 .

Proof. For (b) apply 5.4.17 with 𝑋 = 𝑆 viewed as an 𝑅–𝑆o-bimodule and note that
𝑋 ⊗𝑆 is the restriction of scalars functor C(𝑆) → C(𝑅). For (a) interchange the
roles of 𝑅 and 𝑆 in 5.4.17 and apply it with 𝑋 = 𝑆 viewed as an 𝑆–𝑅o-bimodule. □

Remark. Under additional assumptions on 𝑅, 𝑆, and 𝐹, semi-flatness of the base changed complex
𝑆 ⊗𝑅 𝐹 implies semi-flatness of 𝐹; see E 5.4.4.
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The Case of Modules

Part (iii) in the next result recovers the characterization of flat modules in terms of
character modules from 1.3.48. Further, a module is by 5.4.11 flat if and only if it is
semi-flat as a complex, and parallel results, 5.1.2 and 5.2.12, hold for (semi-)freeness
and (semi-)projectivity. It follows that 5.4.10 packs the fact from 1.3.43 that free and
projective modules are flat.

5.4.19 Proposition. For an 𝑅-module 𝐹, the following conditions are equivalent.
(i) 𝐹 is flat.
(ii) For every exact sequence 0 → 𝑀 ′ → 𝑀 → 𝐹 → 0 of 𝑅-modules, the exact

sequence 0→ Hom𝕜 (𝐹,𝔼) → Hom𝕜 (𝑀,𝔼) → Hom𝕜 (𝑀 ′,𝔼) → 0 is split.
(iii) The character module Hom𝕜 (𝐹,𝔼) is an injective 𝑅o-module.

Proof. Specialize 5.4.1 to modules. □

5.4.20 Corollary. Let 0→ 𝐹′ → 𝐹 → 𝐹′′ → 0 be an exact sequence of 𝑅-modules.
If 𝐹′′ is flat, then 𝐹′ is flat if and only if 𝐹 is flat.

Proof. Specialize 5.4.2 to modules. □

5.4.21 Proposition. Let {𝜇𝑣𝑢 : 𝐹𝑢 → 𝐹𝑣}𝑢⩽𝑣 be a𝑈-direct system of flat 𝑅-modules.
If𝑈 is filtered, then colim𝑢∈𝑈 𝐹𝑢 is flat.

Proof. The asssertion follows, in view of 5.4.11, immediately from 5.4.13. □

Remark. In contrast to 5.4.21, Bergman [39] shows that every module is a filtered limit of injective
modules.

5.4.22 Proposition. Let {𝐹𝑢}𝑢∈𝑈 be a family of 𝑅-modules. The coproduct
∐
𝑢∈𝑈𝐹

𝑢

is flat if and only if each module 𝐹𝑢 is flat.

Proof. The asssertion follows, in view of 5.4.11, immediately from 5.4.14. □

5.4.23 Proposition. Let 𝐹 be an 𝑆-module and 𝑋 an 𝑅–𝑆o-bimodule. If 𝐹 is flat and
𝑋 is flat over 𝑅, then the 𝑅-module 𝑋 ⊗𝑆 𝐹 is flat.

Proof. The assertion follows, in view of 5.4.11, immediately from 5.4.17. □

The next result follows from 5.4.23 but is more easily recovered from 5.4.18.

5.4.24 Corollary. Let 𝑅 → 𝑆 be a ring homomorphism and 𝐹 an 𝑅-module.
(a) If 𝐹 is flat, then the 𝑆-module 𝑆 ⊗𝑅 𝐹 is flat.
(b) If 𝑆 is flat as an 𝑅-module, then a flat 𝑆-module is flat over 𝑅 .

Proof. The assertion follows, in view of 5.4.11, immediately from 5.4.18. □

There is a classic notion of flat resolutions of modules; the treatment of this notion
and its relation to semi-flat complexes is for technical reasons postponed to Sect. 8.3.
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Semi-Injectivity Revisited

5.4.25 Proposition. Let 𝐼 be an 𝑅-complex and 𝑋 a complex of 𝑅–𝑆o-bimodules.
If 𝐼 is semi-injective and 𝑋 is semi-flat over 𝑆o, then the 𝑆-complex Hom𝑅 (𝑋, 𝐼) is
semi-injective.

Proof. Adjunction 4.4.12 yields a natural isomorphism

Hom𝑆 ( ,Hom𝑅 (𝑋, 𝐼)) � Hom𝑅 (𝑋 ⊗𝑆 , 𝐼)

of functors from C(𝑆)op to C(𝕜). It follows from the assumptions on 𝐼 and 𝑋 that the
functor Hom𝑅 (𝑋 ⊗𝑆 , 𝐼) is exact and preserves quasi-isomorphisms. □

5.4.26 Corollary. Let 𝑅 → 𝑆 be a ring homomorphism and 𝐼 an 𝑅-complex.
(a) If 𝐼 is semi-injective, then the 𝑆-complex Hom𝑅 (𝑆, 𝐼) is semi-injective.
(b) If 𝑆 is flat as an 𝑅o-module, then a semi-injective 𝑆-complex is semi-injective

over 𝑅 .

Proof. For (a) apply 5.4.25 with 𝑋 = 𝑆 viewed as an 𝑅–𝑆o-bimodule. For (b)
interchange the roles of 𝑅 and 𝑆 in 5.4.25 and apply it with 𝑋 = 𝑆 viewed as an 𝑆–𝑅o-
bimodule; now Hom𝑆 (𝑋, ) is the restriction of scalars functor C(𝑆) → C(𝑅). □

Injective Modules Revisited

5.4.27 Proposition. Let 𝐼 be an 𝑅-module and 𝑋 an 𝑅–𝑆o-bimodule. If 𝐼 is injective
and 𝑋 is flat over 𝑆o, then the 𝑆-module Hom𝑅 (𝑋, 𝐼) is injective.

Proof. The assertion follows, per 5.3.18 and 5.4.11, immediately from 5.4.25. □

The next result follows from 5.4.27 but is more easily recovered from 5.4.26.

5.4.28 Corollary. Let 𝑅 → 𝑆 be a ring homomorphism and 𝐼 an 𝑅-module.
(a) If 𝐼 is injective, then the 𝑆-module Hom𝑅 (𝑆, 𝐼) is injective.
(b) If 𝑆 is flat as an 𝑅o-module, then an injective 𝑆-module is injective over 𝑅 .

Proof. The assertion follows per 5.3.18 immediately from 5.4.26. □

Exercises

E 5.4.1 Show that a graded 𝑅-module is graded-flat if and only if it is flat as an 𝑅-module.
E 5.4.2 Show that the Dold complex from 2.1.23 is not semi-flat.
E 5.4.3 Show that a complex of flat modules over a right hereditary ring is semi-flat.
E 5.4.4 Assume that 𝑅 is commutative and 𝑆 an 𝑅-algebra that is faithfully flat as an 𝑅-module.

Show that an 𝑅-complex𝐹 is semi-flat if (and only if) the 𝑆-complex 𝑆 ⊗𝑅 𝐹 is semi-flat.
E 5.4.5 Show that a complex 𝐹 of flat 𝑅-modules is semi-flat if 𝐴⊗𝑅 𝐹 is acyclic for every

acyclic 𝑅o-complex 𝐴 that is bounded below.
E 5.4.6 Show that the mapping cone of a morphism between semi-flat 𝑅-complexes is semi-flat.
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E 5.4.7 Let 𝐹′′ be a complex of flat 𝑅-modules and 0→ 𝐹′ → 𝐹 → 𝐹′′ → 0 an exact sequence
of 𝑅-complexes. Show that if two of the complexes 𝐹′, 𝐹, and 𝐹′′ are semi-flat, then so
is the third.

E 5.4.8 Show that the following conditions are equivalent for an 𝑅-complex 𝐹. (i) 𝐹 is semi-flat.
(ii) The complex 𝐹ď𝑛 is semi-flat for every 𝑛 ∈ ℤ. (iii) 𝐹 is a complex of flat 𝑅-modules
and 𝐹ď𝑛 is semi-flat for some 𝑛 ∈ ℤ.

E 5.4.9 Use E 5.3.4 to give a shorter proof of 5.4.16.
E 5.4.10 Let 𝑃 be a bounded complex of finitely generated projective 𝑅-modules and 𝐹 a com-

plex of 𝑅–𝑆o-bimodules. Show that if 𝐹 is a semi-flat over 𝑆o, then the 𝑆o-complex
Hom𝑅 (𝑃, 𝐹 ) is semi-flat.

E 5.4.11 Let 𝑃 be a bounded above complex of finitely generated projective 𝑅-modules and
𝐹 a bounded below complex of 𝑅–𝑆o-bimodules that are flat over 𝑆o. Show that the
𝑆o-complex Hom𝑅 (𝑃, 𝐹 ) is semi-flat.

E 5.4.12 Let 𝑃 be a bounded above complex of projective 𝑅-modules and 𝐹 a bounded below
complex of 𝑅–𝑆o-bimodules that are flat over 𝑆o. Show that if 𝑆 is left coherent, then
the 𝑆o-complex Hom𝑅 (𝑃, 𝐹 ) is semi-flat. Hint: E 3.3.4.

E 5.4.13 Let 𝐽 be a bounded below complex of injective 𝑅-modules and 𝐼 a bounded above
complex of 𝑅–𝑆o-bimodules that are injective over 𝑆o. Show that if 𝑆 is right coherent,
then the 𝑆-complex Hom𝑅 (𝐼, 𝐽 ) is semi-flat. Hint: E 3.3.3.

E 5.4.14 Show that the following conditions are equivalent for an 𝑅-complex 𝑍 . (i) For every
quasi-isomorphism 𝛽 in C(𝑅o) the induced morphism 𝛽 ⊗𝑅 𝑍 is a quasi-isomorphism.
(ii) For every acyclic 𝑅o-complex 𝐴, the complex 𝐴⊗𝑅 𝑍 is acyclic.

A complex with these properties is called K-flat; Avramov, Foxby, and Halperin [25]
use the term homotopically flat.

E 5.4.15 Let 𝐾 be an acyclic K-flat 𝑅-complex. Show that 𝑀 ⊗𝑅 𝐾 is acyclic for every 𝑅o-
complex 𝑀.

E 5.4.16 Show that an 𝑅-complex is semi-flat if and only if it is a complex of flat modules and
K-flat. Give an example of a K-flat complex that is not semi-flat.

E 5.4.17 Show that a graded 𝑅-module is graded-flat if and only if it is K-flat as an 𝑅-complex.
E 5.4.18 Consider a homotopy equivalence 𝑀 → 𝑁 of 𝑅-complexes. Show that 𝑀 is K-flat if

and only if 𝑁 is K-flat. Is the same true for semi-flatness?
E 5.4.19 Let 𝛼 : 𝑍 → 𝑍 ′ be a quasi-isomorphism of K-flat 𝑅-complexes. Show that for every

𝑅o-complex 𝑀 the morphism 𝑀 ⊗𝑅 𝛼 is a quasi-isomorphism.
E 5.4.20 Show that an 𝑅-complex 𝑍 is K-flat if and only if the 𝑅o-complex Hom𝕜 (𝑍, 𝔼) is

K-injective.

5.5 Structure of Semi-Flat Complexes

Synopsis. Govorov and Lazard’s theorem; pure exact sequence; pure acyclc complex; categorically
flat complex; perfect ring.

A semi-free complex is semi-projective and a semi-projective complex is semi-flat.
The first theorem of this section “closes the circle” by showing that every semi-flat
complex can be obtained as a filtered colimit of degreewise finitely generated semi-
free complexes. Further, while a semi-projective complex of free modules may not
be semi-free, another result, 5.5.27, clarifies the relation between semi-projectivity
and semi-flatness: A semi-flat complex of projective modules is semi-projective.
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Govorov and Lazard’s Theorem

In the case of modules, see 5.5.7, the next theorem was obtained by Govorov [107]
and Lazard [170]; the version below first appeared in [63].

5.5.1 Theorem. For an 𝑅-complex 𝐹 the following conditions are equivalent.
(i) 𝐹 is semi-flat.
(ii) Every morphism of 𝑅-complexes, 𝜑 : 𝑁 → 𝐹, with 𝑁 bounded and degreewise

finitely presented admits a factorization in C(𝑅),

𝑁

𝜅
��

𝜑
// 𝐹

𝐿 ,

𝜆

??

where 𝐿 is a bounded complex of finitely generated free modules.
(iii) 𝐹 is isomorphic to a filtered colimit of bounded complexes of finitely generated

free 𝑅-modules.

Proof. To see that (ii) implies (iii), let Λ be the class of bounded complexes of
finitely generated free 𝑅-modules and apply 3.3.24. The implication (iii)⇒ (i) is
immediate by 5.4.13, which leaves us to prove that (i) implies (ii).

By 2.5.31 there is an exact sequence 𝐿′′ 𝜓′′−−→ 𝐿′
𝜓′−−→ 𝑁 −−→ 0 of 𝑅-complexes

where 𝐿′ and 𝐿′′ are bounded complexes of finitely generated free modules. Consider
the exact sequence of 𝑅o-complexes,

(★) 0 −→ 𝐾
𝜄−−−→ Hom𝑅 (𝐿′, 𝑅)

Hom (𝜓′′ ,𝑅)−−−−−−−−−−→ Hom𝑅 (𝐿′′, 𝑅) ,

where 𝐾 is the kernel of Hom𝑅 (𝜓′′, 𝑅) and 𝜄 is the embedding. The functor Z0 is
by 2.2.16 left exact, so since 𝐹 is a complex of flat 𝑅-modules, it follows from 5.4.1
that the functor Z0 ( ⊗𝑅 𝐹) leaves the sequence (★) exact. As 𝐿′ is bounded, so is
𝐾; set 𝑢 = inf 𝐾♮. By 5.1.7 there is an exact sequence,

(⋄) 𝑃
𝜋−−−→ 𝐾 −→ 0 ,

where 𝜋 is a quasi-isomorphism and 𝑃 is a semi-free 𝑅o-complex with 𝑃𝑣 = 0 for
all 𝑣 < 𝑢. As 𝐹 is semi-flat, 𝜋 ⊗𝑅 𝐹 is a surjective quasi-isomorphism by 5.4.9, and
it follows from 4.2.7 that the functor Z0 ( ⊗𝑅 𝐹) leaves the sequence (⋄) exact. In
total, there is an exact sequence,

Z0 (𝑃 ⊗𝑅 𝐹)
𝜄 𝜋⊗𝐹−−−→ Z0 (Hom𝑅 (𝐿′, 𝑅) ⊗𝑅 𝐹)

Hom (𝜓′′,𝑅) ⊗𝐹−−−−−−−−−−−→ Z0 (Hom𝑅 (𝐿′′, 𝑅) ⊗𝑅 𝐹) .

For every 𝑅-complex 𝑀 , denote by 𝜉𝑀 the composite morphism

Hom𝑅 (𝑀, 𝑅) ⊗𝑅 𝐹
𝜃𝑀𝑅𝐹−−−−−→ Hom𝑅 (𝑀, 𝑅 ⊗𝑅 𝐹)

Hom (𝑀,𝜇𝐹
𝑅
)−−−−−−−−−−→

�
Hom𝑅 (𝑀, 𝐹) ,

where 𝜃𝑀𝑅𝐹 is tensor evaluation 4.5.9 and 𝜇𝐹
𝑅

is the unitor 4.4.1. The morphism 𝜉𝑀

is natural in 𝑀; recall from 4.5.10(3,c) that 𝜃𝑀𝑅𝐹 , and hence 𝜉𝑀 , is an isomorphism
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if 𝑀 is a bounded complex of finitely presented modules. From the exact sequence
above, one now gets another exact sequence,

(♭) Z0 (𝑃 ⊗𝑅 𝐹)
𝜉 𝐿
′◦ ( 𝜄 𝜋⊗𝐹 )−−−−−−−−−−−→ Z0 (Hom𝑅 (𝐿′, 𝐹))

Hom (𝜓′′ ,𝐹 )−−−−−−−−−−→ Z0 (Hom𝑅 (𝐿′′, 𝐹)) .

As 𝜑𝜓′ : 𝐿′ → 𝐹 is a morphism, it is an element in Z0 (Hom𝑅 (𝐿′, 𝐹)); see 2.3.10.
Since one has Hom𝑅 (𝜓′′, 𝐹) (𝜑𝜓′) = 𝜑𝜓′𝜓′′ = 0, exactness of (♭) yields an element
𝑥 in Z0 (𝑃 ⊗𝑅 𝐹) with

(†) (𝜉𝐿′ ◦ (𝜄𝜋 ⊗𝑅 𝐹)) (𝑥) = 𝜑𝜓′ .

The graded module 𝑃♮ has a graded basis 𝐸 , and 𝑥 has the form 𝑥 =
∑𝑛
𝑖=1 𝑒𝑖 ⊗ 𝑓𝑖

with 𝑒𝑖 ∈ 𝐸 and 𝑓𝑖 ∈ 𝐹. Set 𝑤 = max{|𝑒1 |, . . . , |𝑒𝑛 |}; since 𝑃𝑣 = 0 holds for all
𝑣 < 𝑢, each element 𝑒𝑖 satisfies 𝑢 ⩽ |𝑒𝑖 | ⩽ 𝑤. For 𝑣 ∈ ℤ set 𝐸𝑣 = {𝑒 ∈ 𝐸 | |𝑒 | = 𝑣}.
Next we define a bounded subcomplex 𝑃′ of 𝑃 such that each module 𝑃′𝑣 is finitely
generated and free: For 𝑣 ∉ {𝑢, . . . , 𝑤} set 𝑃′𝑣 = 0; for 𝑣 ∈ {𝑢, . . . , 𝑤} the modules
𝑃′𝑣 are constructed recursively. Let 𝑃′𝑤 be the finitely generated free submodule
of 𝑃𝑤 generated by the set 𝐸 ′𝑤 = {𝑒1, . . . , 𝑒𝑛} ∩ 𝐸𝑤. For 𝑣 ⩽ 𝑤 assume that a
free submodule 𝑃′𝑣 of 𝑃𝑣 with finite basis 𝐸 ′𝑣 has been constructed. As the subset
𝐵′
𝑣−1 = {𝜕𝑃 (𝑒) | 𝑒 ∈ 𝐸 ′𝑣 } of 𝑃𝑣−1 is finite, there is a finite subset 𝐺′

𝑣−1 of 𝐸𝑣−1 with
𝐵′
𝑣−1 ⊆ 𝑅

o⟨𝐺′
𝑣−1 ⟩. Now let 𝑃′

𝑣−1 be the submodule of 𝑃𝑣−1 generated by the finite
set

𝐸 ′𝑣−1 = 𝐺′𝑣−1 ∪ ({𝑒1, . . . , 𝑒𝑛} ∩ 𝐸𝑣−1) .
By construction, 𝜕𝑃 (𝑃′𝑣) ⊆ 𝑃′𝑣−1 holds for all 𝑣 ∈ ℤ, so 𝑃′ is a subcomplex of 𝑃.
Note that 𝑥 = ∑𝑛

𝑖=1 𝑒𝑖 ⊗ 𝑓𝑖 belongs to 𝑃′ ⊗𝑅 𝐹. As 𝐹 consists of flat modules, 𝑃′ ⊗𝑅 𝐹
is a subcomplex of 𝑃 ⊗𝑅 𝐹; since 𝑥 is in Z0 (𝑃 ⊗𝑅 𝐹), it is also in Z0 (𝑃′ ⊗𝑅 𝐹).

Set 𝐿 = Hom𝑅o (𝑃′, 𝑅). As 𝑃′ is a bounded complex of finitely generated free
𝑅o-modules, 𝐿 is a bounded complex of finitely generated free 𝑅-modules. Let
𝜀 : 𝑃′ ↣ 𝑃 be the embedding and 𝜅′ : 𝐿′ → 𝐿 the composite morphism

𝐿′
𝛿𝐿
′
𝑅−−−→ Hom𝑅o (Hom𝑅 (𝐿′, 𝑅), 𝑅)

Hom ( 𝜄 𝜋 𝜀,𝑅)−−−−−−−−−−−→ Hom𝑅o (𝑃′, 𝑅) = 𝐿 .

In the commutative diagram

𝑃′

𝛿𝑃
′

𝑅
�

��

𝜄 𝜋 𝜀
// Hom𝑅 (𝐿′, 𝑅)

𝛿
Hom (𝐿′ ,𝑅)
𝑅

�

��

Hom𝑅 (Hom𝑅o (𝑃′, 𝑅), 𝑅) Hom (Hom ( 𝜄 𝜋 𝜀,𝑅) ,𝑅)
// Hom𝑅 (Hom𝑅o (Hom𝑅 (𝐿′, 𝑅), 𝑅), 𝑅)

the vertical morphisms are isomorphisms by 4.5.4. The zigzag identities related to
the adjunction 4.5.7 yield the equality,

Hom𝑅 (𝛿𝐿
′
𝑅 , 𝑅) 𝛿

Hom𝑅 (𝐿′ ,𝑅)
𝑅

= 1Hom𝑅 (𝐿′ ,𝑅) ,

so Hom𝑅 (𝛿𝐿
′
𝑅
, 𝑅) is the inverse of 𝛿Hom𝑅 (𝐿′ ,𝑅)

𝑅
. One now gets

(‡) Hom𝑅 (𝜅′, 𝑅)𝛿𝑃
′

𝑅 = 𝜄𝜋𝜀 .

It follows that there are equalities,
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Hom𝑅 (𝜅′𝜓′′, 𝑅)𝛿𝑃
′

𝑅 = Hom𝑅 (𝜓′′, 𝑅)𝜄𝜋𝜀 = 0𝜋𝜀 = 0 ,

and since 𝛿𝑃′
𝑅

is an isomorphism, the morphism Hom𝑅 (𝜅′𝜓′′, 𝑅) is zero. In particular,
Hom𝑅o (Hom𝑅 (𝜅′𝜓′′, 𝑅), 𝑅) is zero, and hence the commutative diagram

𝐿′′

𝛿𝐿
′′
𝑅

�

��

𝜅 ′𝜓′′
// 𝐿

𝛿𝐿
𝑅

�

��

Hom𝑅o (Hom𝑅 (𝐿′′, 𝑅), 𝑅)
Hom (Hom (𝜅 ′𝜓′′ ,𝑅) ,𝑅)

// Hom𝑅o (Hom𝑅 (𝐿, 𝑅), 𝑅)

shows that one has 𝜅′𝜓′′ = 0. Again the vertical morphisms are isomorphisms by
4.5.4. Since 𝜅′ is zero on Im𝜓′′ = Ker𝜓′ there is a unique morphism 𝜅 : 𝑁 → 𝐿

with 𝜅𝜓′ = 𝜅′. Finally, consider the diagram,

(||)
𝑃′ ⊗𝑅 𝐹

𝜀⊗𝐹
��

𝛿𝑃
′

𝑅
⊗𝐹
// Hom𝑅 (𝐿, 𝑅) ⊗𝑅 𝐹

Hom (𝜅 ′ ,𝑅) ⊗𝐹
��

𝜉 𝐿
// Hom𝑅 (𝐿, 𝐹)

Hom𝑅 (𝜅 ′ ,𝐹 )
��

𝑃 ⊗𝑅 𝐹
𝜄 𝜋⊗𝐹

// Hom𝑅 (𝐿′, 𝑅) ⊗𝑅 𝐹
𝜉 𝐿
′
// Hom𝑅 (𝐿′, 𝐹) ,

where the left-hand square is commutative by (‡) and the right-hand square is
commutative by naturalness of 𝜉. Set

𝜆 = (𝜉𝐿 ◦ (𝛿𝑃′𝑅 ⊗ 𝐹)) (𝑥) ;

it is an element in Hom𝑅 (𝐿, 𝐹), and since 𝑥 belongs to Z0 (𝑃′ ⊗𝑅 𝐹), also 𝜆 is a
cycle; that is, 𝜆 is a morphism. From (||), from the definition of 𝜆, and from (†) one
gets 𝜆𝜅′ = 𝜑𝜓′. The identity 𝜅′ = 𝜅𝜓′ and surjectivity of 𝜓′ now yield 𝜆𝜅 = 𝜑. □

5.5.2 Corollary. Let 𝐹 be an 𝑅-complex. If every morphism 𝑁 → 𝐹 with 𝑁 bounded
and degreewise finitely presented factors through a semi-flat 𝑅-complex, then 𝐹 is
semi-flat.

Proof. Let 𝑁 be a bounded and degreewise finitely presented 𝑅-complex. By 5.5.1
a morphism 𝑁 → 𝐹 that factors through a semi-flat complex has a further factor-
ization through af bounded complex of finitely generated free modules. The desired
conclusion now follows from another application of 5.5.1. □

The next result characterizes semi-flat complexes by a lifting property akin to
5.2.10(v) for semi-projective complexes.

5.5.3 Corollary. For an 𝑅-complex 𝐹 the following conditions are equivalent.
(i) 𝐹 is semi-flat.
(ii) For every morphism 𝜑 : 𝑁 → 𝐹 with 𝑁 bounded and degreewise finitely pre-

sented and for every surjective quasi-isomorphism 𝛼 : 𝑀 → 𝐹 there is a mor-
phism 𝛽 : 𝑁 → 𝑀 with 𝜑 = 𝛼𝛽.

Proof. (i)⇒ (ii): It follows from 5.5.1 that there is a bounded complex 𝐿 of finitely
generated free 𝑅-modules and morphisms 𝜅 : 𝑁 → 𝐿 and 𝜆 : 𝐿 → 𝐹 with 𝜑 = 𝜆𝜅.
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As 𝐿 is semi-projective, see 5.2.8, there exists by 5.2.10 a morphism 𝛾 : 𝐿 → 𝑀

with 𝜆 = 𝛼𝛾, so with 𝛽 = 𝛾𝜅 one has 𝜑 = 𝛼𝛽.
(ii)⇒ (i): Let 𝛼 : 𝑃 ≃−−→ 𝐹 be a surjective semi-projective resolution; see 5.2.14.

For every morphism 𝜑 : 𝑁 → 𝐹 with 𝑁 bounded and degreewise finitely presented,
there exists by (ii) a morphism 𝛽 : 𝑁 → 𝑃 with 𝜑 = 𝛼𝛽. As 𝑃 is semi-flat, see 5.4.10,
it follows from 5.5.2 that 𝐹 is semi-flat. □

The Case of Graded Modules

5.5.4 Theorem. For a graded 𝑅-module 𝐹 the following conditions are equivalent.
(i) 𝐹 is graded-flat.
(ii) Every morphism of graded 𝑅-modules, 𝜑 : 𝑁 → 𝐹, with 𝑁 bounded and de-

greewise finitely presented admits a factorization in Mgr (𝑅),

𝑁

𝜅
��

𝜑
// 𝐹

𝐿 ,

𝜆

??

where 𝐿 is a bounded and degreewise finitely generated graded-free module.
(iii) 𝐹 is isomorphic to a filtered colimit of bounded and degreewise finitely gen-

erated graded-free 𝑅-modules.

Proof. (i)⇒ (ii): By 5.4.11 a graded-flat 𝑅-module is semi-flat as an 𝑅-complex.
Thus, it follows from 5.5.1 that 𝜑 factors in C(𝑅) as 𝑁 → 𝐿 → 𝐹, where 𝐿 is a
bounded complex of finitely generated free 𝑅-modules. Now 𝑁 → 𝐿♮ → 𝐹 is the
desired factorization in Mgr (𝑅).

(ii)⇒ (iii): Let Λ be the class of bounded and degreewise finitely generated
graded-free 𝑅-modules. By 3.2.7 it suffices to show that 𝐹 is isomorphic to a filtered
colimit in C(𝑅) of objects from Λ. To apply 3.3.24, it must be argued that every
morphism 𝑁 → 𝐹, where 𝑁 is a bounded and degreewise finitely presented 𝑅-
complex, admits a factorization in C(𝑅) through an object from Λ. Since 𝐹 is a
graded 𝑅-module, every morphism 𝑁 → 𝐹 in C(𝑅) factors through the morphism
𝑁 → C(𝑁). The graded module C(𝑁) is bounded, and by 1.3.40 it is degreewise
finitely presented, so every morphism C(𝑁) → 𝐹 factors by assumption through an
object in Λ.

(iii)⇒ (i): A graded-free 𝑅-module is graded-flat by 2.5.27 and 1.3.43. A filtered
colimit of graded-flat modules is graded-flat by 5.4.11, 5.4.13, and 3.2.7. □

5.5.5 Corollary. Let 𝐹 be a graded 𝑅-module. If every morphism of graded 𝑅-
modules 𝑁 → 𝐹, with 𝑁 bounded and degreewise finitely presented, factors through
a graded-flat 𝑅-module, then 𝐹 is graded-flat.

Proof. Let 𝑁 be a bounded and degreewise finitely presented 𝑅-module. By 5.5.4 a
morphism 𝑁 → 𝐹 that factors through a graded-flat module has a further factoriza-
tion through af bounded and degreewise finitely generated graded-free 𝑅-module.
The desired conclusion now follows from another application of 5.5.4. □
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The next result characterizes graded-flat modules by a lifting property akin to
5.2.2(iii) for graded-projective modules.

5.5.6 Corollary. For a graded 𝑅-module 𝐹 the following conditions are equivalent.
(i) 𝐹 is graded-flat.
(ii) For every morphism 𝜑 : 𝑁 → 𝐹 of graded 𝑅-modules with 𝑁 bounded and

degreewise finitely presented and for every surjective morphism 𝛼 : 𝑀 → 𝐹

of graded 𝑅-modules there is a morphism 𝛽 : 𝑁 → 𝑀 with 𝜑 = 𝛼𝛽.

Proof. The implication (i)⇒ (ii) is immediate from 5.5.3.
(ii)⇒ (i): Let 𝛼 : 𝐿 → 𝐹 be a surjective morphism with 𝐿 graded-free; see 2.5.28.

For every morphism 𝜑 : 𝑁 → 𝐹 with 𝑁 bounded and degreewise finitely presented,
there is by (ii) a morphism 𝛽 : 𝑁 → 𝐿 with 𝜑 = 𝛼𝛽. As 𝐿 is graded-flat, see 2.5.27
and 1.3.43, it follows from 5.5.5 that 𝐹 is graded-flat. □

The Case of Modules

5.5.7 Theorem. For an 𝑅-module 𝐹 the following conditions are equivalent.
(i) 𝐹 is flat.
(ii) Every homomorphism of 𝑅-modules 𝜑 : 𝑁 → 𝐹 with 𝑁 finitely presented ad-

mits a factorization in M(𝑅),

𝑁

𝜅
��

𝜑
// 𝐹

𝐿 ,

𝜆

??

where 𝐿 is a finitely generated free module.
(iii) 𝐹 is isomorphic to a filtered colimit of finitely generated free 𝑅-modules.

Proof. The equivalence of (i)–(iii) is immediate from 5.5.4 in view of 3.2.7. □

5.5.8 Corollary. Let 𝐹 be an 𝑅-module. If every homomorphism 𝑁 → 𝐹 with 𝑁
finitely presented factors through a flat 𝑅-module, then 𝐹 is flat.

Proof. This is a special case of 5.5.5; of course, it also follows from 5.5.7 the way
5.5.5 follows from 5.5.4. □

The standard characterizations of projective and injective modules include lifting
properties; we can now finally provides such a characterization of flat modules.

5.5.9 Corollary. For an 𝑅-module 𝐹 the following conditions are equivalent.
(i) 𝐹 is flat.
(ii) For every homomorphism 𝜑 : 𝑁 → 𝐹 of 𝑅-modules with 𝑁 finitely presented

and for every surjective homomorphism 𝛼 : 𝑀 → 𝐹 there is a homomorphism
𝛽 : 𝑁 → 𝑀 with 𝜑 = 𝛼𝛽.
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Proof. This is a special case of 5.5.6; of course, it also follows from 5.5.7 the way
5.5.6 follows from 5.5.4. □

5.5.10. Govorov and Lazard’s theorem 5.5.7 yields a short proof of 1.3.47. Indeed,
if 𝐹 is a finitely presented and flat 𝑅-module, then the identity 1𝐹 factors through a
finitely generated free 𝑅-module 𝐿, whence 𝐹 is a direct summand of 𝐿.

Purity

5.5.11 Definition. An exact sequence 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 of 𝑅-modules is
called pure if for every finitely presented 𝑅-module 𝑁 the induced sequence,

0 −→ Hom𝑅 (𝑁, 𝑀 ′) −→ Hom𝑅 (𝑁, 𝑀) −→ Hom𝑅 (𝑁, 𝑀 ′′) −→ 0 ,

is exact.

5.5.12 Example. A split exact sequence of 𝑅-modules, 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0,
is by 2.3.12 pure exact.

The next result is known as the Homotopy Lemma.

5.5.13 Lemma. Consider a commutative diagram in M(𝑅) with exact rows,

𝑀 ′

𝜑′

��

𝛼′
// 𝑀

𝜑

��

𝛼
// 𝑀 ′′

𝜑′′

��

// 0

0 // 𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′ .

The following conditions are equivalent.
(i) There exists a homomorphism 𝜎 : 𝑀 ′′ → 𝑁 with 𝛽𝜎 = 𝜑′′.
(ii) There exists a homomorphism 𝜚 : 𝑀 → 𝑁 ′ with 𝜚𝛼′ = 𝜑′.

Proof. (i)⇒ (ii): Apply the functor Hom𝑅 (𝑀, ) to the lower row in the diagram
to get an exact sequence

0 −→ Hom𝑅 (𝑀, 𝑁 ′)
Hom (𝑀,𝛽′ )−−−−−−−−−−→ Hom𝑅 (𝑀, 𝑁)

Hom (𝑀,𝛽)−−−−−−−−−→ Hom𝑅 (𝑀, 𝑁 ′′) .

If 𝛽𝜎 = 𝜑′′ holds, then one has 𝛽(𝜑 − 𝜎𝛼) = 𝛽𝜑 − 𝜑′′𝛼 = 0, so there is a
homomorphism 𝜚 : 𝑀 → 𝑁 ′ with 𝛽′𝜚 = 𝜑 − 𝜎𝛼. Consequently, one has 𝛽′𝜚𝛼′ =
(𝜑 − 𝜎𝛼)𝛼′ = 𝜑𝛼′ = 𝛽′𝜑′, and hence 𝜚𝛼′ = 𝜑′, as 𝛽′ is injective.

(ii)⇒ (i): Apply Hom𝑅 ( , 𝑁) to the upper row and proceed as above. □

5.5.14 Theorem. For an exact sequence of 𝑅-modules,

η = 0 −→ 𝑀 ′
𝛼′−−−→ 𝑀

𝛼−−−→ 𝑀 ′′ −→ 0 ,

the following conditions are equivalent.
(i) The sequence η is pure.
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(ii) The sequence 𝐾 ⊗𝑅 η is exact for every 𝑅o-module 𝐾 .
(iii) The sequence Hom𝕜 (η, 𝐸) is split exact every injective 𝕜-module 𝐸 .
(iv) The sequence Hom𝕜 (η,𝔼) is split exact.
(v) For every commutative diagram in M(𝑅),

𝐿′

𝜑′

��

𝜘
// 𝐿

𝜑

��

𝑀 ′
𝛼′
// 𝑀 ,

where 𝐿 and 𝐿′ are finitely generated free 𝑅-modules, there is a homomor-
phism 𝜚 : 𝐿 → 𝑀 ′ with 𝜚𝜘 = 𝜑′.

Proof. (i)⇔ (ii): It follows from 3.3.22, 3.2.22, and 3.3.10 that 𝐾 ⊗𝑅 η is exact for
every 𝑅o-module 𝐾 if and only if it is exact for every finitely presented 𝑅o-module 𝐾 .
For every 𝑚 × 𝑛 matrix 𝛼 with entries in 𝑅, a finitely presented 𝑅-module 𝑁𝛼 and a
finitely presented 𝑅o-module 𝐾𝛼 are defined by the exact sequences

ν𝛼 = 𝑅𝑚
·𝛼−−−→ 𝑅𝑛 −→ 𝑁𝛼 −→ 0 and κ𝛼 = 𝑅𝑛

𝛼·−−−→ 𝑅𝑚 −→ 𝐾𝛼 −→ 0 .

Every finitely presented 𝑅-module has the form 𝑁𝛼, and every finitely presented
𝑅o-module has the form 𝐾𝛼. Hence it suffices to prove, for every matrix 𝛼, that
Hom𝑅 (𝑁𝛼, η) is exact if and only if 𝐾𝛼 ⊗𝑅 η is exact. Let 𝑋 be an 𝑅-module; the
sequence Hom𝑅 (ν𝛼, 𝑋) is exact and it is given by

0 −→ Hom𝑅 (𝑁𝛼, 𝑋) −→ Hom𝑅 (𝑅𝑛, 𝑋)
Hom ( ·𝛼,𝑋)−−−−−−−−−→ Hom𝑅 (𝑅𝑚, 𝑋) .

Under the counitor 1.2.2 the homomorphism of 𝕜-modules Hom𝑅 (·𝛼, 𝑋) corre-
sponds to 𝑋𝑛 𝛼·−−→ 𝑋𝑚 as Hom𝑅 (𝑅𝑛, 𝑋) and Hom𝑅 (𝑅𝑚, 𝑋) get their 𝑅-module struc-
tures from the right action on 𝑅. Splicing together the exact sequences Hom𝑅 (ν𝛼, 𝑋)
and κ𝛼 ⊗𝑅 𝑋 , one gets an exact sequence of 𝕜-modules,

0 −→ Hom𝑅 (𝑁𝛼, 𝑋) −→ 𝑋𝑛
𝛼·−−−→ 𝑋𝑚 −→ 𝐾𝛼 ⊗𝑅 𝑋 −→ 0 .

This sequence depends naturally on 𝑋 , so η induces an exact sequence,

0 −→ Hom𝑅 (𝑁𝛼, η) −→ η𝑛 −→ η𝑚 −→ 𝐾𝛼 ⊗𝑅 η −→ 0 ,

of 𝕜-complexes. As η is exact, so are η𝑛 and η𝑚, and it follows that Hom𝑅 (𝑁𝛼, η)
is exact if and only if 𝐾𝛼 ⊗𝑅 η is exact; cf. 2.5.6.

(ii)⇒ (iii): Let 𝐾 be an 𝑅o-module and 𝐸 a 𝕜-module. Adjunction 1.2.6 and
commutativity 1.2.3 yield

(★) Hom𝑅o (𝐾,Hom𝕜 (η, 𝐸)) � Hom𝕜 (𝐾 ⊗𝑅 η, 𝐸) .

Thus, if 𝐸 is injective and the sequence 𝐾 ⊗𝑅 η is exact for every 𝑅o-module 𝐾 , then
Hom𝑅o (𝐾,Hom𝕜 (η, 𝐸)) is exact for every 𝑅o-module 𝐾 , whence the exact sequence
Hom𝑅 (η, 𝐸) of 𝑅o-modules is split.

(iii)⇒ (iv): Evident.
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(iv)⇒ (iii): Let 𝐾 be an 𝑅o-module. If Hom𝕜 (η,𝔼) is split exact, then the se-
quence Hom𝑅o (𝐾,Hom𝕜 (η,𝔼)) is exact, and it follows from (★) and 1.1.45 that
𝐾 ⊗𝑅 η is exact.

(v)⇔ (i): Let 𝑁 be a finitely presented 𝑅-module and consider a presentation

(⋄) 𝐿′
𝜘−−−→ 𝐿

𝜋−−−→ 𝑁 −→ 0

where 𝐿 and 𝐿′ are finitely generated free 𝑅-modules. To show that the sequence
Hom𝑅 (𝑁, η) is exact it suffices to prove that for every homomorphism 𝜑′′ : 𝑁 → 𝑀 ′′

there exists a homomorphism 𝜎 : 𝑁 → 𝑀 with 𝛼𝜎 = 𝜑′′. Given a homomorphism
𝜑′′ : 𝑁 → 𝑀 ′′, the extension property 1.3.6 yields a commutative diagram in M(𝑅),

(♭)
𝐿′

𝜑′

��

𝜘
// 𝐿

𝜑

��

𝜋
// 𝑁

𝜑′′

��

// 0

0 // 𝑀 ′
𝛼′
// 𝑀

𝛼
// 𝑀 ′′ // 0 .

By (v) there is a homomorphism 𝜚 : 𝐿 → 𝑀 ′ with 𝜚𝜘 = 𝜑′, and the existence of the
desired 𝜎 now follows from 5.5.13. Conversely, consider the commutative square
in (iv), define a finitely presented 𝑅-module 𝑁 by exactness of (⋄), and consider
the induced commutative diagram (♭). By (i) there is a homomorphism 𝜎 : 𝑁 → 𝑀

with 𝛼𝜎 = 𝜑′′, so 5.5.13 yields a homomorphism 𝜚 : 𝐿 → 𝑀 ′ with 𝜚𝜘 = 𝜑′, as
desired. □

Remark. The conditions in 5.5.14 are also equivalent to the exact sequence η being isomorphic
to a filtered colimit of split exact sequences; see for example Jensen and Lenzing [150, Chap. 6].

5.5.15 Definition. A surjective homomorphism 𝛼 : 𝑀 → 𝑀 ′′ is called a pure epi-
morphism if the associated exact sequence 0→ Ker𝛼→ 𝑀 → 𝑀 ′′ → 0 is pure. An
injective homomorphism 𝛼 : 𝑀 ′ → 𝑀 is called a pure monomorphism if the exact
sequence 0 → 𝑀 ′ → 𝑀 → Coker𝛼 → 0 is pure. A quotient module 𝑀 ′′ of 𝑀 is
called a pure if the quotient map 𝑀 ↠ 𝑀 ′′ is a pure epimorphism. A submodule
𝑀 ′ of 𝑀 is called pure if the embedding 𝑀 ′ ↣ 𝑀 is a pure monomorphism.

Remark. An 𝑅-module 𝑁 with the property that the sequence Hom𝑅 (𝑁, η ) is exact for every
pure exact sequence η = 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 is called pure-projective. Dually, an
𝑅-module 𝑁 with the property that Hom𝑅 (η, 𝑁 ) is exact for every pure exact sequence η is called
pure-injective; they also called ‘algebraically compact’ modules. These notions form the basis for
“pure homological algebra”.

5.5.16 Definition. An 𝑅-complex 𝑀 is called pure acyclic if it is acyclic and the
exact sequence

0 −→ Z𝑣 (𝑀) −→ 𝑀𝑣 −→ Z𝑣−1 (𝑀) −→ 0

is pure for every 𝑣 ∈ ℤ.

5.5.17 Example. A contractible 𝑅-complex is pure acyclic by 4.3.33 and 5.5.12.

The pure acyclicity property occupies a position between acyclicity and con-
tractibility. It is a non-trivial fact, see 5.5.26, that pure acyclicity and contractibility
is the same for complexes of projective modules.
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Purity and Flatness

It is immediate from immediate from 5.4.3 that a short exact sequence that ends in
a flat module is pure. The next result is a partial converse to this fact.

5.5.18 Proposition. Let 𝐹 be a flat 𝑅-module. An exact sequence of 𝑅-modules,

0 −→ 𝐹′ −→ 𝐹 −→ 𝐹′′ −→ 0 ,

is pure if and only if 𝐹′′ is flat, and in that case also 𝐹′ is flat.

Proof. The character module Hom𝕜 (𝐹,𝔼) is by 5.4.19 injective, so it follows from
1.3.27 and 5.3.27 that the induced exact sequence of 𝑅o-modules,

0 −→ Hom𝕜 (𝐹′′,𝔼) −→ Hom𝕜 (𝐹,𝔼) −→ Hom𝕜 (𝐹′,𝔼) −→ 0 ,

is split if and only if Hom𝕜 (𝐹′′,𝔼) is injective, in which case also Hom𝕜 (𝐹′,𝔼) by
another application of 1.3.27. Now invoke 5.5.14 and 5.4.19. □

Categorically Flat Complexes

Acyclic semi-projective complexes and acyclic semi-injective complexes are straight-
forward to understand; they are dealt with in exerices E 5.2.6 and E 5.3.4. Here we
give two principal descriptions—Theorems 5.5.19 and 5.5.22—of acyclic semi-flat
complexes. Avramov, Foxby, and Halperin [25] use the term categorically flat for
such complexes; the Remark after 5.5.22 suggests a justification for this terminology.

5.5.19 Theorem. For an 𝑅-complex 𝐹 the following conditions are equivalent.
(i) 𝐹 is semi-flat and acyclic.
(ii) Every morphism of 𝑅-complexes 𝜑 : 𝑁 → 𝐹, with 𝑁 bounded and degreewise

finitely presented, admits a factorization 𝑁 → 𝐿 → 𝐹 in C(𝑅), where 𝐿 is a
bounded and contractible complex of finitely generated free modules.

(iii) 𝐹 is isomorphic to a filtered colimit of bounded and contractible complexes
of finitely generated free 𝑅-modules.

Proof. (i)⇒ (ii): Let 𝜋 : 𝑃′ ≃−−→ 𝐹 be a surjective semi-projective resolution; see
5.2.14. It follows from 5.5.3 that 𝜑 factors through 𝜋; that is, there is a morphism
𝜘 : 𝑁 → 𝑃′ with 𝜑 = 𝜋𝜘. As 𝑃′ is acyclic, the complex Hom𝑅 (𝑃′, 𝑃′) is acyclic by
5.2.10, whence 𝑃′ is contractible by 4.3.29. By 4.3.32 there is a graded 𝑅-module
𝑃 with 𝑃′ � Cone 1𝑃 =

∐
𝑣∈ℤ D𝑣+1 (𝑃𝑣). In particular, 𝑃 is graded-projective, so for

every 𝑣 there is a module 𝑄𝑣 and a set 𝐸𝑣, such that 𝑃𝑣 ⊕ 𝑄𝑣 � 𝑅 (𝐸𝑣 ) holds. Set

𝐿′ = 𝑃′ ⊕ ∐
𝑣∈ℤ

D𝑣+1 (𝑄𝑣) �
∐
𝑣∈ℤ

D𝑣+1 (𝑅) (𝐸𝑣 ) .

The morphism 𝜘 factors trivially, 𝜘 = 𝜛𝑃′ (𝜀𝑃′𝜘), through the complex 𝐿′ of free
𝑅-modules. Since 𝑁 is bounded and degreewise finitely generated, the morphism
𝜀𝑃
′
𝜘, and hence 𝜑, factors through a direct sum 𝐿 =

⊕𝑛
𝑖=1 D𝑣𝑖+1 (𝑅) (𝐸

′
𝑣𝑖
) where each
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𝐸 ′𝑣𝑖 is a finite subset of 𝐸𝑣𝑖 ; see 3.1.33. Evidently, 𝐿 is a bounded and contractible
complex of finitely generated free 𝑅-modules.

(ii)⇒ (iii): Follows from 3.3.24.
(iii)⇒ (i): By assumption there is an isomorphism 𝐹 � colim𝑢∈𝑈 𝐿𝑢 where each

𝐿𝑢 is a bounded contractible complex of free 𝑅-modules. In particular, each complex
𝐿𝑢 is semi-flat and acyclic; see 5.4.7. It follows from 5.4.13 that 𝐹 is semi-flat and
from 3.3.16 that 𝐹 is acyclic. □

5.5.20 Corollary. Let𝐹 be an 𝑅-complex. If every morphism𝑁 → 𝐹 with𝑁 bounded
and degreewise finitely presented factors through a semi-flat acyclic 𝑅-complex, then
𝐹 is semi-flat and acyclic.

Proof. Let 𝑁 be a bounded and degreewise finitely presented 𝑅-complex. By 5.5.1
a morphism 𝑁 → 𝐹 that factors through a semi-flat complex has a further factor-
ization through af bounded complex of finitely generated free modules. The desired
conclusion now follows from another application of 5.5.1. □

5.5.21 Corollary. For an 𝑅-complex 𝐹 the following conditions are equivalent.
(i) 𝐹 is semi-flat and acyclic.
(ii) For every morphism 𝜑 : 𝑁 → 𝐹 with 𝑁 bounded and degreewise finitely pre-

sented and for every surjective morphism 𝛼 : 𝑀 → 𝐹 there is a morphism
𝛽 : 𝑁 → 𝑀 with 𝜑 = 𝛼𝛽.

Proof. (i)⇒ (ii): It follows from 5.5.19 that there is a contractible complex 𝐿 of
free 𝑅-modules and morphisms 𝜅 : 𝑁 → 𝐿 and 𝜆 : 𝐿 → 𝐹 with 𝜑 = 𝜆𝜅. The map

Hom𝑅 (𝐿, 𝛼) : Hom𝑅 (𝐿, 𝑀) −→ Hom𝑅 (𝐿, 𝐹)

is by 5.2.2 and 4.3.29 a surjective morphism of acyclic complexes. In particular, it
is a surjective quasi-isomorphism, so it is surjective on cycles by 4.2.7. In view of
2.3.10 there is a morphism 𝛽′ : 𝐿 → 𝑀 with 𝜆 = 𝛼𝛽′; now set 𝛽 = 𝛽′𝜅.

(ii)⇒ (i): Let 𝛼 : 𝑃→ 𝐹 be a surjective morphism where 𝑃 is a contractible
complex of free 𝑅-modules; see 4.3.24. For every morphism 𝜑 : 𝑁 → 𝐹 with 𝑁

bounded and degreewise finitely presented, there exists by (ii) a morphism 𝛽 : 𝑁 → 𝑃

with 𝜑 = 𝛼𝛽. As 𝑃 is semi-flat and acyclic, see 5.4.7, it follows from 5.5.20 that 𝐹
is semi-flat and acyclic. □

5.5.22 Theorem. For an 𝑅-complex 𝐹 the following conditions are equivalent.
(i) 𝐹 is semi-flat and acyclic.
(ii) 𝐹 is a complex of flat 𝑅-modules and pure acyclic.
(iii) 𝐹 is an acyclic complex, and B(𝐹) = Z(𝐹) is a complex of flat 𝑅-modules.
(iv) 𝐹 is a complex of flat 𝑅-modules, and for every finitely presented 𝑅o-module

𝑀 the complex 𝑀 ⊗𝑅 𝐹 is acyclic.
(v) 𝐹 is a complex of flat 𝑅-modules, and for every 𝑅o-complex 𝑀 the complex

𝑀 ⊗𝑅 𝐹 is acyclic.
(vi) 𝐹 is a complex of flat 𝑅-modules, and for every finitely presented 𝑅-module

𝑁 the complex Hom𝑅 (𝑁, 𝐹) is acyclic.
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(vii) 𝐹 is a complex of flat 𝑅-modules, and for every degreewise finitely presented
𝑅-complex 𝑁 the complex Hom𝑅 (𝑁, 𝐹) is acyclic.

(viii) The 𝑅o-complex Hom𝕜 (𝐹,𝔼) is a contractible complex of injective modules.

Proof. The proof is cyclic and goes as follows:

(i)⇒ (viii)⇒ (v)⇒ (iv)⇒ (vi)⇒ (vii)⇒ (iii)⇒ (ii)⇒ (i) .

(i)⇒ (viii): The character complex Hom𝕜 (𝐹,𝔼) is acyclic by 2.5.7(b), and by 5.4.9 it
is semi-injective. Hence, the complex Hom𝑅o (Hom𝕜 (𝐹,𝔼),Hom𝕜 (𝐹,𝔼)) is acyclic,
and it follows from 4.3.29 that Hom𝕜 (𝐹,𝔼) is contractible.

(viii)⇒ (v): The complex Hom𝑅o (𝑀,Hom𝕜 (𝐹,𝔼)) is acyclic by 4.3.29. Asso-
ciativity 4.4.7 and commutativity 4.4.4 yield isomorphisms,

Hom𝑅o (𝑀,Hom𝕜 (𝐹,𝔼)) � Hom𝕜 (𝐹 ⊗𝑅o 𝑀,𝔼) � Hom𝕜 (𝑀 ⊗𝑅 𝐹,𝔼) ,

so 𝑀 ⊗𝑅 𝐹 is acyclic by 2.5.7(b).
(v)⇒ (iv): This implication is evident.
(iv)⇒ (vi): It follows from 3.3.22, 3.2.22, and 3.3.10 that 𝑀 ⊗𝑅 𝐹 is acyclic

for every 𝑅o-module 𝑀 . Tensor evaluation 4.5.10(3,c) yields an isomorphism of 𝕜-
complexes Hom𝑅 (𝑁, 𝑅) ⊗𝑅 𝐹 � Hom𝑅 (𝑁, 𝐹), and the left-hand complex is acyclic.

(vi)⇒ (vii): Since each module 𝑁𝑣 is finitely presented, it follows from 1.3.40
that C𝑣 (𝑁) is finitely presented for every 𝑣 ∈ ℤ. Now it follows in view of A.6 that
the complex Hom𝑅 (𝑁, 𝐹) is acyclic.

(vii)⇒ (iii): By assumption and the counitor 4.4.2 the complex Hom𝑅 (𝑅, 𝐹) � 𝐹
is acyclic; in particular B(𝐹) = Z(𝐹) holds. Let 𝑁 be a finitely presented 𝑅-module
and fix an integer 𝑣. A homomorphism 𝜑 : 𝑁 → Z𝑣 (𝐹) yields a chain map of 𝑅-
complexes 𝑁 → 𝐹. As the complex Hom𝑅 (𝑁, 𝐹) is acyclic it follows from 2.3.3(b)
that the homomorphism 𝜑 factors as

𝑁 −→ 𝐹𝑣+1
𝜕𝐹
𝑣+1−−−→ Z𝑣 (𝐹) .

As 𝐹𝑣+1 is flat by assumption, it follows from 5.5.8 that Z𝑣 (𝐹) is flat.
(iii)⇒ (ii): For every 𝑣 ∈ ℤ the sequence

0 −→ Z𝑣 (𝐹) −→ 𝐹𝑣 −→ Z𝑣−1 (𝐹) −→ 0

is exact by acyclicity of 𝐹. It now follows from 5.4.20 that 𝐹𝑣 is a flat 𝑅-module,
whence the sequence is pure by 5.5.18.

(ii)⇒ (i): Let 𝑀 be an 𝑅o-module. As 𝐹 is pure acyclic it follows from 5.5.14
that for every 𝑣 ∈ ℤ the sequence

0 −→ 𝑀 ⊗𝑅 Z𝑣 (𝐹) −→ 𝑀 ⊗𝑅 𝐹𝑣 −→ 𝑀 ⊗𝑅 Z𝑣−1 (𝐹) −→ 0

is exact. Thus the complex 𝑀 ⊗𝑅 𝐹 is acyclic, and in view of A.12 it follows that
𝑀 ⊗𝑅 𝐹 is acyclic for every 𝑅o-complex 𝑀 . In particular, 𝐹 is semi-flat. □

Remark. The contractible complexes of injective 𝑅o-modules are precisely the injective objects in
C(𝑅o) , see E 5.3.4, so while flatness is not a categorical notion, condition (viii) in Theorem 5.5.22
explains why the complexes that satisfy the conditions in that theorem get called categorically flat,
cf. 5.4.1. Enochs and García Rozas [86] simply call such complexes ‘flat’.
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The next corollary supplements 5.4.16.

5.5.23 Corollary. Let 𝛼 : 𝐹 → 𝐹′ be a quasi-isomorphism of semi-flat 𝑅-complexes
and 𝑁 an 𝑅-complex. If 𝑁 is degreewise finitely presented, then Hom𝑅 (𝑁, 𝛼) is a
quasi-isomorphism.

Proof. The complex Cone𝛼 is acyclic by 4.2.16, and it follows from 5.4.12, applied
to the mapping cone sequence from 4.1.5, that it is semi-flat. If 𝑁 is degreewise
finitely presented, then per 5.5.22 the complex Hom𝑅 (𝑁,Cone𝛼) is acyclic, so
Hom𝑅 (𝑁, 𝛼) is a quasi-isomorphism by 4.1.16 and another application of 4.2.16. □

The property of categorically flat complexes proved below actually characterizes
such complexes and could be added to the list of equivalent conditions in 5.5.22. This
was proved by Neeman [192] and generalized by Emmanouil [83]. The argument
provided here follows [83].

5.5.24 Proposition. Let 𝐹 be a semi-flat 𝑅-complex and 𝑃 a complex of projective
𝑅-modules. If 𝐹 is acyclic, then the complex Hom𝑅 (𝑃, 𝐹) is acyclic.

Proof. For every 𝑣 ∈ ℤ there is a projective module 𝑃′𝑣 such that 𝑃𝑣 ⊕ 𝑃′𝑣 is free.
Replacing 𝑃 with the direct sum of 𝑃 and

∐
𝑣∈ℤ Σ𝑣𝑃′𝑣 one can by additivity of the

Hom functor, see 2.3.10, assume that 𝑃 is a complex of free 𝑅-modules. Further,
since the assumptions and conclusion are invariant under shift, see 2.2.15 and 2.3.14,
it suffices to show that H0 (Hom𝑅 (𝑃, 𝐹)) = 0 holds. That is, it suffices to show that
every morphism 𝛼 : 𝑃→ 𝐹 is null homotopic, see 2.3.10.

For every 𝑣 ∈ ℤ let 𝐸𝑣 be a basis for the free 𝑅-module 𝑃𝑣. Let 𝑈 be the set of
triples (𝐿, 𝐵, 𝜎) where:

(1) 𝐿 is a subcomplex of 𝑃 such that each module 𝐿𝑣 is free with basis 𝐵𝑣 ⊆ 𝐸𝑣.
(2) 𝐵 is the disjoint union ⊎

𝑣∈ℤ 𝐵𝑣.
(3) 𝜎 : 𝐿 → 𝐹 is a degree 1 homomorphism such that 𝛼 |𝐿 = 𝜕𝐹𝜎 + 𝜎𝜕𝐿 holds.

The set 𝑈 is non-empty as the zero complex is a subcomplex of 𝑃. For elements
(𝐿, 𝐵, 𝜎) and (𝐿′, 𝐵′, 𝜎′) in 𝑈 declare (𝐿, 𝐵, 𝜎) ⩽ (𝐿′, 𝐵′, 𝜎′) if one has 𝐿 ⊆ 𝐿′,
𝐵 ⊆ 𝐵′ as graded sets, and 𝜎′ |𝐿 = 𝜎. This makes𝑈 an inductively ordered set, so by
Zorn’s lemma it has a maximal element (𝐿, 𝐵, 𝜎). We proceed to prove that 𝐿 = 𝑃

holds, which means that 𝜎 is the desired degree 1 map with 𝛼 = 𝜕𝐹𝜎 + 𝜎𝜕𝑃 .
Assume towards a contradiction that 𝐿 is a proper subcomplex of 𝑃. The quotient

complex 𝑃/𝐿 is degreewise free, indeed the cosets of the elements in 𝐸𝑣 \ 𝐵𝑣 form
a basis for (𝑃/𝐿)𝑣. By assumption there is an integer 𝑛 with 𝐸𝑛 \ 𝐵𝑛 ≠ ∅; choose
an element 𝑒 of this set and let 𝐸 ′𝑛 = {𝑒}. Set 𝑁𝑛 = 𝑅⟨ [𝑒]𝐿𝑛 ⟩ and 𝑁𝑣 = 0 for 𝑣 > 𝑛.
The image of 𝑁𝑛 under the differential on 𝑃/𝐿 is contained in a free submodule of
(𝑃/𝐿)𝑛−1 that is generated by the cosets of the elements in a finite subset 𝐸 ′

𝑛−1 of
𝐸𝑛−1 \ 𝐵𝑛−1; call this module 𝑁𝑛−1. Repeating this process yields a subcomplex 𝑁
of 𝑃/𝐿 such that each module 𝑁𝑣 is a finitely generated free 𝑅-module. Let 𝐿′ be the
subcomplex of 𝑃 with 𝐿′𝑣 = 𝑅⟨𝐵𝑣 ∪ 𝐸 ′𝑣 ⟩ and notice that 𝐿′/𝐿 � 𝑁 holds. Consider
the canonical exact seqeunce of 𝑅-complexes,

0 −→ 𝐿 −→ 𝐿′ −→ 𝐿′/𝐿 −→ 0 .
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It is degreewise split and induces per 2.3.13 an exact sequence of 𝕜-complexes,

0 −→ Hom𝑅 (𝐿′/𝐿, 𝐹) −→ Hom𝑅 (𝐿′, 𝐹) −→ Hom𝑅 (𝐿, 𝐹) −→ 0 .

The homotopy 𝜎 is an element of degree 1 in Hom𝑅 (𝐿, 𝐹) and hence the image
of an element 𝜎′ of degree 1 in Hom𝑅 (𝐿′, 𝐹); that is, 𝜎′ |𝐿 = 𝜎 holds. The image
𝜕Hom (𝐿,𝐹 ) (𝜎′) = 𝜕𝐹𝜎′ + 𝜎′𝜕𝐿′ is a morphism and hence so is 𝛽 : 𝐿′ → 𝐹 given by

𝛽 = 𝛼 |𝐿′ − (𝜕𝐹𝜎′ + 𝜎′𝜕𝐿
′ ) .

As one has 𝛽 |𝐿 = 𝛼 |𝐿 − (𝜕𝐹𝜎 + 𝜎𝜕𝐿) = 0, the morphism 𝛽 induces a morphism
𝛾 : 𝐿′/𝐿 → 𝐹. Since 𝐿′/𝐿 is degreewise finitely presented, it follows from 5.5.22
that Hom𝑅 (𝐿′/𝐿, 𝐹) is acyclic, so 𝛾 is null-homotopic, see 2.3.3. Thus there is a
degree 1 homomorphism 𝜏 : 𝐿′/𝐿 → 𝐹 with 𝛾 = 𝜕𝐹𝜏 + 𝜏𝜕𝐿′/𝐿 . Denote by 𝜋 the
canonical map 𝐿′ → 𝐿′/𝐿; one has 𝛽 = 𝛾𝜋 and, therefore,

𝜕𝐹 (𝜎′ + 𝜏𝜋) + (𝜎′ + 𝜏𝜋)𝜕𝐿′ = 𝜕𝐹𝜎′ + 𝜎′𝜕𝐿′ + 𝜕𝐹𝜏𝜋 + 𝜏𝜋𝜕𝐿′

= 𝜕𝐹𝜎′ + 𝜎′𝜕𝐿′ + 𝜕𝐹𝜏𝜋 + 𝜏𝜕𝐿′/𝐿𝜋
= 𝜕𝐹𝜎′ + 𝜎′𝜕𝐿′ + (𝜕𝐹𝜏 + 𝜏𝜕𝐿′/𝐿)𝜋
= 𝜕𝐹𝜎′ + 𝜎′𝜕𝐿′ + 𝛾𝜋
= 𝜕𝐹𝜎′ + 𝜎′𝜕𝐿′ + 𝛽
= 𝛼 |𝐿′ .

With 𝐵′ = ⊎
𝑣∈ℤ (𝐵𝑣 ∪ 𝐸 ′𝑣) one now has an element (𝐿′, 𝐵′, 𝜎′ + 𝜏𝜋) of𝑈, and since

(𝜎′ + 𝜏𝜋) |𝐿 = 𝜎′ |𝐿 = 𝜎 holds one has (𝐿, 𝐵, 𝜎) ⩽ (𝐿′, 𝐵′, 𝜎′ + 𝜏𝜋). The inequality
is strict, which contradicts the choice of (𝐿, 𝐵, 𝜎). Thus one has 𝐿 = 𝑃. □

5.5.25 Corollary. Let 𝛼 : 𝐹 → 𝐹′ be a quasi-isomorphism of semi-flat 𝑅-complexes
and 𝑃 a complex of projective 𝑅-modules. The morphism Hom𝑅 (𝑃, 𝛼) is a quasi-
isomorphism.

Proof. The complex Cone𝛼 is acyclic by 4.2.16, and it follows from 5.4.12, applied
to the mapping cone sequence from 4.1.5, that it is semi-flat. By 5.5.24 the complex
Hom𝑅 (𝑃,Cone𝛼) is acyclic, so Hom𝑅 (𝑃, 𝛼) is a quasi-isomorphism by 4.1.16 and
another application of 4.2.16. □

5.5.26 Corollary. Let 𝑃 be a complex of projective 𝑅-modules. If 𝑃 is pure acyclic,
then it is contractible.

Proof. Recall from 1.3.43 that 𝑃 is a complex of flat 𝑅-modules. If 𝑃 is pure acyclic,
then Hom𝑅 (𝑃, 𝑃) is acyclic is by 5.5.24, whence 𝑃 is contractible by 4.3.29. □

5.5.27 Theorem. Let 𝑃 be a complex of projective 𝑅-modules. If 𝑃 is semi-flat, then
it is semi-projective.

Proof. Choose by 5.2.14 a semi-projective resolution 𝜋 : 𝐿 ≃−−→ 𝑃 and recall from
5.4.10 that 𝐿 is semi-flat. The complex𝐶 = Cone 𝜋 is acyclic by 4.2.16, and it follows
from 5.4.12, applied to the mapping cone sequence from 4.1.5, that it is semi-flat.
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Thus, 𝐶 is pure acyclic by 5.5.22. Further 𝐶 is a complex of projective 𝑅-modules,
see 4.1.1 and, therefore, contractible by 5.5.26. Thus, 𝜋 is by 4.3.30 a homotopy
equivalence. For every acyclic 𝑅-complex 𝑀 the homotopy equivalent complexes
Hom𝑅 (𝐿, 𝑀) ≊ Hom𝑅 (𝑃, 𝑀), see 4.3.19, are acyclic by semi-projectivity of 𝐿,
whence 𝑃 is semi-projective, see 5.2.10. □

Perfect Rings

We end this chapter with a homological characterization of perfect rings.

5.5.28 Lemma. Assume that every flat 𝑅-module is projective. For every sequence
(𝑎𝑖)𝑖∈ℕ in 𝑅 there exists 𝑛 ⩾ 1 such that for every 𝑗 > 𝑛 there is an equality of right
ideals, (𝑎1 · · · 𝑎 𝑗−1)𝑅 = (𝑎1 · · · 𝑎 𝑗−1𝑎 𝑗 )𝑅.

Proof. For 1 ⩽ 𝑖 < 𝑗 let 𝛼 𝑗𝑖 be the homothety given by right multiplication on 𝑅
with 𝑎𝑖 · · · 𝑎 𝑗−1 and set 𝛼𝑖𝑖 = 1𝑅. These maps form a direct system of 𝑅-modules;
let 𝐴 denote its colimit. By 5.4.21 the module 𝐴 is flat; hence it is projective by
the assumption on 𝑅. Set 𝐿 = 𝑅 (ℕ) and let 𝜄𝑖 : 𝑅↣ 𝐿 be the embedding into the 𝑖th
component; note that {𝜄𝑖 (1)}𝑖∈ℕ is a basis for 𝐿. Set 𝑓𝑖 = 𝜄𝑖 (1) − 𝑎𝑖 𝜄𝑖+1 (1) for every
𝑖 ∈ ℕ. The elements { 𝑓𝑖 }𝑖∈ℕ in 𝐿 are linearly independent as one has

𝑟1 𝑓1 + 𝑟2 𝑓2 + · · · + 𝑟𝑚 𝑓𝑚
= 𝑟1𝜄

1 (1) + (𝑟2 − 𝑟1𝑎1)𝜄2 (1) + · · · + (𝑟𝑚 − 𝑟𝑚−1𝑎𝑚−1)𝜄𝑚 (1) − 𝑟𝑚𝑎𝑚𝜄𝑚+1 (1)

for 𝑟1, 𝑟2, . . . , 𝑟𝑚 in 𝑅. Denote by 𝐹 the free submodule of 𝐿 generated by { 𝑓𝑖 }𝑖∈ℕ .
Since 𝜄𝑖 (𝑟) − 𝜄 𝑗𝛼 𝑗𝑖 (𝑟) = 𝑟 𝑓𝑖 + 𝑟𝑎𝑖 𝑓𝑖+1 + · · · + 𝑟𝑎𝑖 · · · 𝑎 𝑗−2 𝑓 𝑗−1 holds, it follows
from 3.2.3 that there is an exact sequence 0 → 𝐹 → 𝐿 → 𝐴 → 0. As 𝐴 is
projective, the embedding 𝐹 ↣ 𝐿 has a left inverse 𝜋 : 𝐿 → 𝐹; cf. 1.3.17. Now, with
𝜋(𝜄𝑖 (1)) = ∑

𝑗⩾1 𝑏𝑖 𝑗 𝑓 𝑗 one has

𝑓𝑖 = 𝜋( 𝑓𝑖) = 𝜋(𝜄𝑖 (1) − 𝑎𝑖 𝜄𝑖+1 (1)) =
∑
𝑗⩾1
(𝑏𝑖 𝑗 − 𝑎𝑖𝑏 (𝑖+1) 𝑗 ) 𝑓 𝑗

and, therefore, 𝑏𝑖𝑖 − 𝑎𝑖𝑏 (𝑖+1)𝑖 = 1 and 𝑏𝑖 𝑗 − 𝑎𝑖𝑏 (𝑖+1) 𝑗 = 0 for all 𝑗 ≠ 𝑖. Thus, for
every 𝑗 > 1 there are equalities,

𝑏1 𝑗 = 𝑎1𝑏2 𝑗 = 𝑎1𝑎2𝑏3 𝑗 = · · · = 𝑎1𝑎2 · · ·𝑎 𝑗−1𝑏 𝑗 𝑗 = 𝑎1𝑎2 · · ·𝑎 𝑗−1 (1+𝑎 𝑗𝑏 ( 𝑗+1) 𝑗 ) ,

and hence 𝑎1 · · · 𝑎 𝑗−1 = 𝑏1 𝑗 − 𝑎1 · · · 𝑎 𝑗−1𝑎 𝑗𝑏 ( 𝑗+1) 𝑗 . Since there exists an 𝑛 such that
𝑏1 𝑗 = 0 holds for all 𝑗 > 𝑛, the desired assertion follows. □

5.5.29 Lemma. If the Jacobson radical of 𝑅 is zero and every descending chain of
principal right ideals in 𝑅 becomes stationary, then 𝑅 is semi-simple.

Proof. First note that every right ideal 𝔞 ≠ 0 in 𝑅 contains a minimal non-zero
right ideal 𝔟. Indeed, by assumption one can take 𝔟 minimal among the non-zero
principal right ideals contained in 𝔞. As every non-zero right ideal contains a non-zero
principal right ideal, such a 𝔟 is minimal among all non-zero right ideals contained
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in 𝔞. Furthermore, every minimal non-zero right ideal 𝔟 in 𝑅 has a complement.
Indeed, as the Jacobson radical of 𝑅 is zero, one has 𝔟 ⊈ 𝔐 for some maximal right
ideal 𝔐; since 𝔟 is minimal, 𝔟 ∩𝔐 = 0 follows. Consequently, 𝑅 = 𝔟 ⊕𝔐 holds.

Now, let 𝔟1 be a minimal right ideal in 𝑅 and write 𝑅 = 𝔟1 ⊕ 𝔞1 for some right
ideal 𝔞1. If 𝔞1 = 0 then the 𝑅o-module 𝑅 = 𝔟1 is simple. Otherwise, let 𝔟2 be a
minimal right ideal contained in 𝔞1, and write 𝔞1 = 𝔟2 ⊕ 𝔞2 for some right ideal
𝔞2; now one has 𝑅 = 𝔟1 ⊕ 𝔟2 ⊕ 𝔞2. If 𝔞2 = 0 then the 𝑅o-module 𝑅 = 𝔟1 ⊕ 𝔟2 is
semi-simple. If 𝔞2 ≠ 0 one can continue the process, which after 𝑛 iterations yields
minimal right ideals 𝔟1, 𝔟2, . . . , 𝔟𝑛 and right ideals 𝔞1 ⊃ 𝔞2 ⊃ · · · ⊃ 𝔞𝑛 such that
𝑅 = 𝔟1 ⊕ · · · ⊕ 𝔟𝑛 ⊕ 𝔞𝑛. Each right ideal 𝔞𝑛 is principal, as it is a direct summand
of 𝑅, so the process terminates with 𝔞𝑛 = 0 for some 𝑛. Thus the 𝑅o-module
𝑅 = 𝔟1 ⊕ · · · ⊕ 𝔟𝑛 is semi-simple. □

5.5.30 Theorem. 𝑅 is left perfect if and only if every flat 𝑅-module is projective.

Proof. Let 𝔍 be the Jacobson radical of 𝑅.
“Only if”: Let 𝐹 be a flat 𝑅-module. By B.53 it has projective cover, so there is

a projective 𝑅-module 𝑃 with a superfluous submodule 𝐾 such that 𝑃/𝐾 is flat. By
1.3.44 one has 𝔍𝐾 = 𝔍𝑃 ∩ 𝐾 . As 𝐾 is a superfluous submodule of 𝑃 it is contained
in 𝔍𝑃 by B.37. Thus one has 𝔍𝐾 = 𝐾 and, therefore, 𝐾 = 0 by B.49.

“If”: To show that 𝔍 is left T-nilpotent, let (𝑎𝑖)𝑖∈ℕ be a sequence in 𝔍. By 5.5.28
there exist 𝑛 ⩾ 1 and 𝑟 ∈ 𝑅 such that one has 𝑎1 · · · 𝑎𝑛 = 𝑎1 · · · 𝑎𝑛𝑎𝑛+1𝑟 and,
therefore, 𝑎1 · · · 𝑎𝑛 (1 − 𝑎𝑛+1𝑟) = 0. Since 𝑎𝑛+1 is in 𝔍, the element 1 − 𝑎𝑛+1𝑟 is a
unit, and it follows that 𝑎1 · · · 𝑎𝑛 = 0. It remains to show that the ring 𝒌 = 𝑅/𝔍 is
semi-simple; to this end apply 5.5.29. Clearly, the Jacobson radical of 𝒌 is zero. A
descending chain of principal right ideals in 𝒌 has the form (𝑎1)𝒌 ⊇ (𝑎1𝑎2)𝒌 ⊇
(𝑎1𝑎2𝑎3)𝒌 ⊇ · · · with 𝑎𝑖 ∈ 𝑅. It follows from 5.5.28 that the descending chain
(𝑎1)𝑅 ⊇ (𝑎1𝑎2)𝑅 ⊇ (𝑎1𝑎2𝑎3)𝑅 ⊇ · · · in 𝑅 becomes stationary, and hence so does
the chain in 𝒌. □

Remark. The statement of the previous theorem is part of Bass’ Theorem P [29] from 1960. With
the existence of flat covers for all modules, which was only proved in 2001 by Bican, El Bashir, and
Enochs [40], a short proof of the “if” part in 5.5.30 became available. Indeed, every 𝑅-module 𝑀
has a flat cover 𝜋 : 𝐹 ↠ 𝑀, so if every flat 𝑅-module is projective, then 𝜋 is a projective cover.

Exercises

E 5.5.1 Without recourse to 5.2.11 and 5.4.10, show that every semi-free 𝑅-complex is semi-flat.
Hint: 5.5.1 and E 5.1.6.

E 5.5.2 Let η = 0 → 𝐹′ → 𝐹 → 𝐹′′ → 0 be an exact sequence of 𝑅-complexes and assume
that 𝐹 is semi-flat. Show that if Hom𝑅 (𝑁, η ) is exact for every bounded complex of
finitely presented 𝑅-modules, then 𝐹′ and 𝐹′′ are semi-flat as well. Hint: 5.5.3.

E 5.5.3 Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism. (a) Show that 𝜑 is a pure monomorphism of
𝑅o-modules if and only if 𝑆 is faithfully flat over 𝑅o. (b) Show that if 𝑆 is faithfully
flat over 𝑅o and 𝐼 is injective over 𝑅, then 𝐼 is a direct summand of the 𝑅-module
Hom𝑅 (𝑆, 𝐼 ) .

E 5.5.4 Show that the sequence 0→ 𝑀 (𝑈) → 𝑀𝑈 → 𝑀𝑈/𝑀 (𝑈) → 0 is pure exact for every
𝑅-module 𝑀 and every set𝑈.
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E 5.5.5 Find a pure exact, but not split, sequence 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 of 𝑅-modules
with 𝑀 ′′ not flat.

E 5.5.6 Let 𝑀 be an 𝑅-module and 𝐾 an 𝑅o-module. Show that if 𝐾 is finitely presented, then
the homomorphisms 𝐾 ⊗𝑅 𝛿𝑀𝔼 and 𝛿𝐾⊗𝑅𝑀

𝔼
are isomorphic in M(k) . Apply this to

conclude that 𝛿𝑀
𝔼

is a pure monomorphism.
E 5.5.7 Let Λ be a complete set of representatives of isomorphism classes of finitely presented

𝑅-modules. Show that the canonical map
∐
𝐿∈Λ 𝐿

(Hom𝑅 (𝐿,𝑀) ) → 𝑀 is a pure epimor-
phism for every 𝑅-module 𝑀.

E 5.5.8 Show that an 𝑅-module is pure-projective if and only if it is a summand of a coproduct
of finitely presented 𝑅-modules.

E 5.5.9 Show that an 𝑅-module is projective if and only if it is pure-projective and flat.
E 5.5.10 Show that a pure exact sequence 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 of 𝑅-modules with 𝑀 ′′

finitely presented is split.
E 5.5.11 Assume that 𝑅 is left Noetherian. Show that if 𝐼 is an injective 𝑅-module, then every

pure exact sequence 0→ 𝑀 → 𝐼 → 𝑁 → 0 is split.
E 5.5.12 Show that the following conditions are equivalent. (i)𝑀 is pure acyclic. (ii) The complex

Hom𝑅 (𝑁, 𝑀 ) is acyclic for every finitely presented 𝑅-module 𝑁 . (iii) The complex
Hom𝑅 (𝑁, 𝑀 ) is acyclic for every degreewise finitely presented 𝑅-complex 𝑁 . (iv) The
complex 𝑁 ⊗𝑅 𝑀 is acyclic for every finitely presented 𝑅o-module 𝑁 . (v) The complex
𝑁 ⊗𝑅 𝑀 is acyclic for every 𝑅o-complex 𝑁 . (vi) 𝑀 is a filtered colimit of bounded
and degreewise finitely presented contractible complexes. (vii) The character complex
Hom𝕜 (𝑀, 𝔼) is contractible. Hint: Proof of 5.5.19 and/or Emmanouil [83].

E 5.5.13 Let 𝑀 be an 𝑅-complex; show that it is pure acyclic if and only if the canonical sequence
0→ Z(𝑀 ) → 𝑀 → ΣZ(𝑀 ) → 0 is degreewise pure exact.

E 5.5.14 Let 𝑀 be an 𝑅-complex such that the exact sequence 0→ Z(𝑀 ) → 𝑀 → ΣB(𝑀 ) →
0 is degreewise pure. Show that𝑀 is pure acyclic if and only if it is acyclic. Conclude that
an acyclic complex 𝑀 is pure acyclic if B(𝑀 ) = Z(𝑀 ) is a complex of flat modules.

E 5.5.15 Show that a pure acyclic degreewise pure subcomplex of a complex of flat 𝑅-modules is
semi-flat.

E 5.5.16 Show that the Dold complex from 5.1.4 is acyclic but not pure acyclic; conclude that it
is not semi-flat.

E 5.5.17 Show that every acyclic complex can be written as a filtered colimit of bounded below
acyclic complexes, and show that not every acyclic complex can be written as a filtered
colimit of bounded acyclic complexes.

E 5.5.18 Let 𝑃 be an acyclic complex of projective 𝑅-modules. Show that B(𝑃) = Z(𝑃) is a
complex of flat 𝑅-modules if and only if it is a complex of projective 𝑅-modules.

E 5.5.19 Let 0 → 𝐹 → 𝑃 → 𝐹 → 0 be an exact sequence of 𝑅-modules with 𝐹 flat and 𝑃
projective. Show that 𝐹 is projective.

The was first proved by Benson and Goodearl [37]; together with unpublished work
[241] of Šťovíček it inspired a study of ‘periodic modules’ by Bazzoni, Cortés-Izurdiaga,
and Estrada [34].

E 5.5.20 Show that the following conditions are equivalent. (i) 𝑅 is von Neumann regular. (ii) Ev-
ery acyclic 𝑅-complex is pure acyclic. (iii) Every 𝑅-complex is semi-flat. (iv) Every
complex of pure-projective 𝑅-modules is semi-projective. (v) Every complex of pure-
injective 𝑅-modules is semi-injective.

E 5.5.21 Let 𝕜 be a field and set 𝑅 = 𝕜ℕ. Show that 𝔞 = 𝕜 (ℕ) is and ideal in 𝑅 and that the
complex 𝐹 = 0 → 𝔞 → 𝑅 → 𝑅/𝔞 → 0 is semi-flat; cf. 1.3.45. Show that 𝐹 is not
contractible.

E 5.5.22 Consider the following subsets of M2×2 (ℝ) ,

𝑅 =

{ (
𝑥 𝑦

0 𝑥

) ���� 𝑥 ∈ ℚ and 𝑦 ∈ ℝ
}

and 𝔍 =

{ (
0 𝑦
0 0

) ���� 𝑦 ∈ ℝ}
.
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(a) Show that 𝑅 is a commutative ring with Jacobson radical𝔍. (b) Show that 𝑅 is perfect
but not Artinian. Hint: Pick an infinite descending sequence of ℚ-submodules of ℝ.
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Chapter 6
The Derived Category

From any Abelian category U one can obtain a triangulated category, called the
derived category of U. In this chapter, we construct the derived category of the
module category M(𝑅). This category, D(𝑅), which is also called the derived
category over 𝑅, provides an efficacious environment for homological studies of 𝑅-
modules. The objects in D(𝑅) are familiar, they are simply all 𝑅-complexes, but the
morphisms may appear odd on first encounter: They are not maps but equivalence
classes of certain diagrams. This part of the construction is technically involved but
conceptually simple: the goal is to turn all quasi-isomorphisms into isomorphisms,
which is achieved by a procedure that emulates the construction of a ring of fractions.

A three-step process leads fromM(𝑅) toD(𝑅): The first step was taken in Chap. 2
with the introduction of the category of 𝑅-complexes, and what follows immediately
below is the second step.

6.1 Construction of the Homotopy Category KKK

Synopsis. Objects and morphisms; product; coproduct; homotopy invariant functor; universal
property.

Let U be a category and ≈ a congruence relation on U. This means that for objects
𝑀, 𝑁 ∈ U there is an equivalence relation, ≈, on the hom-set U(𝑀, 𝑁) and ≈ is
compatible with composition of morphisms in U. The quotient category U/≈ has the
same objects as U, and for objects 𝑀 , 𝑁 the hom-set in U/≈ is the set U(𝑀, 𝑁)/≈ of
equivalence classes. The canonical functor Q: U→ U/≈ has the following universal
property: If F: U→ V is a functor that is invariant under ≈, that is, F(𝛼) = F(𝛽)
holds whenever 𝛼 ≈ 𝛽, then there is a unique functor ¤F that makes the next diagram
commutative,

U

Q
��

F
// V

U/≈ .

¤F

==

255



256 6 The Derived Category

This section is focused on a particular quotient category: the homotopy category
K(𝑅). It is the quotient of C(𝑅) modulo homotopy. While C(𝑅) is Abelian, the
category K(𝑅) is, in general, not. However, it is a triangulated category; cf. Appn. E.

Objects and Morphisms

The next definition is justified by the fact that homotopy is a congruence relation on
C(𝑅); details are recalled in 6.1.2.

6.1.1 Definition. The homotopy category K(𝑅) has the same objects as C(𝑅), i.e.
𝑅-complexes; the morphisms in K(𝑅) are homotopy classes of morphisms in C(𝑅).

6.1.2. For 𝑅-complexes 𝑀 and 𝑁 there is, by 2.3.10, an equality of 𝕜-modules
K(𝑅) (𝑀, 𝑁) = H0 (Hom𝑅 (𝑀, 𝑁)). Per 2.2.14 we write [𝛼] for the homotopy class
of a morphism 𝛼 in C(𝑅). If 𝐿 is also an 𝑅-complex, then the composition

K(𝑅) (𝑀, 𝑁) ×K(𝑅) (𝐿, 𝑀) −→ K(𝑅) (𝐿, 𝑁)

maps ( [𝛼], [𝛽]) to [𝛼𝛽]; it follows from 2.2.25 that [𝛼𝛽] does not depend on the
choice of representatives for [𝛼] and [𝛽].

6.1.3 Definition. Write Q𝑅 : C(𝑅) → K(𝑅) for the canonical functor that is the
identity on objects and maps a morphism 𝛼 in C(𝑅) to its homotopy class [𝛼]. When
there is no ambiguity, we write Q instead of Q𝑅.

By construction, the functor Q is full.

6.1.4 Lemma. For 𝑅-complexes 𝑀 and 𝑁 with 𝑀𝑣 = 0 for all 𝑣 < 0 and 𝑁𝑣 = 0 for
all 𝑣 > 0 the map C(𝑅) (𝑀, 𝑁) → K(𝑅) (𝑀, 𝑁) induced by Q is an isomorphism of
k-modules.

Proof. This is a restatement of 2.5.10. □

6.1.5 Proposition. The restriction to M(𝑅) of the functor Q: C(𝑅) → K(𝑅) yields
an isomorphism between the module category M(𝑅) and the full subcategory of
K(𝑅) whose objects are all 𝑅-complexes concentrated in degree 0.

Proof. The assertion is immediate from 2.1.36 and 6.1.4. □

6.1.6 Proposition. Let 𝛼 be a morphism in C(𝑅).
(a) [𝛼] is an isomorphism in K(𝑅) if and only if 𝛼 is a homotopy equivalence.
(b) [𝛼] is zero K(𝑅) if and only if 𝛼 is null-homotopic.

Proof. The first assertion is immediate from 4.3.1. For the second assertion, note
that the zero complex is a zero object in K(𝑅). Thus, by definition, [𝛼] is zero if and
only if [𝛼] factors through the zero complex in K(𝑅), which is equivalent to saying
that [𝛼] = [0] holds, and by 2.2.23 this precisely means that 𝛼 is null-homotopic. □
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By 4.3.1 and the result above we use the symbol ‘≊’ for isomorphisms in K(𝑅).
An isomorphism 𝛼 in C(𝑅) yields an isomorphism [𝛼] in K(𝑅); such isomorphisms
in K(𝑅) may still be marked by the symbol ‘�’.

The next result identifies the zero objects in K(𝑅). Further characterizations of
these complexes are given in 4.3.29 and 4.3.32.

6.1.7 Proposition. An 𝑅-complex is a zero object in K(𝑅) if and only if it is
contractible.

Proof. Let𝑀 be an 𝑅-complex. If𝑀 is isomorphic to 0 inK(𝑅), thenK(𝑅) (𝑀, 𝑀)
consists of a single element. In particular, [1𝑀 ] = [0] holds, so 1𝑀 is null-homotopic,
i.e. 𝑀 is contractible. Conversely, if 𝑀 is contractible then the morphism 𝑀 → 0 in
C(𝑅) is a homotopy equivalence, whence it represents an isomorphism in K(𝑅). □

A conspicuous consequence of 4.3.30 and 6.1.7 is that the homotopy class [𝛼] of
a morphism in C(𝑅) is an isomorphism in K(𝑅) if and only if the complex Cone𝛼
is isomorphic to 0 in K(𝑅). In Sect. 6.2 it is proved that K(𝑅) is triangulated, and
thus this property of the cone follows from E.22.

Products and Coproducts

6.1.8 Lemma. Let U and V be 𝕜-prelinear categories that have the same objects
and F: U→ V a 𝕜-linear functor that is the identity on objects. Let 𝑀 and 𝑁 be
objects; if the tuple (𝑀 ⊕ 𝑁,𝜛𝑀 , 𝜀𝑀 , 𝜛𝑁 , 𝜀𝑁 ) is a biproduct in U, then the tuple
(𝑀 ⊕ 𝑁, F(𝜛𝑀 ), F(𝜀𝑀 ), F(𝜛𝑁 ), F(𝜀𝑁 )) is a biproduct in V. In particular, if every
pair of objects has a biproduct in U then every pair of objects has a biproduct in V.

Proof. All assertions follow immediately from the definitions; see 1.1.13. □

Recall that a category is said to have products/coproducts if all set-indexed prod-
ucts/coproducts exist in the category. The next result shows that the homotopy
category K(𝑅) has products and coproducts. As in all other categories one uses the
symbols

∏
and

∐
for products and coproducts in K(𝑅).

6.1.9 Theorem. The homotopy category K(𝑅) and the functor Q: C(𝑅) → K(𝑅)
are 𝕜-linear. For every family {𝑀𝑢}𝑢∈𝑈 of 𝑅-complexes the next assertions hold.

(a) If an 𝑅-complex 𝑀 with injections {𝜀𝑢 : 𝑀𝑢 ↣ 𝑀 }𝑢∈𝑈 is the coproduct of
the family {𝑀𝑢}𝑢∈𝑈 in C(𝑅), then 𝑀 with the morphisms { [𝜀𝑢] }𝑢∈𝑈 is the
coproduct of {𝑀𝑢}𝑢∈𝑈 in K(𝑅) .

(b) If an 𝑅-complex 𝑀 with projections {𝜛𝑢 : 𝑀 ↠ 𝑀𝑢}𝑢∈𝑈 is the product of
the family {𝑀𝑢}𝑢∈𝑈 in C(𝑅), then 𝑀 with the morphisms { [𝜛𝑢] }𝑢∈𝑈 is the
product of {𝑀𝑢}𝑢∈𝑈 in K(𝑅) .

In particular, the homotopy category K(𝑅) has products and coproducts, and the
canonical functor Q preserves products and coproducts.
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258 6 The Derived Category

Proof. It is straightforward to verify that the category K(𝑅) is 𝕜-prelinear and that
the canonical functor Q is 𝕜-linear. The zero complex is a zero object in K(𝑅), see
6.1.6, and K(𝑅) has biproducts by 6.1.8. Thus K(𝑅) is a 𝕜-linear category.

(a): Let { [𝛼𝑢] : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 be morphisms in K(𝑅). The task is to show that
there exists a unique morphism [𝛼] : 𝑀 → 𝑁 in K(𝑅) with [𝛼𝜀𝑢] = [𝛼𝑢] for all
𝑢 ∈ 𝑈. Existence is straightforward; indeed, by the universal property of coproducts
in C(𝑅), there is a morphism 𝛼 : 𝑀 → 𝑁 with 𝛼𝜀𝑢 = 𝛼𝑢 for all 𝑢 ∈ 𝑈. Applying Q
to these identities one gets [𝛼𝜀𝑢] = [𝛼𝑢]. For uniqueness, assume that 𝛼 and 𝛼′ are
morphisms in C(𝑅) with [𝛼𝜀𝑢] = [𝛼𝑢] = [𝛼′𝜀𝑢] for every 𝑢 ∈ 𝑈. It must be shown
that [𝛼] = [𝛼′]. The morphism 𝛽 = 𝛼 − 𝛼′ satisfies [𝛽𝜀𝑢] = [0] for every 𝑢 ∈ 𝑈, so
it follows from 3.1.7 that [𝛽] = [0], as desired.

(b): An argument similar to the proof of part (a) applies; only this time appeal to
3.1.19 instead of 3.1.7.

By construction, the canonical functor Q preserves products and coproducts. □

6.1.10. As is the case for the (co)product in any category, the (co)product in K(𝑅)
acts on morphisms. For a family { [𝛼𝑢] : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 of morphisms in K(𝑅) it
follows from 6.1.9 that one has∐

𝑢∈𝑈
[𝛼𝑢] =

[ ∐
𝑢∈𝑈

𝛼𝑢
]

and
∏
𝑢∈𝑈
[𝛼𝑢] =

[ ∏
𝑢∈𝑈

𝛼𝑢
]
,

where
∐
𝑢∈𝑈 𝛼

𝑢 and
∏
𝑢∈𝑈 𝛼

𝑢 is the coproduct and the product of {𝛼𝑢}𝑢∈𝑈 in C(𝑅)
as in 3.1.5 and 3.1.17.

6.1.11. It is immediate from 6.1.9 and 3.1.28 that the product and coproduct inK(𝑅)
of a finite family {𝑀𝑢}𝑢∈𝑈 of 𝑅-complexes coincide, and that this complex is the
iterated biproduct ⊕

𝑢∈𝑈 𝑀
𝑢 in K(𝑅). Per 1.1.14 this complex is called the direct

sum in K(𝑅) of the family {𝑀𝑢}𝑢∈𝑈 , and each 𝑀𝑢 is called a direct summand.

6.1.12 Definition. A morphism [𝛼] in K(𝑅) is called a quasi-isomorphism if some,
equivalently every, morphism in C(𝑅) that represents the homotopy class [𝛼] is a
quasi-isomorphism; cf. 2.2.26. Notice that by 4.3.4 and 6.1.6 every isomorphism in
K(𝑅) is a quasi-isomorphism. Quasi-isomorphisms in K(𝑅) are also marked by the
symbol ‘≃’; cf. 4.2.1.

A morphism in K(𝑅)op is called a quasi-isomorphism if the corresponding mor-
phism in K(𝑅) is a quasi-isomorphism as defined above; this is in line with 4.3.14.

6.1.13 Proposition. Let { [𝛼𝑢] : 𝑀𝑢 → 𝑁𝑢}𝑢∈𝑈 be a family of morphisms in K(𝑅).
If [𝛼𝑢] is a quasi-isomorphism for every 𝑢 ∈ 𝑈, then the coproduct

∐
𝑢∈𝑈 [𝛼𝑢] and

the product
∏
𝑢∈𝑈 [𝛼𝑢] are quasi-isomorphisms.

Proof. The assertions follow immediately from 4.2.11 and 6.1.10. □

Universal Property

6.1.14 Definition. A functor F: C(𝑅) → U is called homotopy invariant if F(𝛼) =
F(𝛽) holds for all homotopic morphisms 𝛼 ∼ 𝛽 in C(𝑅).
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6.1 Construction of K 259

A functor G: C(𝑅)op → V is called homotopy invariant if G(𝛼) = G(𝛽) holds for
all homotopic morphisms 𝛼 ∼ 𝛽 in C(𝑅)op; cf. 4.3.14.

Notice that a functorC(𝑅)op → V is homotopy invariant if and only if the opposite
functor C(𝑅) → Vop is homotopy invariant as defined in the first part of 6.1.14.

6.1.15 Example. Homology H: C(𝑅) → C(𝑅) is homotopy invariant by 2.2.26.

The canonical functor Q: C(𝑅) → K(𝑅) from 6.1.3 has the universal property
described in the next theorem.

6.1.16 Theorem. Let U be a category and F: C(𝑅) → U a functor. If F is homotopy
invariant, then there exists a unique functor ¤F that makes the following diagram
commutative,

C(𝑅)

Q
��

F
// U

K(𝑅) .
¤F

==

For every 𝑅-complex 𝑀 there is an equality ¤F(𝑀) = F(𝑀), and for every morphism
[𝛼] in K(𝑅) one has ¤F( [𝛼]) = F(𝛼). Furthermore, the following assertions hold.

(a) If U is 𝕜-prelinear and F is 𝕜-linear, then ¤F is 𝕜-linear.
(b) If U has products/coproducts and F preserves products/coproducts, then ¤F

preserves products/coproducts.

Proof. Uniqueness of ¤F follows as Q is the identity on objects and full. For existence,
set ¤F(𝑀) = F(𝑀) for every 𝑅-complex 𝑀 and ¤F( [𝛼]) = F(𝛼) for every morphism
𝛼 of 𝑅-complexes; the latter assignment is well-defined as F is homotopy invariant.
Evidently, ¤F is a functor with ¤FQ = F. It remains to prove (a) and (b).

(a): If F is 𝕜-linear, then so is ¤F as the equalities
¤F(𝑥 [𝛼] + [𝛽]) = ¤F( [𝑥𝛼 + 𝛽]) = F(𝑥𝛼 + 𝛽) = 𝑥 F(𝛼) + F(𝛽) = 𝑥 ¤F( [𝛼]) + ¤F( [𝛽])

hold for every pair 𝛼, 𝛽 of parallel morphisms in C(𝑅) and every element 𝑥 in 𝕜.
(b): Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes and 𝑀 its coproduct in C(𝑅)

with injections {𝜀𝑢 : 𝑀𝑢 ↣ 𝑀 }𝑢∈𝑈 . It follows from 6.1.9 that 𝑀 with injections
{ [𝜀𝑢] }𝑢∈𝑈 is the coproduct in K(𝑅). Thus there are commutative diagrams

F(𝑀𝑢) //

F(𝜀𝑢 )
��

∐
𝑢∈𝑈

F(𝑀𝑢)

𝜑
yy

F(𝑀)

and

¤F(𝑀𝑢) //

¤F( [𝜀𝑢 ] )
��

∐
𝑢∈𝑈
¤F(𝑀𝑢)

¤𝜑
zz

¤F(𝑀) ,

where 𝜑 and ¤𝜑 are the canonical morphisms. By assumption, 𝜑 is an isomorphism,
and as the two diagrams are identical, ¤𝜑 is an isomorphism as well. That is, ¤F
preserves coproducts. The assertion about products is proved similarly. □
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260 6 The Derived Category

Remark. Theorem 6.1.16 shows that K(𝑅) has the universal property of a quotient category
discussed in the beginning of this section. Together with E 6.1.1 the theorem also shows that K(𝑅)
is the localization of C(𝑅) with respect to the collection of homotopy equivalences. See also
the introduction to Sect. 6.4 where we treat the further localization of K(𝑅) with respect to the
collection of quasi-isomorphisms; this leads to the derived category.

By the universal property above, certain functors on C(𝑅) induce functors on
K(𝑅), and natural transformations follow along.

6.1.17 Proposition. Let E, F: C(𝑅) → U be homotopy invariant functors and con-
sider the induced functors ¤E, ¤F: K(𝑅) → U; see 6.1.16. Every natural transforma-
tion 𝜏 : E→ F induces a natural transformation ¤𝜏 : ¤E→ ¤F given by ¤𝜏𝑀 = 𝜏𝑀 for
every 𝑅-complex 𝑀 .

Proof. For every 𝑅-complex 𝑀 one has ¤E(𝑀) = E(𝑀) and ¤F(𝑀) = F(𝑀), whence
¤𝜏𝑀 = 𝜏𝑀 is a morphism ¤E(𝑀) → ¤F(𝑀). Let [𝛼] : 𝑀 → 𝑁 be a morphism inK(𝑅).
As 𝜏 : E→ F is a natural transformation of functors C(𝑅) → U there are equalities,

¤𝜏𝑁 ¤E( [𝛼]) = 𝜏𝑁 E(𝛼) = F(𝛼)𝜏𝑀 = ¤F( [𝛼]) ¤𝜏𝑀 ,

which show that ¤𝜏 : ¤E→ ¤F is a natural transformation of functors K(𝑅) → U. □

To parse and prove the next result, recall that if F: U→ V is a functor between
categories with products (coproducts), then Fop : Uop → Vop is a functor between
categories with coproducts (products), and F preserves products (coproducts) if and
only if Fop preserves coproducts (products).

6.1.18 Theorem. Let V be a category and G: C(𝑅)op → V a functor. If G is homo-
topy invariant, then there exists a unique functor ¤G that makes the following diagram
commutative,

C(𝑅)op

Qop
𝑅

��

G
// V

K(𝑅)op .

¤G

<<

For every 𝑅-complex 𝑀 there is an equality ¤G(𝑀) = G(𝑀), and for every morphism
[𝛼] in K(𝑅)op one has ¤G( [𝛼]) = G(𝛼). Furthermore, the following assertions hold.

(a) If V is 𝕜-prelinear and G is 𝕜-linear, then ¤G is 𝕜-linear.
(b) If V has products/coproducts and G preserves products/coproducts, then ¤G

preserves products/coproducts.

Proof. Apply 6.1.16 to the functor Gop : C(𝑅) → Vop. □

6.1.19 Proposition. Let G, J : C(𝑅)op → V be homotopy invariant functors and con-
sider the induced functors ¤G, ¤J : K(𝑅)op → V; see 6.1.18. Every natural transforma-
tion 𝜏 : G→ J induces a natural transformation ¤𝜏 : ¤G→ ¤J given by ¤𝜏𝑀 = 𝜏𝑀 for
every 𝑅-complex 𝑀 .

Proof. Apply 6.1.17 to the natural transformation 𝜏op : Jop→ Gop of functors from
C(𝑅) to Vop. □
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Special Case of the Universal Property

It is evident that a homotopy invariant functor C(𝑅) → C(𝑆) preserves homotopy;
see 4.3.12. On the other hand, if a functor C(𝑅) → C(𝑆) preserves homotopy,
then the composite C(𝑅) → C(𝑆) → K(𝑆) is homotopy invariant. We apply the
homotopy category’s universal property in this important special case.

6.1.20 Theorem. Let F: C(𝑅) → C(𝑆) be a functor. If F preserves homotopy, then
there is a unique functor ¥F that makes the next diagram commutative,

C(𝑅) F
//

Q𝑅
��

C(𝑆)

Q𝑆
��

K(𝑅)
¥F
// K(𝑆) .

For every 𝑅-complex 𝑀 there is an equality ¥F(𝑀) = F(𝑀), and for every morphism
[𝛼] in K(𝑅) one has ¥F( [𝛼]) = [F(𝛼)]. Furthermore, the following assertions hold.

(a) If F is 𝕜-linear, then ¥F is 𝕜-linear.
(b) If F preserves products/coproducts, then ¥F preserves products/coproducts.

Proof. As F preserves homotopy, the composite functor Q𝑆F is homotopy invariant.
Thus the existence and the uniqueness of ¥F follow from 6.1.16. In symbols one has
¥F = (Q𝑆F)¤. The value of ¥F on an 𝑅-complex 𝑀 is ¥F(𝑀) = Q𝑆F(𝑀) = F(𝑀)
as Q𝑆 is the identity on objects. The value of ¥F on a morphism [𝛼] in K(𝑅) is
¥F( [𝛼]) = Q𝑆F(𝛼) = [F(𝛼)].

By 6.1.9 the functor Q𝑆 is 𝕜-linear and preserves products/coproducts. Thus, if
F has any of these properties, then so does Q𝑆F, and the assertions in parts (a) and
(b) now follow from the corresponding parts in 6.1.16. □

6.1.21 Proposition. Let E, F: C(𝑅) → C(𝑆) be functors that preserve homotopy
and consider the induced functors ¥E, ¥F: K(𝑅) → K(𝑆); see 6.1.20. Every natural
transformation 𝜏 : E→ F induces a natural transformation ¥𝜏 : ¥E→ ¥F given by ¥𝜏𝑀 =

[𝜏𝑀 ] for every 𝑅-complex 𝑀 .

Proof. Evidently, application of the canonical functor Q: C(𝑆) → K(𝑆) to the natu-
ral transformation 𝜏 yields a natural transformation Q𝜏 = [𝜏] : QE→ QF of functors
C(𝑅) → K(𝑆). By definition, ¥E and ¥F are the functors K(𝑅) → K(𝑆) induced by
QE and QF; see 6.1.16. Thus 6.1.17 gives the desired conclusion. □

We shall often abuse notation and write F for the induced functor ¥F from 6.1.20.

6.1.22 Example. Let F: M(𝑅) →M(𝑆) be an additive functor. It extends by 2.1.48
to a functor C(𝑅) → C(𝑆) which by 4.3.18 preserves homotopy. Thus, it induces by
6.1.20 a functor F: K(𝑅) → K(𝑆).

6.1.23 Example. The restriction of scalars functors from 1.1.12 associated to a ring
homomorphism 𝜑 : 𝑅 → 𝑆 induce by 6.1.22 functors,
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262 6 The Derived Category

res𝑆𝑅 : K(𝑆) −→ K(𝑅) and res𝑆
o

𝑅o : K(𝑆o) −→ K(𝑅o) .

These functors are often suppressed; even when they are not we suppress the ‘op’ on
the opposite functors K(𝑆)op → K(𝑅)op and K(𝑆o)op → K(𝑅o)op to avoid clutter.

To parse the next result recall the definitions in 4.2.8.

6.1.24 Proposition. Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism. The restriction of sca-
lars functors res𝑆

𝑅
: K(𝑆) → K(𝑅) and res𝑆o

𝑅o : K(𝑆o) → K(𝑅o) preserve and reflect
quasi-isomorphisms.

Proof. The assertion follows immediately from 4.2.14 and 6.1.12. □

6.1.25 Example. In contrast to the restriction of scalars functor on the category
of complexes, see 2.1.49, restriction of scalars on the level of homotopy categories
need not be conservative and hence not faithful, see 1.1.46. For example, consider the
structure map 𝕜 → 𝕜 [𝑥]. The k[𝑥]-complex 𝑀 = 0 −−→ k[𝑥] 𝑥−−→ k[𝑥] −−→ k −−→ 0
is acyclic but not contractible, see 2.2.27. Thus, by 6.1.7, the morphism 𝑀 → 0 is
not an isomorphism in K(k[𝑥]); however, viewed as a k-complex, 𝑀 is contractible
by 1.3.17 and hence 𝑀 → 0 is an isomorphism in K(𝕜).

6.1.26 Example. Let 𝑛 be an integer and recall from 2.5.24 and 2.5.25 that soft
truncation above ( )Ď𝑛 and soft truncation below ( )Ě𝑛 are 𝕜-linear endofunctors
on C(𝑅). It follows from 4.3.21 that they preserve homotopy, so by 6.1.20 they yield
𝕜-linear endofunctors on K(𝑅), also denoted ( )Ď𝑛 and ( )Ě𝑛.

6.1.27 Theorem. Let G: C(𝑅)op → C(𝑆) be a functor. If G preserves homotopy,
then there is a unique functor ¥G that makes the next diagram commutative,

C(𝑅)op G
//

Qop
𝑅

��

C(𝑆)

Q𝑆
��

K(𝑅)op ¥G
// K(𝑆) .

For every 𝑅-complex 𝑀 there is an equality ¥G(𝑀) = G(𝑀), and for every morphism
[𝛼] in K(𝑅)op one has ¥G( [𝛼]) = [G(𝛼)]. Further, the following assertions hold.

(a) If G is 𝕜-linear, then ¥G is 𝕜-linear.
(b) If G preserves products/coproducts, then ¥G preserves products/coproducts.

Proof. Proceed as in the proof of 6.1.20, only apply 6.1.18 in place of 6.1.16. □

6.1.28 Proposition. Let G, J : C(𝑅)op → C(𝑆) be functors that preserve homotopy
and consider the induced functors ¥G, ¥J : K(𝑅)op → K(𝑆); see 6.1.27. Every natural
transformation 𝜏 : G→ J induces a natural transformation ¥𝜏 : ¥G→ ¥J given by ¥𝜏𝑀 =

[𝜏𝑀 ] for every 𝑅-complex 𝑀 .

Proof. Proceed as in the proof of 6.1.21, only apply 6.1.19 in place of 6.1.17. □

We shall often abuse notation and write G for the induced functor ¥G from 6.1.27.
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6.1.29 Example. Let G: M(𝑅)op →M(𝑆) be an additive functor. It extends by
2.1.48 to a functor C(𝑅)op → C(𝑆) which by 4.3.18 preserves homotopy. Thus, it
induces by 6.1.27 a functor G: K(𝑅)op → K(𝑆).

6.1.30 Lemma. Let C(𝑅) E−−→ C(𝑆) F−−→ U
T−−→ V be functors where E preserves

homotopy and F is homotopy invariant. The functor TFE is then homotopy invariant,
and the induced functor K(𝑅) → V is T ¤F ¥E; in symbols, (TFE)¤ = T ¤F ¥E .

In particular, one has (TF)¤ = T ¤F and (FE)¤ = ¤F ¥E .

Proof. Evidently, TFE is homotopy invariant, and the induced functor (TFE)¤ is
the unique functor with (TFE)¤Q𝑅 = TFE. As one has T ¤F ¥E Q𝑅 = T ¤FQ𝑆E = TFE,
the assertion follows. □

6.1.31 Lemma. Let C(𝑄) E−−→ C(𝑅) F−−→ C(𝑆) be functors that preserve homotopy.
The functor K(𝑄) → K(𝑆) induced by FE is ¥F ¥E; in symbols, (FE)¥ = ¥F ¥E .

Proof. The induced functor (FE)¥ is the unique functor with (FE)¥Q𝑄 = Q𝑆FE.
As one has ¥F ¥E Q𝑄 = ¥F Q𝑅E = Q𝑆FE, the assertion follows. □

Adjoint Functors

To parse the next result, recall 6.1.20 and 6.1.21.

6.1.32 Lemma. Consider an adjunction,

C(𝑆)
F
//
C(𝑅) ,

G
oo

with unit 𝛼 : IdC(𝑆) → GF and counit 𝛽 : FG→ IdC(𝑅) . If F and G preserve homo-
topy, then the induced functors,

K(𝑆)
¥F
//
K(𝑅) ,

¥G
oo

is an adjunction with unit ¥𝛼 : IdK(𝑆) → ¥G ¥F and counit ¥𝛽 : ¥F ¥G→ IdK(𝑅) .

Proof. For the unit and counit of the given adjunction one has the zigzag identities
G 𝛽 ◦ 𝛼G = 1G and 𝛽 F ◦F𝛼 = 1F. It follows, cf. 6.1.31, that ¥G ¥𝛽 ◦ ¥𝛼 ¥G = 1 ¥G and
¥𝛽 ¥F ◦ ¥F ¥𝛼 = 1¥F hold, which is equivalent to saying that ( ¥F, ¥G) is an adjunction with
unit ¥𝛼 and counit ¥𝛽. □

To parse the next result, recall 6.1.27 and 6.1.28.

6.1.33 Lemma. Consider an adjunction,

C(𝑆)
F
//
C(𝑅)op ,

G
oo
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264 6 The Derived Category

with unit 𝛼 : IdC(𝑆) → GF and counit 𝛽 : FG→ IdC(𝑅)op . If F and G preserve ho-
motopy, then the induced functors,

K(𝑆)
¥F
//
K(𝑅)op ,

¥G
oo

is an adjunction with unit ¥𝛼 : IdK(𝑆) → ¥G ¥F and counit ¥𝛽 : ¥F ¥G→ IdK(𝑅)op .

Proof. The assertions follow from an argument similar to the proof of 6.1.32. □

6.1.34. The opposite of the counit 𝛽 : FG→ IdC(𝑅)op from 6.1.33 is a natural trans-
formation 𝛽op : IdC(𝑅) → Fop Gop. In concrete settings it is often more natural to
consider 𝛽op instead of 𝛽. Note that one has (𝛽op)¥ = ( ¥𝛽)op.

Exercises

E 6.1.1 Show that a functor F: C(𝑅) → U is homotopy invariant if and only if F(𝛼) is an
isomorphism in U for every homotopy equivalence 𝛼 in C(𝑅) . Hint: Proof of 4.3.13.

E 6.1.2 Let 𝑃 be a semi-projective 𝑅-complex and 𝐼 a semi-injective 𝑅-complex. Show that if
𝛼 is a quasi-isomorphism, then K(𝑅) (𝑃, 𝛼) and K(𝑅) (𝛼, 𝐼 ) are isomorphisms.

E 6.1.3 Show that the homotopy category K(ℤ) is not Abelian.
E 6.1.4 Show that homology, H, and shift, Σ, induce commuting functors on K(𝑅) .
E 6.1.5 Assume that 𝑅 is semi-simple. Show that the categories K(𝑅) and Mgr (𝑅) are equiv-

alent and conclude that K(𝑅) is Abelian.
E 6.1.6 Show that Mgr (𝑅) is isomorphic to a full subcategory of K(𝑅) .
E 6.1.7 Let 𝛼 : 𝑀 → 𝑁 be a morphism in K(𝑅) . Show that for any two semi-projective reso-

lutions 𝜋 : 𝑃 ≃−→ 𝑀 and 𝜆 : 𝐿 ≃−→ 𝑁 there is a unique morphism �̃� : 𝑃 → 𝐿 in K(𝑅)
with 𝛼𝜋 = 𝜆�̃�.

E 6.1.8 Let 𝛼 : 𝑀 → 𝑁 be a morphism in K(𝑅) . Show that for any two semi-injective reso-
lutions 𝜄 : 𝑀 ≃−→ 𝐼 and 𝜀 : 𝑁 ≃−→ 𝐸 there is a unique morphism �̃� : 𝐼 → 𝐸 in K(𝑅)
with 𝜀𝛼 = �̃� 𝜄.

E 6.1.9 Consider the full subcategories of K(𝑅) defined by specifying their objects as follows,
K(Prj𝑅) = {𝑃 ∈ K(𝑅) | 𝑃 is a complex of projective modules} and
Kprj (𝑅) = {𝑃 ∈ K(𝑅) | 𝑃 is semi-projective} .

Show that both of these categories have coproducts and that Kprj (𝑅) has products.
E 6.1.10 Consider the full subcategories of K(𝑅) defined by specifying their objects as follows,

K(Inj𝑅) = { 𝐼 ∈ K(𝑅) | 𝐼 is a complex of injective modules} and
Kinj (𝑅) = { 𝐼 ∈ K(𝑅) | 𝐼 is semi-injective} .

Show that both of these categories have products and that Kinj (𝑅) has coproducts.

6.2 Triangulation of KKK

Synopsis. Strict triangle; distinguished triangle; quasi-triangulated functor/transformation; univer-
sal property of K revisited; homology.

The mapping cone construction is the key to the triangulated structure on the homo-
topy category. The definition of a triangulated category is recalled in Appn. E
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6.2.1. By 4.3.16 and 6.1.20 there is a unique 𝕜-linear endofunctor ¥Σ on K(𝑅) that
makes the following diagram commutative,

C(𝑅) Σ
//

Q
��

C(𝑅)

Q
��

K(𝑅) //
¥Σ
// K(𝑅) .

By 6.1.31 it is an isomorphism with inverse induced by Σ−1 : C(𝑅) → C(𝑅). By
the usual abuse of notation, the functor ¥Σ is written Σ or, occasionally, ΣK. For a
morphism [𝛼] in K(𝑅) one has ΣK [𝛼] = [Σ𝛼].

Consider the 𝕜-linear category K(𝑅), see 6.1.9, equipped with the 𝕜-linear auto-
morphism Σ = ΣK. One may now speak of candidate triangles in K(𝑅); cf. E.1.

6.2.2 Lemma. Let 𝛼 : 𝑀 → 𝑁 be a morphism in C(𝑅). The image of the diagram

𝑀
𝛼−−−→ 𝑁

(
1𝑁
0

)
−−−−−→ Cone𝛼 ( 0 1Σ𝑀 )−−−−−−−→ Σ𝑀

under the canonical functor Q: C(𝑅) → K(𝑅) is a candidate triangle in K(𝑅).

Proof. It must be proved that the three composites in C(𝑅),

𝜆 =

(
1𝑁
0

)
𝛼 =

(
𝛼

0

)
, 𝜇 =

(
0 1Σ𝑀

) (
1𝑁
0

)
= 0 , and 𝜈 = (Σ𝛼)

(
0 1Σ𝑀

)
=

(
0 Σ𝛼

)
are null-homotopic. Since 𝜇 is even zero in C(𝑅), one is left to consider 𝜆 and 𝜈.
Define degree 1 homomorphisms 𝜚 : 𝑀 → Cone𝛼 and 𝜏 : Cone𝛼→ Σ𝑁 by

𝜚 =

(
0
𝜍𝑀1

)
and 𝜏 =

(
𝜍𝑁1 0

)
.

As 𝜍1 is a degree 1 chain map and the diagram (2.2.5.1) is commutative, it follows
that there are equalities 𝜕Cone 𝛼𝜚 + 𝜚𝜕𝑀 = 𝜆 and 𝜕Σ𝑁 𝜏 + 𝜏𝜕Cone 𝛼 = 𝜈. Indeed, one
has (

𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

) (
0
𝜍𝑀1

)
+

(
0
𝜍𝑀1

)
𝜕𝑀 =

(
𝛼

0

)
and

𝜕Σ𝑁
(
𝜍𝑁1 0

)
+

(
𝜍𝑁1 0

) (
𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

)
=

(
0 Σ𝛼

)
. □

6.2.3 Definition. A candidate triangle in K(𝑅) of the form considered in 6.2.2 is
called a strict triangle. A candidate triangle in K(𝑅) that is isomorphic, in the sense
of E.1, to a strict triangle is called a distinguished triangle.

6.2.4 Theorem. The homotopy category K(𝑅), equipped with the automorphism Σ

and the collection of distinguished triangles defined in 6.2.3, is triangulated.
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Proof. We verify the axioms in E.2/E.3.
(TR0): Evidently, the collection of distinguished triangles is closed under iso-

morphisms. Furthermore, it follows from 4.3.31 and 6.1.7 that application of the
canonical functor Q: C(𝑅) → K(𝑅) to the diagram in C(𝑅),

𝑀
1𝑀−−−→ 𝑀

(
1𝑀
0

)
−−−−−→ Cone 1𝑀 ( 0 1Σ𝑀 )−−−−−−−→ Σ𝑀 ,

yields, up to isomorphism in K(𝑅), the candidate triangle 𝑀 1𝑀−−→ 𝑀 −−→ 0 −−→ Σ𝑀

which, therefore, is distinguished.
(TR1): By the definition of morphisms in K(𝑅), every morphism in this category

fits into a strict, and hence distinguished, triangle; see 6.2.2.
(TR2′): By E.5 it it sufficient to verify (TR2). Thus, let

Δ = 𝑀 ′
𝛼′−−−→ 𝑁 ′

𝛽′−−−→ 𝑋 ′
𝛾′−−−→ Σ𝑀 ′

be a distinguished triangle in K(𝑅). It must be shown that the candidate triangles

Δ+ = 𝑁 ′
𝛽′−−→ 𝑋

𝛾′−−→ Σ𝑀 ′
−Σ𝛼′−−−−−→ Σ𝑁 ′

and
Δ− = Σ−1𝑋 ′

−Σ−1𝛾′−−−−−→ 𝑀 ′
𝛼′−−→ 𝑁 ′

𝛽′−−→ 𝑋 ′

are distinguished. Up to isomorphism, Δ is given by application of the canonical
functor Q to a diagram in C(𝑅) of the form,

𝑀
𝛼−−−→ 𝑁

(
1𝑁
0

)
−−−−−→ Cone𝛼 ( 0 1Σ𝑀 )−−−−−−−→ Σ𝑀 .

Thus, the candidate trianglesΔ+ andΔ− are, up to isomorphism, given by application
of Q to the following diagrams in C(𝑅),

and
𝑁

(
1𝑁
0

)
// Cone𝛼

( 0 1Σ𝑀 )
// Σ𝑀

−Σ𝛼
// Σ𝑁 ,

Σ−1Cone𝛼
( 0 −1𝑀 )

// 𝑀
𝛼
// 𝑁

(
1𝑁
0

)
// Cone𝛼 .

These two diagrams in C(𝑅) are the top rows in (★) and (⋄) below. By definition,
the bottom rows in (★) and (⋄) give strict triangles in K(𝑅) when the functor Q is
applied; see 6.2.3. Thus, to show that Δ+ and Δ− are distinguished triangles in K(𝑅),
it suffices to argue that (★) and (⋄) are commutative up to homotopy, and that the
vertical morphisms in both diagrams are homotopy equivalences.

(★)

𝑁
𝜀 =

(
1𝑁
0

)
// Cone𝛼

( 0 1Σ𝑀 )
// Σ𝑀

𝜑 =

( 0
1Σ𝑀
−Σ𝛼

)
��

−Σ𝛼
// Σ𝑁

𝑁
𝜀 =

(
1𝑁
0

)
// Cone𝛼

(
1𝑁 0
0 1Σ𝑀
0 0

)
// Cone 𝜀

( 0 0 1Σ𝑁 )
// Σ𝑁
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(⋄)

Σ−1Cone𝛼
𝜋 = ( 0 −1𝑀 )

// 𝑀
𝛼

// 𝑁

𝜓 =

( 0
1𝑁
0

)
��

(
1𝑁
0

)
// Cone𝛼

Σ−1Cone𝛼
𝜋 = ( 0 −1𝑀 )

// 𝑀

(
1𝑀
0
0

)
// Cone 𝜋

(
0 1𝑁 0
0 0 1Σ𝑀

)
// Cone𝛼

First consider the diagram (★) and let 𝜗 : Cone 𝜀 → Σ𝑀 be the map (0 1Σ𝑀 0).
Note that 𝜑 and 𝜗 are morphisms, as one has

𝜕Cone 𝜀𝜑 =
©«
𝜕𝑁 𝛼𝜍Σ𝑀−1 𝜍Σ𝑁−1
0 𝜕Σ𝑀 0
0 0 𝜕Σ𝑁

ª®¬ ©«
0

1Σ𝑀
−Σ𝛼

ª®¬ =
©«

0
1Σ𝑀
−Σ𝛼

ª®¬ 𝜕Σ𝑀 = 𝜑𝜕Σ𝑀

and

𝜕Σ𝑀𝜗 =
(
0 𝜕Σ𝑀 0

)
=

(
0 1Σ𝑀 0

) ©«
𝜕𝑁 𝛼𝜍Σ𝑀−1 𝜍Σ𝑁−1
0 𝜕Σ𝑀 0
0 0 𝜕Σ𝑁

ª®¬ = 𝜗𝜕Cone 𝜀 .

Next we argue that 𝜑 is a homotopy equivalence with homotopy inverse 𝜗.
Evidently one has 𝜗𝜑 = 1Σ𝑀 , so it remains to show that the morphism

1Cone 𝜀 − 𝜑𝜗 =
©«
1𝑁 0 0
0 1Σ𝑀 0
0 0 1Σ𝑁

ª®¬ − ©«
0

1Σ𝑀
−Σ𝛼

ª®¬
(
0 1Σ𝑀 0

)
=

©«
1𝑁 0 0
0 0 0
0 Σ𝛼 1Σ𝑁

ª®¬
is null-homotopic. The degree 1 homomorphism

𝜎 : Cone 𝜀 −→ Cone 𝜀 given by 𝜎 =
©«

0 0 0
0 0 0
𝜍𝑁1 0 0

ª®¬
is the desired homotopy. Indeed, one has

©«
𝜕𝑁 𝛼𝜍Σ𝑀−1 𝜍Σ𝑁−1
0 𝜕Σ𝑀 0
0 0 𝜕Σ𝑁

ª®¬ ©«
0 0 0
0 0 0
𝜍𝑁1 0 0

ª®¬ + ©«
0 0 0
0 0 0
𝜍𝑁1 0 0

ª®¬ ©«
𝜕𝑁 𝛼𝜍Σ𝑀−1 𝜍Σ𝑁−1
0 𝜕Σ𝑀 0
0 0 𝜕Σ𝑁

ª®¬ =
©«
1𝑁 0 0
0 0 0
0 Σ𝛼 1Σ𝑁

ª®¬ ;

that is, 𝜕Cone 𝜀𝜎+𝜎𝜕Cone 𝜀 = 1Cone 𝜀 −𝜑𝜗 holds. Thus 𝜗 is a homotopy inverse of 𝜑.
Now we turn to the issue of commutativity of (★). The left- and right-hand squares

in (★) are even commutative in C(𝑅). For the commutativity, up to homotopy, of the
middle square, it must be proved that the morphism 𝛽 : Cone𝛼→ Cone 𝜀, given by

𝛽 =
©«
1𝑁 0
0 1Σ𝑀
0 0

ª®¬ − ©«
0

1Σ𝑀
−Σ𝛼

ª®¬
(
0 1Σ𝑀

)
=

©«
1𝑁 0
0 0
0 Σ𝛼

ª®¬ ,
is null-homotopic. Consider the degree 1 homomorphism,
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𝜏 : Cone𝛼 −→ Cone 𝜀 given by 𝜏 =
©«

0 0
0 0
𝜍𝑁1 0

ª®¬ .
It is straightforward to verify the equality

©«
𝜕𝑁 𝛼𝜍Σ𝑀−1 𝜍Σ𝑁−1
0 𝜕Σ𝑀 0
0 0 𝜕Σ𝑁

ª®¬ ©«
0 0
0 0
𝜍𝑁1 0

ª®¬ + ©«
0 0
0 0
𝜍𝑁1 0

ª®¬
(
𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

)
=

©«
1𝑁 0
0 0
0 Σ𝛼

ª®¬ ;

that is, 𝜕Cone 𝜀𝜏 + 𝜏𝜕Cone 𝛼 = 𝛽 holds, and hence 𝛽 is null-homotopic.
Similar arguments show that the diagram (⋄) is commutative up to homotopy and

that 𝜓 is a homotopy equivalence with homotopy inverse 𝜉 = (𝛼 1𝑁 0).
(TR4′): Consider a diagram in C(𝑅), commutative up to homotopy,

(♭)
𝑀

𝜑

��

𝛼
// 𝑁

𝜓

��

(
1𝑁
0

)
// Cone𝛼

( 0 1Σ𝑀 )
// Σ𝑀

Σ𝜑

��

𝑀 ′
𝛼′

// 𝑁 ′

(
1𝑁 ′

0

)
// Cone𝛼′

( 0 1Σ𝑀′ )
// Σ𝑀 ′ .

To verify (TR4′) one has, in view of the definition of distinguished triangles in
K(𝑅), to establish a morphism 𝜒 : Cone𝛼→ Cone𝛼′ with the following properties.
In the first place, 𝜒 makes the diagram (♭) commutative up to homotopy; observe
that (Q(𝜑),Q(𝜓),Q(𝜒)) is then a morphism of distinguished triangles in K(𝑅).
Secondly, the mapping cone candidate triangle of (Q(𝜑),Q(𝜓),Q(𝜒)), must be a
distinguished triangle in K(𝑅); it is given by application of Q to the diagram in
C(𝑅),

(†)
𝑀 ′

⊕
𝑁

(
𝛼′ 𝜓

0 −1𝑁
0 0

)
−−−−−−−−−→

𝑁 ′

⊕
Cone𝛼

©«
1𝑁 ′ 𝜒11 𝜒12

0 𝜒21 𝜒22

0 0 −1Σ𝑀

ª®¬−−−−−−−−−−−−−−→
Cone𝛼′
⊕
Σ𝑀

(
0 1Σ𝑀′ Σ𝜑
0 0 −Σ𝛼

)
−−−−−−−−−−−−−→

Σ𝑀 ′

⊕
Σ𝑁

,

where the morphisms 𝜒𝑖 𝑗 are the entries in 𝜒 considered as a 2 × 2 matrix. First we
construct a morphism 𝜒 that makes (♭) commutative up to homotopy. By assumption,
there is a degree 1 homomorphism 𝜎 : 𝑀 → 𝑁 ′ such that the equality 𝜓𝛼 − 𝛼′𝜑 =

𝜕𝑁
′
𝜎 + 𝜎𝜕𝑀 holds. Consider the degree 0 homomorphism,

𝜒 : Cone𝛼 −→ Cone𝛼′ given by 𝜒 =

(
𝜓 𝜎𝜍Σ𝑀−1
0 Σ𝜑

)
.

It is straightforward verify that it is a morphism; that is, one has

𝜕Cone 𝛼′ 𝜒 =

(
𝜕𝑁

′
𝛼′𝜍Σ𝑀

′

−1
0 𝜕Σ𝑀

′

) (
𝜓 𝜎𝜍Σ𝑀−1
0 Σ𝜑

)
=

(
𝜓 𝜎𝜍Σ𝑀−1
0 Σ𝜑

) (
𝜕𝑁 𝛼𝜍Σ𝑀−1
0 𝜕Σ𝑀

)
= 𝜒𝜕Cone 𝛼 .

Notice that 𝜒 makes the middle and right-hand squares in (♭) commutative.
Finally, to see that application of the functor Q to (†) yields a distinguished

triangle in K(𝑅), note that (†) is the top row in the following diagram, and that the
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bottom row yields a strict triangle in K(𝑅) when Q is applied. Thus, it suffices to
argue that the diagram below is commutative up to homotopy, and that the vertical
morphisms are homotopy equivalences.

𝑀 ′

⊕
𝑁

𝜃 =

(
𝛼′ 𝜓

0 −1𝑁
0 0

)
//

𝑁 ′

⊕
Cone𝛼

©«
1𝑁 ′ 𝜓 𝜎𝜍Σ𝑀

−1
0 0 Σ𝜑

0 0 −1Σ𝑀

ª®¬
//

Cone𝛼′
⊕
Σ𝑀

(
0 1Σ𝑀′ Σ𝜑
0 0 −Σ𝛼

)
//

𝜉 =

©«
1𝑁 ′ 0 𝜎𝜍Σ𝑀

−1
0 0 0
0 0 −1Σ𝑀
0 1Σ𝑀′ Σ𝜑
0 0 −Σ𝛼

ª®®®®¬
��

Σ𝑀 ′

⊕
Σ𝑁

𝑀 ′

⊕
𝑁

𝜃 =

(
𝛼′ 𝜓

0 −1𝑁
0 0

)
//

𝑁 ′

⊕
Cone𝛼

©«
1𝑁 ′ 0 0

0 1𝑁 0
0 0 1Σ𝑀
0 0 0
0 0 0

ª®®®¬
// Cone 𝜃 (

0 0 0 1Σ𝑀′ 0
0 0 0 0 1Σ𝑁

) // Σ𝑀
′

⊕
Σ𝑁

The differentials on the complexes Cone𝛼′ ⊕ Σ𝑀 and Cone 𝜃 are given by

©«
𝜕𝑁

′
𝛼′𝜍Σ𝑀

′

−1 0
0 𝜕Σ𝑀

′ 0
0 0 𝜕Σ𝑀

ª®®¬ and

©«

𝜕𝑁
′ 0 0 𝛼′𝜍Σ𝑀

′

−1 𝜓𝜍Σ𝑁−1
0 𝜕𝑁 𝛼𝜍Σ𝑀−1 0 −𝜍Σ𝑁−1
0 0 𝜕Σ𝑀 0 0
0 0 0 𝜕Σ𝑀

′ 0
0 0 0 0 𝜕Σ𝑁

ª®®®®®®¬
.

Consider the degree 0 homomorphism,

𝜂 : Cone 𝜃 −→ Cone𝛼′ ⊕ Σ𝑀 given by 𝜂 =
©«
1𝑁 ′ 𝜓 𝜎𝜍Σ𝑀−1 0 0
0 0 Σ𝜑 1Σ𝑀′ 0
0 0 −1Σ𝑀 0 0

ª®¬ .
It is straightforward to verify that 𝜉 and 𝜂 are morphisms. Evidently there is an equal-
ity 𝜂𝜉 = 1Cone 𝛼′⊕Σ𝑀 . Furthermore, the morphism 𝜉𝜂− 1Cone 𝜃 is null-homotopic, as
the degree 1 homomorphism

𝜏 : Cone 𝜃 −→ Cone 𝜃 given by 𝜏 =

©«
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 𝜍𝑁1 0 0 0

ª®®®®®¬
satisfies the identity 𝜕Cone 𝜃𝜏 + 𝜏𝜕Cone 𝜃 = 𝜉𝜂 − 1Cone 𝜃 . Hence 𝜉 is a homotopy
equivalence with homotopy inverse 𝜂.

The left-hand and right-hand squares in the diagram are commutative. The dia-
gram’s middle square is commutative up to homotopy; indeed, the difference mor-
phism 𝛾 : 𝑁 ′ ⊕ Cone𝛼→ Cone 𝜃, given by
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𝛾 =

©«
1𝑁 ′ 0 𝜎𝜍Σ𝑀−1
0 0 0
0 0 −1Σ𝑀
0 1Σ𝑀′ Σ𝜑

0 0 −Σ𝛼

ª®®®®®¬
©«
1𝑁 ′ 𝜓 𝜎𝜍Σ𝑀−1
0 0 Σ𝜑

0 0 −1Σ𝑀
ª®¬ −

©«
1𝑁 ′ 0 0
0 1𝑁 0
0 0 1Σ𝑀
0 0 0
0 0 0

ª®®®®®¬
=

©«
0 𝜓 0
0 −1𝑁 0
0 0 0
0 0 0
0 0 Σ𝛼

ª®®®®®¬
,

is null-homotopic. This follows as

𝜚 : 𝑁 ′ ⊕ Cone𝛼 −→ Cone 𝜃 given by 𝜚 =

©«
0 0 0
0 0 0
0 0 0
0 0 0
0 𝜍𝑁1 0

ª®®®®®¬
is a degree 1 homomorphism with 𝜕Cone 𝜃 𝜚 + 𝜚𝜕𝑁 ′⊕ Cone 𝛼 = 𝛾. □

The triangulated structure on K(𝑅) is by 6.2.3 based on triangles that come from
mapping cone sequences; the next lemma shows that starting from mapping cylinder
sequences, see 4.3.9, would yield the same structure. This is used later in the chapter
to show that every short exact sequence of complexes can be completed to a triangle
in the derived category.

6.2.5 Lemma. Let 𝛼 : 𝑀 → 𝑁 be a morphism in C(𝑅). The image of the diagram

𝑀

𝜄 =

( 0
0

1𝑀

)
// Cyl𝛼

𝛼 = ( 1𝑁 0 𝛼 )≊

��

𝜋 =

(
1𝑁 0 0
0 1Σ𝑀 0

)
// Cone𝛼

𝜛 = ( 0 1Σ𝑀 )
// Σ𝑀

𝑀
𝛼

// 𝑁
𝜀 =

(
1𝑁
0

) // Cone𝛼
𝜛 = ( 0 1Σ𝑀 )

// Σ𝑀

under the canonical functor Q: C(𝑅) → K(𝑅) is an isomorphism of candidate
triangles in K(𝑅). In particular, the image of the top row is a distinguished triangle.

Proof. The image of the bottom row is by definition a distinguished triangle in
K(𝑅). The diagram’s left- and right-hand squares are commutative. Consider

𝜎 : Cyl𝛼 −→ Cone𝛼 given by
(
0 0 0
0 0 −𝜍𝑀1

)
.

It is a degree 1 homomorphism, and one has

𝜕Cone 𝛼𝜎 + 𝜎𝜕Cyl 𝛼 =

(
0 0 −𝛼
0 1Σ𝑀 0

)
= 𝜋 − 𝜀𝛼 ,

so the middle square is commutative up to homotopy. Finally, 𝛼 is a homotopy
equivalence by 4.3.10, so Q(𝛼) is an isomorphism. □
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Quasi-Triangulated Functors

We introduce a condition that ensures that a functor from C(𝑅) to a triangulated
category induces a triangulated functor on K(𝑅).

6.2.6 Definition. Let (U,ΣU) be a triangulated category. A functor F: C(𝑅) → U

is called quasi-triangulated if it is additive and there exists a natural isomorphism
𝜙 : FΣ→ ΣUF such for every morphism 𝛼 : 𝑀 → 𝑁 of 𝑅-complexes the diagram

F(𝑀) F(𝛼)−−−−→ F(𝑁)
F
(

1𝑁
0

)
−−−−−−→ F(Cone𝛼) 𝜙𝑀 F( 0 1Σ𝑀 )−−−−−−−−−−−−→ ΣUF(𝑀)

is a distinguished triangle in U.

6.2.7 Example. The canonical functor Q: C(𝑅) → K(𝑅) is quasi-triangulated with
the identity transformation playing the role of 𝜙; see 6.2.1, 6.1.9, and 6.2.3.

6.2.8 Theorem. Let U be a triangulated category and F: C(𝑅) → U a homotopy
invariant functor. If F is quasi-triangulated with associated natural isomorphism
𝜙 : FΣ→ ΣUF, then the induced functor ¤F: K(𝑅) → U, see 6.1.16, is triangulated
with associated natural isomorphism ¤𝜙 : ¤FΣ→ ΣU

¤F.

Proof. As F is additive, so if ¤F by 6.1.16. It follows from 6.1.17 that 𝜙 induces a
natural isomorphism ¤𝜙 : ¤FΣ = (FΣ)¤ → (ΣUF)¤ = ΣU

¤F, where the equalities follows
from 6.1.30 and 6.2.1. By 6.2.3 every distinguished triangle in K(𝑅) is isomorphic
to a strict triangle, that is, to a candidate triangle of the form

𝑀
Q(𝛼)−−−−→ 𝑁

Q
(

1𝑁
0

)
−−−−−−→ Cone𝛼 Q( 0 1Σ𝑀 )−−−−−−−−−→ Σ𝑀 ,

where 𝛼 : 𝑀 → 𝑁 is a morphism in C(𝑅). Thus, it suffices to show that the following
candidate triangle in U is distinguished,

¤F(𝑀)
¤FQ(𝛼)−−−−−−→ ¤F(𝑁)

¤FQ
(

1𝑁
0

)
−−−−−−−→ ¤F(Cone𝛼)

¤𝜙𝑀 ¤FQ( 0 1Σ𝑀 )−−−−−−−−−−−−−→ ΣU
¤F(𝑀) .

However, this diagram is identical to the one in 6.2.6, which is a distinguished
triangle in U as F is assumed to be quasi-triangulated. □

6.2.9 Definition. Let (U,ΣU) be a triangulated category and E, F: C(𝑅) → U quasi-
triangulated functors with associated natural isomorphisms 𝜓 : EΣ→ ΣUE and
𝜙 : FΣ→ ΣUF. A natural transformation 𝜏 : E→ F is called quasi-triangulated if
the following diagram is commutative for every 𝑅-complex 𝑀 ,

E(Σ𝑀)

𝜏Σ𝑀

��

�

𝜓𝑀
// ΣUE(𝑀)

ΣU𝜏
𝑀

��

F(Σ𝑀)
�

𝜙𝑀
// ΣUF(𝑀) .

Thus, 𝜏Σ𝑀 and ΣU𝜏
𝑀 are isomorphic, and the isomorphism is natural in 𝑀 .
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272 6 The Derived Category

For the next statement, recall from E.12 the notion of a triangulated transformation
of triangulated functors.

6.2.10 Proposition. Let U be a triangulated category. Let E, F: C(𝑅) → U be quasi-
triangulated and homotopy invariant functors and 𝜏 : E→ F a natural transforma-
tion. If 𝜏 is quasi-triangulated, then the induced natural transformation ¤𝜏 : ¤E→ ¤F
of triangulated functors, see 6.1.17 and 6.2.8, is triangulated.

Proof. By assumption the functors E and F are quasi-triangulated; denote the asso-
ciated natural isomorphisms by 𝜓 and 𝜙, respectively. By 6.2.8 the induced functors
¤E and ¤F are triangulated with associated natural isomorphisms ¤𝜓 and ¤𝜙. For an
𝑅-complex 𝑀 , the equality ¤𝜙𝑀 ¤𝜏Σ𝑀 = (ΣU ¤𝜏𝑀 ) ¤𝜓𝑀 holds as the left-hand side
is 𝜙𝑀𝜏Σ𝑀 , the right-hand side (ΣU𝜏

𝑀 )𝜓𝑀 , and those two composites agree by
assumption. □

The next definition ensures that also Qop : C(𝑅)op → K(𝑅)op is quasi-triangulated.

6.2.11 Definition. Let (V,ΣV) be a triangulated category. A functor G: C(𝑅)op → V

is called quasi-triangulated if the functor Gop from C(𝑅) to the triangulated category
(Vop,Σ−1

V
), see E.6, is quasi-triangulated in the sense of 6.2.6. Explicitly, this means

that G is an additive functor with a natural isomorphism 𝜓 : Σ−1
V

G→ GΣ of functors
C(𝑅)op → V, such that the diagram

Σ−1
V G(𝑀) G( 0 1Σ𝑀 )𝜓𝑀−−−−−−−−−−−−→ G(Cone𝛼)

G
(

1𝑁
0

)
−−−−−−→ G(𝑁) G(𝛼)−−−−→ G(𝑀)

is a distinguished triangle in V for every morphism 𝛼 : 𝑀 → 𝑁 of 𝑅-complexes.

6.2.12 Theorem. Let V be a triangulated category and G: C(𝑅)op → V a homotopy
invariant functor. If G is quasi-triangulated with associated natural isomorphism
𝜓 : Σ−1

V
G→ GΣ, then the functor ¤G: K(𝑅)op → V, see 6.1.18, is triangulated with

associated natural isomorphism ¤𝜓 : Σ−1
V
¤G→ ¤GΣ.

Proof. Apply 6.2.8 to the functor Gop : C(𝑅) → Vop. □

6.2.13 Definition. Let (V,ΣV) be a triangulated category and G, J : C(𝑅)op → V

quasi-triangulated functors with associated natural isomorphisms 𝜓 : Σ−1
V

G→ GΣ

and 𝜙 :Σ−1
V

J→ JΣ. A natural transformation 𝜏 : G→ J is called quasi-triangulated
if the following diagram is commutative for every 𝑅-complex 𝑀 ,

Σ−1
V

G(𝑀)

Σ−1
V
𝜏𝑀

��

�

𝜓𝑀
// G(Σ𝑀)

𝜏Σ𝑀

��

Σ−1
V

J(𝑀)
�

𝜙𝑀
// J(Σ𝑀) .

Thus, 𝜏Σ𝑀 and Σ−1
V
𝜏𝑀 are isomorphic, and the isomorphism is natural in 𝑀 .
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6.2.14 Proposition. Let V be a triangulated category. Let G, J : C(𝑅)op → V be
quasi-triangulated and homotopy invariant functors and 𝜏 : G→ J a natural transfor-
mation. If 𝜏 is quasi-triangulated, then the induced natural transformation ¤𝜏 : ¤G→ ¤J
of triangulated functors, see 6.1.19 and 6.2.12, is triangulated.

Proof. Apply 6.2.10 to the natural transformation 𝜏op : Jop→ Gop of functors from
C(𝑅) to Vop. □

Universal Property Revisited

We begin with a result that extends 6.2.7.

6.2.15 Lemma. Let F: C(𝑅) → C(𝑆) be a functor. If F is a Σ-functor with associated
natural isomorphism 𝜙 : FΣ→ ΣF, then the functor Q𝑆F: C(𝑅) → K(𝑆) is quasi-
triangulated with associated natural isomorphism Q𝑆𝜙.

Proof. As F is additive, so is Q𝑆F, and evidently Q𝑆 𝜙 is a natural isomorphism
from (Q𝑆F) Σ to Q𝑆ΣF = Σ(Q𝑆F), see 6.2.1. It remains to argue that for every
morphism 𝛼 : 𝑀 → 𝑁 of 𝑅-complexes, the diagram

Q𝑆F(𝑀)
Q𝑆 F(𝛼)
−−−−−−→ Q𝑆F(𝑁)

Q𝑆 F
(

1𝑁
0

)
−−−−−−−→ Q𝑆F(Cone𝛼)

Q𝑆 (𝜙𝑀 )Q𝑆 F( 0 1Σ𝑀 )−−−−−−−−−−−−−−−−−→ ΣQ𝑆F(𝑀)

is a distinguished triangle in K(𝑆). By assumption, see 4.1.8, there exists an isomor-
phism �̆� in C(𝑆) that makes the following diagram commutative,

(★)
F(𝑀) F(𝛼)

// F(𝑁)
F
(

1𝑁
0

)
// F(Cone𝛼)

� �̆�

��

𝜙𝑀 F( 0 1Σ𝑀 )
// ΣF(𝑀)

F(𝑀) F(𝛼)
// F(𝑁)

(
1F(𝑁 )

0

)
// Cone F(𝛼) ( 0 1ΣF(𝑀) )

// ΣF(𝑀) .

By application of the functor Q𝑆 to (★), the top row becomes the diagram in question
and the bottom row becomes a strict triangle by definition; see 6.2.3. It follows that
the relevant diagram is a distinguished triangle. □

The next theorem justifies the notion of Σ-functors.

6.2.16 Theorem. Let F: C(𝑅) → C(𝑆) be a functor that preserves homotopy. If
F is a Σ-functor with associated natural isomorphism 𝜙 : FΣ→ ΣF, then the in-
duced functor ¥F: K(𝑅) → K(𝑆), see 6.1.20, is triangulated with associated natural
isomorphism ¥𝜙 : ¥FΣ→ Σ ¥F .

Proof. It follows from 6.2.15 that Q𝑆F: C(𝑅) → K(𝑆) is a quasi-triangulated func-
tor with associated natural isomorphism Q𝑆 𝜙. Thus 6.2.8 implies that the functor
(Q𝑆F)¤ = ¥F is triangulated with associated natural isomorphism (Q𝑆 𝜙)¤ = ¥𝜙 where
the equalities follow from 6.1.20 and 6.1.21. □
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274 6 The Derived Category

6.2.17 Proposition. Let E, F: C(𝑅) → C(𝑆) be functors that preserve homotopy
and 𝜏 : E→ F a natural transformation. If E and F are Σ-functors and 𝜏 is a Σ-
transformation, then the induced natural transformation ¥𝜏 : ¥E→ ¥F of triangulated
functors, see 6.1.21 and 6.2.16, is triangulated.

Proof. Let E and F be Σ-functors with associated natural isomorphisms 𝜓 and 𝜙.
By 6.2.15 the functors Q𝑆E,Q𝑆F: C(𝑅) → K(𝑆) are quasi-triangulated with associ-
ated natural isomorphisms Q𝑆 𝜓 and Q𝑆 𝜙. The transformation Q𝑆 𝜏 : Q𝑆E→ Q𝑆F
is quasi-triangulated, indeed, if one applies Q𝑆 to the commutative diagram in 4.1.9,
then by 6.2.1 the outcome is the required commutative diagram; see 6.2.9. Now 6.2.10
yields that the natural transformation (Q𝑆 𝜏)¤ = ¥𝜏 from (Q𝑆E)¤ = ¥E to (Q𝑆F)¤ = ¥F
is triangulated; the equalities follow from 6.1.20 and 6.1.21. □

6.2.18 Theorem. Let G: C(𝑅)op → C(𝑆) be a functor that preserves homotopy. If
G is a Σ-functor with associated natural isomorphism 𝜓 : Σ−1G→ GΣ, then the
induced functor ¥G, see 6.1.27, is triangulated with associated natural isomorphism
¥𝜓 : Σ−1 ¥G→ ¥GΣ.

Proof. One proceeds as in the proof of 6.2.16, only one applies 6.1.27, 6.1.28, and
6.2.12 in place of 6.1.20, 6.1.21, and 6.2.8. □

6.2.19 Proposition. Let G, J : C(𝑅)op → C(𝑆) be functors that preserve homotopy
and 𝜏 : G→ J a natural transformation. If G and J are Σ-functors and 𝜏 is a Σ-
transformation, then the induced transformation ¥𝜏 : ¥G→ ¥J of triangulated functors,
see 6.1.28 and 6.2.18, is triangulated.

Proof. One proceeds as in the proof of 6.2.17, only one applies 6.1.27, 6.1.28, and
6.2.14 in place of 6.1.20, 6.1.21, and 6.2.10. □

Homology

Homology induces a functor on the homotopy category. It is a primary example of
a homological functor in the sense of E.15.

6.2.20 Proposition. The homology functor H: C(𝑅) → C(𝑅) maps homotopy equi-
valences to isomorphisms. The induced functor H: K(𝑅) → C(𝑅) from 6.1.16 is
𝕜-linear and it preserves products and coproducts. Moreover, one has HΣ = ΣH.

Proof. The first assertion follows from 4.3.4 and thus H: C(𝑅) → C(𝑅) induces by
6.1.16 a functor ¤H: K(𝑅) → C(𝑅), which outside of this proof is denoted H. By
2.2.15, 3.1.10(d), and 3.1.22(d), the functor H is 𝕜-linear and it preserves products
and coproducts. It follows from 6.1.16 that the induced functor ¤H has the same
properties. Now 6.2.1, the definition of ¤H, and 2.2.15 yield equalities ¤HΣQ = ¤HQΣ =

HΣ = ΣH = Σ ¤HQ, where Q: C(𝑅) → K(𝑅) is the canonical functor from 6.1.3. It
now follows from the uniqueness assertion in 6.1.16 that ¤HΣ = Σ ¤H holds. □
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In the balance of this chapter, we use Greek letters for morphisms in K(𝑅), i.e.
homotopy classes of morphisms in C(𝑅).

The last assertion in the next theorem is akin to 4.2.5 and the Five Lemma E.18
in K(𝑅). The conclusion is weaker than the Five Lemma’s, so is the hypothesis.

6.2.21 Theorem. For every morphism of distinguished triangles in K(𝑅),

𝑀

𝜑

��

𝛼
// 𝑁

𝜓

��

𝛽
// 𝑋

𝜒

��

𝛾
// Σ𝑀

Σ𝜑

��

𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′

𝛾′
// Σ𝑀 ′ ,

there is a commutative diagram in C(𝑅) with exact rows,

(6.2.21.1)
H(𝑀)

H (𝜑)
��

H (𝛼)
// H(𝑁)

H (𝜓)
��

H (𝛽)
// H(𝑋)

H (𝜒)
��

H (𝛾)
// ΣH(𝑀)

ΣH (𝜑)
��

ΣH (𝛼)
// ΣH(𝑁)

ΣH (𝜓)
��

H(𝑀 ′) H (𝛼′ )
// H(𝑁 ′)

H (𝛽′ )
// H(𝑋 ′)

H (𝛾′ )
// ΣH(𝑀 ′) ΣH (𝛼′ )

// ΣH(𝑁 ′) .

In particular, if two of the morphisms 𝜑, 𝜓, and 𝜒 in K(𝑅) are quasi-isomorphisms,
then so is the third.

Proof. By 6.2.20 the functor H: K(𝑅) → C(𝑅) satisfies the identity HΣ = ΣH; it
is, therefore, evident that (6.2.21.1) is commutative. We argue that the upper row is
exact; a parallel argument shows that the lower row is exact as well. By the definition
of distinguished triangles 6.2.3, there is a morphism 𝛼 : 𝑀 → 𝑁 in C(𝑅) and an
isomorphism of candidate triangles in K(𝑅),

𝑀

≊

��

𝛼
// 𝑁

≊

��

𝛽
// 𝑋

≊

��

𝛾
// Σ𝑀

≊

��

𝑀
Q(𝛼)

// 𝑁
Q(𝜀)

// Cone𝛼
Q(𝜛 )

// Σ𝑀 ,

where 𝜀 and 𝜛 denote (1𝑁 0)t and (0 1Σ �̃� ). Thus, the upper row in (6.2.21.1) is
isomorphic to the sequence

H(𝑀) HQ(𝛼)−−−−−−→ H(𝑁) HQ(𝜀)−−−−−−→ H(Cone𝛼) HQ(𝜛 )−−−−−−→ ΣH(𝑀) ΣHQ(𝛼)−−−−−−−→ ΣH(𝑁) .

This sequence is nothing but

H(𝑀) H (𝛼)−−−−→ H(𝑁) H (𝜀)−−−−→ H(Cone𝛼) H (𝜛 )−−−−−→ ΣH(𝑀) ΣH (𝛼)−−−−−−→ ΣH(𝑁) ,

which is exact by 4.2.15.
The final assertion about quasi-isomorphisms follows from commutativity of the

diagram (6.2.21.1) and the Five Lemma 2.1.41. □

Remark. For every integer 𝑚, the homology functor H𝑚 on K(𝑅) is naturally isomorphic to the
functor K(𝑅) (Σ𝑚𝑅, ) . In combination with E.16 and E.17, this can be used to give different
proof of 6.2.21.
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Exercises

E 6.2.1 Show that for every split exact sequence 0 −→ 𝑀
𝛼−→ 𝑁

𝛽−→ 𝑋 −→ 0 in C(𝑅) , the
diagram

𝑀
[𝛼]−−→ 𝑁

[𝛽 ]−−→ 𝑋
0−−→ Σ𝑀

is a distinguished triangle in K(𝑅) .
E 6.2.2 Show that an exact sequence 0 −→ 𝑀

𝛼−→ 𝑁
𝛽−→ 𝑋 −→ 0 of 𝑅-modules is split if and

only if there exists a distinguished triangle 𝑀 [𝛼]−→ 𝑁
[𝛽 ]−→ 𝑋 −→ Σ𝑀 in K(𝑅) . Hint:

E.22.
E 6.2.3 Show that every degreewise split exact sequence 0 −→ 𝑀

𝛼−→ 𝑁
𝛽−→ 𝑋 −→ 0 in C(𝑅)

can be completed to a distinguished triangle in K(𝑅) ,

𝑀
[𝛼]−−→ 𝑁

[𝛽 ]−−→ 𝑋
𝛾−−→ Σ𝑀 ,

with 𝛾 = [−𝜍𝑀1 𝜚𝜕𝑁𝜎 ], where 𝜚 : 𝑁 → 𝑀 and 𝜎 : 𝑋 → 𝑁 are the splitting homo-
morphisms. Compare to E 4.3.8. Hint: See E 4.3.23.

E 6.2.4 Let (T, Σ) be a triangulated category and S a subcategory of T that is closed under
isomorphisms. Show that S is a triangulated subcategory if and only if (S, Σ) is a
triangulated category and the embedding functor S→ T is full and triangulated.

E 6.2.5 LetS be a triangulated subcategory of (T, Σ) and𝑀 → 𝑁 → 𝑋 → Σ𝑀 a distinguished
triangle in T. Show that if two of the objects 𝑀, 𝑁 , and 𝑋 are in S, then the third object
is also in S.

E 6.2.6 Show that the full subcategory of K(𝑅) whose objects are all acyclic 𝑅-complexes is
triangulated.

E 6.2.7 Show that the full subcategories of K(𝑅) defined by specifying their objects as follows:
K⊏ (𝑅) = {𝑀 ∈ K(𝑅) | there is a bounded above complex 𝑀 ′ with 𝑀 ≊ 𝑀 ′ } ,
K⊏⊐ (𝑅) = {𝑀 ∈ K(𝑅) | there is a bounded complex 𝑀 ′ with 𝑀 ≊ 𝑀 ′ } , and
K⊐ (𝑅) = {𝑀 ∈ K(𝑅) | there is a bounded below complex 𝑀 ′ with 𝑀 ≊ 𝑀 ′ } .

are triangulated subcategories of K(𝑅) .
E 6.2.8 Show that the functors ( )Ď𝑛 , ( )Ě𝑛 : K(𝑅) →K(𝑅) preserve products and coprod-

ucts but are not triangulated.
E 6.2.9 Let S be a triangulated subcategory of a triangulated category (T, Σ) . A morphism

𝛼 : 𝑀 → 𝑁 is called S-trivial if in some, equivalently in every, distinguished triangle,
𝑀

𝛼−−→ 𝑁 −→ 𝑋 −→ Σ𝑀 ,

the object 𝑋 belongs to S. Describe the S-trivial morphisms in the category K(𝑅) if S
consists of all acyclic 𝑅-complexes; cf. E 6.2.6.

E 6.2.10 Show that K(Prj𝑅) , see E 6.1.9, is a triangulated category but not a triangulated sub-
category of K(𝑅) . Show that the inclusion functor K(Prj𝑅) →K(𝑅) is triangulated.

E 6.2.11 Show that Kprj (𝑅) is a triangulated subcategory of K(Prj𝑅); see E 6.1.9.
E 6.2.12 Show that K(Inj𝑅) , see E 6.1.10, is a triangulated category but not a triangulated sub-

category of K(𝑅) . Show that the inclusion functor K(Inj𝑅) →K(𝑅) is triangulated.
E 6.2.13 Show that Kinj (𝑅) is a triangulated subcategory of K(Inj𝑅); see E 6.1.10.
E 6.2.14 Give a proof of the Five Lemma in K(𝑅) without using E.18.
E 6.2.15 Give a proof of 6.2.21 using the ideas in the subsequent Remark.
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6.3 Resolutions

Synopsis. Unique lifting property; functoriality of resolution.

To all intents and purposes, the non-uniqueness inherent in the resolutions of com-
plexes and liftings of morphisms disappears in the homotopy category.

Recall that Greek letters, unless otherwise specified, denote morphisms in K(𝑅).

Uniqueness of Liftings

We rephrase 5.2.19–5.2.21 in the language of the homotopy category.

6.3.1 Proposition. Let 𝑃 be a semi-projective 𝑅-complex, 𝛼 : 𝑃→ 𝑁 a morphism,
and 𝛽 : 𝑀 → 𝑁 a quasi-isomorphism in K(𝑅). There exists a unique morphism 𝛾

that makes the following diagram in K(𝑅) commutative,

𝑃
𝛾

~~

𝛼

��

𝑀
𝛽

≃
// 𝑁 .

Proof. This is a special case of 5.2.19 for chain maps of degree zero. □

A surjective quasi-isomorphism to a semi-projective complex has a right inverse
in the category of complexes, see 5.2.10. In the homotopy category, every quasi-
isomorphism to a semi-projective complex has a right inverse. See also B.56.

6.3.2 Corollary. Let 𝛽 : 𝑀 → 𝑃 be a quasi-isomorphism in K(𝑅). If 𝑃 is semi-
projective, then 𝛽 has a right inverse in K(𝑅) which is also a quasi-isomorphism.

Proof. This is a reformulation of 5.2.20. □

6.3.3 Corollary. Let 𝛽 : 𝑃→ 𝑃′ be a quasi-isomorphism in K(𝑅). If 𝑃 and 𝑃′ are
semi-projective, then 𝛽 is an isomorphism in K(𝑅).

Proof. This is a reformulation of 5.2.21. □

6.3.4 Corollary. Let 𝑃 be a semi-projective 𝑅-complex. Consider morphisms

𝑃
𝛼
//

𝛽
// 𝑀

𝜑

≃
// 𝑁

in K(𝑅) where 𝜑 is a quasi-isomorphism. If 𝜑𝛼 = 𝜑𝛽 holds, then one has 𝛼 = 𝛽.

Proof. This is an immediate consequence of 6.3.1. □

We also recast 5.3.22–5.3.24 in the language of the homotopy category.
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278 6 The Derived Category

6.3.5 Proposition. Let 𝐼 be a semi-injective 𝑅-complex, 𝛼 : 𝑀 → 𝐼 a morphism, and
𝛽 : 𝑀 → 𝑁 a quasi-isomorphism in K(𝑅). There exists a unique morphism 𝛾 that
makes the following diagram in K(𝑅) commutative,

𝑀

𝛼

��

𝛽

≃
// 𝑁

𝛾
~~

𝐼 .

Proof. This is a special case of 5.3.22 for chain maps of degree zero. □

An injective quasi-isomorphism from a semi-injective complex has a left inverse
in the category of complexes, see 5.3.16. In the homotopy category, every quasi-
isomorphism from a semi-injective complex has a left inverse. See also B.23.

6.3.6 Corollary. Let 𝛽 : 𝐼 → 𝑀 be a quasi-isomorphism in K(𝑅). If 𝐼 is semi-
injective, then 𝛽 has a left inverse in K(𝑅) which is also a quasi-isomorphism.

Proof. This is a reformulation of 5.3.23. □

6.3.7 Corollary. Let 𝛽 : 𝐼 → 𝐼 ′ be a quasi-isomorphism in K(𝑅). If 𝐼 and 𝐼 ′ are
semi-injective, then 𝛽 is an isomorphism in K(𝑅).

Proof. This is a reformulation of 5.3.24. □

The next lemma is dual to 6.3.4.

6.3.8 Corollary. Let 𝐼 be a semi-injective 𝑅-complex. Consider morphisms

𝑀
𝜑

≃
// 𝑁

𝛼
//

𝛽
// 𝐼

in K(𝑅) where 𝜑 is a quasi-isomorphism. If 𝛼𝜑 = 𝛽𝜑 holds, then one has 𝛼 = 𝛽.

Proof. This is an immediate consequence of 6.3.5. □

Functoriality of Resolutions

In the homotopy category, all semi-projective resolutions of a given complex are
isomorphic, and a morphism of complexes lifts uniquely to their resolutions. This is
sufficient to make the process of taking semi-projective resolutions functorial.

We apply the terminology from 5.2.13 and 5.3.13 to quasi-isomorphisms in the
homotopy category. That is, a quasi-isomorphism 𝑃→ 𝑀 inK(𝑅), where 𝑃 is semi-
projective is called a semi-projective resolution of 𝑀; similarly a quasi-isomorphism
𝑀 → 𝐼, where 𝐼 is semi-injective, is called a semi-injective resolution of 𝑀 .

6.3.9 Construction. For every 𝑅-complex 𝑀 , choose by 5.2.15 a semi-projective
resolution 𝜋𝑀

𝑅
: P𝑅 (𝑀) ≃−−→ 𝑀 in K(𝑅). For every morphism 𝛼 : 𝑀 → 𝑁 in K(𝑅)

there is by 6.3.1 a unique morphism in K(𝑅), denoted P𝑅 (𝛼), such that the diagram
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(6.3.9.1)
P𝑅 (𝑀) ≃

𝜋𝑀
𝑅
//

P𝑅 (𝛼)
��

𝑀

𝛼

��

P𝑅 (𝑁) ≃
𝜋𝑁
𝑅
// 𝑁

is commutative. Similarly, there is a unique morphism in K(𝑅), which we denote
𝜙𝑀 , such that the following diagram is commutative,

(6.3.9.2)

P𝑅 (Σ𝑀)
𝜙𝑀

xx

𝜋Σ𝑀
𝑅

≃
��

ΣP𝑅 (𝑀)
Σ 𝜋𝑀

𝑅

≃
// Σ𝑀 .

6.3.10 Definition. The functor P𝑅 established in the next theorem is called the semi-
projective resolution functor. When there is no ambiguity, we write P instead of P𝑅
and, likewise, we drop the subscript from the associated natural transformation 𝜋𝑅.

6.3.11 Theorem. The assignments 𝑀 ↦→ P𝑅 (𝑀) and 𝛼 ↦→ P𝑅 (𝛼) from 6.3.9 define
an endofunctor onK(𝑅). This functor P𝑅 is 𝕜-linear, it preserves coproducts, it maps
quasi-isomorphisms to isomorphisms, and 𝜙 is a natural isomorphism P𝑅Σ→ ΣP𝑅
such that P𝑅 is triangulated. Furthermore, 𝜋𝑅 is a triangulated natural transforma-
tion P𝑅 → IdK(𝑅) and 𝜋𝑀

𝑅
is a quasi-isomorphism for every 𝑅-complex 𝑀 .

Proof. Per 6.3.10 we drop the subscript from the functor P𝑅 and the transformation
𝜋𝑅. For morphisms 𝛼 : 𝑀 → 𝑁 and 𝛽 : 𝐿 → 𝑀 in K(𝑅), the composite P(𝛼) P(𝛽)
makes the following diagram commutative,

P(𝐿) ≃
𝜋𝐿
//

��

𝐿

𝛼𝛽

��

P(𝑁) ≃
𝜋𝑁
// 𝑁 ,

commutative, and hence P(𝛼𝛽) = P(𝛼) P(𝛽) holds by the definition of P(𝛼𝛽).
Similarly one finds that the equality P(1𝑀 ) = 1P (𝑀 ) holds for every 𝑅-complex 𝑀
and that P(𝑥𝛼 + 𝛽) = 𝑥 P(𝛼) + P(𝛽) holds for every pair 𝛼, 𝛽 of parallel morphisms
in K(𝑅) and every element 𝑥 in 𝕜. Thus, P is a 𝕜-linear functor.

Commutativity of (6.3.9.1) implies that if 𝛼 is a quasi-isomorphism in K(𝑅),
then so is P(𝛼). It now follows from 6.3.3 that P(𝛼) is an isomorphism; thus P maps
quasi-isomorphisms to isomorphisms. Commutativity of (6.3.9.1) also shows that 𝜋
is a natural transformation from P to IdK(𝑅) .

To see that P preserves coproducts, let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes and
notice that there is a commutative diagram in K(𝑅),
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280 6 The Derived Category

∐
𝑢∈𝑈

P(𝑀𝑢)

∐
𝑢∈𝑈 𝜋

𝑀𝑢
≃

��

𝜑
// P

( ∐
𝑢∈𝑈

𝑀𝑢
)

𝜋
∐
𝑢∈𝑈 𝑀𝑢

≃

��∐
𝑢∈𝑈

𝑀𝑢 ,

where 𝜑 is the canonical morphism; cf. (3.1.8.1). The morphism 𝜋
∐
𝑀𝑢 is a quasi-

isomorphism by construction and
∐
𝑢∈𝑈 𝜋

𝑀𝑢 is a quasi-isomorphism by 6.1.13;
therefore, 𝜑 is a quasi-isomorphism. By 5.2.18 the complex

∐
𝑢∈𝑈 P(𝑀𝑢) is semi-

projective, so it follows from 6.3.3 that 𝜑 is an isomorphism.
It remains to show that 𝜙 is a natural isomorphism such that P is triangulated. Once

that has been established, commutativity of (6.3.9.2) shows that 𝜋 is triangulated;
further 𝜋𝑀 is by construction a quasi-isomorphism for every 𝑅-complex 𝑀 .

Commutativity of (6.3.9.2) shows that 𝜙𝑀 is a quasi-isomorphism, and since
its domain and codomain are semi-projective 𝑅-complexes, 6.3.3 implies that
𝜙𝑀 is an isomorphism. To show that 𝜙 is natural, it must be argued that
𝜙𝑁P(Σ𝛼) = (ΣP(𝛼))𝜙𝑀 holds for every morphism 𝛼 : 𝑀 → 𝑁 in K(𝑅). Since
P(Σ𝑀) is semi-projective and Σ𝜋𝑁 is a quasi-isomorphism, it suffices by 6.3.4 to
argue that (Σ𝜋𝑁 )𝜙𝑁P(Σ𝛼) = (Σ𝜋𝑁 ) (ΣP(𝛼))𝜙𝑀 holds. And that is a straightfor-
ward computation using the commutativity of (6.3.9.1) and (6.3.9.2),

(Σ𝜋𝑁 )𝜙𝑁P(Σ𝛼) = 𝜋Σ𝑁P(Σ𝛼)
= (Σ𝛼)𝜋Σ𝑀

= (Σ𝛼) (Σ𝜋𝑀 )𝜙𝑀

= (Σ𝜋𝑁 ) (ΣP(𝛼))𝜙𝑀 .

Finally, we argue that P with the natural isomorphism 𝜙 : PΣ→ ΣP is triangulated.
By the definition 6.2.3 of distinguished triangles in K(𝑅), it is enough to argue that
P maps every strict triangle in K(𝑅) to a distinguished one. Consider a morphism
𝛼 : 𝑀 → 𝑁 in C(𝑅) and the associated strict triangle in K(𝑅),

𝑀
[𝛼]−−−→ 𝑁

𝜀−−−→ Cone𝛼 𝜛−−−→ Σ𝑀 ,

where 𝜀 and 𝜛 are the homotopy classes of the morphisms (1𝑁 0)t and (0 1Σ𝑀 ) in
C(𝑅). It must be shown that the upper candidate triangle in the following diagram is
distinguished,

(♭)

P(𝑀)
𝜋𝑀

≃
��

P ( [𝛼] )
// P(𝑁)

𝜋𝑁

≃
��

P (𝜀)
// P(Cone𝛼)

𝜒′

��

𝜋Cone 𝛼

≃
��

𝜙𝑀 P (𝜛 )
// ΣP(𝑀)

Σ 𝜋𝑀

≃
��

𝑀
[𝛼]

// 𝑁
𝜀

// Cone𝛼 𝜛
// Σ𝑀

P(𝑀)
𝜋𝑀
≃
??

[𝛼]
// P(𝑁)

𝜋𝑁
≃
??

�̃�
// Cone𝛼

𝜒
≃
??

�̃�
// ΣP(𝑀) .

Σ 𝜋𝑀
≃
??
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Commutativity of (6.3.9.1) and (6.3.9.2) shows that the upper face in (♭) is com-
mutative. Let 𝛼 be a morphism in C(𝑅) that represents the homotopy class P( [𝛼]),
i.e. one has P( [𝛼]) = [𝛼]. The lower row in (♭) is the strict triangle in K(𝑅) associ-
ated to 𝛼. As K(𝑅) is triangulated category there exists a morphism 𝜒 that makes
the lower face in (♭) commutative; see E.2. As 𝜋𝑀 and 𝜋𝑁 are quasi-isomorphisms,
so is 𝜒 by 6.2.21. By 6.3.1 there exists a morphism 𝜒′ in K(𝑅) that makes the third
vertical wall in (♭) commutative; that is, one has 𝜒𝜒′ = 𝜋Cone 𝛼. Note that 𝜒′ is a
quasi-isomorphism as 𝜒 and 𝜋Cone 𝛼 are so. We now argue that the back face in (♭)
is commutative, i.e. that the equalities hold,

(⋄) �̃� = 𝜒′P(𝜀) and 𝜛𝜒′ = 𝜙𝑀P(𝜛) .

As the domains of these morphisms are semi-projective complexes, and since 𝜒 and
Σ𝜋𝑀 are quasi-isomorphisms, it follows from 6.3.4 that the equalities in (⋄) hold if
and only if the next equalities hold,

(★) 𝜒�̃� = 𝜒𝜒′P(𝜀) and (Σ𝜋𝑀 )𝜛𝜒′ = (Σ𝜋𝑀 )𝜙𝑀P(𝜛) .

That these equalities hold follows from the parts of the diagram (♭) that are already
known to be commutative. Indeed, one has 𝜒�̃� = 𝜀𝜋𝑁 = 𝜋Cone 𝛼 P(𝜀) = 𝜒𝜒′P(𝜀)
and (Σ𝜋𝑀 )𝜛𝜒′ = 𝜛𝜒𝜒′ = 𝜛𝜋Cone 𝛼 = (Σ𝜋𝑀 )𝜙𝑀P(𝜛).

Application of 5.2.17 to the exact sequence 0→ P(𝑁) → Cone𝛼→ ΣP(𝑀) → 0
from 4.1.5 shows that the complex Cone𝛼 is semi-projective. Therefore 𝜒′ is a quasi-
isomorphism whose domain and codomain are semi-projective complexes. It follows
from 6.3.3 that 𝜒′ is an isomorphism in K(𝑅), and hence the back face in (♭) is an
isomorphism of candidate triangles in K(𝑅). Since the lower candidate triangle is
strict, the upper candidate triangle is distinguished, as desired. □

6.3.12 Proposition. Let P and 𝜋 be as in 6.3.11. For every 𝑅-complex 𝑀 there is
an equality P(𝜋𝑀 ) = 𝜋P (𝑀 ) of morphisms P(P(𝑀)) → P(𝑀).

Proof. Replacing𝑀 and 𝛼with P(𝑀) and 𝜋𝑀 in (6.3.9.1) one gets the commutative
diagram below, and the asserted equality follows from 6.3.4.

P(P(𝑀)) ≃
𝜋P (𝑀)

//

P (𝜋𝑀 )
��

P(𝑀)

𝜋𝑀≃
��

P(𝑀) ≃
𝜋𝑀

// 𝑀 . □

6.3.13 Proposition. Let P and P̃ be endofunctors on K(𝑅) defined per 6.3.9 by
choosing, for every 𝑅-complex 𝑀 , semi-projective resolutions,

𝜋𝑀 : P(𝑀) ≃−−−→ 𝑀 and �̃�𝑀 : P̃(𝑀) ≃−−−→ 𝑀 .

There exists a unique natural isomorphism 𝜑 : P→ P̃ with �̃�𝜑 = 𝜋.

Proof. By 6.3.1 there exists for every 𝑅-complex 𝑀 a unique morphism 𝜑𝑀 in
K(𝑅) such that the following diagram is commutative,
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282 6 The Derived Category

P(𝑀)
𝜑𝑀

{{
𝜋𝑀≃
��

P̃(𝑀)
�̃�𝑀

≃
// 𝑀 .

Since 𝜋𝑀 and �̃�𝑀 are quasi-isomorphisms, so is 𝜑𝑀 , and hence 6.3.3 yields that
𝜑𝑀 is an isomorphism in K(𝑅). In fact, 𝜑 : P→ P̃ is a natural isomorphism. Indeed,
for a morphism 𝛼 : 𝑀 → 𝑁 in K(𝑅), both 𝜑𝑁P(𝛼) and P̃(𝛼)𝜑𝑀 make the diagram

P(𝑀) ≃
𝜋𝑀
//

��

𝑀

𝛼

��

P̃(𝑁) ≃
�̃�𝑁
// 𝑁

commutative, whence 𝜑𝑁P(𝛼) = P̃(𝛼)𝜑𝑀 holds by 6.3.4. □

The homology functor on K(𝑅) plays a key role in the next result.

6.3.14 Proposition. Let P and 𝜋 be as in 6.3.11. For 𝑅-modules 𝑀 and 𝑁 , the map

K(𝑅) (𝑀, 𝑁) −→ K(𝑅) (P(𝑀), P(𝑁)) given by 𝛼 ↦−→ P(𝛼)

is an isomorphism of 𝕜-modules with inverse given by 𝛽 ↦→ H(𝜋𝑁 ) H(𝛽) H(𝜋𝑀 )−1.

Proof. For 𝛼 in K(𝑅) (𝑀, 𝑁) and 𝛽 in K(𝑅) (P(𝑀), P(𝑁)) set 𝛷(𝛼) = P(𝛼) and
𝛹 (𝛽) = H(𝜋𝑁 ) H(𝛽) H(𝜋𝑀 )−1; note that𝛷 and𝛹 are k-linear maps as P and H are
k-linear functors. Apply the functor H to the identity 𝜋𝑁P(𝛼) = 𝛼𝜋𝑀 from (6.3.9.1)
to get H(𝜋𝑁 ) H(P(𝛼)) = H(𝛼) H(𝜋𝑀 ) = 𝛼H(𝜋𝑀 ) and, consequently,𝛹𝛷(𝛼) = 𝛼.
By construction, see 6.3.9, the map𝛷𝛹 (𝛽) = P(𝛹 (𝛽)) is the unique morphism that
makes the following diagram commutative,

P(𝑀) ≃
𝜋𝑀
//

��

𝑀

𝛹 (𝛽)
��

P(𝑁) ≃
𝜋𝑁
// 𝑁 .

Thus, to show that 𝛷𝛹 (𝛽) = 𝛽 holds, it suffices to argue that 𝜋𝑁𝛽 = 𝛹 (𝛽)𝜋𝑀
holds. As H(𝛹 (𝛽)) = 𝛹 (𝛽) = H(𝜋𝑁 ) H(𝛽) H(𝜋𝑀 )−1 holds, one has H(𝜋𝑁𝛽) =
H(𝛹 (𝛽)𝜋𝑀 ); in particular, H0 (𝜋𝑁𝛽) = H0 (𝛹 (𝛽)𝜋𝑀 ). As 𝑀 is a module one can
by 5.2.14 and 6.3.13 assume that P(𝑀)𝑣 = 0 holds for 𝑣 < 0, whence 2.5.10 yields
𝜋𝑁𝛽 =𝛹 (𝛽)𝜋𝑀 . □

There is a parallel story to tell about semi-injective resolutions.

6.3.15 Construction. For every 𝑅-complex 𝑀 , choose an injective semi-injective
resolution 𝜄𝑀

𝑅
: 𝑀 ≃−−→ I𝑅 (𝑀) in K(𝑅). For every morphism 𝛼 : 𝑀 → 𝑁 in K(𝑅)

there is by 6.3.5 a unique morphism in K(𝑅), denoted I𝑅 (𝛼), such that the diagram
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(6.3.15.1)
𝑀 ≃

𝜄𝑀
𝑅
//

𝛼

��

I𝑅 (𝑀)

I𝑅 (𝛼)
��

𝑁 ≃
𝜄𝑁
𝑅
// I𝑅 (𝑁)

is commutative. Similarly, there is a unique morphism in K(𝑅), which we denote by
𝜙𝑀 , such that the following diagram commutative,

(6.3.15.2)
Σ𝑀

𝜄Σ𝑀
𝑅

≃
//

Σ 𝜄𝑀
𝑅
≃
��

I𝑅 (Σ𝑀)

𝜙𝑀yy

Σ I𝑅 (𝑀) .

6.3.16 Definition. The functor I𝑅 established in the next theorem is called the semi-
injective resolution functor. When there is no ambiguity, we write I instead of I𝑅
and, likewise, we drop the subscript from the associated natural transformation 𝜄𝑅.

6.3.17 Theorem. The assignments 𝑀 ↦→ I𝑅 (𝑀) and 𝛼 ↦→ I𝑅 (𝛼) from 6.3.15 define
an endofunctor on K(𝑅). This functor I𝑅 is 𝕜-linear, it preserves products, it maps
quasi-isomorphisms to isomorphisms, and 𝜙 is a natural isomorphism I𝑅Σ→ Σ I𝑅
such that I𝑅 is triangulated. Furthermore, 𝜄𝑅 is a triangulated natural transformation
IdK(𝑅) → I𝑅, and 𝜄𝑀

𝑅
is a quasi-isomorphism for every 𝑅-complex 𝑀 .

Proof. An argument analogous to the proof of 6.3.11 applies. □

6.3.18 Proposition. Let I and 𝜄 be as in 6.3.17. For every 𝑅-complex 𝑀 there is an
equality I(𝜄𝑀 ) = 𝜄I (𝑀 ) of morphisms I(𝑀) → I(I(𝑀)).

Proof. An argument analogous to the proof of 6.3.12 applies. □

6.3.19 Proposition. Let I and Ĩ be endofunctors on K(𝑅) defined per 6.3.15 by
choosing, for every 𝑅-complex 𝑀 , semi-injective resolutions,

𝜄𝑀 : 𝑀 ≃−−−→ I(𝑀) and �̃�𝑀 : 𝑀 ≃−−−→ Ĩ (𝑀) .

There exists a unique natural isomorphism 𝜑 : Ĩ→ I with 𝜑�̃� = 𝜄.

Proof. An argument analogous to the proof of 6.3.13 applies. □

There is, of course, also a result parallel to 6.3.14 for the semi-injective resolution
functor. We will not need to refer to it, so we leave it as an exercise.

The equalities in 6.3.12 and 6.3.18 are special cases of a category theoretical
phenomenon captured by the next lemma, which we record for later use.

6.3.20 Lemma. Let U be a category.
(a) Let F be an endofunctor on U and 𝜑 : IdU→ F a natural transformation. If

𝜑F(𝑋) and F(𝜑𝑋) are isomorphisms for every 𝑋 ∈ U, then 𝜑F(𝑋) = F(𝜑𝑋)
holds for every 𝑋 ∈ U .
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284 6 The Derived Category

(b) Let G be an endofunctor on U and 𝜓 : G→ IdU a natural transformation. If
𝜓G(𝑋) and G(𝜓𝑋) are isomorphisms for every 𝑋 ∈ U, then 𝜓G(𝑋) = G(𝜓𝑋)
holds for every 𝑋 ∈ U .

Proof. (a): First note that since 𝜑 : IdU→ F is a natural transformation, there is for
every morphism 𝛼 : 𝑀 → 𝑁 in U an equality,

(♭) 𝜑𝑁𝛼 = F(𝛼)𝜑𝑀 .

We start by showing that if 𝑋 and𝑌 are objects in U such that 𝜑𝑌 is an isomorphism,
and 𝛽, 𝛾 : F(𝑋) → 𝑌 are morphisms, then 𝛽𝜑𝑋 = 𝛾𝜑𝑋 implies 𝛽 = 𝛾. Indeed, if one
has 𝛽𝜑𝑋 = 𝛾𝜑𝑋, then F(𝛽) F(𝜑𝑋) = F(𝛾) F(𝜑𝑋) holds, and thus F(𝛽) = F(𝛾) since
F(𝜑𝑋) is assumed to be an isomorphism. Using (♭) one now gets

𝜑𝑌 𝛽 = F(𝛽)𝜑F(𝑋) = F(𝛾)𝜑F(𝑋) = 𝜑𝑌𝛾

and, therefore, 𝛽 = 𝛾 as 𝜑𝑌 is assumed to be an isomorphism.
Now, let 𝑋 ∈ U be given. The result above applies to the object 𝑌 = F(F(𝑋)) and

the morphisms 𝛽 = 𝜑F(𝑋) and 𝛾 = F(𝜑𝑋) from F(𝑋) to F(F(𝑋)). Applying (♭) to
the morphism 𝜑𝑋 : 𝑋 → F(𝑋) one gets 𝜑F(𝑋)𝜑𝑋 = F(𝜑𝑋)𝜑𝑋, and consequently one
has 𝜑F(𝑋) = F(𝜑𝑋), as claimed.

(b): The proof is dual to that of part (a). □

Resolutions and Restrictions of Scalars

We close this section with two technical results that are used repeatedly in Chap. 7.

6.3.21 Proposition. Let 𝑅 → 𝑆 be a ring homomorphism. There is a unique natural
transformation 𝜚𝑆

𝑅
of functors K(𝑆) → K(𝑅) that makes the diagram,

P𝑅 res𝑆
𝑅

𝜋𝑅 res𝑆
𝑅

≃
��

𝜚𝑆
𝑅

zz

res𝑆
𝑅

P𝑆
res𝑆
𝑅
𝜋𝑆

≃
// res𝑆

𝑅
,

commutative. For every 𝑆-complex 𝑁 the morphism (𝜚𝑆
𝑅
)𝑁 is a quasi-isomorphism,

and if 𝑆 is projective as an 𝑅-module, then it is an isomorphism in K(𝑅).

Proof. To ease the notation, set res = res𝑆
𝑅

. Let 𝑁 in K(𝑆) be given. In the following
diagram in K(𝑅), the horizontal and vertical morphisms are quasi-isomorphisms by
6.3.11 and the fact that the functor res preserves quasi-isomorphisms,

(⋄)

P𝑅 (res (𝑁))

𝜋
res (𝑁 )
𝑅

≃
��

𝜚𝑁

ww

res (P𝑆 (𝑁))
res (𝜋𝑁

𝑆
)

≃
// res (𝑁) .
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By 6.3.1 there is a unique morphism 𝜚𝑁 that makes the diagram (⋄) commutative; as
the other two morphisms are quasi-isomorphisms, so is 𝜚𝑁 . If 𝑆 is projective as an
𝑅-module, then P𝑆 (𝑁) is a semi-projective 𝑅-complex by 5.2.23(b). Now it follows
from 5.2.21 that 𝜚𝑁 is a homotopy equivalence, i.e. an isomorphism in K(𝑅).

It remains to argue that 𝜚 is a natural transformation of functors. Let 𝛼 : 𝑀 → 𝑁

be a morphism in K(𝑆). It must be shown that 𝜚𝑁P𝑅 (res (𝛼)) = res (P𝑆 (𝛼))𝜚𝑀
holds. In the computation below, the 1st and 3rd equalities hold by commutativity of
(⋄), the 2nd and 5th equalities hold as 𝜋 is a natural transformation, and the 4th and
6th equalities hold as res is a functor.

res (𝜋𝑁𝑆 )𝜚
𝑁P𝑅 (res (𝛼)) = 𝜋

res (𝑁 )
𝑅

P𝑅 (res (𝛼))
= res (𝛼)𝜋res (𝑀 )

𝑅

= res (𝛼) res (𝜋𝑀𝑆 )𝜚
𝑀

= res (𝛼𝜋𝑀𝑆 )𝜚
𝑀

= res (𝜋𝑁𝑆 P(𝛼))𝜚𝑀

= res (𝜋𝑁𝑆 ) res (P𝑆 (𝛼))𝜚𝑀 .

The desired equality 𝜚𝑁P𝑅 (res (𝛼)) = res (P𝑆 (𝛼))𝜚𝑀 now follows from 6.3.4. □

6.3.22 Proposition. Let 𝑅 → 𝑆 be a ring homomorphism. There is a unique natural
transformation 𝜀𝑆

𝑅
of functors K(𝑆) → K(𝑅) that makes the diagram,

res𝑆
𝑅

res𝑆
𝑅
𝜄𝑆

≃
//

𝜄𝑅 res𝑆
𝑅
≃
��

res𝑆
𝑅

I𝑆

𝜀𝑆
𝑅zz

I𝑅 res𝑆
𝑅
,

commutative. For every 𝑆-complex 𝑁 the morphism (𝜀𝑆
𝑅
)𝑁 is a quasi-isomorphism,

and if 𝑆 is flat as an 𝑅o-module, then it is an isomorphism in K(𝑅).

Proof. This follows from an argument similar to the proof of 6.3.21, but based on
6.3.17, 5.4.26(b), and 5.3.24. □

Exercises

E 6.3.1 Give a proof of 6.3.17.
E 6.3.2 Let 𝛼 be a morphism in K(𝑅) . Show that there exists a quasi-isomorphism 𝜑 with

𝜑𝛼 = 0 if and only if there exists a quasi-isomorphism 𝜓 with 𝛼𝜓 = 0.
E 6.3.3 Let 𝛼 be a morphism in K(𝑅) . (a) Show that 𝛼 is a quasi-isomorphism only if P(𝛼) is

an isomorphism. (b) Show that 𝛼 is a quasi-isomorphism only if I (𝛼) is an isomorphism.
E 6.3.4 Let 𝑀, 𝑁 be 𝑅-complexes. Show that the map K(𝑅) (𝑀, 𝑁 ) →K(𝑅) (P(𝑀 ) , P(𝑁 ) )

given by 𝛼 ↦→ P(𝛼) needs neither be injective nor surjective.
E 6.3.5 Let 𝑀, 𝑁 be 𝑅-modules. Show that the map K(𝑅) (𝑀, 𝑁 ) → K(𝑅) (I (𝑀 ) , I (𝑁 ) )

given by 𝛼 ↦→ I (𝛼) is an isomorphism.
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286 6 The Derived Category

E 6.3.6 Let 𝑀, 𝑁 be 𝑅-complexes. Show that the map K(𝑅) (𝑀, 𝑁 ) →K(𝑅) (I (𝑀 ) , I (𝑁 ) )
given by 𝛼 ↦→ I (𝛼) needs neither be injective nor surjective.

E 6.3.7 Let 𝑀, 𝑁 be 𝑅-complexes. Establish isomorphisms,
K(𝑅) (P(𝑀 ) , P(𝑁 ) ) �−−→K(𝑅) (P(𝑀 ) , I (𝑁 ) ) �←−− K(𝑅) (I (𝑀 ) , I (𝑁 ) ) ,

and describe their inverses.
E 6.3.8 Show that the endofunctor P on K(𝑅) is left adjoint for I.

6.4 Construction of the Derived Category DDD

Synopsis. Fraction; objects and morphisms; derived category; product; coproduct; universal prop-
erty.

Let U be a category and X a collection of morphisms in U. One may seek a cate-
gory X−1U—called the localization of U with respect to X—together with a functor
V: U→ X−1U that has the following universal property: The functor V maps ele-
ments in X to isomorphisms in X−1U, and for every functor F: U→ V that maps
elements in X to isomorphisms in V there exists a unique functor F́ that makes the
following diagram commutative,

U

V
��

F
// V

X−1U .

F́

<<

There is a formal way to construct X−1U; however, it may yield a “category” in
which the hom-sets are not sets but proper classes. Thus, the localization of U with
respect to X may not exist. An early motivation for the development of the theory of
model categories was to circumvent such set theoretic problems.

We proceed to localize the homotopy categoryK(𝑅) with respect to the collection
of quasi-isomorphisms. The outcome is a category D(𝑅)—semi-projective resolu-
tions can be harnessed to show that the hom-sets in D(𝑅) are actual sets—called the
derived category over 𝑅; it inherits a triangulated structure from K(𝑅).

Fractions of Morphisms

Recall that we use Greek letters for morphisms in the homotopy category.

6.4.1 Definition. Let 𝑀 and 𝑁 be 𝑅-complexes. A left prefraction from 𝑀 to 𝑁 is
a pair (𝛼, 𝜑) of morphisms in K(𝑅) such that 𝛼 and 𝜑 have the same domain, the
codomain of 𝜑 is 𝑀 , the codomain of 𝛼 is 𝑁 , and 𝜑 is a quasi-isomorphism:

𝑀
𝜑←−−−
≃
𝑈

𝛼−−−→ 𝑁 .
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6.4 Construction of D 287

Two left prefractions (𝛼1, 𝜑1) and (𝛼2, 𝜑2) from 𝑀 to 𝑁 are equivalent, in sym-
bols (𝛼1, 𝜑1) ≡ (𝛼2, 𝜑2), if there exist a left prefraction (𝛼, 𝜑) from 𝑀 to 𝑁 and
morphisms 𝜇1 and 𝜇2 that make the following diagram in K(𝑅) commutative,

(6.4.1.1)

𝑈1
𝜑1

��

𝛼1

��

𝑀 𝑈
𝜑
oo

𝛼
//

𝜇1

OO

𝜇2

��

𝑁 .

𝑈2
𝜑2

__

𝛼2

??

6.4.2. Notice that the morphisms 𝜇1 and 𝜇2 in (6.4.1.1) are quasi-isomorphisms.
Consequently, 𝛼1 is a quasi-isomorphism if and only if 𝛼2 is a quasi-isomorphism.

The relation on left prefractions defined above is an equivalence relation, and it
can be described conveniently by way of the resolution functors from Sect. 6.3.

6.4.3 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. For left prefractions (𝛼1, 𝜑1) and
(𝛼2, 𝜑2) from 𝑀 to 𝑁 the following conditions are equivalent.

(i) One has (𝛼1, 𝜑1) ≡ (𝛼2, 𝜑2) .
(ii) P(𝛼1) P(𝜑1)−1 and P(𝛼2) P(𝜑2)−1 are identical morphisms P(𝑀) → P(𝑁) .
(iii) I(𝛼1) I(𝜑1)−1 and I(𝛼2) I(𝜑2)−1 are identical morphisms I(𝑀) → I(𝑁) .

In particular, the relation≡ is an equivalence relation on the class of left prefractions
from 𝑀 to 𝑁 .

Proof. Recall from 6.3.11 and 6.3.17 that P and I map quasi-isomorphisms to
isomorphisms; this is already implicit in the statements.

(i)⇒ (iii): If one has (𝛼1, 𝜑1) ≡ (𝛼2, 𝜑2), then there exists a commutative dia-
gram of the form (6.4.1.1). Application of I yields a commutative diagram,

I(𝑈1)
I (𝜑1 )

��

I (𝛼1 )

��

I(𝑀) I(𝑈)
I (𝜑)
oo

I (𝛼)
//

I (𝜇1 )

OO

I (𝜇2 )

��

I(𝑁) ,

I(𝑈2)
I (𝜑2 )

__

I (𝛼2 )

??

from which it follows that I(𝛼1) I(𝜑1)−1 = I(𝛼2) I(𝜑2)−1 holds.
(iii)⇒ (ii): Let 𝛽 : 𝑋 → 𝑌 be a morphism in K(𝑅). One has 𝜄𝑌 𝛽 = I(𝛽)𝜄𝑋 by

6.3.15, and an application of P yields P(𝛽) = P(𝜄𝑌 )−1PI(𝛽) P(𝜄𝑋). Thus one has

P(𝛼1) P(𝜑1)−1 = (P(𝜄𝑁 )−1PI(𝛼1) P(𝜄𝑈1 )) (P(𝜄𝑀 )−1PI(𝜑1) P(𝜄𝑈1 ))−1

= P(𝜄𝑁 )−1P(I(𝛼1) I(𝜑1)−1) P(𝜄𝑀 ) ,
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288 6 The Derived Category

and the equality P(𝛼2) P(𝜑2)−1 = P(𝜄𝑁 )−1P(I(𝛼2) I(𝜑2)−1) P(𝜄𝑀 ) is proved simi-
larly. Thus I(𝛼1) I(𝜑1)−1 = I(𝛼2) I(𝜑2)−1 implies P(𝛼1) P(𝜑1)−1 = P(𝛼2) P(𝜑2)−1.

(ii)⇒ (i): Assume that P(𝛼1) P(𝜑1)−1 and P(𝛼2) P(𝜑2)−1 are identical, and de-
note this morphism by 𝛼. Set 𝜇𝑖 = 𝜋𝑈

𝑖 P(𝜑𝑖)−1 for 𝑖 = 1, 2; the commutative
diagram

𝑈1

𝜑1

��

𝛼1

��

𝑀 P(𝑀)
𝜋𝑀

≃
oo

𝜋𝑁 𝛼
//

𝜇1

OO

𝜇2

��

𝑁

𝑈2

𝜑2

__

𝛼2

??

shows that (𝛼1, 𝜑1) and (𝛼2, 𝜑2) are equivalent. □

6.4.4 Definition. Let 𝑀 and 𝑁 be 𝑅-complexes. For a left prefraction (𝛼, 𝜑) from 𝑀

to 𝑁 , denote by 𝛼/𝜑 the equivalence class containing (𝛼, 𝜑). The class 𝛼/𝜑 is called
a left fraction from 𝑀 to 𝑁 , and the collection of all such is denoted D(𝑅) (𝑀, 𝑁).

Remark. Some authors—among them Kashiwara and Shapira [156]—refer to the equivalence
classes defined above as ‘right fractions’. We follow those—among them Gabriel and Zisman [103]
and Weibel [253]—who opt for ‘left fractions’; see also the Remark after 6.4.26.

Objects and Morphisms

The notation introduced in 6.4.4 is suggestive and, indeed, we are poised to prove
that there is a category D(𝑅) whose objects are all 𝑅-complexes and in which the
hom-set D(𝑅) (𝑀, 𝑁) is the collection of all left fractions from 𝑀 to 𝑁 .

6.4.5 Lemma. Consider a diagram in K(𝑅),

𝑉

≃ 𝜓

��

𝑀 𝑈
𝜑

≃
oo

𝛼
// 𝑁 ,

where 𝜑 and 𝜓 are quasi-isomorphisms. There is an equality (𝛼𝜓)/(𝜑𝜓) = 𝛼/𝜑.

Proof. The assertion follows from the commutative diagram

𝑉
𝜑𝜓

��

𝛼𝜓

��

𝑀 𝑉
𝜑𝜓
oo

𝛼𝜓
//

𝜓

��

𝑁

𝑈 ,

𝜑

__

𝛼

??
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6.4 Construction of D 289

which shows that the left prefractions (𝛼𝜓, 𝜑𝜓) and (𝛼, 𝜑) are equivalent. □

Remark. Another way to prove 6.4.5 is to notice that P(𝛼𝜓) P(𝜑𝜓)−1 = P(𝛼) P(𝜑)−1 holds
and apply 6.4.3.

The next result shows that any two left fractions with the same domain and
codomain have a common denominator.

6.4.6 Lemma. Let 𝑀 and 𝑁 be 𝑅-complexes and 𝛼1/𝜑1 and 𝛼2/𝜑2 be left fractions
from 𝑀 to 𝑁 . There exist morphisms 𝛽1, 𝛽2 and a quasi-isomorphism 𝜑 in K(𝑅)
such that the equalities 𝛼1/𝜑1 = 𝛽1/𝜑 and 𝛼2/𝜑2 = 𝛽2/𝜑 hold.

Proof. Consider the diagrams

P(𝑀)
≃ 𝜋𝑈

1 P (𝜑1 )−1

��

𝑀 𝑈1𝜑1

≃
oo

𝛼1
// 𝑁

and

P(𝑀)
≃ 𝜋𝑈

2 P (𝜑2 )−1

��

𝑀 𝑈2𝜑2

≃
oo

𝛼2
// 𝑁 .

For 𝑖 = 1, 2 one has 𝜑𝑖𝜋𝑈𝑖P(𝜑𝑖)−1 = 𝜋𝑀 by 6.3.9. Hence 6.4.5 implies that with
𝛽𝑖 = 𝛼𝑖𝜋𝑈

𝑖P(𝜑𝑖)−1 and 𝜑 = 𝜋𝑀 the equality 𝛼𝑖/𝜑𝑖 = 𝛽𝑖/𝜑 holds. □

The collection of all left prefractions from 𝑀 to 𝑁 is a proper class (i.e. not a set);
the collection of equivalence classes of these left prefractions is, however, a set.

6.4.7 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. The map

K(𝑅) (P(𝑀), P(𝑁)) −→ D(𝑅) (𝑀, 𝑁) given by 𝛽 ↦−→ (𝜋𝑁𝛽)/𝜋𝑀

is a bĳection with inverse given by 𝛼/𝜑 ↦→ P(𝛼) P(𝜑)−1. In particular, the collection
D(𝑅) (𝑀, 𝑁) of left fractions from 𝑀 to 𝑁 is a set.

Proof. For 𝛽 in K(𝑅) (P(𝑀), P(𝑁)) and 𝛼/𝜑 in D(𝑅) (𝑀, 𝑁) set𝛷(𝛽) = (𝜋𝑁𝛽)/𝜋𝑀
and𝛹 (𝛼/𝜑) = P(𝛼) P(𝜑)−1; notice that the latter is well-defined by 6.4.3. By 6.4.5
and commutativity of the diagram (6.3.9.1) one has

𝛷𝛹 (𝛼/𝜑) = (𝜋𝑁P(𝛼) P(𝜑)−1)/𝜋𝑀 = (𝜋𝑁P(𝛼))/(𝜋𝑀 P(𝜑)) = (𝛼𝜋
𝑈)/(𝜑𝜋𝑈) = 𝛼/𝜑 ,

where𝑈 is the common domain of 𝛼 and 𝜑. Similarly, 6.3.12 and (6.3.9.1) yield

𝛹𝛷(𝛽) = P(𝜋𝑁𝛽) P(𝜋𝑀 )−1 = P(𝜋𝑁 ) P(𝛽) P(𝜋𝑀 )−1 = 𝜋P (𝑁 )P(𝛽) (𝜋P (𝑀 ) )−1 = 𝛽 .

Thus𝛷 is bĳective with inverse𝛹 . In particular, the class D(𝑅) (𝑀, 𝑁) is in one-to-
one correspondence with the set K(𝑅) (P(𝑀), P(𝑁)), so D(𝑅) (𝑀, 𝑁) is a set. □

6.4.8 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. The set D(𝑅) (𝑀, 𝑁) of left
fractions from 𝑀 to 𝑁 is a 𝕜-module with the following operations.
• For 𝛼1/𝜑1 and 𝛼2/𝜑2 in D(𝑅) (𝑀, 𝑁) set

𝛼1/𝜑1 + 𝛼2/𝜑2 = (𝛽1 + 𝛽2)/𝜑
for any choice of left prefractions (𝛽𝑖 , 𝜑) with 𝛼𝑖/𝜑𝑖 = 𝛽𝑖/𝜑 for 𝑖 = 1, 2, cf. 6.4.6.
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290 6 The Derived Category

• For 𝑥 in 𝕜 and 𝛼/𝜑 in D(𝑅) (𝑀, 𝑁) set

𝑥(𝛼/𝜑) = (𝑥𝛼)/𝜑 .

The equivalence class 0/1𝑀 containing the left prefraction 𝑀 1𝑀←−− 𝑀 0−−→ 𝑁 is the
zero element in the 𝕜-module D(𝑅) (𝑀, 𝑁). Finally, with this 𝕜-module structure,
the map K(𝑅) (P(𝑀), P(𝑁)) → D(𝑅) (𝑀, 𝑁) from 6.4.7 is an isomorphism of
𝕜-modules.

Proof. Let𝛷 denote the bĳection K(𝑅) (P(𝑀), P(𝑁)) → D(𝑅) (𝑀, 𝑁) from 6.4.7.
Since K(𝑅) (P(𝑀), P(𝑁)) is a 𝕜-module, see 6.1.9, one turns the set D(𝑅) (𝑀, 𝑁)
into a 𝕜-module, and𝛷 into an isomorphism, by defining the operations as follows,

𝛼1/𝜑1 + 𝛼2/𝜑2 = 𝛷
(
𝛷−1 (𝛼1/𝜑1

)
+𝛷−1 (𝛼2/𝜑2

) )
and 𝑥(𝛼/𝜑) = 𝛷

(
𝑥𝛷−1 (𝛼/𝜑)

)
.

Evidently, with this 𝕜-module structure on D(𝑅) (𝑀, 𝑁), the zero element is

𝛷(0) = (𝜋𝑁0)/𝜋𝑀 = (0𝜋𝑀 )/(1𝑀𝜋𝑀 ) = 0/1𝑀 ,

where the last equality holds by 6.4.5. We argue that these operations onD(𝑅) (𝑀, 𝑁)
agree with the asserted ones; in particular, these operations are well-defined.

For the addition operation, assume that one has 𝛼1/𝜑1 = 𝛽1/𝜑 and 𝛼2/𝜑2 = 𝛽2/𝜑,
cf. 6.4.6. It must be argued that the equality

(★) 𝛷−1 (𝛼1/𝜑1
)
+𝛷−1 (𝛼2/𝜑2

)
= 𝛷−1 ((𝛽1 + 𝛽2)/𝜑

)
holds. Additivity of the functor P and 6.4.3 yield

P(𝛼1) P(𝜑1)−1 + P(𝛼2) P(𝜑2)−1 = P(𝛽1) P(𝜑)−1 + P(𝛽2) P(𝜑)−1

= P(𝛽1 + 𝛽2) P(𝜑)−1 ,

which shows (★). A similar argument takes care of 𝕜-multiplication. □

Composition of Fractions

Our aim is to make fractions the morphisms in a category, namely the derived
category. To this end, it must be defined how fractions are composed.

6.4.9 Lemma. Let 𝛽 : 𝑀 → 𝑉 be a morphism and𝜓 : 𝑁 → 𝑉 a quasi-isomorphism in
K(𝑅). There exist a morphism 𝛼 and a quasi-isomorphism 𝜑 such that the following
diagram in K(𝑅) is commutative,

(6.4.9.1)
𝑈

𝜑 ≃
��

𝛼
// 𝑁

𝜓≃
��

𝑀
𝛽
// 𝑉 .

Conversely, given a morphism 𝛼 and a quasi-isomorphism 𝜑, there exist 𝛽 and 𝜓
such that (6.4.9.1) is commutative.

8-Mar-2024 Draft - use at own risk



6.4 Construction of D 291

Proof. Choose by 5.2.15 a semi-projective resolution 𝜑 :𝑈 ≃−−→ 𝑀 and apply 6.3.1
to get a morphism 𝛼 such that (6.4.9.1) is commutative. Conversely, given 𝛼 and 𝜑,
choose by 5.3.26 a semi-injective resolution 𝜓 : 𝑁 ≃−−→ 𝑉 and apply 6.3.5 to get the
morphism 𝛽 such that (6.4.9.1) is commutative. □

Remark. One does not need semi-projective and semi-injective resolutions to prove 6.4.9; in fact,
they may be proved using only that the homotopy category is triangulated; see E 6.5.9.

6.4.10 Proposition. Let 𝐿, 𝑀 , and 𝑁 be 𝑅-complexes. There is a composition rule,

D(𝑅) (𝑀, 𝑁) ×D(𝑅) (𝐿, 𝑀) −→ D(𝑅) (𝐿, 𝑁) ,

given by
(𝛼/𝜑, 𝛽/𝜓) ↦−→ (𝛼/𝜑) (𝛽/𝜓) = (𝛼𝛾)/(𝜓𝜒) ,

where 𝛾/𝜒 is any left fraction that makes the diagram

(6.4.10.1)

𝑊
𝜒

≃
��

𝛾

��

𝑉
𝜓

≃
��

𝛽

��

𝑈
𝜑

≃
��

𝛼

��

𝐿 𝑀 𝑁

in K(𝑅) commutative, cf. 6.4.9. This composition rule is 𝕜-bilinear and associative.
Moreover, one has the following special cases,

(6.4.10.2) (𝛼/1𝑀 ) (𝛽/𝜓) = (𝛼𝛽)/𝜓 and (𝛼/𝜑) (1𝑀/𝜓) = 𝛼/(𝜓𝜑) .

Proof. Consider the isomorphism 𝛷𝑀𝑁 : K(𝑅) (P(𝑀), P(𝑁)) → D(𝑅) (𝑀, 𝑁) of
𝕜-modules from 6.4.8. As composition of morphisms in K(𝑅) is 𝕜-bilinear and
associative, one evidently obtains a 𝕜-bilinear and associative composition rule

D(𝑅) (𝑀, 𝑁) ×D(𝑅) (𝐿, 𝑀) −→ D(𝑅) (𝐿, 𝑁) ,

by the assignment

(𝛼/𝜑, 𝛽/𝜓) ↦−→ 𝛷𝐿𝑁
(
𝛷−1
𝑀𝑁 (𝛼/𝜑)𝛷−1

𝐿𝑀 (𝛽/𝜓)
)
.

We argue that this composition of left fractions agrees with the asserted one; in
particular, the latter is well-defined. Let 𝛾/𝜒 be any left fraction that makes the
diagram (6.4.10.1) commutative. It must be verified that the equality

𝛷−1
𝐿𝑁

((𝛼𝛾)/(𝜓𝜒)) = 𝛷−1
𝑀𝑁 (𝛼/𝜑)𝛷−1

𝐿𝑀 (𝛽/𝜓)

holds, and that follows from the commutativity of (6.4.10.1), indeed, one has

P(𝛼𝛾) P(𝜓𝜒)−1 = P(𝛼) P(𝛾) P(𝜒)−1 P(𝜓)−1 = P(𝛼) P(𝜑)−1 P(𝛽) P(𝜓)−1 .

The special cases in (6.4.10.2) are evident. □

The following definition is justified by the subsequent proposition.
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6.4.11 Definition. The derived category D(𝑅) has the same objects as C(𝑅) and
K(𝑅), that is, 𝑅-complexes. For 𝑅-complexes 𝑀 and 𝑁 , the hom-set D(𝑅) (𝑀, 𝑁)
is the set of all left fractions from 𝑀 to 𝑁; see 6.4.4. Composition in D(𝑅) is given
by the rule in 6.4.10.

6.4.12 Proposition. The derived category D(𝑅) is a category. For an 𝑅-complex
𝑀 , the identity morphism in D(𝑅) is 1𝑀/1𝑀 .

Proof. It follows from 6.4.7 that D(𝑅) (𝑀, 𝑁) is a set for every pair 𝑀, 𝑁 of 𝑅-
complexes. Composition inD(𝑅) is associative by 6.4.10. That 1𝑀/1𝑀 is the identity
for 𝑀 with respect to the composition in D(𝑅) is a consequence of (6.4.10.2). □

In 6.4.25 it is shown that the categoryD(𝑅) is k-linear. For morphisms𝛼 : 𝑀 → 𝑁

and 𝛽 : 𝐿 → 𝑀 in K(𝑅) one has (𝛼𝛽)/1𝐿 = (𝛼/1𝑀 ) (𝛽/1𝐿) by (6.4.10.2); this justifies
the next definition.

6.4.13 Definition. Write V𝑅 : K(𝑅) → D(𝑅) for the canonical functor that is the
identity on objects and maps a morphism 𝛼 : 𝑀 → 𝑁 in K(𝑅) to 𝛼/1𝑀 . When there
is no ambiguity, we write V instead of V𝑅.

For a morphism 𝛼 in K(𝑅) one conveniently writes V(𝛼) = 𝛼/1; that is, the
(unspecified) domain of the morphism is omitted from the symbol.

The localization process that leads to the derived category adds just enough
morphisms to make all quasi-isomorphisms invertible. A homomorphism of modules
is a quasi-isomorphism only if it is an isomorphism, so in the case of modules, no
new morphisms are needed. The next results make this precise.

6.4.14 Proposition. For 𝑅-modules𝑀 and 𝑁 the mapK(𝑅) (𝑀, 𝑁) → D(𝑅) (𝑀, 𝑁)
induced by V is an isomorphism of k-modules.

Proof. The map in question is the composite of the k-module isomorphisms

K(𝑅) (𝑀, 𝑁) −→ K(𝑅) (P(𝑀), P(𝑁)) −→ D(𝑅) (𝑀, 𝑁)

from 6.3.14 and 6.4.8. Indeed, for a morphism 𝛼 in K(𝑅) one has (𝜋𝑁P(𝛼))/𝜋𝑀 =

(𝛼𝜋𝑀 )/𝜋𝑀 = 𝛼/1𝑀 , where the last equality follows from 6.4.5. □

6.4.15 Theorem. The restriction to M(𝑅) of the functor VQ: C(𝑅) → D(𝑅) yields
an isomorphism between the module category M(𝑅) and the full subcategory of
D(𝑅) whose objects are all 𝑅-complexes concentrated in degree 0.

Proof. By 6.1.4 and 6.4.14 the functor VQ: M(𝑅) → D(𝑅) is full and faithful, and
hence it yields an isomorphism from M(𝑅) to its image in D(𝑅). □

Remark. The full subcategory M(𝑅) of D(𝑅) is not closed under isomorphisms. The smallest
full subcategory of D(𝑅) that contains M(𝑅) and is closed under isomorphisms is the one whose
objects are complexes with homology concentrated in degree 0, and it is equivalent to M(𝑅); see
E 6.4.5 and see also E 7.6.1.
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Isomorphisms

6.4.16 Lemma. Let 𝛼, 𝛽, and 𝛾 be morphisms in K(𝑅). If 𝛼𝛽 and 𝛽𝛾 are quasi-
isomorphisms then 𝛼, 𝛽, and 𝛾 are quasi-isomorphisms.

Proof. Since H(𝛼) H(𝛽) = H(𝛼𝛽) is an isomorphism, H(𝛽) has a left-inverse, and
as H(𝛽) H(𝛾) = H(𝛽𝛾) is an isomorphism, H(𝛽) has a right inverse. Consequently,
H(𝛽) is an isomorphism. It follows that also H(𝛼) and H(𝛾) are isomorphisms. □

6.4.17 Proposition. A morphism 𝛼/𝜑 in D(𝑅) is an isomorphism if and only if 𝛼 is
a quasi-isomorphism, in which case one has (𝛼/𝜑)−1 = 𝜑/𝛼.

Proof. Let 𝛼/𝜑 be a morphism in D(𝑅) from 𝑀 to 𝑁 .
If 𝛼 is a quasi-isomorphism, then 𝜑/𝛼 is a morphism from 𝑁 to 𝑀 in D(𝑅).

The first equality in the computation (𝜑/𝛼) (𝛼/𝜑) = 𝜑/𝜑 = (1𝑀𝜑)/(1𝑀𝜑) = 1𝑀/1𝑀 is
elementary to verify; the last one follows from 6.4.5. Similarly, one has (𝛼/𝜑) (𝜑/𝛼) =
𝛼/𝛼 = (1𝑁𝛼)/(1𝑁𝛼) = 1𝑁/1𝑁 , whence 𝛼/𝜑 is an isomorphism with inverse 𝜑/𝛼.

Conversely, assume that 𝛼/𝜑 is an isomorphism. Denote by𝑈 the common domain
of 𝛼 and 𝜑. By the arguments above, 1𝑈/𝜑 is an isomorphism, and since one has 𝛼/𝜑 =

(𝛼/1𝑈) (1𝑈/𝜑) by (6.4.10.2), it follows that 𝛼/1𝑈 is an isomorphism; denote by 𝛽/𝜓 its
inverse. From 6.4.2 and the equalities 1𝑁/1𝑁 = (𝛼/1𝑈) (𝛽/𝜓) = (𝛼𝛽)/𝜓 it follows that
𝛼𝛽 is a quasi-isomorphism. Furthermore, one has 1𝑈/1𝑈 = (𝛽/𝜓) (𝛼/1𝑈) = (𝛽𝛾)/𝜒
for some morphism 𝛾 and quasi-isomorphism 𝜒. Another application of 6.4.2 gives
that 𝛽𝛾 is a quasi-isomorphism, and hence 𝛼 is a quasi-isomorphism by 6.4.16. □

6.4.18 Corollary. A morphism 𝛼 : 𝑀 → 𝑁 in K(𝑅) is a quasi-isomorphism if and
only if V(𝛼) = 𝛼/1𝑀 is an isomorphism in D(𝑅), in which case the inverse is 1𝑀/𝛼.

Proof. This is an immediate consequence of 6.4.17. □

6.4.19. In view of the preceding results, it is natural to mark isomorphisms in D(𝑅)
by the symbol ‘≃’, which is used for quasi-isomorphisms in C(𝑅) and K(𝑅).

In particular, an isomorphism or a homotopy equivalence 𝛼 in C(𝑅) yields an
isomorphism [𝛼]/1 in D(𝑅).

For complexes with certain lifting properties there is a conceptual converse to
6.4.18. That is, isomorphisms in D(𝑅) yield quasi-isomorphisms of complexes.

6.4.20 Proposition. Let 𝑃 and 𝑀 be 𝑅-complexes. If 𝑃 is semi-projective and 𝑀
and 𝑃 are isomorphic in D(𝑅), then there is a quasi-isomorphism 𝑃→ 𝑀 .

Proof. If 𝑃 and 𝑀 are isomorphic in D(𝑅), then by 6.4.17 there are quasi-
isomorphisms 𝑃 ← 𝑈 → 𝑀 . By 6.3.2 there is a quasi-isomorphism 𝑃 → 𝑈

which composed with𝑈 → 𝑀 yields the desired quasi-isomorphism. □

6.4.21 Proposition. Let 𝐼 and 𝑀 be 𝑅-complexes. If 𝐼 is semi-injective and 𝑀 and
𝐼 are isomorphic in D(𝑅), then there is a quasi-isomorphism 𝑀 → 𝐼.

Proof. If 𝑀 and 𝐼 are isomorphic, then there are quasi-isomorphisms 𝑀 ← 𝑈 → 𝐼;
see 6.4.17. The lifting property 6.3.5 now yields a quasi-isomorphism 𝑀 → 𝐼. □
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294 6 The Derived Category

Remark. Existence of an isomorphism 𝑀 → 𝑁 in D(𝑅) does not imply that there is even a
non-zero morphism 𝑀 → 𝑁 in C(𝑅); see E 6.4.6.

It follows from 6.4.17 that complexes that are isomorphic in the derived category
have isomorphic homology. As the next example shows, the converse is not true.

6.4.22 Example. Over the ring ℤ/4ℤ, consider the complexes

𝑃 = 0 −→ ℤ/4ℤ 2−−−→ ℤ/4ℤ −→ 0 and

𝑀 = 0 −→ ℤ/2ℤ 0−−−→ ℤ/2ℤ −→ 0

concentrated in degrees 1 and 0. Evidently, one has H(𝑃) � 𝑀 � H(𝑀). The
complex 𝑃 is semi-projective by 5.2.8, so if 𝑃 and 𝑀 were isomorphic in D(ℤ/4ℤ),
then there would by 6.4.20 exist a quasi-isomorphism 𝑃→ 𝑀 . However, it is evident
that every morphism 𝛼 : 𝑃→ 𝑀 in C(ℤ/4ℤ) has H1 (𝛼) = 0.

Remark. The take-away from the example above is that there is more to a complex than its
homology, even from the point of view of the derived category. There is a way, in the derived
category, to build a complex from its homology—see Dwyer, Greenleese, and Iyengar [74]—but in
6.4.22 the homology of 𝑃 equally builds 𝑃 and 𝑀.

6.4.23 Proposition. Assume that 𝑅 is semi-simple or a principal left ideal domain.
For every 𝑅-complex 𝑀 there is an isomorphism 𝑀 ≃ H(𝑀) in D(𝑅).

Proof. If 𝑅 is semi-simple, then the assertion follows from 4.2.18 and 6.4.18. If 𝑅
is a principal left ideal domain, pick by 5.1.7 a semi-free resolution 𝜋 : 𝐿 ≃−−→ 𝑀 . It
follows from 4.2.19 that there there is a quasi-isomorphism 𝛼 : 𝐿 → H(𝐿), and now
(H(𝜋)𝛼)/𝜋 is an isomorphism in D(𝑅) from 𝑀 to H(𝑀) by 6.4.17. □

Remark. Semi-simple rings and principal left ideal domains are examples of left hereditary rings;
thus 6.4.23 records two special cases of E 6.4.10.

Zero Objects

The complexes that are isomorphic in the homotopy category to the complex 0 are
precisely the contractible complexes. The next result explains what is means for a
complex to be isomorphic to 0 in the derived category.

6.4.24 Proposition. An 𝑅-complex is a zero object inD(𝑅) if and only if it is acyclic.

Proof. In the homotopy category one has P(0) ≊ 0. Thus for every 𝑅-complex 𝑃,
each of the sets K(𝑅) (P(0), 𝑃) and K(𝑅) (𝑃, P(0)) consists of a single element. It
follows from 6.4.7 that for every 𝑅-complex 𝑀 , each of the sets D(𝑅) (0, 𝑀) and
D(𝑅) (𝑀, 0) consists of a single element. Thus the complex 0 is both an initial and
a terminal object in D(𝑅), i.e. a zero object.

If 𝑀 is acyclic, then 𝑀 → 0 is a quasi-isomorphism in K(𝑅), and it follows from
6.4.18 that 𝑀 and 0 are isomorphic in D(𝑅). Conversely, if 𝑀 is isomorphic to 0 in
D(𝑅), then there exist by 6.4.17 quasi-isomorphisms 𝑀 ≃←−− 𝑈 ≃−−→ 0 in K(𝑅), and
hence 𝑀 is acyclic. □
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For a morphism 𝛼 in C(𝑅), it follows from 6.4.17, 4.2.16, and 6.4.24 that VQ(𝛼)
is an isomorphism in D(𝑅) if and only if Cone𝛼 is isomorphic to 0 in D(𝑅). In
Sect. 6.5 it is proved that D(𝑅) is triangulated, and thus this property of the cone
follows from E.22.

Products and Coproducts

Next we show that the category D(𝑅) has products and coproducts. As in all other
categories one uses the symbols

∏
and

∐
for products and coproducts in D(𝑅).

6.4.25 Theorem. The derived category D(𝑅) and the functor V: K(𝑅) → D(𝑅)
are 𝕜-linear. For every family {𝑀𝑢}𝑢∈𝑈 of 𝑅-complexes the next assertions hold.

(a) If an 𝑅-complex 𝑀 with injections {𝜀𝑢 : 𝑀𝑢 → 𝑀 }𝑢∈𝑈 is the coproduct of the
family {𝑀𝑢}𝑢∈𝑈 in K(𝑅), then 𝑀 with the morphisms {𝜀𝑢/1𝑀𝑢 }𝑢∈𝑈 is the
coproduct of {𝑀𝑢}𝑢∈𝑈 in D(𝑅) .

(b) If an 𝑅-complex 𝑀 with projections {𝜛𝑢 : 𝑀 → 𝑀𝑢}𝑢∈𝑈 is the product of
the family {𝑀𝑢}𝑢∈𝑈 in K(𝑅), then 𝑀 with the morphisms {𝜛𝑢/1𝑀 }𝑢∈𝑈 is the
product of {𝑀𝑢}𝑢∈𝑈 in D(𝑅) .

In particular, the derived category D(𝑅) has products and coproducts, and the
canonical functor V preserves products and coproducts.

Proof. By 6.4.8 the hom-sets in D(𝑅) are 𝕜-modules, and composition of mor-
phisms in D(𝑅) is 𝕜-bilinear by 6.4.10. Thus the category D(𝑅) is 𝕜-prelinear. The
functor V is 𝕜-linear. Indeed, for parallel morphisms 𝛼, 𝛽 in K(𝑅) and 𝑥 in 𝕜, it
follows from 6.4.8 that one has

V(𝑥𝛼 + 𝛽) = (𝑥𝛼 + 𝛽)/1 = 𝑥(𝛼/1) + (𝛽/1) = 𝑥V(𝛼) + V(𝛽) .

To show that D(𝑅) is 𝕜-linear, it must be argued that it has biproducts and a zero
object. That D(𝑅) has a zero object follows from 6.4.24. As K(𝑅) has biproducts,
see 6.1.9, it follows from 6.1.8, applied to the canonical functor V: K(𝑅) → D(𝑅),
that D(𝑅) has biproducts as well.

(a): Let {𝛼𝑢/𝜑𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 be morphisms in D(𝑅). It must be shown that
there is a unique morphism 𝛼/𝜑 : 𝑀 → 𝑁 in D(𝑅) with (𝛼/𝜑) (𝜀𝑢/1𝑀𝑢 ) = 𝛼𝑢/𝜑𝑢 for
all 𝑢 ∈ 𝑈. The functor P: K(𝑅) → K(𝑅) preserves coproducts, see 6.3.11; hence the
coproduct

∐
𝑣∈𝑈 P(𝑀𝑣) and the 𝑢th injection P(𝑀𝑢) → ∐

𝑣∈𝑈 P(𝑀𝑣) are naturally
identified with the complex P(𝑀) and the morphism P(𝜀𝑢) : P(𝑀𝑢) → P(𝑀). For
existence, consider the family {P(𝛼𝑢) P(𝜑𝑢)−1 : P(𝑀𝑢) → P(𝑁)}𝑢∈𝑈 of morphisms
in K(𝑅). By the universal property of coproducts in K(𝑅) there is a morphism
𝜓 : P(𝑀) → P(𝑁) with 𝜓 P(𝜀𝑢) = P(𝛼𝑢) P(𝜑𝑢)−1 for all 𝑢 ∈ 𝑈. Denoting by 𝑋𝑢
the common domain of 𝜑𝑢 and 𝛼𝑢 one has((𝜋𝑁𝜓)/𝜋𝑀 ) (

𝜀𝑢/1𝑀𝑢
)
= (𝜋𝑁𝜓 P(𝜀𝑢))/𝜋𝑀𝑢

= (𝜋𝑁 P(𝛼𝑢) P(𝜑𝑢)−1)/𝜋𝑀𝑢

= (𝜋𝑁 P(𝛼𝑢))/(𝜋𝑀𝑢P(𝜑𝑢))
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296 6 The Derived Category

= (𝛼𝑢𝜋𝑋
𝑢 )/(𝜑𝑢𝜋𝑋𝑢 )

= 𝛼𝑢/𝜑𝑢 .

In this computation, the 1st equality follows from commutativity of the diagram,

P(𝑀𝑢)
𝜋𝑀

𝑢

≃��

P (𝜀𝑢 )
��

𝑀𝑢

1𝑀𝑢

��

𝜀𝑢

��

P(𝑀)
𝜋𝑀

≃��

𝜋𝑁𝜓

��

𝑀𝑢 𝑀 𝑁 ,

the 2nd equality holds by the defining property of 𝜓, the 3rd holds by 6.4.5, the 4th fol-
lows from (6.3.9.1), and the 5th holds by another application of 6.4.5. Consequently,
the morphism 𝛼/𝜑 = (𝜋𝑁𝜓)/𝜋𝑀 has the desired property.

For uniqueness, assume that (𝛼/𝜑) (𝜀𝑢/1𝑀𝑢 ) is zero in D(𝑅) for all 𝑢 ∈ 𝑈; it
must be shown that 𝛼/𝜑 is zero. By 6.4.10 the composite (𝛼/𝜑) (𝜀𝑢/1𝑀𝑢 ) has the form
(𝛼𝛾𝑢)/𝜒𝑢 where 𝛾𝑢 is a morphism and 𝜒𝑢 is a quasi-isomorphism with 𝜀𝑢𝜒𝑢 = 𝜑𝛾𝑢.
As each (𝛼𝛾𝑢)/𝜒𝑢 is assumed to be zero, it follows that for every 𝑢 ∈ 𝑈 one has

0 = P(𝛼𝛾𝑢) P(𝜒𝑢)−1 = P(𝛼) P(𝛾𝑢) P(𝜒𝑢)−1 = P(𝛼) P(𝜑)−1 P(𝜀𝑢) .

By the universal property of coproducts in K(𝑅), it follows that P(𝛼) P(𝜑)−1 = 0
holds, and hence 𝛼/𝜑 is the zero morphism by 6.4.3.

(b): Let {𝛼𝑢/𝜑𝑢 : 𝑁 → 𝑀𝑢}𝑢∈𝑈 be morphisms in D(𝑅). It must be shown that
there is a unique morphism 𝛼/𝜑 : 𝑁 → 𝑀 in D(𝑅) with (𝜛𝑢/1𝑀 ) (𝛼/𝜑) = 𝛼𝑢/𝜑𝑢
for all𝑢 ∈ 𝑈. The functor I : K(𝑅) → K(𝑅) preserves products, see 6.3.17, and hence
the product

∏
𝑣∈𝑈 I(𝑀𝑣) and the 𝑢th projection

∏
𝑣∈𝑈 I(𝑀𝑣) → I(𝑀𝑢) are naturally

identified with the complex I(𝑀) and the morphism I(𝜛𝑢) : I(𝑀) → I(𝑀𝑢).
For existence, consider the family {I(𝛼𝑢) I(𝜑𝑢)−1 : I(𝑁) → I(𝑀𝑢)}𝑢∈𝑈 of mor-

phisms in K(𝑅). By the universal property of products in K(𝑅) there is a morphism
𝜓 : I(𝑁) → I(𝑀) with I(𝜛𝑢)𝜓 = I(𝛼𝑢) I(𝜑𝑢)−1 for all 𝑢 ∈ 𝑈. Consider the mor-
phism 𝛼 = 𝜋𝑀P(𝜄𝑀 )−1 P(𝜓) P(𝜄𝑁 ) from P(𝑁) to 𝑀 . By (6.4.10.2) there is an equal-
ity (𝜛𝑢/1𝑀 ) (𝛼/𝜋𝑁 ) = (𝜛𝑢𝛼)/𝜋𝑁 ; we argue that this left fraction is equal to 𝛼𝑢/𝜑𝑢. By
6.4.3 this is equivalent to showing that one has I(𝜛𝑢𝛼) I(𝜋𝑁 )−1 = I(𝛼𝑢) I(𝜑𝑢)−1,
i.e.

(†) I(𝜛𝑢) I(𝜋𝑀 ) IP(𝜄𝑀 )−1 IP(𝜓) IP(𝜄𝑁 ) I(𝜋𝑁 )−1 = I(𝛼𝑢) I(𝜑𝑢)−1 .

As 𝜓 satisfies I(𝜛𝑢)𝜓 = I(𝛼𝑢) I(𝜑𝑢)−1, the equality (†) will follow if the identity

I(𝜋𝑀 ) IP(𝜄𝑀 )−1 IP(𝜓) IP(𝜄𝑁 ) I(𝜋𝑁 )−1 = 𝜓

holds, which by 6.3.8 happens if and only if one has

(‡) I(𝜋𝑀 ) IP(𝜄𝑀 )−1 IP(𝜓) IP(𝜄𝑁 ) I(𝜋𝑁 )−1𝜄𝑁𝜋𝑁 = 𝜓𝜄𝑁𝜋𝑁 .

The commutative diagram, cf. (6.3.15.1),
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𝑁

𝜄𝑁≃
��

P(𝑁)𝜋𝑁
oo

𝜄P (𝑁 )≃
��

P ( 𝜄𝑁 )
// PI(𝑁)

𝜄PI (𝑁 )≃
��

P (𝜓)
// PI(𝑀)

𝜄PI (𝑀)≃
��

P(𝑀)P ( 𝜄𝑀 )
oo

𝜄P (𝑀)≃
��

𝜋𝑀
// 𝑀

𝜄𝑀≃
��

I(𝑁) IP(𝑁)I (𝜋𝑁 )
oo

IP ( 𝜄𝑁 )
// IPI(𝑁)

IP (𝜓)
// IPI(𝑀) IP(𝑀)IP ( 𝜄𝑀 )

oo
I (𝜋𝑀 )

// I(𝑀) ,

shows that the left-hand side of (‡) is equal to 𝜄𝑀𝜋𝑀P(𝜄𝑀 )−1 P(𝜓) P(𝜄𝑁 ), and thus
it must be argued that there is an equality 𝜄𝑀𝜋𝑀P(𝜄𝑀 )−1 P(𝜓) P(𝜄𝑁 ) = 𝜓𝜄𝑁𝜋𝑁 .
However, this follows from the commutative diagram, cf. (6.3.9.1),

P(𝑁)

𝜋𝑁≃
��

P ( 𝜄𝑁 )
// PI(𝑁)

𝜋I (𝑁 )≃
��

P (𝜓)
// PI(𝑀)

𝜋I (𝑀)≃
��

P(𝑀)

𝜋𝑀≃
��

P ( 𝜄𝑀 )
oo

𝑁
𝜄𝑁

// I(𝑁)
𝜓

// I(𝑀) 𝑀 .
𝜄𝑀

oo

For uniqueness, assume that the fraction (𝜛𝑢/1𝑀 ) (𝛼/𝜑) = (𝜛𝑢𝛼)/𝜑 is zero for all
𝑢 ∈ 𝑈; it must be shown that 𝛼/𝜑 is zero. As I(𝜛𝑢) I(𝛼) I(𝜑)−1 = I(𝜛𝑢𝛼) I(𝜑)−1 = 0
holds for every 𝑢 ∈ 𝑈, see 6.4.3, it follows from the universal property of products
in K(𝑅) that I(𝛼) I(𝜑)−1 = 0 holds. Evidently, one also has I(0) I(1𝑁 )−1 = 0, so
𝛼/𝜑 is the zero morphism by another application of 6.4.3.

By construction, the canonical functor V preserves products and coproducts. □

6.4.26. It is immediate from 6.4.25 and 6.1.11 that the product and coproduct in
D(𝑅) of a finite family {𝑀𝑢}𝑢∈𝑈 of 𝑅-complexes coincide, and that this complex is
the iterated biproduct ⊕𝑢∈𝑈 𝑀

𝑢 in D(𝑅). Per 1.1.14 this complex is called the direct
sum in D(𝑅) of the family {𝑀𝑢}𝑢∈𝑈 , and each 𝑀𝑢 is called a direct summand.

Remark. Let 𝑀 and 𝑁 be 𝑅-complexes. A right prefraction from 𝑀 to 𝑁 is a diagram in K(𝑅) ,

(∗) 𝑀
𝛽−−→ 𝑉

𝜓←−−
≃
𝑁 ,

where 𝜓 is a quasi-isomorphism. Dually to 6.4.1 one can define an equivalence relation on the
collection of right prefractions from 𝑀 to 𝑁 ; the equivalence class containing the right prefraction
(∗) is denoted 𝜓\𝛽 and called a right fraction. Like D(𝑅) (𝑀, 𝑁 ) , the collection D′ (𝑅) (𝑀, 𝑁 )
of all right fractions from 𝑀 to 𝑁 is a set. The collection of all such sets provide the hom-sets for
a category D′ (𝑅) whose objects are all 𝑅-complexes. There is a functor D′ (𝑅) → D(𝑅); it is
the identity on objects and it maps a right fraction 𝜓\𝛽 to the left fraction 𝛼/𝜑 for any choice of
morphism 𝛼 and quasi-isomorphism 𝜑 such that the diagram (6.4.9.1) in K(𝑅) is commutative.
The functor D′ (𝑅) → D(𝑅) yields an equivalence and, consequently, the derived category
may just as well be constructed using right fractions. We soon prove that D(𝑅) is a triangulated
category; similarly so is D′ (𝑅) , and the equivalence between D′ (𝑅) and D(𝑅) is actually an
equivalence of triangulated categories.

We do not pursue the right fraction point of view beyond this Remark, even though it does
have certain advantages. For example, as the proof of 6.4.25 reveals, the argument for existence of
coproducts in D(𝑅) is more straightforward than the one proving existence of products. This is
because left fractions mesh better with coproducts than with products. Dually, it is straightforward
to show existence of products in D′ (𝑅) , but slightly more involved to establish the existence of
coproducts. Had we proved the equivalence between D′ (𝑅) and D(𝑅) , existence of products in
D(𝑅) would follow immediately from the existence of products in D′ (𝑅) .
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Universal Property

The canonical functor V: K(𝑅) → D(𝑅) from 6.4.13 has a universal property de-
scribed in the next theorem.

6.4.27 Theorem. Let U be a category and F: K(𝑅) → U a functor. If F maps quasi-
isomorphisms to isomorphisms, then there exists a unique functor F́ that makes the
following diagram commutative,

K(𝑅)

V
��

F
// U

D(𝑅) .
F́

==

For every 𝑅-complex 𝑀 there is an equality F́(𝑀) = F(𝑀), and for every morphism
𝛼/𝜑 in D(𝑅) one has F́(𝛼/𝜑) = F(𝛼) F(𝜑)−1. Furthermore, the next assertions hold.

(a) If U is 𝕜-prelinear and F is 𝕜-linear, then F́ is 𝕜-linear.
(b) If U has products/coproducts and F preserves products/coproducts, then F́

preserves products/coproducts.

Proof. Assume that there is a functor F́ with F́V = F. As V is the identity on objects,
one has F́(𝑀) = F(𝑀) for every 𝑅-complex 𝑀 . A morphism 𝛼/𝜑 in D(𝑅) can by
(6.4.10.2) and 6.4.17 be written 𝛼/𝜑 = (𝛼/1) (1/𝜑) = (𝛼/1) (𝜑/1)−1 = V(𝛼) V(𝜑)−1,
and thus there are equalities,

F́(𝛼/𝜑) = F́(V(𝛼) V(𝜑)−1) = (F́V(𝛼)) (F́V(𝜑))−1 = F(𝛼) F(𝜑)−1 .

Consequently, the functor F́ is uniquely determined by F.
For existence, notice that if 𝛼1/𝜑1 = 𝛼2/𝜑2 holds in D(𝑅), then there is an equality

F(𝛼1) F(𝜑1)−1 = F(𝛼2) F(𝜑2)−1 in U. Indeed, this follows by applying F to the
diagram (6.4.1.1); cf. the proof of 6.4.3. Thus, one can set F́(𝑀) = F(𝑀) for 𝑅-
complexes 𝑀 and F́(𝛼/𝜑) = F(𝛼) F(𝜑)−1 for morphisms 𝛼/𝜑 in D(𝑅). With this
definition, one evidently has F́V = F.

In order for F́ to be a functor, it must preserve identity morphisms and respect
composition. By definition, F́(1𝑀/1𝑀 ) = F(1𝑀 ) F(1𝑀 )−1 = 1F(𝑀 ) = 1F́(𝑀 ) holds
for every 𝑅-complex 𝑀 . Let 𝛼/𝜑 and 𝛽/𝜓 be composable morphisms in D(𝑅). By
6.4.10 the composition (𝛼/𝜑) (𝛽/𝜓) is (𝛼𝛾)/(𝜓𝜒) for any choice of morphism 𝛾 and
quasi-isomorphism 𝜒 in K(𝑅) with 𝛽𝜒 = 𝜑𝛾. Thus there are equalities,

F́((𝛼/𝜑) (𝛽/𝜓)) = F́((𝛼𝛾)/(𝜓𝜒))
= F(𝛼𝛾) F(𝜓𝜒)−1

= F(𝛼) F(𝛾) F(𝜒)−1F(𝜓)−1

= F(𝛼) F(𝜑)−1F(𝛽) F(𝜓)−1

= F́(𝛼/𝜑)F́(𝛽/𝜓) .
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(a): Assume that F is 𝕜-linear, let 𝛼1/𝜑1 and 𝛼2/𝜑2 be parallel morphisms and 𝑥
an element in 𝕜. Write 𝛼1/𝜑1 = 𝛽1/𝜑 and 𝛼2/𝜑2 = 𝛽2/𝜑 for morphisms 𝛽1, 𝛽2 and a
quasi-isomorphism 𝜑, see 6.4.6. Now 6.4.8 yields

F́
(
𝑥
(
𝛼1/𝜑1

)
+ 𝛼2/𝜑2

)
= F́

((𝑥𝛽1 + 𝛽2)/𝜑
)

= F(𝑥𝛽1 + 𝛽2) F(𝜑)−1

= (𝑥 F(𝛽1) + F(𝛽2)) F(𝜑)−1

= 𝑥 F(𝛽1) F(𝜑)−1 + F(𝛽2) F(𝜑)−1

= 𝑥 F́
(
𝛽1/𝜑

)
+ F́

(
𝛽2/𝜑

)
= 𝑥 F́

(
𝛼1/𝜑1

)
+ F́

(
𝛼2/𝜑2

)
,

and hence F́ is 𝕜-linear.
(b): The proof of 6.1.16(b) applies to prove part (b) in this theorem; only one has

to replace the functor Q by V and the reference to 6.1.9 by one to 6.4.25. □

By the universal property above, certain types of functors onK(𝑅) induce functors
on D(𝑅) and natural transformations follow along.

6.4.28 Proposition. Let E, F: K(𝑅) → U be functors that map quasi-isomorphisms
to isomorphisms and consider the induced functors É, F́ : D(𝑅) → U from 6.4.27.
Every natural transformation 𝜏 : E→ F induces a natural transformation 𝜏 : É→ F́
given by 𝜏𝑀 = 𝜏𝑀 for every 𝑅-complex 𝑀 .

Proof. For every 𝑅-complex 𝑀 one has É(𝑀) = E(𝑀) and F́(𝑀) = F(𝑀) by
6.4.27, whence 𝜏𝑀 = 𝜏𝑀 is a morphism É(𝑀) → F́(𝑀). Let 𝛼/𝜑 : 𝑀 → 𝑁 be a
morphism inD(𝑅) and denote by𝑈 the common domain of 𝛼 and 𝜑. Since 𝜏 : E→ F
is a natural transformation of functors K(𝑅) → U there are equalities,

𝜏𝑁 É(𝛼/𝜑) = 𝜏𝑁 E(𝛼) E(𝜑)−1 = F(𝛼)𝜏𝑈 E(𝜑)−1 = F(𝛼) F(𝜑)−1𝜏𝑀 = F́(𝛼/𝜑)𝜏𝑀 ,

which show that 𝜏 : É→ F́ is a natural transformation of functors D(𝑅) → U. □

6.4.29 Theorem. Let V be a category and G: K(𝑅)op → V a functor. If G maps
quasi-isomorphisms to isomorphisms, then there exists a unique functor Ǵ that makes
the following diagram commutative,

K(𝑅)op

Vop

��

G
// V

D(𝑅)op .

Ǵ

<<

For every 𝑅-complex 𝑀 there is an equality Ǵ(𝑀) = G(𝑀), and for every morphism
𝛼/𝜑 in D(𝑅)op one has Ǵ(𝛼/𝜑) = G(𝜑)−1G(𝛼). Further, the next assertions hold.

(a) If V is 𝕜-prelinear and G is 𝕜-linear, then Ǵ is 𝕜-linear.
(b) If V has products/coproducts and G preserves products/coproducts, then Ǵ

preserves products/coproducts.
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Proof. Apply 6.4.27 to the functor Gop : K(𝑅) → Vop. □

6.4.30 Proposition. Let G, J : K(𝑅)op → V be functors that map quasi-isomorphisms
to isomorphisms and consider the induced functors Ǵ, J́ : D(𝑅)op → V from 6.4.29.
Every natural transformation 𝜏 : G→ J induces a natural transformation 𝜏 : Ǵ→ J́
given by 𝜏𝑀 = 𝜏𝑀 for every 𝑅-complex 𝑀 .

Proof. Apply 6.4.28 to the natural transformation 𝜏op : Jop→ Gop of functors from
K(𝑅) to Vop. □

Special Case of the Universal Property

We apply the derived category’s universal property in an important special case.

6.4.31 Theorem. Let F: K(𝑅) → K(𝑆) be a functor. If F preserves quasi-isomor-
phisms, then there is a unique functor ´́F that makes the next diagram commutative,

K(𝑅) F
//

V𝑅
��

K(𝑆)

V𝑆
��

D(𝑅)
´́F
// D(𝑆) .

For every 𝑅-complex 𝑀 there is an equality ´́F(𝑀) = F(𝑀), and for every morphism
𝛼/𝜑 in D(𝑅) one has ´́F(𝛼/𝜑) = F(𝛼)/F(𝜑). Further, the following assertions hold.

(a) If F is 𝕜-linear, then ´́F is 𝕜-linear.
(b) If F preserves products/coproducts, then ´́F preserves products/coproducts.

Proof. As F preserves quasi-isomorphisms, the functor V𝑆 F maps quasi-isomor-
phisms in K(𝑅) to isomorphisms in D(𝑆); see 6.4.18. Hence, the existence and
uniqueness of ´́F follow from 6.4.27. In symbols one has ´́F = (V𝑆 F)́ . The value of
´́F on an 𝑅-complex 𝑀 is ´́F (𝑀) = V𝑆 F(𝑀) = F(𝑀) since V𝑆 is the identity on
objects. By 6.4.27, 6.4.17, and (6.4.10.2) the value of ´́F on a morphism 𝛼/𝜑 is

´́F (𝛼/𝜑) = (V𝑆 F(𝛼)) (V𝑆 F(𝜑))−1 = (F(𝛼)/1) (1/F(𝜑)) = F(𝛼)/F(𝜑) .

By 6.4.25 the functor V𝑆 is 𝕜-linear and preserves products/coproducts. Thus, if F
has one or more of these properties, then so has V𝑆 F, and the assertions in parts (a)
and (b) now follow from the corresponding parts in 6.4.27. □

6.4.32 Example. Assume that 𝑅 is commutative and let𝑈 be a multiplicative subset
of 𝑅. The localization functor𝑈−1 : C(𝑅) → C(𝑈−1𝑅) preserves homotopy by 4.3.18
and quasi-isomorphisms by 4.2.14, and hence so does the naturally isomorphic
functor 𝑈−1𝑅 ⊗𝑅 from 2.1.50. Thus, it follows from 6.1.20 and 6.4.31 that they
induce naturally isomorphic functors𝑈−1 ≃ 𝑈−1𝑅 ⊗𝑅 : D(𝑅) → D(𝑈−1𝑅).

6.4.33 Proposition. Let E, F: K(𝑅) → K(𝑆) be functors that preserve quasi-iso-
morphisms and consider the induced functors ´́E , ´́F : K(𝑅) → K(𝑆); see 6.4.31.
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Every natural transformation 𝜏 : E→ F induces a natural transformation ´́𝜏 : ´́E → ´́F
given by ´́𝜏𝑀 = 𝜏𝑀/1 for every 𝑅-complex 𝑀 .

Proof. Evidently, application of the canonical functor V: K(𝑆) → D(𝑆) to the
natural transformation 𝜏 yields a natural transformation V𝜏 : VE→ VF of functors
from K(𝑅) to D(𝑆). By definition, ´́E and ´́F are the functors from D(𝑅) to D(𝑆)
induced by VE and VF; see 6.4.27. Thus 6.4.28 gives the desired conclusion. □

6.4.34 Theorem. Let G: K(𝑅)op → K(𝑆) be a functor. If G preserves quasi-isomor-
phisms, then there is a unique functor ´́G that makes the next diagram commutative,

K(𝑅)op G
//

Vop
𝑅

��

K(𝑆)

V𝑆
��

D(𝑅)op ´́G
// D(𝑆) .

For every 𝑅-complex 𝑀 one has ´́G (𝑀) = G(𝑀), and for every morphism 𝛼/𝜑 in
D(𝑅)op one has ´́G (𝛼/𝜑) = (1/G(𝜑)) (G(𝛼)/1). Furthermore, the next assertions hold.

(a) If G is 𝕜-linear, then ´́G is 𝕜-linear.
(b) If G preserves products/coproducts, then ´́G preserves products/coproducts.

Proof. Proceed as in the proof of 6.4.31, only apply 6.4.29 in place of 6.4.27. □

6.4.35 Proposition. Let G, J : K(𝑅)op → K(𝑆) be functors that preserve quasi-iso-
morphisms and consider the induced functors ´́G , ´́J : K(𝑅)op → K(𝑆); see 6.4.34.
Every natural transformation 𝜏 : G→ J induces a natural transformation ´́𝜏 : ´́G → ´́J
given by ´́𝜏𝑀 = 𝜏𝑀/1 for every 𝑅-complex 𝑀 .

Proof. Proceed as in the proof of 6.4.33, only apply 6.4.29 and 6.4.30 in place of
6.4.27 and 6.4.28. □

We occasionally abuse notation and write F and G for the induced functors ´́F and
´́G from 6.4.31 and 6.4.34.

6.4.36 Example. The restrictions of scalars functors from 6.1.23, associated to a ring
homomorphism 𝜑 : 𝑅 → 𝑆, preserve quasi-isomorphisms by 6.1.24. The functors

res𝑆𝑅 : D(𝑆) −→ D(𝑅) and res𝑆
o

𝑅o : D(𝑆o) −→ D(𝑅o) ,

induced per 6.4.31, are usually suppressed, and even when they are not, we suppress
the ‘op’ on the opposite functors D(𝑆)op → D(𝑅)op and D(𝑆o)op → D(𝑅o)op.

Recall from 1.1.46 that a faithful functor is conservative. Next we prove that the
functors from 6.4.36 are conservative; however, they may not be faithful, see 7.3.37.

6.4.37 Proposition. Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism. The restriction of
scalars functors res𝑆

𝑅
: D(𝑆) → D(𝑅) and res𝑆o

𝑅o : D(𝑆o) → D(𝑅o) are conservative.

Proof. By 6.1.24 the functors res𝑆
𝑅

: K(𝑆) → K(𝑅) and res𝑆o

𝑅o : K(𝑆o) → K(𝑅o)
preserve and reflect quasi-isomorphisms, so the assertion follows from 6.4.17. □
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6.4.38 Example. Let 𝑛 be an integer and recall from 6.1.26 that soft truncation
above ( )Ď𝑛 and soft truncation below ( )Ě𝑛 are 𝕜-linear endofunctors on K(𝑅). It
follows from 4.2.10 that they preserve quasi-isomorphisms, so by 6.4.31 they yield
𝕜-linear endofunctors on D(𝑅), also denoted ( )Ď𝑛 and ( )Ě𝑛.

6.4.39 Lemma. Let K(𝑅) E−−→ K(𝑆) F−−→ U
T−−→ V be functors where E preserves

quasi-isomorphisms and F maps quasi-isomorphisms to isomorphisms. The functor
D(𝑅) → V induced by TFE is TF́ ´́E; in symbols, (TFE)́ = TF́ ´́E .

In particular, one has (TF)́ = TF́ and (FE)́ = F́ ´́E .

Proof. The induced functor (TFE)́ is the unique functor with (TFE)́ V𝑅 = TFE.
As one has TF́ ´́EV𝑅 = TF́V𝑆E = TFE, the assertion follows. □

6.4.40 Lemma. Let K(𝑄) E−−→ K(𝑅) F−−→ K(𝑆) be functors that preserve quasi-
isomorphisms. The functor D(𝑄) → D(𝑆) induced by FE is ´́F ´́E; i.e. (FE)́´= ´́F ´́E .

Proof. The induced functor (FE)́´ is the unique functor with (FE)́´V𝑄 = V𝑆 FE.
As one has ´́F ´́EV𝑄 = ´́FV𝑅 E = V𝑆 FE, the assertion follows. □

Adjoint Functors

An adjunction of appropriate functors between categories of complexes induces an
adjunction between homotopy categories, see 6.1.32. We close this section by record-
ing how an adjunction on the level of homotopy categories induces an adjunction on
the derived category level.

To parse the next result, recall 6.4.31 and 6.4.33.

6.4.41 Lemma. Consider an adjunction,

K(𝑆)
F
//
K(𝑅) ,

G
oo

with unit 𝛼 : IdK(𝑆) → GF and counit 𝛽 : FG→ IdK(𝑅) . If F and G preserve quasi-
isomorphisms, then the induced functors,

D(𝑆)
´́F
//
D(𝑅) ,

´́G
oo

is an adjunction with unit ´́𝛼 : IdD(𝑆) → ´́G ´́F and counit ´́𝛽 : ´́F ´́G → IdD(𝑅) .

Proof. For the unit and counit of the given adjunction one has the zigzag identities
G 𝛽 ◦ 𝛼G = 1G and 𝛽 F ◦F𝛼 = 1F. It follows, cf. 6.4.40, that ´́G ´́𝛽 ◦ ´́𝛼 ´́G = 1 ´́G and
´́𝛽 ´́F ◦ ´́F ´́𝛼 = 1 ´́F hold, which is equivalent to saying that ( ´́F , ´́G) is an adjunction with
unit ´́𝛼 and counit ´́𝛽. □

To parse the next result, recall 6.4.34 and 6.4.35.
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6.4.42 Lemma. Consider an adjunction,

K(𝑆)
F
//
K(𝑅)op ,

G
oo

with unit 𝛼 : IdK(𝑆) → GF and counit 𝛽 : FG→ IdK(𝑅)op . If F and G preserve
quasi-isomorphisms, then the induced functors,

D(𝑆)
´́F
//
D(𝑅)op ,

´́G
oo

is an adjunction with unit ´́𝛼 : IdD(𝑆) → ´́G ´́F and counit ´́𝛽 : ´́F ´́G→ IdD(𝑅)op .

Proof. This follows from an argument parallel to the proof of 6.4.41. □

6.4.43. The opposite of the counit 𝛽 : FG→ IdK(𝑅)op from 6.4.42 is a natural
transformation 𝛽op : IdK(𝑅) → Fop Gop. In concrete settings it is often more natural
to consider 𝛽op instead of 𝛽. Note that one has (𝛽op )́´= ( ´́𝛽)op.

Exercises

E 6.4.1 Let 𝑀 and 𝑁 be 𝑅-complexes. Show that the collection of left prefractions from 𝑀 to
𝑁 is a proper class; that is, not a set.

E 6.4.2 Show that the isomorphism in 6.4.7 is a natural isomorphism of 𝕜-modules.
E 6.4.3 For 𝑅-complexes 𝑀, 𝑁 show that there are natural isomorphisms K(𝑅) (P(𝑀 ) , 𝑁 ) �

D(𝑅) (𝑀, 𝑁 ) and K(𝑅) (𝑀, I (𝑁 ) ) � D(𝑅) (𝑀, 𝑁 ) .
E 6.4.4 Write down explicitly the inverse of the functor M(𝑅) → VQ(M(𝑅) ) from 6.4.15.
E 6.4.5 Let D0 (𝑅) be the full subcategory of D(𝑅) whose objects are all complexes that are

isomorphic in D(𝑅) to one in the full subcategory M(𝑅) . (a) Show that a complex 𝑀
is in D0 (𝑅) if and only if H(𝑀 ) is concentrated in degree 0. (b) Show that D0 (𝑅) is
equivalent to M(𝑅) .

E 6.4.6 Show that the complexes in 4.2.3 are isomorphic in D(𝑅) . Hint: E 5.1.9.
E 6.4.7 Show that a left fraction 𝛼/𝜑 is zero if and only if there exists a quasi-isomorphism 𝜇

with 𝛼𝜇 = 0; see also E 6.3.2.
E 6.4.8 Consider 𝕜 as a module over the polynomial algebra 𝕜 [𝑥 ] with the trivial 𝑥-action. Show

that there is a non-zero morphism 𝜘 : 𝕜 → Σ 𝕜 in D(𝕜 [𝑥 ] ) with H(𝜘) = 0.
E 6.4.9 Show that Mgr (𝑅) is isomorphic to a full subcategory of D(𝑅) .
E 6.4.10 Assume that 𝑅 is left hereditary. Show that there is an isomorphism 𝑀 ≃ H(𝑀 ) in

D(𝑅) for every 𝑅-complex 𝑀. Hint: E 5.2.3.

6.5 Triangulation of DDD

Synopsis. Distinguished triangle; triangulated functor; universal property of D revisited; homo-
logy; Five Lemma; distinguished triangle from short exact sequence.

The homotopy category K(𝑅) is triangulated but rarely Abelian, and same holds
for the derived category D(𝑅). While the triangulated structure on D(𝑅) is induced
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304 6 The Derived Category

from K(𝑅), it is closer to the Abelian structure on C(𝑅) in the crucial sense that
every short exact sequence in C(𝑅) yields a distinguished triangle in D(𝑅).

An important proof-technical tool in our approach to the triangulation on D(𝑅)
is the semi-projective resolution functor on K(𝑅) and the one it induces on D(𝑅).

6.5.1 Lemma. The resolution functor P: K(𝑅) → K(𝑅) from 6.3.11 induces a
functor Ṕ : D(𝑅) → K(𝑅) with ṔV = P; it is 𝕜-linear and preserves coproducts.

Proof. By 6.3.11 the functor P maps quasi-isomorphisms to isomorphisms, and it
is 𝕜-linear and preserves coproducts. The assertions now follow from 6.4.27. □

When there is no risk of ambiguity, we write P instead of Ṕ.

6.5.2 Lemma. Let 𝜉 : 𝑀 → 𝑁 be a morphism in D(𝑅). The morphism P(𝜉) in K(𝑅)
fits into the following commutative diagram in D(𝑅),

P(𝑀)
𝜋𝑀/1
≃
//

P ( 𝜉 )/1
��

𝑀

𝜉

��

P(𝑁)
𝜋𝑁/1
≃
// 𝑁 .

Proof. With 𝜉 = 𝛼/𝜑 one has P(𝜉)/1 = (P(𝛼) P(𝜑)−1)/1 = P(𝛼)/P(𝜑) by 6.4.27 and
6.4.5. Now (6.4.10.2) and (6.3.9.1) yield(

𝜋𝑁/1
) (

P(𝜉)/1
)
=

(
𝜋𝑁/1

) (
P(𝛼)/P(𝜑)

)
= (𝜋𝑁P(𝛼))/P(𝜑) = (𝛼𝜋

𝑈)/P(𝜑) ,

where𝑈 is the common domain of 𝛼 and 𝜑. The commutative diagram K(𝑅),

P(𝑈)
P (𝜑)

≊��

𝜋𝑈

��

P(𝑀)
1
��

𝜋𝑀

��

𝑈
𝜑

≃
��

𝛼

��

P(𝑀) 𝑀 𝑁 ,

shows that the composite (𝛼/𝜑) (𝜋𝑀/1) is also equal to (𝛼𝜋𝑈)/P(𝜑). □

6.5.3. By 4.2.9 and 6.4.31 there is a unique 𝕜-linear endofunctor ´́Σ on D(𝑅) that
makes the following diagram commutative,

K(𝑅) Σ
//

V
��

K(𝑅)

V
��

D(𝑅)
´́Σ
// D(𝑅) .

By 6.4.40 it is an isomorphism with inverse induced by Σ−1 : K(𝑅) → K(𝑅). By
the usual abuse of notation, the functor ´́Σ is written Σ or, occasionally, ΣD. For a
morphism 𝛼/𝜑 in D(𝑅) one has ΣD (𝛼/𝜑) = (Σ𝛼)/(Σ𝜑).
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6.5.4. By 6.3.11 there is a natural isomorphism 𝜙 : PΣK→ ΣKP of endofunctors
on K(𝑅) that makes the functor P triangulated. It follows from 6.4.28, 6.4.39, and
6.5.3 that there is an induced natural isomorphsim of functors D(𝑅) → K(𝑅),

ṔΣD = (PΣK )́
�́�−−−→ (ΣKP)́ = ΣK Ṕ .

We often simplify the notation and write 𝜙 : PΣ→ ΣP for the isomorphism above.

Consider the 𝕜-linear category D(𝑅), see 6.4.25, equipped with the 𝕜-linear
automorphism Σ = ΣD. One may now speak of candidate triangles in D(𝑅); cf. E.1.

6.5.5 Definition. A candidate triangle in D(𝑅) is called a distinguished triangle if
it is isomorphic to the image of a distinguished triangle in K(𝑅) under the canonical
functor V: K(𝑅) → D(𝑅).

Next we show that the semi-projective resolution functor P: D(𝑅) → K(𝑅) pre-
serves distinguished triangles. Together with the already established fact that K(𝑅)
is triangulated, this yields a short pass to the fact that D(𝑅) is triangulated.

6.5.6 Proposition. Consider the functor P: D(𝑅) → K(𝑅) from 6.5.1 and the natu-
ral isomorphism 𝜙 : PΣ→ ΣP from 6.5.4. For every distinguished triangle in D(𝑅),

𝑀
𝜉−−−→ 𝑁

𝜗−−−→ 𝑋
𝜘−−−→ Σ𝑀 ,

the candidate triangle

P(𝑀) P ( 𝜉 )−−−−→ P(𝑁) P (𝜗)−−−−→ P(𝑋) 𝜙𝑀 P (𝜘)−−−−−−−→ ΣP(𝑀)

is distinguished in K(𝑅).

Proof. As in 6.5.1, write P for the resolution functor on K(𝑅) and Ṕ for the in-
duced functor on D(𝑅). By definition, the given distinguished triangle in D(𝑅) is
isomorphic to one of the form

𝑀
V(𝛼)−−−−→ 𝑁

V(𝛽)−−−−→ 𝑋
V(𝛾)−−−−→ Σ𝑀 ,

where 𝑀 𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 is a distinguished triangle in K(𝑅). Thus it suffices
to argue that the candidate triangle

Ṕ(𝑀) ṔV(𝛼)−−−−−−→ Ṕ(𝑁) ṔV(𝛽)−−−−−→ Ṕ(𝑋) �́�𝑀 ṔV(𝛾)−−−−−−−−→ Σ Ṕ(𝑀) ,

is distinguished. However, this candidate triangle is nothing but

P(𝑀) P (𝛼)−−−−→ P(𝑁) P (𝛽)−−−−→ P(𝑋) 𝜙𝑀 P (𝛾)−−−−−−−→ ΣP(𝑀) ,

which is distinguished by 6.3.11. □

6.5.7 Theorem. The derived categoryD(𝑅), equipped with the automorphismΣ and
the collection of distinguished triangles defined in 6.5.5, is triangulated. Moreover,
the canonical functor V: K(𝑅) → D(𝑅) is triangulated.
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306 6 The Derived Category

Proof. By 6.5.3 one has VΣ = ΣV. Thus, once it has been established that the
category D(𝑅) is triangulated, the functor V is triangulated by 6.5.5.

(TR0): Follows immediately from the definition of distinguished triangles in
D(𝑅) and the fact that (K(𝑅),Σ) satisfies (TR0).

(TR1): Let 𝛼/𝜑 : 𝑀 → 𝑁 be a morphism in D(𝑅) and denote by 𝑈 the com-
mon domain of 𝛼 and 𝜑. As (K(𝑅),Σ) satisfies (TR1), the morphism 𝛼 fits in a
distinguished triangle in K(𝑅), say,

𝑈
𝛼−−−→ 𝑁

𝛽−−−→ 𝑋
𝛾−−−→ Σ𝑈 .

Applying V to this diagram, one gets by 6.5.5 a distinguished triangle in D(𝑅),
namely the upper row in the following commutative diagram,

𝑈

V(𝜑)
��

V(𝛼)
// 𝑁

V(𝛽)
// 𝑋

V(𝛾)
// Σ𝑈

ΣV(𝜑)
��

𝑀
𝛼/𝜑

// 𝑁
V(𝛽)

// 𝑋
(ΣV(𝜑) ) V(𝛾)

// Σ𝑀 .

As V(𝜑) is an isomorphism by 6.4.18, the lower row is a distinguished triangle.
(TR2′): Follows immediately from the fact that (K(𝑅),Σ) satisfies (TR2′).
(TR4′): Consider a commutative diagram in D(𝑅),

(♭)
𝑀

𝜑

��

𝛼
// 𝑁

𝜓

��

𝛽
// 𝑋

𝛾
// Σ𝑀

Σ𝜑

��

𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′

𝛾′
// Σ𝑀 ′ ,

where the rows are distinguished triangles. We construct a morphism 𝜒 : 𝑋 → 𝑋 ′

in D(𝑅) that makes (♭) commutative, and such that the mapping cone candidate
triangle of (𝜑, 𝜓, 𝜒) in D(𝑅) is distinguished.

Consider the functor P: D(𝑅) → K(𝑅) from 6.5.1 and the natural isomorphism
𝜙 : PΣ→ ΣP from 6.5.4. In the following commutative diagram in K(𝑅), the rows
are distinguished triangles by 6.5.6,

(⋄)
P(𝑀)

P (𝜑)
��

P (𝛼)
// P(𝑁)

P (𝜓)
��

P (𝛽)
// P(𝑋)

𝜙𝑀 P (𝛾)
// ΣP(𝑀)

ΣP (𝜑)
��

P(𝑀 ′) P (𝛼′ )
// P(𝑁 ′)

P (𝛽′ )
// P(𝑋 ′)

𝜙𝑀
′ P (𝛾′ )
// ΣP(𝑀 ′) .

As the category K(𝑅) is triangulated, there exists a morphism 𝜗 : P(𝑋) → P(𝑋 ′)
that makes (⋄) commutative and such that the mapping cone candidate triangle of
(P(𝜑), P(𝜓), 𝜗) in K(𝑅) is distinguished. The front in the next diagram in D(𝑅) is
commutative, indeed, it is the image of (⋄) under the functor V: K(𝑅) → D(𝑅),
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(★)

𝑀

𝜑

��

𝛼
// 𝑁

𝜓

��

𝛽
// 𝑋

𝛾
// Σ𝑀

Σ𝜑

��

P(𝑀)

𝜋𝑀/1
≃

??

P (𝜑)/1
��

P (𝛼)/1
// P(𝑁)

𝜋𝑁/1
≃

??

P (𝜓)/1
��

P (𝛽)/1
// P(𝑋)

𝜋𝑋/1
≃

??

𝜗/1
��

(𝜙𝑀 P (𝛾) )/1
// ΣP(𝑀)

Σ (𝜋𝑀/1 )
≃

??

Σ (P (𝜑)/1 )
��

𝑀 ′
𝛼′

// 𝑁 ′
𝛽′

// 𝑋 ′
𝛾′

// Σ𝑀 ′ .

P(𝑀 ′)
𝜋𝑀
′/1

≃
??

P (𝛼′ )/1
// P(𝑁 ′)

𝜋𝑁
′/1

≃
??

P (𝛽′ )/1
// P(𝑋 ′)

𝜋𝑋
′/1

≃
??

(𝜙𝑀′ P (𝛾′ ) )/1
// ΣP(𝑀 ′)

Σ (𝜋𝑀
′/1 )

≃
??

The back in (★) is the commutative diagram (♭). The three complete vertical walls
are commutative by 6.5.2, and so are the left-hand and middle squares in both the
top and the bottom. The right-hand square in the top is also commutative; indeed,
one has (

Σ (𝜋𝑀/1)
) ((𝜙𝑀 P(𝛾))/1

)
= ((Σ𝜋𝑀 )𝜙𝑀 P(𝛾))/1
= (𝜋Σ𝑀 P(𝛾))/1
= (𝜋Σ𝑀/1) (P(𝛾)/1)
= 𝛾(𝜋𝑋/1) ,

where the 1st and 3rd equalities are by (6.4.10.2), the 2nd equality holds by (6.3.9.2),
and the 4th equality holds by 6.5.2. A similar computation shows that the right-hand
square in the bottom of (★) is commutative as well, and hence the entire diagram is
commutative.

Now define 𝜒 : 𝑋 → 𝑋 ′ to be the composite of morphisms

𝑋
(𝜋𝑋/1 )−1

−−−−−−−−→ P(𝑋)
𝜗/1−−−→ P(𝑋 ′)

𝜋𝑋
′/1−−−−−→ 𝑋 ′ .

A straightforward diagram chase shows that 𝜒 makes the back in (★) commutative,
and hence (𝜑, 𝜓, 𝜒) is a morphism of distinguished triangles. It remains to see that
the mapping cone candidate triangle of (𝜑, 𝜓, 𝜒) is distinguished. Since by E.23 it
is isomorphic to the mapping cone candidate triangle, Δ, of (P(𝜑)/1, P(𝜓)/1, 𝜗/1), it
suffices to argue that Δ is distinguished. Evidently, Δ is isomorphic to the image of
the mapping cone candidate triangle, Δ0, of (P(𝜑), P(𝜓), 𝜗) under the functor V. By
assumption, Δ0 is distinguished in K(𝑅), and hence its image Δ is distinguished in
D(𝑅) by definition; see 6.5.5. □

Remark. Let Kprj (𝑅) denote the full subcategory of K(𝑅) whose objects are the semi-projective
𝑅-complexes. The proof of 6.2.4 shows that (Kprj (𝑅) , Σ) is a triangulated category, albeit not a
triangulated subcategory of K(𝑅); see E 6.2.11. The composite functor Kprj (𝑅) → K(𝑅) →
D(𝑅) is a triangulated equivalence; see E 6.5.4.
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Triangulated Functors

We revisit the derived category’s universal property and show that triangulated
functors on K(𝑅) induce triangulated functors on D(𝑅).

6.5.8 Theorem. Let U be a triangulated category and F: K(𝑅) → U a functor
that maps quasi-isomorphisms to isomorphisms. If F is triangulated with associated
natural isomorphism 𝜙 : FΣ→ ΣUF, then the induced functor F́ : D(𝑅) → U, see
6.4.27, is triangulated with associated natural isomorphism 𝜙 : F́Σ→ ΣU F́.

Proof. It follows from 6.4.28 that the given natural isomorphism 𝜙 induces a natural
isomorphism 𝜙 : F́Σ = (FΣ)́ → (ΣUF)́ = ΣU F́ of functors D(𝑅) → U where the
equalities follow from 6.4.39 and 6.5.3. For every distinguished triangle

(⋄) 𝑀
𝛼−−−→ 𝑁

𝛽−−−→ 𝑋
𝛾−−−→ Σ𝑀

in K(𝑅), the diagram

(★) F(𝑀) F(𝛼)−−−−→ F(𝑁) F(𝛽)−−−−→ F(𝑋) 𝜙𝑀 F(𝛾)−−−−−−−→ ΣUF(𝑀)

is a distinguished triangle in U. By definition, every distinguished triangle in D(𝑅)
has, up to isomorphism, the form

𝑀
V(𝛼)−−−−→ 𝑁

V(𝛽)−−−−→ 𝑋
V(𝛾)−−−−→ Σ𝑀

for some distinguished triangle (⋄) in K(𝑅). Hence, it must be verified that

(††) F́(𝑀) F́V(𝛼)−−−−−−→ F́(𝑁) F́V(𝛽)−−−−−→ F́(𝑋) �́�𝑀 F́V(𝛾)−−−−−−−−→ ΣU F́(𝑀)

is a distinguished triangle, which is evident since (††) is nothing but (★). □

6.5.9 Proposition. Let U be a triangulated category. Let E, F: K(𝑅) → U be trian-
gulated functors that map quasi-isomorphisms to isomorphisms and 𝜏 : E→ F be a
natural transformation. If 𝜏 is triangulated, then the induced natural transformation
𝜏 : É→ F́ of triangulated functors, see 6.4.28 and 6.5.8, is triangulated.

Proof. By assumption the functors E and F are triangulated; denote the associated
natural isomorphisms by 𝜙 and 𝜓, respectively. By 6.5.8 the induced functors É and
F́ are triangulated with associated natural isomorphisms 𝜙 and �́�. For an 𝑅-complex
𝑀 , the equality �́�𝑀𝜏Σ𝑀 = (Σ𝜏𝑀 )𝜙𝑀 holds as the left-hand side is 𝜓𝑀𝜏Σ𝑀 , the
right-hand side (Σ𝜏𝑀 )𝜙𝑀 , and those two composites agree by assumption. □

6.5.10 Theorem. Let V be a triangulated category and G: K(𝑅)op → V a functor
that maps quasi-isomorphisms to isomorphisms. If G is triangulated with associated
natural isomorphism 𝜓 : Σ−1

V
G→ GΣ, then the functor Ǵ : D(𝑅)op → V, see 6.4.29,

is triangulated with associated natural isomorphism �́� : Σ−1
V

Ǵ→ ǴΣ.

Proof. Apply 6.5.8 to the functor Gop : K(𝑅) → Vop. □
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6.5.11 Proposition. Let V be a triangulated category. Let G, J : K(𝑅)op → V be
triangulated functors that map quasi-isomorphisms to isomorphisms and 𝜏 : G→ J a
natural transformation. If 𝜏 is triangulated, then the induced natural transformation
𝜏 : Ǵ→ J́ of triangulated functors, see 6.4.30 and 6.5.10, is triangulated.

Proof. Apply 6.5.9 to the natural transformation 𝜏op : Jop→ Gop of functors from
K(𝑅) to Vop. □

Universal Property Revisited

6.5.12 Lemma. Let F: K(𝑅) → K(𝑆) be a functor. If F is triangulated with asso-
ciated natural isomorphism 𝜙, then the functor V𝑆 F is triangulated with associated
natural isomorphism V𝑆 𝜙.

Proof. By 6.5.7 and 6.5.3 the functor V𝑆 is triangulated with V𝑆Σ = ΣV𝑆 . The
assertion now follows from E.9. □

6.5.13 Theorem. Let F: K(𝑅) → K(𝑆) be a functor that preserves quasi-isomor-
phisms. If F is triangulated with associated natural isomorphism 𝜙 : FΣ→ ΣF, then
the induced functor ´́F : D(𝑅) → D(𝑆), see 6.4.31, is triangulated with associated
natural isomorphism ´́𝜙 : ´́FΣ→ Σ ´́F .

Proof. By 6.5.12 the functor V𝑆 F is triangulated with associated natural isomor-
phism V𝑆 𝜙. Now 6.5.8 implies that (V𝑆 F)́ = ´́F is triangulated with associated
natural isomorphism (V𝑆 𝜙)́ = ´́𝜙 where the equalities hold by 6.4.31 and 6.4.33. □

6.5.14 Proposition. Let E, F: K(𝑅) → K(𝑆) be functors that preserve quasi-iso-
morphisms and 𝜏 : E→ F a natural transformation. If E and F are triangulated and
𝜏 is triangulated, then the induced natural transformation ´́𝜏 : ´́E → ´́F of triangulated
functors, see 6.4.33 and 6.5.13, is triangulated.

Proof. Let E and F be triangulated with associated natural isomorphisms 𝜙 and 𝜓.
By 6.5.12 the functors V𝑆E,V𝑆 F: K(𝑅) → D(𝑆) are triangulated with natural iso-
morphisms V𝑆 𝜙 and V𝑆 𝜓. As the natural transformation 𝜏 : E→ F is triangulated
and V𝑆Σ = ΣV𝑆 , the natural transformation V𝑆 𝜏 : V𝑆E→ V𝑆 F is triangulated as
well. By 6.5.9 the natural transformation (V𝑆 𝜏)́ = ´́𝜏 from (V𝑆E)́ = ´́E to (V𝑆 F)́ = ´́F
is triangulated, where the equalities hold by 6.4.31 and 6.4.33. □

6.5.15 Theorem. Let G: K(𝑅)op → K(𝑆) be a functor that preserves quasi-isomor-
phisms. If G is triangulated with associated natural isomorphism 𝜓 : Σ−1G→ GΣ,
then the functor ´́G , see 6.5.15, is triangulated with associated natural isomorphism
´́𝜓 : Σ−1 ´́G→ ´́GΣ.

Proof. Proceed as in the proof of 6.4.31, only apply 6.4.29 in place of 6.4.27. □

6.5.16 Proposition. Let G, J : K(𝑅)op → K(𝑆) be functors that preserve quasi-iso-
morphisms and 𝜏 : G→ J a natural transformation. If G and J are triangulated and
𝜏 is triangulated, then the induced natural transformation ´́𝜏 : ´́G → ´́J of triangulated
functors, see 6.4.35 and 6.5.15, is triangulated.
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310 6 The Derived Category

Proof. Proceed as in the proof of 6.4.33, only apply 6.4.29 and 6.4.30 in place of
6.4.27 and 6.4.28. □

Homology

Homology induces a functor on the derived category. It is a primary example of a
homological functor in the sense of E.15.

6.5.17 Proposition. The homology functor H: K(𝑅) → C(𝑅) from 6.2.20 maps
quasi-isomorphisms to isomorphisms. The induced functor H: D(𝑅) → C(𝑅) from
6.4.27 is 𝕜-linear, it preserves products and coproducts, and one has HΣ = ΣH.

A morphism 𝜉 in D(𝑅) is an isomorphism if and only if H(𝜉) is an isomorphism.

Proof. The first assertion follows from the definition of quasi-isomorphisms, and
thus H: K(𝑅) → C(𝑅) induces by 6.4.27 a functor H́ : D(𝑅) → C(𝑅), which outside
of this proof is denoted H. By 6.2.21, the functor H is 𝕜-linear and preserves
products and coproducts. It follows from 6.4.27 that the induced functor H́ has
the same properties. As HΣ = ΣH holds, the definition of H́ yields equalities
H́ΣV = H́VΣ = HΣ = ΣH = Σ H́V, where V: K(𝑅) → D(𝑅) is the canonical
functor. It now follows from the uniqueness assertion in 6.4.27 that H́Σ = Σ H́ holds.

For a morphism 𝛼/𝜑 in D(𝑅) one has H́(𝛼/𝜑) = H(𝛼) H(𝜑)−1. It follows from
6.4.17 that 𝛼/𝜑 is an isomorphism if and only if H́(𝛼/𝜑) is an isomorphism. □

6.5.18. Note from 6.5.17 that the supremum, infimum, and amplitude of complexes,
defined in 2.5.4, are invariants of objects in the derived category. That is, for com-
plexes 𝑀 ≃ 𝑀 ′ one has sup𝑀 = sup𝑀 ′, inf 𝑀 = inf 𝑀 ′, and amp𝑀 = amp𝑀 ′.

Remark. While zero objects and isomorphisms in the derived category can be recognized in
homology, see 6.4.24 and 6.5.17, zero morphisms can not; see E 6.4.8.

The last assertion in the next theorem is the Five Lemma in D(𝑅); cf. E.18.

6.5.19 Theorem. For every morphism of distinguished triangles in D(𝑅),

𝑀

𝜑

��

𝛼
// 𝑁

𝜓

��

𝛽
// 𝑋

𝜒

��

𝛾
// Σ𝑀

Σ𝜑

��

𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′

𝛾′
// Σ𝑀 ′ ,

there is a commutative diagram in C(𝑅),

(6.5.19.1)
H(𝑀)

H (𝜑)
��

H (𝛼)
// H(𝑁)

H (𝜓)
��

H (𝛽)
// H(𝑋)

H (𝜒)
��

H (𝛾)
// ΣH(𝑀)

ΣH (𝜑)
��

ΣH (𝛼)
// ΣH(𝑁)

H (𝜓)
��

H(𝑀 ′) H (𝛼′ )
// H(𝑁 ′)

H (𝛽′ )
// H(𝑋 ′)

H (𝛾′ )
// ΣH(𝑀 ′) ΣH (𝛼′ )

// ΣH(𝑁 ′) ,

with exact rows. In particular, if two of the morphisms 𝜑, 𝜓, and 𝜒 are isomorphisms,
then so is the third.
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6.5 Triangulation of D 311

Proof. By 6.5.17 the functor H: D(𝑅) → C(𝑅) satisfies the identity HΣ = ΣH;
it follows that (6.5.19.1) is commutative. We argue that the upper row is exact; a
parallel argument shows that the lower row is exact. By the definition of distinguished
triangles 6.5.5, there exists an isomorphism of candidate triangles in D(𝑅),

𝑀

≃
��

𝛼
// 𝑁

≃
��

𝛽
// 𝑋

≃
��

𝛾
// Σ𝑀

≃
��

𝑀
V(𝛼)

// 𝑁
V(𝛽)

// 𝑋
V(𝛾)

// Σ𝑀 ,

where 𝑀 𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 is a distinguished triangle in K(𝑅). It follows that
the upper row in (6.5.19.1) is isomorphic to the sequence

H(𝑀) HV(𝛼)−−−−−−→ H(𝑁) HV(𝛽)−−−−−−→ H(𝑋) HV(𝛾)−−−−−−→ ΣH(𝑀) ΣHV(𝛼)−−−−−−−→ ΣH(𝑁) .

This sequence is nothing but

H(𝑀) H (𝛼)−−−−→ H(𝑁) H (𝛽)−−−−→ H(𝑋) H (𝛾)−−−−→ ΣH(𝑀) ΣH (𝛼)−−−−−−→ ΣH(𝑁) ,

which is exact by 6.2.21.
The last assertion follows, in view of the final assertion in 6.5.17, from the Five

Lemma 2.1.41 applied to the diagram (6.5.19.1). □

Remark. For every integer 𝑚, the homology functor H𝑚 on D(𝑅) is naturally isomorphic to the
functor D(𝑅) (Σ𝑚𝑅, ) . In combination with E.16 and E.17, this can be used to give different
proof of 6.5.19.

The last three assertions in the result below are, in view of 6.4.24, special cases
of E.22, which holds in any triangulated category.

6.5.20 Corollary. Let 𝑀 𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 be a distinguished triangle in
D(𝑅). The following inequalities hold.

sup𝑀 ⩽ max{sup 𝑁, sup 𝑋 − 1} , inf 𝑀 ⩾ min{inf 𝑁, inf 𝑋 − 1} ,
sup 𝑁 ⩽ max{sup𝑀, sup 𝑋 } , inf 𝑁 ⩾ min{inf 𝑀, inf 𝑋 } ,
sup 𝑋 ⩽ max{sup𝑀 + 1, sup 𝑁 } , and inf 𝑋 ⩾ min{inf 𝑀 + 1, inf 𝑁 } .

In particular, if two of the complexes 𝑀 , 𝑁 , and 𝑋 are acyclic, then so is the third.
Furthermore, the following assertions hold.

(a) 𝑀 is acyclic if and only if 𝛽 is an isomorphism.
(b) 𝑁 is acyclic if and only if 𝛾 is an isomorphism.
(c) 𝑋 is acyclic if and only if 𝛼 is an isomorphism.

Proof. The assertions are immediate from 6.5.19 in view of 6.5.17. □

6.5.21 Corollary. Let F: D(𝑅) → D(𝑆) be a triangulated functor with associated
natural isomorphism 𝜙 : FΣ→ ΣF. For every morphism,
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312 6 The Derived Category

𝑀

𝜑

��

𝛼
// 𝑁

𝜓

��

𝛽
// 𝑋

𝜒

��

𝛾
// Σ𝑀

Σ𝜑

��

𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′

𝛾′
// Σ𝑀 ′ ,

of distinguished triangles in D(𝑅) there is a commutative diagram in M(𝑆),

· · ·

H
𝑣+1 (𝛿 )

// H𝑣 (F(𝑀))

H𝑣 (F(𝜑) )
��

H
𝑣 (F(𝛼) )

// H𝑣 (F(𝑁))

H𝑣 (F(𝜓) )
��

H
𝑣 (F(𝛽) )

// H𝑣 (F(𝑋))

H𝑣 (F(𝜒) )
��

H
𝑣 (𝛿 )
// H𝑣−1 (F(𝑀))

H𝑣−1 (F(𝜑) )
��

H
𝑣−1 (F(𝛼) )

// · · ·

· · ·

H 𝑣+
1(
𝛿
′ )
// H𝑣 (F(𝑀 ′))

H 𝑣
(F(
𝛼
′ ) )
// H𝑣 (F(𝑁 ′))

H 𝑣
(F(
𝛽
′ ) )
// H𝑣 (F(𝑋 ′))

H 𝑣
(𝛿
′ )
// H𝑣−1 (F(𝑀 ′))

H 𝑣−
1(F
(𝛼
′ ) )
// · · · ,

with exact rows. Here 𝛿 and 𝛿′ are the composites 𝜙𝑀F(𝛾) and 𝜙𝑀′F(𝛾′) .

Proof. The triangulated functor F maps the given morphism to a morphism,

F(𝑀)

F(𝜑)
��

F(𝛼)
// 𝑁

F(𝜓)
��

F(𝛽)
// 𝑋

F(𝜒)
��

𝜙𝑀 F(𝛾)
// ΣF(𝑀)

ΣF(𝜑)
��

F(𝑀 ′) F(𝛼′ )
// F(𝑁 ′)

F(𝛽′ )
// F(𝑋 ′)

𝜙𝑀
′ F(𝛾′ )

// ΣF(𝑀 ′) ,

of distinguished triangles in D(𝑆). Now 6.5.19 yields a commutative diagram in
C(𝑆) which, written out degreewise, is the asserted diagram in M(𝑆). □

6.5.22 Corollary. Let G: D(𝑅)op → D(𝑆) be a triangulated functor with associated
natural isomorphism 𝜙 : Σ−1G→ GΣ. For every morphism,

𝑀 𝑁
𝛼

oo 𝑋
𝛽

oo Σ𝑀
𝛾

oo

𝑀 ′

𝜑

OO

𝑁 ′
𝛼′
oo

𝜓

OO

𝑋 ′

𝜒

OO

𝛽′
oo Σ𝑀 ′ ,

𝛾′
oo

Σ𝜑

OO

of distinguished triangles in D(𝑅)op there is a commutative diagram in M(𝑆),

· · ·

H
𝑣+1 (G(𝛼 ′) )

// H𝑣+1 (G(𝑀 ′))

H𝑣+1 (G(𝜑) )
��

H
𝑣 (𝛿 ′)
// H𝑣 (G(𝑋 ′))

H𝑣 (G(𝜒) )
��

H
𝑣 (G(𝛽 ′) )

// H𝑣 (G(𝑁 ′))

H𝑣 (G(𝜓) )
��

H
𝑣 (G(𝛼 ′) )

// H𝑣 (G(𝑀 ′))

H𝑣 (G(𝜑) )
��

H
𝑣−1 (𝛿 ′)

// · · ·

· · ·

H 𝑣+
1(G
(𝛼)
)
// H𝑣+1 (G(𝑀))

H 𝑣
(𝛿 )
// H𝑣 (G(𝑋))

H 𝑣
(G(
𝛽) )
// H𝑣 (G(𝑁))

H 𝑣
(G(
𝛼) )
// H𝑣 (G(𝑀))

H 𝑣−
1(
𝛿 )
// · · ·

with exact rows. Here 𝛿 and 𝛿′ are the composites G(𝛾)𝜙𝑀 and G(𝛾′)𝜙𝑀′ .
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6.5 Triangulation of D 313

Proof. The triangulated functor G maps the given morphism to a morphism of
distinguished triangles in D(𝑆),

Σ−1G(𝑀 ′)
G(𝛾′ )𝜙𝑀′

//

Σ−1G(𝜑)
��

G(𝑋 ′)
G(𝛽′ )

//

G(𝜒)
��

G(𝑁 ′) G(𝛼′ )
//

G(𝜓)
��

G(𝑀 ′)

G(𝜑)
��

Σ−1G(𝑀)
G(𝛾)𝜙𝑀

// G(𝑋)
G(𝛽)

// G(𝑁) G(𝛼)
// G(𝑀) ,

and 6.5.19 applies to yield a commutative diagram in C(𝑆) which, written out
degreewise, is the asserted diagram in M(𝑆). □

The next example shows that not every morphism in D(𝑅) has a kernel; in
particular D(𝑅) is not Abelian.

6.5.23 Example. First recall that a kernel of a morphism 𝛼 in an additive category is
a morphism 𝜄 such that 𝛼𝜄 = 0 and 𝜄 has the universal property that every morphism
𝜄′ satisfying 𝛼𝜄′ = 0 factors uniquely through 𝜄. Every kernel is a monomorphism.

We argue that a morphism 𝛼 : 𝑀 → 𝑁 in D(𝑅) that satisfies the next conditions
does not have a kernel in D(𝑅). For a concrete example, take ℤ↠ ℤ/2ℤ in D(ℤ).

(1) The graded 𝑅-module H(𝑀) is indecomposable.
(2) The morphism H(𝛼) : H(𝑀) → H(𝑁) does not have a left inverse.

Indeed, by 6.5.7 the category D(𝑅) is triangulated, so it follows from E.24 that if 𝛼
has a kernel 𝜄 : 𝐾 → 𝑀 , then 𝜄 has a left inverse. Now (TR1) in E.2 and E.22 imply
that there is an isomorphism 𝑀 ≃ 𝐾 ⊕ 𝑋 in D(𝑅) for some 𝑅-complex 𝑋 . It follows
that H(𝑀) � H(𝐾) ⊕H(𝑋), so (1) implies that H(𝐾) = 0 or H(𝑋) = 0 holds, which
by 6.4.24 means that 𝐾 ≃ 0 or 𝑋 ≃ 0 in D(𝑅). If 𝐾 ≃ 0, then 𝛼 is a monomorphism,
and hence it has a left inverse, again by E.24, which contradicts (2). If 𝑋 ≃ 0, then 𝜄
is an isomorphism and hence 𝛼 = 0, which also contradicts (2).

Distinguished Triangles from Short Exact Sequences

Every short exact sequence of complexes induces a distinguished triangle in the
derived category; in applications that is a natural source of distinguished triangles. To
avoid clutter, it is common practice to denote the morphism VQ(𝛼) inD(𝑅) induced
by a morphism 𝛼 in C(𝑅) by the very same symbol, 𝛼, rather than the fraction [𝛼]/1.
We apply this practice frequently in the balance of book, it premiers here:

6.5.24 Theorem. For every commutative diagram in C(𝑅) with exact rows,

0 // 𝑀
𝛼
//

𝜑

��

𝑁
𝛽
//

𝜓

��

𝑋 //

𝜒

��

0

0 // 𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′ // 0 ,

there is a morphism of distinguished triangles in D(𝑅),
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314 6 The Derived Category

𝑀
𝛼
//

𝜑

��

𝑁
𝛽
//

𝜓

��

𝑋
𝛾
//

𝜒

��

Σ𝑀

Σ𝜑

��

𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′

𝛾′
// Σ𝑀 ′ ,

with 𝛾 = [𝜛]/[𝛽] and 𝛾′ = [𝜛′]/[𝛽′] where 𝛽, 𝛽′ are the quasi-isomorphisms from
4.3.10 and𝜛,𝜛′ are the canonical morphisms Cone𝛼 ↠ Σ𝑀 and Cone𝛼′ ↠ Σ𝑀 ′.

Proof. In the following diagram in D(𝑅), the middle and left-hand boxes are com-
mutative by 4.3.11. From the definition of 𝜆, it follows that 𝜛′𝜆 = (Σ𝜑)𝜛 holds,
and hence the top of the right-hand box is commutative. The front and back walls of
the right-hand box are evidently commutative, and so is the right wall. A diagram
chase now yields

VQ(𝜛′) VQ(𝛽′)−1 ◦ VQ(𝜒) ◦ VQ(𝛽) = ΣVQ(𝜑) ◦ VQ(𝜛) VQ(𝛽)−1 ◦ VQ(𝛽) ,

and since VQ(𝛽) is an isomorphism, it follows that the bottom of the right-hand box
is commutative as well.

𝑀
VQ( 𝜄)

//

VQ(𝜑)

��

Cyl𝛼
VQ(𝜋 )

//

VQ(𝜅 )
��

VQ(𝛼)≃

��

Cone𝛼
VQ(𝜛 )

//

VQ(𝜆)
��

VQ(𝛽)≃

��

Σ𝑀

ΣVQ(𝜑)
��

𝑀 ′
VQ( 𝜄′ )

// Cyl𝛼′
VQ(𝜋′ )

//

VQ(𝛼′ )≃

��

Cone𝛼′
VQ(𝜛′ )

//

VQ(𝛽′ )≃

��

Σ𝑀 ′

𝑀
VQ(𝛼)

//

VQ(𝜑)
��

𝑁
VQ(𝛽)

//

VQ(𝜓)��

𝑋
VQ(𝜛)VQ(𝛽)−1

//

VQ(𝜒)
��

Σ𝑀 .

ΣVQ(𝜑)
��

𝑀 ′
VQ(𝛼′ )

// 𝑁 ′
VQ(𝛽′ )

// 𝑋 ′
VQ(𝜛′)VQ(𝛽′ )−1

// Σ𝑀 ′

The upper rows are by 6.2.5 images under V of distinguished triangles in K(𝑅)
and hence distinguished in D(𝑅); thus the top is a morphism of distinguished
triangles in D(𝑅). As all vertical morphisms are isomorphisms, the bottom is a
morphism of distinguished triangles as well. Finally, by 6.4.18 and (6.4.10.2) one
has VQ(𝜛) VQ(𝛽)−1 = [𝜛]/[𝛽] and VQ(𝜛′) VQ(𝛽′)−1 = [𝜛′]/[𝛽′]. With the
simplified notation for the remaining morphisms—𝛼 for VQ(𝛼) etc.—the bottom of
the diagram is the asserted morphism of distinguished triangles. □

Remark. A general short exact sequence 0→ 𝑀 → 𝑁 → 𝑋 → 0 of complexes does not induce
a distinguished triangle 𝑀 → 𝑁 → 𝑋 → Σ𝑀 in the homotopy category; see E 6.2.2.

Exercises

E 6.5.1 Assume that 𝑅 is semi-simple. Show that the categories D(𝑅) and Mgr (𝑅) are equiv-
alent and conclude that D(𝑅) is Abelian.

E 6.5.2 Assume that 𝑅 is left hereditary. Show that D(𝑅) and K(Prj𝑅) are equivalent as
triangulated categories; see E 6.1.9.
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E 6.5.3 Assume that 𝑅 is left hereditary. Show that D(𝑅) and K(Inj𝑅) are equivalent as
triangulated categories; see E 6.1.10.

E 6.5.4 Show that Kprj (𝑅) and D(𝑅) are equivalent as triangulated categories; see E 6.2.11.
E 6.5.5 Show that Kinj (𝑅) and D(𝑅) are equivalent as triangulated categories; see E 6.2.13.
E 6.5.6 Let (T, Σ) be a triangulated category. A commutative square in T,

𝑈

𝜑

��

𝛼
// 𝑁

𝜓

��

𝑀
𝛽
// 𝑉

is called homotopy Cartesian if there exists a distinguished triangle of the form

𝑈
( 𝜑−𝛼 )−−−−−→

𝑀

⊕
𝑁

( 𝛽 𝜓 )−−−−−→ 𝑉
𝛾−−→ Σ𝑈 .

The pair (𝜑, 𝛼) is called a homotopy pullback of (𝛽, 𝜓) , and (𝛽, 𝜓) is called a
homotopy pushout of (𝜑, 𝛼) . Show that homotopy pushouts and pullbacks always exist.

E 6.5.7 Show that the functors ( )Ď𝑛 , ( )Ě𝑛 : D(𝑅) →D(𝑅) preserve products and coprod-
ucts but are not triangulated.

E 6.5.8 Let 𝑀 be an 𝑅-complex with H𝑣 (𝑀 ) = 0 for 𝑣 ≠ 0. (a) Show that if 𝑀𝑣 = 0 holds for
𝑣 < 0, then there is a quasi-isomorphism𝑀 → H(𝑀 ) inC(𝑅) . (b) Show that if𝑀𝑣 = 0
holds for 𝑣 > 0, then there is a quasi-isomorphism H(𝑀 ) ≃−→ 𝑀 in C(𝑅) . (c) Conclude
that for a complex 𝑀 ′ with amp𝑀 ′ = 0 there is an isomorphism 𝑀 ′ ≃ H(𝑀 ′ ) in
D(𝑅) .

E 6.5.9 Let S be a triangulated subcategory of a triangulated category (T, Σ) and consider the
homotopy Cartesian square in T from E 6.5.6. Show that the morphism 𝛼 is S-trivial if
and only if 𝛽 is S-trivial in the sense of E 6.2.9. Hint: Neeman [191, 1.5].

E 6.5.10 Verify the inequalities in 6.5.20.

E 6.5.11 Let 𝑀 𝛼−→ 𝑁
𝛽−→ 𝑋 −→ Σ𝑀 be a distinguished triangle in D(𝑅); show that the

following conditions are equivalent. (i) H(𝛼) is injective. (ii) H(𝛽) is surjective. (iii)

The sequence 0 −→ H(𝑀 )
H (𝛼)
−−−→ H(𝑁 )

H (𝛽)
−−−→ H(𝑋) −→ 0 is exact.

E 6.5.12 Show that the full subcategories of D(𝑅) defined by specifying their objects as follows:
D⊏ (𝑅) = {𝑀 ∈ D(𝑅) | there is a bounded above complex 𝑀 ′ with 𝑀 ≃ 𝑀 ′ } ,
D⊏⊐ (𝑅) = {𝑀 ∈ D(𝑅) | there is a bounded complex 𝑀 ′ with 𝑀 ≃ 𝑀 ′ } , and
D⊐ (𝑅) = {𝑀 ∈ D(𝑅) | there is a bounded below complex 𝑀 ′ with 𝑀 ≃ 𝑀 ′ }

are triangulated subcategories of D(𝑅) .
E 6.5.13 Give a proof of 6.5.19 using the ideas in the subsequent Remark.
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The derived category is now at hand, and it is time to start using it. While the
ultime purpose of the book is to apply the methods of derived categories to study
communative Noetherian rings, the methods are useful without the full force of
those assumptions. For example, the arguably most basic homological invariants,
the homological dimensions, are meaningful invariants in the derived category over
any ring. In the five chapters that make up this part of the book, we develop the basic
theory of invariants and functors on the derived category that play central roles in the
homological study of rings. For parts of the theory, the rings need to be Noetherian;
this assumption is imposed in all of Chap. 10 and sparsely in Chaps. 8, 9, and 11.
An assumption of commutativity is only introduced in Chap. 11.
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Chapter 7
Derived Functors

Exact functors are the structure preserving mappings between Abelian categories.
In the world of triangulated categories, they are replaced by triangulated functors. In
the context of this book, the utility of derived categories stems predominantly from
the fact that well-behaved, though not necessarily exact, functors C(𝑅) → C(𝑆) yield
triangulated functors D(𝑅) → D(𝑆) through a process known as derivation.

7.1 Induced Functors on the Homotopy Category

Synopsis. Functor that preserves homotopy; the functor Hom; homotopy category of complexes
of bimodules; the functor ⊗; unitor; counitor; commutativity; associativity; swap; adjunction;
biduality; tensor evaluation; homomorphism evaluation.

We start by merging and expanding some key results from Chap. 6.

7.1.1 Definition. In the product category

C(𝑅1)op × · · · × C(𝑅𝑚)op × C(𝑆1) × · · · × C(𝑆𝑛) ,

parallel morphisms (𝛼1, . . . , 𝛼𝑚, 𝛽1, . . . , 𝛽𝑛) and (𝛼′1, . . . , 𝛼
′
𝑚, 𝛽

′
1, . . . , 𝛽

′
𝑛) are said to

be homotopic if one has 𝛼𝑖 ∼ 𝛼′𝑖 in C(𝑅𝑖)op and 𝛽 𝑗 ∼ 𝛽′𝑗 in C(𝑆 𝑗 ) for all indices 𝑖
and 𝑗 . A functor

C(𝑅1)op × · · · × C(𝑅𝑚)op × C(𝑆1) × · · · × C(𝑆𝑛) −→ C(𝑇)

is said to preserve homotopy if it maps homotopic morphisms to homotopic mor-
phisms; cf. 4.3.12 and 4.3.14.

7.1.2 Theorem. Let F: C(𝑅1)op × · · · × C(𝑅𝑚)op × C(𝑆1) × · · · × C(𝑆𝑛) → C(𝑇) be
a functor. If F preserves homotopy, then there exists a unique functor ¥F that makes
the following diagram commutative,
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320 7 Derived Functors

C(𝑅1)op × · · · × C(𝑅𝑚)op × C(𝑆1) × · · · × C(𝑆𝑛)
F
//

Qop
𝑅1
× ··· ×Qop

𝑅𝑚
×Q𝑆1 × ··· ×Q𝑆𝑛

��

C(𝑇)

Q𝑇
��

K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛)
¥F
// K(𝑇) .

The functor ¥F acts on objects and morphisms as follows:
¥F(𝑀1, . . . , 𝑀𝑚, 𝑁1, . . . , 𝑁𝑛) = F(𝑀1, . . . , 𝑀𝑚, 𝑁1, . . . , 𝑁𝑛) and

¥F( [𝛼1], . . . , [𝛼𝑚], [𝛽1], . . . , [𝛽𝑛]) = [F(𝛼1, . . . , 𝛼𝑚, 𝛽1, . . . , 𝛽𝑛)] .

Furthermore, the following assertions hold.
(a) If F is 𝕜-linear in one of the variables, then ¥F is 𝕜-linear in the corresponding

variable; in particular, if F is 𝕜-multilinear, then ¥F is 𝕜-multilinear.
(b) If F preserves products/coproducts in one of the variables, then ¥F preserves

products/coproducts in the corresponding variable.
(c) If F is a Σ-functor in one of the variables, then ¥F is triangulated in the

corresponding variable.

Proof. The arguments in the proofs of 6.1.20/6.1.27 and 6.2.16/6.2.18 apply mutatis
mutandis to establish the claims. □

Remark. For every Abelian category A, one can construct the category C(A) of complexes and
the homotopy category K(A) , and there is a canonical functor QA : C(A) →K(A) with the
expected universal property. In Chaps. 2 and 6 we carried out these constructions explicitly for the
category A = M(𝑅) . The general constructions of C(A) and K(A) respect the formation of
products and opposites of categories; for example, there are isomorphisms

C(A1 ×A2 ) � C(A1 ) × C(A2 ) and C(Aop ) � C(A)op .

In particular, for the Abelian category A = M(𝑅)op ×M(𝑅) there are identifications,
C(A) � C(𝑅)op × C(𝑅) and K(A) � K(𝑅)op ×K(𝑅) .

Thus, the universal property of the canonical functor QA applies to show e.g. that the functor
Hom𝑅 ( , ) : C(𝑅)op × C(𝑅) −→ C(𝕜) ,

induces a functor K(𝑅)op ×K(𝑅) →K(𝕜); this indicates another way to prove 7.1.2.

7.1.3 Proposition. Let

F,G : C(𝑅1)op × · · · × C(𝑅𝑚)op × C(𝑆1) × · · · × C(𝑆𝑛) −→ C(𝑇)

be functors that preserve homotopy. Consider the induced functors from 7.1.2,
¥F, ¥G : K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛) −→ K(𝑇) .

Every natural transformation 𝜏 : F→ G induces a natural transformation ¥𝜏 : ¥F→ ¥G
given by ¥𝜏𝑋 = [𝜏𝑋] for every object 𝑋 = (𝑀1, . . . , 𝑀𝑚, 𝑁1, . . . , 𝑁𝑛). Moreover, if
F and G are Σ-functors in the same variable and if 𝜏 is a Σ-transformation in that
variable, then the natural transformation ¥𝜏 is triangulated in the corresponding
variable.

Proof. The arguments in the proofs of 6.1.21/6.1.28 and 6.2.17/6.2.19 apply mutatis
mutandis to establish the claims. □
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7.1 Induced Functors on the Homotopy Category 321

In the balance of this section we apply the machinery developed above to the
Hom and tensor product functors and to the menagerie of natural transformations
that compare composites of these functors.

Hom Functor

7.1.4 Example. By 2.3.9 the functor Hom𝑅 ( , ) : C(𝑅)op × C(𝑅) → C(𝕜) pre-
serves homotopy. Thus, by 7.1.2 there exists a unique functor ¥Hom𝑅 ( , ) that
makes the following diagram commutative,

C(𝑅)op × C(𝑅) Hom𝑅 ( , )
//

Qop
𝑅
×Q𝑅
��

C(𝕜)

Q𝕜

��

K(𝑅)op ×K(𝑅)
¥Hom𝑅 ( , )

// K(𝕜) .

It acts as follows on objects and morphisms:
¥Hom𝑅 (𝑀, 𝑁) = Hom𝑅 (𝑀, 𝑁) and ¥Hom𝑅 ( [𝛼], [𝛽]) = [Hom𝑅 (𝛼, 𝛽)] .

Moreover, ¥Hom𝑅 ( , ) is 𝕜-bilinear, see 2.3.10, it preserves products in both vari-
ables, see 3.1.24 and 3.1.27, and it is triangulated in both variables, see 4.1.16 and
4.1.17. By usual abuse of notation we denote the functor ¥Hom𝑅 by Hom𝑅.

7.1.5 Definition. Let K(𝑅–𝑆o) denote the category K(𝑅 ⊗𝕜 𝑆
o).

7.1.6. In view of 2.1.38 the category K(𝑅–𝑆o) is naturally identified with the cate-
gory whose objects are complexes of 𝑅–𝑆o-bimodules, and whose hom-sets consist
of homotopy classes of 𝑅- and 𝑆o-linear chain maps of degree 0. The homotopy
relation used here is defined as in 2.2.23, only now homotopies are required to be
both 𝑅- and 𝑆o-linear.

Remark. Per the Remark after 7.1.2, one can construct the homotopy category K(A) over
any Abelian category A. The content of 7.1.6 is that K(𝑅–𝑆o ) is naturally equivalent to
K(M(𝑅–𝑆o ) ) .

7.1.7 Addendum (to 7.1.4). By 2.3.11 there is a functor Hom𝑅 from the category
C(𝑅–𝑄o)op × C(𝑅–𝑆o) to C(𝑄–𝑆o), and by 7.1.2 it induces a 𝕜-bilinear functor,

Hom𝑅 ( , ) : K(𝑅–𝑄o)op ×K(𝑅–𝑆o) −→ K(𝑄–𝑆o) ,

which preserves products and is triangulated in both variables.

Tensor Product Functor

7.1.8 Example. By 2.4.8 the functor ⊗𝑅 : C(𝑅o) × C(𝑅) → C(𝕜) preserves ho-
motopy. Thus, 7.1.2 yields a unique functor ¥⊗𝑅 that makes the diagram
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C(𝑅o) × C(𝑅) ⊗𝑅
//

Q𝑅o ×Q𝑅
��

C(𝕜)

Q𝕜

��

K(𝑅o) ×K(𝑅)
¥⊗𝑅

// K(𝕜)

commutative. It acts as follows on objects and morphisms:

𝑀 ¥⊗𝑅 𝑁 = 𝑀 ⊗𝑅 𝑁 and [𝛼] ¥⊗𝑅 [𝛽] = [𝛼 ⊗𝑅 𝛽] .

Moreover, ¥⊗𝑅 is 𝕜-bilinear, see 2.4.9, it preserves coproducts in both variables,
see 3.1.12 and 3.1.13, and it is triangulated in both variables, see 4.1.18 and 4.1.19.
By habitual abuse of notation we generally denote the functor ¥⊗𝑅 by ⊗𝑅.

7.1.9 Addendum (to 7.1.8). By 2.4.10 there is a functor ⊗𝑅 from the category
C(𝑄–𝑅o) × C(𝑅–𝑆o) to C(𝑄–𝑆o), and by 7.1.2 it induces a 𝕜-bilinear functor,

⊗𝑅 : K(𝑄–𝑅o) ×K(𝑅–𝑆o) −→ K(𝑄–𝑆o) ,

which preserves coproducts and is triangulated in both variables.

Standard Isomorphisms in the Homotopy Category

Having established Hom and ⊗ as functors on the level of homotopy categories,
our next objective is to extend the natural transformations and isomorphisms from
Sects. 4.4 and 4.5 to that setting.

7.1.10. Consider the functors

F,G : C(𝑄–𝑅o) × C(𝑅–𝑆o) × C(𝑆–𝑇o) −→ C(𝑄–𝑇o)

given by

F(𝑀, 𝑋, 𝑁) = (𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁 and G(𝑀, 𝑋, 𝑁) = 𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁) ,

and consider the associativity isomorphism 𝜔 : F→ G from 4.4.7. By 2.4.8 the
functors F and G preserve homotopy, so 7.1.2 yields functors

¥F, ¥G : K(𝑄–𝑅o) ×K(𝑅–𝑆o) ×K(𝑆–𝑇o) −→ K(𝑄–𝑇o)

given by
¥F(𝑀, 𝑋, 𝑁) = (𝑀 ¥⊗𝑅 𝑋) ¥⊗𝑆 𝑁 and ¥G(𝑀, 𝑋, 𝑁) = 𝑀 ¥⊗𝑅 (𝑋 ¥⊗𝑆 𝑁) .

Moreover, by 7.1.3 there is an induced natural isomorphism ¥𝜔 : ¥F→ ¥G, and it is
triangulated in each variable, as 𝜔 is a Σ-transformationin each variable. Combined
with 2.4.10 these arguments prove 7.1.14 below. The other results 7.1.11–7.1.19 are
proved similarly.

7.1.11 Proposition. For𝑀 inK(𝑅–𝑆o) there is an isomorphism inK(𝑅–𝑆o) induced
by the unitor 4.4.1,

𝜇𝑀𝑅 : 𝑅 ⊗𝑅 𝑀 −→ 𝑀 .
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7.1 Induced Functors on the Homotopy Category 323

It is natural in 𝑀 , and as a natural transformation of functors, 𝜇
𝑅

is triangulated.

Proof. See 7.1.10. □

7.1.12 Proposition. For𝑀 inK(𝑅–𝑆o) there is an isomorphism inK(𝑅–𝑆o) induced
by the counitor 4.4.2,

𝜖𝑀𝑅 : 𝑀 −→ Hom𝑅 (𝑅, 𝑀) .
It is natural in 𝑀 , and as a natural transformation of functors, 𝜖

𝑅
is triangulated.

Proof. See 7.1.10. □

7.1.13 Proposition. For 𝑀 in K(𝑄–𝑅o) and 𝑁 in K(𝑅–𝑆o) there is an isomorphism
in K(𝑄–𝑆o) induced by commutativity 4.4.4,

𝜐𝑀𝑁 : 𝑀 ⊗𝑅 𝑁 −→ 𝑁 ⊗𝑅o 𝑀 ,

and it is natural in 𝑀 and 𝑁 . Moreover, as a natural transformation of functors, 𝜐
is triangulated in each variable.

Proof. See 7.1.10. □

7.1.14 Proposition. For 𝑀 in K(𝑄–𝑅o), 𝑋 in K(𝑅–𝑆o), and 𝑁 in K(𝑆–𝑇o) there
is an isomorphism in K(𝑄–𝑇o) induced by associativity 4.4.7,

𝜔𝑀𝑋𝑁 : (𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁 −→ 𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁) ,

and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, as a natural transformation of functors,
𝜔 is triangulated in each variable.

Proof. See 7.1.10. □

7.1.15 Proposition. For 𝑀 in K(𝑅–𝑄o)op, 𝑋 in K(𝑅–𝑆o), and 𝑁 in K(𝑇–𝑆o)op

there is an isomorphism in K(𝑄–𝑇o) induced by swap 4.4.10,

𝜁𝑀𝑋𝑁 : Hom𝑅 (𝑀,Hom𝑆o (𝑁, 𝑋)) −→ Hom𝑆o (𝑁,Hom𝑅 (𝑀, 𝑋)) ,

and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, as a natural transformation of functors,
𝜁 is triangulated in each variable.

Proof. See 7.1.10. □

7.1.16 Proposition. For 𝑀 in K(𝑅–𝑄o), 𝑋 in K(𝑅–𝑆o)op, and 𝑁 in K(𝑆–𝑇o)op

there is an isomorphism in K(𝑇–𝑄o) induced by adjunction 4.4.12,

𝜌𝑀𝑋𝑁 : Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀) −→ Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀)) ,

and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, as a natural transformation of functors,
𝜌 is triangulated in each variable.

Proof. See 7.1.10. □
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Evaluation Morphisms in the Homotopy Category

7.1.17 Proposition. Let 𝑋 be in K(𝑅–𝑆o). For 𝑀 in K(𝑅–𝑄o) there is a morphism
in K(𝑅–𝑄o) induced by biduality 4.5.2,

𝛿𝑀𝑋 : 𝑀 −→ Hom𝑆o (Hom𝑅 (𝑀, 𝑋), 𝑋) ,

and it is natural in 𝑀 . As a natural transformation of functors, 𝛿
𝑋

is triangulated.

Proof. See 7.1.10. □

7.1.18 Proposition. For 𝑀 in K(𝑅–𝑄o)op, 𝑋 in K(𝑅–𝑆o), and 𝑁 in K(𝑆–𝑇o) there
is a morphism in K(𝑄–𝑇o) induced by tensor evaluation 4.5.9,

𝜃𝑀𝑋𝑁 : Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 −→ Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁) ,

and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, as a natural transformation of functors,
𝜃 is triangulated in each variable.

Proof. See 7.1.10. □

7.1.19 Proposition. For 𝑀 in K(𝑅–𝑄o), 𝑋 in K(𝑅–𝑆o)op, and 𝑁 in K(𝑇–𝑆o) there
is a morphism in K(𝑇–𝑄o) induced by homomorphism evaluation 4.5.12,

𝜂𝑀𝑋𝑁 : 𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) −→ Hom𝑅 (Hom𝑆o (𝑁, 𝑋), 𝑀) ,

and it is natural in 𝑀 , 𝑋 , and 𝑁 . Moreover, as a natural transformation of functors,
𝜂 is triangulated in each variable.

Proof. See 7.1.10. □

The evaluation morphisms in the homotopy category, 7.1.17–7.1.19, are isomor-
phisms under the hypotheses in 4.5.4, 4.5.10, and 4.5.13.

Exercises

E 7.1.1 Let 𝐾 be an 𝑅o-complex and set F( ) = 𝐾 ⊗𝑅 . Show that for every distinguished
triangle 𝑀 → 𝑁 → 𝑋 → Σ𝑀 in K(𝑅) there is an exact sequence in C(𝕜) ,

H(F(𝑀 ) ) −→ H(F(𝑁 ) ) −→ H(F(𝑋) ) −→ ΣH(F(𝑀 ) ) −→ ΣH(F(𝑁 ) ) .
E 7.1.2 Let 𝐾 be an 𝑅-complex. (a) Let F( ) be the functor Hom𝑅 (𝐾, ) and show that for

every distinguished triangle 𝑀 → 𝑁 → 𝑋 → Σ𝑀 in K(𝑅) there is an exact sequence
in C(𝕜) ,

H(F(𝑀 ) ) −→ H(F(𝑁 ) ) −→ H(F(𝑋) ) −→ ΣH(F(𝑀 ) ) −→ ΣH(F(𝑁 ) ) .
(b) Denote by G( ) the functor Hom𝑅 ( , 𝐾 ) and show that for every distinguished
triangle 𝑀 ← 𝑁 ← 𝑋 ← Σ𝑀 in K(𝑅)op there is an exact sequence in C(𝕜) ,
Σ−1H(G(𝑁 ) ) −→ Σ−1H(G(𝑀 ) ) −→ H(G(𝑋) ) −→ H(G(𝑁 ) ) −→ H(G(𝑀 ) ) .
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7.2 Induced Functors on the Derived Category 325

7.2 Induced Functors on the Derived Category

Synopsis. Functor that preserves quasi-isomorphisms; left/right derived functor; left/right derived
natural transformation; universal property of left/right derived functor.

In the balance of this chapter, we use Greek letters for morphisms in K(𝑅), that is,
homotopy classes of morphisms in C(𝑅). The next definition is in line with 7.1.1.

7.2.1 Definition. A morphism (𝛼1, . . . , 𝛼𝑚, 𝛽1, . . . , 𝛽𝑛) in the product category
K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛) is called a quasi-isomorphism if
all components 𝛼𝑖 and 𝛽 𝑗 are quasi-isomorphisms as defined in 6.1.12.

7.2.2 Theorem. Let F: K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛) → K(𝑇)
be a functor. If F preserves quasi-isomorphisms, then there exists a unique functor
´́F that makes the following diagram commutative,

K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛)
F
//

Vop
𝑅1
× ··· ×Vop

𝑅𝑚
×V𝑆1 × ··· ×V𝑆𝑛

��

K(𝑇)

V𝑇
��

D(𝑅1)op × · · · ×D(𝑅𝑚)op ×D(𝑆1) × · · · ×D(𝑆𝑛)
´́F
// D(𝑇) .

The functor ´́F acts as follows on objects and morphisms:

´́F(𝑀1, . . . , 𝑀𝑚, 𝑁1, . . . , 𝑁𝑛) = F(𝑀1, . . . , 𝑀𝑚, 𝑁1, . . . , 𝑁𝑛) and
´́F
(
𝛼1/𝜑1, . . . , 𝛼𝑚/𝜑𝑚, 𝛽1/𝜓1, . . . , 𝛽𝑛/𝜓𝑛

)
=

F(𝑀 ′1, . . . , 𝑀
′
𝑚, 𝛽1, . . . , 𝛽𝑛)

1F(𝑀′1 ,. . . ,𝑀
′
𝑚 ,𝑌1 ,. . . ,𝑌𝑛 )

◦ 1F(𝑀′1 ,. . . ,𝑀
′
𝑚 ,𝑌1 ,. . . ,𝑌𝑛 )

F(𝜑1, . . . , 𝜑𝑚, 𝜓1, . . . , 𝜓𝑛)
◦ F(𝛼1, . . . , 𝛼𝑚, 𝑁1, . . . , 𝑁𝑛)

1F(𝑀1 ,. . . ,𝑀𝑚 ,𝑁1 ,. . . ,𝑁𝑛 )
.

Here 𝛼𝑖/𝜑𝑖 : 𝑀𝑖 → 𝑀 ′
𝑖

are morphisms in D(𝑅𝑖)op and 𝛽 𝑗/𝜓 𝑗 : 𝑁 𝑗 → 𝑁 ′
𝑗

are mor-
phisms inD(𝑆 𝑗 ); the common domain of 𝛽𝑖 and𝜓𝑖 is𝑌𝑖 . Moreover, the next assertions
hold.

(a) If F is 𝕜-linear in one of the variables, then ´́F is 𝕜-linear in the corresponding
variable; in particular, if F is 𝕜-multilinear, then ´́F is 𝕜-multilinear.

(b) If F preserves products/coproducts in one of the variables, then ´́F preserves
products/coproducts in the corresponding variable.

(c) If F is triangulated in one of the variables, then ´́F is triangulated in the
corresponding variable.

Proof. The arguments in the proofs of 6.4.31/6.4.34 and 6.5.13/6.5.15 apply mutatis
mutandis to establish the claims. For example, to show that ´́F is uniquely determined
one can argue as follows. Set

V = Vop
𝑅1
× · · · × Vop

𝑅𝑚
×V𝑆1 × · · · × V𝑆𝑛 .

Note that 𝛼𝑖/𝜑𝑖 is a morphism 𝑀 ′
𝑖
→ 𝑀𝑖 in D(𝑅𝑖) and let 𝑋𝑖 be the common domain

of 𝛼𝑖 and 𝜑𝑖 . Consider in K(𝑅1) × · · · × K(𝑅𝑚) the objects 𝑀 = (𝑀1, . . . , 𝑀𝑚),
𝑀 ′ = (𝑀 ′1, . . . , 𝑀

′
𝑚), and 𝑋 = (𝑋1, . . . , 𝑋𝑚) together with the morphisms
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326 7 Derived Functors

𝛼 = (𝛼1, . . . , 𝛼𝑚) : 𝑋 −→ 𝑀 and 𝜑 = (𝜑1, . . . , 𝜑𝑚) : 𝑋 −→ 𝑀 ′ .

We use the shorthand notation 𝛼/𝜑 for the morphism (𝛼1/𝜑1, . . . , 𝛼𝑚/𝜑𝑚) from 𝑀 ′

to 𝑀 in D(𝑅1) × · · · ×D(𝑅𝑚). The symbols 𝑁 , 𝑁 ′, 𝑌 , 𝛽, 𝜓, and 𝛽/𝜓 have similar
meanings. By (6.4.10.2) one has 𝛼/𝜑 = (𝛼/1𝑋) (1𝑋/𝜑) in D(𝑅1) × · · · ×D(𝑅𝑚) and
thus 𝛼/𝜑 = (1𝑋/𝜑) (𝛼/1𝑋) holds in D(𝑅1)op × · · · × D(𝑅𝑚)op. Similarly, one has
𝛽/𝜓 = (𝛽/1𝑌 ) (1𝑌/𝜓) in D(𝑆1) × · · · ×D(𝑆𝑛). It follows that there are equalities,

(𝛼/𝜑, 𝛽/𝜓) =
(
1𝑀′/1𝑀′ , 𝛽/1𝑌

) (
1𝑋/𝜑, 1

𝑌/𝜓
) (
𝛼/1𝑋, 1𝑁/1𝑁

)
= V(1𝑀′ , 𝛽) V(𝜑, 𝜓)−1 V(𝛼, 1𝑁 ) .

Consequently, for a functor ´́F that satisfies ´́F V = V𝑇 F, one has
´́F (𝛼/𝜑, 𝛽/𝜓) = ´́F V(1𝑀′ , 𝛽) ◦ ( ´́F V(𝜑, 𝜓))−1 ◦ ´́F V(𝛼, 1𝑁 )

= V𝑇 F(1𝑀′ , 𝛽) ◦ (V𝑇 F(𝜑, 𝜓))−1 ◦ V𝑇 F(𝛼, 1𝑁 )
= V𝑇 F(𝑀 ′, 𝛽) ◦ (V𝑇 F(𝜑, 𝜓))−1 ◦ V𝑇 F(𝛼, 𝑁)

=
F(𝑀 ′, 𝛽)
1F(𝑀′ ,𝑌 ) ◦

1F(𝑀′ ,𝑌 )

F(𝜑, 𝜓) ◦
F(𝛼, 𝑁)
1F(𝑀,𝑁 ) ,

as asserted. □

7.2.3. The expression in 7.2.2 for the action of ´́F on morphisms can by (6.4.10.2)
be simplified as follows:

´́F
(
𝛼1/𝜑1, . . . , 𝛼𝑚/𝜑𝑚, 𝛽1/𝜓1, . . . , 𝛽𝑛/𝜓𝑛

)
=

F(𝑀 ′1, . . . , 𝑀
′
𝑚, 𝛽1, . . . , 𝛽𝑛)

F(𝜑1, . . . , 𝜑𝑚, 𝜓1, . . . , 𝜓𝑛)
◦ F(𝛼1, . . . , 𝛼𝑚, 𝑁1, . . . , 𝑁𝑛)

1F(𝑀1 ,. . . ,𝑀𝑚 ,𝑁1 ,. . . ,𝑁𝑛 )
.

If 𝑚 = 0, i.e. there are no categories K(𝑅𝑖)op, the expression simplifies even further:

´́F
(
𝛽1/𝜓1, . . . , 𝛽𝑛/𝜓𝑛

)
=

F(𝛽1, . . . , 𝛽𝑛)
F(𝜓1, . . . , 𝜓𝑛)

.

7.2.4. In 7.2.2 is considered a functor from a product of homotopy categories, and
opposite categories of such, to a single homotopy category. Occasionally we need to
consider functors from a product of homotopy categories, and opposite categories
of such, to another product of homotopy categories, and opposite categories of such.
It is straightforward to establish a version of 7.2.2 for such functors. That is, if

K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛)
F
��

K(𝑄1)op × · · · ×K(𝑄𝑘)op ×K(𝑇1) × · · · ×K(𝑇𝑙)

is a functor that preserves quasi-isomorphisms, see 7.2.1, then there exists a unique
functor ´́F between the corresponding products of derived categories, and opposite
categories of such, satisfying the identity
´́F ◦ (Vop

𝑅1
× · · · × Vop

𝑅𝑚
×V𝑆1 × · · · × V𝑆𝑛 ) = (V

op
𝑄1
× · · · × Vop

𝑄𝑘
×V𝑇1 × · · · × V𝑇𝑙 ) ◦F .
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7.2 Induced Functors on the Derived Category 327

Moreover, let G be a functor whose domain is the codomain of F and whose co-
domain is a product of homotopy categories, and opposite categories of such. The
proof of 6.4.40 shows that if G preserves quasi-isomorphisms, then (GF)́´= ´́G ´́F .

7.2.5 Proposition. Let

F,G : K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛) −→ K(𝑇)

be functors that preserve quasi-isomorphisms and consider the induced functors
from 7.2.2,

´́F , ´́G : D(𝑅1)op × · · · ×D(𝑅𝑚)op ×D(𝑆1) × · · · ×D(𝑆𝑛) −→ D(𝑇) .

Every natural transformation 𝜏 : F→ G induces a natural transformation ´́𝜏 : ´́F → ´́G
given by ´́𝜏𝑋 = 𝜏𝑋/1 for every object 𝑋 = (𝑀1, . . . , 𝑀𝑚, 𝑁1, . . . , 𝑁𝑛). Moreover, if the
functors F and G are triangulated in the same variable and if the transformation 𝜏 is
triangulated in that variable, then ´́𝜏 is triangulated in the corresponding variable.

Proof. The arguments in the proofs of 6.4.33/6.4.35 and 6.5.14/6.5.16 apply mutatis
mutandis to establish the claims. □

Derived Functors

To facilitate further discussion, we introduce some shorthand notation for use, ex-
clusively, in this section.

7.2.6 Definition. For rings 𝑅1, . . . , 𝑅𝑚 and 𝑆1, . . . , 𝑆𝑛 set

K = K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛) ,
D = D(𝑅1)op × · · · ×D(𝑅𝑚)op ×D(𝑆1) × · · · ×D(𝑆𝑛) , and
V = Vop

𝑅1
× · · · × Vop

𝑅𝑚
×V𝑆1 × · · · × V𝑆𝑛 .

For clarity, we do not in this section suppress the ‘op’ on the resolution functors
P𝑅, I𝑅 : K(𝑅) → K(𝑅) when they are considered as functors K(𝑅)op → K(𝑅)op.

7.2.7 Construction. Adopt the notation from 7.2.6. Let 𝜏 : F→ G be a natural
transformation of functors K→ K(𝑇). We proceed to construct functors and natural
transformations L𝜏 : LF→ LG and R𝜏 : RF→ RG.

Consider the endofunctor A = Iop
𝑅1
× · · · × Iop

𝑅𝑚
×P𝑆1 × · · · × P𝑆𝑛 on K. Since A

maps quasi-isomorphisms to isomorphisms, see 6.3.11 and 6.3.17, the same is true
for the composite functor FA. Therefore 7.2.2 implies the existence of a unique
functor LF = (FA)́´ that makes the following diagram commutative,

K
FA
//

V
��

K(𝑇)

V𝑇
��

D
LF
// D(𝑇) .
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Further, 7.2.5 yields a unique transformation L𝜏 = (𝜏A)́´: LF→ LG.
Similarly, we consider the endofunctor B = Pop

𝑅1
× · · · ×Pop

𝑅𝑚
× I𝑆1 × · · · × I𝑆𝑛 on K.

As the composite FB maps quasi-isomorphisms to isomorphisms, there is by 7.2.2
a unique functor RF = (FB)́´ that makes the following diagram commutative,

K
FB
//

V
��

K(𝑇)

V𝑇
��

D
RF
// D(𝑇) .

Further, 7.2.5 yields a unique transformation R𝜏 = (𝜏B)́´: RF→ RG.

7.2.8 Definition. Let

F : K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛) −→ K(𝑇)

be a functor. Every functor that is naturally isomorphic to LF from 7.2.7 is denoted
LF and called the left derived functor of F. Similarly, every functor that is naturally
isomorphic to RF is denoted RF and called the right derived functor of F.

Let G be another functor with the same domain and codomain as F and 𝜏 : F→ G
a natural transformation. Every natural transformation that is naturally isomorphic
to L𝜏 from 7.2.7 is denoted L𝜏 and called the left derived transformation of 𝜏.
Similarly, every transformation that is naturally isomorphic to R𝜏 is denoted R𝜏 and
called the right derived transformation of 𝜏.

Remark. Weibel [253] calls the functors defined in 7.2.8 the ‘(total) derived functors’, and Hovey
[136] goes for ‘total derived functors’.

At first sight, the definitions of derived functors in 7.2.8 may seem kind of random.
They do, however, have universal properties as explained in 7.2.19 and 7.2.20.

7.2.9 Example. Consider for 𝑛 ⩾ 1 the endofunctor F = Homℤ (ℤ/𝑛ℤ, ) on K(ℤ).
For 𝑚 ⩾ 1 the complex 𝑃 = 0 −−→ ℤ

𝑚−−→ ℤ −−→ 0, concentrated in degrees 1 and 0,
yields a projective resolution of ℤ/𝑚ℤ, so there are isomorphisms in D(ℤ),

LF(ℤ/𝑚ℤ) ≃ Homℤ (ℤ/𝑛ℤ, 𝑃) ≃ 0 .

In comparison, the module F(ℤ/𝑚ℤ) is not necessarily zero; cf. 1.1.8.
The complex 𝐼 = 0→ ℚ→ ℚ/ℤ→ 0, concentrated in degrees 0 and −1, yields

an injective resolution of ℤ, and hence there are isomorphisms in D(ℤ),

RF(ℤ) ≃ Homℤ (ℤ/𝑛ℤ, 𝐼) ≃ Σ−1Homℤ (ℤ/𝑛ℤ,ℚ/ℤ) ≃ Σ−1(ℤ/𝑛ℤ) .

In comparison, the module F(ℤ) is zero.

7.2.10 Lemma. Consider the endofunctors A and B on K from 7.2.7 and the natural
transformations

A 𝜆0−−→ IdK
𝜌0−−→ B given by

𝜆0 = 𝜄
op
𝑅1
× · · · × 𝜄op

𝑅𝑚
× 𝜋𝑆1 × · · · × 𝜋𝑆𝑛 and

𝜌0 = 𝜋
op
𝑅1
× · · · × 𝜋op

𝑅𝑚
× 𝜄𝑆1 × · · · × 𝜄𝑆𝑛 ,
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where 𝜋 and 𝜄 are the natural transformations from 6.3.11 and 6.3.17. For every 𝑋 in
K the morphisms 𝜆𝑋0 and 𝜌𝑋0 are quasi-isomorphisms. Moreover, there are identities
A𝜆0 = 𝜆0A and B𝜌0 = 𝜌0B of natural isomorphisms A2 → A and B→ B2.

Proof. It follows from 6.3.11 and 6.3.17, in view of 7.2.1, that 𝜆𝑋0 and 𝜌𝑋0 are quasi-
isomorphisms. It follows from 6.3.12 and 6.3.18 that A𝜆0 = 𝜆0A and B𝜌0 = 𝜌0B
hold, and by another application of 6.3.11 and 6.3.17 these natural transformations
are isomorphisms. □

A functor that preserves quasi-isomorphisms is its own derived functor.

7.2.11 Example. Adopt the notation from 7.2.6 and let F: K→ K(𝑇) be a functor
that preserves quasi-isomorphisms. The functor ´́F from 7.2.2 is both a left derived
and a right derived functor of F, that is,

LF = ´́F = RF .

Indeed, application of F to 𝜆0 : A→ IdK from 7.2.10 yields a natural transformation
F𝜆0 : FA→ F. Since (F𝜆0)𝑋 = F(𝜆𝑋0 ) is a quasi-isomorphism for every 𝑋 ∈ K,
there is by 7.2.5 a natural isomorphism (F𝜆0 )́´: LF = (FA)́´→ ´́F . Similarly, one
sees that RF is naturally isomorphic to ´́F .

Specific examples of functors that that preserve quasi-isomorphisms include the
identity functor IdK(𝑅) , the resolution functors P𝑅 and I𝑅, the functors Hom𝑅 (𝑃, )
and Hom𝑅 ( , 𝐼) where 𝑃 is a semi-projective 𝑅-complex and 𝐼 is a semi-injective 𝑅-
complex, and 𝐹 ⊗𝑅 where 𝐹 is a semi-flat 𝑅o-complex; see 6.3.11, 6.3.17, 5.2.10,
5.3.16, and 5.4.9.

Quasi-isomorphic functors have isomorphic derived functors.

7.2.12 Example. Adopt the notation from 7.2.6. Let F,G: K→ K(𝑇) be functors
and 𝜏 : F→ G a natural transformation. If 𝜏𝑋 is a quasi-isomorphism for every
𝑋 ∈ K, then LF and RF are naturally isomorphic to LG and RG, respectively.
Indeed, in this case L𝜏 = (𝜏A)́´and R𝜏 = (𝜏B)́´are natural isomorphisms.

In particular, the natural transformation 𝜋 : P𝑅→ IdK(𝑅) from 6.3.11 shows that
the derived functors LP𝑅 and RP𝑅 are both naturally isomorphic to IdD(𝑅) . Similarly,
the derived functors LI𝑅 and RI𝑅 of the semi-injective resolution functor, see 6.3.17,
are both naturally isomorphic to IdD(𝑅) .

Before we move on to more substantial examples of derived functors in Sects. 7.3
and 7.4, we explore some general properties of derived functors.

7.2.13 Lemma. Let F,G: U→ V be naturally isomorphic functors.
(a) Assume that U and V are 𝕜-prelinear categories. If F is 𝕜-linear, then so is G .
(b) Assume that the categories U and V have products/coproducts. If F preserves

products/coproducts, then so does G .
(c) Assume that U and V are triangulated and let 𝜏 : F→ G be a natural isomor-

phism. If F is triangulated with natural isomorphism 𝜙 : FΣU→ ΣVF , then
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the natural isomorphism𝜓 : GΣU→ ΣVG given by𝜓𝑀 = (Σ𝜏𝑀 )𝜙𝑀 (𝜏Σ𝑀 )−1

makes the functor G and the natural transformation 𝜏 triangulated.

Proof. All three assertions follow directly from the relevant definitions. □

7.2.14 Theorem. Consider a functor,

F : K(𝑅1)op × · · · ×K(𝑅𝑚)op ×K(𝑆1) × · · · ×K(𝑆𝑛) −→ K(𝑇) .

(a) If F is 𝕜-linear in one of its variables, then its derived functors LF and RF
are 𝕜-linear in the corresponding variable. In particular, if F is 𝕜-multilinear,
then LF and RF are 𝕜-multilinear.

(b) If F preserves coproducts in one of its variables, then LF preserves coproducts
in the corresponding variable.

(c) If F preserves products in one of its variables, then RF preserves products in
the corresponding variable.

(d) If F is triangulated in one of its variables, then LF and RF are triangulated in
the corresponding variable.

Proof. By 7.2.8 and 7.2.13 it is sufficient to verify the assertions for the functors
LF = (FA)́´and RF = (FB)́´from 7.2.7. By 6.3.11 and 6.3.17 the resolution functors
P and I are 𝕜-linear. Thus, if F is 𝕜-linear in one of its variables, then FA and FB
are 𝕜-linear in the corresponding variable. Part (a) now follows from 7.2.2(a).

The remaining three parts follow from 7.2.2 by similar arguments. To this end
recall that P is triangulated and preserves coproducts, whence Pop is triangulated and
preserves products, and that I is triangulated and preserves products, whence Iop is
triangulated and preserves coproducts; see 6.3.11, 6.3.17, and E.10. □

Recall from 6.1.22 that a functor between module categories induces a functor
between homotopy categories.

7.2.15 Proposition. Let F: M(𝑅) →M(𝑆) be an additive functor and let 𝑀 be an
𝑅-complex. The derived functors of the induced functor F: K(𝑅) → K(𝑆) satisfy

inf LF(𝑀) ⩾ inf 𝑀 and − sup RF(𝑀) ⩾ − sup𝑀 .

Proof. The inequalities follow from the definitions, 7.2.8, of the derived functors
combined with 5.2.15 and 5.3.26. □

Universal Properties of Derived Functors

So far, our approach to derived functors has been constructive in the sense that the
very definition of a derived functor tells how to compute it. There is, of course, also
an abstract approach, which we now proceed to explore.

Adopt the notation from 7.2.6. Let F: K→ K(𝑇) be a functor. One can, in general,
not expect to find a functor F ′ that makes the diagram
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K
F
//

V
��

K(𝑇)

V𝑇
��

D
F ′
// D(𝑇)

commutative. Indeed, it follows from 6.4.17 that a necessary condition for the ex-
istence of such a functor F ′ is that F preserves quasi-isomorphisms. On the other
hand, 7.2.2 shows that this condition is sufficient to guarantee the existence of F ′.

7.2.16 Definition. Adopt the notation from 7.2.6. Let F: K→ K(𝑇) be a functor.
To F we associate two categories LF and RF defined as follows.

The objects in LF are pairs (F′, 𝜉′) where F′ : D→ D(𝑇) is a functor and
𝜉′ : F′V→ V𝑇 F is a natural transformation. A morphism 𝜁 : (F′, 𝜉′) → (F′′, 𝜉′′)
in LF is a natural transformation 𝜁 : F′→ F′′ that makes the next diagram commu-
tative,

F′V

𝜉 ′

��

𝜁 V

{{

F′′V
𝜉 ′′
// V𝑇 F .

The objects in RF are pairs (F′, 𝜉′) where F′ : D→ D(𝑇) is a functor and
𝜉′ : V𝑇 F→ F′V is a natural transformation. A morphism 𝜁 : (F′, 𝜉′) → (F′′, 𝜉′′)
in RF is a natural transformation 𝜁 : F′→ F′′ that makes the next diagram commu-
tative,

V𝑇 F
𝜉 ′
//

𝜉 ′′

��

F′V

𝜁 V
{{

F′′V .

The categoryLF has an initial object, namely the pair (O, 0) where O: D→ D(𝑇)
is the zero functor and 0: OV→ V𝑇 F is the zero transformation. Similarly, the pair
(O, 0), where this time 0 denotes the zero transformation V𝑇 F→ OV, is a terminal
object in RF. A less trivial fact is that LF has a terminal object and that RF has an
initial object; this is proved in 7.2.19 below.

7.2.17 Construction. Adopt the notation from 7.2.6. Let F: K→ K(𝑇) be a functor.
We construct objects (LF, 𝜆) in LF and (RF, 𝜌) in RF, where LF and RF are the
functors from 7.2.7.

Recall the natural transformation 𝜆0 : A→ IdK from 7.2.10. A natural transfor-
mation 𝜆 is defined as follows:

(LF) V = V𝑇 FA V𝑇 F𝜆0−−−−−−→ V𝑇 F IdK = V𝑇 F .

Similarly, with 𝜌0 : IdK→ B from 7.2.10 a natural transformation 𝜌 is given by

V𝑇 F = V𝑇 F IdK
V𝑇 F𝜌0−−−−−−→ V𝑇 FB = (RF) V .
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7.2.18 Lemma. Adopt the notation from 7.2.6. Let F,G: K→ D(𝑇) be functors
and 𝜏1, 𝜏2 : F→ G natural transformations.

(a) Assume that F maps quasi-isomorphisms in K to isomorphisms in D(𝑇). If
𝜏1 A = 𝜏2 A holds, then one has 𝜏1 = 𝜏2 .

(b) Assume that G maps quasi-isomorphisms in K to isomorphisms in D(𝑇). If
𝜏1 B = 𝜏2 B holds, then one has 𝜏1 = 𝜏2 .

Proof. (a): Consider the natural transformation 𝜆0 : A→ IdK from 7.2.10. As 𝜏𝑖 is
a natural transformation, there is a commutative diagram of natural transformations,

FA
𝜏𝑖A
��

F𝜆0
// F
𝜏𝑖

��

GA
G𝜆0
// G .

As 𝜆𝑋0 is a quasi-isomorphism for every 𝑋 in K, the assumption on F implies
that F𝜆0 is a natural isomorphism. It follows that 𝜏𝑖 = (G𝜆0) (𝜏𝑖A) (F𝜆0)−1 holds.
Consequently, if one has 𝜏1 A = 𝜏2 A, then 𝜏1 = 𝜏2 holds.

(b): An argument similar to the proof of part (a) applies. □

7.2.19 Theorem. Adopt the notation from 7.2.6. Let F: K→ K(𝑇) be a functor.
(a) The object (LF, 𝜆) constructed in 7.2.17 is terminal in the category LF .

(b) The object (RF, 𝜌) constructed in 7.2.17 is initial in the category RF .

Proof. (a): It must be argued that for every object (F′, 𝜉′) in LF there exists a unique
morphism (F′, 𝜉′) → (LF, 𝜆). Let 𝜁1 and 𝜁2 be any two such morphisms, that is,
each 𝜁𝑖 : F′→ LF is a natural transformation such that the diagram

F′V

𝜉 ′

��

𝜁𝑖V

zz

(LF) V
𝜆
// V𝑇 F

is commutative. As the functor V: K→ D is the identity on objects, one has 𝜁1 = 𝜁2
if and only if 𝜁1V = 𝜁2V, and by 7.2.18 this holds if and only if 𝜁1VA = 𝜁2VA. To
verify the latter, note that the diagram above yields the commutative diagram

F′VA

𝜉 ′A
��

𝜁𝑖VA

yy

(LF) VA
𝜆A
// V𝑇 FA .

By definition, one has 𝜆A = V𝑇 F𝜆0A, which is a natural isomorphism by 7.2.10. It
follows that 𝜁𝑖VA = (𝜆A)−1 (𝜉′A) for 𝑖 = 1, 2, and hence 𝜁1VA = 𝜁2VA.

It remains to prove the existence of a morphism (F′, 𝜉′) → (LF, 𝜆) in LF. There
are natural transformations,
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F′V F′V𝜆0←−−−−−
≃

F′VA 𝜉 ′A−−−→ V𝑇 FA = (LF) V ,

and thus a natural transformation �̃� : F′V→ (LF) V given by �̃� = (𝜉′A) (F′V𝜆0)−1.
It follows from 6.4.28 that there is a natural transformation 𝜁 : F′→ LF with 𝜁V = �̃� .
To verify the equality 𝜆(𝜁V) = 𝜉′, that is, 𝜆�̃� = 𝜉′, amounts by the definitions of 𝜆
and �̃� to showing that (V𝑇 F𝜆0) (𝜉′A) = 𝜉′ (F′V𝜆0) holds, i.e. that the diagram

F′VA

𝜉 ′A
��

F′V𝜆0
// F′V

𝜉 ′

��

V𝑇 FA
V𝑇 F𝜆0

// V𝑇 F

is commutative, which it is as 𝜉′ : F′V→ V𝑇 F is a natural transformation.
(b): An argument similar to the proof of part (a) applies. □

7.2.20. All terminal objects in a given category are isomorphic. In particular, every
terminal object inLF is isomorphic to (LF, 𝜆). If (F′, 𝜉′) and (LF, 𝜆) are isomorphic
in LF then, in particular, F′ and LF are naturally isomorphic functors, i.e. F′ is LF.
On the other hand, if 𝜑 : F′→ LF is a natural isomorphism—that is, F′ is LF—then
there is a unique natural transformation 𝜉′ : F′V→ V𝑇 F, namely 𝜉′ = 𝜆 ◦ (𝜑V),
such that (F′, 𝜉′) is isomorphic to (LF, 𝜆) in LF. Thus, for most purposes one can
suppress the natural transformation and identify a terminal object in LF with a left
derived functor of F in the sense of 7.2.8.

Similarly, an initial object in RF is nothing but a right derived functor of F in the
sense of 7.2.8.

Every natural transformation 𝜏 : F→ G of functors from K to K(𝑇) induces a
natural transformation L𝜏 : LF→ LG; see 7.2.7. In the abstract approach to derived
functors explained above, this natural transformation is obtained from part (a) in the
next result applied to F′ = LF and G′ = LG.

7.2.21 Proposition. Adopt the notation from 7.2.6. Let F,G: K→ K(𝑇) be functors
and 𝜏 : F→ G a natural transformation.

(a) Let (F′, 𝜉′) ∈ LF and (G′, 𝜂′) ∈ LG. If (G′, 𝜂′) is terminal, then there is
a unique natural transformation 𝜏′ : F′→ G′ that makes the next diagram
commutative,

F′V

𝜉 ′

��

𝜏′V
// G′V

𝜂′

��

V𝑇 F V𝑇 𝜏
// V𝑇 G .

(b) Let (F′, 𝜉′) ∈ RF and (G′, 𝜂′) ∈ RG. If (F′, 𝜉′) is initial, then there is a unique
natural transformation 𝜏′ : F′→ G′ that makes the next diagram commutative,
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V𝑇 F

𝜉 ′

��

V𝑇 𝜏
// V𝑇 G

𝜂′

��

F′V 𝜏′V
// G′V .

Proof. (a): Note that (F′, (V𝑇 𝜏) ◦𝜉′) is an object in LG. A natural transformation 𝜏′
that makes the diagram commutative is a morphism 𝜏′ : (F′, (V𝑇 𝜏) ◦ 𝜉′) → (G′, 𝜂′)
in LG, and there exists a unique such morphism as (G′, 𝜂′) is terminal in LG.

(b): An argument similar to the proof of part (a) applies. □

Exercises

E 7.2.1 Assume that 𝑅 is left hereditary and let F: C(𝑅) → C(𝑆) be a functor that preserves
homotopy. Show that for every 𝑅-module 𝑀 one has H𝑣 (LF(𝑀 ) ) = 0 = H−𝑣 (RF(𝑀 ) )
for 𝑣 ≠ 0, 1. Hint: E 1.3.17 and E 1.4.8.

E 7.2.2 Assume that 𝑅 is left hereditary and let G: C(𝑅)op → C(𝑆) be a functor that preserves
homotopy. Show that for every 𝑅-module𝑀 one has H𝑣 (LG(𝑀 ) ) = 0 = H−𝑣 (RG(𝑀 ) )
for 𝑣 ≠ 0, 1. Hint: E 1.3.17 and E 1.4.8.

E 7.2.3 Let F: C(𝑅) → C(𝑆) be an additive functor and 𝑀 an 𝑅-complex. (a) Let 𝑋 be a
K-projective 𝑅-complex isomorphic to 𝑀 in D(𝑅); show that there is an isomorphism
LF(𝑀 ) ≃ F(𝑋) in D(𝑆) . (b) Let 𝑌 be a K-injective 𝑅-complex isomorphic to 𝑀 in
D(𝑅); show that there is an isomorphism RF(𝑀 ) ≃ F(𝑌 ) in D(𝑆) .

E 7.2.4 Let G: C(𝑅)op → C(𝑆) be an additive functor and 𝑀 an 𝑅-complex. (a) Let 𝑋 be a
K-projective 𝑅-complex isomorphic to 𝑀 in D(𝑅); show that there is an isomorphism
RG(𝑀 ) ≃ G(𝑋) in D(𝑆) . (b) Let 𝑌 be a K-injective 𝑅-complex isomorphic to 𝑀 in
D(𝑅); show that there is an isomorphism LG(𝑀 ) ≃ G(𝑌 ) in D(𝑆) .

E 7.2.5 (Cf. 7.2.9) Let 𝑛 ∈ ℕ and show that one has Homℤ (ℤ/𝑛ℤ,ℚ/ℤ) � ℤ/𝑛ℤ in M(ℤ) .
E 7.2.6 Let 𝑛 > 0 be an integer and set F = ⊗ℤ ℤ/𝑛ℤ. Compute the groups H𝑣 (LF(𝑀 ) ) and

H−𝑣 (RF(𝑀 ) ) for 𝑣 = 0, 1 and 𝑀 = ℤ, 𝑀 = ℤ/𝑚ℤ, 𝑀 = ℚ, and 𝑀 = ℚ/ℤ.
E 7.2.7 Let 𝑛 > 0 be an integer and set G = Homℤ ( ,ℤ/𝑛ℤ) . Compute the groups H𝑣 (LG(𝑀 ) )

and H−𝑣 (RG(𝑀 ) ) for 𝑣 = 0, 1 and 𝑀 = ℤ, 𝑀 = ℤ/𝑚ℤ, 𝑀 = ℚ, and 𝑀 = ℚ/ℤ.
E 7.2.8 Let G: M(𝑅)op →M(𝑆) be an additive functor and 𝑀 an 𝑅-complex. Show:

− sup RG(𝑀 ) ⩾ inf 𝑀 and inf LG(𝑀 ) ⩾ − sup𝑀 .

E 7.2.9 Let F: M(𝑅) →M(𝑆) be an additive functor and 𝑀 an 𝑅-module. (a) Show that
there is a canonical homomorphism H0 LF(𝑀 ) → F(𝑀 ) which is natural in 𝑀 and
an isomorphism if F is right exact. (b) Show that there is a canonical homomophism
F(𝑀 ) → H0 RF(𝑀 ) which is natural in 𝑀 and an isomorphism if F is left exact.

E 7.2.10 Let G: M(𝑅)op →M(𝑆) be an additive functor and 𝑀 an 𝑅-module. (a) Show that
there is a canonical homomorphism G(𝑀 ) → H0 RG(𝑀 ) which is natural in 𝑀 and
an isomorphism if G is left exact. (b) Show that there is a canonical homomophism
H0 LG(𝑀 ) → G(𝑀 ) which is natural in 𝑀 and an isomorphism if G is right exact.

E 7.2.11 (a) Give an example of a functor F, such that F preserves products but LF does not.
(b) Give an example of a functor F, such that LF preserves products but F does not.

E 7.2.12 (a) Give an example of a functor F, such that F preserves coproducts but RF does not.
(b) Give an example of a functor F, such that RF preserves coproducts but F does not.

8-Mar-2024 Draft - use at own risk



7.3 Derived Hom Functor 335

7.3 Derived Hom Functor

Synopsis. The functor RHom; derived category of complexes of bimodules; augmentation of
RHom; semi-projective replacement; semi-injective replacement; Ext functors; exact Ext sequence.

In this section and the next we apply the machinery from the previous section to the
Hom and tensor product functors.

7.3.1 Definition. The functor Hom𝑅 ( , ) : K(𝑅)op ×K(𝑅) → K(𝕜) from 7.1.4 has
by 7.2.8 a right derived functor, written

RHom𝑅 ( , ) : D(𝑅)op ×D(𝑅) −→ D(𝕜) ;

it is per 7.2.7 induced by the functor Hom𝑅 (P𝑅 ( ), I𝑅 ( )).

Additional ring actions on 𝑅-complexes 𝑀 and 𝑁 yield additional actions on
the complex Hom𝑅 (𝑀, 𝑁); see 7.1.7. To what extent such additional actions carry
over to the complex RHom𝑅 (𝑀, 𝑁) is a central topic in this section. To address
it, we introduce an extra layer of rings, as we consider ring homomorphisms, say,
𝜑 : 𝑅 ⊗𝕜 𝑆

o → 𝐵. By restriction of scalars every 𝐵-module is an 𝑅–𝑆o-bimodule, see
1.1.12. Moreover, 𝐵—and every 𝐵–𝐵o-bimodule—is an (𝑅 ⊗𝕜 𝑆

o)–𝐵o-bimodule as
well as a 𝐵–(𝑆 ⊗𝕜 𝑅

o)-bimodule via 𝜑; see 1.1.29. Following 1.1.12 the restiction
of scalars functors res𝐵

𝑅
and res𝐵o

𝑅o are mostly suppressed, but when we refer to 𝐵 “as
an 𝑅-module” or “as an 𝑅o-module” it means that one of these functors is applied.

Augmentation

7.3.2 Definition. Let D(𝑅–𝑆o) denote the category D(𝑅 ⊗𝕜 𝑆
o).

7.3.3. In view of 7.1.6 the categoryD(𝑅–𝑆o) is naturally identified with the category
whose objects are complexes of 𝑅–𝑆o-bimodules, and whose hom-sets consist of left
fractions, i.e. equivalence classes of diagrams

𝑀
𝜑←−−−
≃
𝑈

𝛼−−−→ 𝑁

where 𝛼 and 𝜑 are homotopy classes of 𝑅- and 𝑆o-linear chain maps of degree 0, and
𝜑 is a quasi-isomorphism. In the definition of the equivalence relation, see 6.4.1, the
morphisms 𝜇1 and 𝜇2 are, of course, also 𝑅- and 𝑆o-linear.

7.3.4 Setup. Consider ring homomorphisms

𝑅 ⊗𝕜 𝑄
o −→ 𝐴 and 𝑅 ⊗𝕜 𝑆

o −→ 𝐵 .

A functor E: D(𝐴)op ×D(𝐵) → D(𝑄–𝑆o) can be compared to the functor RHom𝑅

from 7.3.1 via the diagram,

8-Mar-2024 Draft - use at own risk



336 7 Derived Functors

(7.3.4.1)

D(𝐴)op ×D(𝐵) E
//

res𝐴
𝑅
× res𝐵

𝑅

��

D(𝑄–𝑆o)

res𝑄⊗𝑆
o

𝕜

��

D(𝑅)op ×D(𝑅) RHom𝑅 ( , )
// D(𝕜) .

7.3.5 Definition. Adopt the setup 7.3.4. If there exists a natural isomorphism,

𝜑 : res𝑄⊗𝑆
o

𝕜
E −→ RHom𝑅 (res𝐴𝑅, res𝐵𝑅) ,

i.e. (7.3.4.1) is commutative up to natural isomorphism, then the functor E is called
an augmentation of RHom𝑅 and denoted by the same symbol. That is, one writes

RHom𝑅 ( , ) : D(𝐴)op ×D(𝐵) −→ D(𝑄–𝑆o)

and says that RHom𝑅 is augmented to a functor from D(𝐴)op ×D(𝐵) to D(𝑄–𝑆o).

Caveat. Adopt the setup 7.3.4 and consider restriction of scalars followed by Hom from 7.1.7,

D: K(𝐴)op ×K(𝐵)
res𝐴
𝑅⊗𝑄o × res𝐵

𝑅⊗𝑆o
−−−−−−−−−−−−→K(𝑅–𝑄o )op ×K(𝑅–𝑆o ) Hom𝑅 ( , )−−−−−−−−→K(𝑄–𝑆o ) .

This functor has a right derived functor, E = RD, given by E = Hom𝑅 (P𝐴 ( ) , I𝐵 ( ) ) ´́; see
7.2.7 and 7.2.8. For this functor E the diagram (7.3.4.1) need not be commutative up to natural
isomorphism; see for example 7.3.10. Thus, even though RHom𝑅 according to 7.2.8 could be
the notation for the derived functor E, we only use it in situations where the diagram (7.3.4.1) is
commutative up to natural isomorphism. This causes no ambiguity—these are the only situations
in which we are interested in the derived functor E—and the dissonance with 7.2.8 is, in fact,
limited. Indeed, the meaning of the symbol RHom𝑅 depends on which category the functor Hom𝑅
is defined on. That information is not encoded in the symbol RHom𝑅 ( , ) , it only gives away that
both arguments must be 𝑅-complexes. Thus, without further context the only certain interpretation
of the symbol is the one from 7.3.1, and 7.3.5 ensures that this interpretation always is valid.

Theorem 7.3.6 is our most general statement about augmentations of RHom𝑅;
commonly used special cases are found in 7.3.8–7.3.9 and 7.3.12–7.3.13. The ques-
tion of how to evaluate the functor is addressed in 7.3.7 and 7.3.20.

7.3.6 Theorem. Let 𝑅 ⊗𝕜 𝑄
o → 𝐴 and 𝑅 ⊗𝕜 𝑆

o → 𝐵 be ring homomorphisms. If
condition (a) or (b) below is satisfied, then RHom𝑅 is augmented as follows:

(7.3.6.1) RHom𝑅 ( , ) : D(𝐴)op ×D(𝐵) −→ D(𝑄–𝑆o) .

This functor is 𝕜-bilinear, it preserves products in both variables, and it is triangu-
lated in both variables.

(a) 𝐴 is projective as an 𝑅-module.
(b) 𝐵 is flat as an 𝑅o-module.

Further, (7.3.6.1) is induced by functors K(𝐴)op ×K(𝐵) −−→ K(𝑄–𝑆o) as follows:
(a′) If (a) is satisfied, then RHom𝑅 ( , ) is induced by Hom𝑅 (P𝐴( ), ) .
(b′) If (b) is satisfied, then RHom𝑅 ( , ) is induced by Hom𝑅 ( , I𝐵 ( )) .

Proof. For clarity the restriction of scalars functors, see 6.1.23 and 6.4.36, are not
suppressed in this proof. Consider the functor
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D = Hom𝑅 ( , ) ◦ (res𝐴𝑅⊗𝑄o × res𝐵𝑅⊗𝑆o ) = Hom𝑅 (res𝐴𝑅⊗𝑄o , res𝐵𝑅⊗𝑆o ) .

Recall the natural transformations 𝜚 and 𝜀 from 6.3.21 and 6.3.22. The next diagram
defines a natural transformation 𝜏 of functors from K(𝐴)op ×K(𝐵) to K(𝕜),

res𝑄⊗𝑆
o

𝕜
◦ Hom𝑅 (res𝐴

𝑅⊗𝑄o P𝐴, res𝐵
𝑅⊗𝑆o I𝐵)

𝜏

��

Hom𝑅 (res𝐴
𝑅

P𝐴, res𝐵
𝑅

I𝐵)

Hom (1, 𝜀𝐵
𝑅
)

��

Hom𝑅 (res𝐴
𝑅

P𝐴, I𝑅 res𝐵
𝑅
)

Hom ( 𝜚𝐴
𝑅
,1)

��

Hom𝑅 (P𝑅, I𝑅) ◦ (res𝐴
𝑅
× res𝐵

𝑅
) Hom𝑅 (P𝑅 res𝐴

𝑅
, I𝑅 res𝐵

𝑅
) .

Set E = RD. Now 7.2.4 and 7.2.5, per 7.2.8, yield a natural transformation

´́𝜏 : res𝑄⊗𝑆
o

𝕜
◦ E −→ RHom𝑅 ( , ) ◦ (res𝐴𝑅 × res𝐵𝑅) .

To prove that E is an augmentation of RHom𝑅, it suffices by 7.3.5 to show that 𝜑 = ´́𝜏
is a natural isomorphism, i.e. that 𝜏𝑀𝑁 is a quasi-isomorphism for every 𝐴-complex
𝑀 and 𝐵-complex 𝑁 . In the following, let 𝑀 and 𝑁 denote such complexes.

Recall from 6.3.21 and 6.3.22 that (𝜚𝐴
𝑅
)𝑀 and (𝜀𝐵

𝑅
)𝑁 are quasi-isomorphisms.

The complex I𝑅 (res𝐵
𝑅
(𝑁)) is semi-injective, whence Hom𝑅 ((𝜚𝐴𝑅)𝑀 , I𝑅 (res𝐵

𝑅
(𝑁)))

is a quasi-isomorphism.
Assume first that condition (a) is satisfied. It follows from 5.2.23(b) that the

𝑅-complex res𝐴
𝑅
(P𝐴(𝑀)) is semi-projective, so Hom𝑅 (res𝐴

𝑅
P𝐴(𝑀), (𝜀𝐵𝑅)𝑁 ) is a

quasi-isomorphism. Thus, 𝜏𝑀𝑁 is a quasi-isomorphism as desired.
Assume now that condition (b) is satisfied. It follows from 6.3.22 that (𝜀𝐵

𝑅
)𝑁 is

an isomorphism in K(𝑅), whence 𝜏𝑀𝑁 is a quasi-isomorphism.
Thus if (a) or (b) is satisfied, then one writes RHom𝑅 for the functor E; see 7.3.5.

It follows from 7.1.7 and 7.2.14 that E = RD is 𝕜-bilinear, preserves products in
both variables, and is triangulated in both variables.

(a′): With the restriction of scalars functors included, the claim is that the functors

E = Hom𝑅 (res𝐴𝑅⊗𝑄o P𝐴, res𝐵𝑅⊗𝑆o I𝐵) ´́ and Hom𝑅 (res𝐴𝑅⊗𝑄o P𝐴, res𝐵𝑅⊗𝑆o ) ´́

from D(𝐴)op × D(𝐵) to D(𝑄–𝑆o) are naturally isomorphic; indeed, as already
established the functor E is (7.3.6.1). Consider the natural transformation

Hom𝑅 (res𝐴𝑅⊗𝑄o P𝐴, res𝐵𝑅⊗𝑆o )
𝜎 =Hom (1,res𝐵

𝑅⊗𝑆o 𝜄𝐵 )
−−−−−−−−−−−−−−−−−−→ Hom𝑅 (res𝐴𝑅⊗𝑄o P𝐴, res𝐵𝑅⊗𝑆o I𝐵)

of functorsK(𝐴)op×K(𝐵) → K(𝑄–𝑆o). To see that the induced transformation ´́𝜎 is
a natural isomorphism, let 𝑀 and 𝑁 be complexes in K(𝐴) and K(𝐵) respectively;
it must be verified that 𝜎𝑀𝑁 is a quasi-isomorphism. This follows as the com-
plex res𝐴

𝑅⊗𝑄o (P𝐴(𝑀)) under condition (a) is semi-projective over 𝑅 by 5.2.23(b),
whence the functor Hom𝑅 (res𝐴

𝑅⊗𝑄o (P𝐴(𝑀)), ) preserves the quasi-isomorphism
res𝐵

𝑅⊗𝑆o (𝜄𝑁𝐵 ).
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(b′): Proceeding as in part (a′), the natural transformation

Hom𝑅 (res𝐴𝑅⊗𝑄o , res𝐵𝑅⊗𝑆o I𝐵)
𝜘=Hom (res𝐴

𝑅⊗𝑄o 𝜋𝐴,1)
−−−−−−−−−−−−−−−−−−−→ Hom𝑅 (res𝐴𝑅⊗𝑄o P𝐴, res𝐵𝑅⊗𝑆o I𝐵)

compares the relevant functors from K(𝐴)op ×K(𝐵) to K(𝑄–𝑆o). Under condition
(b) the 𝑅-complex res𝐵

𝑅
(I𝐵 (𝑁)) is by 5.4.26(b) semi-injective for every 𝐵-complex

𝑁 . Thus, for every 𝐴-complex 𝑀 the functor Hom𝑅 ( , res𝐵
𝑅
(I𝐵 (𝑁))) preserves the

quasi-isomorphism res𝐴
𝑅⊗𝑄o (𝜋𝑀𝐴 ), whence 𝜘𝑀𝑁 is a quasi-isomorphism. It follows

that ´́𝜘 is a natural isomorphism of functors from D(𝐴)op ×D(𝐵) to D(𝑄–𝑆o). □

7.3.7. Consider the functor (7.3.6.1) and morphisms 𝛼/𝜑 : 𝑀 ′ → 𝑀 in D(𝐴) and
𝛽/𝜓 : 𝑁 → 𝑁 ′ in D(𝐵). If condition (a) in 7.3.6 is satisfied, then by 7.2.3 one has

RHom𝑅 (𝑀, 𝑁) = Hom𝑅 (P𝐴(𝑀), 𝑁)
and

RHom𝑅 (𝛼/𝜑, 𝛽/𝜓) =
Hom (P𝐴(𝑀 ′), 𝛽)
Hom (P𝐴(𝜑), 𝜓)

◦ Hom (P𝐴(𝛼), 𝑁)
1Hom (P𝐴 (𝑀 ) ,𝑁 )

.

One can verify that the composite reduces to Hom (P𝐴(𝛼) P𝐴(𝜑)−1, 𝛽)/Hom (P𝐴(𝑀), 𝜓).
Similarly, if condition (b) in 7.3.6 is satisfied, then one has

RHom𝑅 (𝑀, 𝑁) = Hom𝑅 (𝑀, I𝐵 (𝑁))
and

RHom𝑅 (𝛼/𝜑, 𝛽/𝜓) =
Hom (𝑀 ′, I𝐵 (𝛽))
Hom (𝜑, I𝐵 (𝜓))

◦ Hom (𝛼, I𝐵 (𝑁))
1Hom (𝑀,I𝐵 (𝑁 ) )

.

Applied with 𝑆 = 𝕜, the next result recovers the functor RHom𝑅 from 7.3.1, now
induced by a functor that only involves a resolution of the first variable.

7.3.8 Corollary. The functor RHom𝑅 is augmented as follows:

RHom𝑅 ( , ) : D(𝑅)op ×D(𝑅–𝑆o) −→ D(𝑆o) ,

and this functor is induced by Hom𝑅 (P𝑅 ( ), ) : K(𝑅)op ×K(𝑅–𝑆o) −−→ K(𝑆o).

Proof. Apply 7.3.6 with 𝑄 = 𝕜, 𝐴 = 𝑅, and 𝐵 = 𝑅 ⊗𝕜 𝑆
o. Condition (a) is now

trivially satisfied; in particular, the last assertion follows from 7.3.6(a′). □

Applied with𝑄 = 𝕜, the next result recovers the functor RHom𝑅 from 7.3.1, now
induced by a functor that only involves a resolution of the second variable.

7.3.9 Corollary. The functor RHom𝑅 is augmented as follows:

RHom𝑅 ( , ) : D(𝑅–𝑄o) ×D(𝑅)op −→ D(𝑄) ,

and this functor is induced by Hom𝑅 ( , I𝑅 ( )) : K(𝑅–𝑄o)op ×K(𝑅) −−→ K(𝑄).

Proof. Apply 7.3.6 with 𝐴 = 𝑅 ⊗𝕜 𝑄
o, 𝑆 = 𝕜, and 𝐵 = 𝑅. Condition (b) is now

trivially satisfied; in particular, the last assertion follows from 7.3.6(b′). □

The next example shows that the diagram (7.3.4.1) need not be commutative up
to natural isomorphism.
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7.3.10 Example. Set 𝕜 = ℤ = 𝑅 and 𝐴 = 𝑄 = ℤ/2ℤ = 𝑆 = 𝐵; one then has

𝑅 ⊗𝕜 𝑄
o = 𝐴 = ℤ/2ℤ = 𝐵 = 𝑅 ⊗𝕜 𝑆

o = 𝑄 ⊗𝕜 𝑆
o .

The functor Homℤ ( , ) : K(ℤ/2ℤ)op ×K(ℤ/2ℤ) → K(ℤ/2ℤ) has a right derived
functor E:D(ℤ/2ℤ)op ×D(ℤ/2ℤ) → D(ℤ/2ℤ) which, since ℤ/2ℤ is a field is
given by E = Homℤ ( , ). Thus, for 𝑀 = ℤ/2ℤ = 𝑁 one has

E(𝑀, 𝑁) = Homℤ (ℤ/2ℤ,ℤ/2ℤ) = ℤ/2ℤ .

By 7.3.8 the complex RHomℤ (𝑀, 𝑁) can be computed as Homℤ (𝑃,ℤ/2ℤ), where
𝑃 is the semi-projective ℤ-complex 0 −−→ ℤ

2−−→ ℤ −−→ 0 concentrated in degrees 1
and 0. Evidently, the complex

RHomℤ (𝑀, 𝑁) = Homℤ (𝑃,ℤ/2ℤ) = 0 −→ ℤ/2ℤ 0−−−→ ℤ/2ℤ −→ 0

has non-zero homology in degrees 0 and −1, so it is not isomorphic to E(𝑀, 𝑁) in
the derived category D(ℤ).

To identify non-trivial circumstances under which condition (a) or (b) in 7.3.6 is
satisfied, we record a few special cases of results from Chap. 5.

7.3.11 Lemma. The following assertions hold.
(a) If𝑄 is projective as a𝕜-module, then 𝑅 ⊗𝕜 𝑄

o is projective as an 𝑅-module and
every semi-projective 𝑅 ⊗𝕜 𝑄

o-complex is semi-projective as an 𝑅-complex.
(b) If 𝑄 is flat as a 𝕜-module, then 𝑅 ⊗𝕜 𝑄

o is flat as an 𝑅-module and every
semi-flat 𝑅 ⊗𝕜 𝑄

o-complex is semi-flat as an 𝑅-complex.
(c) If 𝑆 is flat as a 𝕜-module, then 𝑅 ⊗𝕜 𝑆

o is flat as an 𝑅o-module and every
semi-injective 𝑅 ⊗𝕜 𝑆

o-complex is semi-injective as an 𝑅-complex.

Proof. The assertions in (a) follow from 5.2.25 and 5.2.23(b), those in (b) follow
from 5.4.23 and 5.4.18(b), and those in (c) follow from 5.4.23 and 5.4.26(b). □

7.3.12 Proposition. Assume that𝑄 is projective as a 𝕜-module. The functor RHom𝑅

is augmented as follows:

RHom𝑅 ( , ) : D(𝑅–𝑄o)op ×D(𝑅–𝑆o) −→ D(𝑄–𝑆o) ;

it is induced by Hom𝑅 (P𝑅⊗𝕜𝑄o ( ), ) : K(𝑅–𝑄o)op ×K(𝑅–𝑆o) −−→ K(𝑄–𝑆o).

Proof. Apply 7.3.6 with 𝐴 = 𝑅 ⊗𝕜 𝑄
o and 𝐵 = 𝑅 ⊗𝕜 𝑆

o; condition (a) is satisfied
per 7.3.11(a), so the conclusion follows from 7.3.6(a′). □

7.3.13 Proposition. Assume that 𝑆 is flat as a 𝕜-module. The functor RHom𝑅 is
augmented as follows:

RHom𝑅 ( , ) : D(𝑅–𝑄o)op ×D(𝑅–𝑆o) −→ D(𝑄–𝑆o) ;

it is induced by Hom𝑅 ( , I𝑅⊗𝕜𝑆o ( )) : K(𝑅–𝑄o)op ×K(𝑅–𝑆o) −−→ K(𝑄–𝑆o).

Proof. Apply 7.3.6 with 𝐴 = 𝑅 ⊗𝕜 𝑄
o and 𝐵 = 𝑅 ⊗𝕜 𝑆

o; condition (b) is satisfied
per 7.3.11(c), so the conclusion follows from 7.3.6(b′). □
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Note that 7.3.8 and 7.3.9 are special cases of 7.3.12 and 7.3.13 with 𝑄 = k and
𝑆 = k, respectively. Further applications of 7.3.12 and 7.3.13 can be obtained from
the following example.

7.3.14 Example. Examples of 𝕜-algebras that are free as 𝕜-modules are matrix
algebras M𝑛×𝑛 (𝕜) as well as polynomial algebras 𝕜 [𝑥1, . . . , 𝑥𝑛] and their trunca-
tions 𝕜 [𝑥1, . . . , 𝑥𝑛]/(𝑥1, . . . , 𝑥𝑛) 𝑝; in particular, these algebras are faithfully flat as
𝕜-modules by 1.3.43. If 𝕜 is Noetherian, then power series algebras 𝕜⟦𝑥1, . . . , 𝑥𝑛⟧
are flat as 𝕜-modules, see 8.3.26; per 1.3.43 they are even faithfully flat as 𝕜-modules
as they have 𝕜 as a direct summand.

If 𝕜 is a field—or for that matter a von Neumann regular ring, see 8.5.8—then
every 𝕜-algebra is flat as a 𝕜-module, so RHom𝑅 is invariably augmented to a functor
D(𝑅–𝑄o)op ×D(𝑅–𝑆o) −−→ D(𝑄–𝑆o).

In the literature on derived Hom functors over non-commutative rings, it is fairly
standard to make the blanket assumption that all rings are algebras over some fixed
field; the example above makes it clear why that is convenient. For commutative
rings there is, however, no need for that assumption. Together with the one that
follows, the example demonstrates how the setup with the extra layer of rings, 𝐴 and
𝐵, allows us to treat the commutative and non-commutative cases together.

7.3.15 Example. Assume that 𝑅 is commutative and recall that 𝑅-modules are
considered to be symmetric 𝑅–𝑅-bimodules, in particular, they are modules over the
enveloping algebra 𝑅e; see 1.1.28. It is elementary to verify that the multiplication
map 𝑅e → 𝑅 given by 𝑥 ⊗ 𝑦 ↦→ 𝑥𝑦 is a ring homomorphism, and that the composite
𝑅 → 𝑅e → 𝑅 is the identity. Thus, with𝑄 = 𝑅 = 𝐴 condition (a) in 7.3.6 is satisfied
and RHom𝑅 is augmented to a functor D(𝑅)op ×D(𝑅–𝑆o) −−→ D(𝑅–𝑆o). Similarly,
with 𝑆 = 𝑅 = 𝐵 condition (b) in 7.3.6 is satisfied and RHom𝑅 is augmented to a
functor D(𝑅–𝑄o)op ×D(𝑅) −−→ D(𝑄–𝑅).

Semi-Projective and Semi-Injective Replacements

7.3.16 Definition. Let 𝑀 be an 𝑅-complex. A semi-projective 𝑅-complex that is
isomorphic to 𝑀 in D(𝑅) is called a semi-projective replacement of 𝑀 .

The distinction between a replacement and a resolution is subtle but convenient,
one is a complex the other a morphism. They are, though, two sides of a coin. A
semi-projective resolution evidently yields a semi-projective replacement, and the
converse is also true:

7.3.17 Proposition. Let 𝑀 , 𝑃, and 𝑃′ be 𝑅-complexes. If 𝑃 and 𝑃′ are semi-
projective replacements of 𝑀 , then there is a homotopy equivalence 𝑃′ −−→ 𝑃 and a
quasi-isomorphism 𝑃 −−→ 𝑀 , i.e. a semi-projective resolution.

Proof. By assumption there are isomorphisms 𝑃′ ≃ 𝑃 ≃ 𝑀 in D(𝑅), so 6.4.20
yields quasi-isomorphisms 𝑃′ → 𝑃→ 𝑀 . By 5.2.21 the first of these is a homotopy
equivalence. □

8-Mar-2024 Draft - use at own risk



7.3 Derived Hom Functor 341

7.3.18 Definition. Let 𝑀 be an 𝑅-complex. A semi-injective 𝑅-complex that is
isomorphic to 𝑀 in D(𝑅) is called a semi-injective replacement of 𝑀 .

7.3.19 Proposition. Let 𝑀 , 𝐼, and 𝐼 ′ be 𝑅-complexes. If 𝐼 and 𝐼 ′ are semi-injective
replacements of 𝑀 , then there is a homotopy equivalence 𝐼 −−→ 𝐼 ′ and a quasi-
isomorphism 𝑀 −−→ 𝐼, i.e. a semi-injective resolution.

Proof. By assumption there are isomorphisms 𝑀 ≃ 𝐼 ≃ 𝐼 ′ in D(𝑅), so 6.4.21
yields quasi-isomorphisms 𝑀 → 𝐼 → 𝐼 ′. By 5.3.24 the first of these is a homotopy
equivalence. □

7.3.20 Theorem. Let 𝑅 ⊗𝕜 𝑄
o → 𝐴 and 𝑅 ⊗𝕜 𝑆

o → 𝐵 be ring homomorphisms.
(a) Assume that 𝐴 is projective as an 𝑅-module. For an 𝐴-complex 𝑀 with a

semi-projective replacement 𝑃, the functor from 7.3.6

RHom𝑅 (𝑀, ) : D(𝐵) −→ D(𝑄–𝑆o) is induced by
Hom𝑅 (𝑃, ) : K(𝐵) −→ K(𝑄–𝑆o) .

(b) Assume that 𝐵 is flat as an 𝑅o-module. For a 𝐵-complex 𝑁 with a semi-injective
replacement 𝐼, the functor from 7.3.6

RHom𝑅 ( , 𝑁) : D(𝐴)op −→ D(𝑄–𝑆o) is induced by
Hom𝑅 ( , 𝐼) : K(𝐴)op −→ K(𝑄–𝑆o) .

Proof. (a): The functor RHom𝑅 (𝑀, ) is by 7.3.6(a′) induced by Hom𝑅 (P𝐴(𝑀), ).
By 7.3.17 and 6.1.6 there is an isomorphism 𝜑 : P𝐴(𝑀) → 𝑃 in K(𝐴), and hence a
natural isomorphism 𝜏 = Hom𝑅 (𝜑, ) : Hom𝑅 (𝑃, ) → Hom𝑅 (P𝐴(𝑀), ) of func-
tors from K(𝐵) to K(𝑄–𝑆o). In particular, the functor Hom𝑅 (𝑃, ) preserves quasi-
isomorphisms. Thus ´́𝜏 : Hom𝑅 (𝑃, ) ´́ → RHom𝑅 (𝑀, ) is a natural isomorphism
of functors, see 7.2.5.

(b): A parallel argument applies. □

The next two corollaries compare to 7.3.8 and 7.3.9.

7.3.21 Corollary. For an 𝑅-complex 𝑀 with a semi-projective replacement 𝑃, the
functor

RHom𝑅 (𝑀, ) : D(𝑅–𝑆o) −→ D(𝑆o) is induced by
Hom𝑅 (𝑃, ) : K(𝑅–𝑆o) −→ K(𝑆o) .

Proof. Apply 7.3.20(a) with 𝑄 = 𝕜, 𝐴 = 𝑅, and 𝐵 = 𝑅 ⊗𝕜 𝑆
o. □

7.3.22 Corollary. For an 𝑅-complex 𝑁 with a semi-injective replacement 𝐼, the
functor

RHom𝑅 ( , 𝑁) : D(𝑅–𝑄o)op −→ D(𝑄) is induced by
Hom𝑅 ( , 𝐼) : K(𝑅–𝑄o)op −→ K(𝑄) .

Proof. Apply 7.3.20(b) with 𝐴 = 𝑅 ⊗𝕜 𝑄
o, 𝑆 = 𝕜, and 𝐵 = 𝑅. □
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Ext Functors

For the next definition, recall from 6.5.17 that complexes that are isomorphic in the
derived category have isomorphic homology. Recall also that 7.3.6 offer conditions
under wich the opening assumption in the definition below is satisfied.

7.3.23 Definition. Let 𝑅 ⊗𝕜 𝑄
o → 𝐴 and 𝑅 ⊗𝕜 𝑆

o → 𝐵 be ring homomorphisms
and assume that RHom𝑅 per 7.3.5 is augmented to a functor,

RHom𝑅 ( , ) : D(𝐴)op ×D(𝐵) −→ D(𝑄–𝑆o) .

For every 𝑚 ∈ ℤ denote by Ext𝑚
𝑅
( , ) the functor

H−𝑚 (RHom𝑅 ( , )) : D(𝐴)op ×D(𝐵) −→ M(𝑄–𝑆o) .

It follows from 7.3.6 and 6.5.17 that the functors Ext𝑚
𝑅

are 𝕜-bilinear. The choice
of the symbol ‘Ext’ is justified in the Remark after 7.3.30.

7.3.24. Let𝑀 and𝑁 be 𝑅-complexes. Per 6.5.18 there are, with the usual conventions
inf ∅ = ∞ and sup∅ = −∞, equalities,

inf{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑀, 𝑁) ≠ 0} = − sup RHom𝑅 (𝑀, 𝑁) and
sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑀, 𝑁) ≠ 0} = − inf RHom𝑅 (𝑀, 𝑁) .

7.3.25. In view of 7.3.8 and 7.3.9 there are Ext functors,

Ext𝑚𝑅 ( , ) : D(𝑅)op ×D(𝑅–𝑆o) −→ M(𝑆o) and
Ext𝑚𝑅 ( , ) : D(𝑅–𝑄o)op ×D(𝑅) −→ M(𝑄) .

The Ext functors are closely related to hom-sets in the derived category.

7.3.26 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. For every integer 𝑚 there is an
isomorphism of 𝕜-modules,

Ext𝑚𝑅 (𝑀, 𝑁) � D(𝑅) (𝑀, Σ𝑚𝑁) ,

and it is natural in 𝑀 and 𝑁 .

Proof. There are isomorphisms of 𝕜-modules, which are all natural in 𝑀 and 𝑁 ,

Ext𝑚𝑅 (𝑀, 𝑁) = H0 (Σ𝑚RHom𝑅 (𝑀, 𝑁))
� H0 (RHom𝑅 (𝑀, Σ𝑚𝑁))
� H0 (Hom𝑅 (P(𝑀), P(Σ𝑚𝑁)))
� K(𝑅) (P(𝑀), P(Σ𝑚𝑁))
� D(𝑅) (𝑀, Σ𝑚𝑁) .

The equality holds by 6.5.17 and the definition of Ext. The 1st isomorphism follows
as RHom𝑅 (𝑀, ) is triangulated; see 7.3.6. The 2nd isomorphism follows from 7.3.8
and the isomorphism Σ𝑚𝑁 ≃ P(Σ𝑚𝑁) in D(𝑅), the 3rd holds by 6.1.2, and the 4th

holds by 6.4.8. □
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For modules there is an even simpler description of Ext0.

7.3.27 Corollary. Let 𝑀 and 𝑁 be 𝑅-modules. There is an isomorphism of 𝕜-
modules,

Ext0𝑅 (𝑀, 𝑁) � Hom𝑅 (𝑀, 𝑁) ,
and it is natural in 𝑀 and 𝑁 . Furthermore, Ext𝑚

𝑅
(𝑀, 𝑁) = 0 holds for all 𝑚 < 0.

Proof. The isomorphism follows from 7.3.26 and 6.4.15. A projective resolution
𝑃
≃−−→ 𝑀 has 𝑃𝑚 = 0 for 𝑚 < 0, see 5.2.28. Thus Hom𝑅 (𝑃, 𝑁)−𝑚 = 0 holds for all

𝑚 < 0, and since the complex Hom𝑅 (𝑃, 𝑁) is RHom𝑅 (𝑀, 𝑁) by 7.3.21, it follows
that Ext𝑚

𝑅
(𝑀, 𝑁) = 0 holds for all 𝑚 < 0. □

Remark. In classic homological algebra it is standard to refer to Ext𝑚
𝑅

as the ‘𝑚th right derived
functor’ of Hom𝑅 considered as a functor on 𝑅-modules. This explains why RHom𝑅 in some
places is called the ‘total right derived functor’ of Hom𝑅; see also the Remark after 7.2.8.

7.3.28 Example. The complex 0 −−→ ℚ
𝜋−−→ ℚ/ℤ −−→ 0, concentrated in degrees

0 and −1, yields an injective resolution of ℤ. By 7.3.27 one has Ext0ℤ (ℚ,ℤ) �
Homℤ (ℚ,ℤ) = 0; that is, the induced map,

Homℤ (ℚ,ℚ)
Hom (ℚ, 𝜋 )−−−−−−−−−→ Homℤ (ℚ,ℚ/ℤ) ,

is injective. Recall from C.13 that Eℤ (ℤ/2ℤ) � ℤ(2∞) is a direct summand of ℚ/ℤ.
The composite ℚ ↠ ℚ/ℤ ↠ ℤ(2∞) ↣ ℚ/ℤ is not in the image of Homℤ (ℚ, 𝜋);
indeed, no homomorphism ℚ→ ℚ maps, say, every fraction 1

3𝑛 to an integer. Thus
one has Ext1ℤ (ℚ,ℤ) ≠ 0.

7.3.29 Lemma. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. If H𝑣 (𝑀) = 0 holds for
all 𝑣 ≠ 𝑛, then there is an isomorphism 𝑀 ≃ Σ𝑛H𝑛 (𝑀) in D(𝑅).

Proof. There are quasi-isomorphisms 𝑀 𝜏𝑀Ě𝑛←−−− 𝑀Ě𝑛

𝜏
𝑀Ě𝑛
Ď𝑛−−−−−→ (𝑀Ě𝑛)Ď𝑛 = Σ𝑛H𝑛 (𝑀)

by 4.2.4. The assertion now follows from 6.4.18. □

7.3.30 Proposition. Let 𝑀 and 𝑁 be 𝑅-modules. If Ext𝑚
𝑅
(𝑀, 𝑁) = 0 holds for all

𝑚 > 0, then there is an isomorphism RHom𝑅 (𝑀, 𝑁) ≃ Hom𝑅 (𝑀, 𝑁) in D(𝕜).

Proof. The assertion follows immediately from 7.3.27 and 7.3.29. □

Remark. Let 𝑀 and 𝑁 be 𝑅-modules. Two extensions of 𝑀 by 𝑁 ,
Ξ = 0 −→ 𝑁 −→ 𝑋 −→ 𝑀 −→ 0 and Ξ′ = 0 −→ 𝑁 −→ 𝑋′ −→ 𝑀 −→ 0 ,

are equivalent, in symbols Ξ ∼ Ξ′, if there is a homomorphism 𝑋 → 𝑋′ that makes the diagram
0 // 𝑁 // 𝑋

��

// 𝑀 // 0

0 // 𝑁 // 𝑋′ // 𝑀 // 0
commutative. It follows from the Five Lemma 1.1.2 that the map 𝑋 → 𝑋′ is an isomorphism and,
consequently, ∼ is an equivalence relation. Because it was first studied by Yoneda [260], the set of
equivalence classes of extensions of 𝑀 by 𝑁 is called Yoneda Ext and denoted by YExt1

𝑅
(𝑀, 𝑁 ) .

It can be shown that YExt1
𝑅
(𝑀, 𝑁 ) is an Abelian group under the so-called Baer sum, defined
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via pullbacks. It follows from the proof of 2.1.47 that the set of all trivial extensions of 𝑀 by 𝑁
constitutes an equivalence class under ∼; this is the zero element in the group YExt1

𝑅
(𝑀, 𝑁 ) . It

can also be shown that YExt1
𝑅

yields a functor from M(𝑅)op ×M(𝑅) to M(ℤ) , and that there
is an isomorphism of Abelian groups,

YExt1𝑅 (𝑀, 𝑁 ) � Ext1𝑅 (𝑀, 𝑁 ) ,
which is natural in 𝑀 and 𝑁 . One consequence of this isomorphism is that Ext1

𝑅
(𝑀, 𝑁 ) = 0 holds

if and only if every extension of 𝑀 by 𝑁 is trivial. For a proof of this last assertion that works
directly with the definition of Ext, see 7.3.36.

7.3.31 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes and 𝑚 and 𝑠 be integers. There
are isomorphisms in M(k),

Ext𝑚𝑅 (Σ−𝑠𝑀, 𝑁) � Ext𝑚+𝑠𝑅 (𝑀, 𝑁) � Ext𝑚𝑅 (𝑀, Σ𝑠𝑁) ,

and they are natural in 𝑀 and 𝑁 .

Proof. The functor RHom𝑅 ( , ) is triangulated in both variables by 7.3.6, so there
are isomorphisms in D(k),

RHom𝑅 (Σ−𝑠𝑀, 𝑁) ≃ Σ𝑠RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (𝑀, Σ𝑠𝑁) ,

which are natural in 𝑀 and 𝑁 . Apply the functor H−𝑚 to these isomorphisms and
recall from 6.5.17 that one has H−𝑚 Σ𝑠 = H−(𝑚+𝑠) . The assertion now follows from
the definition, 7.3.23, of Ext. □

7.3.32 Proposition. Let 𝑁 be an 𝑅-complex and {𝑀𝑢}𝑢∈𝑈 a family of 𝑅-complexes.
For every 𝑚 ∈ ℤ there is an isomorphism in M(𝕜),

Ext𝑚𝑅
( ∐
𝑢∈𝑈

𝑀𝑢, 𝑁

)
�

∏
𝑢∈𝑈

Ext𝑚𝑅 (𝑀𝑢, 𝑁) .

Proof. As the functors RHom𝑅 ( , 𝑁) : D(𝑅)op → D(𝕜) and H−𝑚 : D(k) →M(𝕜)
preserve products, see 7.3.6 and 6.5.17, so does the composite functor Ext𝑚

𝑅
( , 𝑁),

see 7.3.23. □

7.3.33 Proposition. Let 𝑀 be an 𝑅-complex and {𝑁𝑢}𝑢∈𝑈 a family of 𝑅-complexes.
For every 𝑚 ∈ ℤ there is an isomorphism in M(𝕜),

Ext𝑚𝑅
(
𝑀,

∏
𝑢∈𝑈

𝑁𝑢
)
�

∏
𝑢∈𝑈

Ext𝑚𝑅 (𝑀, 𝑁𝑢) .

Proof. As the functors RHom𝑅 (𝑀, ) : D(𝑅) → D(𝕜) and H−𝑚 : D(k) →M(𝕜)
preserve products, see 7.3.6 and 6.5.17, so does the composite functor Ext𝑚

𝑅
(𝑀, ),

see 7.3.23. □

7.3.34 Proposition. Assume that 𝑅 is left Noetherian. Let 𝑀 be an 𝑅-module and
{𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁𝑣}𝑢⩽𝑣 a𝑈-direct system in M(𝑅). If 𝑀 is finitely generated and𝑈 is
filtered, then there is for every 𝑚 ∈ ℤ an isomorphism in M(𝕜),

colim
𝑢∈𝑈

Ext𝑚𝑅 (𝑀, 𝑁𝑢) � Ext𝑚𝑅
(
𝑀, colim

𝑢∈𝑈
𝑁𝑢

)
.
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Proof. Choose per 5.1.19 a degreewise finitely generated free resolution 𝐿 ≃−−→ 𝑀 .
By 3.3.15(d) and degreewise application of 3.3.17 one gets isomorphisms,

colim
𝑢∈𝑈

H−𝑚 (Hom𝑅 (𝐿, 𝑁𝑢)) � H−𝑚
(
colim
𝑢∈𝑈

Hom𝑅 (𝐿, 𝑁𝑢)
)

� H−𝑚
(

Hom𝑅

(
𝐿, colim

𝑢∈𝑈
𝑁𝑢

) )
.

The assertion now follows from 7.3.21 and 7.3.23. □

Per 6.5.24 the next result applies, in particular, to a commutative diagram in
C(𝑅) whose rows are short exact sequences. It shows that, viewed as functors from
M(𝑅)op×M(𝑅) toM(𝕜), cf. 6.4.15, the Ext functors are half exact in either variable.

7.3.35 Theorem. Consider a morphism of distinguished triangles in D(𝑅),

𝑀 ′

𝜑′

��

𝛼′
// 𝑀

𝜑

��

𝛼
// 𝑀 ′′

𝜑′′

��

𝛼′′
// Σ𝑀 ′

Σ𝜑′

��

𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′

𝛽′′
// Σ𝑁 ′ .

For every 𝑅-complex 𝑋 there is a commutative diagram in M(𝕜) with exact rows,

· · · // Ext𝑚
𝑅
(𝑋, 𝑀 ′)

Ext 𝑚
𝑅 (𝑋,𝛼 ′)

//

Ext𝑚
𝑅
(𝑋,𝜑′ )

��

Ext𝑚
𝑅
(𝑋, 𝑀)

Ext 𝑚
𝑅 (𝑋,𝛼)

//

Ext𝑚
𝑅
(𝑋,𝜑)

��

Ext𝑚
𝑅
(𝑋, 𝑀 ′′)

Ext 𝑚
𝑅 (𝑋,𝛼 ′′)

//

Ext𝑚
𝑅
(𝑋,𝜑′′ )

��

Ext𝑚+1
𝑅
(𝑋, 𝑀 ′)

Ext 𝑚+1𝑅 (𝑋,𝛼 ′)
//

Ext𝑚+1
𝑅
(𝑋,𝜑′ )

��

· · ·

· · · // Ext𝑚
𝑅
(𝑋, 𝑁 ′)

Ext𝑚𝑅
(𝑋,
𝛽
′ )
// Ext𝑚

𝑅
(𝑋, 𝑁)

Ext𝑚𝑅
(𝑋,
𝛽)
// Ext𝑚

𝑅
(𝑋, 𝑁 ′′)

Ext𝑚𝑅
(𝑋,
𝛽
′′ )
// Ext𝑚+1

𝑅
(𝑋, 𝑁 ′)

Ext𝑚
+1
𝑅

(𝑋,
𝛽
′ )
// · · ·

where the isomorphisms Ext𝑚
𝑅
(𝑋, Σ ) � Ext𝑚+1

𝑅
(𝑋, ) from 7.3.31 are supressed.

For every 𝑅-complex𝑌 there is a commutative diagram in M(𝕜) with exact rows,

· · ·

Ext 𝑚−1𝑅
(𝛽 ′
,𝑌 )
// Ext𝑚−1

𝑅
(𝑁 ′, 𝑌 )

Ext 𝑚
𝑅 (𝛽 ′′

,𝑌 )
//

Ext𝑚−1
𝑅
(𝜑′ ,𝑌 )

��

Ext𝑚
𝑅
(𝑁 ′′, 𝑌 )

Ext 𝑚
𝑅 (𝛽,𝑌 )

//

Ext𝑚
𝑅
(𝜑′′ ,𝑌 )

��

Ext𝑚
𝑅
(𝑁,𝑌 )

Ext 𝑚
𝑅 (𝛽 ′

,𝑌 )
//

Ext𝑚
𝑅
(𝜑,𝑌 )

��

Ext𝑚
𝑅
(𝑁 ′, 𝑌 ) //

Ext𝑚
𝑅
(𝜑′ ,𝑌 )

��

· · ·

· · ·

Ext𝑚
−1
𝑅

(𝛼
′ ,𝑌
)
// Ext𝑚−1

𝑅
(𝑀 ′, 𝑌 )

Ext𝑚𝑅
(𝛼
′′ ,𝑌
)
// Ext𝑚

𝑅
(𝑀 ′′, 𝑌 )

Ext𝑚𝑅
(𝛼,
𝑌
)
// Ext𝑚

𝑅
(𝑀,𝑌 )

Ext𝑚𝑅
(𝛼
′ ,𝑌
)
// Ext𝑚

𝑅
(𝑀 ′, 𝑌 ) // · · ·

where the isomorphisms Ext𝑚
𝑅
(Σ , 𝑌 ) � Ext𝑚−1

𝑅
( , 𝑌 ) from 7.3.31 are supressed.

Proof. The functor RHom𝑅 ( , ) is triangulated in both variables by 7.3.6, so the
assertions follow from 6.5.21 and 6.5.22. □

Ext vanishing has a very tangible interpretation; see also the Remark after 7.3.30.

8-Mar-2024 Draft - use at own risk



346 7 Derived Functors

7.3.36 Proposition. Let 𝑀 and 𝑁 be 𝑅-modules. One has Ext1𝑅 (𝑀, 𝑁) = 0 if and
only if every short exact sequence of the form 0→ 𝑁 → 𝑋 → 𝑀 → 0 is split.

Proof. “Only if”: Let 0 −−→ 𝑁 −−→ 𝑋
𝜋−−→ 𝑀 −−→ 0 be an exact sequence of

𝑅-modules and apply 7.3.35 and 7.3.27 to get an exact sequence of 𝕜-modules,

Hom𝑅 (𝑀, 𝑋)
Hom (𝑀,𝜋 )−−−−−−−−−→ Hom𝑅 (𝑀, 𝑀) −→ Ext1𝑅 (𝑀, 𝑁) .

Since one has Ext1𝑅 (𝑀, 𝑁) = 0 the map Hom𝑅 (𝑀, 𝜋) is surjective, so there exists a
homomorphism 𝜎 : 𝑀 → 𝑋 with 1𝑀 = Hom𝑅 (𝑀, 𝜋) (𝜎) = 𝜋𝜎.

“If”: By 1.3.12 there is an exact sequence 0 −−→ 𝐾
𝜄−−→ 𝐿 −−→ 𝑀 −−→ 0 of 𝑅-

modules with 𝐿 free; by 7.3.35 and 7.3.27 yields an exact sequence of 𝕜-modules,

Hom𝑅 (𝐿, 𝑁)
Hom ( 𝜄,𝑁 )−−−−−−−−→ Hom𝑅 (𝐾, 𝑁) −→ Ext1𝑅 (𝑀, 𝑁) −→ Ext1𝑅 (𝐿, 𝑁) .

As 𝐿 by 1.3.18 is a semi-projective replacement of itself, it follows from 7.3.21
and the definition, 7.3.23, of Ext that one has Ext1𝑅 (𝐿, 𝑁) = 0. Thus, to prove that
Ext1𝑅 (𝑀, 𝑁) = 0 holds, it suffices to see that Hom𝑅 (𝜄, 𝑁) is surjective. Let𝛼 : 𝐾 → 𝑁

be a homomorphism. By 3.2.28 there is a commutative diagram with exact rows,

0 // 𝐾

𝛼

��

𝜄
// 𝐿

𝛼′

��

// 𝑀 // 0

0 // 𝑁
𝜄′
// 𝑁 ⊔𝐾 𝐿 // 𝑀 // 0 .

By assumption, the lower exact sequece is split, so there exists a homomorphism
𝜚 : 𝑁 ⊔𝐾 𝐿 → 𝑁 with 𝜚𝜄′ = 1𝑁 . Thus Hom𝑅 (𝜄, 𝑁) (𝜚𝛼′) = 𝜚𝛼′𝜄 = 𝜚𝜄′𝛼 = 𝛼. □

7.3.37 Example. The restriction of scalars functor D(𝕜 [𝑥]) → D(𝕜) induced by
the structure map 𝕜 → 𝕜 [𝑥] is not faithful. By 7.3.26 one has

D(k[𝑥]) (𝕜, Σ 𝕜 [𝑥]) � Ext1k[𝑥 ] (𝕜, 𝕜 [𝑥]) and D(k) (𝕜, Σ 𝕜 [𝑥]) � Ext1k (𝕜, 𝕜 [𝑥]) .

From the definition of Ext, 7.3.23, it is immediate that Ext1k (𝕜, 𝕜 [𝑥]) = 0 holds.
On the other hand, one has Ext1

k[𝑥 ] (𝕜, 𝕜 [𝑥]) ≠ 0 by 7.3.36 as the exact sequence
0 −−→ k[𝑥] 𝑥−−→ k[𝑥] −−→ k −−→ 0 does not split in M(k[𝑥]).

The final two results of this section are not needed before Chap. 9, but they are
standard applications of 7.3.35 and natural to record here.

7.3.38 Proposition. Let 𝑀 be an 𝑅-complex and 0→ 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 an exact
sequence in C(𝑅). If Ext1𝑅 (𝑀𝑣, 𝑁 ′𝑖 ) = 0 holds for all 𝑣, 𝑖 ∈ ℤ, then the sequence of
complexes 0→ Hom𝑅 (𝑀, 𝑁 ′) → Hom𝑅 (𝑀, 𝑁) → Hom𝑅 (𝑀, 𝑁 ′′) → 0 is exact.

Proof. For every 𝑖 ∈ ℤ there is an exact sequence 0 → 𝑁 ′
𝑖
→ 𝑁𝑖 → 𝑁 ′′

𝑖
→ 0 of

𝑅-modules. By 7.3.35 and 7.3.27 it yields for every 𝑣 ∈ ℤ an exact sequence

0 −→ Hom𝑅 (𝑀𝑣, 𝑁 ′𝑖 ) −→ Hom𝑅 (𝑀𝑣, 𝑁𝑖) −→ Hom𝑅 (𝑀𝑣, 𝑁 ′′𝑖 ) −→ Ext1𝑅 (𝑀𝑣, 𝑁 ′𝑖 ) .

The assertion now follows from 2.3.17. □
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7.3.39 Proposition. Let 𝑁 be an 𝑅-complex and 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 an
exact sequence in C(𝑅). If Ext1𝑅 (𝑀 ′′𝑣 , 𝑁𝑖) = 0 holds for all 𝑣, 𝑖 ∈ ℤ, then the se-
quence of complexes 0→ Hom𝑅 (𝑀 ′′, 𝑁) → Hom𝑅 (𝑀, 𝑁) → Hom𝑅 (𝑀 ′, 𝑁) → 0
is exact.

Proof. An argument parallel to the proof of 7.3.38 applies, only one uses 2.3.19
instead of 2.3.17. □

Exercises

E 7.3.1 Let 𝑃 be a faithfully projective 𝑅-module and 𝜉 be a morphism in D(𝑅) . Show that if
RHom𝑅 (𝑃, 𝜉 ) is an isomorphism, then 𝜉 is an isomorphism.

E 7.3.2 Let 𝐼 be a faithfully injective 𝑅-module and 𝜉 be a morphism in D(𝑅) . Show that if
RHom𝑅 ( 𝜉 , 𝐼 ) is an isomorphism, then 𝜉 is an isomorphism.

E 7.3.3 Show that the 𝕜-linear map 𝑅 ⊗𝕜 𝑅
o → 𝑅 given by 𝑥⊗ 𝑦 ↦→ 𝑥𝑦 is a ring homomorphism

if and only if 𝑅 is commutative.
E 7.3.4 Assume that 𝑅 is semi-simple. Show that for 𝑅-complexes 𝑀 and 𝑁 there is an isomor-

phism RHom𝑅 (𝑀, 𝑁 ) ≃ Hom𝑅 (H(𝑀 ) ,H(𝑁 ) ) in D(k) .
E 7.3.5 Let 𝑀 be an 𝑅-module and 𝑃 ≃−→ 𝑀 a projective resolution. Set 𝑍 = Z0 (𝑃) and

let 𝜄 denote the embedding 𝑍 ↣ 𝑃0. Show that for every 𝑅-module 𝑁 there is an
isomorphism Ext1

𝑅
(𝑀, 𝑁 ) � Hom𝑅 (𝑍, 𝑁 )/Im Hom𝑅 ( 𝜄, 𝑁 ) . Conclude that 𝑀 is

projective if and only if Ext1
𝑅
(𝑀, ) = 0 if and only if Ext1

𝑅
(𝑀, 𝑍 ) = 0.

E 7.3.6 Use Ext to solve E 1.4.7.
E 7.3.7 Assume that 𝑅 is a principal left ideal domain. Show that every finitely generated 𝑅-

module 𝑀 with Ext1
𝑅
(𝑀, 𝑅) = 0 is free.

E 7.3.8 Show that for every torsion ℤ-module 𝑀 one has Ext1ℤ (𝑀,ℤ) � Homℤ (𝑀,ℚ/ℤ) .
E 7.3.9 Let 𝑀 be a ℤ-module and 𝑛 ∈ ℕ. Show that one has Ext1ℤ (ℤ/𝑛ℤ, 𝑀 ) � 𝑀/𝑛𝑀.
E 7.3.10 Show that every finite ℤ-module has the form Ext1ℤ (𝑀, 𝑁 ) for suitable ℤ-modules 𝑀

and 𝑁 . Hint: E 7.3.9.
E 7.3.11 Let 𝑀 be a ℤ-module. Show that Ext𝑚ℤ (𝑀, ) = 0 = Ext𝑚ℤ ( , 𝑀 ) holds for 𝑚 ⩾ 2.

Conclude that the functors Ext1ℤ (𝑀, ) and Ext1ℤ ( , 𝑀 ) are right exact.
E 7.3.12 An 𝑅-module 𝐸 is called fp-injective if Ext1

𝑅
(𝑀, 𝐸 ) = 0 holds for every finitely pre-

sented 𝑅-module 𝑀. Show that for an 𝑅o-module 𝐹 the next conditions are equivalent:
(i) 𝐹 is flat; (ii) Hom𝕜 (𝐹, 𝔼) is injective; (iii) Hom𝕜 (𝐹, 𝔼) is fp-injective.

E 7.3.13 Let 0→ 𝐸′ → 𝐸 → 𝐸′′ → 0 be an exact sequence of 𝑅-modules. Show that if 𝐸′ and
𝐸′′ are fp-injective, then 𝐸 is fp-injective.

E 7.3.14 Show that an 𝑅-module 𝐸 is fp-injective if and only if every short exact sequence
0→ 𝐸 → 𝑀 → 𝑁 → 0 is pure.

E 7.3.15 Let𝐸 be an fp-injective𝑅-module. Show that an exact sequence 0→ 𝑀 → 𝐸 → 𝑁 → 0
is pure if and only if 𝑀 is fp-injective.

E 7.3.16 Show that an 𝑅-module is injective if and only if it is pure-injective and fp-injective.
E 7.3.17 Show that ring homomorphisms 𝑅 ⊗𝕜 𝑆 → 𝑇 are in one-to-one correspondence with

pairs of ring homomorphisms 𝑅 → 𝑇 and 𝑆 → 𝑇 with commuting images.
E 7.3.18 Let 𝑅 → 𝑆 be a ring homomorphism. Show that 𝑆 is projective as an 𝑅-module if and

only if every semi-projective 𝑆-complex is semi-projective over 𝑅.
E 7.3.19 Let 𝑅 → 𝑆 be a ring homomorphism. Show that 𝑆 is flat as an 𝑅o-module if and only if

every semi-injective 𝑆-complex is semi-injective over 𝑅.
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7.4 Derived Tensor Product Functor

Synopsis. The functor ⊗L; augmentation of ⊗L; semi-flat replacement; Tor functors; exact Tor
sequence.

For tensor product functors it is standard to write ⊗L rather than L( ⊗ ).

7.4.1 Definition. The functor ⊗𝑅 : K(𝑅o) ×K(𝑅) → K(𝕜) from 7.1.8 has by
7.2.8 a left derived functor, written

⊗L
𝑅 : D(𝑅o) ×D(𝑅) −→ D(𝕜) ;

it is per 7.2.7 induced by the functor P𝑅o ( ) ⊗𝑅 P𝑅 ( ).

Additional ring actions on an 𝑅o-complex 𝑀 or an 𝑅-complex 𝑁 yield additional
actions on the tensor product complex 𝑀 ⊗𝑅 𝑁; see 7.1.9. To what extent such
additional actions carry over to the derived tensor product 𝑀 ⊗L

𝑅
𝑁 is the first

question addressed in this section. See also the discussion after 7.3.1.

Augmentation

7.4.2 Setup. Consider ring homomorphisms

𝑄 ⊗𝕜 𝑅
o −→ 𝐴 and 𝑅 ⊗𝕜 𝑆

o −→ 𝐵 .

A functor E: D(𝐴) ×D(𝐵) → D(𝑄–𝑆o) can be compared to the functor ⊗L
𝑅

from
7.4.1 via the diagram,

(7.4.2.1)

D(𝐴) ×D(𝐵) E
//

res𝐴
𝑅o × res𝐵

𝑅

��

D(𝑄–𝑆o)

res𝑄⊗𝑆
o

𝕜

��

D(𝑅o) ×D(𝑅)
⊗L
𝑅
// D(𝕜) .

7.4.3 Definition. Adopt the setup 7.4.2. If there exists a natural isomorphism,

𝜑 : res𝐴𝑅o ⊗L
𝑅 res𝐵𝑅 −→ res𝑄⊗𝑆

o

𝕜
E ,

i.e. (7.4.2.1) is commutative up to natural isomorphism, then the functor E is called
an augmentation ⊗L

𝑅
and denoted by the same symbol. That is, one writes

⊗L
𝑅 : D(𝐴) ×D(𝐵) −→ D(𝑄–𝑆o)

and says that ⊗L
𝑅

is augmented to a functor from D(𝐴) ×D(𝐵) to D(𝑄–𝑆o).

Caveat. Adopt the setup 7.4.2 and consider restriction of scalars followed by the tensor product,

D: K(𝐴) ×K(𝐵)
res𝐴
𝑄⊗𝑅o × res𝐵

𝑅⊗𝑆o
−−−−−−−−−−−−→K(𝑄–𝑅o ) ×K(𝑅–𝑆o ) ⊗𝑅−−−−→K(𝑄–𝑆o ) ;

cf. 7.1.9. This functor has a left derived functor E = LD, which per 7.2.7 and 7.2.8 is given by
E = (P𝐴 ( ) ⊗𝑅 P𝐵 ( ) )́ .́ The next example shows that for this functor E the diagram (7.4.2.1)
need not be commutative up to natural isomorphism. Thus, even though E is the left derived functor
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of a tensor product, we only denote it by the symbol ⊗L
𝑅

in situations where the diagram (7.4.2.1) is
commutative up to natural isomorphism. Not only are these, anyway, the only situations in which
we are interested in the derived functor E, but the dissonance with 7.2.8 is limited. Indeed, the
meaning of the symbol ⊗L

𝑅
depends on which category the tensor product ⊗𝑅 is defined on. That

information is not encoded in the symbol ⊗L
𝑅

, it only gives away that both arguments must
be 𝑅o- and 𝑅-complexes. Without further context the only certain interpretation of the symbol is,
therefore, the one from 7.4.1, and 7.4.3 ensures that this interpretation always is valid.

The next example shows that the diagram (7.4.2.1) need not be commutative up
to natural isomorphism.

7.4.4 Example. With 𝕜 = ℤ = 𝑅 and 𝐴 = 𝑄 = ℤ/2ℤ = 𝑆 = 𝐵 one has

𝑄 ⊗𝕜 𝑅
o = 𝐴 = ℤ/2ℤ = 𝐵 = 𝑅 ⊗𝕜 𝑆

o = 𝑄 ⊗𝕜 𝑆
o .

The functor ⊗ℤ : K(ℤ/2ℤ) ×K(ℤ/2ℤ) −−→ K(ℤ/2ℤ) has a left derived func-
tor E : D(ℤ/2ℤ) ×D(ℤ/2ℤ) −−→ D(ℤ/2ℤ) which, since ℤ/2ℤ is a field is given
by E = ⊗ℤ . Thus, for 𝑀 = ℤ/2ℤ = 𝑁 one has

E(𝑀, 𝑁) = ℤ/2ℤ ⊗ℤ ℤ/2ℤ = ℤ/2ℤ .

By 7.4.1 one can compute 𝑀 ⊗L
ℤ
𝑁 as 𝑃 ⊗ℤ 𝑃, where 𝑃 is the semi-projective

ℤ-complex 0 −−→ ℤ
2−−→ ℤ −−→ 0 concentrated in degrees 1 and 0. Suppressing the

isomorphism ℤ ⊗ℤ ℤ � ℤ one gets the complex

𝑀 ⊗L
ℤ 𝑁 = 𝑃 ⊗ℤ 𝑃 = 0 −→ ℤ

(
−2

2
)

−−−−→
ℤ

⊕
ℤ

( 2 2 )−−−−−→ ℤ −→ 0 .

It is concentrated in degrees 2, 1, and 0, and it has homology in degree 1 as, say,
(−1, 1) is a cycle but not a boundary. Thus the complexes 𝑀 ⊗L

ℤ
𝑁 and E(𝑀, 𝑁) are

not isomorphic in the derived category D(ℤ).

Theorem 7.4.5 is our most general statement about augmentations of ⊗L
𝑅

; com-
monly used special cases are recorded in 7.4.8–7.4.11. The question of how to
evaluate the functor is addressed in 7.4.7 and 7.4.15.

7.4.5 Theorem. Let 𝑄 ⊗𝕜 𝑅
o → 𝐴 and 𝑅 ⊗𝕜 𝑆

o → 𝐵 be ring homomorphisms. If
condition (a) or (b) below is satisfied, then ⊗L

𝑅
is augmented as follows:

(7.4.5.1) ⊗L
𝑅 : D(𝐴) ×D(𝐵) −→ D(𝑄–𝑆o) .

This functor is 𝕜-bilinear, it preserves coproducts in both variables, and it is trian-
gulated in both variables.

(a) 𝐴 is flat as an 𝑅o-module.
(b) 𝐵 is flat as an 𝑅-module.

Further, (7.4.5.1) is induced by functors K(𝐴) ×K(𝐵) −−→ K(𝑄–𝑆o) as follows:
(a′) If (a) is satisfied, then ⊗L

𝑅
is induced by P𝐴( ) ⊗𝑅 .

(b′) If (b) is satisfied, then ⊗L
𝑅

is induced by ⊗𝑅 P𝐵 ( ) .
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Proof. For clarity the restriction of scalars functors, see 6.1.23 and 6.4.36, are not
suppressed in this proof. Consider the functor

D = ( ⊗𝑅 ) ◦ (res𝐴𝑄⊗𝑅o × res𝐵𝑅⊗𝑆o ) = res𝐴𝑄⊗𝑅o ⊗𝑅 res𝐵𝑅⊗𝑆o .

Recall the natural transformation 𝜚 from 6.3.21. The next diagram defines a natural
transformation 𝜏 of functors from K(𝐴) ×K(𝐵) to K(𝕜),

(P𝑅o ⊗𝑅 P𝑅) ◦ (res𝐴
𝑅o × res𝐵

𝑅
)

𝜏

��

P𝑅o res𝐴
𝑅o ⊗𝑅 P𝑅 res𝐵

𝑅

𝜚𝐴
𝑅o ⊗1
��

res𝐴
𝑅o P𝐴 ⊗𝑅 P𝑅 res𝐵

𝑅

1⊗ 𝜚𝐵
𝑅

��

res𝑄⊗𝑆
o

𝕜
◦ (res𝐴

𝑄⊗𝑅o P𝐴 ⊗𝑅 res𝐵
𝑅⊗𝑆o P𝐵) res𝐴

𝑅o P𝐴 ⊗𝑅 res𝐵
𝑅

P𝐵 .

Set E = LD. Now 7.2.5 and 6.4.40, per 7.2.7, yield a natural transformation

´́𝜏 : ( ⊗L
𝑅 ) ◦ (res𝐴𝑅o × res𝐵𝑅) −→ res𝑄⊗𝑆

o

𝕜
◦ E .

To prove that E is an augmentation of ⊗L
𝑅

, it suffices by 7.4.3 to show that 𝜑 = ´́𝜏 is a
natural isomorphism, i.e. that 𝜏𝑀𝑁 is a quasi-isomorphism for every 𝐴-complex 𝑀
and every 𝐵-complex 𝑁; in the following 𝑀 and 𝑁 denote such complexes.

Recall from 6.3.21 that (𝜚𝐴
𝑅o)𝑀 is a quasi-isomorphism. Since the 𝑅-complex

P𝑅 (res𝐵
𝑅
(𝑁)) is semi-projective, in particular semi-flat, (𝜚𝐴

𝑅o)𝑀 ⊗𝑅 P𝑅 (res𝐵
𝑅
(𝑁)) is

a quasi-isomorphism.
If condition (a) is satisfied, then the 𝑅o-complex res𝐴

𝑅o (P𝐴(𝑀)) is semi-flat by
5.4.18(b). It follows that res𝐴

𝑅o (P𝐴(𝑀)) ⊗𝑅 (𝜚𝐵𝑅)𝑁 and, therefore, 𝜏𝑀𝑁 is a quasi-
isomorphism. If condition (b) is satisfied, then the 𝑅-complex res𝐵

𝑅
(P𝐵 (𝑁)) is

semi-flat by 5.4.18(b), so (𝜚𝐵
𝑅
)𝑁 is a quasi-isomorphism of semi-flat complexes.

It follows from 5.4.16 that res𝐴
𝑅o (P𝐴(𝑀)) ⊗𝑅 (𝜚𝐵𝑅)𝑁 and, therefore, 𝜏𝑀𝑁 is a

quasi-isomorphism.
Thus if (a) or (b) is satisfied, then one writes ⊗L

𝑅
for the functor E; see 7.4.3.

It follows from 7.1.8 and 7.2.14 that the functor E = LD is 𝕜-bilinear, preserves
coproducts in both variables, and is triangulated in both variables.

(a′): With the restriction of scalars functors included, the claim is that the functors

E = (res𝐴𝑄⊗𝑅o P𝐴 ⊗𝑅 res𝐵𝑅⊗𝑆o P𝐵 )́´ and (res𝐴𝑄⊗𝑅o P𝐴 ⊗𝑅 res𝐵𝑅⊗𝑆o )́´

from D(𝐴) ×D(𝐵) to D(𝑄–𝑆o) are naturally isomorphic; indeed, as already estab-
lished the functor E is (7.4.5.1). Consider the natural transformation

𝜎 = 1 ⊗𝑅 res𝐵𝑅⊗𝑆o 𝜋𝐵 : res𝐴𝑄⊗𝑅o P𝐴 ⊗𝑅 res𝐵𝑅⊗𝑆o P𝐵 −→ res𝐴𝑄⊗𝑅o P𝐴 ⊗𝑅 res𝐵𝑅⊗𝑆o

of functorsK(𝐴)×K(𝐵) → K(𝑄–𝑆o). To see that the induced natural transformation
´́𝜎 is an isomorphism, let 𝑀 and 𝑁 be complexes in K(𝐴) and K(𝐵) respectively;
it must be verified that 𝜎𝑀𝑁 is a quasi-isomorphism. This follows as the complex
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res𝐴
𝑄⊗𝑅o (P𝐴(𝑀)) under condition (a) is semi-flat over 𝑅o by 5.4.18(b), whence the

functor res𝐴
𝑄⊗𝑅o (P𝐴(𝑀) ⊗𝑅 ) preserves the quasi-isomorphism res𝐵

𝑅⊗𝑆o (𝜋𝑁𝐵 ).
(b′): By symmetry the argument above applies with the obvious substitutions. □

7.4.6 Scholium. (a) The proof of 7.4.5 shows in view of 6.3.21 that if condition (a)
in 7.4.5 is satisfied, then the transformation

𝜚𝐴𝑅o ⊗𝑅 𝜋𝑅 res𝐵𝑅 : P𝑅o res𝐴𝑅o ⊗𝑅 P𝑅 res𝐵𝑅 −→ res𝐴𝑅o P𝐴 ⊗𝑅 res𝐵𝑅
induces the natural isomorphism that per 7.4.3 establishes the functor induced by
P𝐴( ) ⊗𝑅 = res𝐴

𝑄⊗𝑅o P𝐴 ⊗𝑅 res𝐵
𝑅⊗𝑆o as an augmentation of ⊗L

𝑅
.

(b) Similarly, if condition (b) in 7.4.5 is satisfied, then the transformation

𝜋𝑅o res𝐴𝑅o ⊗𝑅 𝜚𝐵𝑅 : P𝑅o res𝐴𝑅o ⊗𝑅 P𝑅 res𝐵𝑅 −→ res𝐴𝑅o ⊗𝑅 res𝐵𝑅 P𝐵

induces the natural isomorphism that per 7.4.3 establishes the functor induced by
⊗𝑅 P𝐵 ( ) = res𝐴

𝑄⊗𝑅o ⊗𝑅 res𝐵
𝑅⊗𝑆o P𝐵 as an augmentation of ⊗L

𝑅
.

7.4.7. Consider the functor (7.4.5.1) and morphisms 𝛼/𝜑 : 𝑀 → 𝑀 ′ in D(𝐴) and
𝛽/𝜓 : 𝑁 → 𝑁 ′ in D(𝐵). If condition (a) in 7.4.5 is satisfied, then by 7.2.3 one has

𝑀 ⊗L
𝑅 𝑁 = P𝐴(𝑀) ⊗𝑅 𝑁 and 𝛼/𝜑 ⊗L

𝑅
𝛽/𝜓 = (P𝐴(𝛼) ⊗ 𝛽)/(P𝐴(𝜑) ⊗ 𝜓) .

Similarly, if condition (b) in 7.4.5 is satisfied, then one has

𝑀 ⊗L
𝑅 𝑁 = 𝑀 ⊗𝑅 P𝐵 (𝑁) and 𝛼/𝜑 ⊗L

𝑅
𝛽/𝜓 = (𝛼 ⊗ P𝐵 (𝛽))/(𝜑 ⊗ P𝐵 (𝜓)) .

Applied with 𝑆 = 𝕜, the next result recovers the functor ⊗L
𝑅

from 7.4.1, now
induced by a functor that only involves a resolution of the first variable.

7.4.8 Corollary. The functor ⊗L
𝑅

is augmented as follows:

⊗L
𝑅 : D(𝑅o) ×D(𝑅–𝑆o) −→ D(𝑆o) .

Further, this functor is induced by P𝑅o ( ) ⊗𝑅 : K(𝑅–𝑆o) −−→ K(𝑆o).

Proof. Apply 7.4.5 with 𝑄 = 𝕜, 𝐴 = 𝑅o, and 𝐵 = 𝑅 ⊗𝕜 𝑆
o. Condition (a) is now

trivially satisfied; in particular, the last assertion follows from 7.4.5(a′). □

Applied with 𝑄 = 𝕜, the next result recovers the functor ⊗L
𝑅

from 7.4.1, now
induced by a functor that only involves a resolution of the second variable.

7.4.9 Corollary. The functor ⊗L
𝑅

is augmented as follows:

⊗L
𝑅 : D(𝑄–𝑅o) ×D(𝑅) −→ D(𝑄) .

Further, this functor is induced by ⊗𝑅 P𝑅 ( ) : K(𝑄–𝑅o) ×K(𝑅) −−→ K(𝑄).

Proof. Apply 7.4.5 with 𝐴 = 𝑄 ⊗𝕜 𝑅
o, 𝑆 = 𝕜, and 𝐵 = 𝑅. Condition (b) is now

trivially satisfied; in particular, the last assertion follows from 7.4.5(b′). □
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7.4.10 Proposition. Assume that 𝑄 is flat as a 𝕜-module. The functor ⊗L
𝑅

is aug-
mented as follows:

⊗L
𝑅 : D(𝑄–𝑅o) ×D(𝑅–𝑆o) −→ D(𝑄–𝑆o) ;

it is induced by P𝑄⊗𝕜𝑅o ( ) ⊗𝑅 : K(𝑄–𝑅o) ×K(𝑅–𝑆o) −−→ K(𝑄–𝑆o).

Proof. Apply 7.4.5 with 𝐴 = 𝑄 ⊗𝕜 𝑅
o and 𝐵 = 𝑅 ⊗𝕜 𝑆

o; condition (a) is satisfied
per 7.3.11(b), so the conclusion follows from 7.4.5(a′). □

7.4.11 Proposition. Assume that 𝑆 is flat as a𝕜-module. The functor⊗L
𝑅

is augmented
as follows:

⊗L
𝑅 : D(𝑄–𝑅o) ×D(𝑅–𝑆o) −→ D(𝑄–𝑆o) ;

it is induced by ⊗𝑅 P𝑅⊗𝕜𝑆o ( ) : K(𝑄–𝑅o) ×K(𝑅–𝑆o) −−→ K(𝑄–𝑆o).

Proof. Apply 7.4.5 with 𝐴 = 𝑄 ⊗𝕜 𝑅
o and 𝐵 = 𝑅 ⊗𝕜 𝑆

o; condition (b) is satisfied
per 7.3.11(b), so the conclusion follows from 7.4.5(b′). □

Note that 7.4.8 and 7.4.9 are special cases of 7.4.10 and 7.4.11 with 𝑄 = k and
𝑆 = k, respectively. Further applications of 7.4.10 and 7.4.11 can be obtained from
7.3.14. In particular, if 𝕜 is a field—or for that matter a von Neumann regular ring,
see 8.5.8—then every 𝕜-algebra is flat as a 𝕜-module, so ⊗L

𝑅
is augmented to a

functor D(𝑄–𝑅o) ×D(𝑅–𝑆o) −−→ D(𝑄–𝑆o).
In the literature on derived tensor product functors over non-commutative rings it

is common to impose a blanket assumption—for example that the rings are algebras
over some fixed field—to ensure that the derived functor upholds additional ring
actions; see also the discussion after 7.3.14. For commutative rings there is no need
for such an assumption, and the next example shows how the setup with the rings 𝐴
and 𝐵 also accommodates the commutative case.

7.4.12 Example. Assume that 𝑅 is commutative and recall that 𝑅-modules are
considered to be symmetric 𝑅–𝑅-bimodules, in particular, they are modules over
the enveloping algebra 𝑅e. Thus, with 𝑄 = 𝑅 = 𝐴 condition (a) in 7.4.5 is satisfied,
see 7.3.15, and the derived tensor product ⊗L

𝑅
is augmented to a functor D(𝑅) ×

D(𝑅–𝑆o) → D(𝑅–𝑆o). Similarly, with 𝑆 = 𝑅 = 𝐵 condition (b) is satisfied and ⊗L
𝑅

is augmented to a functor D(𝑄–𝑅) ×D(𝑅) → D(𝑄–𝑅).

Semi-Flat Replacments

7.4.13 Definition. Let𝑀 be an 𝑅-complex. A semi-flat 𝑅-complex that is isomorphic
to 𝑀 in D(𝑅) is called a semi-flat replacement of 𝑀 .

7.4.14 Example. For every semi-projective resolution 𝑃 ≃−−→ 𝑀 the complex 𝑃 is a
semi-flat replacement of 𝑀 .

The ℤ-complex 0→ ℤ→ ℚ→ 0, concentrated in degrees 1 and 0, is a semi-flat
replacement of ℚ/ℤ.
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7.4.15 Theorem. Let 𝑄 ⊗𝕜 𝑅
o → 𝐴 and 𝑅 ⊗𝕜 𝑆

o → 𝐵 be ring homomorphisms.
(a) Assume that 𝐴 is flat as an 𝑅o-module. For an 𝐴-complex 𝑀 with a semi-flat

replacement 𝐹, the functor from 7.4.5

𝑀 ⊗L
𝑅 : D(𝐵) −→ D(𝑄–𝑆o) is induced by

𝐹 ⊗𝑅 : K(𝐵) −→ K(𝑄–𝑆o) .

(b) Assume that 𝐵 is flat as an 𝑅-module. For a 𝐵-complex 𝑁 with a semi-flat
replacement 𝐺, the functor from 7.4.5

⊗L
𝑅 𝑁 : D(𝐴) −→ D(𝑄–𝑆o) is induced by
⊗𝑅 𝐺 : K(𝐴) −→ K(𝑄–𝑆o) .

Proof. (a): The functor 𝑀 ⊗L
𝑅

is by 7.4.5(a′) induced by P𝐴(𝑀) ⊗𝑅 . By 5.2.20
there is a quasi-isomorphism 𝜑 : P𝐴(𝑀) → 𝐹 in K(𝐴), and hence a natural trans-
formation 𝜏 = 𝜑 ⊗𝑅 : P𝐴(𝑀) ⊗𝑅 → 𝐹 ⊗𝑅 of functors from K(𝐵) to K(𝑄–𝑆o).
The assumption that 𝐴 is flat over 𝑅o implies by 5.4.18(b) that 𝐹 is semi-flat over 𝑅o,
so the functor 𝐹 ⊗𝑅 preserves quasi-isomorphisms. By the same argument, P𝐴(𝑀)
is semi-flat over 𝑅o, so it follows from 5.4.16 that the morphism 𝜏𝑁 = 𝜑 ⊗𝑅 𝑁
is a quasi-isomorphism for every 𝐵-complex 𝑁 . Thus ´́𝜏 : 𝑀 ⊗L

𝑅
→ (𝐹 ⊗𝑅 )́´ is a

natural isomorphism of functors, see 7.2.5.
(b): By symmetry the argument above applies with the obvious substitutions. □

The next two corollaries compare to 7.4.8 and 7.4.9.

7.4.16 Corollary. For an 𝑅o-complex 𝑀 with a semi-flat replacement 𝐹, the functor

𝑀 ⊗L
𝑅 : D(𝑅–𝑆o) −→ D(𝑆o) is induced by 𝐹 ⊗𝑅 : K(𝑅–𝑆o) −→ K(𝑆o) .

Proof. Apply 7.4.15 with 𝑄 = 𝕜, 𝐴 = 𝑅o, and 𝐵 = 𝑅 ⊗𝕜 𝑆
o. □

7.4.17 Corollary. For an 𝑅-complex 𝑁 with a semi-flat replacement 𝐺, the functor

⊗L
𝑅 𝑁 : D(𝑄–𝑅o) −→ D(𝑄) is induced by ⊗𝑅 𝐺 : K(𝑄–𝑅o) −→ K(𝑄) .

Proof. Apply 7.4.15 with 𝐴 = 𝑄 ⊗𝕜 𝑅
o, 𝑆 = 𝕜, and 𝐵 = 𝑅. □

Tor Functors

For the next definition, recall from 6.5.17 that complexes that are isomorphic in the
derived category have isomorphic homology. Recall also that 7.4.5 offers conditions
under which the opening assumption in the definition below is satisfied.

7.4.18 Definition. Let 𝑄 ⊗𝕜 𝑅
o → 𝐴 and 𝑅 ⊗𝕜 𝑆

o → 𝐵 be ring homomorphisms
and assume that ⊗L

𝑅
per 7.4.3 is augmented to a functor,

⊗L
𝑅 : D(𝐴) ×D(𝐵) −→ D(𝑄–𝑆o) .

For every 𝑚 ∈ ℤ denote by Tor𝑅𝑚 ( , ) the functor

H𝑚 ( ⊗L
𝑅 ) : D(𝐴) ×D(𝐵) −→ M(𝑄–𝑆o) .
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It follows from 7.4.5 and 6.5.17 that the functors Tor𝑅𝑚 are 𝕜-bilinear.
Remark. The symbol ‘Tor’ reflects fact that these functors measure torsion: If 𝑅 is an inte-
gral domain with field of fractions 𝑄, then for every 𝑅-module 𝑀 there is an isomorphism
Tor𝑅1 (𝑀, 𝑄/𝑅) � 𝑀T, where 𝑀T is the torsion submodule of 𝑀. See E 11.2.17 and E 11.2.19.

7.4.19. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. Per 6.5.18 there are, with
the usual conventions inf ∅ = ∞ and sup∅ = −∞, equalities,

inf{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝑀, 𝑁) ≠ 0} = inf (𝑀 ⊗L
𝑅 𝑁) and

sup{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝑀, 𝑁) ≠ 0} = sup (𝑀 ⊗L
𝑅 𝑁) .

7.4.20. In view of 7.4.8 and 7.4.9 there are Tor functors,

Tor𝑅𝑚 ( , ) : D(𝑅o) ×D(𝑅–𝑆o) −→ M(𝑆o) and
Tor𝑅𝑚 ( , ) : D(𝑄–𝑅o) ×D(𝑅) −→ M(𝑄) .

For modules there is a simple description of Tor0.

7.4.21 Proposition. Let 𝑀 be an 𝑅o-module and 𝑁 an 𝑅-module. There is an
isomorphism of 𝕜-modules,

Tor𝑅0 (𝑀, 𝑁) � 𝑀 ⊗𝑅 𝑁 ,

and it is natural in 𝑀 and 𝑁 . Furthermore, Tor𝑅𝑚 (𝑀, 𝑁) = 0 holds for all 𝑚 < 0.

Proof. By 5.2.14 one can assume that the semi-projective 𝑅-complex P(𝑁) satisfies
P(𝑁)𝑚 = 0 for all 𝑚 < 0. In the chain,

Tor𝑅0 (𝑀, 𝑁) = H0 (𝑀 ⊗𝑅 P(𝑁)) � 𝑀 ⊗𝑅 H0 (P(𝑁)) = 𝑀 ⊗𝑅 𝑁 ,

the left-hand equality follows from 7.4.9 and the definition 7.4.18 of Tor, and the
middle isomorphism comes from 2.5.16; it is natural in 𝑀 and P(𝑁). As H0 and P
are functors, the resulting isomorphism Tor𝑅0 (𝑀, 𝑁) � 𝑀 ⊗𝑅 𝑁 is natural in 𝑀 and
𝑁 . Finally, for 𝑚 < 0 one has (𝑀 ⊗𝑅 P(𝑁))𝑚 = 𝑀 ⊗𝑅 P(𝑁)𝑚 = 0 and hence also
Tor𝑅𝑚 (𝑀, 𝑁) = H𝑚 (𝑀 ⊗𝑅 P(𝑁)) = 0, as claimed. □

Remark. In classic homological algebra it is standard to refer to Tor𝑅𝑚 as the ‘𝑚th left derived
functor’ of the tensor product ⊗𝑅 on 𝑅-modules. This explains why ⊗L

𝑅
in some places is called

the ‘total left derived functor’ of ⊗𝑅; see also the Remark after 7.2.8.

7.4.22 Proposition. Let𝑀 be an 𝑅o-module and 𝑁 an 𝑅-module. If Tor𝑅𝑚 (𝑀, 𝑁) = 0
holds for all 𝑚 > 0, then there is an isomorphism 𝑀 ⊗L

𝑅
𝑁 ≃ 𝑀 ⊗𝑅 𝑁 in D(𝕜).

Proof. The assertion follows immediately from 7.4.21 and 7.3.29. □

7.4.23 Proposition. Let 𝑀 be an 𝑅o-complex, 𝑁 an 𝑅-complex. For every 𝑚 ∈ ℤ

there is an isomorphism, Tor𝑅𝑚 (𝑀, 𝑁) � Tor𝑅o
𝑚 (𝑁, 𝑀), and it is natural in 𝑀 and 𝑁 .

Proof. The isomorphisms follow by the definition, 7.4.18, of Tor from commuta-
tivity 4.4.4 of the tensor product, 7.4.9, and 7.4.8.

Tor𝑅𝑚 (𝑀, 𝑁) = H𝑚 (𝑀 ⊗𝑅 P(𝑁)) � H𝑚 (P(𝑁) ⊗𝑅o 𝑀) � Tor𝑅
o

𝑚 (𝑁, 𝑀) . □
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7.4.24 Proposition. Let 𝑀 be an 𝑅o-complex, 𝑁 an 𝑅-complex and 𝑚 and 𝑠 be
integers. There are isomorphisms in M(k),

Tor𝑅𝑚 (Σ𝑠𝑀, 𝑁) � Tor𝑅𝑚−𝑠 (𝑀, 𝑁) � Tor𝑅𝑚 (𝑀, Σ𝑠𝑁) ,

and they are natural in 𝑀 and 𝑁 .

Proof. The functor ⊗L
𝑅

is triangulated in both variables by 7.4.5, so there are
isomorphisms in D(k),

(Σ𝑠𝑀) ⊗L
𝑅 𝑁 ≃ Σ𝑠 (𝑀 ⊗L

𝑅 𝑁) ≃ 𝑀 ⊗L
𝑅 (Σ𝑠𝑁) ,

which are natural in 𝑀 and 𝑁 . Apply the functor H𝑚 to these isomorphisms and
recall from 6.5.17 that one has H𝑚 Σ𝑠 = H𝑚−𝑠 . The assertion now follows from the
definition, 7.4.18, of Tor. □

7.4.25 Proposition. Let 𝑁 be an 𝑅-complex and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 a 𝑈-direct
system in C(𝑅o). If𝑈 is filtered there is for every 𝑚 ∈ ℤ an isomorphism in M(𝕜),

colim
𝑢∈𝑈

Tor𝑅𝑚 (𝑀𝑢, 𝑁) � Tor𝑅𝑚
(
colim
𝑢∈𝑈

𝑀𝑢, 𝑁
)
.

Proof. Let 𝐺 be a semi-flat replacement of 𝑁 . There are isomorphisms,

colim
𝑢∈𝑈

H𝑚 (𝑀𝑢 ⊗𝑅 𝐺) � H𝑚
(
colim
𝑢∈𝑈

(𝑀𝑢 ⊗𝑅 𝐺)
)
� H𝑚

( (
colim
𝑢∈𝑈

𝑀𝑢
)
⊗𝑅 𝐺

)
,

by 3.3.15(d) and 3.2.22, so the assertion follows from 7.4.17 and 7.4.18. □

7.4.26 Proposition. Let 𝑀 be an 𝑅o-complex and {𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁𝑣}𝑢⩽𝑣 a 𝑈-direct
system in C(𝑅). If𝑈 is filtered there is for every 𝑚 ∈ ℤ an isomorphism in M(𝕜),

colim
𝑢∈𝑈

Tor𝑅𝑚 (𝑀, 𝑁𝑢) � Tor𝑅𝑚
(
𝑀, colim

𝑢∈𝑈
𝑁𝑢

)
.

Proof. Proceed as in the proof of 7.4.25, but use 3.2.23 in place of 3.2.22, and
7.4.16 instead of 7.4.17. □

7.4.27 Proposition. Assume that 𝑅 is left Noetherian. Let 𝑁 be an 𝑅-module and
{𝑀𝑢}𝑢∈𝑈 a family of 𝑅o-modules. If 𝑁 is finitely generated, then there is for every
𝑚 ∈ ℤ an isomorphism in M(𝕜),

Tor𝑅𝑚
( ∏
𝑢∈𝑈

𝑀𝑢, 𝑁

)
�

∏
𝑢∈𝑈

Tor𝑅𝑚 (𝑀𝑢, 𝑁) .

Proof. Choose per 5.1.19 a degreewise finitely generated free resolution 𝐿 ≃−−→ 𝑁 .
By degreewise application of 3.1.31 and by 3.1.22(d) one gets isomorphisms,

H𝑚
( ( ∏
𝑢∈𝑈

𝑀𝑢
)
⊗𝑅 𝐿

)
� H𝑚

( ∏
𝑢∈𝑈
(𝑀𝑢 ⊗𝑅 𝐿)

)
�

∏
𝑢∈𝑈

H𝑚 (𝑀𝑢 ⊗𝑅 𝐿) .

The assertion now follows from 7.4.17 and 7.4.18. □

7.4.28 Proposition. Assume that 𝑅 is right Noetherian. Let 𝑀 be an 𝑅o-module and
{𝑁𝑢}𝑢∈𝑈 a family of 𝑅-modules. If 𝑀 is finitely generated, then there is for every
𝑚 ∈ ℤ an isomorphism in M(𝕜),
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Tor𝑅𝑚
(
𝑀,

∏
𝑢∈𝑈

𝑁𝑢
)
�

∏
𝑢∈𝑈

Tor𝑅𝑚 (𝑀, 𝑁𝑢) .

Proof. Proceed as in the proof of 7.4.27, but use 3.1.30 in place of 3.1.31, and
7.4.16 instead of 7.4.17. □

Per 6.5.24 the next result applies, in particular, to a commutative diagram in
C(𝑅) whose rows are short exact sequences. It shows that, viewed as functors from
M(𝑅o)×M(𝑅) toM(𝕜), see 6.4.15, the Tor functors are half exact in either variable.

7.4.29 Theorem. Consider a morphism of distinguished triangles in D(𝑅),

𝑀 ′

𝜑′

��

𝛼′
// 𝑀

𝜑

��

𝛼
// 𝑀 ′′

𝜑′′

��

𝛼′′
// Σ𝑀 ′

Σ𝜑′

��

𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′

𝛽′′
// Σ𝑁 ′ .

For every 𝑅o-complex 𝑋 there is a commutative diagram in M(𝕜) with exact rows.

· · · // Tor𝑅𝑚 (𝑋, 𝑀 ′)

Tor 𝑅
𝑚 (𝑋,𝛼 ′)

//

Tor𝑅𝑚 (𝑋,𝜑′ )
��

Tor𝑅𝑚 (𝑋, 𝑀)

Tor 𝑅
𝑚 (𝑋,𝛼)

//

Tor𝑅𝑚 (𝑋,𝜑)
��

Tor𝑅𝑚 (𝑋, 𝑀 ′′)

Tor 𝑅
𝑚 (𝑋,𝛼 ′′)

//

Tor𝑅𝑚 (𝑋,𝜑′′ )
��

Tor𝑅
𝑚−1 (𝑋, 𝑀 ′)

Tor 𝑅
𝑚−1 (𝑋,𝛼 ′)

//

Tor𝑅
𝑚−1 (𝑋,𝜑

′ )
��

· · ·

· · · // Tor𝑅𝑚 (𝑋, 𝑁 ′)

Tor𝑅𝑚
(𝑋,
𝛽
′ )
// Tor𝑅𝑚 (𝑋, 𝑁)

Tor𝑅𝑚
(𝑋,
𝛽)
// Tor𝑅𝑚 (𝑋, 𝑁 ′′)

Tor𝑅𝑚
(𝑋,
𝛽
′′ )
// Tor𝑅

𝑚−1 (𝑋, 𝑁 ′)

Tor𝑅𝑚−
1
(𝑋,
𝛽
′ )
// · · ·

where the isomorphisms Tor𝑅𝑚 (𝑋, Σ ) � Tor𝑅
𝑚−1 (𝑋, ) from 7.4.24 are supressed.

If instead (𝜑′, 𝜑, 𝜑′′) is a morphism of distinguished triangles in D(𝑅o), then for
every 𝑅-complex 𝑌 there is a commutative diagram in M(𝕜) with exact rows,

· · · // Tor𝑅𝑚 (𝑀 ′, 𝑌 )

Tor 𝑅
𝑚 (𝛼 ′

,𝑌 )
//

Tor𝑅𝑚 (𝜑′ ,𝑌 )
��

Tor𝑅𝑚 (𝑀,𝑌 )

Tor 𝑅
𝑚 (𝛼,𝑌 )

//

Tor𝑅𝑚 (𝜑,𝑌 )
��

Tor𝑅𝑚 (𝑀 ′′, 𝑌 )

Tor 𝑅
𝑚 (𝛼 ′′

,𝑌 )
//

Tor𝑅𝑚 (𝜑′′ ,𝑌 )
��

Tor𝑅
𝑚−1 (𝑀 ′, 𝑌 )

Tor 𝑅
𝑚−1 (𝛼 ′

,𝑌 )
//

Tor𝑅
𝑚−1 (𝜑

′ ,𝑌 )
��

· · ·

· · · // Tor𝑅𝑚 (𝑁 ′, 𝑌 )

Tor𝑅𝑚
(𝛽
′ ,𝑌
)
// Tor𝑅𝑚 (𝑁,𝑌 )

Tor𝑅𝑚
(𝛽,
𝑌
)
// Tor𝑅𝑚 (𝑁 ′′, 𝑌 )

Tor𝑅𝑚
(𝛽
′′ ,𝑌
)
// Tor𝑅

𝑚−1 (𝑁 ′, 𝑌 )

Tor𝑅𝑚−
1
(𝛽
′ ,𝑌
)
// · · ·

where the isomorphisms Tor𝑅𝑚 (Σ , 𝑌 ) � Tor𝑅
𝑚−1 ( , 𝑌 ) from 7.4.24 are supressed.

Proof. The functor ⊗L
𝑅

is triangulated in both variables by 7.4.5, so the assertions
follow from 6.5.21. □

The two results below are not needed before Chap. 9, but they are standard
applications of 7.4.29 and natural to record here.
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7.4.30 Proposition. Let 𝑀 be an 𝑅o-complex and 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0
an exact sequence in C(𝑅). If Tor𝑅1 (𝑀𝑣, 𝑁 ′′𝑖 ) = 0 holds for all 𝑣, 𝑖 ∈ ℤ, then the
sequence of complexes 0→ 𝑀 ⊗𝑅 𝑁 ′ → 𝑀 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 ′′ → 0 is exact.

Proof. For every 𝑖 ∈ ℤ there is an exact sequence 0 → 𝑁 ′
𝑖
→ 𝑁𝑖 → 𝑁 ′′

𝑖
→ 0 of

𝑅-modules. By 7.4.29 and 7.4.21 it yields for every 𝑣 ∈ ℤ an exact sequence

Tor𝑅1 (𝑀𝑣, 𝑁
′′
𝑖 ) −→ 𝑀𝑣 ⊗𝑅 𝑁 ′𝑖 −→ 𝑀𝑣 ⊗𝑅 𝑁𝑖 −→ 𝑀𝑣 ⊗𝑅 𝑁 ′′𝑖 −→ 0 .

The assertion now follows from 2.4.15. □

7.4.31 Proposition. Let 𝑁 be an 𝑅-complex and 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0
an exact sequence in C(𝑅o). If Tor𝑅1 (𝑀 ′′𝑣 , 𝑁𝑖) = 0 holds for all 𝑣, 𝑖 ∈ ℤ, then the
sequence of complexes 0→ 𝑀 ′ ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 → 𝑀 ′′ ⊗𝑅 𝑁 → 0 is exact.

Proof. An argument parallel to the proof of 7.4.30 applies, only one uses 2.4.16
instead of 2.4.15. □

Exercises

E 7.4.1 Let 𝐹 be a faithfully flat 𝑅o-module and 𝜉 a morphism in D(𝑅) . Show that if 𝐹 ⊗L
𝑅
𝜉

is an isomorphism, then 𝜉 is an isomorphism.
E 7.4.2 (Cf. 7.3.7) Adopt the setup from 7.3.7 and verify the identity

Hom (P𝐴 (𝑀 ′ ) , 𝛽)
Hom (P𝐴 (𝜑) , 𝜓)

◦ Hom (P𝐴 (𝛼) , 𝑁 )
1Hom (P𝐴 (𝑀) ,𝑁 )

=
Hom (P𝐴 (𝛼) P𝐴 (𝜑)−1, 𝛽)

Hom (P𝐴 (𝑀 ) , 𝜓)
.

E 7.4.3 Assume that 𝑅 is semi-simple. Show that for 𝑅-complexes 𝑀 and 𝑁 there is an isomor-
phism 𝑀 ⊗L

𝑅
𝑁 ≃ H(𝑀 ) ⊗𝑅 H(𝑁 ) in D(k) .

E 7.4.4 Note that ℚ is a semi-flat replacement of the ℤ-complex 𝐿 from 5.4.15 and show that
there does not exist a quasi-isomorphism ℚ→ 𝐿 in C(ℤ) .

E 7.4.5 Let 𝑀, 𝑃, and 𝐹 be 𝑅-complexes. Show that if 𝑃 is a semi-projective replacement of
𝑀 and 𝐹 a semi-flat replacement of 𝑀, then there is a quasi-isomorphism 𝛼 : 𝑃 → 𝐹

such that 𝑋 ⊗𝑅 𝛼 is a quasi-isomorphism for every 𝑅o-complex 𝑋.
E 7.4.6 Let 𝑀 be an 𝑅o-complex, 𝑁 an 𝑅-complex, and 𝑍 a K-flat complex that is isomorphic

to 𝑁 in D(𝑅) . Show that there is an isomorphism 𝑀 ⊗𝑅 𝑍 ≃ 𝑀 ⊗L
𝑅
𝑁 in D(𝕜) .

E 7.4.7 Let 𝑅 → 𝑆 be a ring homomorphism. Show that 𝑆 is flat as an 𝑅-module if and only if
every semi-flat 𝑆-complex is semi-flat over 𝑅.

E 7.4.8 Let 𝑀 be an 𝑅-complex and 𝑁 an 𝑅o-complex. Show that there is an isomorphism of
𝕜-modules Ext𝑚

𝑅o (𝑁,Hom𝕜 (𝑀, 𝔼) ) � Hom𝕜 (Tor𝑅𝑚 (𝑁, 𝑀 ) , 𝔼) for every 𝑚 ∈ ℤ.
E 7.4.9 Let 𝑀 be a ℤ-module and 𝑛 ∈ ℕ. Show that one has Torℤ1 (𝑀,ℤ/𝑛ℤ) � (0 :𝑀 𝑛ℤ) .
E 7.4.10 Let 𝑀 be a ℤ-module. Show that Torℤ𝑚 (𝑀, ) = 0 holds for 𝑚 ⩾ 2 and conclude that

the functor Torℤ1 (𝑀, ) is left exact.
E 7.4.11 Let 𝔞 be a left ideal and 𝔟 a right ideal in 𝑅. Show that there is an isomorphism of

𝕜-modules Tor𝑅1 (𝑅/𝔟, 𝑅/𝔞) � (𝔟 ∩ 𝔞)/𝔟𝔞.
E 7.4.12 Show that for finite ℤ-modules 𝑀 and 𝑁 there are isomorphisms

Ext1𝑅 (𝑀, 𝑁 ) � Hom𝑅 (𝑀, 𝑁 ) � 𝑀 ⊗𝑅 𝑁 � Tor𝑅1 (𝑀, 𝑁 ) ,
which are not natural in 𝑀 and 𝑁 .

E 7.4.13 Let 𝑀, 𝑋, and 𝑁 be ℤ-modules. Show that there is an isomorphism of ℤ-modules
Ext1ℤ (Torℤ1 (𝑀, 𝑋) , 𝑁 ) � Ext1ℤ (𝑀, Ext1ℤ (𝑋, 𝑁 ) ) . Hint: 2.5.8, 2.2.19, and E 7.3.11.
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7.5 Standard Isomorphisms in the Derived Category

Synopsis. Unitor; counitor; commutativity; associativity; swap; adjunction.

The standard isomorphisms 7.1.11–7.1.16 in the homotopy category induce isomor-
phisms in the derived category. The induced isomorphisms compare composites
of derived Hom and tensor product functors; by default they are isomorphisms in
the derived category D(𝕜), but in situations where the functors are appropriately
augmented, the standard isomorphisms, too, become augmented.

7.5.1 Lemma. Assume that 𝑅 or 𝑆 is flat as a 𝕜-module. The functor ⊗L
𝑅

is augmented
as follows:

⊗L
𝑅 : D(𝑅–𝑅o) ×D(𝑅–𝑆o) −→ D(𝑅–𝑆o)

and the endofunctor 𝑅 ⊗L
𝑅

on D(𝑅–𝑆o) is induced by the endofunctor 𝑅 ⊗𝑅 on
K(𝑅–𝑆o).

Proof. First assume that 𝑅 is flat as a 𝕜-module. By 7.4.10 the functor ⊗L
𝑅

is
augmented as claimed and induced by P𝑅⊗𝕜𝑅o ( ) ⊗𝑅 . The quasi-isomorphism

𝜋 = 𝜋𝑅𝑅⊗𝕜𝑅o : P𝑅⊗𝕜𝑅o (𝑅) −→ 𝑅

in K(𝑅–𝑅o) is by 7.3.11(b) a quasi-isomorphism of semi-flat 𝑅o-complexes. It thus
follows from 5.4.16 that the natural transformation 𝜋 ⊗𝑅 evaluated at any complex
of 𝑅–𝑆o-bimodules is a quasi-isomorphism. That is, it yields a natural isomorphism
of functors 𝑅 ⊗L

𝑅
= (P𝑅⊗𝕜𝑅o (𝑅) ⊗𝑅 )́´→ (𝑅 ⊗𝑅 )́´; see 6.4.33.

Now assume that 𝑆 is flat as a 𝕜-module. By 7.4.11 the functor ⊗L
𝑅

is augmented
as claimed and induced by ⊗𝑅 P𝑅⊗𝕜𝑆o ( ) . The natural transformation

𝑅 ⊗𝑅 𝜋𝑅⊗𝕜𝑆o : 𝑅 ⊗𝑅 P𝑅⊗𝕜𝑆o ( ) −→ 𝑅 ⊗𝑅
evaluated at any complex of 𝑅–𝑆o-bimodules is a quasi-isomorphism. Thus it yields
a natural isomorphism of functors 𝑅 ⊗L

𝑅
= (𝑅 ⊗𝑅 P𝑅⊗𝕜𝑆o ( ))́´→ (𝑅 ⊗𝑅 )́ .́ □

Unitor

The treatment of the unitor and counitor is slightly different from the treatment
of commutativity, associativity, swap, and adjunction for the following reason: It is
unavoidable that, say, the commutativity isomorphism by default is only 𝕜-linear, but
application of the unitor or counitor should not result in loss of structure. However,
if 𝑀 is an 𝑅-complex, then saying that 𝑅 ⊗L

𝑅
𝑀 is an 𝑅-complex already implies

that ⊗L
𝑅

is augmented to a functor from D(𝑅–𝑅o) × D(𝑅) to D(𝑅); saying that
RHom𝑅 (𝑅, 𝑀) is an 𝑅-complex carries similar implications.

7.5.2 Construction. Assume that 𝑅 or 𝑆 is flat as a 𝕜-module. By 7.5.1 there is a
functor

𝑅 ⊗L
𝑅 : D(𝑅–𝑆o) −→ D(𝑅–𝑆o) induced by 𝑅 ⊗𝑅 .

By 7.1.11 there is a natural isomorphism of endofunctors on K(𝑅–𝑆o),
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𝜇𝑅 : 𝑅 ⊗𝑅 −→ IdK(𝑅–𝑆o ) .

It induces by 7.2.5 a natural isomorphism of endofunctors on D(𝑅–𝑆o),

(7.5.2.1) 𝝁𝑅 = ´́𝜇𝑅 : 𝑅 ⊗L
𝑅 −→ IdD(𝑅–𝑆o ) .

7.5.3 Definition. The natural isomorphism (7.5.2.1) is called unitor.

7.5.4 Proposition. Assume that 𝑅 or 𝑆 is flat as a 𝕜-module. For 𝑀 in D(𝑅–𝑆o) the
unitor is an isomorphism in D(𝑅–𝑆o),

𝝁𝑀𝑅 : 𝑅 ⊗L
𝑅 𝑀 −→ 𝑀 ,

and natural in 𝑀; it is induced by the isomorphism 𝜇𝑀
𝑅

in K(𝑅–𝑆o). As a natural
transformation, 𝝁

𝑅
is triangulated.

Proof. The natural isomorphism 𝝁
𝑅
= ´́𝜇𝑅 from 7.5.2 is triangulated by 7.2.5 as 𝜇

𝑅

is triangulated by 7.1.11. □

Counitor

7.5.5 Lemma. Assume that 𝑅 is projective or 𝑆 is flat as a 𝕜-module. The functor
RHom𝑅 is augmented as follows:

RHom𝑅 ( , ) : D(𝑅–𝑅o) ×D(𝑅–𝑆o) −→ D(𝑅–𝑆o)

and the endofunctor RHom𝑅 (𝑅, ) on D(𝑅–𝑆o) is induced by the endofunctor
Hom𝑅 (𝑅, ) on K(𝑅–𝑆o).

Proof. First assume that 𝑅 is projective as a 𝕜-module. By 7.3.12 the functor
RHom𝑅 ( , ) is augmented as claimed and induced by Hom𝑅 (P𝑅⊗𝕜𝑅o ( ), ) . The
quasi-isomorphism

𝜋 = 𝜋𝑅𝑅⊗𝕜𝑅o : P𝑅⊗𝕜𝑅o (𝑅) −→ 𝑅

in K(𝑅–𝑅o) is by 7.3.11(a) a quasi-isomorphism of semi-projective 𝑅-complexes.
It thus follows from 5.2.21 and 4.3.19 that the natural transformation Hom𝑅 (𝜋, )
evaluated at any complex of 𝑅–𝑆o-bimodules is a homotopy equivalence, in partic-
ular a quasi-isomorphism. Therefore, it yields a natural isomorphism of functors
Hom𝑅 (𝑅, ) ´́ → Hom𝑅 (P𝑅⊗𝕜𝑅o (𝑅), ) ´́ = RHom𝑅 (𝑅, ); see 6.4.33.

Now assume that 𝑆 is flat as a 𝕜-module. By 7.3.13 the functor RHom𝑅 is aug-
mented as claimed and induced by Hom𝑅 ( , I𝑅⊗𝕜𝑆o ( )) . The natural transformation

Hom𝑅 (𝑅, 𝜄𝑅⊗𝕜𝑆o ) : Hom𝑅 (𝑅, ) −→ Hom𝑅 (𝑅, I𝑅⊗𝕜𝑆o ( ))

evaluated at any complex of 𝑅–𝑆o-bimodules is a quasi-isomorphism. Thus it yields a
natural isomorphism Hom𝑅 (𝑅, ) ´́ → Hom𝑅 (𝑅, I𝑅⊗𝕜𝑆o ( )) ´́ = RHom𝑅 (𝑅, ). □

7.5.6 Construction. Assume that 𝑅 is projective or 𝑆 is flat as a 𝕜-module. By 7.5.5
there is a functor

RHom𝑅 (𝑅, ) : D(𝑅–𝑆o) −→ D(𝑅–𝑆o) induced by Hom𝑅 (𝑅, ) .
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360 7 Derived Functors

By 7.1.12 there is a natural isomorphism of endofunctors on K(𝑅–𝑆o),

𝜖𝑅 : IdK(𝑅–𝑆o ) −→ Hom𝑅 (𝑅, ) .

It induces by 7.2.5 a natural isomorphism of endofunctors on D(𝑅–𝑆o),

(7.5.6.1) 𝝐𝑅 = ´́𝜖 𝑅 : IdD(𝑅–𝑆o ) −→ RHom𝑅 (𝑅, ) .

7.5.7 Definition. The natural isomorphism (7.5.6.1) is called counitor.

7.5.8 Proposition. Assume that 𝑅 is projective or 𝑆 is flat as a 𝕜-module. For 𝑀 in
D(𝑅–𝑆o) the counitor is an isomorphism in D(𝑅–𝑆o),

𝝐𝑀𝑅 : 𝑀 −→ RHom𝑅 (𝑅, 𝑀) ,

and natural in 𝑀; it is induced by the isomorphism 𝜖𝑀
𝑅

in K(𝑅–𝑆o). As a natural
transformation, 𝝐

𝑅
is triangulated.

Proof. The natural isomorphism 𝝐
𝑅
= ´́𝜖 𝑅 from 7.5.6 is triangulated by 7.2.5 as 𝜖

𝑅

is triangulated by 7.1.12. □

The remaining standard isomorphisms—commutativity, associativity, swap, and
adjunction—can be treated along the same lines as the derived functors in Sects. 7.3
and 7.4. Our most general results about augmented standard isomorphsms are 7.5.13
(commutativity), 7.5.20 (associativity), 7.5.27 (swap), and 7.5.33 (adjunction); com-
monly used special cases are recorded in 7.5.14, 7.5.21, 7.5.28, and 7.5.34.

Commutativity

7.5.9 Construction. Recall from 7.4.1 that there are functors

⊗L
𝑅 : D(𝑅o) ×D(𝑅) −→ D(𝕜) induced by P𝑅o ( ) ⊗𝑅 P𝑅 ( ) and

⊗L
𝑅o : D(𝑅o) ×D(𝑅) −→ D(𝕜) induced by P𝑅 ( ) ⊗𝑅o P𝑅o ( ) .

To be clear, the latter functor maps (𝑀, 𝑁) in D(𝑅o) ×D(𝑅) to 𝑁 ⊗L
𝑅o 𝑀 . Consider

the natural isomorphism,

𝜐P ( ) P ( ) : P𝑅o ( ) ⊗𝑅 P𝑅 ( ) −→ P𝑅 ( ) ⊗𝑅o P𝑅o ( ) ,

of functors from K(𝑅o) ×K(𝑅) to K(𝕜) induced by commutativity 7.1.13. There is
a natural isomorphism of functors from D(𝑅o) ×D(𝑅) to D(𝕜) induced by 7.2.5,

(7.5.9.1) 𝝊 = (𝜐P ( ) P ( ) )́´ : ⊗L
𝑅 −→ ⊗L

𝑅o .

7.5.10 Definition. The natural isomorphism (7.5.9.1) is called commutativity.

Commutativity, 𝝊 , is by construction a natural isomorphism of functors from
D(𝑅o)×D(𝑅) toD(𝕜). In some cases, 𝝊 can be augmented to a natural isomorphism
of functors on derived categories of complexes with additional ring actions.
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7.5.11 Setup. Consider ring homomorphisms,

𝑄 ⊗𝕜 𝑅
o −→ 𝐴 and 𝑅 ⊗𝕜 𝑆

o −→ 𝐵 .

Let EI and EII be functors from D(𝐴) × D(𝐵) to D(𝑄–𝑆o) and assume that there
are natural isomorphisms

𝜑I : res𝐴𝑅o ⊗L
𝑅 res𝐵𝑅 −→ res𝑄⊗𝑆

o

𝕜
EI and

𝜑II : res𝐵𝑅 ⊗L
𝑅o res𝐴𝑅o −→ res𝑄⊗𝑆

o

𝕜
EII ,

where the functors on the left are those from 7.5.9 precomposed with res𝐴
𝑅o × res𝐵

𝑅
.

Notice that the functors EI and EI per 7.4.3 are augmentations of ⊗L
𝑅

and ⊗L
𝑅o.

7.5.12 Definition. Adopt the setup 7.5.11. A natural transformation 𝝊0 : EI→ EII is
called an augmentation of commutativity if the next diagram is commutative,

(7.5.12.1)

res𝑄⊗𝑆
o

𝕜
EI ≃

res𝑄⊗𝑆
o

𝕜
𝝊0

// res𝑄⊗𝑆
o

𝕜
EII

res𝐴
𝑅o ⊗L

𝑅
res𝐵

𝑅

𝜑I ≃

OO

𝝊 (res𝐴
𝑅o × res𝐵

𝑅
)
// res𝐵

𝑅
⊗L
𝑅o res𝐴

𝑅o ;

𝜑II≃

OO

here 𝝊 on the lower horizontal arrow is (7.5.9.1). In this case, 𝝊0 : EI→ EII is
written 𝝊 : ⊗L

𝑅
→ ⊗L

𝑅o , and one says that commutativity is augmented to a
natural isomorphism of functors from D(𝐴) ×D(𝐵) to D(𝑄–𝑆o).

7.5.13 Theorem. Let 𝑄 ⊗𝕜 𝑅
o → 𝐴 and 𝑅 ⊗𝕜 𝑆

o → 𝐵 be ring homomorphisms. If
condition (a) or (b) below is satisfied, then commutativity is augmented to a natural
isomorphism of functors D(𝐴) ×D(𝐵) → D(𝑄–𝑆o). That is, for 𝑀 in D(𝐴) and 𝑁
in D(𝐵) there is an isomorphism in D(𝑄–𝑆o),

(7.5.13.1) 𝝊𝑀𝑁 : 𝑀 ⊗L
𝑅 𝑁 −→ 𝑁 ⊗L

𝑅o 𝑀 ,

which is natural in𝑀 and 𝑁 . As a natural transformation of functors, this augmented
𝝊 is triangulated in each variable.

(a) 𝐴 is flat as an 𝑅o-module.
(b) 𝐵 is flat as an 𝑅-module.

Moreover, (7.5.13.1) is induced by isomorphisms in K(𝑄–𝑆o) as follows:
(a′) If (a) is satisfied, then 𝝊𝑀𝑁 is induced by 𝜐P𝐴 (𝑀 )𝑁 .

(a′) If (b) is satisfied, then 𝝊𝑀𝑁 is induced by 𝜐𝑀 P𝐵 (𝑁 ) .

Proof. Let UI = ⊗𝑅 and UII = ⊗𝑅o be the tensor product functors from
K(𝑅o) ×K(𝑅) to K(𝕜) and VI and VII the tensor product functors from K(𝑄–𝑅o) ×
K(𝑅–𝑆o) to K(𝑄–𝑆o). Set F = P𝑅o res𝐴

𝑅o × P𝑅 res𝐵
𝑅

and consider the functors from
K(𝐴) ×K(𝐵) to K(𝕜),

UI F = P𝑅o res𝐴𝑅o ⊗𝑅 P𝑅 res𝐵𝑅 and UII F = P𝑅 res𝐵𝑅 ⊗𝑅o P𝑅o res𝐴𝑅o .
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362 7 Derived Functors

They induce the derived functors res𝐴
𝑅o ⊗L

𝑅
res𝐵

𝑅
and res𝐵

𝑅
⊗L
𝑅o res𝐴

𝑅o, which are the
functors from 7.5.9 precomposed with res𝐴

𝑅o × res𝐵
𝑅

.
Assume that (a) is satisfied and set

F0 = res𝐴𝑄⊗𝑅o P𝐴 × res𝐵𝑅⊗𝑆o : K(𝐴) ×K(𝐵) −→ K(𝑄–𝑅o) ×K(𝑅–𝑆o)

Let EI and EII be the functors D(𝐴) ×D(𝐵) → D(𝑄–𝑆o) induced per 7.4.5(a′) by

VI F0 = res𝐴𝑄⊗𝑅o P𝐴 ⊗𝑅 res𝐵𝑅⊗𝑆o and VII F0 = res𝐵𝑅⊗𝑆o ⊗𝑅o res𝐴𝑄⊗𝑅o P𝐴 .

Consider the natural transformation of functors,

F = P𝑅o res𝐴𝑅o × P𝑅 res𝐵𝑅
𝜏 = 𝜚𝐴

𝑅o × 𝜋𝑅 res𝐵
𝑅−−−−−−−−−−−−−−−→ res𝐴𝑅o P𝐴 × res𝐵𝑅 = (res𝑄⊗𝑅

o

𝑅o × res𝑅⊗𝑆
o

𝑅 ) F0 .

It follows from 7.4.6 that the natural transformation

UI 𝜏 : UI F −→ UI (res𝑄⊗𝑅
o

𝑅o × res𝑅⊗𝑆
o

𝑅 ) F0 = res𝑄⊗𝑆
o

𝕜
VI F0

induces a natural isomorphism 𝜑I, as stipulated in 7.5.11; similarly a natural iso-
morphism 𝜑II is induced by UII 𝜏. Commutativity 7.1.13 is a natural isomorphism
𝜐 : UI→ UII and 𝜐 : VI→ VII. The commutative diagram

res𝑄⊗𝑆
o

𝕜
VI F0

res𝑄⊗𝑆
o

𝕜
𝜐 F0

// res𝑄⊗𝑆
o

𝕜
VII F0

UI F 𝜐 F
//

UI 𝜏

OO

UII F
UII 𝜏

OO

induces the diagram (7.5.12.1); in particular, 𝜐 F0 : VI F0→ VII F0 induces a natural
isomorphism 𝝊0 : EI→ EII. Thus if condition (a) is satisfied, then commutativity is
augmented to a natural isomorphism of functors D(𝐴) ×D(𝐵) → D(𝑄–𝑆o) which
is induced by 𝜐 F0 as claimed in (a′). The assertion about triangulation follows from
7.2.5 and 7.1.13.

The remaining assertions are proved similarly. □

Notice that condition (a) in the next corollary is satisfied if 𝑄 = 𝕜 and (b) is
satisfied if 𝑆 = 𝕜. Either condition is satisfied if 𝕜 is a field.

7.5.14 Corollary. For complexes 𝑀 in D(𝑄–𝑅o) and 𝑁 in D(𝑅–𝑆o) commutativity,

𝝊𝑀𝑁 : 𝑀 ⊗L
𝑅 𝑁 −→ 𝑁 ⊗L

𝑅o 𝑀 ,

is an isomorphism in D(𝑄–𝑆o) under either of the following conditions:
(a) 𝑄 is flat as a 𝕜-module.
(b) 𝑆 is flat as a 𝕜-module.

Proof. Apply 7.5.13 with 𝐴 = 𝑄 ⊗𝕜 𝑅
o and 𝐵 = 𝑅 ⊗𝕜 𝑆

o and invoke 7.3.11(b). □

7.5.15 Example. Let 𝑄 ⊗𝕜 𝑅
o → 𝐴 and 𝑅 ⊗𝕜 𝑆

o → 𝐵 be ring homomorphisms
and assume that 𝐵 is flat as an 𝑅-module. Let 𝑀 be an 𝐴-complex and 𝑁 a 𝐵-
complex with a semi-flat replacement 𝐺. By 6.4.20 there is a quasi-isomorphism
𝜗 : P𝐵 (𝑁) → 𝐺 in K(𝐵) which yields a commutative diagram in K(𝑄–𝑆o),
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𝑀 ⊗𝑅 P𝐵 (𝑁)
𝜐𝑀 P (𝑁 )

//

≃𝑀⊗𝜗
��

P𝐵 (𝑁) ⊗𝑅o 𝑀

≃ 𝜗⊗𝑀
��

𝑀 ⊗𝑅 𝐺
𝜐𝑀𝐺

// 𝐺 ⊗𝑅o 𝑀 .

The vertical morphisms are quasi-isomorphisms by 5.4.16 and semi-flatness of
P𝐵 (𝑁) and𝐺 as 𝑅-complexes; see 5.4.18(b). It follows that 𝜐𝑀𝐺 induces an isomor-
phism in D(𝑄–𝑆o) that is isomorphic to the augmented commutativity isomorphism
𝝊𝑀𝑁 from 7.5.13(b′).

Associativity

7.5.16 Construction. Recall from 7.4.8 and 7.4.9 that there are functors,

⊗L
𝑅 : D(𝑅o) ×D(𝑅–𝑆o) −→ D(𝑆o) induced by P𝑅o ( ) ⊗𝑅 and

⊗L
𝑆 : D(𝑆o) ×D(𝑆) −→ D(𝕜) induced by ⊗𝑆 P𝑆 ( ) .

As the functor ( ⊗L
𝑅
) ⊗L

𝑆
is the composite of the functors

D(𝑅o) ×D(𝑅–𝑆o) ×D(𝑆) ( ⊗
L
𝑅
) × IdD(𝑆)−−−−−−−−−−−−−−→ D(𝑆o) ×D(𝑆) ⊗L

𝑆−−−−−→ D(𝕜) ,

it follows from 7.2.4 that the functor

(7.5.16.1)
( ⊗L

𝑅 ) ⊗L
𝑆 : D(𝑅o) ×D(𝑅–𝑆o) ×D(𝑆) −→ D(𝕜)

is induced by (P𝑅o ( ) ⊗𝑅 ) ⊗𝑆 P𝑆 ( ) .

Similarly, the composite

(7.5.16.2)
⊗L
𝑅 ( ⊗L

𝑆 ) : D(𝑅o) ×D(𝑅–𝑆o) ×D(𝑆) −→ D(𝕜)
is induced by P𝑅o ( ) ⊗𝑅 ( ⊗𝑆 P𝑆 ( )) .

Now, consider the natural isomorphism,

𝜔P ( ) P ( ) : (P𝑅o ( ) ⊗𝑅 ) ⊗𝑆 P𝑆 ( ) −→ P𝑅o ( ) ⊗𝑅 ( ⊗𝑆 P𝑆 ( )) ,

of functors K(𝑅o) ×K(𝑅–𝑆o) ×K(𝑆) → K(𝕜) induced by associativity 7.1.14. By
7.2.5 there is a natural isomorphism of functors D(𝑅o) ×D(𝑅–𝑆o) ×D(𝑆) → D(𝕜),

(7.5.16.3) 𝝎 = (𝜔P ( ) P ( ) )́´ : ( ⊗L
𝑅 ) ⊗L

𝑆 −→ ⊗L
𝑅 ( ⊗L

𝑆 ) .

7.5.17 Definition. The natural isomorphism (7.5.16.3) is called associativity.

Associativity, 𝝎, is by construction a natural isomorphism of functors from
D(𝑅o) ×D(𝑅–𝑆o) ×D(𝑆) to D(𝕜). In some cases, 𝝎 can be augmented to a natural
isomorphism of functors on derived categories of complexes with additional ring
actions.
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7.5.18 Setup. Consider ring homomorphisms,

𝑄 ⊗𝕜 𝑅
o −→ 𝐴 , 𝑅 ⊗𝕜 𝑆

o −→ 𝐵 , and 𝑆 ⊗𝕜 𝑇
o −→ 𝐶 .

Let EI and EII be functors from D(𝐴) ×D(𝐵) ×D(𝐶) to D(𝑄–𝑇o) and assume that
there are natural isomorphisms

𝜑I : (res𝐴𝑅o ⊗L
𝑅 res𝐵𝑅⊗𝑆o ) ⊗L

𝑆 res𝐶𝑆 −→ res𝑄⊗𝑇
o

𝕜
EI and

𝜑II : res𝐴𝑅o ⊗L
𝑅 (res𝐵𝑅⊗𝑆o ⊗L

𝑆 res𝐶𝑆 ) −→ res𝑄⊗𝑇
o

𝕜
EII ,

where the functors on the left are (7.5.16.1) and (7.5.16.2) both precomposed with
res𝐴

𝑅o × res𝐵
𝑅⊗𝑆o × res𝐶

𝑆
.

7.5.19 Definition. Adopt the setup 7.5.18. A natural transformation 𝝎0 : EI→ EII
is called an augmentation of associativity if the next diagram is commutative,

res𝑄⊗𝑇
o

𝕜
EI

res𝑄⊗𝑇
o

𝕜
𝝎0

// res𝑄⊗𝑇
o

𝕜
EII

(res𝐴
𝑅o ⊗L

𝑅
res𝐵

𝑅⊗𝑆o ) ⊗L
𝑆

res𝐶
𝑆

𝜑I ≃

OO

≃
𝝎 (res𝐴

𝑅o × res𝐵
𝑅⊗𝑆o × res𝐶

𝑆
)
// res𝐴

𝑅o ⊗L
𝑅
(res𝐵

𝑅⊗𝑆o ⊗L
𝑆

res𝐶
𝑆
) ;

𝜑II≃

OO

here 𝝎 on the lower horizontal arrow is (7.5.16.3). In this case, 𝝎0 : EI→ EII is writ-
ten 𝝎 : ( ⊗L

𝑅
) ⊗L

𝑆
→ ⊗L

𝑅
( ⊗L

𝑆
), and one says that associativity is augmented

to a natural isomorphism of functors from D(𝐴) ×D(𝐵) ×D(𝐶) to D(𝑄–𝑇o).

7.5.20 Theorem. Let 𝑄 ⊗𝕜 𝑅
o → 𝐴, 𝑅 ⊗𝕜 𝑆

o → 𝐵, and 𝑆 ⊗𝕜 𝑇
o → 𝐶 be ring

homomorphisms. If condition (a), (b), or (c) below is met, then associtivity is aug-
mented to a natural isomorphism of functors D(𝐴) ×D(𝐵) ×D(𝐶) → D(𝑄–𝑇o).
That is, for 𝑀 in D(𝐴), 𝑋 in D(𝐵), and 𝑁 in D(𝐶) there is an isomorphism,

(7.5.20.1) 𝝎𝑀𝑋𝑁 : (𝑀 ⊗L
𝑅 𝑋) ⊗L

𝑆 𝑁 −→ 𝑀 ⊗L
𝑅 (𝑋 ⊗L

𝑆 𝑁) ,

inD(𝑄–𝑇o) which is natural in𝑀 , 𝑋 , and 𝑁 . As a natural transformation of functors,
this augmented 𝝎 is triangulated in each variable.

(a) 𝐴 is flat as an 𝑅o-module and 𝐶 is flat as an 𝑆-module.
(b) 𝐴 is flat as an 𝑅o-module and 𝐵 is flat as an 𝑆o-module.
(c) 𝐵 is flat as an 𝑅-module and 𝐶 is flat as an 𝑆-module.

Moreover, (7.5.20.1) is induced by isomorphisms in K(𝑄–𝑇o) as follows:
(a′) If (a) is satisfied, then 𝝎𝑀𝑋𝑁 is induced by 𝜔P𝐴 (𝑀 )𝑋 P𝐶 (𝑁 ) .

(b′) If (b) is satisfied, then 𝝎𝑀𝑋𝑁 is induced by 𝜔P𝐴 (𝑀 ) P𝐵 (𝑋)𝑁 .

(c′) If (c) is satisfied, then 𝝎𝑀𝑋𝑁 is induced by 𝜔𝑀 P𝐵 (𝑋) P𝐶 (𝑁 ) .

Proof. Consider the functors from K(𝐴) ×K(𝐵) ×K(𝐶) to K(𝕜),

CI = (P𝑅o res𝐴𝑅o ⊗𝑅 res𝐵𝑅⊗𝑆o ) ⊗𝑆 P𝑆 res𝐶𝑆 ;
CII = P𝑅o res𝐴𝑅o ⊗𝑅 (res𝐵𝑅⊗𝑆o ⊗𝑆 P𝑆 res𝐶𝑆 ) .
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7.5 Standard Isomorphisms in the Derived Category 365

They induce the functors (res𝐴
𝑅o ⊗L

𝑅
res𝐵

𝑅⊗𝑆o ) ⊗L
𝑆

res𝐶
𝑆

and res𝐴
𝑅o ⊗L

𝑅
(res𝐵

𝑅⊗𝑆o ⊗L
𝑆

res𝐶
𝑆
),

which are (7.5.16.1) and (7.5.16.2) precomposed with res𝐴
𝑅o × res𝐵

𝑅⊗𝑆o × res𝐶
𝑆

.
Assume that condition (b) is satisfied and consider the functors

DI = (res𝐴𝑄⊗𝑅o P𝐴 ⊗𝑅 res𝐵𝑅⊗𝑆o P𝐵) ⊗𝑆 res𝐶𝑆⊗𝑇o ,

DII = res𝐴𝑄⊗𝑅o P𝐴 ⊗𝑅 (res𝐵𝑅⊗𝑆o P𝐵 ⊗𝑆 res𝐶𝑆⊗𝑇o )

from K(𝐴) × K(𝐵) × K(𝐶) to K(𝑄–𝑇o). The functor res𝑄⊗𝑇
o

𝕜
DI compares to CI

via the following natural transformations,

(†)

res𝑄⊗𝑇
o

𝕜
DI = (res𝐴

𝑅o P𝐴 ⊗𝑅 res𝐵
𝑅⊗𝑆o P𝐵) ⊗𝑆 res𝐶

𝑆

(P𝑅o res𝐴
𝑅o ⊗𝑅 res𝐵

𝑅⊗𝑆o P𝐵) ⊗𝑆 res𝐶
𝑆

𝜎1 = ( 𝜚𝐴
𝑅o ⊗1) ⊗1

OO

(P𝑅o res𝐴
𝑅o ⊗𝑅 res𝐵

𝑅⊗𝑆o P𝐵) ⊗𝑆 P𝑆 res𝐶
𝑆

𝜎2 = (1⊗1) ⊗ 𝜋𝑆 res𝐶
𝑆

OO

𝜎3 = (1⊗res𝐵
𝑅⊗𝑆o 𝜋𝐵 ) ⊗1

��

CI = (P𝑅o res𝐴
𝑅o ⊗𝑅 res𝐵

𝑅⊗𝑆o ) ⊗𝑆 P𝑆 res𝐶
𝑆
.

Let (𝑀, 𝑋, 𝑁) be an object in K(𝐴) ×K(𝐵) ×K(𝐶); we argue that the morphisms
𝜎𝑀𝑋𝑁
𝑖

are quasi-isomorphisms. As (b) is satisfied, 5.4.18(b) implies that the complex
P𝐴(𝑀) is semi-flat over 𝑅o and P𝐵 (𝑋) is semi-flat over 𝑆o. With 𝜚 = 𝜚𝐴

𝑅o from
6.3.21 one has 𝜎𝑀𝑋𝑁1 = (𝜚𝑀 ⊗𝑅 P𝐵 (𝑋)) ⊗𝑆 𝑁 . As 𝜚𝑀 is a quasi-isomorphism of
semi-flat 𝑅o-complexes, its tensor product with P𝐵 (𝑋) is a quasi-isomorphism of
semi-flat 𝑆o-complexes, see 5.4.16 and 5.4.17, so 𝜎𝑀𝑋𝑁1 is a quasi-isomorphism,
again by 5.4.16. As just noted, the 𝑆o-complex P𝑅o (𝑀) ⊗𝑅 P𝐵 (𝑋) is semi-flat and
thus 𝜎𝑀𝑋𝑁2 = (P𝑅o (𝑀) ⊗𝑅 P𝐵 (𝑋)) ⊗𝑆 𝜋𝑁𝑆 is a quasi-isomorphism. Finally, the
morphism 𝜎𝑀𝑋𝑁3 = (P𝑅o (𝑀) ⊗𝑅 𝜋𝑋𝐵) ⊗𝑆 P𝑆 (𝑁) is a quasi-isomorphism, as 𝜋𝑋

𝐵
is a

quasi-isomorphism and the complexes P𝑅o (𝑀) and P𝑆 (𝑁) are semi-flat.
The functor CI preserves quasi-isomorphisms, this is implicit in 7.5.16, so by

the argument above, res𝑄⊗𝑇
o

𝕜
DI and hence DI preserves quasi-isomorphisms. Let EI

denote the functor from D(𝐴) ×D(𝐵) ×D(𝐶) to D(𝑄–𝑇o) induced per 7.2.2 by DI.
The diagram (†) induces a natural isomorphism of functors,

(‡) 𝜑I : (res𝐴𝑅o ⊗L
𝑅 res𝐵𝑅⊗𝑆o ) ⊗L

𝑆 res𝐶𝑆 −→ res𝑄⊗𝑇
o

𝕜
EI ;

we proceed to give a more compact description of it. Consider the functor

F0 : K(𝐴) ×K(𝐵) ×K(𝐶) −→ K(𝑄–𝑅o) ×K(𝑅–𝑆o) ×K(𝑆–𝑇o)

given by F0 = res𝐴
𝑄⊗𝑅o P𝐴 × res𝐵

𝑅⊗𝑆o P𝐵 × res𝐶
𝑆⊗𝑇o . With the abbreviated notation UI

for the functor

( ⊗𝑅 ) ⊗𝑆 : K(𝑄–𝑅o) ×K(𝑅–𝑆o) ×K(𝑆–𝑇o) −→ K(𝑄–𝑇o)

one has DI = UI F0. Further (†) can be written
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366 7 Derived Functors

CI = UI F4
UI 𝜏3←−−−− UI F3

UI 𝜏2−−−−→ UI F2
UI 𝜏1−−−−→ UI F1 = res𝑄⊗𝑇

o

𝕜
DI

where the functors

F𝑖 : K(𝐴) ×K(𝐵) ×K(𝐶) −→ K(𝑅o) ×K(𝑅–𝑆o) ×K(𝑆)

and transformations 𝜏𝑖 between them are implicitly defined by (†). The natural
isomorphism (‡) can now be written as 𝜑I = (UI 𝜏1 )́ (́UI 𝜏2 )́ (́UI 𝜏3 )́´−1; see 7.2.5.

With the notation UII for the functor ⊗𝑅 ( ⊗𝑆 ) one has DII = UII F0. An
argument parallel to the one above shows that each transformation UII 𝜏𝑖 evaluated
at an object (𝑀, 𝑋, 𝑁) is a quasi-isomorphism. It follows that DII preserves quasi-
isomorphisms; the induced functor fromD(𝐴)×D(𝐵)×D(𝐶) toD(𝑄–𝑇o) is denoted
EII; see 7.2.2. Finally, 𝜑II = (UII 𝜏1 )́ (́UII 𝜏2 )́ (́UI 𝜏3 )́ −́1 is a natural isomorphism of
functors,

𝜑II : res𝐴𝑅o ⊗L
𝑅 (res𝐵𝑅⊗𝑆o ⊗L

𝑆 res𝐶𝑆 ) −→ res𝑄⊗𝑇
o

𝕜
EII .

Associativity 7.1.14 yields a natural isomorphism 𝜔 : UI→ UII. The composite
𝜔F0 : DI→ DII induces per 7.2.5 a natural isomorphism 𝝎0 : EI→ EII. Now the
commutative diagram

res𝑄⊗𝑇
o

𝕜
DI

res𝑄⊗𝑇
o

𝕜
𝜔F0

// res𝑄⊗𝑇
o

𝕜
DII

UI F1
𝜔F1

// UII F1

UI F2
𝜔F2

//

UI 𝜏1

OO

UII F2

UII 𝜏1

OO

UI F3

UI 𝜏2

OO

UI 𝜏3
��

𝜔F3
// UII F3

UII 𝜏2

OO

UII 𝜏3
��

CI = UI F4
𝜔F4

// UII F4 = CII

induces the diagram in 7.5.19. Thus if condition (b) is satisfied, then associativity is
augmented to a natural isomorphism of functors D(𝐴) ×D(𝐵) ×D(𝐶) → D(𝑄–𝑇o)
which is induced by𝜔F0 as claimed in (b). The assertion about triangulation follows
from 7.2.5 and 7.1.14.

A parallel argument shows that associativity is augmented if condition (c) is
satisfied and represented as stated in (c′). A similar, but simpler, argument shows that
associativity is augmented under condition (a) and represented as stated in (a′). □

Notice that any of the conditions in the next corollary is satisfied if 𝕜 is a field.

7.5.21 Corollary. For complexes𝑀 inD(𝑄–𝑅o), 𝑋 inD(𝑅–𝑆o), and 𝑁 inD(𝑆–𝑇o)
associativity

𝝎𝑀𝑋𝑁 : (𝑀 ⊗L
𝑅 𝑋) ⊗L

𝑆 𝑁 −→ 𝑀 ⊗L
𝑅 (𝑋 ⊗L

𝑆 𝑁) ,

is an isomorphism in D(𝑄–𝑇o) under each of the following conditions:
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7.5 Standard Isomorphisms in the Derived Category 367

(a) 𝑄 and 𝑇 are flat as 𝕜-modules.
(b) 𝑄 and 𝑅 are flat as 𝕜-modules.
(c) 𝑆 and 𝑇 are flat as 𝕜-modules.

Proof. Apply 7.5.20 with 𝐴 = 𝑄 ⊗𝕜 𝑅
o, 𝐵 = 𝑅 ⊗𝕜 𝑆

o, and 𝐶 = 𝑆 ⊗𝕜 𝑇
o and invoke

7.3.11(b). □

7.5.22 Example. Adopt the setup from 7.5.18 and let 𝑀 be an 𝐴-complex,
𝑋 a 𝐵-complex, and 𝑁 a 𝐶-complex. Let 𝐹 be a semi-flat replacement of 𝑀
and 𝐹′ a semi-flat replacement of 𝑁 . By 6.4.20 there are quasi-isomorphisms
𝜗 : P𝐴(𝑀) → 𝐹 in K(𝐴) and 𝜗′ : P𝐶 (𝑁) → 𝐹′ in K(𝐶) which give a commutative
diagram in K(𝑄–𝑇o),

(P𝐴(𝑀) ⊗𝑅 𝑋) ⊗𝑆 P𝐶 (𝑁)

(𝜗⊗𝑋) ⊗𝜗′
��

𝜔P (𝑀)𝑋 P (𝑁 )
// P𝐴(𝑀) ⊗𝑅 (𝑋 ⊗𝑆 P𝐶 (𝑁))

𝜗⊗ (𝑋⊗𝜗′ )
��

(𝐹 ⊗𝑅 𝑋) ⊗𝑆 𝐹′
𝜔𝐹𝑋𝐹

′
// 𝐹 ⊗𝑅 (𝑋 ⊗𝑆 𝐹′) .

Assume that 𝐴 is flat as an 𝑅o-module and 𝐶 is flat as an 𝑆-module. It follows from
5.4.18(b) that 𝐹 and P𝐴(𝑀) are semi-flat 𝑅o-complexes and that 𝐹′ and P𝐶 (𝑀) are
semi-flat 𝑆-complexes. Thus the vertical maps in the diagram are quasi-isomorphisms
by 5.4.16. It follows that 𝜔𝐹𝑋𝐹′ induces a morphism in D(𝑄–𝑇o) which is isomor-
phic to the augmented associativity isomorphism 𝝎𝑀𝑋𝑁 from 7.5.20(a′).

Swap

7.5.23 Construction. Recall from 7.3.8 that there are functors,

RHom𝑆o ( , ) : D(𝑆o)op ×D(𝑅–𝑆o) −→ D(𝑅) induced by Hom𝑆o (P𝑆o ( ), ) ,
RHom𝑅 ( , ) : D(𝑅)op ×D(𝑅) −→ D(𝕜) induced by Hom𝑅 (P𝑅 ( ), ) .

It follows from 7.2.4, cf. the argument in 7.5.16, that the composite functor
(7.5.23.1)

RHom𝑅 ( ,RHom𝑆o ( , )) : D(𝑅)op ×D(𝑅–𝑆o) ×D(𝑆o)op −→ D(𝕜)
is induced by Hom𝑅 (P𝑅 ( ),Hom𝑆o (P𝑆o ( ), )) .

Applied to an object (𝑀, 𝑋, 𝑁) this functor yields RHom𝑅 (𝑀,RHom𝑆o (𝑁, 𝑋)).
Similarly, the composite

(7.5.23.2)
RHom𝑆o ( ,RHom𝑅 ( , )) : D(𝑅)op ×D(𝑅–𝑆o) ×D(𝑆o)op −→ D(𝕜)

is induced by Hom𝑆o (P𝑆o ( ),Hom𝑅 (P𝑅 ( ), )) .

Applied to an object (𝑀, 𝑋, 𝑁) this functor yields RHom𝑆o (𝑁,RHom𝑅 (𝑀, 𝑋)).
Now, consider the natural isomorphism,

Hom𝑅 (P𝑅 ( ),Hom𝑆o (P𝑆o ( ), )) 𝜁 P ( ) P ( )
−−−−−−−−−→ Hom𝑆o (P𝑆o ( ),Hom𝑅 (P𝑅 ( ), )) ,
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368 7 Derived Functors

of functors from K(𝑅)op × K(𝑅–𝑆o) × K(𝑆o)op to K(𝕜) induced by swap 7.1.15.
There is a natural isomorphism of functors D(𝑅)op ×D(𝑅–𝑆o) ×D(𝑆o)op → D(𝕜)
induced by 7.2.5,
(7.5.23.3)

RHom𝑅 ( ,RHom𝑆o ( , )) 𝜻 = (𝜁 P ( ) P ( ) )́ ´−−−−−−−−−−−−−−→ RHom𝑆o ( ,RHom𝑅 ( , )) .

7.5.24 Definition. The natural isomorphism (7.5.23.3) is called swap.

Swap, 𝜻 , is by construction a natural isomorphism of functors from the category
D(𝑅)op × D(𝑅–𝑆o) × D(𝑆o)op to D(𝕜). In some cases, 𝜻 can be augmented to a
natural isomorphism of functors on derived categories of complexes with additional
ring actions.

7.5.25 Setup. Consider ring homomorphisms,

𝑅 ⊗𝕜 𝑄
o −→ 𝐴 , 𝑅 ⊗𝕜 𝑆

o −→ 𝐵 , and 𝑇 ⊗𝕜 𝑆
o −→ 𝐶 .

Let EI and EII be functors from D(𝐴)op ×D(𝐵) ×D(𝐶)op to D(𝑄–𝑇o) and assume
that there are natural isomorphisms

𝜑I : res𝑄⊗𝑇
o

𝕜
EI −→ RHom𝑅 (res𝐴𝑅,RHom𝑆o (res𝐶𝑆o, res𝐵𝑅⊗𝑆o )) and

𝜑II : res𝑄⊗𝑇
o

𝕜
EII −→ RHom𝑆o (res𝐶𝑆o,RHom𝑅 (res𝐴𝑅, res𝐵𝑅⊗𝑆o )) ,

where the functors on the right are (7.5.23.1) and (7.5.23.2) both precomposed with
res𝐴

𝑅
× res𝐵

𝑅⊗𝑆oo × res𝐶
𝑆o.

7.5.26 Definition. Adopt the setup 7.5.25. A natural transformation 𝜻0 : EI→ EII is
called an augmentation of swap if the next diagram is commutative,

res𝑄⊗𝑇
o

𝕜
EI

𝜑I ≃
��

res𝑄⊗𝑇
o

𝕜
𝜻0

// res𝑄⊗𝑇
o

𝕜
EII

𝜑II≃
��

RHom𝑅 (res𝐴
𝑅
,RHom𝑆o (res𝐶

𝑆o, res𝐵
𝑅⊗𝑆o)) ≃

𝜻 (res𝐴
𝑅
× res𝐵

𝑅⊗𝑆oo × res𝐶
𝑆o )

// RHom𝑆o (res𝐶
𝑆o,RHom𝑅 (res𝐴

𝑅
, res𝐵

𝑅⊗𝑆o))

where 𝜻 on the lower horizontal map is (7.5.23.3). In this case, 𝜻0 : EI→ EII is written
𝜻 : RHom𝑅 ( ,RHom𝑆o ( , )) → RHom𝑆o ( ,RHom𝑅 ( , )), and swap is said to be
augmented to an isomorphism of functors D(𝐴)op ×D(𝐵) ×D(𝐶)op → D(𝑄–𝑇o).

7.5.27 Theorem. Let 𝑅 ⊗𝕜 𝑄
o → 𝐴, 𝑅 ⊗𝕜 𝑆

o → 𝐵, and 𝑇 ⊗𝕜 𝑆
o → 𝐶 be ring

homomorphisms. If condition (a), (b), or (c) below is met, then swap is augmented to
a natural isomorphism of functors D(𝐴)op ×D(𝐵) ×D(𝐶)op → D(𝑄–𝑇o). That is,
for 𝑀 in D(𝐴), 𝑋 in D(𝐵), and 𝑁 in D(𝐶) there is an isomorphism in D(𝑄–𝑇o),
(7.5.27.1)

𝜻𝑀𝑋𝑁 : RHom𝑅 (𝑀,RHom𝑆o (𝑁, 𝑋)) −→ RHom𝑆o (𝑁,RHom𝑅 (𝑀, 𝑋)) ,

which is natural in 𝑀 , 𝑋 , and 𝑁 . As a natural transformation of functors, this
augmented 𝜻 is triangulated in each variable.
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(a) 𝐴 is projective as an 𝑅-module and 𝐶 is projective as an 𝑆o-module.
(b) 𝐴 is projective as an 𝑅-module and 𝐵 is flat as an 𝑆-module.
(c) 𝐵 is flat as an 𝑅o-module and 𝐶 is projective as an 𝑆o-module.

Moreover, (7.5.27.1) is induced by isomorphisms in K(𝑄–𝑇o) as follows:
(a′) If (a) is satisfied, then 𝜻𝑀𝑋𝑁 is induced by 𝜁P𝐴 (𝑀 )𝑋 P𝐶 (𝑁 ) .

(b′) If (b) is satisfied, then 𝜻𝑀𝑋𝑁 is induced by 𝜁P𝐴 (𝑀 ) I𝐵 (𝑋)𝑁 .

(c′) If (c) is satisfied, then 𝜻𝑀𝑋𝑁 is induced by 𝜁𝑀 I𝐵 (𝑋) P𝐶 (𝑁 ) .

Proof. The proof of 7.5.20 provides a template. Let 𝑀 be an 𝐴-complex, 𝑋 a 𝐵-
complex, and 𝑁 a 𝐶-complex. If condition (a) is satisfied, then the crucial input
is that P𝐴(𝑀) is a semi-projective 𝑅-complex and P𝐶 (𝑁) is a semi-projective 𝑆o-
complex, both by 5.2.23(b). If condition (b) is satisfied, then P𝐴(𝑀) is a semi-
projective 𝑅-complex, I𝐵 (𝑋) is a semi-injective 𝑆o-complex by 5.4.26(b), and as an
𝑆o-complex Hom𝑅 (P𝐴(𝑀), I𝐵 (𝑋)) is semi-injective by 5.3.25. Dually, if condition
(c) is satisfied, then P𝐶 (𝑀) is a semi-projective 𝑆o-complex, I𝐵 (𝑋) is a semi-
injective 𝑅-complex by 5.4.26(b), and as an 𝑅-complex Hom𝑆o (P𝐶 (𝑀), I𝐵 (𝑋)) is
semi-injective by 5.3.25. □

Notice that any of the conditions in the next corollary is satisfied if 𝕜 is a field.

7.5.28 Corollary. For complexes𝑀 inD(𝑅–𝑄o), 𝑋 inD(𝑅–𝑆o), and 𝑁 inD(𝑇–𝑆o)
swap,

𝜻𝑀𝑋𝑁 : RHom𝑅 (𝑀,RHom𝑆o (𝑁, 𝑋)) −→ RHom𝑆o (𝑁,RHom𝑅 (𝑀, 𝑋)) ,

is an isomorphism in D(𝑄–𝑇o) under each of the following conditions:
(a) 𝑄 and 𝑇 are projective as 𝕜-modules.
(b) 𝑄 is projective and 𝑅 is flat as 𝕜-modules.
(c) 𝑆 is flat and 𝑇 is projective as 𝕜-modules.

Proof. Apply 7.5.27 with 𝐴 = 𝑅 ⊗𝕜 𝑄
o, 𝐵 = 𝑅 ⊗𝕜 𝑆

o, and 𝐶 = 𝑇 ⊗𝕜 𝑆
o and invoke

7.3.11(a,c). □

Adjunction

7.5.29 Construction. Recall from 7.4.9 and 7.3.9 that there are functors,

⊗L
𝑆 : D(𝑅–𝑆o) ×D(𝑆) −→ D(𝑅) induced by ⊗𝑆 P𝑆 ( ) ,

RHom𝑅 ( , ) : D(𝑅)op ×D(𝑅) −→ D(𝕜) induced by Hom𝑅 ( , I𝑅 ( )) .

It follows from 7.2.4, cf. the argument in 7.5.16, that the composite functor

(7.5.29.1)
RHom𝑅 ( ⊗L

𝑆 , ) : D(𝑅) ×D(𝑅–𝑆o)op ×D(𝑆)op −→ D(𝕜)
is induced by Hom𝑅 ( ⊗𝑆 P𝑆 ( ), I𝑅 ( )) .

Applied to an object (𝑀, 𝑋, 𝑁) this functor yields RHom𝑅 (𝑋 ⊗L
𝑆
𝑁, 𝑀).

Similarly, the composite
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(7.5.29.2)
RHom𝑆 ( ,RHom𝑅 ( , )) : D(𝑅) ×D(𝑅–𝑆o)op ×D(𝑆)op −→ D(𝕜)

is induced by Hom𝑆 (P𝑆 ( ),Hom𝑅 ( , I𝑅 ( ))) .

Applied to an object (𝑀, 𝑋, 𝑁) this functor yields RHom𝑆 (𝑁,RHom𝑅 (𝑋, 𝑀)).
Now, consider the natural isomorphism,

𝜌I ( ) P ( ) : Hom𝑅 ( ⊗𝑆 P𝑆 ( ), I𝑅 ( )) −→ Hom𝑆 (P𝑆 ( ),Hom𝑅 ( , I𝑅 ( ))) ,

of functors fromK(𝑅)×K(𝑅–𝑆o)op×K(𝑆)op toK(𝕜) induced by adjunction 7.1.16.
There is a natural isomorphism of functors from D(𝑅) × D(𝑅–𝑆o)op × D(𝑆)op to
D(𝕜) induced by 7.2.5,

(7.5.29.3) RHom𝑅 ( ⊗L
𝑆 , ) 𝝆 = (𝜌I ( ) P ( ) )́ ´−−−−−−−−−−−−−−→ RHom𝑆 ( ,RHom𝑅 ( , )) .

7.5.30 Definition. The natural isomorphism (7.5.29.3) is called adjunction.

Adjunction, 𝝆 , is by construction a natural isomorphism of functors from the
categoryD(𝑅)×D(𝑅–𝑆o)op×D(𝑆)op toD(𝕜). In some cases, 𝝆 can be augmented to
a natural isomorphism of functors on derived categories of complexes with additional
ring actions.

7.5.31 Setup. Consider ring homomorphisms,

𝑅 ⊗𝕜 𝑄
o −→ 𝐴 , 𝑅 ⊗𝕜 𝑆

o −→ 𝐵 , and 𝑆 ⊗𝕜 𝑇
o −→ 𝐶 .

Let EI and EII be functors from D(𝐴) ×D(𝐵)op ×D(𝐶)op to D(𝑇–𝑄o) and assume
that there are natural isomorphisms

𝜑I : res𝑇⊗𝑄
o

𝕜
EI −→ RHom𝑅 (res𝐵𝑅⊗𝑆o ⊗L

𝑆 res𝐶𝑆 , res𝐴𝑅)
and

𝜑II : res𝑇⊗𝑄
o

𝕜
EII −→ RHom𝑆 (res𝐶𝑆 ,RHom𝑅 (res𝐵𝑅⊗𝑆o , res𝐴𝑅)) ,

where the functors on the right are (7.5.29.1) and (7.5.29.2) both precomposed with
res𝐴

𝑅
× res𝐵

𝑅⊗𝑆o × res𝐶
𝑆

.

7.5.32 Definition. Adopt the setup 7.5.31. A natural transformation 𝝆0 : EI→ EII is
called an augmentation of adjunction if the next diagram is commutative,

res𝑇⊗𝑄
o

𝕜
EI

𝜑I ≃
��

res𝑇⊗𝑄
o

𝕜
𝝆0

// res𝑇⊗𝑄
o

𝕜
EII

𝜑II≃
��

RHom𝑅 (res𝐵
𝑅⊗𝑆o ⊗L

𝑆
res𝐶

𝑆
, res𝐴

𝑅
) ≃

𝝆 (res𝐴
𝑅
× res𝐵

𝑅⊗𝑆o × res𝐶
𝑆
)

// RHom𝑆 (res𝐶
𝑆
,RHom𝑅 (res𝐵

𝑅⊗𝑆o , res𝐴
𝑅
)) ;

here 𝝆 on the lower horizontal arrow (7.5.29.3). In this case, 𝝆0 : EI→ EII is written
𝝆 : RHom𝑅 ( ⊗L

𝑆
, ) → RHom𝑆 ( ,RHom𝑅 ( , )), and adjunction is said to be

augmented to an isomorphism of functors D(𝐴) ×D(𝐵)op ×D(𝐶)op → D(𝑇–𝑄o).
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7.5.33 Theorem. Let 𝑅 ⊗𝕜 𝑄
o → 𝐴, 𝑅 ⊗𝕜 𝑆

o → 𝐵, and 𝑆 ⊗𝕜 𝑇
o → 𝐶 be ring ho-

momorphisms. If condition (a), (b), or (c) below is met, then adjunction is augmented
to a natural isomorphism of functors D(𝐴) ×D(𝐵)op ×D(𝐶)op → D(𝑇–𝑄o). That
is, for 𝑀 in D(𝐴), 𝑋 in D(𝐵), and 𝑁 in D(𝐶) there is an isomorphism in D(𝑇–𝑄o),

(7.5.33.1) 𝝆𝑀𝑋𝑁 : RHom𝑅 (𝑋 ⊗L
𝑆 𝑁, 𝑀) −→ RHom𝑆 (𝑁,RHom𝑅 (𝑋, 𝑀)) ,

which is natural in 𝑀 , 𝑋 , and 𝑁 . As a natural transformation of functors, this
augmented 𝝆 is triangulated in each variable.

(a) 𝐴 is flat as an 𝑅o-module and 𝐶 is projective as an 𝑆-module.
(b) 𝐴 is flat as an 𝑅o-module and 𝐵 is flat as an 𝑆o-module.
(c) 𝐵 is projective as an 𝑅-module and 𝐶 is projective as an 𝑆-module.

Moreover, (7.5.33.1) is induced by isomorphisms in K(𝑄–𝑇o) as follows:
(a′) If (a) is satisfied, then 𝝆𝑀𝑋𝑁 is induced by 𝜌I𝐴 (𝑀 )𝑋 P𝐶 (𝑁 ) .

(b′) If (b) is satisfied, then 𝝆𝑀𝑋𝑁 is induced by 𝜌I𝐴 (𝑀 ) P𝐵 (𝑋)𝑁 .

(c′) If (c) is satisfied, then 𝝆𝑀𝑋𝑁 is induced by 𝜌𝑀 P𝐵 (𝑋) P𝐶 (𝑁 ) .

Proof. The proof of 7.5.20 provides a template. Let 𝑀 be an 𝐴-complex, 𝑋 a 𝐵-
complex, and 𝑁 a𝐶-complex. Under condition (a), the crucial input is that I𝐴(𝑀) is a
semi-injective 𝑅-complex, see 5.4.26(b), and P𝐶 (𝑁) is a semi-projective 𝑆-complex
by 5.2.23(b). If (b) is satisfied, then I𝐴(𝑀) is a semi-injective 𝑅-complex, P𝐵 (𝑋) is
a semi-flat 𝑆o-complex by 5.4.18(b), and as an 𝑆-complex Hom𝑅 (P𝐵 (𝑋), I𝐴(𝑀)) is
semi-injective by 5.4.25. If condition (c) is satisfied, then P𝐶 (𝑁) is a semi-projective
𝑆-complex and P𝐵 (𝑋) is a semi-projective 𝑅-complex, both by 5.2.23(b), and as an
𝑅-complex P𝐵 (𝑋) ⊗𝑆 P𝐶 (𝑁) is semi-projective by 5.2.22. □

Notice that any of the conditions in the next corollary is satisfied if 𝕜 is a field.

7.5.34 Corollary. For complexes𝑀 inD(𝑅–𝑄o), 𝑋 inD(𝑅–𝑆o), and 𝑁 inD(𝑆–𝑇o)
adjunction,

𝝆𝑀𝑋𝑁 : RHom𝑅 (𝑋 ⊗L
𝑆 𝑁, 𝑀) −→ RHom𝑆 (𝑁,RHom𝑅 (𝑋, 𝑀)) ,

is an isomorphism in D(𝑇–𝑄o) under each of the following conditions:
(a) 𝑄 is flat and 𝑇 is projective as 𝕜-modules.
(b) 𝑄 and 𝑅 are flat as 𝕜-modules.
(c) 𝑆 and 𝑇 are projective as 𝕜-modules.

Proof. Apply 7.5.33 with 𝐴 = 𝑅 ⊗𝕜 𝑄
o, 𝐵 = 𝑅 ⊗𝕜 𝑆

o, and 𝐶 = 𝑆 ⊗𝕜 𝑇
o and invoke

7.3.11. □

7.5.35 Example. Adopt the setup from 7.5.31 and let 𝑀 be an 𝐴-complex, 𝑋 a
𝐵-complex, and 𝑁 a 𝐶-complex. Let 𝐹 be a semi-flat replacement of 𝑋 . By 6.4.20
there is a quasi-isomorphism 𝜗 : P𝐵 (𝑋) → 𝐹 in K(𝐵) which yields a commutative
diagram in K(𝑇–𝑄o),
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Hom𝑅 (𝐹 ⊗𝑆 𝑁, I𝐴(𝑀))

Hom (𝜗⊗𝑁,I (𝑀 ) )
��

𝜌I (𝑀)𝐹𝑁
// Hom𝑆 (𝑁,Hom𝑅 (𝐹, I𝐴(𝑀)))

Hom (𝑁,Hom (𝜗,I (𝑀 ) ) )
��

Hom𝑅 (P𝐵 (𝑋) ⊗𝑆 𝑁, I𝐴(𝑀))
𝜌I (𝑀) P (𝑋)𝑁

// Hom𝑆 (𝑁,Hom𝑅 (P𝐵 (𝑋), I𝐴(𝑀))) .

Assume that 𝐴 is flat as an 𝑅o-module and 𝐵 is flat as an 𝑆o-module. It follows
from 5.4.18(b) that 𝐹 and P𝐵 (𝑋) are semi-flat 𝑆o-complexes and from 5.4.26(b) that
I𝐴(𝑀) is a semi-injective 𝑅-complex. Thus the left-hand vertical map is a quasi-
isomorphism by 5.4.16. From 5.4.25 it follows that Hom𝑅 (P𝐵 (𝑋), I𝐴(𝑀)) and
Hom𝑅 (𝐹, I𝐴(𝑀)) are semi-injective 𝑆-complexes, so the right-hand vertical map is
a homotopy equivalence by 5.3.24. It follows that 𝜌I (𝑀 )𝐹𝑁 induces a morphism in
D(𝑇–𝑄o) which is isomorphic to the augmented adjunction isomorphism 𝝆𝑀𝑋𝑁

from 7.5.33(b′).

Exercises

E 7.5.1 Let 𝑀 be an 𝑅o-module and 𝑁 an 𝑅-module. Show that for every 𝑚 ∈ ℤ there is an
isomorphism Tor𝑅𝑚 (𝑀, 𝑁 ) � Tor𝑅o

𝑚 (𝑁, 𝑀 ) .
E 7.5.2 Let 𝑀 be an 𝑅o-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝐹 a flat 𝑆-module. Show that there is

an isomorphism Tor𝑅𝑚 (𝑀, 𝑋) ⊗𝑆 𝐹 � Tor𝑅𝑚 (𝑀, 𝑋 ⊗𝑆 𝐹 ) for every 𝑚 ∈ ℤ.
E 7.5.3 Let 𝑃 be a projective 𝑅-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝑁 an 𝑆o-module. Show that

there is an isomorphism Hom𝑅 (𝑃, Ext𝑚
𝑆o (𝑁, 𝑋) ) � Ext𝑚

𝑆o (𝑁,Hom𝑅 (𝑃, 𝑋) ) for every
𝑚 ∈ ℤ.

E 7.5.4 Let 𝐼 be an injective 𝑅-module, 𝑋 an 𝑅–𝑆o-bimodule, and 𝑁 an 𝑆-module. Show that
there is an isomorphism, Hom𝑅 (Tor𝑆𝑚 (𝑋, 𝑁 ) , 𝐼 ) � Ext𝑚

𝑆
(𝑁,Hom𝑅 (𝑋, 𝐼 ) ) for every

𝑚 ∈ ℤ.
E 7.5.5 Let 𝑋 be a complex of 𝑅–𝑆o-bimodules. Show that there is an adjunction,

𝑋 ⊗L
𝑆 : D(𝑆) −−→←−− D(𝑅) : RHom𝑅 (𝑋, ) .

E 7.5.6 Show that the restriction of scalars functor res𝑆
𝑅

: D(𝑆) →D(𝑅) has a left adjoint and a
right adjoint. Hint: E 7.5.5.

7.6 Boundedness and Finiteness

Synopsis. Bounded (above/below) derived category; preservation of boundedness and finiteness
by the functors RHom and ⊗L .

Conditions of vanishing and finiteness of homology modules identify important
subcategories of D(𝑅).

Bounded Subcategories of the Derived Category

Recall from 6.5.17 that homology is a functor on D(𝑅).

8-Mar-2024 Draft - use at own risk



7.6 Boundedness and Finiteness 373

7.6.1 Definition. The full subcategories D⊏ (𝑅), D⊐ (𝑅), and D⊏⊐ (𝑅) of D(𝑅) are
defined by specifying their objects as follows,

D⊏ (𝑅) = {𝑀 ∈ D(𝑅) | H(𝑀) is bounded above} ,
D⊐ (𝑅) = {𝑀 ∈ D(𝑅) | H(𝑀) is bounded below} , and
D⊏⊐ (𝑅) = {𝑀 ∈ D(𝑅) | H(𝑀) is bounded} .

7.6.2. Note that D⊏⊐ (𝑅) is the intersection of the subcategories D⊏ (𝑅) and D⊐ (𝑅).
In terms of the invariants from 2.5.4 these categories can be described as follows,

D⊏ (𝑅) = {𝑀 ∈ D(𝑅) | sup𝑀 < ∞} ,
D⊐ (𝑅) = {𝑀 ∈ D(𝑅) | inf 𝑀 > −∞} , and
D⊏⊐ (𝑅) = {𝑀 ∈ D(𝑅) | amp𝑀 < ∞} .

7.6.3 Proposition. The categories D⊏ (𝑅), D⊐ (𝑅), and D⊏⊐ (𝑅) are triangulated
subcategories of D(𝑅), and they are closed under soft truncations.

Proof. We verify the axioms from E.14. By definition, all three subcategories of
D(𝑅) are full; evidently they are 𝕜-linear and closed under isomorphisms and shifts.
It follows from 7.6.2 and 6.5.20 that they are closed under distinguished triangles.
Closure under soft truncations is evident. □

7.6.4. For an 𝑅-complex 𝑀 it follows from 4.2.4 and 6.4.18 that in D(𝑅) there are
isomorphisms 𝑀 ≃ 𝑀Ď𝑛 for every 𝑛 ⩾ sup𝑀 and 𝑀 ≃ 𝑀Ě𝑛 for every 𝑛 ⩽ inf 𝑀 .

7.6.5 Proposition. There are equalities of full subcategories of D(𝑅):

D⊏ (𝑅) = {𝑀 ∈ D(𝑅) | 𝑀 is isomorphic in D(𝑅) to a bounded above complex} ,
D⊐ (𝑅) = {𝑀 ∈ D(𝑅) | 𝑀 is isomorphic in D(𝑅) to a bounded below complex} ,
D⊏⊐ (𝑅) = {𝑀 ∈ D(𝑅) | 𝑀 is isomorphic in D(𝑅) to a bounded complex} .

Proof. The inclusions “⊇” are trivial; the inclusions “⊆” follow from 7.6.4. □

7.6.6 Proposition. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. One has the following
distinguished triangles in D(𝑅).

Σ𝑛H𝑛 (𝑀) −→ 𝑀Ď𝑛 −→ 𝑀Ď𝑛−1 −→ Σ (Σ𝑛H𝑛 (𝑀)) .(a)
𝑀Ě𝑛+1 −→ 𝑀Ě𝑛 −→ Σ𝑛H𝑛 (𝑀) −→ Σ (𝑀Ě𝑛+1) .(b)
𝑀Ě𝑛 −→ 𝑀 −→ 𝑀Ď𝑛−1 −→ Σ (𝑀Ě𝑛) .(c)

Proof. To construct (a), note that there is a short exact sequence in C(𝑅),

0 −→ 𝐻 −→ 𝑀Ď𝑛 −→ 𝑀Ď𝑛−1 −→ 0 ,

and hence by 6.5.24 a distinguished triangle 𝐻 → 𝑀Ď𝑛 → 𝑀Ď𝑛−1 → Σ𝐻 in D(𝑅).
The complex

𝐻 = 0 −→ C𝑛 (𝑀)
�̄�𝑀𝑛−−−→ B𝑛−1 (𝑀) −→ 0
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is concentrated in degrees 𝑛 and 𝑛 − 1, and the embedding Σ𝑛H𝑛 (𝑀) → 𝐻 is
evidently a quasi-isomorphism; in particular it yields an isomorphism in D(𝑅).

A dual argument establishes (b). To construct (c), consider the short exact se-
quence in C(𝑅),

0 −→ 𝑀Ě𝑛 −→ 𝑀 −→ 𝐶 −→ 0 ,

where the cokernel 𝐶 is the complex 0→ B𝑛−1 (𝑀) → 𝑀𝑛−1 → 𝑀𝑛−2 → · · · . The
surjection 𝐶 → 𝑀Ď𝑛−1 is a quasi-isomorphism; in particular it yields an isomor-
phism in D(𝑅), and the existence of the desired triangle follows from 6.5.24. □

Remark. A t-structure on a triangulated category (T, Σ) is a pair (A,B) of full subcategories
that are closed under isomorphisms, direct sums, and direct summands such that (1) ΣA ⊆ A

and Σ−1B ⊆ B; (2) T (𝐴, 𝐵) = 0 for all 𝐴 ∈ A and 𝐵 ∈ B; (3) for every 𝑀 ∈ T there is
a distinguished triangle 𝐴 → 𝑀 → 𝐵 → Σ𝐴 with 𝐴 ∈ A and 𝐵 ∈ B. The triangle 7.6.6(c)
together with the fact that there are no non-zero morphisms 𝑀Ě1 → 𝑀Ď0 in D(𝑅) , see E 7.6.3,
shows that truncations give rise to a 𝑡-structure on D(𝑅) .

With appropriate boundedness conditions on the arguments, one can excert some
control over the boundedness of derived Hom and tensor product complexes. This
theme is comprehensively revisited in A.23–A.34.

7.6.7 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes that are not acyclic. One has

− sup RHom𝑅 (𝑀, 𝑁) ⩾ inf 𝑀 − sup 𝑁 .

Further, if 𝑀 is in D⊐ (𝑅) with 𝑢 = inf 𝑀 and 𝑁 is in D⊏ (𝑅) with 𝑠 = sup 𝑁 , then
RHom𝑅 (𝑀, 𝑁) belongs to D⊏ (𝕜), and there is an isomorphism of 𝕜-modules,

H−(𝑢−𝑠) (RHom𝑅 (𝑀, 𝑁)) � Hom𝑅 (H𝑢 (𝑀),H𝑠 (𝑁)) .

Proof. The inequality is trivial if inf 𝑀 = −∞ or sup 𝑁 = ∞, so one can assume
that 𝑀 is in D⊐ (𝑅) and 𝑁 is in D⊏ (𝑅). Set 𝑢 = inf 𝑀 and 𝑠 = sup 𝑁 . By 5.2.15
there exists a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃𝑣 = 0 for all 𝑣 < 𝑢. One
has RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (𝑀, 𝑁Ď𝑤) = Hom𝑅 (𝑃, 𝑁Ď𝑤) in D(𝕜) by 7.6.4 and
7.3.21, and the assertions follow from 2.5.12. □

7.6.8 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes that are not acyclic. One has

inf (𝑀 ⊗L
𝑅 𝑁) ⩾ inf 𝑀 + inf 𝑁 .

Further, if 𝑀 and 𝑁 belong to D⊐ (𝑅) with 𝑢 = inf 𝑀 and 𝑤 = inf 𝑁 , then 𝑀 ⊗L
𝑅
𝑁

belongs to D⊐ (𝕜), and there is an isomorphism of 𝕜-modules,

H𝑢+𝑤(𝑀 ⊗L
𝑅 𝑁) � H𝑢 (𝑀) ⊗𝑅 H𝑤(𝑁) .

Proof. The inequality is trivial if inf 𝑀 or inf 𝑁 equals −∞, so one can assume
that 𝑀 and 𝑁 belong to D⊐ (𝑅). Set 𝑢 = inf 𝑀 and 𝑤 = inf 𝑁 . By 5.2.15 there
exists a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃𝑣 = 0 for all 𝑣 < 𝑢. There are
isomorphisms 𝑀 ⊗L

𝑅
𝑁 ≃ 𝑀 ⊗L

𝑅
𝑁Ě𝑤 = 𝑃 ⊗𝑅 𝑁Ě𝑤 in D(𝕜) by 7.6.4 and 7.4.8, and

the assertions follow from 2.5.18. □
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Under additional assumptions, the inequalities in the next two result are equalities;
see 17.6.14 and 17.6.17.

7.6.9 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. If 𝑀 is in D⊏⊐ (𝑅), then one has

− sup RHom𝑅 (𝑀, 𝑁) ⩾ inf{− sup RHom𝑅 (H𝑣 (𝑀), 𝑁) + 𝑣 | 𝑣 ∈ ℤ} .

Proof. The inequality is trivial if 𝑀 is acyclic, so assume that 𝑀 is not acyclic,
set 𝑢 = inf 𝑀 , and proceed by induction on amp𝑀 . If amp𝑀 = 0, i.e. H(𝑀) is
concentrated in degree 𝑢, then 7.3.29 and the fact that RHom𝑅 ( , 𝑁) is triangulated,
see 7.3.6, imply that there are isomorphisms in D(k),

RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (Σ𝑢H𝑢 (𝑀), 𝑁) ≃ Σ−𝑢RHom𝑅 (H𝑢 (𝑀), 𝑁) .

Thus 2.5.5 yields − sup RHom𝑅 (𝑀, 𝑁) = − sup RHom𝑅 (H𝑢 (𝑀), 𝑁) + 𝑢, so the in-
equality is even an equality in this case.

Now let𝑤−𝑢 > 0 and assume that the inequality holds for complexes of amplitude
less than𝑤−𝑢. If amp𝑀 = 𝑤−𝑢 holds, then H(𝑀) is concentrated in degrees𝑤, .. . , 𝑢,
and there is a distinguished triangle 𝑀Ě𝑢+1 → 𝑀 → 𝑀Ď𝑢 → Σ (𝑀Ě𝑢+1) in D(𝑅);
see 7.6.6(c). Application of RHom𝑅 ( , 𝑁) yields a distinguished triangle,

RHom𝑅 (𝑀Ď𝑢, 𝑁) −→ RHom𝑅 (𝑀, 𝑁) −→
RHom𝑅 (𝑀Ě𝑢+1, 𝑁) −→ ΣRHom𝑅 (𝑀Ď𝑢, 𝑁) .

The complex 𝑀Ď𝑢 has amplitude 0 and is concentrated in degree 𝑢, so one has

− sup RHom𝑅 (𝑀Ď𝑢, 𝑁) = − sup RHom𝑅 (H𝑢 (𝑀), 𝑁) + 𝑢 .

By the induction hypothesis one has

− sup RHom𝑅 (𝑀Ě𝑢+1, 𝑁) ⩾ inf{− sup RHom𝑅 (H𝑣 (𝑀Ě𝑢+1), 𝑁) + 𝑣 | 𝑣 ∈ ℤ}
= inf{− sup RHom𝑅 (H𝑣 (𝑀), 𝑁) + 𝑣 | 𝑢 + 1 ⩽ 𝑣 ⩽ 𝑤} .

The desired inequality is now immediate from 6.5.20 applied to the distinguished
triangle displayed above. □

7.6.10 Proposition. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. If 𝑀 is in
D⊏⊐ (𝑅o), then one has

inf (𝑀 ⊗L
𝑅 𝑁) ⩾ inf{inf (H𝑣 (𝑀) ⊗L

𝑅 𝑁) + 𝑣 | 𝑣 ∈ ℤ} .

Proof. In the computation below, the first and last equalities follow from 2.5.7(b)
and commutativity 7.5.10. The second equality holds by adjunction 7.5.30, and 7.6.9
yields the inequality.

inf (𝑀 ⊗L
𝑅 𝑁) = − sup RHom𝕜 (𝑁 ⊗L

𝑅o 𝑀,𝔼)
= − sup RHom𝑅o (𝑀,RHom𝕜 (𝑁,𝔼))
⩾ inf{− sup RHom𝕜 (𝑁 ⊗L

𝑅o H𝑣 (𝑀),𝔼) + 𝑣 | 𝑣 ∈ ℤ}
= inf{inf (H𝑣 (𝐾) ⊗L

𝑅 𝑀) + 𝑣 | 𝑣 ∈ ℤ} . □
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Accounting Principles

A complex of vector spaces and its homology are isomorphic in the derived category,
see e.g. 6.4.23. Moreover, it is a fact—perhaps already known from exercises in
Chap. 5 and in any event a special case of 7.6.11(c) below—that a complex of vector
spaces is both semi-injective and semi-flat. It follows that the suprema and infima of
derived Hom and tensor product complexes over a field can be computed exactly in
terms of the suprema and infima of the arguments, see 7.6.12. In [96] these formulas
were dubbed Accounting Principles, see also the Remark after 7.6.12.

7.6.11 Lemma. Let 𝑅 be an integral domain with field of fractions 𝑄 and 𝑀 an
𝑅-complex. If the homothety 𝑟H (𝑀 ) is an isomorphism for every 𝑟 ≠ 0, then the
following assertions hold.

(a) There is an isomorphism 𝑀 ≃ H(𝑀) in D(𝑅) .
(b) H(𝑀) is a 𝑄-complex and in C(𝑄) there are isomorphisms,

H(𝑀) � 𝑄 ⊗𝑅 H(𝑀) � H(𝑄 ⊗𝑅 𝑀) .

(c) As an 𝑅-complex, H(𝑀) is a semi-flat and a semi-injective replacement of 𝑀 .

Proof. It follows from the assumption that the embedding 𝜄 : 𝑅 → 𝑄 induces an iso-
morphism 𝜄 ⊗𝑅 H(𝑀) : H(𝑀) → 𝑄 ⊗𝑅 H(𝑀) of 𝑅-complexes; in particular, H(𝑀)
is a 𝑄-complex and 𝜄 ⊗𝑅 H(𝑀) is an isomorphism in C(𝑄). Further, 2.2.19 yields
𝑄 ⊗𝑅 H(𝑀) � H(𝑄 ⊗𝑅 𝑀) as 𝑄 is flat as an 𝑅-module, see 1.3.42. This proves
part (b) and shows that the canonical map 𝑀 → 𝑄 ⊗𝑅 𝑀 is a quasi-isomorphism.
In D(𝑅) one now has 𝑀 ≃ 𝑄 ⊗𝑅 𝑀 ≃ H(𝑄 ⊗𝑅 𝑀) ≃ H(𝑀), where the middle
isomorphism holds by 6.4.23. This proves part (a). As an 𝑅-module, a 𝑄-vector
space is flat by 1.3.42 and 5.4.22 and injective by 1.3.33. Since 𝑄 ⊗𝑅 H(𝑀) is a
graded 𝑄-vector space it is, as an 𝑅-complex, semi-flat by 5.4.11 and semi-injective
by 5.3.18. In view of (a), this proves part (c). □

7.6.12 Proposition. Let 𝑄 be a field. For 𝑄-complexes 𝐾 and 𝐿 there are isomor-
phisms in D(𝑄),

RHom𝑄 (𝐾, 𝐿) ≃ Hom𝑄 (H(𝐾),H(𝐿)) and 𝐾 ⊗L
𝑄 𝐿 ≃ H(𝐾) ⊗𝑄 H(𝐿) .

Moreover, if one has H(𝐾) ≠ 0 ≠ H(𝐿), then the following equalities hold:

− sup RHom𝑄 (𝐾, 𝐿) = inf 𝐾 − sup 𝐿 , inf (𝐾 ⊗L
𝑄 𝐿) = inf 𝐾 + inf 𝐿 ,

− inf RHom𝑄 (𝐾, 𝐿) = sup𝐾 − inf 𝐿 , and sup (𝐾 ⊗L
𝑄 𝐿) = sup𝐾 + sup 𝐿 .

Proof. For every 𝑄-complex 𝑀 the graded 𝑄-vector space H(𝑀) is by 7.6.11(c)
a semi-flat and a semi-injective replacement of 𝑀; the asserted isomorphisms in
D(𝑄) follow. Assuming that H(𝐾) and H(𝐿) are non-zero, the four equalities follow
from 2.1.4 and 2.1.14. □

Remark. The isomorphisms in 7.6.12 are commonly known as Künneth Formulas, and indeed
they can be derived from 2.5.8 and 2.5.14; see E 2.5.3 and E 2.5.4.
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7.6 Boundedness and Finiteness 377

Finite Homology and Noetherian Rings

7.6.13 Definition. The full subcategory Df (𝑅) of D(𝑅) is defined by specifying its
objects as follows,

Df (𝑅) = {𝑀 ∈ D(𝑅) | H(𝑀) is degreewise finitely generated} .

The full subcategory Df (𝑅) ∩D⊏ (𝑅) is denoted by Df
⊏ (𝑅). Similarly, one defines

the subcategories Df
⊐ (𝑅) and Df

⊏⊐ (𝑅).

7.6.14 Proposition. If 𝑅 is left Noetherian, thenDf (𝑅) is a triangulated subcategory
of D(𝑅) and closed under soft truncations.

Proof. We verify the axioms from E.14. By definition Df (𝑅) is full, and evidently
it is additive and closed under isomorphisms and shifts; see 6.5.17. Since 𝑅 is left
Noetherian, it follows from 6.5.19 thatDf (𝑅) is closed under distinguished triangles.
Closure under soft truncations is evident. □

From 7.6.14 and 7.6.3 it follows that if 𝑅 is left Noetherian, then Df
⊏ (𝑅), Df

⊐ (𝑅),
andDf

⊏⊐ (𝑅) are triangulated subcategories ofD(𝑅) and closed under soft truncations.

7.6.15 Proposition. If 𝑅 is left Noetherian, then the following hold:

Df
⊐ (𝑅) =

{
𝑀 ∈ D(𝑅)

���� 𝑀 is isomorphic in D(𝑅) to a bounded below
and degreewise finitely generated complex

}
and

Df
⊏⊐ (𝑅) =

{
𝑀 ∈ D(𝑅)

���� 𝑀 is isomorphic in D(𝑅) to a bounded
and degreewise finitely generated complex

}
.

Proof. The inclusions “⊇” are trivial. For a complex 𝑀 in Df
⊐ (𝑅), choose 𝑢 ∈ ℤ

with 𝑢 ⩽ inf 𝑀 . By 5.1.14 there is a semi-free resolution 𝐿 ≃−−→ 𝑀 with 𝐿 degreewise
finitely generated and 𝐿𝑣 = 0 for all 𝑣 < 𝑢. This proves the first equality.

For 𝑀 in Df
⊏⊐ (𝑅) there exists by the argument above a bounded below and de-

greewise finitely generated complex 𝐿 with 𝑀 ≃ 𝐿 in D(𝑅). Choose 𝑤 ∈ ℤ with
𝑤 ⩾ sup𝑀 , by 7.6.4 and 6.4.38 there are isomorphisms 𝑀 ≃ 𝑀Ď𝑤 ≃ 𝐿Ď𝑤 in D(𝑅),
and 𝐿Ď𝑤 is bounded and degreewise finitely generated. □

Remark. Under extra assumptions on 𝑅 one can prove that a complex in Df
⊏ (𝑅) is isomorphic in

D(𝑅) to a bounded above complex of finitely generated 𝑅-modules; see E 18.2.12.

7.6.16 Proposition. Assume that 𝑅 is left Noetherian and 𝑆 right Noetherian. Let
𝑀 be a complex in Df

⊐ (𝑅) and 𝑋 a complex in D⊏ (𝑅–𝑆o). If H(𝑋) is degreewise
finitely generated over 𝑆o, then the complex RHom𝑅 (𝑀, 𝑋) belongs to Df

⊏ (𝑆o).

Proof. Since 𝑀 is in D⊐ (𝑅), the functor F = RHom𝑅 (𝑀, ) : D(𝑅–𝑆o) → D(𝑆o)
is bounded above, see A.26(a). As F by 7.3.6 is triangulated, it maps D⊏ (𝑅–𝑆o) to
D⊏ (𝑆o), see A.25(a). To show that F(𝑋) belongs to Df (𝑆o), one can by 7.6.14 apply
A.29(c) with

U = {𝑌 ∈ D(𝑅–𝑆o) | res𝑅⊗𝑆
o

𝑆o (𝑌 ) ∈ Df (𝑆o) } .
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378 7 Derived Functors

It thus suffices to argue that F(𝑌 ) is in Df (𝑆o) for every 𝑅–𝑆o-bimodule 𝑌 that is
finitely generated over 𝑆o, so let 𝑌 be such a module. Choose by 5.2.16 a semi-
projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃 degreewise finitely generated and 𝑃𝑣 = 0 for
𝑣 < inf 𝑀 . The 𝑆o-complex F(𝑌 ) = Hom𝑅 (𝑃,𝑌 ), see 7.3.21, consists by 2.5.13 of
finitely generated modules, and hence its homology is degreewise finitely generated
as 𝑆 is right Noetherian. □

7.6.17 Corollary. Assume that 𝑅 is Noetherian. For every complex 𝑀 in Df
⊐ (𝑅) the

complex RHom𝑅 (𝑀, 𝑅) belongs to Df
⊏ (𝑅o).

Proof. The assertion is immediate from 7.6.16 applied with 𝑅 = 𝑆. □

7.6.18 Proposition. Assume that 𝑅 and 𝑆 are left Noetherian. Let 𝑁 be a complex
in Df

⊐ (𝑆) and 𝑋 a complex in D⊐ (𝑅–𝑆o). If H(𝑋) is degreewise finitely generated
over 𝑅, then the complex 𝑋 ⊗L

𝑆
𝑁 belongs to Df

⊐ (𝑅).

Proof. As 𝑁 is in D⊐ (𝑅), the functor F = ⊗L
𝑆
𝑁 : D(𝑅–𝑆o) → D(𝑅) is bounded

below by A.27(a). As F by 7.4.5 is triangulated, it maps D⊐ (𝑅–𝑆o) to D⊐ (𝑅), see
A.25(b). To see that F(𝑋) belongs to Df (𝑅), one can by 7.6.14 apply A.29(b) with

U = {𝑌 ∈ D(𝑅–𝑆o) | res𝑅⊗𝑆
o

𝑅 (𝑌 ) ∈ Df (𝑅) } .

It thus suffices to argue that F(𝑌 ) is in Df (𝑅) for every 𝑅–𝑆o-bimodule 𝑌 that is
finitely generated over 𝑅. To this end choose by 5.2.16 a semi-projective resolution
𝑃
≃−−→ 𝑁 with 𝑃 degreewise finitely generated and 𝑃𝑣 = 0 for 𝑣 < inf 𝑁 . The 𝑅-

complex F(𝑌 ) = 𝑌 ⊗𝑆 𝑃, see 7.4.17, consists by 2.5.19 of finitely generated modules,
so its homology is degreewise finitely generated as 𝑅 is left Noetherian. □

Exercises

E 7.6.1 Show that D⊏⊐ (𝑅) is the smallest triangulated subcategory of D(𝑅) that contains the full
subcategory M(𝑅) .

E 7.6.2 Let U be a triangulated subcategory of D(𝑅) that is closed under soft truncations above
or below. Show that for every 𝑀 in U and every 𝑣 ∈ ℤ the module H𝑣 (𝑀 ) is in U.

E 7.6.3 Let𝑀 be an 𝑅-complex; show that there is no non-zero morphism𝑀Ě1 → 𝑀Ď0 inD(𝑅) .
E 7.6.4 Exhibit complexes 𝑀 ∈ D⊐ (ℤ) and 𝑁 ∈ D⊏ (ℤ) such that − sup RHomℤ (𝑀, 𝑁 ) is

strictly greater than inf 𝑀 − sup 𝑁 .
E 7.6.5 Exhibit complexes 𝑀 ∈ D⊐ (ℤ) and 𝑁 ∈ D⊐ (ℤ) such that inf (𝑀 ⊗L

ℤ
𝑁 ) is strictly

greater than inf 𝑀 + inf 𝑁 .
E 7.6.6 Prove 7.6.10 without recourse to 7.6.9.
E 7.6.7 Let 𝑀 and 𝑁 be 𝑅-complexes. Show that if 𝑁 is in D⊏⊐ (𝑅) , then one has

− sup RHom𝑅 (𝑀, 𝑁 ) ⩾ inf{− sup RHom𝑅 (𝑀,H𝑣 (𝑁 ) ) − 𝑣 | 𝑣 ∈ ℤ} .
E 7.6.8 Assume that 𝕜 is Noetherian and 𝑅 left Noetherian. Let 𝑋 be a complex in D⊐ (𝑅–𝑆o )

and 𝑁 a complex in D⊏ (𝑅) . Show that if H(𝑋) is degreewise finitely generated over 𝑅
and H(𝑁 ) degreewise finitely generated over 𝕜, then RHom𝑅 (𝑋, 𝑁 ) belongs to Df

⊐ (𝑆) .
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Chapter 8
Homological Dimensions

The construction of a semi-free resolution, or a semi-injective resolution, of an 𝑅-
complex yields a complex that, though it has remarkable properties, is isomorphic
in the derived category to the original complex. What one may have to concede in
this exchange is boundedness: Even if one starts with a module, the resolutions may
not be bounded. Homological dimensions are measures of the size of resolution.

Avramov and Foxby outline the theory of homological dimensions for complexes
in [21]. We follow that outline which adheres to the blueprint set by Cartan and
Eilenberg’s treatment of homological dimensions of modules in [48].

8.1 Projective Dimension

Synopsis. Vanishing of Ext; projective dimension; Schanuel’s lemma; Horseshoe Lemma; projec-
tive dimension over Noetherian/semi-perfect/perfect ring; projective dimension of module.

First we connect projectivity of modules to vanishing of Ext.

8.1.1 Lemma. For an 𝑅-module 𝑃, the following conditions are equivalent.
(i) 𝑃 is projective.
(ii) − inf RHom𝑅 (𝑃, 𝑁) ⩽ − inf 𝑁 holds for every 𝑅-complex 𝑁 .
(iii) There exists a surjective homomorphism 𝜋 : 𝐿 → 𝑃 with 𝐿 projective and with

Ext1𝑅 (𝑃,Ker 𝜋) = 0 .

Proof. If 𝑃 is projective, then 1𝑃 is a projective resolution of 𝑃, and one has
RHom𝑅 (𝑃, 𝑁) = Hom𝑅 (𝑃, 𝑁) inD(𝕜). Now 2.5.7(a) yields − inf RHom𝑅 (𝑃, 𝑁) ⩽
− inf 𝑁 . Thus, (i) implies (ii) which, in particular, implies that the functor Ext1𝑅 (𝑃, )
is zero on modules, whence (iii) follows. To see that (iii) implies (i), consider the
short exact sequence 0→ Ker 𝜋 → 𝐿 → 𝑃→ 0. It is split by 7.3.36, so 𝑃 is a direct
summand of a projective module and hence projective by 1.3.24. □
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380 8 Homological Dimensions

Semi-Projective Replacements and Projective Dimension

Recall from 5.2.15 that every complex is isomorphic in the derived category to
a semi-projective complex; by 7.3.16 such a complex is called a semi-projective
replacement. A complex of finite projective dimension is one that is isomorphic to a
bounded above semi-projective complex.

8.1.2 Definition. Let 𝑀 be an 𝑅-complex. The projective dimension of 𝑀 , written
pd𝑅 𝑀 , is defined as

pd𝑅 𝑀 = inf
{
𝑛 ∈ ℤ

���� There is a semi-projective replacement
𝑃 of 𝑀 with 𝑃𝑣 = 0 for all 𝑣 > 𝑛

}
,

with the convention inf ∅ = ∞. One says that pd𝑅 𝑀 is finite if pd𝑅 𝑀 < ∞ holds.

The convention that a complex of projective dimension −∞ has finite projective
dimension may appear odd, but as we notice below this only happens for acyclic
complexes. Saying that a complex has finite projective dimension thus conveys that
it has a bounded above semi-projective replacement.

8.1.3. Let 𝑀 be an 𝑅-complex. For every semi-projective replacement 𝑃 of 𝑀 one
has H(𝑃) � H(𝑀); the next (in)equalities are hence immediate from the definition,

pd𝑅 𝑀 ⩾ sup𝑀 and pd𝑅 Σ𝑠𝑀 = pd𝑅 𝑀 + 𝑠 for every integer 𝑠 .

Moreover, one has pd𝑅 𝑀 = −∞ if and only if 𝑀 is acyclic.
Note that the definition of projective dimension could also be written

pd𝑅 𝑀 = inf{sup 𝑃♮ | 𝑃 is a semi-projective replacement of 𝑀 } .

8.1.4 Proposition. Let 𝑅 → 𝑆 be a ring homomorphism and 𝑀 be an 𝑅-complex.
There is an inequality,

pd𝑆 (𝑆 ⊗L
𝑅 𝑀) ⩽ pd𝑅 𝑀 .

Proof. For every semi-projective replacement 𝑃 of the 𝑅-complex𝑀 , the 𝑆-complex
𝑆 ⊗𝑅 𝑃 is a semi-projective replacement of 𝑆 ⊗L

𝑅
𝑀 by 5.2.23(a). As 𝑃𝑣 = 0 implies

(𝑆 ⊗𝑅 𝑃)𝑣 = 0, the desired inequality follows from 8.1.2. □

Even if 𝑆 is flat as an 𝑅-module, the inequality in 8.1.4 may be strict; but see also
the Remark after 15.4.19.

8.1.5 Example. It follows from 5.4.15 that one has pdℤ ℚ ⩽ 1. On the other hand,
if there were a semi-projective replacement 𝑃 of ℚ in D(ℤ) with 𝑃1 = 0, then
one would have ℚ � H0 (𝑃) � Z0 (𝑃), but Z0 (𝑃) would be a submodule of a free
ℤ-module and hence free by 1.3.11; a contradiction. Thus pdℤ ℚ = 1 holds, and for
the base changed module ℚ ⊗ℤ ℚ � ℚ one has pdℚ (ℚ ⊗ℤ ℚ) = 0 by 8.1.2 and 8.1.3.

We now aim for a theorem that asserts, in summary form, that complexes of
finite projective dimension are characterized by vanishing of Ext and that any semi-
projective replacement of such a complex can be truncated to yield one of minimal
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8.1 Projective Dimension 381

length. We need the next two lemmas to prove it. The isomorphism in the first lemma
is colloquially referred to as “dimension shifting”.

8.1.6 Lemma. Let 𝑀 be an 𝑅-complex, 𝑃 a semi-projective replacement of 𝑀 , and
𝑁 an 𝑅-module. For all integers 𝑚 > 0 and 𝑛 ⩾ sup𝑀 one has

Ext𝑛+𝑚𝑅 (𝑀, 𝑁) � Ext𝑚𝑅 (C𝑛 (𝑃), 𝑁) .

Proof. Recall from 5.2.8 that 𝑃ě𝑛 is a semi-projective 𝑅-complex. As one has
𝑛 ⩾ sup𝑀 = sup 𝑃, the canonical morphism Σ−𝑛𝑃ě𝑛 ↠ C𝑛 (𝑃) is a projective
resolution. In the next computation, the 1st, 2nd, and 5th identities follow from the
definitions of RHom and Hom; the 4th follows from 2.3.14.

H−(𝑛+𝑚) (RHom𝑅 (𝑀, 𝑁)) � H−(𝑛+𝑚) (Hom𝑅 (𝑃, 𝑁))
= H−(𝑛+𝑚) (Hom𝑅 (𝑃ě𝑛, 𝑁))
= H−𝑚 (Σ𝑛Hom𝑅 (𝑃ě𝑛, 𝑁))
� H−𝑚 (Hom𝑅 (Σ−𝑛𝑃ě𝑛, 𝑁))
� H−𝑚 (RHom𝑅 (C𝑛 (𝑃), 𝑁)) ;

the definition of Ext, 7.3.23, now yields the asserted isomorphism. □

8.1.7 Lemma. Let 𝑃 be a semi-projective 𝑅-complex and 𝑣 an integer. The complex
𝑃Ď𝑣 is semi-projective if and only if the module C𝑣 (𝑃) is projective.

Proof. If the complex 𝑃Ď𝑣 is semi-projective, then the module C𝑣 (𝑃) = (𝑃Ď𝑣)𝑣 is
projective. If C𝑣 (𝑃) is a projective, then it is semi-projective as a complex by 5.2.12.
There is an exact sequence 0 → 𝑃ď𝑣−1 → 𝑃Ď𝑣 → Σ𝑣C𝑣 (𝑃) → 0, so by 5.2.17 the
complex 𝑃Ď𝑣 is semi-projective if and only if 𝑃ď𝑣−1 is semi-projective, which it is by
5.2.8 and 5.2.17 applied to the exact sequence 0→ 𝑃ď𝑣−1 → 𝑃→ 𝑃ě𝑣 → 0. □

8.1.8 Theorem. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. The following conditions
are equivalent.

(i) pd𝑅 𝑀 ⩽ 𝑛.
(ii) − inf RHom𝑅 (𝑀, 𝑁) ⩽ 𝑛 − inf 𝑁 holds for every 𝑅-complex 𝑁 .
(iii) 𝑛 ⩾ sup𝑀 and Ext𝑛+1

𝑅
(𝑀, 𝑁) = 0 holds for every 𝑅-module 𝑁 .

(iv) 𝑛 ⩾ sup𝑀 and Ext1𝑅 (C𝑛 (𝑃),C𝑛+1 (𝑃)) = 0 holds for some, equivalently every,
semi-projective replacement 𝑃 of 𝑀 .

(v) 𝑛 ⩾ sup𝑀 and for some, equivalently every, semi-projective replacement 𝑃
of 𝑀 , the module C𝑛 (𝑃) is projective.

(vi) 𝑛 ⩾ sup𝑀 and for every semi-projective replacement 𝑃 of 𝑀 , there is a
semi-projective resolution 𝑃Ď𝑛

≃−−→ 𝑀 .
(vii) There is a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃𝑣 = 0 for all 𝑣 > 𝑛 and

for all 𝑣 < inf 𝑀 .
In particular, there are equalities,

pd𝑅 𝑀 = sup{− inf RHom𝑅 (𝑀, 𝑁) | 𝑁 is an 𝑅-module}
= sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑀, 𝑁) ≠ 0 for some 𝑅-module 𝑁 } .
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Proof. In addition to the seven conditions in the statement we consider
(ii′) − inf RHom𝑅 (𝑀, 𝑁) ⩽ 𝑛 holds for every 𝑅-module 𝑁 ,

and prove that all eight conditions are equivalent. The implications (ii)⇒ (ii′) and
(vii)⇒ (i) are trivial.

(i)⇒ (ii): One can assume that 𝑁 is in D⊐ (𝑅) and not acyclic; otherwise
the inequality is trivial. Set 𝑢 = inf 𝑁; it is an integer and there is an isomor-
phism RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (𝑀, 𝑁Ě𝑢); see 4.2.4. By assumption there exists
a semi-projective replacement 𝑃 of 𝑀 with 𝑃𝑣 = 0 for all 𝑣 > 𝑛, and by 7.3.17 it
yields a semi-projective resolution 𝑃 ≃−−→ 𝑀 . Thus, one has inf RHom𝑅 (𝑀, 𝑁) =
inf Hom𝑅 (𝑃, 𝑁Ě𝑢). For 𝑣 < 𝑢 − 𝑛 and 𝑝 ∈ ℤ, one of the inequalities 𝑝 > 𝑛 or
𝑝 + 𝑣 ⩽ 𝑛 + 𝑣 < 𝑢 holds, so the module

Hom𝑅 (𝑃, 𝑁Ě𝑢)𝑣 =
∏
𝑝∈ℤ

Hom𝑅 (𝑃𝑝 , (𝑁Ě𝑢)𝑝+𝑣)

is zero. In particular, H𝑣 (Hom𝑅 (𝑃, 𝑁Ě𝑢)) = 0 holds for 𝑣 < 𝑢 − 𝑛, so the inequality
inf RHom𝑅 (𝑀, 𝑁) ⩾ 𝑢 − 𝑛 holds as desired.

(ii′)⇒ (iii): The second assertion is immediate from 7.3.24. Let 𝐸 be a faithfully
injective 𝑅-module; such a module exists by 1.3.38. Per 2.5.7(b) one now has 𝑛 ⩾
− inf RHom𝑅 (𝑀, 𝐸) = − inf Hom𝑅 (𝑀, 𝐸) = sup𝑀 .

(iii)⇒ (iv): Let 𝑃 be a semi-projective replacement of 𝑀 . It follows from 8.1.6
and the assumptions that Ext1𝑅 (C𝑛 (𝑃),C𝑛+1 (𝑃)) = 0 holds.

(iv)⇒ (v): Let 𝑃 be a semi-projective replacement of 𝑀 . As 𝑛 ⩾ sup𝑀 = sup 𝑃
holds, the sequence 0→ C𝑛+1 (𝑃) → 𝑃𝑛 → C𝑛 (𝑃) → 0 is exact, and the assertion
follows from 8.1.1.

(v)⇒ (i) and (v)⇒ (vi): Let 𝑃 be a semi-projective replacement of𝑀 . As one has
𝑛 ⩾ sup𝑀 = sup 𝑃, the morphism 𝜏𝑃Ď𝑛 : 𝑃 ↠ 𝑃Ď𝑛 is a quasi-isomorphism. Since the
module C𝑛 (𝑃) is projective, the complex 𝑃Ď𝑛 is semi-projective by 8.1.7. Finally,
it follows from the isomorphisms 𝑃Ď𝑛 ≃ 𝑃 ≃ 𝑀 in D(𝑅) and 7.3.17 that there is a
quasi-isomorphism 𝑃Ď𝑛 → 𝑀 .

This argument shows that the “some” part of (v) implies (i), and thus (i)–(v) are
equivalent. The argument also shows that the “every” part of (v) implies (vi).

(vi)⇒ (vii): Choose by 5.2.15 a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃𝑣 = 0
for all 𝑣 < inf 𝑀 . By (vi) there is a quasi-isomorphism 𝑃Ď𝑛 → 𝑀 , which is the
desired resolution.

In the last assertion, the first equality follows from the equivalence of (i) and (ii′)
while the second holds by 7.3.24. □

The next corollary applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

8.1.9 Corollary. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in D(𝑅).
With 𝑝′ = pd𝑅 𝑀 ′, 𝑝 = pd𝑅 𝑀 , and 𝑝′′ = pd𝑅 𝑀 ′′ there are inequalities,

𝑝′ ⩽ max{𝑝, 𝑝′′ − 1} , 𝑝 ⩽ max{𝑝′, 𝑝′′} , and 𝑝′′ ⩽ max{𝑝′ + 1, 𝑝} .

In particular, if two of the complexes𝑀 ′,𝑀 , and𝑀 ′′ have finite projective dimension,
then so has the third.
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Proof. For every 𝑅-module 𝑁 there is a distinguished triangle,

Σ−1RHom𝑅 (𝑀 ′, 𝑁) −→ RHom𝑅 (𝑀 ′′, 𝑁) −→
RHom𝑅 (𝑀, 𝑁) −→ RHom𝑅 (𝑀 ′, 𝑁) .

The inequalities now follow from 8.1.8 and 6.5.20. □

Remark. Corollary 8.1.9 basically shows that the complexes of finite projective dimension form a
triangulated subcategory of D(𝑅); see E 8.1.13 and also 10.1.21.

Every vector space has projective dimension 0 as a module over the base field.
It follows from 1.3.11 and 1.3.21 that a module over a principal left ideal domain
has projective dimension at most 1. It is not, though, hard to showcase a ring with
modules of infinite projective dimension.

8.1.10 Example. The ℤ/4ℤ-complex

𝑃 = · · · −→ ℤ/4ℤ 2−−−→ ℤ/4ℤ 2−−−→ ℤ/4ℤ −→ 0 ,

concentrated in non-negative degrees, is a semi-projective replacement of the module
(ℤ/4ℤ)/(2ℤ/4ℤ) � ℤ/2ℤ. Since ℤ/4ℤ is indecomposable as a ℤ/4ℤ-module, no
cokernel C𝑛 (𝑃) � ℤ/2ℤ for 𝑛 ⩾ 0 is projective, so one has pdℤ/4ℤ (ℤ/2ℤ) = ∞.

8.1.11 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; there is an equality,

pd𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
= sup
𝑢∈𝑈
{pd𝑅 𝑀𝑢} .

Proof. Let 𝑁 be an 𝑅-module. The functor RHom𝑅 ( , 𝑁) preserves products by
3.1.27 and 7.2.14(c), so in view of 3.1.23 there are equalities,

− inf
(
RHom𝑅

( ∐
𝑢∈𝑈

𝑀𝑢, 𝑁
) )

= − inf
( ∏
𝑢∈𝑈

RHom𝑅 (𝑀𝑢, 𝑁)
)

= sup
𝑢∈𝑈
{− inf RHom𝑅 (𝑀𝑢, 𝑁)} .

The desired equality now follows from 8.1.8. □

Schanuel’s Lemma and the Horseshoe Lemma

The next two results are known as Schanuel’s lemma and the Horseshoe Lemma (for
semi-projective complexes) the former can be seen as a refinement of 8.1.8(v).

8.1.12 Lemma. Let 𝑀 be an 𝑅-complex and 𝑃 and 𝑃′ be semi-projective re-
placements of 𝑀 . For every 𝑣 ∈ ℤ there exist projective 𝑅-modules 𝐿 and 𝐿′ with
C𝑣 (𝑃) ⊕ 𝐿 � C𝑣 (𝑃′) ⊕ 𝐿′.

Proof. By 7.3.17 there is a homotopy equivalence 𝛼 : 𝑃→ 𝑃′, and by 4.3.30 the
complex Cone𝛼 is contractible. Furthermore, it consists of projective modules, so
4.3.33 shows that every module Z𝑛 (Cone𝛼) is projective. By 4.3.21 the morphism
𝛼Ď𝑣 : 𝑃Ď𝑣 → 𝑃′Ď𝑣 is also a homotopy equivalence so Cone(𝛼Ď𝑣), that is,
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0 −→ C𝑣 (𝑃) −→ C𝑣 (𝑃′) ⊕ 𝑃𝑣−1 −→ 𝑃′𝑣−1 ⊕ 𝑃𝑣−2
𝜕Cone 𝛼
𝑣−1−−−→ 𝑃′𝑣−2 ⊕ 𝑃𝑣−3 −→ · · · ,

is contractible. Hence one has C𝑣 (𝑃) ⊕ Z𝑣−1 (Cone𝛼) � C𝑣 (𝑃′) ⊕ 𝑃𝑣−1. □

The next lemma applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

8.1.13 Lemma. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in D(𝑅).
If 𝑃′ and 𝑃′′ are semi-projective replacements of 𝑀 ′ and 𝑀 ′′, then there is an exact
sequence 0 → 𝑃′ → 𝑃 → 𝑃′′ → 0 in C(𝑅) with 𝑃 a semi-projective replacement
of 𝑀 .

Proof. Rotation, (TR2) in E.2, of the given triangle yields a distinguished triangle,
Σ−1𝑀 ′′ → 𝑀 ′ → 𝑀 → 𝑀 ′′. As there are isomorphisms 𝑀 ′ ≃ 𝑃′ and 𝑀 ′′ ≃ 𝑃′′
in D(𝑅) there is also a distinguished triangle Σ−1𝑃′′

𝛾−−→ 𝑃′ −−→ 𝑀 −−→ 𝑃′′. Since
the complexes 𝑃′ and 𝑃′′ are semi-projective, the morphism 𝛾 in D(𝑅) is in-
duced by a morphism 𝛼 : Σ−1𝑃′′ → 𝑃′ in C(𝑅); see 6.1.1 and 6.4.7. The diagram
Σ−1𝑃′′

𝛼−−→ 𝑃′ −−→ Cone𝛼 −−→ 𝑃′′ in C(𝑅) is a distinguished triangle when viewed
as a diagram in D(𝑅), see 6.2.3 and 6.5.5. As D(𝑅) is triangulated, (TR3) in E.2
yields a morphism 𝜒 : Cone𝛼→ 𝑀 such that the diagram in D(𝑅),

Σ−1𝑃′′
𝛾
// 𝑃′ // Cone𝛼

𝜒

��

// 𝑃′′

Σ−1𝑃′′
𝛾
// 𝑃′ // 𝑀 // 𝑃′′ ,

is commutative. It follows from 6.5.19 that 𝜒 is an isomorphism. Set 𝑃 = Cone𝛼;
by 4.1.5 there is a short exact sequence 0→ 𝑃′ → 𝑃→ 𝑃′′ → 0, whence it follows
from 5.2.17 that the complex 𝑃 is semi-projective. □

Noetherian Rings and Homological Finiteness

Over a Noetherian ring, the projective dimension of a finitely generated module can
be detected by vanishing of homology with coefficients in cyclic modules.

8.1.14 Theorem. Assume that 𝑅 is left Noetherian, let 𝑀 be a complex in Df
⊐ (𝑅)

and 𝑛 an integer. The following conditions are equivalent.
(i) pd𝑅 𝑀 ⩽ 𝑛.
(ii) 𝑛 ⩾ sup𝑀 and Ext𝑛+1

𝑅
(𝑀, 𝑅/𝔞) = 0 for every left ideal 𝔞 in 𝑅 .

(iii) There is a semi-projective resolution 𝑃
≃−−→ 𝑀 with 𝑃 degreewise finitely

generated and 𝑃𝑣 = 0 for all 𝑣 > 𝑛 and for all 𝑣 < inf 𝑀 .
In particular, there are equalities,

pd𝑅 𝑀 = sup{− inf RHom𝑅 (𝑀, 𝑅/𝔞) | 𝔞 is a left ideal in 𝑅}
= sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑀, 𝑅/𝔞) ≠ 0 for some left ideal 𝔞 in 𝑅} .
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Proof. It follows from the definition of projective dimension that (iii) implies (i), and
the implication (i)⇒ (ii) holds by 8.1.8. To see that (ii) implies (iii), notice first that
by (ii) and 1.3.51 one has Ext𝑛+1

𝑅
(𝑀, 𝑁) = 0 for every finitely generated 𝑅-module 𝑁 .

Choose by 5.2.16 a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃 degreewise finitely
generated and 𝑃𝑣 = 0 for all 𝑣 < inf 𝑀 . As 𝑛 ⩾ sup𝑀 = sup 𝑃 holds, the sequence
0 → C𝑛+1 (𝑃) → 𝑃𝑛 → C𝑛 (𝑃) → 0 is exact; moreover, the modules C𝑣 (𝑃) are
finitely generated. By 8.1.6 there is an isomorphism

Ext1𝑅 (C𝑛 (𝑃),C𝑛+1 (𝑃)) � Ext𝑛+1𝑅 (𝑀,C𝑛+1 (𝑃)) = 0 ,

whence C𝑛 (𝑃) is projective by 8.1.1. Now 8.1.8 finishes the proof. □

8.1.15 Corollary. Assume that 𝑅 is left Noetherian let and 𝑀 be a complex in
Df
⊏⊐ (𝑅). If 𝑀 has finite projective dimension, then the following equalities hold:

pd𝑅 𝑀 = − inf RHom𝑅 (𝑀, 𝑅) = sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑀, 𝑅) ≠ 0} .

Proof. The equalities are trivial if 𝑀 is acyclic, so assume that it is not and let
𝑛 ∈ ℤ be the projective dimension of 𝑀 . By 8.1.14 there is a left ideal 𝔞 in 𝑅 with
Ext𝑛

𝑅
(𝑀, 𝑅/𝔞) ≠ 0. The exact sequence 0 → 𝔞 → 𝑅 → 𝑅/𝔞 → 0 induces per

7.3.35 an exact sequence

(†) · · · −→ Ext𝑛𝑅 (𝑀, 𝑅) −→ Ext𝑛𝑅 (𝑀, 𝑅/𝔞) −→ Ext𝑛+1𝑅 (𝑀, 𝔞) .

By 8.1.8 one has Ext𝑛+1
𝑅
(𝑀, 𝔞) = 0, so exactness of (†) implies Ext𝑛

𝑅
(𝑀, 𝑅) ≠ 0.

This yields 𝑛 ⩽ − inf RHom𝑅 (𝑀, 𝑅) and the opposite inequality holds by 8.1.8. □

Remark. The assumption of finite projective dimension in 8.1.15 is necessary; see E 8.1.11.

Perfect and Semi-Perfect Rings

Existence of minimal semi-projective resolutions is treated in B.60 and B.61.

8.1.16 Proposition. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. If 𝑃 ≃−−→ 𝑀 is a
minimal semi-projective resolution, then the following conditions are equivalent.

(i) pd𝑅 𝑀 ⩽ 𝑛.
(ii) 𝑛 ⩾ sup𝑀 and 𝑃𝑛+1 = 0 .
(iii) 𝑃𝑣 = 0 for all 𝑣 > 𝑛.

In particular, one has pd𝑅 𝑀 = sup 𝑃♮ .

Proof. If pd𝑅 𝑀 ⩽ 𝑛 holds, then there is a semi-projective replacement 𝑃′ of 𝑀
with 𝑃′𝑣 = 0 for all 𝑣 > 𝑛. It follows from 6.4.20 that there is a quasi-isomorphism
𝑃′ → 𝑃, and by B.56 it has a right inverse, whence 𝑃𝑣 = 0 holds for 𝑣 > 𝑛. Thus (i)
implies (iii) which, in turn, implies (ii). If one has 𝑛 ⩾ sup𝑀 and 𝑃𝑛+1 = 0, then the
module C𝑛 (𝑃) = 𝑃𝑛 is projective, whence pd𝑅 𝑀 ⩽ 𝑛 holds by 8.1.8. □

Recall from B.51 that every left or right Artinian ring is left perfect, whence the
next theorem holds for such ring.
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8.1.17 Theorem. Assume that 𝑅 is left perfect with Jacobson radical 𝔍 and set
𝒌 = 𝑅/𝔍. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. The following conditions are
equivalent.

(i) pd𝑅 𝑀 ⩽ 𝑛.
(ii) 𝑛 ⩾ sup𝑀 and Ext𝑛+1

𝑅
(𝑀, 𝒌) = 0 .

(iii) 𝑛 ⩾ sup𝑀 and Tor𝑅
𝑛+1 (𝒌, 𝑀) = 0 .

In particular, one has

pd𝑅 𝑀 = − inf RHom𝑅 (𝑀, 𝒌) = sup (𝒌 ⊗L
𝑅 𝑀) .

Proof. Choose by B.60 a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃 minimal. The
graded module 𝑃♮ is semi-perfect by B.53, so 𝜕𝑃 (𝑃) ⊆ 𝔍𝑃 holds by B.55. It follows
that the complex 𝒌 ⊗𝑅 𝑃 has zero differential, so one has

Tor𝑅𝑣 (𝒌, 𝑀) = H𝑣 (𝒌 ⊗L
𝑅 𝑀) = (𝒌 ⊗𝑅 𝑃)𝑣 = 𝒌 ⊗𝑅 𝑃𝑣 .

By B.40(a) the module 𝒌 ⊗𝑅 𝑃𝑣 � 𝑃𝑣/𝔍𝑃𝑣 is non-zero for every 𝑃𝑣 ≠ 0, so one has
Tor𝑅𝑣 (𝒌, 𝑀) = 0 if and only if 𝑃𝑣 = 0. The equivalence of conditions (i) and (iii)
now follows from 8.1.16.

It also follows from the inclusion 𝜕𝑃 (𝑃) ⊆ 𝔍𝑃 that the complex Hom𝑅 (𝑃, 𝒌) has
zero differential, whence one has

Ext𝑣𝑅 (𝑀, 𝒌) = H−𝑣 (RHom𝑅 (𝑀, 𝒌)) = Hom𝑅 (𝑃, 𝒌)−𝑣 = Hom𝑅 (𝑃𝑣, 𝒌) .

For every 𝑣 ∈ ℤ with 𝑃𝑣 ≠ 0 the 𝒌-module 𝑃𝑣/𝔍𝑃𝑣 is non-zero. As 𝒌 is semi-simple,
it follows that there is a direct summand of 𝑃𝑣/𝔍𝑃𝑣 which is isomorphic to a non-
zero ideal in 𝒌. Thus, there is a non-zero homomorphism 𝑃𝑣 ↠ 𝑃𝑣/𝔍𝑃𝑣 → 𝒌. In
particular, one has Ext𝑣

𝑅
(𝑀, 𝒌) = 0 if and only if 𝑃𝑣 = 0. The equivalence of (i)

and (ii) now follows from 8.1.16. The final equalities follow from the equivalence of
(i)–(iii). □

Recall from B.44 that every local ring is semi-perfect, whence the next theorem
holds for Noetherian local rings.

8.1.18 Theorem. Assume that 𝑅 is left Noetherian and semi-perfect with Jacobson
radical 𝔍 and set 𝒌 = 𝑅/𝔍. Let 𝑀 be a complex in Df

⊐ (𝑅) and 𝑛 an integer. The
following conditions are equivalent.

(i) pd𝑅 𝑀 ⩽ 𝑛.
(ii) 𝑛 ⩾ sup𝑀 and Ext𝑛+1

𝑅
(𝑀, 𝒌) = 0 .

(iii) 𝑛 ⩾ sup𝑀 and Tor𝑅
𝑛+1 (𝒌, 𝑀) = 0 .

In particular, there are equalities,

pd𝑅 𝑀 = − inf RHom𝑅 (𝑀, 𝒌) = sup (𝒌 ⊗L
𝑅 𝑀) .

Proof. Choose by B.61 a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃 minimal and
degreewise finitely generated. The graded module 𝑃♮ is semi-perfect by B.46, and
from this point the proof of 8.1.17 applies verbatim. □
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The Case of Modules

8.1.19. Notice from 8.1.8 that a non-zero 𝑅-module is projective if and only if it has
projective dimension 0 as an 𝑅-complex.

8.1.20 Theorem. Let 𝑀 be an 𝑅-module and 𝑛 ⩾ 0 an integer. The following
conditions are equivalent.

(i) pd𝑅 𝑀 ⩽ 𝑛.
(ii) One has Ext𝑚

𝑅
(𝑀, 𝑁) = 0 for every 𝑅-module 𝑁 and every integer 𝑚 > 𝑛.

(iii) One has Ext𝑛+1
𝑅
(𝑀, 𝑁) = 0 for every 𝑅-module 𝑁 .

(iv) There is a projective resolution 0→ 𝑃𝑛 → 𝑃𝑛−1 → · · · → 𝑃0 → 𝑀 → 0 .
(v) In every projective resolution · · · → 𝑃𝑣 → 𝑃𝑣−1 → · · · → 𝑃0 → 𝑀 → 0 the

module Coker(𝑃𝑛+1 → 𝑃𝑛) is projective.
In particular, there is an equality,

pd𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | Ext𝑚𝑅 (𝑀, 𝑁) ≠ 0 for some 𝑅-module 𝑁 } .

Proof. By 5.2.27 every 𝑅-module 𝑀 has a projective resolution

· · · −→ 𝑃𝑣 −→ 𝑃𝑣−1 −→ · · · −→ 𝑃0 −→ 𝑀 −→ 0 .

In every such resolution, the surjective homomorphism 𝑃0 → 𝑀 yields a semi-
projective resolution of 𝑀 , considered as a complex; cf. 5.2.29. Thus the complex
· · · → 𝑃𝑣 → 𝑃𝑣−1 → · · · → 𝑃0 → 0 is a semi-projective replacement of 𝑀 . The
equivalence of the five conditions now follows from the equivalence of (i)–(iii), (v),
and (vii) in 8.1.8. The asserted equality holds by 8.1.8 in view of 7.3.27. □

Remark. Let 𝐴 ≠ 0 be a ℤ-module; it follows from 1.3.11 that pdℤ 𝐴 is 0 or 1. If pdℤ 𝐴 = 0,
which by 1.3.21 means that 𝐴 is free, then Ext1ℤ (𝐴,ℤ) = 0 holds. By E 7.3.7 the converse is
true if 𝐴 is finitely generated and, more generally, Stein [240] has shown that every countably
generated ℤ-module 𝐴 with Ext1ℤ (𝐴,ℤ) = 0 is free. The question whether every ℤ-module 𝐴
with Ext1ℤ (𝐴,ℤ) = 0 is free is known as Whitehead’s problem; Shelah [231] has shown that it is
undecidable within ZFC.

8.1.21 Theorem. Assume that 𝑅 is left Noetherian, let 𝑀 be a finitely generated
𝑅-module and 𝑛 ⩾ 0 an integer. The following conditions are equivalent.

(i) pd𝑅 𝑀 ⩽ 𝑛.
(ii) One has Ext𝑛+1

𝑅
(𝑀, 𝑅/𝔞) = 0 for every left ideal 𝔞 in 𝑅 .

(iii) There is a projective resolution 0 → 𝑃𝑛 → 𝑃𝑛−1 → · · · → 𝑃0 → 𝑀 → 0
with each module 𝑃𝑣 finitely generated.

In particular, there is an equality,

pd𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | Ext𝑚𝑅 (𝑀, 𝑅/𝔞) ≠ 0 for some left ideal 𝔞 in 𝑅} .

Proof. By 5.1.19 every finitely generated 𝑅-module 𝑀 has a projective resolution

· · · −→ 𝑃𝑣 −→ 𝑃𝑣−1 −→ · · · −→ 𝑃0 −→ 𝑀 −→ 0
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388 8 Homological Dimensions

with each module 𝑃𝑣 finitely generated. An argument parallel to the proof of 8.1.20
shows that the equivalence of the three conditions follows from 8.1.14 and that the
asserted equality holds. □

Exercises

E 8.1.1 Let 𝑀 be an 𝑅-complex of finite projective dimension 𝑛. Show that 𝑀 has a semi-free
replacement 𝐿 with 𝐿𝑣 = 0 for 𝑣 > 𝑛 + 1.

E 8.1.2 Let 𝑅 → 𝑆 be a ring homomorphism. Show that pd𝑅 𝑁 ⩽ pd𝑆 𝑁 + pd𝑅 𝑆 holds for
every 𝑆-complex 𝑁 with H(𝑁 ) ≠ 0.

E 8.1.3 Let 𝑅 be semi-simple. Show that pd𝑅 𝑀 = sup𝑀 holds for every 𝑅-complex 𝑀.
E 8.1.4 Let 𝑀 be a complex in D⊏ (𝑅) with H(𝑀 ) ≠ 0 and set 𝑤 = sup𝑀. Show that for every

semi-projective replacement 𝑃 of 𝑀 one has pd𝑅 𝑀 = 𝑤 + pd𝑅 C𝑤 (𝑃) .
E 8.1.5 Let 𝑀 be an 𝑅-complex. Show that pd𝑅 𝑀 is finite if and only if H(RHom𝑅 (𝑀, 𝑁 ) )

is bounded below for every 𝑅-module 𝑁 .
E 8.1.6 Let 𝑀 be an 𝑅-complex and assume that it is isomorphic in D(𝑅) to a K-projective

complex 𝑋 with 𝑋𝑣 = 0 for all 𝑣 > 𝑛. Show that pd𝑅 𝑀 is at most 𝑛, and conclude that
one could use K-projective replacements in 8.1.2.

E 8.1.7 Let 𝑅 be left hereditary. Show that pd𝑅 𝑀 ⩽ sup𝑀 + 1 holds for every 𝑅-complex 𝑀.
E 8.1.8 Show that every finitely generated 𝑅-module has finite projective dimension if and only

if every left ideal in 𝑅 has finite projective dimension. Hint: Proof of 1.3.51.
E 8.1.9 Let 𝑀 be an 𝑅-complex of finite projective dimension 𝑛. Show that there exists a

projective 𝑅-module 𝑃 with Ext𝑛
𝑅
(𝑀, 𝑃) ≠ 0.

E 8.1.10 Let 0 → 𝐾 → 𝐿 → 𝑀 → 0 and 0 → 𝐾 ′ → 𝐿′ → 𝑀 → 0 be exact sequences
of 𝑅-modules. Show that if Ext1

𝑅
(𝐿, 𝐾 ′ ) = 0 = Ext1

𝑅
(𝐿′, 𝐾 ) holds, then there is an

isomorphism 𝐿 ⊕ 𝐾 ′ � 𝐿′ ⊕ 𝐾 .
E 8.1.11 Show that Ext𝑚

ℤ/4ℤ (ℤ/2ℤ,ℤ/4ℤ) = 0 holds for all 𝑚 ⩾ 1 and compare to 8.1.10.
E 8.1.12 Show that a finitely generated ℤ/4ℤ-module 𝑀 is projective if and only if one has

Ext1
ℤ/4ℤ (𝑀,ℤ/2ℤ) = 0.

E 8.1.13 Show that the full subcategory of 𝑅-complexes of finite projective dimension is a trian-
gulated subcategory of D⊏ (𝑅) .

8.2 Injective Dimension

Synopsis. Vanishing of Ext; injective dimension; Schanuel’s lemma; Horseshoe Lemma; minimal
semi-injective resolution; injective dimension over Artinian ring; injective dimension of module;
coproduct of injective modules.

This section develops, initially, in close parallel to the previous one.

8.2.1 Lemma. For an 𝑅-module 𝐼 the following conditions are equivalent.
(i) 𝐼 is injective.
(ii) − inf RHom𝑅 (𝑀, 𝐼) ⩽ sup𝑀 holds for every 𝑅-complex 𝑀 .
(iii) One has Ext1𝑅 (𝑅/𝔞, 𝐼) = 0 for every left ideal 𝔞 in 𝑅 .
(iv) There exists an injective homomorphism 𝜄 : 𝐼 → 𝐸 with 𝐸 injective and with

Ext1𝑅 (Coker 𝜄, 𝐼) = 0 .
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8.2 Injective Dimension 389

Proof. If the module 𝐼 is injective, then 1𝐼 is a injective resolution of 𝐼, and one has
RHom𝑅 (𝑀, 𝐼) = Hom𝑅 (𝑀, 𝐼) in D(𝕜). Now 2.5.7(b) yields − inf RHom𝑅 (𝑀, 𝐼) ⩽
sup𝑀 . Thus, (i) implies (ii) which, in particular, implies that the functor Ext1𝑅 ( , 𝐼)
is zero on modules. Hence (ii) implies (iii) and, in view of 5.3.4, also (iv).

(iii)⇒ (i): Consider the short exact sequence 0→ 𝔞 → 𝑅 → 𝑅/𝔞 → 0. It yields
an exact sequence Hom𝑅 (𝑅, 𝐼) → Hom𝑅 (𝔞, 𝐼) → Ext1𝑅 (𝑅/𝔞, 𝐼) = 0 by 7.3.35
7.3.27. Thus, every homomorphism 𝔞 → 𝐼 is the restriction of a homomorphism
𝑅 → 𝐼, whence 𝐼 is injective by Baer’s criterion 1.3.30.

(iv)⇒ (i): The exact sequence 0→ 𝐼 → 𝐸 → Coker 𝜄→ 0 is split by 7.3.36, so
𝐼 is a direct summand of an injective module and hence injective by 1.3.27. □

Remark. Part (iii) in 8.2.1 is the homological formulation of Baer’s criterion, it has been sharpened
by Vamos [245]; see E 8.2.1.

Semi-Injective Replacements and Injective Dimension

Recall from 7.3.18 that a semi-injective replacement of an 𝑅-complex 𝑀 is a semi-
injective 𝑅-complex that is isomorphic to 𝑀 in D(𝑅).

8.2.2 Definition. Let 𝑀 be an 𝑅-complex. The injective dimension of 𝑀 , written
id𝑅 𝑀 , is defined as

id𝑅 𝑀 = inf
{
𝑛 ∈ ℤ

���� There is a semi-injective replacement
𝐼 of 𝑀 with 𝐼−𝑣 = 0 for all 𝑣 > 𝑛

}
,

with the convention inf ∅ = ∞. One says that id𝑅 𝑀 is finite if id𝑅 𝑀 < ∞ holds.

A comment similar to the one after 8.1.2 justifies the last convention in 8.2.2.
Remark. The minus sign in the definition above appears because we use homological notation;
if one is concerned, primarily, with semi-injective replacements, then cohomological notation is a
more natural choice. See also the Remark after 2.1.23.

8.2.3. Let 𝑀 be an 𝑅-complex. For every semi-injective replacement 𝐼 of 𝑀 one
has H(𝐼) � H(𝑀); the next (in)equalities are hence immediate from the definition,

id𝑅 𝑀 ⩾ − inf 𝑀 and id𝑅 Σ𝑠𝑀 = id𝑅 𝑀 − 𝑠 for every integer 𝑠 .

Moreover, one has id𝑅 𝑀 = −∞ if and only if 𝑀 is acyclic.
Note that the definition of injective dimension could also be written

id𝑅 𝑀 = inf{− inf 𝐼♮ | 𝐼 is a semi-injective replacement of 𝑀 } .

8.2.4 Proposition. Let 𝑅 → 𝑆 be a ring homomorphism and 𝑀 be an 𝑅-complex.
There is an inequality,

id𝑆 RHom𝑅 (𝑆, 𝑀) ⩽ id𝑅 𝑀 .

Proof. For every semi-injective replacement 𝐼 of the 𝑅-complex 𝑀 , the 𝑆-complex
Hom𝑅 (𝑆, 𝐼) is a semi-injective replacement of RHom𝑅 (𝑆, 𝑀) by 5.4.26(a). As one
has 𝐼−𝑣 = 0 implies Hom𝑅 (𝑆, 𝐼)−𝑣 = 0, the desired inequality follows from 8.2.2. □
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390 8 Homological Dimensions

Even if 𝑆 is flat over 𝑅, the inequality in 8.2.4 may be strict, but see also 17.3.16.

8.2.5 Example. Let 𝑅 be the integral domain ℚ[𝑥, 𝑦] and 𝑆 its field of fractions,
which is flat as an 𝑅-module by 1.3.42. The cardinality of 𝑅, and hence of 𝑆, is ℵ0,
so D.9 yields pd𝑅 𝑆 ⩽ 1. Consequently, for every 𝑅-module 𝑀 , the homology of the
complex RHom𝑅 (𝑆, 𝑀) is concentrated in degrees−1 and 0; see 8.1.8. As 𝑆 is a field,
6.4.23 yields an isomorphism RHom𝑅 (𝑆, 𝑀) ≃ (Σ−1𝑉1) ⊕ 𝑉0 in D(𝑆) where 𝑉𝑛
is the 𝑆-vector space Ext𝑛

𝑅
(𝑆, 𝑀) for 𝑛 = 0, 1, in particular id𝑆 RHom𝑅 (𝑆, 𝑀) ⩽ 1

by 1.3.28. On the other hand, id𝑅 ℚ ⩾ 2. Indeed, as the Koszul complex K𝑅 (𝑥, 𝑦)
yields a projective resolution of ℚ, see 2.2.9, there are isomorphisms in D(𝑅),

RHom𝑅 (ℚ,ℚ) ≃ Hom𝑅 (K𝑅 (𝑥, 𝑦),ℚ) ≃ ℚ ⊕ (Σ−1ℚ2) ⊕ (Σ−2ℚ) .

In particular, Ext2𝑅 (ℚ,ℚ) = ℚ ≠ 0 holds, whence one has id𝑅 ℚ ⩾ 2 by 8.2.2; see
also 8.2.19.

The isomorphism below is colloquially referred to as “dimension shifting”.

8.2.6 Lemma. Let 𝑀 be an 𝑅-complex, 𝐼 a semi-injective replacement of 𝑀 , and 𝑁
an 𝑅-module. For all integers 𝑚 > 0 and 𝑛 ⩾ − inf 𝑀 one has

Ext𝑛+𝑚𝑅 (𝑁, 𝑀) � Ext𝑚𝑅 (𝑁,Z−𝑛 (𝐼)) .

Proof. Recall from 5.3.12 that 𝐼ď−𝑛 is a semi-injective 𝑅-complex. As one has
𝑛 ⩾ − inf 𝑀 = − inf 𝐼, the canonical morphism Z−𝑛 (𝐼) ↣ Σ𝑛𝐼ď−𝑛 is an injective
resolution. In the next computation, the 1st, 2nd, and 5th identities follow from the
definitions of RHom and Hom; the 4th follows from 2.3.16.

H−(𝑛+𝑚) (RHom𝑅 (𝑁, 𝑀)) � H−(𝑛+𝑚) (Hom𝑅 (𝑁, 𝐼))
= H−(𝑛+𝑚) (Hom𝑅 (𝑁, 𝐼ď−𝑛))
= H−𝑚 (Σ𝑛Hom𝑅 (𝑁, 𝐼ď−𝑛))
� H−𝑚 (Hom𝑅 (𝑁, Σ𝑛𝐼ď−𝑛))
� H−𝑚 (RHom𝑅 (𝑁,Z−𝑛 (𝐼))) ;

the definition of Ext, 7.3.23, now yields the asserted isomorphism. □

8.2.7 Lemma. Let 𝐼 be a semi-injective 𝑅-complex and 𝑣 an integer. The complex
𝐼Ě𝑣 is semi-injective if and only if the module Z𝑣 (𝐼) is injective.

Proof. If the complex 𝐼Ě𝑣 is semi-injective, then the module Z𝑣 (𝐼) = (𝐼Ě𝑣)𝑣 is
injective. If Z𝑣 (𝐼) is an injective module, then it is semi-injective as a complex by
5.3.18. There is an exact sequence 0→ Σ𝑣Z𝑣 (𝐼) → 𝐼Ě𝑣 → 𝐼ě𝑣+1 → 0, so by 5.3.20
the complex 𝐼Ě𝑣 is semi-injective if and only if 𝐼ě𝑣+1 is semi-injective, which it is by
5.3.12 and 5.3.20 applied to the exact sequence 0→ 𝐼ď𝑣 → 𝐼 → 𝐼ě𝑣+1 → 0. □

8.2.8 Theorem. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. The following conditions
are equivalent.

(i) id𝑅 𝑀 ⩽ 𝑛.
(ii) − inf RHom𝑅 (𝑁, 𝑀) ⩽ 𝑛 + sup 𝑁 holds for every 𝑅-complex 𝑁 .
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(iii) 𝑛 ⩾ − inf 𝑀 and Ext𝑛+1
𝑅
(𝑅/𝔞, 𝑀) = 0 holds for every left ideal 𝔞 in 𝑅 .

(iv) 𝑛 ⩾ − inf 𝑀 and one has Ext1𝑅 (Z−(𝑛+1) (𝐼),Z−𝑛 (𝐼)) = 0 for some, equivalently
every, semi-injective replacement 𝐼 of 𝑀 .

(v) 𝑛 ⩾ − inf 𝑀 and for some, equivalently every, semi-injective replacement 𝐼 of
𝑀 , the module Z−𝑛 (𝐼) is injective.

(vi) 𝑛 ⩾ − inf 𝑀 and for every semi-injective replacement 𝐼 of 𝑀 , there is a
semi-injective resolution 𝑀 ≃−−→ 𝐼Ě−𝑛 .

(vii) There is a semi-injective resolution 𝑀 ≃−−→ 𝐼 with 𝐼−𝑣 = 0 for all 𝑣 > 𝑛 and for
all 𝑣 < − sup𝑀 .

In particular, there are equalities,

id𝑅 𝑀 = sup{− inf RHom𝑅 (𝑅/𝔞, 𝑀) | 𝔞 is a left ideal in 𝑅}
= sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑅/𝔞, 𝑀) ≠ 0 for some left ideal 𝔞 in 𝑅} .

Proof. In addition to the seven conditions in the statement we consider
(ii′) − inf RHom𝑅 (𝑁, 𝑀) ⩽ 𝑛 holds for every 𝑅-module 𝑁 ,

and prove that all eight conditions are equivalent. The implications (ii)⇒ (ii′) and
(vii)⇒ (i) are trivial.

(i)⇒ (ii): One can assume that 𝑁 is in D⊏ (𝑅) and not acyclic; otherwise the
inequality is trivial. Set 𝑤 = sup 𝑁; it is an integer and there is an isomorphism
RHom𝑅 (𝑁, 𝑀) ≃ RHom𝑅 (𝑁Ď𝑤, 𝑀); see 4.2.4. Choose a semi-injective replace-
ment 𝐼 of 𝑀 with 𝐼−𝑣 = 0 for all 𝑣 > 𝑛; by 7.3.19 it yields a semi-injective resolution
𝑀

≃−−→ 𝐼. Thus, one has inf RHom𝑅 (𝑁, 𝑀) = inf Hom𝑅 (𝑁Ď𝑤, 𝐼). For 𝑣 > 𝑛 +𝑤 and
𝑝 ∈ ℤ, one of the inequalities 𝑝 > 𝑤 or 𝑣 − 𝑝 ⩾ 𝑣 − 𝑤 > 𝑛 holds, so the module

Hom𝑅 (𝑁Ď𝑤, 𝐼)−𝑣 =
∏
𝑝∈ℤ

Hom𝑅 ((𝑁Ď𝑤)𝑝 , 𝐼−(𝑣−𝑝) )

is zero. In particular, H−𝑣 (Hom𝑅 (𝑁Ď𝑤, 𝐼)) = 0 holds for 𝑣 > 𝑛+𝑤, so the inequality
− inf RHom𝑅 (𝑀, 𝑁) ⩽ 𝑛 + 𝑤 holds as desired.

(ii′)⇒ (iii): The second assertion is immediate from 7.3.24, and an application
of (ii′) with 𝑁 = 𝑅 yields − inf 𝑀 = − inf RHom𝑅 (𝑅, 𝑀) ⩽ 𝑛.

(iii)⇒ (v): Let 𝐼 be a semi-injective replacement of 𝑀 . It follows from 8.2.6
that Ext1𝑅 (𝑅/𝔞,Z−𝑛 (𝐼)) = 0 holds for every left ideal 𝔞 in 𝑅, whence Z−𝑛 (𝐼) is an
injective module by 8.2.1.

(v)⇒ (iv): This implication is immediate from 8.2.1.
(iv)⇒ (i) and (iv)⇒ (vi): Let 𝐼 be a semi-injective replacement of 𝑀 . As one

has −𝑛 ⩽ inf 𝑀 = inf 𝐼, the sequence 0 → Z−𝑛 (𝐼) → 𝐼−𝑛 → Z−(𝑛+1) (𝐼) → 0
is exact, and it follows from 8.2.1 that the module Z−𝑛 (𝐼) is injective. Further, the
canonical morphism 𝜏𝐼Ě−𝑛 : 𝐼Ě−𝑛 ↣ 𝐼 is a quasi-isomorphism, so in D(𝑅) there is
an isomorphism 𝑀 ≃ 𝐼Ě−𝑛, and the right-hand complex is semi-injective by 8.2.7.
Now it follows from 7.3.19 that there is quasi-isomorphism 𝑀 → 𝐼Ě−𝑛.

This argument shows that the “some” part of (v) implies (i), and thus (i)–(v) are
equivalent. The argument also shows that the “every” part of (v) implies (vi).
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(vi)⇒ (vii): Choose by 5.3.26 a semi-injective resolution 𝑀 ≃−−→ 𝐼 with 𝐼−𝑣 = 0
for all 𝑣 < − sup𝑀 . In particular, 𝐼 is a semi-injective replacement of 𝑀 , so by (vi)
there is a quasi-isomorphism 𝑀 → 𝐼Ě−𝑛, which is the desired resolution.

In the last assertion, the first equality follows from the equivalence of (i) and (ii′)
while the second holds by 7.3.24. □

The next corollary applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

8.2.9 Corollary. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in D(𝑅).
With 𝚤′ = id𝑅 𝑀 ′, 𝚤 = id𝑅 𝑀 , and 𝚤′′ = id𝑅 𝑀 ′′ there are inequalities,

𝚤′ ⩽ max{𝚤, 𝚤′′ + 1} , 𝚤 ⩽ max{𝚤′, 𝚤′′} , and 𝚤′′ ⩽ max{𝚤′ − 1, 𝚤} .

In particular, if two of the complexes 𝑀 ′, 𝑀 , and 𝑀 ′′ have finite injective dimension,
then so has the third.

Proof. For every 𝑅-module 𝑁 there is a distinguished triangle,

RHom𝑅 (𝑁, 𝑀 ′) −→ RHom𝑅 (𝑁, 𝑀) −→
RHom𝑅 (𝑁, 𝑀 ′′) → ΣRHom𝑅 (𝑁, 𝑀 ′) .

The inequalities now follow from 8.2.8 and 6.5.20. □

Remark. Corollary 8.2.9 basically shows that the complexes of finite injective dimension form a
triangulated subcategory of D(𝑅); see E 8.2.17 and also 10.1.21.

Over a semi-simple ring every module is injective, see 1.3.28; in particular, such
a ring is self-injective. As the next example illustrates, modules over a self-injective
ring can have infinite injective dimension.

8.2.10 Proposition. Assume that 𝑅 is a principal ideal domain. For every ideal
𝔞 ≠ 0 in 𝑅, the quotient ring 𝑅/𝔞 is self-injective.

Proof. We use Baer’s criterion 1.3.30. Choose an element 𝑎 ≠ 0 in 𝑅 with 𝔞 = (𝑎).
Every ideal in 𝑅/(𝑎) has the form (𝑏)/(𝑎) with 𝑎 = 𝑏𝑐 for some 𝑐 ∈ 𝑅. Given
a homomorphism 𝜑 : (𝑏)/(𝑎) → 𝑅/(𝑎) of 𝑅/(𝑎)-modules, one has 𝜑( [𝑏] (𝑎) ) =
[𝑥] (𝑎) for some 𝑥 ∈ 𝑅. As 𝑏𝑐 = 𝑎 one has 𝑐𝑥 ∈ (𝑎), that is, 𝑐𝑥 = 𝑎𝑦 for some
𝑦 ∈ 𝑅. Hence 𝑎𝑥 = 𝑏𝑐𝑥 = 𝑏𝑎𝑦 and thus 𝑥 = 𝑏𝑦. So 𝜑′ : 𝑅/(𝑎) → 𝑅/(𝑎) given
by [𝑟] (𝑎) ↦→ [𝑟𝑦] (𝑎) is a homomorphism of 𝑅/(𝑎)-modules whose restriction to
(𝑏)/(𝑎) is 𝜑. □

8.2.11 Example. The ring ℤ/4ℤ is self-injective by 8.2.10. Hence the complex

𝐼 = 0 −→ ℤ/4ℤ 2−−−→ ℤ/4ℤ 2−−−→ ℤ/4ℤ −→ · · · ,

concentrated in non-positive degrees, is a semi-injective replacement of the ℤ/4ℤ-
module 2ℤ/4ℤ � ℤ/2ℤ. As ℤ/4ℤ is indecomposable as a ℤ/4ℤ-module, no kernel
Z−𝑛 (𝐼) � ℤ/2ℤ for 𝑛 ⩾ 0 is injective, so one has idℤ/4ℤ (ℤ/2ℤ) = ∞.
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8.2.12 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; there is an equality,

id𝑅
( ∏
𝑢∈𝑈

𝑀𝑢
)
= sup
𝑢∈𝑈
{id𝑅 𝑀𝑢} .

Proof. Let 𝑁 be an 𝑅-module. The functor RHom𝑅 (𝑁, ) preserves products by
3.1.24 and 7.2.14, so in view of 3.1.23 there are equalities,

− inf RHom𝑅

(
𝑁,

∏
𝑢∈𝑈

𝑀𝑢
)
= − inf

( ∏
𝑢∈𝑈

RHom𝑅 (𝑁, 𝑀𝑢)
)

= sup
𝑢∈𝑈
{− inf RHom𝑅 (𝑁, 𝑀𝑢)} .

The desired equality now follows from 8.2.8. □

Schanuel’s Lemma and the Horseshoe Lemma

The next two results are known as Schanuel’s lemma and the Horseshoe Lemma (for
semi-injective complexes) the former can be seen as a refinement of 8.2.8(v).

8.2.13 Lemma. Let 𝑀 be an 𝑅-complex and 𝐼 and 𝐼 ′ be semi-injective replacements
of 𝑀 . For every 𝑣 ∈ ℤ there exist injective 𝑅-modules 𝐸 and 𝐸 ′ with Z𝑣 (𝐼) ⊕ 𝐸 �
Z𝑣 (𝐼 ′) ⊕ 𝐸 ′.

Proof. By 7.3.19 there is a homotopy equivalence 𝛼 : 𝐼 → 𝐼 ′, and by 4.3.30 the
complex Cone𝛼 is contractible. Furthermore, it consists of injective modules, so
4.3.33 shows that every module C𝑛 (Cone𝛼) is injective. By 4.3.21 the morphism
𝛼Ě𝑣 : 𝐼Ě𝑣 → 𝐼 ′Ě𝑣 is also a homotopy equivalence so Cone(𝛼Ě𝑣), that is,

· · · −→ 𝐼 ′𝑣+3 ⊕ 𝐼𝑣+2
𝜕Cone 𝛼
𝑣+3−−−−−→ 𝐼 ′𝑣+2 ⊕ 𝐼𝑣+1 −→ 𝐼 ′𝑣+1 ⊕ Z𝑣 (𝐼) −→ Z𝑣 (𝐼 ′) −→ 0 ,

is contractible. Hence one has Z𝑣 (𝐼 ′) ⊕ C𝑣+2 (Cone𝛼) � 𝐼 ′
𝑣+1 ⊕ Z𝑣 (𝐼). □

The next lemma applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

8.2.14 Lemma. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in D(𝑅).
If 𝐼 ′ and 𝐼 ′′ are semi-injective replacements of 𝑀 ′ and 𝑀 ′′, then there is an exact
sequence 0→ 𝐼 ′ → 𝐼 → 𝐼 ′′ → 0 in C(𝑅) with 𝐼 a semi-injective replacement of 𝑀 .

Proof. Rotation, see (TR2) in E.2, of the given triangle yields a distinguished
triangle, Σ−1𝑀 ′′ → 𝑀 ′ → 𝑀 → 𝑀 ′′. Since 𝑀 ′ ≃ 𝐼 ′ and 𝑀 ′′ ≃ 𝐼 ′′ hold in
D(𝑅) there is also a distinguished triangle Σ−1𝐼 ′′

𝛾−−→ 𝐼 ′ −−→ 𝑀 −−→ 𝐼 ′′. The mor-
phism 𝛾 is a left fraction 𝛽/𝜑 where Σ−1𝐼 ′′

𝜑←−− 𝑈 𝛽−−→ 𝐼 is a diagram in K(𝑅)
and 𝜑 is a quasi-isomorphism. Now 6.3.5 yields a morphism 𝛼 : Σ−1𝐼 ′′ → 𝐼 in
C(𝑅) with [𝛼]𝜑 = 𝛽, and hence 𝛾 = 𝛽/𝜑 = ( [𝛼]𝜑)/𝜑 = [𝛼]/1. The diagram
Σ−1𝐼 ′′

𝛼−−→ 𝐼 ′ −−→ Cone𝛼 −−→ 𝐼 ′′ in C(𝑅) is a distinguished triangle when viewed
as a diagram in D(𝑅), see 6.2.3 and 6.5.5. As D(𝑅) is triangulated, (TR3) in E.2
yields a morphism 𝜒 : 𝑀 → Cone𝛼 such that the diagram in D(𝑅),
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Σ−1𝐼 ′′
𝛾
// 𝐼 ′ // 𝑀

𝜒

��

// 𝐼 ′′

Σ−1𝐼 ′′
𝛾
// 𝐼 ′ // Cone𝛼 // 𝐼 ′′ ,

is commutative. It follows from 6.5.19 that 𝜒 is an isomorphism. Set 𝐼 = Cone𝛼;
by 4.1.5 there is a short exact sequence 0→ 𝐼 ′ → 𝐼 → 𝐼 ′′ → 0, whence it follows
from 5.3.20 that the complex 𝐼 is semi-injective. □

Minimality and Artinian Rings

By B.26 every complex has a minimal semi-injective resolution.

8.2.15 Proposition. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. If 𝑀 ≃−−→ 𝐼 is a
minimal semi-injective resolution, then the following conditions are equivalent.

(i) id𝑅 𝑀 ⩽ 𝑛.
(ii) 𝑛 ⩾ − inf 𝑀 and 𝐼−(𝑛+1) = 0 .
(iii) 𝐼−𝑣 = 0 for all 𝑣 > 𝑛.

In particular, one has id𝑅 𝑀 = − inf 𝐼♮ .

Proof. If id𝑅 𝑀 ⩽ 𝑛 holds, then there is a semi-injective replacement 𝐼 ′ of 𝑀 with
𝐼 ′−𝑣 = 0 for all 𝑣 > 𝑛. It follows from 6.4.21 that there is a quasi-isomorphism 𝐼 → 𝐼 ′,
and by B.23 it has a left inverse, whence 𝐼−𝑣 = 0 holds for 𝑣 > 𝑛. Thus (i) implies
(iii) which, in turn, implies (ii). If one has 𝑛 ⩾ − inf 𝑀 and 𝐼−(𝑛+1) = 0, then the
module Z−𝑛 (𝐼) = 𝐼−𝑛 is injective, whence id𝑅 𝑀 ⩽ 𝑛 holds by 8.2.8. □

8.2.16 Lemma. Let 𝐼 be a semi-injective 𝑅-complex and 𝐾 an 𝑅-module. If 𝐼 is
minimal and 𝐾 is semi-simple, then the complex Hom𝑅 (𝐾, 𝐼) has zero differential.

Proof. By 3.1.27 it suffices to prove the assertion for a simple 𝑅-module 𝐾 . Suppose
𝜕Hom𝑅 (𝐾,𝐼 ) is non-zero. For some 𝑛 ∈ ℤ there is then a homomorphism 𝛼 : 𝐾 → 𝐼𝑛
with 𝜕𝐼𝑛𝛼 ≠ 0. In particular, 𝛼 is non-zero, and since 𝐾 is simple it follows that 𝛼
and 𝜕𝐼𝑛𝛼 are injective. By 2.5.29 the acyclic complex D𝑛 (𝐾) is now a subcomplex
of 𝐼, which by B.24 contradicts the minimality of 𝐼. □

Remark. There is a result for minimal semi-projective complexes akin to 8.2.16; see E B.25.

Existence of minimal resolutions and structure theory for injective modules over
Artinian rings yields a result akin to 8.1.17.

8.2.17 Theorem. Assume that 𝑅 is left Artinian with Jacobson radical 𝔍 and set
𝒌 = 𝑅/𝔍. Let 𝑀 be an 𝑅-complex and 𝑛 ∈ ℤ. The next conditions are equivalent.

(i) id𝑅 𝑀 ⩽ 𝑛.
(ii) 𝑛 ⩾ − inf 𝑀 and Ext𝑛+1

𝑅
(𝒌, 𝑀) ≠ 0 .

In particular, there is an equality,

id𝑅 𝑀 = − inf RHom𝑅 (𝒌, 𝑀) .
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Proof. Choose by B.26 a semi-injective resolution 𝑀 ≃−−→ 𝐼 with 𝐼 minimal. As 𝒌
is semi-simple, the complex Hom𝑅 (𝒌, 𝐼) has zero differential by 8.2.16, and hence

H𝑣 (RHom𝑅 (𝒌, 𝑀)) = Hom𝑅 (𝒌, 𝐼)𝑣 = Hom𝑅 (𝒌, 𝐼𝑣)

holds for every 𝑣 ∈ ℤ. For every maximal left ideal 𝔪 in 𝑅 there is a non-zero
homomorphism 𝒌 ↠ 𝑅/𝔪, so it follows from C.6 that Hom𝑅 (𝒌, 𝐼𝑣) is non-zero for
every 𝐼𝑣 ≠ 0. In particular, one has H𝑣 (RHom𝑅 (𝒌, 𝑀)) = 0 if and only if 𝐼𝑣 = 0.
Now 8.2.15 yields the equivalence of (i) and (ii), and from here the displayed equality
is immediate. □

The Case of Modules

8.2.18. Notice from 8.2.8 that a non-zero 𝑅-module is injective if and only if it has
injective dimension 0 as an 𝑅-complex.

8.2.19 Theorem. Let 𝑀 be an 𝑅-module and 𝑛 ⩾ 0 an integer. The following
conditions are equivalent.

(i) id𝑅 𝑀 ⩽ 𝑛.
(ii) One has Ext𝑚

𝑅
(𝑁, 𝑀) = 0 for every 𝑅-module 𝑁 and every integer 𝑚 > 𝑛.

(iii) One has Ext𝑛+1
𝑅
(𝑅/𝔞, 𝑀) = 0 for every left ideal 𝔞 in 𝑅 .

(iv) There is an injective resolution 0→ 𝑀 → 𝐼0 → · · · → 𝐼−(𝑛−1) → 𝐼−𝑛 → 0 .
(v) In every injective resolution 0 → 𝑀 → 𝐼0 → · · · → 𝐼−(𝑣−1) → 𝐼−𝑣 → · · ·

the module Ker(𝐼−𝑛 → 𝐼−(𝑛+1) ) is injective.
In particular, there is an equality,

id𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | Ext𝑚𝑅 (𝑅/𝔞, 𝑀) ≠ 0 for some left ideal 𝔞 in 𝑅} .

Proof. By 5.3.31 every 𝑅-module 𝑀 has an injective resolution

0 −→ 𝑀 −→ 𝐼0 −→ · · · −→ 𝐼−(𝑣−1) −→ 𝐼−𝑣 −→ · · · .

In every such resolution, the injective homomorphism 𝑀 → 𝐼0 yields a semi-
injective resolution of 𝑀 , considered as a complex; cf. 5.3.33. Thus the complex
0 → 𝐼0 → · · · → 𝐼−(𝑣−1) → 𝐼−𝑣 → · · · is a semi-injective replacement of 𝑀 . The
equivalence of the five conditions now follows from the equivalence of (i)–(iii), (v),
and (vii) in 8.2.8. The asserted equality holds by 8.2.8 in view of 7.3.27. □

Coproducts of Injective Modules

8.2.20 Theorem. The following conditions are equivalent.
(i) 𝑅 is left Noetherian.
(ii) For every 𝑈-direct system {𝜇𝑣𝑢 : 𝐼𝑢 → 𝐼𝑣}𝑢∈𝑈 of injective 𝑅-modules with 𝑈

filtered, the colimit colim𝑢∈𝑈 𝐼𝑢 is injective.
(iii) For every countable family {𝐼𝑢}𝑢∈ℕ of injective 𝑅-modules the coproduct∐

𝑢∈𝑈 𝐼
𝑢 is injective.
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Proof. The implication (ii)⇒ (iii) is evident; cf. 3.3.9.
(i)⇒ (ii): Let 𝔞 be a left ideal in 𝑅. The functor Ext1𝑅 (𝑅/𝔞, ) preserves filtered

colimits by 7.3.34, as 𝑅 is left Noetherian. Thus the implication follows from 8.2.19.
(iii)⇒ (i): Let 𝔞1 ⊆ 𝔞2 ⊆ · · · be a chain of left ideals in 𝑅 and set 𝔞 =

⋃
𝑢∈ℕ 𝔞𝑢.

For every 𝑢 ∈ ℕ choose by 5.3.4 an injective homomorphism 𝑅/𝔞𝑢 → 𝐼𝑢 with 𝐼𝑢
injective and identify 𝑅/𝔞𝑢 with its image in 𝐼𝑢. Set 𝐼 =

∐
𝑢∈ℕ 𝐼

𝑢; the assignment
𝑎 ↦→ ([𝑎]𝔞𝑢 )𝑢∈ℕ defines a homomorphism 𝛼 : 𝔞 → 𝐼, as one has 𝑎 ∈ 𝔞𝑢 for 𝑢 ≫ 0.
By (iii) the module 𝐼 is injective, so 𝛼 lifts to a homomorphism 𝑅 → 𝐼; in particular,
there is an element 𝑖 = (𝑖𝑢)𝑢∈ℕ in 𝐼 such that 𝛼(𝑎) = 𝑎𝑖 holds for every 𝑎 ∈ 𝑅. One
has 𝑖𝑢 = 0 for 𝑢 ≫ 0 and, therefore, 𝔞𝑢 = 𝔞 for 𝑢 ≫ 0. □

8.2.21 Corollary. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-modules. There is an inequality,

id𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
⩾ sup

𝑢∈𝑈
{id𝑅 𝑀𝑢} ,

and equality holds if 𝑅 is left Noetherian.

Proof. For every 𝑢 ∈ 𝑈 the module 𝑀𝑢 is a direct summand of
∐
𝑢∈𝑈 𝑀

𝑢, so the
inequality “⩾” holds by 8.2.12. Now assume that 𝑅 is left Noetherian. The opposite
inequality is trivial if the supremum sup𝑢∈𝑈{id𝑅 𝑀𝑢} is infinite, so assume that it is
not and call it 𝑠. By 8.2.19 there is for every 𝑢 in𝑈 an injective resolution 𝑀𝑢 ≃−−→ 𝐼𝑢

with 𝐼𝑢−𝑣 = 0 for 𝑣 > 𝑠. The complex
∐
𝑢∈𝑈 𝐼

𝑢 is semi-injective by 8.2.20 and 5.3.12,
and there is by 4.2.11 a quasi-isomorphism

∐
𝑢∈𝑈 𝑀

𝑢 → ∐
𝑢∈𝑈 𝐼

𝑢, i.e. an injective
resolution of

∐
𝑢∈𝑈 𝑀

𝑢. The asserted inequality now follows from 8.2.2. □

Remark. The proof of 8.2.21 is easily adapted to apply to a family {𝑀𝑢 }𝑢∈𝑈 of complexes that
are uniformly bounded above, see E 8.2.9, and that is the end of its range, since a coproduct of
semi-injective complexes need not be semi-injective. In fact, Iacob and Iyengar [140] show that
every coproduct of semi-injective 𝑅-complexes is semi-injective if and only if 𝑅 is left Noetherian
and regular in the sense that every finitely generated 𝑅-module has finite projective dimension. See
also 20.2.12.

Exercises

E 8.2.1 Show that an 𝑅-module 𝑀 is injective if Ext1
𝑅
(𝑅/𝔞, 𝑀 ) = 0 holds for every left ideal

𝔞 ⊆ 𝑅 that is essential in 𝑅.
E 8.2.2 Let 𝑛 > 0 be an integer and 𝑀 an 𝑅-module with pd𝑅 𝑀 > 𝑛. Show that the functor

Ext𝑛
𝑅
(𝑀, ) : M(𝑅) →M(𝕜) is half exact but neither left nor right exact.

E 8.2.3 Let 𝑛 > 0 be an integer and 𝑀 an 𝑅-module with id𝑅 𝑀 > 𝑛. Show that the functor
Ext𝑛

𝑅
( , 𝑀 ) : M(𝑅) →M(𝕜) is half exact but neither left nor right exact.

E 8.2.4 Let 𝑅 be semi-simple. Show that id𝑅 𝑀 = − inf 𝑀 holds for every 𝑅-complex 𝑀.
E 8.2.5 Let 𝑀 be a complex in D⊐ (𝑅) with H(𝑀 ) ≠ 0 and set 𝑢 = inf 𝑀. Show that for every

semi-injective replacement 𝐼 of 𝑀 one has id𝑅 𝑀 = id𝑅 Z𝑢 (𝐼 ) − 𝑢.
E 8.2.6 Let 𝑀 be an 𝑅-complex. Show that id𝑅 𝑀 is finite if and only if H(RHom𝑅 (𝑁, 𝑀 ) )

is bounded below for every 𝑅-module 𝑁 .
E 8.2.7 Let 𝑀 be an 𝑅-complex and assume that it is isomorphic in D(𝑅) to a K-injective

complex𝑌 with𝑌𝑣 = 0 for all 𝑣 < −𝑛. Show that id𝑅 𝑀 is at most 𝑛, and conclude that
one could use K-injective replacements in 8.2.2.
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E 8.2.8 Let 𝑅 be left hereditary. Show that id𝑅 𝑀 ⩽ − inf 𝑀 + 1 holds for every 𝑅-complex 𝑀.
E 8.2.9 Assume that 𝑅 is left Noetherian and let {𝑀𝑢 }𝑢∈𝑈 be a family of 𝑅-complexes. Show

that if sup𝑢∈𝑈 {sup𝑀𝑢 } < ∞, then one has id𝑅 (
∐
𝑢∈𝑈 𝑀

𝑢 ) = sup𝑢∈𝑈 { id𝑅 𝑀𝑢 }.
E 8.2.10 Assume that 𝑅 is left Noetherian and that every left ideal in 𝑅 has finite projective

dimension. Show that for every family {𝑀𝑢 }𝑢∈𝑈 of 𝑅-complexes the following equality
holds, id𝑅 (

∐
𝑢∈𝑈 𝑀

𝑢 ) = sup𝑢∈𝑈 { id𝑅 𝑀𝑢 }.
E 8.2.11 Assume that 𝑅 is left Noetherian and let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣 }𝑢∈𝑈 be a𝑈-direct system

of 𝑅-modules. Show that if𝑈 is filtered, then id𝑅 (colim𝑢∈𝑈 𝑀𝑢 ) ⩽ sup𝑢∈𝑈 { id𝑅 𝑀𝑢 }
holds. Hint: 3.3.17.

E 8.2.12 Let 0 → 𝑀 → 𝑁 → 𝐶 → 0 and 0 → 𝑀 → 𝑁 ′ → 𝐶′ → 0 be exact sequences
of 𝑅-modules. Show that if Ext1

𝑅
(𝐶, 𝑁 ′ ) = 0 = Ext1

𝑅
(𝐶′, 𝑁 ) holds, then there is an

isomorphism 𝑁 ⊕ 𝐶′ � 𝑁 ′ ⊕ 𝐶.
E 8.2.13 Let𝑀 be an 𝑅-complex of finite injective dimension 𝑛. Show that there exists an injective

𝑅-module 𝐼 with Ext𝑛
𝑅
(𝐼, 𝑀 ) ≠ 0.

E 8.2.14 Let 𝑀 be an 𝑅-module and 𝑃 ≃−→ 𝑀 a semi-projective resolution. Show that one has
id𝑅 C𝑛 (𝑃) ⩾ 𝑛 for all 𝑛 ⩽ pd𝑅 𝑀.

E 8.2.15 Let 𝑀 be an 𝑅-module and 𝑀 ≃−→ 𝐼 a semi-injective resolution. Show that one has
pd𝑅 Z−𝑛 (𝐼 ) ⩾ 𝑛 for all 𝑛 ⩽ id𝑅 𝑀.

E 8.2.16 Let 𝑅 be the ring of 2 × 2 matrices over a field. (a) Show that 𝑅 is the direct sum of
the two maximal left ideals 𝔪 and 𝔫 made up of matrices with zeroes in the first and
second column, respectively. (b) Show that the simple 𝑅-modules 𝑅/𝔪 and 𝑅/𝔫 are
isomorphic.

E 8.2.17 Show that the full subcategory of 𝑅-complexes of finite injective dimension is a trian-
gulated subcategory of D⊐ (𝑅) .

E 8.2.18 Let 𝔞1 ⊂ 𝔞2 ⊂ · · · be an infinite increading chain of ideals in 𝑅. For each 𝑢 ∈ ℕ let
𝑅/𝔞𝑢 ↣ 𝐸𝑢 be the embedding of 𝑅/𝔞𝑢 into an injective 𝑅-module. Show that the
module

∐
𝑢∈ℕ 𝐸

𝑢 is not injective.

8.3 Flat Dimension

Synopsis. Vanishing of Tor; flat dimension; ∼ vs. injective dimension; Schanuel’s lemma; flat
dimension over Noetherian/perfect ring; flat resolution of module; flat dimension of module; product
of flat modules.

The treatments of projective and injective dimension in the previous two sections are
not just parallel, they are independent and one could change the order if so inclined.
The treatment in this section of the flat dimension, however, does depend on the
already established theory for injective dimension. The dependence comes through
the flat–injective duality 1.3.48 as it manifests itself in 5.4.9.

8.3.1 Lemma. Let 𝑀 be an 𝑅-complex, 𝑁 an 𝑅o-complex, and 𝑚 an integer. There
are isomorphisms of 𝕜-modules,

Ext𝑚𝑅 (𝑀,Hom𝕜 (𝑁,𝔼)) � Hom𝕜 (Tor𝑅𝑚 (𝑁, 𝑀),𝔼) � Ext𝑚𝑅o (𝑁,Hom𝕜 (𝑀,𝔼)) .

Proof. As 𝔼 is an injective 𝕜-module one has RHom𝕜 ( ,𝔼) = Hom𝕜 ( ,𝔼). The 1st

and 4th isomorphisms below follow from the definitions, 7.3.23 and 7.4.18; the 2nd

isomorphism is adjunction 7.5.30, and the 3rd one holds by 2.2.19.
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Ext𝑚𝑅 (𝑀,Hom𝕜 (𝑁,𝔼)) � H−𝑚 (RHom𝑅 (𝑀,Hom𝕜 (𝑁,𝔼)))
� H−𝑚 (Hom𝕜 (𝑁 ⊗L

𝑅 𝑀,𝔼))
� Hom𝕜 (H𝑚 (𝑁 ⊗L

𝑅 𝑀),𝔼)
� Hom𝕜 (Tor𝑅𝑚 (𝑁, 𝑀),𝔼) .

This proves the first of the asserted isomorphisms; the other is proved similarly. □

8.3.2 Lemma. For an 𝑅-module 𝐹 the following conditions are equivalent.
(i) 𝐹 is flat.
(ii) sup (𝑁 ⊗L

𝑅
𝐹) ⩽ sup 𝑁 holds for every 𝑅o-complex 𝑁 .

(iii) One has Tor𝑅1 (𝑅/𝔟, 𝐹) = 0 for every finitely generated right ideal 𝔟 in 𝑅 .
(iv) There exists a surjective homomorphism 𝜋 : 𝐿 → 𝐹 with 𝐿 flat and such that

Tor𝑅1 (Hom𝕜 (Ker 𝜋,𝔼), 𝐹) = 0 holds.

Proof. If 𝐹 is flat, then 𝐹 is a semi-flat replacement of itself, and by 7.4.17 one has
𝑁 ⊗L

𝑅
𝐹 = 𝑁 ⊗𝑅 𝐹 in D(𝕜). Now 2.5.7(c) yields sup (𝑁 ⊗L

𝑅
𝐹) ⩽ sup 𝑁 , whence (i)

implies (ii). From (ii) it follows that the functor Tor𝑅1 ( , 𝐹) is zero on modules, and
therefore (ii) implies (iii) and, in view of 1.3.12, (ii) implies (iv) as well.

(iii)⇒ (i): Let 𝔟 be a right ideal in 𝑅; by 3.3.5 it is the filtered colimit of its finitely
generated right subideals. For each such subideal 𝔟′ the embedding 𝔟′ ↣ 𝑅 yields an
exact sequence Tor𝑅1 (𝑅/𝔟′, 𝐹) → 𝔟′ ⊗𝑅 𝐹 → 𝑅 ⊗𝑅 𝐹; see 7.4.29 and 7.4.21. From
(iii) it follows that the morphism 𝔟′ ⊗𝑅 𝐹 → 𝑅 ⊗𝑅 𝐹 is injective, so by exactness
of filtered colimits 3.3.10, and the fact that ⊗𝑅 𝐹 preserves colimits 3.2.22, the
morphism 𝔟 ⊗𝑅 𝐹 → 𝑅 ⊗𝑅 𝐹 is injective. Thus, 𝐹 is flat by 1.3.48.

(iv)⇒ (i): Set 𝐾 = Ker 𝜋; there is an exact sequence of 𝑅o-modules,

0 −→ Hom𝕜 (𝐹,𝔼) −→ Hom𝕜 (𝐿,𝔼) −→ Hom𝕜 (𝐾,𝔼) −→ 0 ,

where Hom𝕜 (𝐿,𝔼) is injective by 1.3.48. By 8.3.1 one has

Ext1𝑅o (Hom𝕜 (𝐾,𝔼),Hom𝕜 (𝐹,𝔼)) � Hom𝕜 (Tor𝑅1 (Hom𝕜 (𝐾,𝔼), 𝐹),𝔼) .

It now follows from (iv) and 8.2.1 that the 𝑅o-module Hom𝕜 (𝐹,𝔼) is injective,
whence 𝐹 is flat by 1.3.48. □

Semi-Flat Replacements and Flat Dimension

Recall from 7.4.13 that a semi-flat replacement of an 𝑅-complex 𝑀 is a semi-flat
complex that is isomorphic to 𝑀 the derived category D(𝑅).

8.3.3 Definition. Let 𝑀 be an 𝑅-complex. The flat dimension of 𝑀 , written fd𝑅 𝑀 ,
is defined as

fd𝑅 𝑀 = inf
{
𝑛 ∈ ℤ

���� There is a semi-flat replacement
𝐹 of 𝑀 with 𝐹𝑣 = 0 for all 𝑣 > 𝑛

}
,

with the convention inf ∅ = ∞. One says that fd𝑅 𝑀 is finite if fd𝑅 𝑀 < ∞ holds.
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A comment similar to the one after 8.1.2 justifies the last convention in 8.3.3.

8.3.4. Let 𝑀 be an 𝑅-complex. For every semi-flat replacement 𝐹 of 𝑀 one has
H(𝐹) � H(𝑀); the next (in)equalities are hence immediate from the definition,

fd𝑅 𝑀 ⩾ sup𝑀 and fd𝑅 Σ𝑠𝑀 = fd𝑅 𝑀 + 𝑠 for every integer 𝑠 .

Moreover, one has fd𝑅 𝑀 = −∞ if and only if 𝑀 is acyclic.
Note that the definition of flat dimension could also be written

fd𝑅 𝑀 = inf{sup 𝐹♮ | 𝐹 is a semi-flat replacement of 𝑀 } .

The projective and injective dimensions could be defined using resolutions—by
6.4.20 and 6.4.21 replacements and resolutions are two sides of a coin—but this is
not the case for the flat dimension. The next example illustrates this and shows, in
the process, that semi-flat complexes may not allow comparison maps. This, again,
contrasts sharply with 6.4.20 and 6.4.21.

8.3.5 Example. As ℚ is a flat ℤ-module, see 1.3.43, one has fdℤ ℚ = 0 by 8.3.4.
Let 𝐿 ≃−−→ ℚ be a free resolution with 𝐿𝑣 = 0 for 𝑣 ≠ 0, 1; cf. 5.4.15. One

has fdℤ 𝐿 = fdℤ ℚ = 0, but there does not exist a quasi-isomorphism 𝐹 → 𝐿,
where 𝐹 is a (semi-flat) complex with 𝐹𝑣 = 0 for 𝑣 > 0. Indeed, such a quasi-
isomorphism would induce an injective homomorphism Z0 (𝐹) → Z0 (𝐿), but that
would contradict 1.3.11 as Z0 (𝐿) = 𝐿0 is free while Z0 (𝐹) � ℚ is not.

8.3.6 Proposition. Let 𝑀 be an 𝑅-complex; there is an inequality,

fd𝑅 𝑀 ⩽ pd𝑅 𝑀 .

Proof. A semi-projective replacement of 𝑀 is a semi-flat replacement by 5.4.10, so
the inequality holds by the definitions of the dimension, 8.1.2 and 8.3.3. □

8.3.7 Example. The inequality in 8.3.6 may be strict. Indeed, fdℤ ℚ = 0 holds by
8.3.5, while 8.1.5 yields pdℤ ℚ = 1. For finitely generated modules over ℤ the two
dimensions agree, see 8.3.19; it also follows from that result that 8.1.10 provides an
example of a module of infinite flat dimension.

8.3.8 Proposition. Let 𝑅 → 𝑆 be a ring homomorphism and 𝑀 be an 𝑅-complex.
There is an inequality,

fd𝑆 (𝑆 ⊗L
𝑅 𝑀) ⩽ fd𝑅 𝑀 .

Proof. For every semi-flat replacement 𝐹 of the 𝑅-complex 𝑀 , the 𝑆-complex
𝑆 ⊗𝑅 𝐹 is a semi-flat replacement of 𝑆 ⊗L

𝑅
𝑀 by 5.4.18(a). As 𝐹𝑣 = 0 implies

(𝑆 ⊗𝑅 𝐹)𝑣 = 0, the desired inequality follows from 8.3.3. □

The next isomorphism is colloquially referred to as “dimension shifting”.

8.3.9 Lemma. Let 𝑀 be an 𝑅-complex, 𝐹 a semi-flat replacement of 𝑀 , and 𝑁 an
𝑅o-module. For all integers 𝑚 > 0 and 𝑛 ⩾ sup𝑀 one has

Tor𝑅𝑛+𝑚 (𝑁, 𝑀) � Tor𝑅𝑚 (𝑁,C𝑛 (𝐹)) .
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Proof. Recall from 5.4.8 that 𝐹ě𝑛 is a semi-flat 𝑅-complex. As one has 𝑛 ⩾ sup𝑀 =

sup 𝐹, the canonical morphism Σ−𝑛𝐹ě𝑛 ↠ C𝑛 (𝐹) is a quasi-isomorphism; in par-
ticular, Σ−𝑛𝐹ě𝑛 is a semi-flat replacement of C𝑛 (𝐹). In the next computation, the
1st, 2nd, and 5th identities follow from the definitions of (derived) tensor products;
the 4th follows from 2.4.13.

H𝑛+𝑚 (𝑁 ⊗L
𝑅 𝑀) � H𝑛+𝑚 (𝑁 ⊗𝑅 𝐹)

= H𝑛+𝑚 (𝑁 ⊗𝑅 𝐹ě𝑛)
= H𝑚 (Σ−𝑛(𝑁 ⊗𝑅 𝐹ě𝑛))
� H𝑚 (𝑁 ⊗𝑅 Σ−𝑛𝐹ě𝑛)
� H𝑚 (𝑁 ⊗L

𝑅 C𝑛 (𝐹)) ;

the definition of Tor, 7.4.18, now yields the asserted isomorphism. □

8.3.10 Lemma. Let 𝐹 be a semi-flat 𝑅-complex and 𝑣 an integer. The complex 𝐹Ď𝑣

is semi-flat if and only if the module C𝑣 (𝐹) is flat.

Proof. If the complex 𝐹Ď𝑣 is semi-flat, then the module C𝑣 (𝐹) = (𝐹Ď𝑣)𝑣 is flat. If
the module C𝑣 (𝐹) is flat, then it is semi-flat as a complex by 5.4.11. There is an
exact sequence 0→ 𝐹ď𝑣−1 → 𝐹Ď𝑣 → Σ𝑣C𝑣 (𝐹) → 0, so by 5.4.12 the complex 𝐹Ď𝑣

is semi-flat if and only if 𝐹ď𝑣−1 is semi-flat, which it is by 5.4.8 and 5.4.12 applied
to the exact sequence 0→ 𝐹ď𝑣−1 → 𝐹 → 𝐹ě𝑣 → 0. □

8.3.11 Theorem. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. The following conditions
are equivalent.

(i) fd𝑅 𝑀 ⩽ 𝑛.
(ii) sup (𝑁 ⊗L

𝑅
𝑀) ⩽ 𝑛 + sup 𝑁 holds for every 𝑅o-complex 𝑁 .

(iii) 𝑛 ⩾ sup𝑀 and Tor𝑅
𝑛+1 (𝑅/𝔟, 𝑀) = 0 holds for every finitely generated right

ideal 𝔟 in 𝑅 .
(iv) 𝑛 ⩾ sup𝑀 and one has Tor𝑅1 (Hom𝕜 (C𝑛+1 (𝐹),𝔼),C𝑛 (𝐹)) = 0 for some,

equivalently every, semi-flat replacement 𝐹 of 𝑀 .
(v) 𝑛 ⩾ sup𝑀 and for some, equivalently every, semi-flat replacement 𝐹 of 𝑀 the

module C𝑛 (𝐹) is flat.
(vi) 𝑛 ⩾ sup𝑀 and for every semi-flat replacement 𝐹 of 𝑀 the complex 𝐹Ď𝑛 is a

semi-flat replacement of 𝑀 .
(vii) There exists a semi-flat replacement 𝐹 of 𝑀 with 𝐹𝑣 = 0 for all 𝑣 > 𝑛 and for

all 𝑣 < inf 𝑀 .
In particular, there are equalities,

fd𝑅 𝑀 = sup{sup (𝑅/𝔟 ⊗L
𝑅 𝑀) | 𝔟 is a finitely generated right ideal in 𝑅}

= sup{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝑅/𝔟, 𝑀) ≠ 0 for a finitely generated right ideal 𝔟 in 𝑅}.

Proof. In addition to the seven conditions in the statement we consider
(ii′) sup (𝑁 ⊗L

𝑅
𝑀) ⩽ 𝑛 holds for every 𝑅o-module 𝑁 ,
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and prove that all eight conditions are equivalent. The implications (ii)⇒ (ii′) and
(vii)⇒ (i) are trivial.

(i)⇒ (ii): One can assume that 𝑁 is in D⊏ (𝑅o) and not acyclic; otherwise the
inequality is trivial. Set 𝑤 = sup 𝑁; it is an integer and there is an isomorphism
𝑁 ⊗L

𝑅
𝑀 ≃ 𝑁Ď𝑤 ⊗L

𝑅
𝑀; see 4.2.4. Choose a semi-flat replacement 𝐹 of 𝑀 with

𝐹𝑣 = 0 for all 𝑣 > 𝑛. Now one has sup (𝑁 ⊗L
𝑅
𝑀) = sup (𝑁Ď𝑤 ⊗𝑅 𝐹). For 𝑣 > 𝑛 + 𝑤

and 𝑝 ∈ ℤ, one of the inequalities 𝑝 > 𝑤 or 𝑣 − 𝑝 ⩾ 𝑣 − 𝑤 > 𝑛 holds, so the module

(𝑁Ď𝑤 ⊗𝑅 𝐹)𝑣 =
∐
𝑝∈ℤ
(𝑁Ď𝑤)𝑝 ⊗𝑅 𝐹𝑣−𝑝

is zero. In particular, H𝑣 (𝑁Ď𝑤 ⊗𝑅 𝐹) = 0 holds for 𝑣 > 𝑛+𝑤, so the desired inequality
sup (𝑁 ⊗L

𝑅
𝑀) ⩽ 𝑛 + 𝑤 holds.

(ii′)⇒ (iii): Apply (ii′) with 𝑁 = 𝑅 to get sup𝑀 = sup (𝑅 ⊗𝑅 𝑀) ⩽ 𝑛; the
second assertion is immediate from 7.4.19.

(iii)⇒ (v): Let 𝐹 be a semi-flat replacement of 𝑀 . It follows from 8.3.9 that
Tor𝑅1 (𝑅/𝔟,C𝑛 (𝐹)) = 0 holds for every finitely generated right ideal 𝔟 in 𝑅, whence
C𝑛 (𝐹) is flat by 8.3.2.

(v)⇒ (iv): This implication is immediate from 8.3.2.
(iv)⇒ (i) and (iv)⇒ (vi): Let 𝐹 be a semi-flat replacement of 𝑀 . As one has

𝑛 ⩾ sup𝑀 = sup 𝐹, the sequence 0→ C𝑛+1 (𝐹) → 𝐹𝑛 → C𝑛 (𝐹) → 0 is exact, and
it follows from 8.3.2 that the module C𝑛 (𝐹) is flat. Further, the canonical morphism
𝜏𝐹Ď𝑛 : 𝐹 ↠ 𝐹Ď𝑛 is a quasi-isomorphism, so 𝑀 is isomorphic to 𝐹Ď𝑛 in D(𝑅), and the
latter complex is semi-flat by 8.3.10.

This argument shows that the “some” part of (iv) implies (i), and thus (i)–(v) are
equivalent. The argument also shows that the “every” part of (iv) implies (vi).

(vi)⇒ (vii): Choose by 5.1.12 a semi-free resolution 𝐿 of 𝑀 with 𝐿𝑣 = 0 for
𝑣 < inf 𝑀 . By 5.4.10 the complex 𝐿 is semi-flat, so 𝐿Ď𝑛 is the desired replacement.

In the last assertion, the first equality follows from the equivalence of (i) and (ii′)
while the second holds by 7.4.19. □

The next corollary applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

8.3.12 Corollary. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in
D(𝑅). With 𝑓 ′ = fd𝑅 𝑀 ′, 𝑓 = fd𝑅 𝑀 , and 𝑓 ′′ = fd𝑅 𝑀 ′′ there are inequalities,

𝑓 ′ ⩽ max{ 𝑓 , 𝑓 ′′ − 1} , 𝑓 ⩽ max{ 𝑓 ′, 𝑓 ′′} , and 𝑓 ′′ ⩽ max{ 𝑓 ′ + 1, 𝑓 } .

In particular, if two of the complexes 𝑀 ′, 𝑀 , and 𝑀 ′′ have finite flat dimension, then
so has the third.

Proof. For every 𝑅o-module 𝑁 there is a distinguished triangle,

𝑁 ⊗L
𝑅 𝑀

′ −→ 𝑁 ⊗L
𝑅 𝑀 −→ 𝑁 ⊗L

𝑅 𝑀
′′ −→ Σ (𝑁 ⊗L

𝑅 𝑀
′) .

The inequalities now follow from 8.3.11 and 6.5.20. □

Remark. Corollary 8.3.12 basically shows that the complexes of finite flat dimension form a
triangulated subcategory of D(𝑅); see E 8.3.11 and also 10.1.21.
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8.3.13 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; there is an equality,

fd𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
= sup
𝑢∈𝑈
{fd𝑅 𝑀𝑢} .

Proof. Let 𝑁 be an 𝑅o-module. The functor 𝑁 ⊗L
𝑅

preserves coproducts by 3.1.13
and 7.2.14, so in view of 3.1.11 there are equalities,

sup
(
𝑁 ⊗L

𝑅

∐
𝑢∈𝑈

𝑀𝑢
)
= sup

( ∐
𝑢∈𝑈
(𝑁 ⊗L

𝑅 𝑀
𝑢)

)
= sup
𝑢∈𝑈
{sup (𝑁 ⊗L

𝑅 𝑀
𝑢)} .

The desired equality now follows from 8.3.11. □

8.3.14 Proposition. Assume that every flat 𝑅-module has finite projective dimension.
(a) There is an integer 𝑛 ⩾ 0 such that pd𝑅 𝐹 ⩽ 𝑛 holds for every flat 𝑅-module.
(b) An 𝑅-complex has finite flat dimension if and only if it has finite projective

dimension.

Proof. To prove part (a) assume towards a contradiction that for every 𝑛 ⩾ 0 there
is a flat 𝑅-module 𝐹𝑛 with pd𝑅 𝐹𝑛 ⩾ 𝑛. By 8.3.13 and 8.1.11 the 𝑅-module

∐
𝑛∈ℕ 𝐹𝑛

is a flat of infinite projective dimension, which is a contradiction.
To prove (b) one can assume that 𝑀 is not acyclic. Set 𝑛 = fd𝑅 𝑀 and 𝑤 = sup𝑀;

both are integers by assumption and 8.3.4. Let 𝑃 be a semi-projective replacement
of 𝑀 . Note that Σ−𝑤𝑃ě𝑤 is a semi-projective replacement of the module C𝑤(𝑃) and
that pd𝑅 𝑀 = 𝑤 + pd𝑅 C𝑤(𝑃) holds by 8.1.8. The module C𝑛 (𝑃) is flat by 8.3.11,
so it has finite projective dimension by assumption. It follows that also C𝑤(𝑃) has
finite projective dimension, whence pd𝑅 𝑀 = 𝑤 + pd𝑅 C𝑤(𝑃) is finite. □

Notice that 8.1.4, 8.2.4, and 8.3.8 are special cases of the next result. The assump-
tion about non-acyclicity is only there to avoid potentially meaningless expressions
like∞−∞ on the right-hand sides of the displayed inequalities.

8.3.15 Proposition. Let𝑀 be an R-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules, and 𝑁
an 𝑆-complex. If none of the complexes 𝑀 , 𝑋 , and 𝑁 are acyclic, then the following
inequalities hold.

id𝑆 RHom𝑅 (𝑋, 𝑀) ⩽ fd𝑆o 𝑋 + id𝑅 𝑀 .(a)
id𝑆o RHom𝑅 (𝑀, 𝑋) ⩽ id𝑆o 𝑋 + pd𝑅 𝑀 .(b)

fd𝑅 (𝑋 ⊗L
𝑆 𝑁) ⩽ fd𝑅 𝑋 + fd𝑆 𝑁 .(c)

pd𝑅 (𝑋 ⊗L
𝑆 𝑁) ⩽ pd𝑅 𝑋 + pd𝑆 𝑁 .(d)

Proof. For every left ideal 𝔞 in 𝑆, adjunction 7.5.30, 8.2.8, and 8.3.11 yield:

− inf RHom𝑆 (𝑆/𝔞,RHom𝑅 (𝑋, 𝑀)) = − inf RHom𝑅 (𝑋 ⊗L
𝑆 𝑆/𝔞, 𝑀)

⩽ id𝑅 𝑀 + sup (𝑋 ⊗L
𝑆 𝑆/𝔞)

⩽ id𝑅 𝑀 + fd𝑆o 𝑋 .

The inequality (a) now follows from another application of 8.2.8.
For every right ideal 𝔟 in 𝑆, swap 7.5.24, 8.1.8, and 8.2.8 yield:
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− inf RHom𝑆o (𝑆/𝔟,RHom𝑅 (𝑀, 𝑋)) = − inf RHom𝑅 (𝑀,RHom𝑆o (𝑆/𝔟, 𝑋))
⩽ pd𝑅 𝑀 − inf RHom𝑆o (𝑆/𝔟, 𝑋)
⩽ pd𝑅 𝑀 + id𝑆o 𝑋 .

The inequality (b) now follows from another application of 8.2.8.
For every right ideal 𝔟 in 𝑅, associativity 7.5.17 and 8.3.11 yield:

sup (𝑅/𝔟 ⊗L
𝑅 (𝑋 ⊗L

𝑆 𝑁)) = sup ((𝑅/𝔟 ⊗L
𝑅 𝑋) ⊗L

𝑆 𝑁)
⩽ fd𝑆 𝑁 + sup (𝑅/𝔟 ⊗L

𝑅 𝑋)
⩽ fd𝑆 𝑁 + fd𝑅 𝑋 .

The inequality (c) now follows from another application of 8.3.11.
For every 𝑅-module 𝐶, adjunction 7.5.30 and 8.1.8 yield:

− inf RHom𝑅 (𝑋 ⊗L
𝑆 𝑁,𝐶) = − inf RHom𝑆 (𝑁,RHom𝑅 (𝑋,𝐶))

⩽ pd𝑆 𝑁 − inf RHom𝑅 (𝑋,𝐶)
⩽ pd𝑆 𝑁 + pd𝑅 𝑋 .

The inequality (d) now follows from another application of 8.1.8. □

The next result, which could be called Schanuel’s lemma (for semi-flat com-
plexes), can be seen as a refinement of the statement 8.3.11(v).

8.3.16 Lemma. Let 𝑀 be an 𝑅-complex with a semi-flat replacement 𝐹 and a semi-
projective replacement 𝑃. For every 𝑣 ∈ ℤ there is an exact sequence of 𝑅-modules
0→ C𝑣 (𝑃) → C𝑣 (𝐹) ⊕ 𝐿 → 𝐺 → 0 where 𝐿 is projective and 𝐺 is flat.

Proof. By 6.4.20 there is a quasi-isomorphism 𝛼 : 𝑃→ 𝐹. Both complexes 𝑃 and
𝐹 are semi-flat, see 5.4.10, so Cone𝛼 is semi-flat and acylic by 4.1.5, 5.4.12, and
4.2.16. By 5.5.22 each module Z𝑛 (Cone𝛼) is flat. The morphism 𝛼Ď𝑣 : 𝑃Ď𝑣 → 𝐹Ď𝑣

is a quasi-isomorphism by 4.2.10, and acyclicity of the complex Cone(𝛼Ď𝑣):

0 −→ C𝑣 (𝑃) −→ C𝑣 (𝐹) ⊕ 𝑃𝑣−1 −→ 𝐹𝑣−1 ⊕ 𝑃𝑣−2
𝜕Cone 𝛼
𝑣−1−−−−−→ 𝐹𝑣−2 ⊕ 𝑃𝑣−3 −→ · · · ,

yields the desired sequence 0→ C𝑣 (𝑃) → C𝑣 (𝐹)⊕𝑃𝑣−1 → Z𝑣−1 (Cone𝛼) → 0. □

The next two results exhibit the flat–injective duality.

8.3.17 Proposition. Let 𝑀 be an 𝑅-complex; there is an equality,

id𝑅o Hom𝕜 (𝑀,𝔼) = fd𝑅 𝑀 .

Proof. Let𝐾 be an 𝑅o-module; by 2.5.7(b), commutativity 7.5.10, adjunction 7.5.30,
and 7.2.11 one has

sup (𝐾 ⊗L
𝑅 𝑀) = − inf RHom𝕜 (𝐾 ⊗L

𝑅 𝑀,𝔼)
= − inf RHom𝑅o (𝐾,RHom𝕜 (𝑀,𝔼))
= − inf RHom𝑅o (𝐾,Hom𝕜 (𝑀,𝔼)) ;

the desired equality now follows from 8.2.8 and 8.3.11. □
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Noetherian Rings

8.3.18 Theorem. Assume that 𝑅 is left Noetherian and let 𝑀 be an 𝑅-complex. If
𝑀 belongs to D⊏ (𝑅), then there is an equality,

fd𝑅o Hom𝕜 (𝑀,𝔼) = id𝑅 𝑀 .

Proof. The equality is trivial if 𝑀 is acyclic, so assume that it is not and set 𝑠 =
sup𝑀 . Let 𝐾 be a cyclic 𝑅-module and choose by 5.1.19 a free resolution 𝑃 ≃−−→ 𝐾

with 𝑃 degreewise finitely generated. In the following chain of isomorphisms inD(𝕜)
the 1st holds by definition, the 2nd and 4th hold by 4.2.4, and the 3rd is homomorphism
evaluation 4.5.13(1,a),

𝐾 ⊗L
𝑅o Hom𝕜 (𝑀,𝔼) ≃ 𝑃 ⊗𝑅o Hom𝕜 (𝑀,𝔼)

≃ 𝑃 ⊗𝑅o Hom𝕜 (𝑀Ď𝑠 ,𝔼)
� Hom𝕜 (Hom𝑅 (𝑃, 𝑀Ď𝑠),𝔼)
≃ Hom𝕜 (Hom𝑅 (𝑃, 𝑀),𝔼) .

Now 2.5.7(b) yields

sup (𝐾 ⊗L
𝑅o Hom𝕜 (𝑀,𝔼)) = − inf Hom𝑅 (𝑃, 𝑀) = − inf RHom𝑅 (𝐾, 𝑀) ,

and the desired inequality follows from 8.2.8 and 8.3.11. □

8.3.19 Theorem. Assume that 𝑅 is left Noetherian and let 𝑀 be an 𝑅-complex. If
𝑀 belongs to Df

⊐ (𝑅), then there is an equality,

fd𝑅 𝑀 = pd𝑅 𝑀 .

Proof. The inequality fd𝑅 𝑀 ⩽ pd𝑅 𝑀 holds by 8.3.6. To prove the opposite in-
equality, it is sufficient to consider the case where 𝑛 = fd𝑅 𝑀 is an integer. Choose by
5.2.16 a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃 degreewise finitely generated.
The complex 𝑃 is a semi-flat replacement of 𝑀 by 5.4.10, so the module C𝑛 (𝑃) is
flat by 8.3.11 and hence projective by 1.3.47, as C𝑛 (𝑃) is finitely presented. Thus
𝑃Ď𝑛 is a semi-projective replacement of 𝑀 , whence 𝑛 ⩾ pd𝑅 𝑀 holds. □

Perfect Rings

Over perfect rings, the equality in 8.3.19 extends to all complexes.

8.3.20 Theorem. Assume that 𝑅 is left perfect. Let 𝔍 be the Jacobson radical of 𝑅,
set 𝒌 = 𝑅/𝔍, and let 𝑀 an 𝑅-complex. There are equalities,

fd𝑅 𝑀 = sup (𝒌 ⊗L
𝑅 𝑀) = pd𝑅 𝑀 .

Proof. The inequality fd𝑅 𝑀 ⩽ pd𝑅 𝑀 holds by 8.3.6. From 8.1.17 and 8.3.11 one
gets pd𝑅 𝑀 = sup (𝒌 ⊗L

𝑅
𝑀) ⩽ fd𝑅 𝑀 . □

Remark. A ring over which every flat module has projective dimension at most 𝑛 is called left
𝑛-perfect. This quality of a ring is also captured by the splf invariant; see E 8.5.11–E 8.5.14 and
see also the Remark after 9.3.30.
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The Case of Modules

8.3.21. Notice from 8.3.11 that a non-zero 𝑅-module is flat if and only if it has flat
dimension 0 as an 𝑅-complex.

Semi-flat replacements subsume the classic notion of flat resolutions of modules
in a sense made clear by 8.3.25.

8.3.22 Definition. Let 𝑀 be an 𝑅-module. A flat resolution of 𝑀 consists of a
complex · · · → 𝐹𝑣 → 𝐹𝑣−1 → · · · → 𝐹0 → 0 of flat 𝑅-modules and a surjective
homomorphism 𝐹0 → 𝑀 , such that the following sequence of 𝑅-modules is exact,

· · · −→ 𝐹𝑣 −→ 𝐹𝑣−1 −→ · · · −→ 𝐹0 −→ 𝑀 −→ 0 .

8.3.23 Theorem. Let 𝑀 be an 𝑅-module and 𝑛 ⩾ 0 an integer. The following
conditions are equivalent.

(i) fd𝑅 𝑀 ⩽ 𝑛.
(ii) One has Tor𝑅𝑚 (𝑁, 𝑀) = 0 for every 𝑅o-module 𝑁 and every integer 𝑚 > 𝑛.

(iii) One has Tor𝑅
𝑛+1 (𝑅/𝔟, 𝑀) = 0 for every finitely generated right ideal 𝔟 in 𝑅 .

(iv) There is a flat resolution 0→ 𝐹𝑛 → 𝐹𝑛−1 → · · · → 𝐹0 → 𝑀 → 0 .
(v) In every flat resolution · · · → 𝐹𝑣 → 𝐹𝑣−1 → · · · → 𝐹0 → 𝑀 → 0 the module

Coker(𝐹𝑛+1 → 𝐹𝑛) is flat.
In particular, there is an equality,

fd𝑅 𝑀 = sup{𝑚 ∈ℕ0 |Tor𝑅𝑚 (𝑅/𝔟, 𝑀) ≠ 0 for a finitely generated right ideal 𝔟 in 𝑅}.

Proof. By 5.1.16 every 𝑅-module 𝑀 has a flat resolution

· · · −→ 𝐹𝑣 −→ 𝐹𝑣−1 −→ · · · −→ 𝐹0 −→ 𝑀 −→ 0 .

In every such resolution, the surjective homomorphism 𝐹0 → 𝑀 is a quasi-
isomorphism, so the complex · · · → 𝐹𝑣 → 𝐹𝑣−1 → · · · → 𝐹0 → 0 is a semi-flat
replacement of 𝑀 , cf. 5.1.18. The equivalence of the five conditions now follows
from the equivalence of (i)–(iii), (v), and (vii) in 8.3.11. The asserted equality holds
by 8.3.11 in view of 7.4.21. □

8.3.24 Lemma. Let 𝐹 be a semi-flat 𝑅-complex. For every integer 𝑣 ⩽ inf 𝐹 the
complex 𝐹Ě𝑣 is semi-flat.

Proof. If inf 𝐹 = −∞ holds, then there is nothing to prove. A bounded below
complex of flat modules is semi-flat by 5.4.8, so it suffices to show that Z0 (𝐹) is
flat under the assumption that inf 𝐹 ⩾ 0 holds. The 𝑅o-complex 𝐼 = Hom𝕜 (𝐹,𝔼)
is semi-injective, by 5.4.9, with sup 𝐼 ⩽ 0 by 2.5.7(b). The truncated complex 𝐼ď−1
is semi-injective by 5.3.12, so it follows from 5.3.20 applied to the exact sequence
0 → 𝐼ď−1 → 𝐼 → 𝐼ě0 → 0 that the complex 𝐼ě0 is semi-injective. The complex
𝐼 ′ = · · · −−→ 𝐼1 −−→ 𝐼0

𝜋−−→ C0 (𝐼) −−→ 0 is acyclic, and hence so is Hom𝑅 (𝐼 ′, 𝐼ě0). In
particular, the morphism 𝐼 ′ → 𝐼ě0 induced by the identity on 𝐼ě0 is null-homotopic;
see 2.3.3. Thus, there are homomorphisms 𝜎0 : 𝐼0 → 𝐼1 and 𝜎−1 : C0 (𝐼) → 𝐼0 such
that 1𝐼0 = 𝜕𝐼1𝜎0 + 𝜎−1𝜋 holds. By 2.1.47 the exact sequence of 𝑅-modules,
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0 −→ C1 (𝐼)
𝜕𝐼1−−−→ 𝐼0

𝜋−−−→ C0 (𝐼) −→ 0 ,

where the injective map is induced by 𝜕𝐼1 , is split. Thus, C0 (𝐼) is a direct summand of
𝐼0 and hence injective. By 2.2.19 one has C0 (𝐼) � Hom𝕜 (Z0 (𝐹),𝔼), so the module
Z0 (𝐹) is flat by 5.4.19. □

8.3.25 Proposition. Let 𝑀 be an 𝑅-module and 𝐹 a semi-flat replacement of 𝑀 . The
truncated complex 𝐹Ě0 is a semi-flat replacement of 𝑀 , in particular, the module
Z0 (𝐹) is flat, and the exact sequence

· · · −→ 𝐹𝑣
𝜕𝐹𝑣−−−→ 𝐹𝑣−1 −→ · · · −→ 𝐹1

𝜕𝐹1−−−→ Z0 (𝐹) −→ 𝑀 −→ 0

is a flat resolution of 𝑀 .

Proof. The complex 𝐹Ě0 is a semi-flat by 8.3.24, and one has 𝐹Ě0 ≃ 𝐹 ≃ 𝑀 by 4.2.4.
Finally, the composite of the canonical map Z0 (𝐹) ↠ H0 (𝐹) and the isomorphism
H0 (𝐹) → 𝑀 yields a surjective homomorphism with kernel B0 (𝐹). □

Products of Flat Modules

8.3.26 Proposition. Assume that 𝑅 is right Noetherian. For every family {𝐹𝑢}𝑢∈𝑈
of flat 𝑅-modules, the product

∏
𝑢∈𝑈 𝐹

𝑢 is flat.

Proof. For every right ideal 𝔟 in 𝑅 one has by 7.4.28 and 8.3.23 equalities,

Tor𝑅1
(
𝑅/𝔟, ∏

𝑢∈𝑈
𝐹𝑢

)
=

∏
𝑢∈𝑈

Tor𝑅1
(
𝑅/𝔟, 𝐹𝑢

)
= 0 .

Now another application of 8.3.23 shows that the module
∏
𝑢∈𝑈 𝐹

𝑢 is flat. □

Remark. The proof of 8.3.26 applies under the weaker assumption that 𝑅 is right coherent. In fact,
the property that products of flat modules are flat characterizes right coherent rings; this is a result
of Chase [49].

8.3.27 Corollary. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-modules. There is an inequality,

fd𝑅
( ∏
𝑢∈𝑈

𝑀𝑢
)
⩾ sup

𝑢∈𝑈
{fd𝑅 𝑀𝑢} ,

and equality holds if 𝑅 is right Noetherian.

Proof. For every 𝑢 ∈ 𝑈 the module 𝑀𝑢 is a direct summand of
∏
𝑢∈𝑈 𝑀

𝑢, so the
inequality “⩾” holds by 8.3.13. Assume now that 𝑅 is right Noetherian. The opposite
inequality is trivial if the supremum sup𝑢∈𝑈{fd𝑅 𝑀𝑢} is infinite, so assume that it is
not and call it 𝑠. For every 𝑢 in𝑈 there is by 8.3.23 a flat resolution 𝐹𝑢 ≃−−→ 𝑀𝑢 with
𝐹𝑢𝑣 = 0 for all 𝑣 > 𝑠. The complex

∏
𝑢∈𝑈 𝐹

𝑢 is semi-flat by 8.3.26 and 5.4.8, and by
4.2.11 there is a quasi-isomorphism

∏
𝑢∈𝑈 𝐹

𝑢 → ∏
𝑢∈𝑈 𝑀

𝑢, i.e. a flat resolution of∏
𝑢∈𝑈 𝑀

𝑢. The asserted inequality now follows from 8.3.3. □
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Remark. The proof of 8.3.27 is easily adapted to apply to a family of complexes that are uniformly
bounded below, see E 8.3.15, but it reaches no further, as a product of semi-flat complexes need
not be semi-flat. In fact, Iacob and Iyengar [140] show that every product of semi-flat 𝑅-complexes
is semi-flat if and only if 𝑅 is right coherent and every finitely presented 𝑅o-module has finite
projective dimension. See also 20.2.14.

8.3.28 Proposition. Let 𝑀 be an 𝑅-module. There is a pure exact sequence,

0 −→ 𝑀
𝛿𝑀
𝔼−−−→ Homk (Homk (𝑀,𝔼),𝔼) −→ Coker 𝛿𝑀𝔼 −→ 0 ,

where 𝛿𝑀
𝔼

is biduality 1.4.2. If 𝑅 is right Noetherian and 𝑀 is flat, then all the
𝑅-modules in the exact sequence displayed above are flat.

Proof. The homomorphism 𝛿𝑀
𝔼

is injective by 4.5.3, and hence the sequence under
consideration is exact. To prove that it is pure, it suffices by 5.5.14 and 2.1.47 to
argue that Homk (𝛿𝑀𝔼 ,𝔼) has a right inverse, however, that follows from the zigzag
identites associated to the adjunction 4.5.7, which yield:

Homk (𝛿𝑀𝔼 ,𝔼) 𝛿
Homk (𝑀,𝔼)
𝔼

= 1Homk (𝑀,𝔼) .

If 𝑅 is right Noetherian and 𝑀 is flat, then the 𝑅o-module Homk (𝑀,𝔼) is injective
by 5.4.19 and hence the 𝑅-module Homk (Homk (𝑀,𝔼),𝔼) is flat by 8.3.18. It now
follows from 5.5.18 that Coker 𝛿𝑀

𝔼
is flat as well. □

Exercises

E 8.3.1 Let 𝑛 > 0 be an integer and 𝑀 an 𝑅-module with fd𝑅 𝑀 > 𝑛. Show that the functor
Tor𝑅𝑛 ( , 𝑀 ) : M(𝑅) →M(𝕜) is half exact but neither left nor right exact.

E 8.3.2 Let 𝑅 → 𝑆 be a ring homomorphism. Show that fd𝑅 𝑁 ⩽ fd𝑆 𝑁 + fd𝑅 𝑆 holds for every
𝑆-complex 𝑁 with H(𝑁 ) ≠ 0.

E 8.3.3 Let 𝑅 → 𝑆 be a ring homomorphism. Show that id𝑅 𝑁 ⩽ id𝑆 𝑁 + fd𝑅 𝑆 holds for every
𝑆-complex 𝑁 with H(𝑁 ) ≠ 0.

E 8.3.4 Assume that 𝑅 is von Neumann regular. Show that fd𝑅 𝑀 = sup𝑀 holds for every
𝑅-complex 𝑀. Hint: E 3.3.8.

E 8.3.5 Show that a von Neumann regular ring is coherent.
E 8.3.6 Let 𝑀 be a complex in D⊏ (𝑅) with H(𝑀 ) ≠ 0 and set 𝑤 = sup𝑀. Show that for every

semi-flat replacement 𝐹 of 𝑀 one has fd𝑅 𝑀 = 𝑤 + fd𝑅 C𝑤 (𝐹 ) .
E 8.3.7 Let𝑀 be an 𝑅-complex. Show that fd𝑅 𝑀 is finite if and only if H(𝑁 ⊗L

𝑅
𝑀 ) is bounded

above for every 𝑅o-module 𝑁 .
E 8.3.8 By 1.3.12 there is a surjective homomorphism 𝜋 : 𝐿 → ℚ where 𝐿 is a free ℤ-module.

Show that it gives rise to a semi-flat ℤ-complex that is acyclic and not contractible.
E 8.3.9 Let 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be a pure exact sequence of 𝑅-modules. Show that the

equality fd𝑅 𝑀 = max{fd𝑅 𝑀 ′, fd𝑅 𝑀 ′′ } holds.
E 8.3.10 Assume that 𝑅 is left Noetherian and let 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be a pure exact

sequence of 𝑅-modules. Show that the equality id𝑅 𝑀 = max{ id𝑅 𝑀 ′, id𝑅 𝑀 ′′ } holds.
E 8.3.11 Show that the full subcategory of 𝑅-complexes of finite flat dimension is a triangulated

subcategory of D⊏ (𝑅) .
E 8.3.12 Let 𝑀 be an 𝑅-complex and assume that it is isomorphic in D(𝑅) to a K-flat complex

𝑍 with 𝑍𝑣 = 0 for all 𝑣 > 𝑛. Show that fd𝑅 𝑀 is at most 𝑛, and conclude, that one could
use K-flat replacements in 8.3.3.
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E 8.3.13 Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣 }𝑢⩽𝑣 be a 𝑈-direct system of 𝑅-complexes. Show that if 𝑈 is
filtered, then there is an inequality fd𝑅 (colim𝑢∈𝑈 𝑀𝑢 ) ⩽ sup𝑢∈𝑈 {fd𝑅 𝑀𝑢 }, and show
that equality need not hold.

E 8.3.14 Let 𝑋 be a complex of 𝑅–𝑆o-bimodules. Show: (a) For every injective 𝑅-module 𝐸 one
has id𝑆 Hom𝑅 (𝑋, 𝐸 ) ⩽ fd𝑆o 𝑋 and equality holds if 𝐸 is faithfully injective. (b) For
every projective 𝑅-module 𝑃 one has id𝑆o Hom𝑅 (𝑃, 𝑋) ⩽ id𝑆o 𝑋 and equality holds if
𝑃 is faithfully projective. (c) For every flat 𝑆-module 𝐹 one has fd𝑅 (𝑋 ⊗𝑅 𝐹 ) ⩽ fd𝑅 𝑋
and equality holds if 𝐹 is faithfully flat. (d) For every projective 𝑆-module 𝑃 one has
pd𝑅 (𝑋 ⊗𝑅 𝑃) ⩽ pd𝑅 𝑋 and equality holds if 𝑃 is faithfully projective.

E 8.3.15 Assume that 𝑅 is right coherent and let {𝑀𝑢 }𝑢∈𝑈 be a family of 𝑅-complexes. Show
that if inf𝑢∈𝑈 { inf 𝑀𝑢 } > −∞, then fd𝑅 (

∏
𝑢∈𝑈 𝑀

𝑢 ) = sup𝑢∈𝑈 {fd𝑅 𝑀𝑢 } holds.
E 8.3.16 Assume that 𝑅 is right coherent and let {𝑀𝑢 }𝑢∈𝑈 be a family of 𝑅-complexes. Show

that if every finitely generated right ideal in 𝑅 has finite projective dimension, then one
has fd𝑅 (

∏
𝑢∈𝑈 𝑀

𝑢 ) = sup𝑢∈𝑈 {fd𝑅 𝑀𝑢 }. Hint: 3.1.30.
E 8.3.17 Let 𝑀 be an 𝑅-complex of finite flat dimension 𝑛. Show that there exists an injective

𝑅o-module 𝐼 such that Tor𝑅𝑛 (𝐼, 𝑀 ) ≠ 0.

8.4 Evaluation Morphisms in the Derived Category

Synopsis. Biduality; tensor evaluation; homomorphism evaluation.

The evaluation morphisms in the homotopy category—biduality 7.1.17, tensor eval-
uation 7.1.18, and homomorphism evaluation 7.1.19—induce morphisms in the
derived category. As with the standard isomorphisms, the induced morphisms are
by default only 𝕜-linear, but under extra assumptions they are augmented to uphold
additional ring actions. Our most general results about augmented evaluation mor-
phisms are 8.4.3 (biduality), 8.4.9 (tensor evaluation), and 8.4.22 (homomorphism
evaluation); commonly used special cases are recorded in 8.4.4, 8.4.10, and 8.4.23.

Situations where the evaluation morphisms are invertible are of special interest.
For tensor and homomorphism evaluation, the most general results in this direction
are 8.4.12 and 8.4.24, with special cases recorded in 8.4.13 and 8.4.25. Invertibility
of the biduality morphism is treated in Chap. 10.

Biduality

8.4.1 Construction. Let
𝑅 ⊗𝕜 𝑆

o −→ 𝐵

be a ring homomorphism such that 𝐵 is flat as an 𝑅o-module and as an 𝑆-module.
Let 𝑋 be a 𝐵-complex; by 5.4.26(b) the complex 𝐼 = I𝐵 (𝑋) is semi-injective over 𝑅
and over 𝑆o. Recall from 7.3.6(b′) that there are functors

RHom𝑅 ( , 𝑋) : D(𝑅–𝑄o)op −→ D(𝑄–𝑆o) induced by Hom𝑅 ( , 𝐼) ,
RHom𝑆o ( , 𝑋) : D(𝑄–𝑆o)op −→ D(𝑅–𝑄o) induced by Hom𝑆o ( , 𝐼) .

It follows from 7.2.4, cf. the argument in 7.5.16, that the composite functor
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RHom𝑆o (RHom𝑅 ( , 𝑋), 𝑋) : D(𝑅–𝑄o) −→ D(𝑅–𝑄o)
is induced by Hom𝑆o (Hom𝑅 ( , 𝐼), 𝐼) .

Now, consider the natural transformation

𝛿𝐼 : IdK(𝑅–𝑄o ) −→ Hom𝑆o (Hom𝑅 ( , 𝐼), 𝐼)

of endofunctors on K(𝑅–𝑄o) induced by biduality 7.1.17. There is a natural trans-
formation of endofunctors on D(𝑅–𝑄o) induced by 7.2.5,

(8.4.1.1) 𝜹𝑋 = ´́𝛿𝑋 : IdD(𝑅–𝑄o ) −→ RHom𝑆o (RHom𝑅 ( , 𝑋), 𝑋) .

8.4.2 Definition. The natural transformation (8.4.1.1) is called biduality.

8.4.3 Proposition. Let 𝑅 ⊗𝕜 𝑆
o → 𝐵 be a ring homomorphism such that 𝐵 is flat as

an 𝑅o-module and as an 𝑆-module. Let 𝑋 be a 𝐵-complex; biduality 𝜹𝑋 is a natural
transformation of endofunctors on D(𝑅–𝑄o). That is, for 𝑀 in D(𝑅–𝑄o) there is a
morphism in D(𝑅–𝑄o),

𝜹𝑀𝑋 : 𝑀 −→ RHom𝑆o (RHom𝑅 (𝑀, 𝑋), 𝑋) ,

which is natural in 𝑀; it is induced by the morphism 𝛿𝑀I (𝑋) in K(𝑅–𝑄o). As a natural
transformation of functors, 𝜹𝑋 is triangulated.

Proof. The natural transformation 𝜹𝑋 = ´́𝛿𝑋 from 8.4.1 is triangulated by 7.2.5 as
𝛿
𝑋

is triangulated by 7.1.17. □

8.4.4 Corollary. Assume that 𝑅 and 𝑆 are flat as 𝕜-modules. For complexes 𝑀 ∈
D(𝑅–𝑄o) and 𝑋 ∈ D(𝑅–𝑆o) biduality,

𝜹𝑀𝑋 : 𝑀 −→ RHom𝑆o (RHom𝑅 (𝑀, 𝑋), 𝑋) ,

is a morphism in D(𝑅–𝑄o).

Proof. Apply 8.4.3 with 𝐵 = 𝑅 ⊗𝕜 𝑆
o and invoke 7.3.11(b). □

For situations where biduality is an isomorphism, see 10.1.19 and 10.2.1.

Tensor Evaluation

8.4.5 Construction. Recall from 7.3.8 and 7.4.9 that there are functors,

RHom𝑅 ( , ) : D(𝑅)op ×D(𝑅–𝑆o) −→ D(𝑆o) induced by Hom𝑅 (P𝑅 ( ), ) ,
⊗L
𝑆 : D(𝑆o) ×D(𝑆) −→ D(𝕜) induced by ⊗𝑆 P𝑆 ( ) .

It follows from 7.2.4, cf. the argument in 7.5.16, that the composite functor

(8.4.5.1)
RHom𝑅 ( , ) ⊗L

𝑆 : D(𝑅)op ×D(𝑅–𝑆o) ×D(𝑆) −→ D(𝕜)
is induced by Hom𝑅 (P𝑅 ( ), ) ⊗𝑆 P𝑆 ( ) .

Similarly, the composite
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(8.4.5.2)
RHom𝑅 ( , ⊗L

𝑆 ) : D(𝑅)op ×D(𝑅–𝑆o) ×D(𝑆) −→ D(𝕜)
is induced by Hom𝑅 (P𝑅 ( ), ⊗𝑆 P𝑆 ( )) .

Now, consider the natural transformation,

𝜃P ( ) P ( ) : Hom𝑅 (P𝑅 ( ), ) ⊗𝑆 P𝑆 ( ) −→ Hom𝑅 (P𝑅 ( ), ⊗𝑆 P𝑆 ( )) ,

of functors from K(𝑅)op ×K(𝑅–𝑆o) ×K(𝑆) to K(𝕜) induced by tensor evaluation
7.1.18. There is a natural transformation of functors fromD(𝑅)op×D(𝑅–𝑆o)×D(𝑆)
to D(𝕜) induced by 7.2.5,

(8.4.5.3) 𝜽 = (𝜃P ( ) P ( ) )́´ : RHom𝑅 ( , ) ⊗L
𝑆 −→ RHom𝑅 ( , ⊗L

𝑆 ) .

8.4.6 Definition. The natural transformation (8.4.5.3) is called tensor evaluation.

Tensor evaluation, 𝜽 , is by construction a natural transformation of functors from
D(𝑅)op × D(𝑅–𝑆o) × D(𝑆) to D(𝕜). In some cases, 𝜽 can be augmented to a
transformation of functors on derived categories of complexes with additional ring
actions.

8.4.7 Setup. Consider ring homomorphisms,

𝑅 ⊗𝕜 𝑄
o −→ 𝐴 , 𝑅 ⊗𝕜 𝑆

o −→ 𝐵 , and 𝑆 ⊗𝕜 𝑇
o −→ 𝐶 .

Let EI and EII be functors from D(𝐴)op ×D(𝐵) ×D(𝐶) to D(𝑄–𝑇o) and assume
that there are natural isomorphisms

𝜑I : RHom𝑅 (res𝐴𝑅, res𝐵𝑅⊗𝑆o ) ⊗L
𝑆 res𝐶𝑆 −→ res𝑄⊗𝑇

o

𝕜
EI and

𝜑II : RHom𝑅 (res𝐴𝑅, res𝐵𝑅⊗𝑆o ⊗L
𝑆 res𝐶𝑆 ) −→ res𝑄⊗𝑇

o

𝕜
EII ,

where the functors on the left are those from (8.4.5.1) and (8.4.5.2) precomposed
with res𝐴

𝑅
× res𝐵

𝑅⊗𝑆o × res𝐶
𝑆

.

8.4.8 Definition. Adopt the setup 8.4.7. A natural transformation 𝜽0 : EI→ EII is
called an augmentation of tensor evaluation if the next diagram is commutative,

res𝑄⊗𝑇
o

𝕜
EI

res𝑄⊗𝑇
o

𝕜
𝜽0

// res𝑄⊗𝑇
o

𝕜
EII

RHom𝑅 (res𝐴
𝑅
, res𝐵

𝑅⊗𝑆o ) ⊗L
𝑆

res𝐶
𝑆

𝜑I ≃

OO

𝜽 (res𝐴
𝑅
× res𝐵

𝑅⊗𝑆o × res𝐶
𝑆
)
// RHom𝑅 (res𝐴

𝑅
, res𝐵

𝑅⊗𝑆o ⊗L
𝑆

res𝐶
𝑆
) ;

𝜑II≃

OO

here 𝜽 on the lower horizontal arrow is (8.4.5.3). In this case, 𝜽0 : EI→ EII is
written 𝜽 : RHom𝑅 ( , ) ⊗L

𝑆
→ RHom𝑅 ( , ⊗L

𝑆
), and tensor evaluation is said

to be augmented to a natural transformation of functors D(𝐴)op ×D(𝐵) ×D(𝐶) →
D(𝑄–𝑇o).

8.4.9 Proposition. Let 𝑅 ⊗𝕜 𝑄
o → 𝐴, 𝑅 ⊗𝕜 𝑆

o → 𝐵, and 𝑆 ⊗𝕜 𝑇
o → 𝐶 be ring

homomorphisms such that 𝐴 is projective as an 𝑅-module and 𝐶 is flat as an 𝑆-
module. Tensor evaluation is augmented to a natural transformation of functors

8-Mar-2024 Draft - use at own risk



8.4 Evaluation Morphisms in the Derived Category 411

D(𝐴)op ×D(𝐵) ×D(𝐶) −→ D(𝑄–𝑇o) .

That is, for 𝑀 inD(𝐴), 𝑋 inD(𝐵), and 𝑁 inD(𝐶) there is a morphism inD(𝑄–𝑇o),

𝜽𝑀𝑋𝑁 : RHom𝑅 (𝑀, 𝑋) ⊗L
𝑆 𝑁 −→ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆 𝑁) ,

which is natural in𝑀 , 𝑋 , and 𝑁; it is induced by the map 𝜃P𝐴 (𝑀 )𝑋 P𝐶 (𝑁 ) inK(𝑄–𝑇o).
As a natural transformation, this augmented 𝜽 is triangulated in each variable.

Proof. Consider the functors

RHom𝑅 (res𝐴𝑅, res𝐵𝑅⊗𝑆o ) ⊗L
𝑆 res𝐶𝑆 and RHom𝑅 (res𝐴𝑅, res𝐵𝑅⊗𝑆o ⊗L

𝑆 res𝐶𝑆 )

from D(𝐴)op ×D(𝐵) ×D(𝐶) to D(k) that appear in the bottom row of the diagram
in 8.4.8. By definition, see 8.4.5, they are per 7.2.2 induced by the functors

CI = Hom𝑅 (P𝑅 res𝐴𝑅, res𝐵𝑅⊗𝑆o ) ⊗𝑆 P𝑆 res𝐶𝑆 and
CII = Hom𝑅 (P𝑅 res𝐴𝑅, res𝐵𝑅⊗𝑆o ⊗𝑆 P𝑆 res𝐶𝑆 )

from K(𝐴)op × K(𝐵) × K(𝐶) to K(k). Similarly, see (8.4.5.3), the natural trans-
formation 𝜽 (res𝐴

𝑅
× res𝐵

𝑅⊗𝑆o × res𝐶
𝑆
) in the diagram in 8.4.8 is per 7.2.5 induced by

𝜃 (P𝑅 res𝐴
𝑅
× res𝐵

𝑅⊗𝑆o ×P𝑆 res𝐶
𝑆
) : CI→ CII where 𝜃 is tensor evaluation 7.1.18. Now,

consider the functors from K(𝐴)op ×K(𝐵) ×K(𝐶) to K(𝑄–𝑇o) given by

DI = Hom𝑅 (res𝐴𝑅⊗𝑄o P𝐴, res𝐵𝑅⊗𝑆o ) ⊗𝑆 res𝐶𝑆⊗𝑇o P𝐶 and

DII = Hom𝑅 (res𝐴𝑅⊗𝑄o P𝐴, res𝐵𝑅⊗𝑆o ⊗𝑆 res𝐶𝑆⊗𝑇o P𝐶 )

and let 𝜗 : DI→ DII be the natural transformation

𝜗 = 𝜃 (res𝐴𝑅⊗𝑄o P𝐴× res𝐵𝑅⊗𝑆o × res𝐶𝑆⊗𝑇o P𝐶 )

where 𝜃 is tensor evaluation 7.1.18. There is a commutative diagram,

res𝑄⊗𝑇
o

𝕜
DI

res𝑄⊗𝑇
o

𝕜
𝜗

// res𝑄⊗𝑇
o

𝕜
DII

Hom𝑅 (res𝐴
𝑅

P𝐴, res𝐵
𝑅⊗𝑆o ) ⊗𝑆 res𝐶

𝑆
P𝐶

𝜃 (res𝐴
𝑅

P𝐴 × res𝐵
𝑅⊗𝑆o × res𝐶

𝑆
P𝐶 )

// Hom𝑅 (res𝐴
𝑅

P𝐴, res𝐵
𝑅⊗𝑆o ⊗𝑆 res𝐶

𝑆
P𝐶 )

Hom𝑅 (res𝐴
𝑅

P𝐴, res𝐵
𝑅⊗𝑆o ) ⊗𝑆 P𝑆 res𝐶

𝑆

Hom (1,1) ⊗ 𝜚𝐶
𝑆
≃

OO

Hom ( 𝜚𝐴
𝑅
,1) ⊗1 ≊

��

𝜃 (res𝐴
𝑅

P𝐴 × res𝐵
𝑅⊗𝑆o × P𝑆 res𝐶

𝑆
)

// Hom𝑅 (res𝐴
𝑅

P𝐴, res𝐵
𝑅⊗𝑆o ⊗𝑆 P𝑆 res𝐶

𝑆
)

Hom (1,1⊗ 𝜚𝐶
𝑆
)≃

OO

Hom ( 𝜚𝐴
𝑅
,1⊗1)≊

��

Hom𝑅 (P𝑅 res𝐴
𝑅
, res𝐵

𝑅⊗𝑆o ) ⊗𝑆 P𝑆 res𝐶
𝑆

𝜃 (P𝑅 res𝐴
𝑅
× res𝐵

𝑅⊗𝑆o × P𝑆 res𝐶
𝑆
)

// Hom𝑅 (P𝑅 res𝐴
𝑅
, res𝐵

𝑅⊗𝑆o ⊗𝑆 P𝑆 res𝐶
𝑆
)

CI CII ,

where 𝜚𝐶
𝑆

and 𝜚𝐴
𝑅

are the natural transformations from 6.3.21. As 𝐴 is projective
as an 𝑅-module, 6.3.21 yields that 𝜚𝐴

𝑅
is a natural isomorphism; whence so are
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the natural transformations Hom (𝜚𝐴
𝑅
, 1) ⊗ 1 and Hom (𝜚𝐴

𝑅
, 1 ⊗ 1) in the diagram

above. For every 𝐶-complex 𝑁 , the 𝑆-complex P𝑆 res𝐶
𝑆
(𝑁) is semi-flat by 5.4.10,

and by 5.4.18(b) so is res𝐶
𝑆

P𝐶 (𝑁) since 𝐶 is flat as an 𝑆-module. Thus (𝜚𝐶
𝑆
)𝑁 is

a quasi-isomorphism between semi-flat 𝑆-complexes. It now follows from 5.4.16
that the natural transformation 𝜎 = Hom (1, 1) ⊗ 𝜚𝐶

𝑆
has the property that 𝜎𝑀𝑋𝑁

is a quasi-isomorphism for every (𝑀, 𝑋, 𝑁) in K(𝐴)op ×K(𝐵) ×K(𝐶). For every
𝐴-complex 𝑀 , the 𝑅-complex res𝐴

𝑅
P𝐴(𝑀) is semi-projective by 5.2.23(b), as 𝐴 is

projective as an 𝑅-module. From this fact and another application of 5.4.16 it follows
that the natural transformation 𝜏 = Hom (1, 1 ⊗ 𝜚𝐶

𝑆
) has the property that 𝜏𝑀𝑋𝑁 is

a quasi-isomorphism for every object (𝑀, 𝑋, 𝑁).
As the functors CI and CII preserve quasi-isomorphisms, cf. 8.4.5, it follows from

the diagram above that res𝑄⊗𝑇
o

𝕜
DI and res𝑄⊗𝑇

o

𝕜
DII preserve quasi-isomorphisms,

and hence so do DI and DII. The functors from D(𝐴)op ×D(𝐵) ×D(𝐶) to D(𝑄–𝑇o)
induced by DI and DII via 7.2.2 are denoted EI and EII. The natural transformation
EI → EII induced by 𝜗 : DI→ DII via 7.2.5 is denoted 𝜽0. The commutative diagram
above now induces natural isomorphisms 𝜑I and 𝜑II as in 8.4.7, cf. 6.4.18, and a
commutative diagram as in 8.4.8. □

Notice that the assumptions in the next corollary are satisfied if 𝕜 is a field.

8.4.10 Corollary. Assume that 𝑄 is projective and 𝑇 is flat as 𝕜-modules. For
complexes 𝑀 in D(𝑅–𝑄o), 𝑋 in D(𝑅–𝑆o), and 𝑁 in D(𝑆–𝑇o) tensor evaluation,

𝜽𝑀𝑋𝑁 : RHom𝑅 (𝑀, 𝑋) ⊗L
𝑆 𝑁 −→ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆 𝑁) ,

is a morphism in D(𝑄–𝑇o).

Proof. Apply 8.4.9 with 𝐴 = 𝑅 ⊗𝕜 𝑄
o, 𝐵 = 𝑅 ⊗𝕜 𝑆

o, and 𝐶 = 𝑆 ⊗𝕜 𝑇
o and invoke

7.3.11(a,b). □

8.4.11 Example. Adopt the setup from 8.4.9. Let 𝐹 be a semi-flat replacement of
the 𝐶-complex 𝑁 . By 6.4.20 there is a quasi-isomorphism 𝜋 : P𝐶 (𝑁) → 𝐹 in K(𝐶),
which yields a commutative diagram in K(𝑄–𝑇o),

Hom𝑅 (P𝐴(𝑀), 𝑋) ⊗𝑆 P𝐶 (𝑁)

≃Hom (P (𝑀 ) ,𝑋) ⊗ 𝜋
��

𝜃P (𝑀)𝑋 P (𝑁 )
// Hom𝑅 (P𝐴(𝑀), 𝑋 ⊗𝑆 P𝐶 (𝑁))

≃ Hom (P (𝑀 ) ,𝑋⊗ 𝜋 )
��

Hom𝑅 (P𝐴(𝑀), 𝑋) ⊗𝑆 𝐹
𝜃P (𝑀)𝑋𝐹

// Hom𝑅 (P𝐴(𝑀), 𝑋 ⊗𝑆 𝐹) .

As 𝐶 is flat as an 𝑆-module, the complexes P𝐶 (𝑁) and 𝐹 are semi-flat over 𝑆 by
5.4.18(b), and hence it follows from 5.4.16 that the vertical maps in the diagram
above are quasi-isomorphisms. Thus 𝜃P (𝑀 )𝑋𝐹 induces a morphism in D(𝑄–𝑇o)
which is isomorphic to the augmented tensor evaluation 𝜽𝑀𝑋𝑁 from 8.4.9.

8.4.12 Theorem. Let 𝑅 ⊗𝕜 𝑄
o → 𝐴, 𝑅 ⊗𝕜 𝑆

o → 𝐵, and 𝑆 ⊗𝕜 𝑇
o → 𝐶 be ring

homomorphisms such that 𝐴 is projective as an 𝑅-module and 𝐶 is flat as an 𝑆-
module. For 𝑀 in D(𝐴), 𝑋 in D(𝐵), and 𝑁 in D(𝐶), consider the morphism in
D(𝑄–𝑇o) from 8.4.9,
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𝜽𝑀𝑋𝑁 : RHom𝑅 (𝑀, 𝑋) ⊗L
𝑆 𝑁 −→ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆 𝑁) .

If 𝐴 is left Noetherian and finitely generated as an 𝑅-module, then 𝜽𝑀𝑋𝑁 is an
isomorphism if one of the following conditions is satisfied.

(a) 𝑀 is in Df
⊏⊐ (𝐴) and pd𝐴𝑀 is finite.

(b) 𝑀 is in Df
⊐ (𝐴), 𝑋 is in D⊏ (𝐵), and fd𝐶 𝑁 is finite.

If 𝐶 is left Noetherian and finitely presented as an 𝑆-module, then 𝜽𝑀𝑋𝑁 is an
isomorphism if one of the following conditions is satisfied.

(c) 𝑁 is in Df
⊏⊐ (𝐶) and pd𝐶 𝑁 is finite.

(d) pd𝐴𝑀 is finite, 𝑋 is in D⊐ (𝐵), and 𝑁 is in Df
⊐ (𝐶) .

Proof. It must be proved that the morphism 𝜃P𝐴 (𝑀 )𝑋 P𝐶 (𝑁 ) in K(𝑄–𝑇o) is a quasi-
isomorphism under any one of the conditions (a)–(d).

First assume that 𝐴 is left Noetherian and finitely generated as an 𝑅-module.
If (a) holds, then one can assume that P𝐴(𝑀) is a bounded complex of finitely

generated projective 𝐴-modules; see 8.1.14. Since 𝐴 is a finitely generated and
projective 𝑅-module, P𝐴(𝑀) is a bounded complex of finitely generated projective 𝑅-
modules, see 1.3.15 and 5.2.26(b). So the desired conclusion follows from 4.5.10(d).

If (b) holds, then one can assume that P𝐴(𝑀) is a bounded below complex of
finitely generated projective 𝐴-modules; see 5.2.16. Thus, as above, P𝐴(𝑀) is a
bounded below complex of finitely generated projective 𝑅-modules. Moreover, by
4.2.4 one can assume that 𝑋 is bounded above, and by 8.3.11 there exists a bounded
above semi-flat replacement 𝐹 of the 𝐶-complex 𝑁 . It follows from 5.4.24(b) that
𝐹 is a complex of flat 𝑆-modules. By 4.5.10(1,c) the morphism 𝜃P𝐴 (𝑀 )𝑋𝐹 is an
isomorphism in K(𝑄–𝑇o), so 8.4.11 yields the desired conclusion.

Next assume that𝐶 is left Noetherian and finitely presented as an 𝑆-module. Note
that since 𝐶 is also assumed to be flat as an 𝑆-module, it follows from 1.3.47 that 𝐶
is finitely generated and projective as an 𝑆-module.

If (c) holds, then one can by 8.1.14 assume that P𝐶 (𝑁) is a bounded complex
of finitely generated projective 𝐶-modules; hence it is also a bounded complex of
finitely generated projective 𝑆-modules. Now 4.5.10(e) yields the desired conclusion.

Finally, if (d) holds, then one can by 8.1.8 assume that P𝐴(𝑀) is a bounded
above complex of projective 𝐴-modules; hence it is also a bounded above complex
of projective 𝑅-modules. By 4.2.4 one can assume that 𝑋 is bounded below. Per
5.2.16 one can assume that P𝐶 (𝑁) is a bounded below complex of finitely generated
projective𝐶-modules; hence it is also a bounded below complex of finitely generated
projective 𝑆-modules. Now apply 4.5.10(2,a) to get the desired conclusion. □

Notice that under the assumptions in 8.4.10 the isomorphism in the next corollary
is an isomorphism in D(𝑄–𝑇o).

8.4.13 Corollary. Let 𝑀 ∈ D(𝑅), 𝑋 ∈ D(𝑅–𝑆o), and 𝑁 ∈ D(𝑆). Consider the
morphism in D(𝕜), from 8.4.6,

𝜽𝑀𝑋𝑁 : RHom𝑅 (𝑀, 𝑋) ⊗L
𝑆 𝑁 −→ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆 𝑁) .
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If 𝑅 is left Noetherian, then 𝜽𝑀𝑋𝑁 is an isomorphism if one of the following condi-
tions is satisfied.

(a) 𝑀 is in Df
⊏⊐ (𝑅) and pd𝑅 𝑀 is finite.

(b) 𝑀 is in Df
⊐ (𝑅), 𝑋 is in D⊏ (𝑅–𝑆o), and fd𝑆 𝑁 is finite.

If 𝑆 is left Noetherian, then 𝜽𝑀𝑋𝑁 is an isomorphism if one of the following conditions
is satisfied.

(c) 𝑁 is in Df
⊏⊐ (𝑆) and pd𝑆 𝑁 is finite.

(d) pd𝑅 𝑀 is finite, 𝑋 is in D⊐ (𝑅–𝑆o), and 𝑁 is in Df
⊐ (𝑆) .

Proof. Apply 8.4.12 with 𝑄 = 𝕜 = 𝑇 , 𝐴 = 𝑅, 𝐵 = 𝑅 ⊗𝕜 𝑆
o, and 𝐶 = 𝑆. □

Before we move on to treat homomorphism evaluation, we record in 8.4.14 and
8.4.16 two canonical applications of tensor evaluation 8.4.13.

8.4.14 Proposition. Let 𝑀 ∈ D(𝑅) and 𝑋 ∈ D(𝑅–𝑆o) be complexes that are
not acyclic. If pd𝑅 𝑀 is finite and condition (a) or (b) below is satisfied, then the
following inequality holds:

fd𝑆o RHom𝑅 (𝑀, 𝑋) ⩽ fd𝑆o 𝑋 − inf 𝑀 .

(a) 𝑅 is left Noetherian and 𝑀 belongs to Df
⊏⊐ (𝑅) .

(b) 𝑆 is left Noetherian and 𝑋 belongs to D⊐ (𝑅–𝑆o) .

Proof. Let 𝔞 be a left ideal in 𝑆. If condition (a) or (b) is satisfied, then tensor
evaluation 8.4.13(a) or 8.4.13(d) yields

RHom𝑅 (𝑀, 𝑋) ⊗L
𝑆 𝑆/𝔞 ≃ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆 𝑆/𝔞) .

By 7.6.7 and 8.3.11 the right-hand complex has supremum at most fd𝑆o 𝑋 − inf 𝑀 .
The inequality now follows from 8.3.11. □

Remark. An example by Christensen, Ferraro, and Thompson [58] shows that the boundedness
condition in 8.4.14(b) is needed.

The next corollary can also be obtained from 1.3.17, 3.1.27, and 8.3.26.

8.4.15 Corollary. Assume that 𝑆 is left Noetherian. Let 𝑃 be an 𝑅-module and 𝐹 an
𝑅–𝑆o-bimodule. If 𝑃 is projective and 𝐹 is flat as an 𝑆o-module, then the 𝑆o-module
Hom𝑅 (𝑃, 𝐹) is flat.

Proof. As 𝑃 is a projective 𝑅-module, one has Hom𝑅 (𝑃, 𝐹) = RHom𝑅 (𝑃, 𝐹) by
7.3.21. Now apply 8.4.14. □

Remark. Corollary 8.4.15 holds under the weaker assumption that 𝑆 is left coherent, cf. E 3.3.4.

It is shown in 17.5.14 that the boundedness condition in part (a) below is needed.

8.4.16 Proposition. Let 𝑋 ∈ D(𝑅–𝑆o) and 𝑁 ∈ D(𝑆) be complexes that are not
acyclic. If fd𝑆 𝑁 is finite and condition (a) or (b) below is satisfied, then one has

id𝑅 (𝑋 ⊗L
𝑆 𝑁) ⩽ id𝑅 𝑋 − inf 𝑁 .
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Moreover, if 𝐹 is a flat 𝑆-module and (a) is satisfied, then one has

id𝑅 (𝑋 ⊗𝑆 𝐹) ⩽ id𝑅 𝑋 ,

and equality holds if 𝐹 is faithfully flat.
(a) 𝑅 is left Noetherian and 𝑋 belongs to D⊏ (𝑅–𝑆o) .
(b) 𝑆 is left Noetherian and 𝑁 belongs to Df

⊏⊐ (𝑆) .

Proof. Let 𝔞 be a left ideal in 𝑅. If condition (a) or (b) is satisfied, then tensor
evaluation 8.4.13(b) or 8.4.13(c) yields

(⋄) RHom𝑅 (𝑅/𝔞, 𝑋 ⊗L
𝑆 𝑁) ≃ RHom𝑅 (𝑅/𝔞, 𝑋) ⊗L

𝑆 𝑁 .

By 7.6.8 and 8.2.8 the right-hand complex has minus infimum at most id𝑅 𝑋 − inf 𝑁 .
The inequality now follows from 8.2.8. If 𝑁 = 𝐹 is a flat 𝑆-module, then by 7.4.17 the
asserted inequality is a special case of the one just proved. Finally, if 𝐹 is faithfully
flat, then the complexes RHom𝑅 (𝑅/𝔞, 𝑋 ⊗𝑆 𝐹) and RHom𝑅 (𝑅/𝔞, 𝑋) have the same
infima by (⋄) and 2.5.7(c), so the asserted equality follows from 8.2.8. □

The first part of the next result can also be deduced from 5.5.7, 3.2.23, and 8.2.20.

8.4.17 Corollary. Assume that 𝑅 is left Noetherian. Let 𝐼 be an 𝑅–𝑆o-bimodule and
𝐹 an 𝑆-module. If 𝐼 is injective as an 𝑅-module and 𝐹 is flat, then the 𝑅-module
𝐼 ⊗𝑆 𝐹 is injective; the converse holds if 𝐹 is faithfully flat.

Proof. This follows from 8.4.16 applied with 𝑋 = 𝐼. □

Homomorphism Evaluation

8.4.18 Construction. Recall from 7.3.9 and 7.4.8 that there are functors,

RHom𝑅 ( , ) : D(𝑅–𝑆o)op ×D(𝑅) −→ D(𝑆) induced by Hom𝑅 ( , I𝑅 ( ))
and ⊗L

𝑆 : D(𝑆o) ×D(𝑆) −→ D(𝕜) induced by P𝑆o ( ) ⊗𝑆 .

It follows from 7.2.4, cf. the argument in 7.5.16, that the composite functor

(8.4.18.1)
⊗L
𝑆 RHom𝑅 ( , ) : D(𝑅) ×D(𝑅–𝑆o)op ×D(𝑆o) −→ D(𝕜)

is induced by P𝑆o ( ) ⊗𝑆 Hom𝑅 ( , I𝑅 ( )) .

Applied to an object (𝑀, 𝑋, 𝑁) this functor yields 𝑁 ⊗L
𝑆

RHom𝑅 (𝑋, 𝑀). Similarly,
the composite

(8.4.18.2)
RHom𝑅 (RHom𝑆o ( , ), ) : D(𝑅) ×D(𝑅–𝑆o)op ×D(𝑆o) −→ D(𝕜)

is induced by Hom𝑅 (Hom𝑆o (P𝑆o ( ), ), I𝑅 ( )) .

Applied to an object (𝑀, 𝑋, 𝑁) this functor yields RHom𝑅 (RHom𝑆o (𝑁, 𝑋), 𝑀).
Now, consider the natural transformation,

𝜂I ( ) P ( ) : P𝑆o ( ) ⊗𝑆 Hom𝑅 ( , I𝑅 ( )) −→ Hom𝑅 (Hom𝑆o (P𝑆o ( ), ), I𝑅 ( )) ,

8-Mar-2024 Draft - use at own risk



416 8 Homological Dimensions

of functors from K(𝑅) ×K(𝑅–𝑆o)op ×K(𝑆o) to K(𝕜) induced by homomorphism
evaluation 7.1.19. There is a natural transformation of functors from the category
D(𝑅) ×D(𝑅–𝑆o)op ×D(𝑆o) to D(𝕜) induced by 7.2.5,

(8.4.18.3) ⊗L
𝑆 RHom𝑅 ( , )

𝜼 = (𝜂I ( ) P ( ) )́ ´−−−−−−−−−−−−−−→ RHom𝑅 (RHom𝑆o ( , ), ) .

8.4.19 Definition. The natural transformation (8.4.18.3) is called homomorphism
evaluation.

Homomorphism evaluation, 𝜼 , is by construction a natural transformation of func-
tors from D(𝑅) ×D(𝑅–𝑆o)op ×D(𝑆o) to D(𝕜). In some cases, 𝜼 can be augmented
to a transformation of functors on derived categories of complexes with additional
ring actions.

8.4.20 Setup. Consider ring homomorphisms,

𝑅 ⊗𝕜 𝑄
o −→ 𝐴 , 𝑅 ⊗𝕜 𝑆

o −→ 𝐵 , and 𝑇 ⊗𝕜 𝑆
o −→ 𝐶 .

Let EI and EII be functors from D(𝐴) ×D(𝐵)op ×D(𝐶) to D(𝑇–𝑄o) and assume
that there are natural isomorphisms

𝜑I : res𝐶𝑆o ⊗L
𝑆RHom𝑅 (res𝐵𝑅⊗𝑆o , res𝐴𝑅) −→ res𝑇⊗𝑄

o

𝕜
EI

and
𝜑II : RHom𝑅 (RHom𝑆o (res𝐶𝑆o, res𝐵𝑅⊗𝑆o ), res𝐴𝑅) −→ res𝑇⊗𝑄

o

𝕜
EII ,

where the functors on the left are those from (8.4.18.1) and (8.4.18.2) precomposed
with res𝐴

𝑅
× res𝐵

𝑅⊗𝑆o × res𝐶
𝑆o.

8.4.21 Definition. Adopt the setup 8.4.20. A natural transformation 𝜼0 : EI→ EII is
called an augmentation of homomorphism evaluation if the diagram

res𝑇⊗𝑄
o

𝕜
EI

res𝑇⊗𝑄
o

𝕜
𝜼0

// res𝑇⊗𝑄
o

𝕜
EII

res𝐶
𝑆o ⊗L

𝑆
RHom𝑅 (res𝐵

𝑅⊗𝑆o , res𝐴
𝑅
)

𝜑I ≃

OO

𝜼 (res𝐴
𝑅
× res𝐵

𝑅⊗𝑆o × res𝐶
𝑆o )

// RHom𝑅 (RHom𝑆o (res𝐶
𝑆o, res𝐵

𝑅⊗𝑆o ), res𝐴
𝑅
)

𝜑II≃

OO

is commutative; here 𝜼 on the lower horizontal arrow is (8.4.18.3). In this case,
𝜼0 : EI→ EII is written 𝜼 : ⊗L

𝑆
RHom𝑅 ( , ) → RHom𝑅 (RHom𝑆o ( , ), ), and

one says that homomorphism evaluation is augmented to a natural transformation of
functors from D(𝐴) ×D(𝐵)op ×D(𝐶) to D(𝑇–𝑄o).

8.4.22 Proposition. Let 𝑅 ⊗𝕜 𝑄
o → 𝐴, 𝑅 ⊗𝕜 𝑆

o → 𝐵, and 𝑇 ⊗𝕜 𝑆
o → 𝐶 be ring

homomorphisms where 𝐴 is flat as an 𝑅o-module and 𝐶 is projective as an 𝑆o-
module. Homomorphism evaluation is augmented to a natural transformation of
functors

D(𝐴) ×D(𝐵)op ×D(𝐶) −→ D(𝑇–𝑄o) .
That is, for 𝑀 inD(𝐴), 𝑋 inD(𝐵), and 𝑁 inD(𝐶) there is a morphism inD(𝑇–𝑄o),
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𝜼𝑀𝑋𝑁 : 𝑁 ⊗L
𝑆 RHom𝑅 (𝑋, 𝑀) −→ RHom𝑅 (RHom𝑆o (𝑁, 𝑋), 𝑀) ,

which is natural in𝑀 , 𝑋 , and 𝑁; it is induced by the map 𝜂I𝐴 (𝑀 )𝑋 P𝐶 (𝑁 ) inK(𝑇–𝑄o).
As a natural transformation, this augmented 𝜼 is triangulated in each variable.

Proof. The proof of 8.4.9 provides a template. Let 𝑀 be an 𝐴-complex, 𝑋 a 𝐵-
complex, and 𝑁 a 𝐶-complex. The crucial input is that I𝐴(𝑀) is a semi-injective 𝑅-
complex by 5.4.26(b) and P𝐶 (𝑀) is a semi-projective 𝑆o-complex by 5.2.23(b). □

Notice that the assumptions in the next corollary are satisfied if 𝕜 is a field.

8.4.23 Corollary. Assume that 𝑄 is flat and 𝑇 is projective as 𝕜-modules. For
complexes 𝑀 in D(𝑅–𝑄o), 𝑋 in D(𝑅–𝑆o), and 𝑁 in D(𝑇–𝑆o) homomorphism
evaluation,

𝜼𝑀𝑋𝑁 : 𝑁 ⊗L
𝑆 RHom𝑅 (𝑋, 𝑀) −→ RHom𝑅 (RHom𝑆o (𝑁, 𝑋), 𝑀) ,

is a morphism in D(𝑇–𝑄o).

Proof. Apply 8.4.22 with 𝐴 = 𝑅 ⊗𝕜 𝑄
o, 𝐵 = 𝑅 ⊗𝕜 𝑆

o, and 𝐶 = 𝑇 ⊗𝕜 𝑆
o and invoke

7.3.11(a,c). □

8.4.24 Theorem. Let 𝑅 ⊗𝕜 𝑄
o → 𝐴, 𝑅 ⊗𝕜 𝑆

o → 𝐵, and 𝑇 ⊗𝕜 𝑆
o → 𝐶 be ring

homomorphisms such that 𝐴 is flat as an 𝑅o-module and 𝐶 is projective as an 𝑆o-
module. For 𝑀 in D(𝐴), 𝑋 in D(𝐵), and 𝑁 in D(𝐶), consider the morphism in
D(𝑇–𝑄o) from 8.4.22,

𝜼𝑀𝑋𝑁 : 𝑁 ⊗L
𝑆 RHom𝑅 (𝑋, 𝑀) −→ RHom𝑅 (RHom𝑆o (𝑁, 𝑋), 𝑀) .

If 𝐶 is left Noetherian and finitely generated as an 𝑆o-module, then 𝜼𝑀𝑋𝑁 is an
isomorphism if one of the following conditions is satisfied.

(a) 𝑁 is in Df
⊏⊐ (𝐶) and pd𝐶 𝑁 is finite.

(b) 𝑁 is in Df
⊐ (𝐶), 𝑋 is in D⊏ (𝐵), and id𝐴𝑀 is finite.

Proof. Assume that 𝐶 is left Noetherian and finitely generated as an 𝑆o-module.
It must be proved that the morphism 𝜂I𝐴 (𝑀 )𝑋 P𝐶 (𝑁 ) in K(𝑇–𝑄o) is a quasi-
isomorphism if (a) or (b) is satisfied.

(a): One can assume that P𝐶 (𝑁) is a bounded complex of finitely generated pro-
jective𝐶-modules; see 8.1.14. As𝐶 is a finitely generated and projective 𝑆o-module,
P𝐶 (𝑁) is also a bounded complex of finitely generated projective 𝑆o-modules, see
1.3.15 and 5.2.26(b). Thus the desired conclusion follows from 4.5.13(c).

(b): One can assume that P𝐶 (𝑁) is a bounded below complex of finitely generated
projective𝐶-modules; see 5.2.16. As above, P𝐶 (𝑁) is also a bounded below complex
of finitely generated projective 𝑆o-modules. Moreover, by 4.2.4 one can assume that
𝑋 is bounded above, and by 8.2.8 one can assume that I𝐴(𝑀) is bounded below. Now
it follows from 4.5.13(1,a) that 𝜂I𝐴 (𝑀 )𝑋 P𝐶 (𝑁 ) is an isomorphism in K(𝑇–𝑄o). □

Notice that under the assumptions in 8.4.23 the isomorphism in the next corollary
is an isomorphism in D(𝑇–𝑄o).
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8.4.25 Corollary. Let 𝑀 ∈ D(𝑅), 𝑋 ∈ D(𝑅–𝑆o), and 𝑁 ∈ D(𝑆o). The morphism

𝜼𝑀𝑋𝑁 : 𝑁 ⊗L
𝑆 RHom𝑅 (𝑋, 𝑀) −→ RHom𝑅 (RHom𝑆o (𝑁, 𝑋), 𝑀)

in D(𝕜), from 8.4.19, is an isomorphism if 𝑆 is right Noetherian and one of the
following conditions is satisfied.

(a) 𝑁 is in Df
⊏⊐ (𝑆o) and pd𝑆o 𝑁 is finite.

(b) 𝑁 is in Df
⊐ (𝑆o), 𝑋 is in D⊏ (𝑅–𝑆o), and id𝑅 𝑀 is finite.

Proof. Apply 8.4.24 with 𝑄 = 𝕜 = 𝑇 , 𝐴 = 𝑅, 𝐵 = 𝑅 ⊗𝕜 𝑆
o, and 𝐶 = 𝑆o. □

We close this section with two canonical applications of 8.4.25.

8.4.26 Proposition. Assume that 𝑆 is right Noetherian. Let 𝑁 ∈ Df
⊏⊐ (𝑆o) and 𝑋 ∈

D(𝑅–𝑆o) be complexes that are not acyclic. If pd𝑆o 𝑁 is finite, then one has

pd𝑅 RHom𝑆o (𝑁, 𝑋) ⩽ pd𝑅 𝑋 − inf 𝑁 .

Proof. For every 𝑅-module 𝑀 , homomorphism evaluation 8.4.25(a) yields

RHom𝑅 (RHom𝑆o (𝑁, 𝑋), 𝑀) ≃ 𝑁 ⊗L
𝑆 RHom𝑅 (𝑋, 𝑀) .

By 7.6.8 and 8.1.8 the right-hand complex has minus infimum at most pd𝑅 𝑋− inf 𝑁 .
The inequality now follows from 8.1.8. □

Example 17.5.15 shows that the boundedness condition in the next result is
neecessary; notice that it subsumes 8.3.18.

8.4.27 Proposition. Assume that 𝑆 is right Noetherian. Let 𝑀 ∈ D(𝑅) and 𝑋 ∈
D⊏ (𝑅–𝑆o) be complexes that are not acyclic. If id𝑅 𝑀 is finite, then one has

fd𝑆 RHom𝑅 (𝑋, 𝑀) ⩽ sup𝑀 + id𝑆o 𝑋 .

Moreover, if 𝐸 is an injective 𝑅-module, then one has

fd𝑆 Hom𝑅 (𝑋, 𝐸) ⩽ id𝑆o 𝑋 ,

and equality holds if 𝐸 is faithfully injective.

Proof. For every right ideal 𝔟 in 𝑆, homomorphism evaluation 8.4.25(b) yields

(†) 𝑆/𝔟 ⊗L
𝑆 RHom𝑅 (𝑋, 𝑀) ≃ RHom𝑅 (RHom𝑆o (𝑆/𝔟, 𝑋), 𝑀) .

By 7.6.7 and 8.2.8 the right-hand complex has supremum at most sup𝑀 + id𝑆o 𝑋 , so
the desired inequality follows from 8.3.11. If 𝑀 = 𝐸 is an injective 𝑅-module, then
by 7.3.22 the asserted inequality is a special case of the one just proved. Finally, if
𝐸 is faithfully injective, then one has

sup (𝑆/𝔟 ⊗L
𝑆 RHom𝑅 (𝑋, 𝐸)) = − inf RHom𝑆o (𝑆/𝔟, 𝑋)

by (†) and 2.5.7(b), so the asserted equality follows from 8.2.8 and 8.3.11. □
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8.4.28 Corollary. Assume that 𝑆 is right Noetherian. Let 𝐼 be an 𝑅–𝑆o-bimodule
and 𝐸 an 𝑅-module. If 𝐼 is injective as an 𝑆o-module and 𝐸 is injective, then the
𝑆-module Hom𝑅 (𝐼, 𝐸) is flat; the converse holds if 𝐸 is faithfully injective.

Proof. This follows from 8.4.27 applied with 𝑋 = 𝐼. □

Remark. Corollary 8.4.28 holds under the weaker assumption that 𝑆 is right coherent, cf. E 3.3.3.

Exercises

E 8.4.1 Let 𝑅 be left Noetherian. Show that if 𝑀 ∈ Df
⊏⊐ (𝑅) has finite projective dimension, then

so has the 𝑅o-complex RHom𝑅 (𝑀, 𝑅) and one has𝑀 ≃ RHom𝑅o (RHom𝑅 (𝑀, 𝑅) , 𝑅) .
E 8.4.2 Let 𝑅 ⊗𝕜 𝑄

o → 𝐴, 𝑅 ⊗𝕜 𝑆
o → 𝐵, and 𝑆 ⊗𝕜 𝑇

o → 𝐶 be ring homomorphisms such
that 𝐵 is flat as an 𝑆o-module and 𝐴 is finitely generated and projective as an 𝑅-module
and left Noetherian. For 𝑀 ∈ Df

⊏⊐ (𝐴) , 𝑋 ∈ D(𝐵) , and 𝑁 ∈ D(𝐶 ) show that there is
an isomorphism RHom𝑅 (𝑀, 𝑋) ⊗L

𝑆
𝑁 ≃ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆
𝑁 ) in D(𝑄–𝑇o ) provided

that pd𝐴𝑀 is finite. Hint: E 5.4.10.
E 8.4.3 Let 𝑅 ⊗𝕜 𝑄

o → 𝐴, 𝑅 ⊗𝕜 𝑆
o → 𝐵, and 𝑆 ⊗𝕜 𝑇

o → 𝐶 be ring homomorphisms such
that 𝐵 is flat as an 𝑅o-module and 𝐶 is finitely generated and projective as an 𝑆-module
and left Noetherian. For 𝑀 ∈ D(𝐴) , 𝑋 ∈ D(𝐵) , and 𝑁 ∈ Df

⊏⊐ (𝐶 ) show that there is
an isomorphism RHom𝑅 (𝑀, 𝑋) ⊗L

𝑆
𝑁 ≃ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆
𝑁 ) in D(𝑄–𝑇o ) provided

that pd𝐶 𝑁 is finite. Hint: E 5.3.16.
E 8.4.4 Let 𝑅 ⊗𝕜 𝑄

o → 𝐴, 𝑅 ⊗𝕜 𝑆
o → 𝐵, and 𝑇 ⊗𝕜 𝑆

o → 𝐶 be ring homomorphisms such that
𝐵 is projective as an 𝑅-module and𝐶 is finitely generated and projective as an 𝑆o-module
and left Noetherian. For 𝑀 ∈ D(𝐴) , 𝑋 ∈ D(𝐵) , and 𝑁 ∈ Df

⊏⊐ (𝐶 ) show that there is
an isomorphism 𝑁 ⊗L

𝑆
RHom𝑅 (𝑋, 𝑀 ) ≃ RHom𝑅 (RHom𝑆o (𝑁, 𝑋) , 𝑀 ) in D(𝑇–𝑄o )

provided that pd𝐶 𝑁 is finite. Hint: E 5.2.16.
E 8.4.5 Let 𝑃 be a projective 𝑅-module. Show that if 𝑆 is left Noetherian and 𝑋 a complex

in D⊐ (𝑅–𝑆o ) , then fd𝑆o Hom𝑅 (𝑃, 𝑋) ⩽ fd𝑆o 𝑋 holds with equality if 𝑃 is faithfully
projective. Apply this to strengthen 8.4.15.

E 8.4.6 Assume that 𝑆 is right noetherian and let 𝑃 be a finitely generated projective 𝑆o-module.
Show that for 𝑋 in D(𝑅–𝑆o ) one has pd𝑅 Hom𝑆o (𝑃, 𝑋) ⩽ pd𝑅 𝑋 with equality if 𝑃 is
faithfully projective.

E 8.4.7 Assume that 𝑆 is right Noetherian. Let 𝐼 be an 𝑅–𝑆o-bimodule and 𝐸 an 𝑅-module.
Show that if 𝐼 is faithfully injective as an 𝑆o-module and 𝐸 is faithfully injective, then
Hom𝑅 (𝐼, 𝐸 ) is a faithfully flat 𝑆-module.

8.5 Global and Finitistic Dimensions

Synopsis. (Weak) global dimension; ∼ of Noetherian ring; finitistic projective/injective/flat dimen-
sion; ∼ of perfect ring; ∼ of Noetherian ring; Iwanaga–Gorenstein ring.

The global and finitistic dimensions are invariants of rings, they measure suprema
of homological dimensions of all modules, or all modules of finite homological
dimension, over a ring.
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420 8 Homological Dimensions

Global Dimension

8.5.1 Definition. The global dimension of 𝑅, written gldim 𝑅, is defined as

gldim 𝑅 = sup{pd𝑅 𝑀 | 𝑀 is an 𝑅-module} .

8.5.2 Example. By 1.3.28 a ring has global dimension 0 if and only if it is semi-
simple. By 1.3.11 a principal left ideal domain has global dimension at most 1, so
8.1.5 yields gldimℤ = 1. At the other extreme, 8.1.10 yields gldimℤ/4ℤ = ∞.

Remark. Since semi-simplicity is a left–right symmetric property, one has gldim𝑅 = 0 if and
only if gldim𝑅o = 0. We prove in 8.5.13 that the global dimensions of 𝑅 and 𝑅o agree if 𝑅 is
Noetherian; in general, though, they need not agree. For example, Small [238] shows that the ring

𝑅 =
(
ℤ ℚ
0 ℚ

)
=

{(
𝑥 𝑦

0 𝑧

) ��� 𝑥 ∈ ℤ and 𝑦, 𝑧 ∈ ℚ
}

has gldim𝑅 = 2 and gldim𝑅o = 1. In fact, the difference gldim𝑅 − gldim𝑅o can be any integer
or even infinite: Jategaonkar [145] constructs for 0 < 𝑚 ⩽ 𝑛 ⩽ ∞ a left Noetherian domain 𝑅 with
gldim𝑅 = 𝑚 and gldim𝑅o = 𝑛.

8.5.3 Theorem. There are equalities,

gldim 𝑅 = sup{pd𝑅 𝑀 − sup𝑀 | 𝑀 is a complex in D⊏ (𝑅) with H(𝑀) ≠ 0}
= sup{pd𝑅 𝑅/𝔞 | 𝔞 is a left ideal in 𝑅}
= sup{id𝑅 𝑀 + inf 𝑀 | 𝑀 is a complex in D⊐ (𝑅) with H(𝑀) ≠ 0}
= sup{id𝑅 𝑀 | 𝑀 is an 𝑅-module} .

Proof. Denote the suprema in the display by 𝑠1, . . . , 𝑠4, in the order they appear.
The inequalities 𝑠1 ⩾ gldim 𝑅 ⩾ 𝑠2 and 𝑠3 ⩾ 𝑠4 are evident. Let 𝑛 be an integer.
If one has 𝑠2 ⩽ 𝑛, then 8.1.8 yields − inf RHom𝑅 (𝑅/𝔞, 𝑀) ⩽ 𝑛 − inf 𝑀 for every
𝑅-complex 𝑀 and every left ideal 𝔞, so 8.2.8 yields id𝑅 𝑀 ⩽ 𝑛 − inf 𝑀 for every
𝑅-complex 𝑀 , whence 𝑠3 ⩽ 𝑛 holds and one has 𝑠3 ⩽ 𝑠2. A parallel argument that
applies 8.1.8 and 8.2.8 in opposite order yields 𝑠1 ⩽ 𝑠4. □

8.5.4 Corollary. The following conditions are quivalent.
(i) gldim 𝑅 is finite.
(ii) Every 𝑅-module has finite projective dimension.
(iii) Every complex in D⊏ (𝑅) has finite projective dimension.
(iv) Every 𝑅-module has finite injective dimension.
(v) Every complex in D⊐ (𝑅) has finite injective dimension.

Proof. The conditions are equivalent by 8.5.3, 8.1.11, and 8.2.12. □

Weak Global Dimension

8.5.5 Definition. The weak global dimension of 𝑅, written wgldim 𝑅, is given by

wgldim 𝑅 = sup{fd𝑅 𝑀 | 𝑀 is an 𝑅-module} .
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8.5 Global and Finitistic Dimensions 421

8.5.6. By 8.3.6 there is an inequality

wgldim 𝑅 ⩽ gldim 𝑅 ,

and by 8.3.20 equality holds if 𝑅 is left perfect.

The equality wgldim 𝑅 = gldim 𝑅 also holds if 𝑅 is left Noetherian, see 8.5.13,
and left perfect rings need not be left Noetherian; see the Remark after B.51.

8.5.7 Example. In view of 1.3.47 and 8.5.3 one has gldimℤ = wgldimℤ = 1 and
gldimℤ/4ℤ = wgldimℤ/4ℤ = ∞; see 8.5.2.

As von Neumann regularity is a left–right symmetric property, it is implicit in
the next result that wgldim 𝑅 = 0 holds if and only if wgldim 𝑅o = 0 holds, but this
is just a special case of 8.5.10.

8.5.8 Theorem. 𝑅 is von Neumann regular if and only if wgldim 𝑅 = 0 holds.

Proof. If wgldim 𝑅 = 0 holds, then every 𝑅-module is flat and, therefore, 𝑅 is von
Neumann regular by 1.3.46. Conversely, if 𝑅 is von Neumann regular, then every
finitely generated right ideal 𝔟 in 𝑅 is generated by an idempotent and hence a direct
summand of the 𝑅o-module 𝑅; thus the 𝑅o-module 𝑅/𝔟 is projective. It follows from
8.3.2 that Tor𝑅1 (𝑅/𝔟, 𝑀) = 0 holds for every 𝑅-module 𝑀 and for every finitely
generated right ideal 𝔟 and, consequently, every 𝑅-module is flat. □

8.5.9 Example. The commutative ring ℚℕ is von Neumann regular by 1.3.45, so
by 8.5.8 one has wgldimℚℕ = 0. As ℚℕ is not Noetherian it is, in particular, not
semi-simple, so gldimℚℕ > 0 holds by 8.5.2.

Remark. It is a result of Osofsky [200] that gldimℚℕ = 𝑛 + 1 holds if and only if 2ℵ0 = ℵ𝑛
where 𝑛 ∈ ℕ. Thus, gldimℚℕ is at least 2, but the exact value can not be decided within ZFC.
Moreover if𝑈 is a set of cardinality ⩾ ℵ𝜔 , where 𝜔 denotes the first infinite ordinal, then one has
gldimℚ𝑈 = ∞. In contrast, wgldimℚ𝑈 = 0 holds by 1.3.45 and 8.5.8.

The weak global dimension is a left–right symmetric invariant.

8.5.10 Theorem. There is an equality wgldim 𝑅 = wgldim 𝑅o, and one has

wgldim 𝑅 = sup{fd𝑅 𝑀 − sup𝑀 | 𝑀 is a complex in D⊏ (𝑅) with H(𝑀) ≠ 0}
= sup{fd𝑅 𝑅/𝔞 | 𝔞 is a finitely generated left ideal in 𝑅} .

Proof. Let 𝑛 be an integer. If the inequality wgldim 𝑅 ⩽ 𝑛 holds, then 8.3.11 yields
Tor𝑅

𝑛+1 (𝑁, 𝑀) = 0 for all 𝑅-modules 𝑀 and all 𝑅o-modules 𝑁 . By commutativ-
ity 7.5.10 and the definition of Tor, 7.4.18, one has Tor𝑅

𝑛+1 (𝑁, 𝑀) = Tor𝑅o

𝑛+1 (𝑀, 𝑁),
so another application of 8.3.11 yields fd𝑅o 𝑁 ⩽ 𝑛 for all 𝑅o-modules 𝑁 , whence
wgldim 𝑅o ⩽ 𝑛 holds. This proves the inequality wgldim 𝑅o ⩽ wgldim 𝑅, and the
opposite inequality holds by symmetry.

To prove the equalities in the display, denote the suprema by 𝑠1 and 𝑠2 in the order
they appear. The inequalities 𝑠1 ⩾ wgldim 𝑅 ⩾ 𝑠2 are evident. Let 𝑛 be an integer.
If wgldim 𝑅 ⩽ 𝑛 holds, then wgldim 𝑅o ⩽ 𝑛 holds as well, so for every 𝑅o-module

8-Mar-2024 Draft - use at own risk



422 8 Homological Dimensions

𝑁 one has sup (𝑁 ⊗L
𝑅
𝑀) = sup (𝑀 ⊗L

𝑅o 𝑁) ⩽ 𝑛 + sup𝑀 by 8.3.11. It follows that
fd𝑅 𝑀 ⩽ 𝑛 + sup𝑀 holds, so one has 𝑠1 ⩽ 𝑛 and hence 𝑠1 ⩽ wgldim 𝑅. If 𝑠2 ⩽ 𝑛
holds, then one has 0 = Tor𝑅

𝑛+1 (𝑁, 𝑅/𝔞) = Tor𝑅o

𝑛+1 (𝑅/𝔞, 𝑁) for every 𝑅o-module 𝑁
and every finitely generated left ideal 𝔞 in 𝑅. Thus, 𝑛 ⩾ wgldim 𝑅o holds, and one
has 𝑠2 ⩾ wgldim 𝑅o = wgldim 𝑅. □

8.5.11 Corollary. The following conditions are quivalent.
(i) wgldim 𝑅 is finite.
(ii) Every 𝑅-module has finite flat dimension.
(iii) Every complex in D⊏ (𝑅) has finite flat dimension.

Proof. The conditions are equivalent by 8.5.10 and 8.3.13. □

Global Dimensions of Noetherian Rings

8.5.12 Proposition. If 𝑅 is left Noetherian, then there is an equality,

gldim 𝑅 = sup{id𝑅 𝑅/𝔞 | 𝔞 is a left ideal in 𝑅} .

Proof. In view of 8.5.3 one need only prove the inequality “⩽”. Let 𝑛 be an integer
and assume that id𝑅 𝑅/𝔞 ⩽ 𝑛 holds for every left ideal 𝔞 in 𝑅. It suffices, again by
8.5.3, to prove that pd𝑅 𝑀 ⩽ 𝑛 holds for every finitely generated 𝑅-module 𝑀 . By
8.1.14 that follows as Ext𝑛+1

𝑅
(𝑀, 𝑅/𝔞) = 0 holds for every left ideal 𝔞 in 𝑅. □

Remark. Osofsky [196] shows that for every 𝑛 ⩾ 1 there is a (valuation) ring 𝑅 with gldim𝑅 = 𝑛

and sup{ id𝑅 𝑅/𝔞 | 𝔞 is a left ideal in 𝑅 } = 1.

8.5.13 Theorem. If 𝑅 is left Noetherian, then wgldim 𝑅 = gldim 𝑅 holds.

Proof. By 8.3.19 one has pd𝑅 𝑀 = fd𝑅 𝑀 for every finitely generated 𝑅-module
𝑀 . The equality gldim 𝑅 = wgldim 𝑅 now follows from 8.5.10 and 8.5.3. □

8.5.14 Corollary. If 𝑅 is left Noetherian and von Neumann regular, then 𝑅 is
semi-simple; in particular, 𝑅 is Artinian.

Proof. The assertion follows immediately from 8.5.13, 8.5.8, and 8.5.2. □

8.5.15 Corollary. If 𝑅 is Noetherian, then gldim 𝑅 = gldim 𝑅o holds.

Proof. When 𝑅 is both left and right Noetherian, 8.5.13 and 8.5.10 yield equalities
gldim 𝑅 = wgldim 𝑅 = wgldim 𝑅o = gldim 𝑅o. □

Finitistic Dimensions

8.5.16 Definition. The finitistic projective dimension of 𝑅, written FPD 𝑅, the fini-
tistic injective dimension of 𝑅, written FID 𝑅, and the finitistic flat dimension of 𝑅,
written FFD 𝑅, are defined as follows,
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8.5 Global and Finitistic Dimensions 423

FPD 𝑅 = sup{pd𝑅 𝑀 | 𝑀 is an 𝑅-module with pd𝑅 𝑀 < ∞} ,
FID 𝑅 = sup{id𝑅 𝑀 | 𝑀 is an 𝑅-module with id𝑅 𝑀 < ∞} , and
FFD 𝑅 = sup{fd𝑅 𝑀 | 𝑀 is an 𝑅-module with fd𝑅 𝑀 < ∞} .

Remark. The finitistic dimensions are not left–right symmetric invariants. Jensen and Lenzing
[149] ascribe the following example to Small. Let 𝕜 be a field and denote by 𝔫 the maximal ideal
of the local ring 𝑄 = 𝕜 [𝑥 ]/(𝑥2 ); the ring

𝑅 =

(
𝕜 𝑄/𝔫
0 𝑄

)
=

{(
𝑢 𝑣
0 𝑤

) �� 𝑢 ∈ 𝕜, 𝑣 ∈ 𝑄/𝔫, and 𝑤 ∈ 𝑄
}

has FPD𝑅 = 1 and FPD𝑅o = 0. More generally, Green, Kirkman, and Kuzmanovich [108] show
that for every 𝑛 ∈ ℕ there exists a ring 𝑅 with FPD𝑅 = 𝑛 and FPD𝑅o = 0.

8.5.17 Proposition. There are equalities,

FPD 𝑅 = sup{pd𝑅 𝑀 − sup𝑀 | 𝑀 ∈ C(𝑅) with H(𝑀) ≠ 0 and pd𝑅 𝑀 < ∞} ,
FFD 𝑅 = sup{fd𝑅 𝑀 − sup𝑀 | 𝑀 ∈ C(𝑅) with H(𝑀) ≠ 0 and fd𝑅 𝑀 < ∞} , and
FID 𝑅 = sup{id𝑅 𝑀 + inf 𝑀 | 𝑀 ∈ C(𝑅) with H(𝑀) ≠ 0 and id𝑅 𝑀 < ∞} .

Proof. There are three equalities to prove; in each case the inequality “⩽” is evident.
In the following 𝑀 is an 𝑅-complex with H(𝑀) ≠ 0.

If 𝑀 has finite projective dimension, then 𝑤 = sup𝑀 is an integer by 8.1.3. Let 𝑃
be a semi-projective replacement of 𝑀 . The complex Σ−𝑤𝑃ě𝑤 is a semi-projective
replacement of the module C𝑤(𝑃), so one has

pd𝑅 𝑀 = 𝑤 + pd𝑅 C𝑤(𝑃) ⩽ 𝑤 + FPD 𝑅

by 8.1.2, 8.1.8, and 8.5.16. This proves the first equality. If𝑀 has finite flat dimension,
then in view of 5.4.10 one similarly gets fd𝑅 𝑀 = 𝑤 + fd𝑅 C𝑤(𝑃) ⩽ 𝑤 + FFD 𝑅 by
8.3.3, 8.3.11, and 8.5.16. This proves the third equality.

If 𝑀 has finite injective dimension, then inf 𝑀 = 𝑢 is an integer by 8.2.3. Let
𝐼 be a semi-injective replacement of 𝑀 . The complex Σ−𝑢𝐼ď𝑢 is a semi-injective
replacement of the module Z𝑢 (𝐼), so one has id𝑅 𝑀 = id𝑅 Z𝑢 (𝐼) − 𝑢 ⩽ FID 𝑅 − 𝑢
by 8.2.2, 8.2.8, and 8.5.16. This establishes the second equality. □

While projective modules are flat, the projective dimension of flat modules is a
delicate issue; see the Remark after 17.4.28. It would be too much of a detour to
include the proof of the next theorem here, so it has been relegated to an appendix.
It is known as Jensen’s theorem (on projective dimension of flat modules).

8.5.18 Theorem. For every flat 𝑅-module 𝐹 one has pd𝑅 𝐹 ⩽ FPD 𝑅.

Proof. See Appn. D; the proof comes after D.12. □

8.5.19 Corollary. Let 𝑀 be an 𝑅-complex. If fd𝑅 𝑀 is finite, then one has

pd𝑅 𝑀 ⩽ FPD 𝑅 + sup𝑀 .

Proof. One can assume that 𝑀 is not acyclic and FPD 𝑅 is finite. Set 𝑛 = fd𝑅 𝑀 and
𝑤 = sup𝑀; both are integers by assumption and 8.3.4. Let 𝑃 be a semi-projective
replacement of𝑀 . Note that Σ−𝑤𝑃ě𝑤 is a semi-projective replacement of the module
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C𝑤(𝑃) and that pd𝑅 𝑀 = 𝑤 + pd𝑅 C𝑤(𝑃) holds by 8.1.8. The module C𝑛 (𝑃) is flat
by 8.3.11 so it has finite projective dimension by 8.5.18. It follows that C𝑤(𝑃) has
finite projective dimension, so pd𝑅 C𝑤(𝑃) ⩽ FPD 𝑅 holds by definition. □

8.5.20 Corollary. If FPD 𝑅 is finite, then an 𝑅-complex has finite flat dimension if
and only if it has finite projective dimension.

Proof. The assertion follows immediately from 8.3.6 and 8.5.19. □

Remark. Without recourse to 8.5.18, we show in 10.3.13 that the flat and projective dimensions
are simultaneously finite for complexes over a ring that admits a so-called dualizing complex. This,
however, need not imply that such rings have finite finitistic projective dimension. Indeed, every
finite dimensional algebra over a field has a dualizing complex, but it remains an open problem if
the finitistic projective dimension is finite for every such algebra.

Per the Remark after 8.5.9 there exist rings with flat modules of infinite projective dimension.

8.5.21 Proposition. The following inequalities hold,

gldim 𝑅 ⩾ wgldim 𝑅 ⩽ gldim 𝑅o

⩽ ⩽ ⩽

FPD 𝑅 ⩾ FFD 𝑅 ⩽ FID 𝑅o .

If one of the quantities in the top row is finite, then it equals the quantity below it.

Proof. The inequalities in the first row follow from 8.5.6 and 8.5.10. The vertical
inequalities and the last assertion are immediate from the definitions and 8.5.3. The
last inequality in the second row follows from 8.3.17. The first one follows from
8.5.19 and 8.3.6. □

By 8.5.21 one has FPD 𝑅 = gldim 𝑅 provided that gldim 𝑅 is finite. As a conse-
quence of 8.5.18, the following stronger result holds.

8.5.22 Proposition. If wgldim 𝑅 is finite, then FPD 𝑅 = gldim 𝑅 holds.

Proof. It is sufficient to prove the inequality FPD 𝑅 ⩾ gldim 𝑅. Let 𝑀 be an 𝑅-
module; one has fd𝑅 𝑀 < ∞ by assumption, so 8.5.18 yields FPD 𝑅 ⩾ pd𝑅 𝑀 . □

Remark. By 8.5.22 and the Remark after 8.5.9 and there exist rings with finitistic flat dimension
zero and infinite finitistic projective dimension.

8.5.23 Theorem. If 𝑅 is left perfect, then there are (in)equalities

FFD 𝑅 = FPD 𝑅 ⩽ id𝑅 𝑅 .

Proof. The equality is immediate from 8.3.20. To prove the inequality, let 𝑀 be
an 𝑅-module with pd𝑅 𝑀 = 𝑛 finite. Let 𝔍 be the Jacobson radical of 𝑅 and set
𝒌 = 𝑅/𝔍. By 8.1.17 one has Ext𝑛

𝑅
(𝑀, 𝒌) ≠ 0, and by 7.3.35 there is an exact

sequence,

Ext𝑛𝑅 (𝑀, 𝑅) −→ Ext𝑛𝑅 (𝑀, 𝒌) −→ Ext𝑛+1𝑅 (𝑀,𝔍) = 0 ,

whence one has Ext𝑛
𝑅
(𝑀, 𝑅) ≠ 0 and, thus, 𝑛 ⩽ id𝑅 𝑅 by 8.2.8. □
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Finitistic Dimensions of Noetherian Rings

Over Noetherian rings, there are further relations among the quantities in 8.5.21, and
they relate to another invariant: the injective dimension of the ring itself.

8.5.24 Theorem. Assume that 𝑅 is left Noetherian and let 𝑀 be an 𝑅-module. If 𝑀
has finite projective dimension, then pd𝑅 𝑀 ⩽ FFD 𝑅 + 1 holds.

Proof. See Appn. D; the proof comes after D.15. □

8.5.25 Corollary. If 𝑅 is left Noetherian, then FPD 𝑅 ⩽ FFD 𝑅 + 1 holds.

Proof. The inequality follows immediately from 8.5.24. □

8.5.26 Corollary. If 𝑅 is left Noetherian, then FFD 𝑅 is finite if and only if FPD 𝑅

is finite.

Proof. The assertion follows immediately from 8.5.21 and 8.5.25. □

8.5.27 Theorem. Assume that 𝑅 is left Noetherian. There are (in)equalities,

FPD 𝑅 ⩽ id𝑅 𝑅 and FID 𝑅 = FFD 𝑅o .

Moreover, if both quantities id𝑅 𝑅 and FID 𝑅 are finite, then they are equal.

Proof. To prove the equality, it suffices by 8.5.21 to establish the inequality “⩽”,
which follows immediately from 8.3.18.

To prove the inequality, let 𝑀 be an 𝑅-module with pd𝑅 𝑀 = 𝑛 finite. Choose an
𝑅-module 𝑁 with Ext𝑛

𝑅
(𝑀, 𝑁) ≠ 0 and an exact sequence 0→ 𝐾 → 𝐿 → 𝑁 → 0

with 𝐿 a free 𝑅-module; cf. 1.3.12. By 7.3.35 there is an exact sequence

Ext𝑛𝑅 (𝑀, 𝐿) −→ Ext𝑛𝑅 (𝑀, 𝑁) −→ Ext𝑛+1𝑅 (𝑀, 𝐾) = 0 ,

whence one has Ext𝑛
𝑅
(𝑀, 𝐿) ≠ 0 and, thus, 𝑛 ⩽ id𝑅 𝐿 = id𝑅 𝑅 by 8.2.8 and 8.2.21.

Assume that id𝑅 𝑅 and FID 𝑅 are finite; evidently one has id𝑅 𝑅 ⩽ FID 𝑅. To
prove the opposite inequality, set 𝑛 = FID 𝑅 and note that Ext𝑛+1

𝑅
( , 𝐾) = 0 holds

for every 𝑅-module 𝐾 with id𝑅 𝐾 finite. Furthermore, there exists an 𝑅-module 𝑀
with id𝑅 𝑀 = 𝑛. Consider an exact sequence 0 → 𝐾 → 𝐿 → 𝑀 → 0 with 𝐿 free.
As id𝑅 𝑅 is finite, it follows from 8.2.21 and 8.2.9 that 𝐿 and 𝐾 have finite injective
dimension. Let 𝑁 be an 𝑅-module with Ext𝑛

𝑅
(𝑁, 𝑀) ≠ 0. The exact sequence

Ext𝑛𝑅 (𝑁, 𝐿) −→ Ext𝑛𝑅 (𝑁, 𝑀) −→ Ext𝑛+1𝑅 (𝑁, 𝐾) = 0 ,

shows that Ext𝑛
𝑅
(𝑁, 𝐿) is non-zero, whence 𝑛 ⩽ id𝑅 𝐿 = id𝑅 𝑅 holds as desired. □

8.5.28 Corollary. If 𝑅 is Noetherian, then there are (in)equalities,

FID 𝑅o = FFD 𝑅 ⩽ FPD 𝑅 ⩽ id𝑅 𝑅 ⩽ gldim 𝑅 .

Proof. The equality holds by 8.5.27 as 𝑅o is left Noetherian. The first inequality is
part of 8.5.21. The second inequality holds by 8.5.27 as 𝑅 is left Noetherian. The
third and final inequality holds by 8.5.3. □
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Iwanaga–Gorenstein Rings

The results above call attention to rings of finite self-injective dimension.

8.5.29 Definition. If 𝑅 is Noetherian with id𝑅 𝑅 and id𝑅o 𝑅 finite, then 𝑅 is called
Iwanaga–Gorenstein.

We show below that id𝑅 𝑅 = id𝑅o 𝑅 holds for an Iwanaga–Gorenstein ring. This
equality was first proved by Zaks [262]. See 8.2.10 for examples of commutative
Iwanaga–Gorenstein rings.

8.5.30 Corollary. If 𝑅 is Iwanaga–Gorenstein, then there are equalities,

id𝑅 𝑅 = FID 𝑅 = FFD 𝑅 = FPD 𝑅 = id𝑅o 𝑅 .

Proof. By 8.5.28 there are (in)equalities,

id𝑅o 𝑅 ⩽ FID 𝑅o = FFD 𝑅 ⩽ FPD 𝑅 ⩽ id𝑅 𝑅 ,

and since the same inequalities hold with 𝑅 and 𝑅o interchanged, equalities hold. □

8.5.31 Theorem. Assume that 𝑅 is Noetherian. The next conditions are equivalent.
(i) 𝑅 is Iwanaga–Gorenstein.
(ii) All flat modules over 𝑅 and over 𝑅o have finite injective dimension.
(iii) All injective modules over 𝑅 and over 𝑅o have finite flat dimension.

Proof. Evidently, (ii) implies (i) as 𝑅 is flat as a module over 𝑅 and over 𝑅o.
(i)⇒ (iii): Let 𝐼 be an injective 𝑅-module, the counitor 4.4.2 and 8.4.27 yield

fd𝑅 𝐼 = fd𝑅 Hom𝑅 (𝑅, 𝐼) ⩽ id𝑅o 𝑅. By symmetry an injective 𝑅o-module has finite
flat dimension.

(iii)⇒ (ii): Let 𝐹 be a flat 𝑅-module and recall from 5.4.19 that the 𝑅o-module
Hom𝕜 (𝐹,𝔼) is injective. By 8.3.18 one has id𝑅 𝐹 = fd𝑅o Hom𝕜 (𝐹,𝔼) < ∞. By
symmetry a flat 𝑅o-module has finite injective dimension. □

8.5.32 Corollary. Let 𝑅 be Iwanaga–Gorenstein and 𝑀 a complex in D⊏⊐ (𝑅). If one
of the quantities pd𝑅 𝑀 , fd𝑅 𝑀 , or id𝑅 𝑀 is finite, then they are all finite.

Proof. It follows from 8.5.30 and 8.5.20 that pd𝑅 𝑀 is finite if and only if fd𝑅 𝑀
is finite. Assume now that fd𝑅 𝑀 is finite; in the derived category 𝑀 , is isomorphic
to a bounded complex 𝐹 of flat modules. Assume, without loss of generality, that 𝐹
is concentrated in non-negative degrees, set 𝑠 = sup 𝐹♮, and proceed by induction
on 𝑠. If 𝑠 = 0, then 𝐹 is a flat 𝑅-module and hence id𝑅 𝐹 is finite by 8.5.31. For
𝑠 > 0 consider the exact seqeuence 0→ 𝐹ď𝑠−1 → 𝐹 → Σ𝑠𝐹𝑠 → 0 from 2.5.22. By
hypothesis, id𝑅 𝐹ď𝑠−1 is finite. The flat module 𝐹𝑠 has finite injective dimension by
8.5.31, and per 8.2.3 so has the complex Σ𝑠𝐹𝑠 . It now follows from 8.2.9 that id𝑅 𝐹
is finite. If id𝑅 𝑀 is finite, then a similar argument shows that fd𝑅 𝑀 is finite. □
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Exercises

E 8.5.1 Show that if 𝑅 is left Noetherian, then gldim𝑅 ⩽ gldim𝑅o holds.
E 8.5.2 Show that the following conditions are equivalent. (i) gldim𝑅 ⩽ 1 holds. (ii) Every

submodule of a projective 𝑅-module is projective. (iii) Every quotient of an injective
𝑅-module is injective.

E 8.5.3 Show that wgldim𝑅 ⩽ 1 holds if and only if every submodule of a flat 𝑅-module is flat.
Conclude that over a principal ideal domain submodules of a flat modules are flat.

E 8.5.4 Show that if gldim𝑅 is finite, then every complex of projective 𝑅-modules is semi-
projective, and every complex of injective 𝑅-modules is semi-injective.

E 8.5.5 Let 𝑃 be a bounded above complex of projective 𝑅-modules and assume that FPD𝑅 is
finite. (a) Show that if pd𝑅 𝑃 is finite, then 𝑃 is semi-projective. (b) Show that if 𝑃 is
acyclic, then it is contractible.

E 8.5.6 Let 𝐼 be a bounded below complex of injective 𝑅-modules and assume that FID𝑅 is
finite. (a) Show that if id𝑅 𝐼 is finite, then 𝐼 is semi-injective. (b) Show that if 𝐼 is acyclic,
then it is contractible.

E 8.5.7 Show that if wgldim𝑅 is finite, then every complex of flat 𝑅-modules is semi-flat.
E 8.5.8 Assume that 𝑅 is left Noetherian. Show that the inequality id𝑅 𝑀 ⩽ id𝑅 𝑅 holds for

every 𝑅-module of finite flat dimension.
E 8.5.9 Assume that 𝑅 is right Noetherian. Show that the inequality fd𝑅 𝑀 ⩽ id𝑅o 𝑅 holds for

every 𝑅-module of finite injective dimension.
E 8.5.10 Let 𝐹 be a bounded above complex of flat 𝑅-modules and assume that FFD𝑅 is finite.

(a) Show that if fd𝑅 𝐹 is finite, then 𝐹 is semi-flat. (b) Show that if 𝐹 is acyclic, then it
is pure acyclic.

Exercises E 8.5.11–E 8.5.23 deal with the following invariants of 𝑅:
splf 𝑅 = sup{pd𝑅 𝐹 | 𝐹 is a flat 𝑅-module} ,
sfli𝑅 = sup{ fd𝑅 𝐼 | 𝐼 is an injective 𝑅-module} ,
silf 𝑅 = sup{ id𝑅 𝐹 | 𝐹 is a flat 𝑅-module} ,
silp𝑅 = sup{ id𝑅 𝑃 | 𝑃 is a projective 𝑅-module} , and
spli𝑅 = sup{pd𝑅 𝐼 | 𝐼 is an injective 𝑅-module} .

The symbols splf, . . . , spli are acronyms: splf stands for “supremum of projective lengths
of flats” etc. The terminology and notation comes from group representations and first
appeared in [105] by Gedrich and Gruenberg. These invariants are studied extensively
by Emmanouil and Talelli [84].

E 8.5.11 Show that splf 𝑅 is finite if and only if pd𝑅 𝐹 is finite for every flat 𝑅-module 𝐹. Show
also that the analogous statements hold for sfli𝑅, silf 𝑅, silp𝑅, and spli𝑅.

E 8.5.12 Show that there are inequalities spli𝑅 ⩽ sfli𝑅 + splf 𝑅 and splf 𝑅 ⩽ FPD𝑅.
E 8.5.13 Show that there is an inequality gldim𝑅 ⩽ wgldim𝑅 + splf 𝑅.
E 8.5.14 Show that if wgldim𝑅 is finite, then splf 𝑅 and FPD𝑅 are simultaneously finite.
E 8.5.15 Show that the inequailties FPD𝑅 ⩽ silp𝑅 and FID𝑅 ⩽ spli𝑅 hold.
E 8.5.16 Show that if silp𝑅 and spli𝑅 are finite, then one has silp𝑅 = FPD𝑅 = FID𝑅 = spli𝑅.
E 8.5.17 Let 𝑀 be an 𝑅-module. Show that if silp𝑅 and spli𝑅 are finite, then the quantities

pd𝑅 𝑀, fd𝑅 𝑀, and id𝑅 𝑀 are simultaneously finite.
E 8.5.18 Show that there is an inequality FFD𝑅 ⩽ sfli𝑅o.
E 8.5.19 Show that if sfli𝑅 and sfli𝑅o are finite, then sfli𝑅 = FFD𝑅 = FFD𝑅o = sfli𝑅o holds.
E 8.5.20 Show that the equality silf 𝑅 = silp𝑅 holds. Hint: 8.5.18.
E 8.5.21 Show that if 𝑅 is left Noetherian, then id𝑅 𝑅 = silp𝑅 holds.
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428 8 Homological Dimensions

E 8.5.22 Show that if 𝑅 is left Noetherian, then one has silf 𝑅 ⩽ id𝑅 𝑅 and splf 𝑅 ⩽ id𝑅 𝑅.
E 8.5.23 Show that if 𝑅 is Noetherian, then sfli𝑅 = id𝑅o 𝑅 holds.
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Chapter 9
Gorenstein Homological Dimensions

The invariants treated in this chapter are refinements of the homological dimensions,
sometimes referred to as “classic” or “absolute”, that are treated in Chap. 8. The
Gorenstein homological dimensions originate in work of Auslander and Bridger
[8, 9]. They were introduced to charactarize Iwanaga–Gorenstein rings among com-
mutative Noetherian local rings. Studies of Gorenstein homological dimensions over
non-commutative rings started with Enochs and collaborators as consolidated and
summarized in [87, Chap. 10]. The approach we take in this chapter builds on this
work as further developed by Avramov and Foxby [23] and Christensen, Frankild,
and Holm [52, 61, 62, 131, 132]. The overarching theme is that the Gorenstein ho-
mological dimensions behave and interact like the absolute dimensions in Chap. 8.

9.1 Gorenstein Projective Dimension

Synopsis. Totally acyclic complex of (finitely generated) projective modules; Gorenstein projective
module; Gorenstein projective dimension; ∼ vs. projective dimension; ∼ over Noetherian ring; ∼ of
module.

Speaking informally, one determines the projective dimension of a complex 𝑀 with
a semi-projective replacement 𝑃 by looking for projective cokernels in 𝑃 above the
supremum of 𝑀 . The Gorenstein projective dimension is defined in much the same
way, and the first step is to introduce the kind of cokernels to look for.

Gorenstein Projective Modules

9.1.1 Definition. A complex 𝑃 of projective 𝑅-modules is called totally acyclicif it
is acyclic and Hom𝑅 (𝑃, 𝐿) is acyclic for every projective 𝑅-module 𝐿.

An 𝑅-module 𝐺 is called Gorenstein projective if one has 𝐺 � C0 (𝑃) for some
totally acyclic complex 𝑃 of projective 𝑅-modules.

429



430 9 Gorenstein Homological Dimensions

Notice that if 𝑃 is a totally acyclic complex of projective 𝑅-modules, then the
module C𝑣 (𝑃) is Gorenstein projective for every 𝑣 ∈ ℤ.

9.1.2 Example. Every projective 𝑅-module 𝑃 is Gorenstein projective as the disk
complex D0 (𝑃) = 0 −−→ 𝑃

=−−→ 𝑃 −−→ 0 is totally acyclic.

A colloquial phrasing of the next lemma could be: To a Gorenstein projective
module, every projective module looks injective.

9.1.3 Lemma. Let 𝐺 be an 𝑅-module; it is Gorenstein projective if and only if it
meets the following requirements:

(1) For every projective 𝑅-module 𝐿 one has Ext𝑚
𝑅
(𝐺, 𝐿) = 0 for all 𝑚 > 0 .

(2) There exists an exact sequence of 𝑅-modules, 0 → 𝐺 → 𝑃0 → 𝑃−1 → · · · ,
where each 𝑃𝑣 is projective and the sequence

· · · −→ Hom𝑅 (𝑃−1, 𝐿) −→ Hom𝑅 (𝑃0, 𝐿) −→ Hom𝑅 (𝐺, 𝐿) −→ 0

is exact for every projective 𝑅-module 𝐿 .

Proof. Assume first that 𝐺 is Gorenstein projective and let 𝑃 be a totally acyclic
complex of projective 𝑅-modules with 𝐺 � C0 (𝑃); see 9.1.1. The complex 𝑃Ď0
and the isomorphism 𝐺 � C0 (𝑃) yield, up to indexing, the exact sequence asserted
in (2). The complex 𝑃ě0 is a semi-projective replacement of 𝐺. For a projective
𝑅-module 𝐿 and 𝑚 > 0 the definition of Ext, 7.3.23, and total acyclicity of 𝑃 yield

Ext𝑚𝑅 (𝐺, 𝐿) = H−𝑚 (Hom𝑅 (𝑃ě0, 𝐿)) = H−𝑚 (Hom𝑅 (𝑃, 𝐿)) = 0 .

Assuming now that 𝐺 satisfies the two requirements, let 𝜋 : 𝑃′ ≃−−→ 𝐺 be a projec-
tive resolution, see 5.2.27, and denote by 𝑃 the complex 0→ 𝑃0 → 𝑃−1 → · · · .
The homomorphism 𝐺 → 𝑃0 induces a quasi-isomorphism 𝜄 : 𝐺 → 𝑃, so 𝑃 =

Σ−1Cone(𝜄𝜋) is by 4.1.1 and 4.2.16 an acyclic complex of projective 𝑅-modules
with 𝐺 � C0 (𝑃). Let 𝐿 be a projective 𝑅-module. By (2) the morphism Hom𝑅 (𝜄, 𝐿)
is a quasi-isomorphism, and by (1) so is Hom𝑅 (𝜋, 𝐿), see 7.3.27. It follows that
Hom𝑅 (𝜄𝜋, 𝐿) is a quasi-isomorphism, whence the complex Cone Hom𝑅 (𝜄𝜋, 𝐿) �
Hom𝑅 (𝑃, 𝐿) is acyclic, see 4.1.17 and 4.2.16. Thus 𝑃 is a totally acyclic complex of
projective 𝑅-modules and 𝐺 is Gorenstein projective. □

For later reference we prove the following result. It shows that 9.1.3(1) can be
strengthened; however, it is strengthened even further in 9.1.9(c).

9.1.4 Lemma. Let 𝑀 be an 𝑅-module. The following conditions are equivalent.
(i) Ext𝑚

𝑅
(𝑀, 𝐿) = 0 for every projective 𝑅-module 𝐿 and all 𝑚 > 0 .

(ii) Ext𝑚
𝑅
(𝑀, 𝑁) = 0 for every 𝑅-module 𝑁 with pd𝑅 𝑁 finite and all 𝑚 > 0 .

Proof. Condition (ii) clearly implies (i). For the converse, induct on 𝑑 = pd𝑅 𝑁 .
The base case 𝑑 = 0 is handled by the assumption (i). Now assume that 𝑑 > 0 holds
and that one has Ext𝑚

𝑅
(𝑀, 𝑁 ′) = 0 for every 𝑅-module 𝑁 ′ with pd𝑅 𝑁 ′ < 𝑑 and

all 𝑚 > 0. Let 𝑁 be an 𝑅-module with pd𝑅 𝑁 = 𝑑 and consider an exact sequence
0→ 𝑁 ′ → 𝐿 → 𝑁 → 0 with 𝐿 projective. By 8.1.9 one has pd𝑅 𝑁 ′ < 𝑑, and hence
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Ext𝑚
𝑅
(𝑀, 𝑁 ′) = 0 = Ext𝑚

𝑅
(𝑀, 𝐿) holds for all 𝑚 > 0. Application of the functor

Hom𝑅 (𝑀, ) to 0 → 𝑁 ′ → 𝐿 → 𝑁 → 0 induces by 7.3.35 an exact sequence of
Ext modules, which now shows that Ext𝑚

𝑅
(𝑀, 𝑁) = 0 holds for all 𝑚 > 0. □

For complexes of finitely generated projective modules, total acyclicity has a
couple of alternative characterizations that, if encountered in isolation, would appear
to be weaker or stronger than the definition.

9.1.5 Lemma. Let 𝑃 be a complex of finitely generated projective 𝑅-modules. The
following conditions are equivalent.

(i) Hom𝑅 (𝑃, 𝑅) is acyclic.
(ii) Hom𝑅 (𝑃, 𝐹) is acyclic for every flat 𝑅-module 𝐹.
(iii) 𝐸 ⊗𝑅 𝑃 is acyclic for every injective 𝑅o-module 𝐸 .

Thus, if 𝑃 is acyclic and satisfies these conditions, then 𝑃 is totally acyclic.

Proof. The implication (ii)⇒ (i) is evident. Considering 𝑅 as an 𝑅–𝑅o-bimodule
one has Hom𝑅 (𝑃, 𝑅) ⊗𝑅 𝐹 � Hom𝑅 (𝑃, 𝐹) for every 𝑅-module 𝐹 by tensor eval-
uation 1.4.6 and the unitor 1.2.1. This shows that (i) implies (ii). One also has
𝐸 ⊗𝑅 𝑃 � Hom𝑅o (𝑅, 𝐸) ⊗𝑅 𝑃 � Hom𝑅o (Hom𝑅 (𝑃, 𝑅), 𝐸) for every 𝑅o-module 𝐸
by the counitor 1.2.2, commutativity 1.2.3, and homomorphism evaluation 1.4.9.
From this isomorphism it follows that (i) and (iii) are equivalent. □

9.1.6 Example. The Dold complex 𝐷 from 2.1.23 is a totally acyclic complex
of projective ℤ/4ℤ-modules; this follows from 9.1.5 as Homℤ/4ℤ (𝐷,ℤ/4ℤ) �
𝐷. In particular, the module C0 (𝐷) = (ℤ/4ℤ)/(2ℤ/4ℤ) � ℤ/2ℤ is Gorenstein
projective.

A class of modules that is closed under countable (co)powers and under kernels of
surjective homomorphisms or cokernels of injective homomorphisms is also closed
under summands. The proof uses the technique from Eilenberg’s swindle 1.3.20.

9.1.7 Proposition. Let X be a class of 𝑅-modules and consider these conditions:
(1) For every module 𝑋 ∈ X, the module 𝑋 (ℕ) or the module 𝑋ℕ belongs to X .

(2) For every exact sequence 0 → 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0 with 𝑋, 𝑋 ′′ ∈ X also
𝑋 ′ ∈ X .

(3) For every exact sequence 0 → 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0 with 𝑋 ′, 𝑋 ∈ X also
𝑋 ′′ ∈ X .

Assume that X satisfies (1) and one of the conditions (2)–(3). If 𝑋 � 𝑀 ⊕ 𝑁 holds
in M(𝑅) and 𝑋 belongs to X, then 𝑀 and 𝑁 belong to X.

Proof. Let 𝑋 ∈ X and assume that 𝑋 � 𝑀 ⊕ 𝑁 holds in M(𝑅). Recall from 1.1.21
that 𝑀 ⊕𝑁 is both a coproduct and a product. By (1) the module𝑌 = 𝑋 (ℕ) or𝑌 = 𝑋ℕ

belongs to X; in either case there is an isomorphism 𝑌 � 𝑀 ⊕ 𝑌 . Thus there are
short exact sequences 0 → 𝑀 → 𝑌 → 𝑌 → 0 and 0 → 𝑌 → 𝑌 → 𝑀 → 0, and it
follows from (2) or (3) that 𝑀 belongs to X. By symmetry 𝑁 belongs to X. □
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The next proposition captures key features of the class of Gorenstein projective
modules. The first assertion in part (a) together with 9.1.2 shows that the class is
so-called projectively resolving.

9.1.8 Proposition. The following assertions hold.
(a) Let 0 → 𝐺′ → 𝐺 → 𝐺′′ → 0 be an exact sequence of 𝑅-modules. If 𝐺′′ is

Gorenstein projective, then 𝐺 is Gorenstein projective if and only if 𝐺′ is so.
If𝐺′ and𝐺 are Gorenstein projective, then𝐺′′ is Gorenstein projective if and
only if Ext1𝑅 (𝐺′′, 𝐿) = 0 holds for every projective 𝑅-module 𝐿 .

(b) Let {𝐺𝑢}𝑢∈𝑈 be a family of 𝑅-modules. The module
∐
𝑢∈𝑈 𝐺

𝑢 is Gorenstein
projective if and only if each 𝐺𝑢 is Gorenstein projective. In particular, a
direct summand of a Gorenstein projective 𝑅-module is Gorenstein projective.

Proof. Let 0 −−→ 𝐺′
𝛼′−−→ 𝐺

𝛼−−→ 𝐺′′ −−→ 0 be an exact sequence of 𝑅-modules where
𝐺 and 𝐺′′ are Gorenstein projective. As 𝐺 and 𝐺′′ satisfy 9.1.3(1), so does 𝐺′ by
7.3.35. As 𝐺 and 𝐺′′ satisfy 9.1.3(2) there exist complexes

𝑃 = 0 −→ 𝑃0 −→ 𝑃−1 −→ · · · and 𝑃′′ = 0 −→ 𝑃′′0 −→ 𝑃′′−1 −→ · · ·

of projective 𝑅-modules and quasi-isomorphisms 𝜀 : 𝐺 → 𝑃 and 𝜀′′ : 𝐺′′ → 𝑃′′

such that Hom𝑅 (𝜀, 𝐿) and Hom𝑅 (𝜀′′, 𝐿) are quasi-isomorphisms for every pro-
jective 𝑅-module 𝐿. In view of 4.1.17 and 4.2.16 the complex Hom𝑅 (Cone 𝜀, 𝐿)
is acyclic for every projective 𝑅-module 𝐿, so A.2 implies that Hom𝑅 (𝜀, 𝐿) is a
quasi-isomorphism for every complex 𝐿 of projective 𝑅-modules. There is an ex-
act sequence of 𝑅-complexes 0 −−→ 𝐺

𝜀−−→ 𝑃 −−→ Coker 𝜀 −−→ 0 where Coker 𝜀 =

0 → Coker 𝜀0 → 𝑃−1 → 𝑃−2 → · · · . The module Coker 𝜀0 is Gorenstein pro-
jective, so it follows from 7.3.39 that Hom𝑅 (𝜀, 𝐿) is surjective for every com-
plex 𝐿 of projective 𝑅-modules. In particular, Hom𝑅 (𝜀, 𝑃′′) is a surjective quasi-
isomorphism, and hence the map C(𝑅) (𝜀, 𝑃′′) : C(𝑅) (𝑃, 𝑃′′) → C(𝑅) (𝐺, 𝑃′′) is
surjective by 4.2.7 and 2.3.10. Thus there is a morphism of 𝑅-complexes 𝛽 : 𝑃→ 𝑃′′

with 𝛽𝜀 = 𝜀′′𝛼. Let 𝜛 : Cone 1𝑃′′ ↠ Σ𝑃′′ be the canonical morphism from 4.1.5.
With 𝑃′ = Ker(𝛽 Σ−1𝜛) there is a commutative diagram in C(𝑅) with exact rows,

(†)

0 // 𝐺′

𝜀′

��

𝛼′
// 𝐺

𝜀 = ( 𝜀0 )
��

𝛼
// 𝐺′′

𝜀′′

��

// 0

0 // 𝑃′ //

𝑃
⊕

Σ−1Cone 1𝑃′′
( 𝛽 Σ−1𝜛 )

// 𝑃′′ // 0 ,

where 𝜀′ is the induced morphism. As the complex Cone 1𝑃′′ is contractible, see
4.3.31, the morphism 𝜀 is a quasi-isomorphism and so is Hom𝑅 (𝜀, 𝐿) for every
projective 𝑅-module 𝐿. The complex 𝑃′ consists of projective modules and is con-
centrated in degrees ⩽ 0 as this is the case for 𝑃, 𝑃′′ and Σ−1Cone 1𝑃′′ ; see 5.2.3.

As 𝜀 and 𝜀′′ are quasi-isomorphisms, so is 𝜀′ by 4.2.5 applied to the diagram (†). If
𝐿 is a projective 𝑅-module, then application of the functor Hom𝑅 ( , 𝐿) to (†) yields
a commutative diagram with exact rows. This is because Ext1𝑅 (𝐺′′, 𝐿) = 0 holds
and because the bottom row in (†) is degreewise split exact. As Hom𝑅 (𝜀, 𝐿) and
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9.1 Gorenstein Projective Dimension 433

Hom𝑅 (𝜀′′, 𝐿) are quasi-isomorphisms, so is Hom𝑅 (𝜀′, 𝐿) by another application of
4.2.5. This shows that the module 𝐺′ satisfies 9.1.3(2), and hence we have proved
that the class of Gorenstein projective modules is closed under kernels of surjective
homomorphisms.

Next we show that the class of Gorenstein projective modules is closed un-
der coproducts. Let {𝐺𝑢}𝑢∈𝑈 be a family of Gorenstein projective 𝑅-modules. By
definition there exists for each 𝑢 ∈ 𝑈 a totally acyclic complex 𝑃𝑢 of projective
𝑅-modules with 𝐺𝑢 � C0 (𝑃𝑢). The complex 𝑃 =

∐
𝑢∈𝑈 𝑃

𝑢 consists of projective
modules by 1.3.24 and it is acyclic by 3.1.11. For every 𝑅-module 𝐿 there is by 3.1.27
an isomorphism Hom𝑅 (𝑃, 𝐿) �

∏
𝑢∈𝑈 Hom𝑅 (𝑃𝑢, 𝐿), and this complex is acyclic if

𝐿 is projective. Thus, 𝑃 is a totally acyclic complex of projective 𝑅-modules. Since
one has C0 (𝑃) �

∐
𝑢∈𝑈 C0 (𝑃𝑢) �

∐
𝑢∈𝑈 𝐺

𝑢 by 3.1.10(c), it follows that
∐
𝑢∈𝑈 𝐺

𝑢

is Gorenstein projective.
Having established these properties, it now follows from 9.1.7 that the class of

Gorenstein projective modules is closed under direct summands. This proves (b).
We now finish the proof of (a). To show that the class of Gorenstein projective

modules is closed under extensions, let 0 → 𝐺′ → 𝐺 → 𝐺′′ → 0 be an exact
sequence where 𝐺′ and 𝐺′′ are Gorenstein projective. By the definition 9.1.1 of
Gorenstein projective modules, there exists an exact sequence 0 → 𝐺′ → 𝑃′ →
𝐺′′′ → 0 with 𝑃′ projective and 𝐺′′′ Gorenstein projective. By 3.2.28 there is a
commutative diagram with exact rows and columns,

(‡)

0

��

0

��

0 // 𝐺′

��

// 𝐺

��

// 𝐺′′ // 0

0 // 𝑃′

��

// 𝑃′ ⊔𝐺′ 𝐺

��

// 𝐺′′ // 0

𝐺′′′

��

𝐺′′′

��

0 0 .

As𝐺′′ is Gorenstein projective and 𝑃′ is projective one has Ext1𝑅 (𝐺′′, 𝑃′) = 0. Thus
the second row in (‡) is split by 7.3.36, so one has 𝑃′⊔𝐺′ 𝐺 � 𝑃′ ⊕𝐺′′. This module
is Gorenstein projective by (b). Now the already established part of (a) applied to
the second column in (‡) shows that 𝐺 is Gorenstein projective.

It remains to prove the final assertion in (a). The “only if” part is evident. For the
converse, consider again the diagram (‡). By assumption, 𝑃′ is projective and𝐺′,𝐺,
and 𝐺′′′ are Gorenstein projective. The second column and the already established
part of (a) show that 𝑃′ ⊔𝐺′ 𝐺 is Gorenstein projective. As Ext1𝑅 (𝐺′′, 𝑃′) = 0 holds,
by assumption, it follows from 7.3.36 that the second row is split. Hence part (b)
shows that 𝐺′′ is Gorenstein projective. □
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Unlike projective modules, cf. 8.1.1, Gorenstein projective modules are not en-
tirely characterized by Ext-vanishing. Theorem 9.1.31 comes as close as one can to
such a characterization—see also the Remark following 9.1.32—and to prove it the
next lemma is key.

9.1.9 Lemma. Let 𝑁 be an 𝑅-module; the following conditions are equivalent.
(i) Ext1𝑅 (𝐺, 𝑁) = 0 for every Gorenstein projective 𝑅-module 𝐺.
(ii) Ext𝑚

𝑅
(𝐺, 𝑁) = 0 for every Gorenstein projective 𝑅-module 𝐺 and all 𝑚 > 0 .

The class N of 𝑅-modules 𝑁 satifying these conditions has the following properties.
(a) Let 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 be an exact sequence of 𝑅-modules. If two of

the modules 𝑁 ′, 𝑁 , and 𝑁 ′′ belong to N, then so does the third.
(b) For every family {𝑁𝑢}𝑢∈𝑈 of modules in N one has

∏
𝑢∈𝑈 𝑁

𝑢 ∈ N .
(c) Every 𝑅-module 𝑁 with pd𝑅 𝑁 or id𝑅 𝑁 finite belongs to N .

Proof. The implication (ii)⇒ (i) is trivial. For the converse, let 𝐺 be a Gorenstein
projective 𝑅-module and 𝑃 a totally acyclic complex of projective 𝑅-modules with
C0 (𝑃) � 𝐺. For 𝑚 > 0 one has Ext𝑚

𝑅
(𝐺, 𝑁) � Ext1𝑅 (C𝑚−1 (𝑃), 𝑁) by 8.1.6, so (i)

implies (ii) as the module C𝑚−1 (𝑃) is Gorenstein projective.
(a): It follows from 7.3.35 that 𝑁 ′, 𝑁 ′′ ∈ N implies 𝑁 ∈ N, and that 𝑁 ′, 𝑁 ∈ N

implies 𝑁 ′′ ∈ N. Now assume 𝑁, 𝑁 ′′ ∈ N. Another application of 7.3.35 yields
Ext𝑚

𝑅
(𝐺, 𝑁 ′) = 0 for every Gorenstein projective 𝑅-module 𝐺 and all 𝑚 > 1.

To show that also Ext1𝑅 (𝐺, 𝑁 ′) = 0 holds, note that every Gorenstein projective
module 𝐺 by definition fits into an exact sequence 0 → 𝐺 → 𝑃 → 𝐺′ → 0 with
𝑃 projective and 𝐺′ Gorenstein projective. Application of 7.3.35 to this sequence
yields Ext1𝑅 (𝐺, 𝑁 ′) � Ext2𝑅 (𝐺′, 𝑁 ′), and the right-hand side is zero, as just shown.

(b): For every 𝑅-module 𝐺 the functor Ext1𝑅 (𝐺, ) preserves products by 7.3.33.
Hence the assertion follows directly from the definition of the class N.

(c): In view of part (a), it suffices to prove that N contains every projective and
every injective 𝑅-module, and that is the case by 9.1.3(1) and 8.2.19. □

Gorenstein Projective Dimension

9.1.10 Definition. Let 𝑀 be an 𝑅-complex. The Gorenstein projective dimension of
𝑀 , written Gpd𝑅 𝑀 , is defined as

Gpd𝑅 𝑀 = inf
{
𝑛 ∈ ℤ

���� There exists a semi-projective replacement 𝑃 of 𝑀 with
H𝑣 (𝑃) = 0 for all 𝑣 > 𝑛 and C𝑛 (𝑃) Gorenstein projective

}
with the convention inf ∅ = ∞. One says that Gpd𝑅 𝑀 is finite if Gpd𝑅 𝑀 < ∞ holds.

A comment similar to the one after 8.1.2 justifies the last convention in 9.1.10.

9.1.11. Let 𝑀 be an 𝑅-complex. For every semi-projective replacement 𝑃 of 𝑀 one
has H(𝑃) � H(𝑀); the next (in)equalities are hence immediate from the definition,

Gpd𝑅 𝑀 ⩾ sup𝑀 and Gpd𝑅 Σ𝑠𝑀 = Gpd𝑅 𝑀 + 𝑠 for every integer 𝑠 .
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9.1 Gorenstein Projective Dimension 435

Moreover, one has Gpd𝑅 𝑀 = −∞ if and only if 𝑀 is acyclic.

9.1.12 Lemma. Let 𝑀 be an 𝑅-complex. For every semi-projective replacement 𝑃
of 𝑀 and every integer 𝑣 ⩾ Gpd𝑅 𝑀 the module C𝑣 (𝑃) is Gorenstein projective.

Proof. By 8.1.12 and 9.1.8 it suffices to prove the assertion for some specific semi-
projective replacement 𝑃 of 𝑀 . One can assume that Gpd𝑅 𝑀 is finite; otherwise
the statement is empty. One can also assume that 𝑀 is not acyclic; otherwise 𝑃 = 0
is a semi-projective replacement of 𝑀 . Thus 𝑔 = Gpd𝑅 𝑀 is an integer and by
definition, 9.1.10, there is a semi-projective replacement 𝑃 of 𝑀 with H𝑣 (𝑃) = 0
for all 𝑣 > 𝑔 and C𝑔 (𝑃) Gorenstein projective. Since there are short exact sequences
0→ C𝑣+1 (𝑃) → 𝑃𝑣 → C𝑣 (𝑃) → 0 for all 𝑣 ⩾ 𝑔, it follows from 9.1.2 and 9.1.8 that
the modules C𝑔 (𝑃),C𝑔+1 (𝑃), . . . are Gorenstein projective. □

The next result is sometimes expressed by saying that Gpd𝑅 is a refinement of
pd𝑅. It follows, in particular, that a Gorenstein projective module is either projective
or has infinite projective dimension. The Gorenstein projective module from 9.1.6
has infinite projective dimension; see 8.1.10.

9.1.13 Theorem. Let 𝑀 be an 𝑅-complex. There is an inequality,

Gpd𝑅 𝑀 ⩽ pd𝑅 𝑀 ,

and equality holds if 𝑀 has finite projective dimension.

Proof. The inequality is evident from the definitions of the dimensions, see 8.1.2
and 9.1.10, and from the fact that every projective module is Gorenstein projective,
see 9.1.2. Now assume that 𝑝 = pd𝑅 𝑀 is an integer. To prove Gpd𝑅 𝑀 ⩾ 𝑝 it must
be shown that if 𝑃 is a semi-projective replacement of 𝑀 with H𝑣 (𝑃) = 0 for all
𝑣 > 𝑛 and C𝑛 (𝑃) Gorenstein projective, then 𝑛 ⩾ 𝑝 holds. Suppose one has 𝑛 < 𝑝.
There are exact sequences 0 → C𝑝 (𝑃) → 𝑃𝑝−1 → · · · → 𝑃𝑛+1 → C𝑛+1 (𝑃) → 0
and 0→ C𝑛+1 (𝑃) → 𝑃𝑛 → C𝑛 (𝑃) → 0. The first sequence shows that the module
C𝑛+1 (𝑃) has finite projective dimension, as C𝑝 (𝑃) is projective by 8.1.8, and hence
7.3.36 and 9.1.9(c) imply that the latter sequence is split. Thus, C𝑛 (𝑃) is a direct
summand of 𝑃𝑛, in particular, C𝑛 (𝑃) is projective. Now another application of 8.1.8
yields 𝑝 ⩽ 𝑛, which is a contradiction. Thus 𝑛 ⩾ 𝑝 holds as desired. □

Equality also holds in 9.1.13 if 𝑀 has finite injective dimension; see 9.1.20. By
6.5.24 the next result applies, in particular, to a short exact sequence of complexes.

9.1.14 Proposition. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in
D(𝑅). With 𝑔′ = Gpd𝑅 𝑀 ′, 𝑔 = Gpd𝑅 𝑀 , and 𝑔′′ = Gpd𝑅 𝑀 ′′ there are inequalities,

𝑔′ ⩽ max{𝑔, 𝑔′′ − 1} , 𝑔 ⩽ max{𝑔′, 𝑔′′} , and 𝑔′′ ⩽ max{𝑔′ + 1, 𝑔} .

In particular, if two of the complexes𝑀 ′,𝑀 , and𝑀 ′′ have finite Gorenstein projective
dimension, then so has the third.
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Proof. It suffices to prove the second inequality since the first and third inequalities
follow by applying the second inequality and 9.1.11 to the distinguished triangles
Σ−1𝑀 ′′ → 𝑀 ′ → 𝑀 → 𝑀 ′′ and 𝑀 → 𝑀 ′′ → Σ𝑀 ′ → Σ𝑀; see (TR2) in E.2.

To prove the second inequality, apply 8.1.13 to get an exact sequence of complexes
0→ 𝑃′ → 𝑃 → 𝑃′′ → 0 where 𝑃′, 𝑃, and 𝑃′′ are semi-projective replacements of
𝑀 ′, 𝑀 , and 𝑀 ′′. Set 𝑠′ = sup𝑀 ′, 𝑠 = sup𝑀 , and 𝑠′′ = sup𝑀 ′′. One can assume
that 𝑔′ and 𝑔′′ are finite and that 𝑀 is not acyclic; otherwise the inequality is trivial.
It follows from 6.5.20 that 𝑀 ′ and 𝑀 ′′ can not both be acyclic, so 𝑔′ or 𝑔′′ is an
integer, and hence so is 𝑚 = max{𝑔′, 𝑔′′}. Note that 9.1.11 and 6.5.20 yield 𝑚 ⩾ 𝑠,
so H𝑣 (𝑃) = 0 for 𝑣 > 𝑚. As 𝑚 + 1 > 𝑔′′ ⩾ 𝑠′′ one has H𝑚+1 (𝑃′′) = 0, so the
sequence 0 → C𝑚 (𝑃′) → C𝑚 (𝑃) → C𝑚 (𝑃′′) → 0 is exact by 2.2.16. As 𝑚 ⩾ 𝑔′
and 𝑚 ⩾ 𝑔′′ the modules C𝑚 (𝑃′) and C𝑚 (𝑃′′) are Gorenstein projective by 9.1.12,
and hence so is C𝑚 (𝑃) by 9.1.8. Thus 𝑔 = Gpd𝑅 𝑀 ⩽ 𝑚 holds by 9.1.10. □

Remark. Proposition 9.1.14 essentially shows that the complexes of finite Gorenstein projective
dimension form a triangulated subcategory of D(𝑅); see E 9.1.5.

A module of finite Gorenstein projective dimension can be approximated by a
Gorenstein projective module and one of finite projective dimension. We derive this
as a consequence of the next result about approximations in the derived category.

9.1.15 Proposition. Let𝑀 be an 𝑅-complex of finite Gorenstein projective dimension
𝑔 = Gpd𝑅 𝑀 . For every semi-projective replacement 𝑃 of 𝑀 and every integer 𝑢
with 𝑔 > 𝑢 there is a distinguished triangle in D(𝑅),

𝐾 −→ 𝑀 −→ 𝑁 −→ Σ𝐾 ,

where the complexes 𝐾 and 𝑁 have the following properties:
(a) There is a degreewise split exact sequence 0 → 𝑃ď𝑢 → 𝐾 → Σ𝑢𝐺 → 0 in

C(𝑅) where 𝐺 is a Gorenstein projective 𝑅-module. Furthermore, one has

Gpd𝑅 𝐾 ⩽ 𝑢 and H𝑣 (𝐾) �
{

0 for 𝑣 ⩾ 𝑢 + 1
H𝑣 (𝑀) for 𝑣 ⩽ 𝑢 − 1 .

(b) The complex 𝑁 satisfies

pd𝑅 𝑁 = 𝑔 and H𝑣 (𝑁) �
{

H𝑣 (𝑀) for 𝑣 ⩾ 𝑢 + 2
0 for 𝑣 ⩽ 𝑢 .

(c) There is an exact sequence of 𝑅-modules,

0 −→ H𝑢+1 (𝑀) −→ H𝑢+1 (𝑁) −→ H𝑢 (𝐾) −→ H𝑢 (𝑀) −→ 0 .

Proof. If 𝑀 is acyclic the statement is void as no integer 𝑢 satisfies −∞ = 𝑔 > 𝑢.
Now assume that 𝑀 is not acyclic, in which case 𝑔 is an integer. By 9.1.12 the
module C𝑔 (𝑃) is Gorenstein projective and by 9.1.1 there exists an acyclic complex
𝐿 = 0→ C𝑔 (𝑃) → 𝐿𝑔−1 · · · → 𝐿𝑢 → 𝐺 → 0, concentrated in degrees 𝑔, . . . , 𝑢 − 1,
where the modules 𝐿𝑔−1, . . . , 𝐿𝑢 are projective and the cokernels are Gorenstein
projective. Set 𝐿𝑔 = C𝑔 (𝑃) and 𝐿𝑢−1 = 𝐺 and notice that, in particular, the cokernel
C𝑢 (𝐿) � 𝐺 is Gorenstein projective.
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Consider the short exact sequence of 𝑅-complexes,

(†) 0 −→ Σ𝑔−1C𝑔 (𝑃)
𝛼−−−→ 𝐿ď𝑔−1 −→ 𝐿Ď𝑔−1 −→ 0 ,

where 𝛼 is a quasi-isomorphism as 𝐿Ď𝑔−1 is acyclic; see 4.2.6. Let 𝐹 be any complex
of projective 𝑅-modules. As the complex 𝐿Ď𝑔−1 consists of Gorenstein projective
modules, it follows from 7.3.39 and 9.1.9(c) that the functor Hom𝑅 ( , 𝐹) leaves the
sequence (†) exact. Since 𝐿Ď𝑔−1 is an acyclic complex with C𝑣 (𝐿Ď𝑔−1) Gorenstein
projective for every 𝑣, it follows from 9.1.9(c) and A.1 that Hom𝑅 (𝐿Ď𝑔−1, 𝐹𝑛) is
acyclic for every 𝑛 ∈ ℤ, and hence Hom𝑅 (𝐿Ď𝑔−1, 𝐹) is acyclic by A.2. It now
follows from 4.2.6 that Hom𝑅 (𝛼, 𝐹) is a surjective quasi-isomorphism, whence
the morphism C(𝑅) (𝛼, 𝐹) is surjective as well by 4.2.7 and 2.3.10. Surjectivity of
C(𝑅) (𝛼, 𝑃ď𝑔−1) yields a commutative diagram of 𝑅-complexes,

Σ𝑔−1C𝑔 (𝑃)
𝛽
//

≃𝛼

��

𝑃ď𝑔−1

𝐿ď𝑔−1
𝛾
// 𝑃ď𝑔−1 ,

where 𝛽 is induced by 𝜕𝑃𝑔 . This diagram—in conjunction with the definition of
distinguished triangles in D(𝑅), see 6.2.3 and 6.5.5, the axiom (TR3) in E.2, and
6.5.19—shows that the complexes Cone 𝛽 and Cone 𝛾 are isomorphic in D(𝑅).
Evidently, one has Cone 𝛽 = 𝑃Ď𝑔, and this complex is isomorphic to 𝑃 ≃ 𝑀 in
D(𝑅). Consequently, Cone 𝛾 ≃ 𝑀 holds in D(𝑅).

Set 𝐶 = Cone 𝛾. By 2.5.22 and 6.5.24 there is a distinguished triangle in D(𝑅),

𝐶ď𝑢 −→ 𝐶 −→ 𝐶ě𝑢+1 −→ Σ𝐶ď𝑢 ,

which we argue is the desired one. As already noticed,𝐶 ≃ 𝑀 inD(𝑅). The complex

𝐾 = 𝐶ď𝑢 = 0 −→ 𝑃𝑢 ⊕ 𝐺 −→ 𝑃𝑢−1 −→ 𝑃𝑢−2 −→ · · ·

fits into the degreewise split exact sequence in C(𝑅),

(‡) 0 −→ 𝑃ď𝑢 −→ 𝐾 −→ Σ𝑢𝐺 −→ 0 .

The complex 𝑃 is semi-projective, and so is 𝑃ě𝑢+1 by 5.2.8. Hence 5.2.17 applied
to the exact sequence 0 → 𝑃ď𝑢 → 𝑃 → 𝑃ě𝑢+1 → 0 shows that 𝑃ď𝑢 is semi-
projective. It follows from 8.1.2 and 9.1.13 that Gpd𝑅 (𝑃ď𝑢) = pd𝑅 (𝑃ď𝑢) ⩽ 𝑢 holds.
As 𝐺 is a Gorenstein projective module, one has Gpd𝑅 Σ𝑢𝐺 ⩽ 𝑢, with equality if
𝐺 is non-zero, so application of 6.5.24 and 9.1.14 to (‡) shows that Gpd𝑅 𝐾 ⩽ 𝑢.
The assertion about the homology of 𝐾 = 𝐶ď𝑢 is immediate as 𝐶 ≃ 𝑀 in D(𝑅).
Note that

𝑁 = 𝐶ě𝑢+1 = 0 −→ 𝐿𝑔−1 −→ 𝑃𝑔−1 ⊕ 𝐿𝑔−2 −→ · · · −→ 𝑃𝑢+1 ⊕ 𝐿𝑢 −→ 0

is a complex of projective 𝑅-modules concentrated in degrees 𝑔, . . . , 𝑢 + 1. In the
extremal case 𝑢 = 𝑔 − 1 one has 𝑁 = Σ𝑔𝐿𝑔−1. In particular, 𝑁 is semi-projective
by 5.2.8 and pd𝑅 𝑁 ⩽ 𝑔 holds. Note that 9.1.14 yields 𝑔 ⩽ max{Gpd𝑅 𝐾,Gpd𝑅 𝑁}.
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As Gpd𝑅 𝐾 ⩽ 𝑢 < 𝑔 holds one has Gpd𝑅 𝑁 ⩾ 𝑔, so 9.1.13 yields pd𝑅 𝑁 = 𝑔. The
assertion about the homology of 𝑁 = 𝐶ě𝑢+1 is immediate as 𝐶 ≃ 𝑀 in D(𝑅). The
exact sequence in part (c) follows by applying 6.5.19 to the constructed distinguished
triangle. □

9.1.16 Corollary. Let 𝑀 be an 𝑅-module of finite Gorenstein projective dimension
𝑔 = Gpd𝑅 𝑀 . The following assertions hold.

(a) There is an exact sequence of 𝑅-modules 0 → 𝑀 → 𝑋 → 𝐺 → 0 where 𝐺
is Gorenstein projective and pd𝑅 𝑋 = 𝑔 .

(b) If 𝑔 > 0, then there is an exact sequence of 𝑅-modules 0→ 𝑋 → 𝐺 → 𝑀 → 0
where 𝐺 is Gorenstein projective and pd𝑅 𝑋 = 𝑔 − 1 .

Proof. (a): For 𝑢 = −1 the sequence 9.1.15(c) reads

0 −→ 𝑀 −→ H0 (𝑁) −→ H−1 (𝐾) −→ 0 .

If follows from 9.1.15(a) that 𝐾 is isomorphic to Σ−1H−1 (𝐾) in D(𝑅), whence one
has Gpd𝑅 H−1 (𝐾) − 1 = Gpd𝑅 𝐾 ⩽ 𝑢 = −1. Consequently, the module H−1 (𝐾) is
Gorenstein projective. Similarly, one has 𝑁 ≃ H0 (𝑁) and pd𝑅 H0 (𝑁) = pd𝑅 𝑁 = 𝑔.

(b): As 𝑔 > 0 one can apply 9.1.15(c) with 𝑢 = 0 to obtain the exact sequence

0 −→ H1 (𝑁) −→ H0 (𝐾) −→ 𝑀 −→ 0 .

If follows from 9.1.15(a) that 𝐾 is isomorphic to H0 (𝐾) in D(𝑅), whence one
has Gpd𝑅 H0 (𝐾) = Gpd𝑅 𝐾 ⩽ 𝑢 = 0. That is, the module H0 (𝐾) is Gorenstein
projective. Similarly, one has 𝑁 ≃ ΣH1 (𝑁) and pd𝑅 H1 (𝑁) + 1 = pd𝑅 𝑁 = 𝑔. □

The utility of the following, technical, result becomes clear in 9.1.18.

9.1.17 Proposition. Let 𝑃 and 𝐿 be semi-projective 𝑅-complexes. If 𝐿 has finite
projective or finite injective dimension, then the morphism

Hom𝑅 (𝜏𝑃Ď𝑛, 𝐿) : Hom𝑅 (𝑃Ď𝑛, 𝐿) −→ Hom𝑅 (𝑃, 𝐿)

is a quasi-isomorphism for every integer 𝑛 ⩾ Gpd𝑅 𝑃.

Proof. Let 𝐹 ≃−−→ 𝐿 be a semi-projective resolution; by 5.2.21 there is a homotopy
equivalence 𝜆 : 𝐿 → 𝐹. By 9.1.11 one has 𝑛 ⩾ sup 𝑃, so the map 𝜏𝑃Ď𝑛 : 𝑃→ 𝑃Ď𝑛 is
a quasi-isomorphism by 4.2.4. Choose a semi-injective resolution 𝜄 : 𝐹 ≃−−→ 𝐼. In the
commutative diagram,

Hom𝑅 (𝑃Ď𝑛, 𝐿)
Hom (𝑃Ď𝑛 ,𝜆)

≊
//

Hom (𝜏𝑃Ď𝑛 ,𝐿)
��

Hom𝑅 (𝑃Ď𝑛, 𝐹)

Hom (𝜏𝑃Ď𝑛 ,𝐹 )
��

Hom (𝑃Ď𝑛 , 𝜄)
// Hom𝑅 (𝑃Ď𝑛, 𝐼)

Hom (𝜏𝑃Ď𝑛 ,𝐼 )≃
��

Hom𝑅 (𝑃, 𝐿)
Hom (𝑃,𝜆)

≊
// Hom𝑅 (𝑃, 𝐹)

Hom (𝑃, 𝜄)
≃

// Hom𝑅 (𝑃, 𝐼) ,

the left-hand horizontal maps are homotopy equivalences by 4.3.19 while Hom𝑅 (𝑃, 𝜄)
and Hom𝑅 (𝜏𝑃Ď𝑛, 𝐼) are quasi-isomorphisms by semi-projectivity of 𝑃 and semi-
injectivity of 𝐼. The diagram shows that it suffices to verify that Hom𝑅 (𝑃Ď𝑛, 𝜄) is
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9.1 Gorenstein Projective Dimension 439

a quasi-isomorphism. Set 𝐶 = Cone 𝜄 and notice that it is an acyclic complex of
modules that are direct sums of projective and injective modules. The goal is to
show that the complex Hom𝑅 (𝑃Ď𝑛, 𝐶) � Cone Hom𝑅 (𝑃Ď𝑛, 𝜄) is acyclic; cf. 4.1.16.

By 2.5.24 there is an exact sequence 0→ 𝑃′ → 𝑃→ 𝑃Ď𝑛 → 0 with 𝑃′ bounded
below. By 9.1.2, 9.1.12, and 9.1.8(a) these are complexes of Gorenstein projective
modules, and it follows from 7.3.39 and 9.1.9(c) that the sequence

0 −→ Hom𝑅 (𝑃Ď𝑛, 𝐶) −→ Hom𝑅 (𝑃,𝐶) −→ Hom𝑅 (𝑃′, 𝐶) −→ 0

is exact. The middle complex is acyclic as 𝑃 is semi-projective and 𝐶 is acyclic.
To prove acyclicity of Hom𝑅 (𝑃Ď𝑛, 𝐶) it suffices to argue that Hom𝑅 (𝑃′, 𝐶) is
acyclic; see 2.5.6. To that end, it suffices by A.5 to show that Hom𝑅 (𝐺,𝐶) is acyclic
for every Gorenstein projective module 𝐺. It is already known from 9.1.9(c) that
Ext𝑚

𝑅
(𝐺,𝐶𝑣) = 0 holds for all 𝑣 ∈ ℤ and all 𝑚 > 0, so it suffices by A.4 to argue that

Ext𝑚
𝑅
(𝐺,Z𝑣 (𝐶)) = 0 holds for 𝑣 ≫ 0 and all 𝑚 > 0.

If 𝐿 has finite projective dimension, then one can assume that the complexes 𝐹
and 𝐼 are bounded above; see 8.1.2 and 5.3.26. It follows that 𝐶 is bounded above,
in particular, Z𝑣 (𝐶) = 0 holds for 𝑣 ≫ 0.

If 𝐿 has finite injective dimension, then one can assume that the complexes 𝐼
and 𝐹 are bounded below; see 8.2.2 and 5.2.15. It follows that 𝐶 is bounded below;
in particular, Z𝑣 (𝐶) = 0 holds for for 𝑣 ≪ 0. Let 𝐺 be a Gorenstein projective
𝑅-module. For every 𝑣 ∈ ℤ one has Ext𝑚

𝑅
(𝐺,𝐶𝑣) = 0 for all 𝑚 > 0, so in view of

9.1.9(a), induction on the exact sequences 0 → Z𝑣 (𝐶) → 𝐶𝑣 → Z𝑣−1 (𝐶) → 0
yields Ext𝑚

𝑅
(𝐺,Z𝑣 (𝐶)) = 0 for all 𝑣 ∈ ℤ and all 𝑚 > 0. □

The gist of 9.1.3 is that, in homological terms, projective and injective modules
interact with Gorenstein projective modules in the same way. This has the following
useful consequence:

9.1.18 Corollary. Let 𝑀 be an 𝑅-complex of finite Gorenstein projective dimension
and 𝑁 an 𝑅-complex of finite projective or finite injective dimension. For every
semi-projective replacement 𝑃 of 𝑀 , every semi-projective replacement 𝐿 of 𝑁 , and
every integer 𝑛 ⩾ Gpd𝑅 𝑀 there is an isomorphism in D(𝕜),

RHom𝑅 (𝑀, 𝑁) ≃ Hom𝑅 (𝑃Ď𝑛, 𝐿) .

Proof. The assertion follows immediately from 9.1.17 and 7.3.7. □

A key difference between the next theorem and the main theorem about projective
dimension, 8.1.8, is the a priori assumption that the complex has finite Gorenstein
projective dimension. See also the Remark after 9.1.32.

9.1.19 Theorem. Let 𝑀 be an 𝑅-complex of finite Gorenstein projective dimension
and 𝑛 an integer. The following conditions are equivalent.

(i) Gpd𝑅 𝑀 ⩽ 𝑛.
(ii) − inf RHom𝑅 (𝑀, 𝑁) ⩽ 𝑛 − inf 𝑁 holds for every 𝑅-complex 𝑁 with pd𝑅 𝑁

finite or id𝑅 𝑁 finite.
(iii) − inf RHom𝑅 (𝑀, 𝑁) ⩽ 𝑛 holds for every projective 𝑅-module 𝑁 .
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(iv) 𝑛 ⩾ sup𝑀 and Ext𝑛+1
𝑅
(𝑀, 𝑁) = 0 for every 𝑅-module 𝑁 with pd𝑅 𝑁 finite.

(v) 𝑛 ⩾ sup𝑀 and for some, equivalently every, semi-projective replacement 𝑃
of 𝑀 , the module C𝑣 (𝑃) is Gorenstein projective for every 𝑣 ⩾ 𝑛.

(vi) There is a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃𝑣 = 0 for all 𝑣 < inf 𝑀 ,
H𝑣 (𝑃) = 0 for all 𝑣 > 𝑛, and C𝑣 (𝑃) Gorenstein projective for all 𝑣 ⩾ 𝑛.

In particular, there are equalities

Gpd𝑅 𝑀 = sup{− inf RHom𝑅 (𝑀, 𝑁) | 𝑁 is a projective 𝑅-module}
= sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑀, 𝑁) ≠ 0 for some projective 𝑅-module 𝑁 } .

Proof. We start by establishing the equivalence of (i), (ii), and (iii).
(i)⇒ (ii): One can assume that 𝑁 is in D⊐ (𝑅) and not acyclic; otherwise the

inequality is trivial. In this case, 𝑢 = inf 𝑁 is an integer. By 5.2.15 there is a semi-
projective resolution 𝐿 ≃−−→ 𝑁 with 𝐿𝑣 = 0 for 𝑣 < 𝑢. If pd𝑅 𝑁 or id𝑅 𝑁 is finite,
then 9.1.18 yields RHom𝑅 (𝑀, 𝑁) ≃ Hom𝑅 (𝑃Ď𝑛, 𝐿), where 𝑃 is any semi-projective
replacement of 𝑀 . For every 𝑣 < 𝑢 − 𝑛 and 𝑝 ∈ ℤ one of the inequalities 𝑝 > 𝑛 or
𝑝 + 𝑣 ⩽ 𝑛 + 𝑣 < 𝑢 holds, so the module

Hom𝑅 (𝑃Ď𝑛, 𝐿)𝑣 =
∏
𝑝∈ℤ

Hom𝑅 ((𝑃Ď𝑛)𝑝 , 𝐿𝑝+𝑣)

is zero. In particular, H𝑣 (RHom𝑅 (𝑀, 𝑁)) = 0 holds for 𝑣 < 𝑢 − 𝑛 = inf 𝑁 − 𝑛.
(ii)⇒ (iii): Trivial.
(iii)⇒ (i): By assumption 𝑔 = Gpd𝑅 𝑀 is finite, and it must be shown that (iii)

implies 𝑔 ⩽ 𝑛. One can assume that 𝑀 is not acyclic as otherwise the inequality is
trivial. By definition there exists a semi-projective replacement 𝑃 of 𝑀 with C𝑔 (𝑃)
Gorenstein projective. By 9.1.18 there is an isomorphism,

(♭) RHom𝑅 (𝑀, 𝐿) ≃ Hom𝑅 (𝑃Ď𝑔, 𝐿) ,

for every projective 𝑅-module 𝐿. Recall from 9.1.11 that 𝑔 ⩾ sup𝑀 = sup 𝑃. We
consider two different cases:

First assume that 𝑔 = sup 𝑃 holds; this implies H𝑔 (𝑃) ≠ 0 so the homomorphism
C𝑔 (𝑃) → 𝑃𝑔−1 is not injective. Since C𝑔 (𝑃) is Gorenstein projective there exists, in
particular, an embedding C𝑔 (𝑃)↣ 𝐿 where 𝐿 is a projective module. This map does
not admit a factorization C𝑔 (𝑃) → 𝑃𝑔−1 → 𝐿, as this would force C𝑔 (𝑃) → 𝑃𝑔−1 to
be injective. Thus the map Hom𝑅 (𝑃𝑔−1, 𝐿) → Hom𝑅 (C𝑔 (𝑃), 𝐿) is not surjective and
hence inf Hom𝑅 (𝑃Ď𝑔, 𝐿) = −𝑔. Now (♭) and (iii) yield 𝑔 = − inf RHom𝑅 (𝑀, 𝐿) ⩽ 𝑛.

Next assume that 𝑔 > sup 𝑃. In this case there is a short exact sequence of modules,
0→ C𝑔 (𝑃) → 𝑃𝑔−1 → C𝑔−1 (𝑃) → 0. As 𝑔 > sup 𝑃 and 𝑔 = Gpd𝑅 𝑀 , the module
C𝑔−1 (𝑃) is not Gorenstein projective. Hence 9.1.8 yields Ext1𝑅 (C𝑔−1 (𝑃), 𝐿) ≠ 0 for
some projective module 𝐿, and by 8.1.6 this means that H−𝑔 (RHom𝑅 (𝑀, 𝐿)) ≠ 0.
Hence 𝑔 ⩽ − inf RHom𝑅 (𝑀, 𝐿) ⩽ 𝑛, where the last inequality holds by (iii).

To finish the proof we show the implications (ii)⇒ (iv)⇒ (v)⇒ (vi)⇒ (i).
(ii)⇒ (iv): The second assertion in (iv) is immediate from (ii). The inequality

𝑛 ⩾ sup𝑀 follows, in view of 9.1.11, from (i), which is equivalent to (ii).
(iv)⇒ (v): First note that by 8.1.12 and 9.1.8 the “some” version and the “every”

version of condition (v) are equivalent. By assumption, 𝑔 = Gpd𝑅 𝑀 is finite, so in
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any semi-projective replacement 𝑃 of 𝑀 the module C𝑣 (𝑃) is Gorenstein projective
for every integer 𝑣 ⩾ 𝑔; see 9.1.12. Thus, to show (v) it is enough to prove 𝑛 ⩾ 𝑔.
Assume towards a contradiction that 𝑛 < 𝑔 holds. Notice that by the assumption
𝑛 ⩾ sup𝑀 , the module C𝑛 (𝑃) can not be Gorenstein projective. There is an exact se-
quence 0→ C𝑔 (𝑃) → 𝑃𝑔−1 → · · · → 𝑃𝑛 → C𝑛 (𝑃) → 0, which shows that C𝑛 (𝑃)
has finite Gorenstein projective dimension, as 𝑃ě𝑛 is a semi-projective replacement
of Σ𝑛C𝑛 (𝑃). Now 9.1.16 yields an exact sequence 0→ 𝑁 → 𝐺 → C𝑛 (𝑃) → 0
where 𝐺 is Gorenstein projective and 𝑁 has finite projective dimension. By 8.1.6
and (iv) one has Ext1𝑅 (C𝑛 (𝑃), 𝑁) � Ext𝑛+1

𝑅
(𝑀, 𝑁) = 0, so the sequence is split by

7.3.36. Now 9.1.8 implies that C𝑛 (𝑃) is Gorenstein projective, which is a contradic-
tion.

(v)⇒ (vi): This implication is immediate in view of 5.2.15.
(vi)⇒ (i): This implication is immediate from the definition, 9.1.10, of Gpd𝑅.
The equalities in the last assertion follow immediately from the equivalence of

conditions (i)–(iii) and 7.3.24. □

One can take the next result as another manifestation of the inability of Gorenstein
projective modules to distinguish between injective and projective modules.

9.1.20 Theorem. Let 𝑀 be an 𝑅-complex. If 𝑀 has finite injective dimension, then
the equality Gpd𝑅 𝑀 = pd𝑅 𝑀 holds.

Proof. The inequality Gpd𝑅 𝑀 ⩽ pd𝑅 𝑀 holds by 9.1.13. To show the opposite
inequality, one can assume that 𝑔 = Gpd𝑅 𝑀 is an integer. Set 𝑢 = inf 𝑀 − 1, which
is an integer by 8.2.3, and note that one has 𝑢 < inf 𝑀 ⩽ sup𝑀 ⩽ 𝑔 by 9.1.11. Thus
9.1.15 yields a distinguished triangle in D(𝑅),

(†) 𝐾 −→ 𝑀 −→ 𝑁 −→ Σ𝐾 ,

with Gpd𝑅 𝐾 ⩽ 𝑢 and pd𝑅 𝑁 = 𝑔. As id𝑅 𝑀 is finite, 9.1.19 yields

− inf RHom𝑅 (𝐾, 𝑀) ⩽ Gpd𝑅 𝐾 − inf 𝑀 ⩽ 𝑢 − inf 𝑀 = −1 ,

and hence H0 (RHom𝑅 (𝐾, 𝑀)) = 0. By 7.3.26 this means that D(𝑅) (𝐾, 𝑀) = 0,
in particular, the morphism 𝐾 → 𝑀 in the distinguished triangle above is zero. By
E.22 this means the triangle (†) is split, and hence 𝑁 ≃ 𝑀 ⊕ Σ𝐾 holds in D(𝑅). In
particular, one has pd𝑅 𝑀 ⩽ pd𝑅 𝑁 = 𝑔 as claimed. □

9.1.21 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; there is an equality,

Gpd𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
= sup
𝑢∈𝑈
{Gpd𝑅 𝑀𝑢} .

Proof. To prove the inequality “⩽”, one can assume that the right-hand side is
finite, say, 𝑠 ∈ ℤ. By the definition, 9.1.10, of Gorenstein projective dimension and
by 9.1.12 every 𝑀𝑢 admits a semi-projective replacement 𝑃𝑢 with H𝑣 (𝑃𝑢) = 0 for
all 𝑣 > 𝑠 and C𝑣 (𝑃𝑢) Gorenstein projective for all 𝑣 ⩾ 𝑠. Now 𝑃 =

∐
𝑢∈𝑈 𝑃

𝑢 is a
semi-projective replacement of

∐
𝑢∈𝑈 𝑀

𝑢 with H𝑣 (𝑃) = 0 for all 𝑣 > 𝑠, see 5.2.18
and 3.1.11, and C𝑣 (𝑃) =

∐
𝑢∈𝑈 C𝑣 (𝑃𝑢) Gorenstein projective for all 𝑣 ⩾ 𝑠, see 9.1.8.
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To prove the opposite inequality “⩾” it suffices, as each 𝑀𝑢 is a direct summand
of

∐
𝑢∈𝑈 𝑀

𝑢, to argue that if 𝑀 ′ is a direct summand of an 𝑅-complex 𝑀 , then
one has Gpd𝑅 𝑀 ′ ⩽ Gpd𝑅 𝑀 . To this end, one can assume that 𝑀 is not acyclic
and that 𝑔 = Gpd𝑅 𝑀 is finite. Let 𝑀 ′′ be an 𝑅-complex with 𝑀 = 𝑀 ′ ⊕ 𝑀 ′′.
Let 𝑃′ and 𝑃′′ be semi-projective replacements of 𝑀 ′ and 𝑀 ′′. Now 𝑃 = 𝑃′ ⊕ 𝑃′′
is a semi-projective replacement of 𝑀 , see 5.2.18. As H𝑣 (𝑃) = 0 holds for every
𝑣 > 𝑔, even for every 𝑣 > sup𝑀 , one has H𝑣 (𝑃′) = 0 for every 𝑣 > 𝑔 by 3.1.10(d).
It follows from 9.1.12 that the module C𝑣 (𝑃) = C𝑣 (𝑃′) ⊕ C𝑣 (𝑃′′) is Gorenstein
projective for every 𝑣 ⩾ 𝑔, whence C𝑣 (𝑃′) is Gorenstein projective for 𝑣 ⩾ 𝑔 by 9.1.8
and Gpd𝑅 𝑀 ′ ⩽ 𝑔 holds. □

Noetherian Rings and Homological Finiteness

Like the projective dimension, which it refines, the Gorenstein projective dimension
supports stronger statements about finitely generated moules.

9.1.22 Lemma. Let𝐺 be a finitely generated 𝑅-module. If𝐺 is Gorenstein projective,
then there exists an exact sequence 0 → 𝐺 → 𝐹 → 𝐺′ → 0 of finitely generated
𝑅-modules with 𝐹 free and 𝐺′ Gorenstein projective.

Proof. By assumption there exists a totally acyclic complex 𝑃 of projective 𝑅-
modules with𝐺 � C0 (𝑃). Without loss of generality, one can assume that the module
𝑃−1 is free. Indeed, there exists a projective module 𝑃′ such that 𝑃−1 ⊕𝑃′ is free, see
1.3.17, and the complex 𝑃 = 𝑃 ⊕ D−1 (𝑃′) is totally acyclic with C0 (𝑃) = C0 (𝑃);
cf. 9.1.2. As 𝑃 is acyclic, there is an injective homomorphism 𝜄 : 𝐺 → 𝑃−1, and
since 𝐺 is finitely generated, the image of 𝜄 is contained in a finitely generated free
submodule 𝐹 of 𝑃−1. It remains to show that 𝐺′ = 𝐹/Im 𝜄 is Gorenstein projective,
and to this end it suffices by 9.1.8 to show that Ext1𝑅 (𝐺′, 𝐿) is zero for every projective
𝑅-module 𝐿. The commutative diagram

0 // 𝐺 // 𝐹 //

��

𝐺′ //

��

0

0 // 𝐺 // 𝑃−1 // C−1 (𝑃) // 0

yields for every projective 𝑅-module 𝐿 a commutative diagram with exact rows,

Hom𝑅 (𝑃−1, 𝐿) //

��

Hom𝑅 (𝐺, 𝐿) // Ext1𝑅 (C−1 (𝑃), 𝐿)

��

// 0

Hom𝑅 (𝐹, 𝐿) // Hom𝑅 (𝐺, 𝐿) // Ext1𝑅 (𝐺′, 𝐿) // 0 ;

see 7.3.35 and 7.3.27. As Hom𝑅 (𝑃, 𝐿) is acyclic, one has Ext1𝑅 (C−1 (𝑃), 𝐿) = 0, and
it follows that that Ext1𝑅 (𝐺′, 𝐿) vanishes as well. □

The significance of the next result derives in no small part from 9.1.5. The effects
can be seen in 9.1.24 and 9.1.27–9.1.29, which compare to 9.1.9 and 9.1.17–9.1.19.
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9.1 Gorenstein Projective Dimension 443

9.1.23 Proposition. Assume that 𝑅 is left Noetherian. A finitely generated 𝑅-module
𝐺 is Gorenstein projective if and only if there exists a totally acyclic complex 𝑃 of
finitely generated free 𝑅-modules with 𝐺 � C0 (𝑃).
Proof. The “if” statement evident. To prove the converse, assume that 𝐺 is Goren-
stein projective. It follows from 9.1.22 that there is an injectiv quasi-isomorphism
𝜄 : 𝐺 → 𝐹, where 𝐹 is a complex of finitely generated free 𝑅-modules with 𝐹𝑣 = 0
for 𝑣 > 0 and C𝑣 (𝐹) Gorenstein projective for every 𝑣 ∈ ℤ. By 5.1.19 there is
a free resolution 𝜋 : 𝐿 ≃−−→ 𝐺 where 𝐿 is degreewise finitely generated. The com-
plex 𝑃 = Σ−1Cone(𝜄𝜋) is a complex of finitely generated free 𝑅-modules with
C0 (𝑃) = C0 (𝐿) � 𝐺. Moreover, for 𝑣 ≪ 0 the module C𝑣 (𝑃) = C𝑣+1 (𝐹) is Goren-
stein projective, so by 9.1.9(c) and A.1 the complex Hom𝑅 (𝑃, 𝐿) is acyclic for every
projective module 𝐿. That is, 𝑃 is totally acyclic. □

Remark. Due to Avramov and Martsinkovsky [27], finitely generated Gorenstein projective mod-
ules over Noetherian rings are now commonly called ‘totally reflexive’ modules; see also 10.4.13.
The terminology originally used by Auslander and Bridger [8, 9] was modules ‘of G-dimension 0’;
see also the Remark after 9.3.34.

9.1.24 Lemma. Let 𝑁 be an 𝑅-module; the following conditions are equivalent.
(i) Ext1𝑅 (𝐺, 𝑁) = 0 for all finitely generated Gorenstein projective 𝑅-modules 𝐺.
(ii) Ext𝑚

𝑅
(𝐺, 𝑁) = 0 for all finitely generated Gorenstein projective 𝑅-modules 𝐺

and all 𝑚 > 0 .
The class N of 𝑅-modules 𝑁 satifying these conditions has the following properties.

(a) Let 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 be an exact sequence of 𝑅-modules. If two of
the modules 𝑁 ′, 𝑁 , and 𝑁 ′′ belong to N, then so does the third.

(b) For every family {𝑁𝑢}𝑢∈𝑈 of modules in N one has
∏
𝑢∈𝑈 𝑁

𝑢 ∈ N .
(b′) Let {𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁𝑣}𝑢⩽𝑣 be a𝑈-direct system of modules in N. If𝑈 is filtered,

then colim𝑢∈𝑈 𝑁𝑢 belongs to N .

(c) Every 𝑅-module 𝑁 with fd𝑅 𝑁 or id𝑅 𝑁 finite belongs to N .

Proof. The implication (ii)⇒ (i) is trivial. For the converse, let 𝐺 be a finitely
generated Gorenstein projective 𝑅-module and choose by 9.1.23 a totally acyclic
complex 𝑃 of finitely generated free 𝑅-modules with C0 (𝑃) � 𝐺. For 𝑚 > 0 one
has Ext𝑚

𝑅
(𝐺, 𝑁) � Ext1𝑅 (C𝑚−1 (𝑃), 𝑁) by 8.1.6, so (i) implies (ii) as the module

C𝑚−1 (𝑃) is finitely generated and Gorenstein projective.
(a): It follows from 7.3.35 that 𝑁 ′, 𝑁 ′′ ∈ N implies 𝑁 ∈ N, and that 𝑁 ′, 𝑁 ∈ N

implies 𝑁 ′′ ∈ N. Now assume 𝑁, 𝑁 ′′ ∈ N. Another application of 7.3.35 yields
Ext𝑚

𝑅
(𝐺, 𝑁 ′) = 0 for every finitely generated Gorenstein projective 𝑅-module𝐺 and

all 𝑚 > 1. To show that also Ext1𝑅 (𝐺, 𝑁 ′) = 0 holds, recall from 9.1.22 that every
finitely Gorenstein projective module 𝐺 fits into an exact sequence of finitely gen-
erated modules 0→ 𝐺 → 𝐹 → 𝐺′ → 0 with 𝐹 free and 𝐺′ Gorenstein projective.
Application of 7.3.35 to this sequence yields Ext1𝑅 (𝐺, 𝑁 ′) � Ext2𝑅 (𝐺′, 𝑁 ′), and the
right-hand side is zero, as just shown.

(b) and (b′): For every finitely generated 𝑅-module 𝐺 the functor Ext1𝑅 (𝐺, )
preserves products and filtered colimits by 7.3.33 and 7.3.34. Now the assertions are
immediate from the definition of the class N.
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(c): In view of part (a), it suffices to prove that N contains every injective and
every flat 𝑅-module. The first is true by 8.2.19. Further, by 9.1.3(1) every projective
𝑅-module is in N, so part (b′) and 5.5.7 imply that every flat 𝑅-module is in N. □

The next approximation result applies by 5.2.16 to complexes 𝑀 in Df
⊏⊐ (𝑅) of

finite Gorenstein projective dimension.

9.1.25 Proposition. Assume that 𝑅 is left Noetherian and let 𝑀 be a complex in
Df (𝑅) of finite Gorenstein projective dimension 𝑔 = Gpd𝑅 𝑀 . For every degreewise
finitely generated semi-projective replacement 𝑃 of 𝑀 and every integer 𝑢 with 𝑔 > 𝑢
there is a distinguished triangle in Df (𝑅),

𝐾 −→ 𝑀 −→ 𝑁 −→ Σ𝐾 ,

where the complexes 𝐾 and 𝑁 have the properties listed in 9.1.15.

Proof. The proof of 9.1.15 applies with one change: By 9.1.23 one can assume that
the acyclic complex 𝐿 is degreewise finitely generated. □

9.1.26 Corollary. Assume that 𝑅 is left Noetherian and let 𝑀 be a finitely generated
𝑅-module of finite Gorenstein projective dimension 𝑔 = Gpd𝑅 𝑀 .

(a) There is an exact sequence 0 → 𝑀 → 𝑋 → 𝐺 → 0 of finitely generated
𝑅-modules where 𝐺 is Gorenstein projective and pd𝑅 𝑋 = 𝑔 .

(b) If 𝑔 > 0, then there is an exact sequence 0 → 𝑋 → 𝐺 → 𝑀 → 0 of finitely
generated 𝑅-modules where 𝐺 is Gorenstein projective and pd𝑅 𝑋 = 𝑔 − 1 .

Proof. The proof of 9.1.16 applies when one replaces references to 9.1.15 with
references to 9.1.25. □

9.1.27 Proposition. Assume that 𝑅 is left Noetherian. Let 𝐿 be a degreewise finitely
generated complex of projective 𝑅-modules and 𝐹 a semi-flat 𝑅-complex. If 𝐹 has
finite flat or finite injective dimension, then the morphism

Hom𝑅 (𝜏𝐿Ď𝑛, 𝐹) : Hom𝑅 (𝐿Ď𝑛, 𝐹) −→ Hom𝑅 (𝐿, 𝐹)

is a quasi-isomorphism for every integer 𝑛 ⩾ Gpd𝑅 𝐿.

Proof. Let 𝜋 : 𝑃 ≃−−→ 𝐹 be a semi-projective resolution. One has 𝑛 ⩾ sup 𝐿 by 9.1.11,
so the map 𝜏𝐿Ď𝑛 : 𝐿 → 𝐿Ď𝑛 is a quasi-isomorphism by 4.2.4. Choose a semi-injective
resolution 𝜄 : 𝑃 ≃−−→ 𝐼. In the commutative diagram,

Hom𝑅 (𝐿Ď𝑛, 𝐼)

Hom (𝜏𝐿Ď𝑛 ,𝐼 )≃
��

Hom𝑅 (𝐿Ď𝑛, 𝑃)
Hom (𝐿Ď𝑛 , 𝜄)
oo

Hom (𝜏𝐿Ď𝑛 ,𝑃)
��

Hom (𝐿Ď𝑛 , 𝜋 )
≃

// Hom𝑅 (𝐿Ď𝑛, 𝐹)

Hom (𝜏𝐿Ď𝑛 ,𝐹 )
��

Hom𝑅 (𝐿, 𝐼) Hom𝑅 (𝐿, 𝑃)
Hom (𝐿, 𝜄)
≃

oo
Hom (𝐿,𝜋 )

≃
// Hom𝑅 (𝐿, 𝐹) ,

the right-hand horizontal maps are quasi-isomorphisms by 5.5.23, while Hom𝑅 (𝐿, 𝜄)
and Hom𝑅 (𝜏𝐿Ď𝑛, 𝐼) are quasi-isomorphisms by semi-projectivity of 𝐿, see 5.2.8, and
semi-injectivity of 𝐼. The diagram shows that it suffices to verify that Hom𝑅 (𝐿Ď𝑛, 𝜄)
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is a quasi-isomorphism. Set 𝐶 = Cone 𝜄 and notice that it is an acyclic complex of
modules that are direct sums of projective and injective 𝑅-modules. The goal is to
show that the complex Hom𝑅 (𝐿Ď𝑛, 𝐶) � Cone Hom𝑅 (𝐿Ď𝑛, 𝜄) is acyclic; cf. 4.1.16.

By 2.5.24 there is an exact sequence 0→ 𝐿′ → 𝐿 → 𝐿Ď𝑛 → 0 with 𝐿′ bounded
below. By 9.1.2 and 9.1.12 these are complexes of finitely generated Gorenstein
projective modules, and it follows from 7.3.39 and 9.1.24(c) that the sequence

0 −→ Hom𝑅 (𝐿Ď𝑛, 𝐶) −→ Hom𝑅 (𝐿, 𝐶) −→ Hom𝑅 (𝐿′, 𝐶) −→ 0

is exact. The middle complex is acyclic as 𝐿 is semi-projective and 𝐶 is acyclic. To
prove acyclicity of Hom𝑅 (𝐿Ď𝑛, 𝐶) it suffices to argue that Hom𝑅 (𝐿′, 𝐶) is acyclic;
see 2.5.6. To this end, it suffices by A.5 to show that Hom𝑅 (𝐺,𝐶) is acyclic for
every finitely generated Gorenstein projective module 𝐺. It is already known from
9.1.24(c) that Ext𝑚

𝑅
(𝐺,𝐶𝑣) = 0 holds for all 𝑣 ∈ ℤ and all 𝑚 > 0, so it suffices by

A.4 to argue that Ext𝑚
𝑅
(𝐺,Z𝑣 (𝐶)) = 0 holds for 𝑣 ≫ 0 and all 𝑚 > 0.

If 𝐹 has finite flat dimension, then one can assume that 𝐼 is bounded above; see
8.3.3 and 5.3.26. Moreover, the modules C𝑣 (𝑃) are flat for 𝑣 ≫ 0 by 5.4.10 and
8.3.11. For 𝑣 ≫ 0 one thus has Z𝑣 (𝐶) � C𝑣+1 (𝐶) = C𝑣 (𝑃), and as these modules
are flat, it follows from 9.1.24(c) that Ext𝑚

𝑅
(𝐺,Z𝑣 (𝐶)) = 0 holds for 𝑣 ≫ 0 and all

𝑚 > 0.
If 𝐹 has finite injective dimension, then one can assume that the complexes 𝐼

and 𝑃 are bounded below; see 8.2.2 and 5.2.15. It follows that 𝐶 is bounded below;
in particular, Z𝑣 (𝐶) = 0 holds for for 𝑣 ≪ 0. Let 𝐺 be a Gorenstein projective
𝑅-module. For every 𝑣 ∈ ℤ one has Ext𝑚

𝑅
(𝐺,𝐶𝑣) = 0 for all 𝑚 > 0, so in view of

9.1.24(a), induction on the exact sequences 0 → Z𝑣 (𝐶) → 𝐶𝑣 → Z𝑣−1 (𝐶) → 0
yields Ext𝑚

𝑅
(𝐺,Z𝑣 (𝐶)) = 0 for all 𝑣 ∈ ℤ and all 𝑚 > 0. □

9.1.28 Corollary. Assume that 𝑅 is left Noetherian. Let 𝑀 be a complex in Df (𝑅)
of finite Gorenstein projective dimension and 𝑁 an 𝑅-complex of finite flat or finite
injective dimension. For every degreewise finitely generated semi-projective replace-
ment 𝐿 of 𝑀 , every semi-flat replacement 𝐹 of 𝑁 , and every integer 𝑛 ⩾ Gpd𝑅 𝑀
there is an isomorphism in D(𝕜),

RHom𝑅 (𝑀, 𝑁) ≃ Hom𝑅 (𝐿Ď𝑛, 𝐹) .

Proof. The assertion follows immediately from 9.1.27 and 7.3.7. □

9.1.29 Theorem. Assume that 𝑅 is left Noetherian. Let 𝑀 be a complex in Df
⊏⊐ (𝑅)

of finite Gorenstein projective dimension and 𝑛 an integer. The next conditions are
equivalent.

(i) Gpd𝑅 𝑀 ⩽ 𝑛.
(ii) − inf RHom𝑅 (𝑀, 𝑁) ⩽ 𝑛 − inf 𝑁 holds for every 𝑅-complex 𝑁 with fd𝑅 𝑁

finite or id𝑅 𝑁 finite.
(iii) − inf RHom𝑅 (𝑀, 𝑅) ⩽ 𝑛 holds.
(iv) 𝑛 ⩾ sup𝑀 and Ext𝑛+1

𝑅
(𝑀, 𝑁) = 0 holds for every finitely generated 𝑅-module

𝑁 with pd𝑅 𝑁 finite.
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(v) There is a degreewise finitely generated semi-projective resolution 𝑃 ≃−−→ 𝑀

with 𝑃𝑣 = 0 for all 𝑣 < inf 𝑀 , and H𝑣 (𝑃) = 0 for all 𝑣 > 𝑛, and C𝑣 (𝑃)
Gorenstein projective for all 𝑣 ⩾ 𝑛.

In particular, there are equalities,

Gpd𝑅 𝑀 = − inf RHom𝑅 (𝑀, 𝑅) = sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑀, 𝑅) ≠ 0} .

Proof. The implication (i)⇒ (iv) follows from 9.1.19 and (v)⇒ (i) is immediate
from the definition, 9.1.10. Moreover, (ii)⇒ (iii) is trivial.

(i)⇒ (ii): The complex 𝑀 has by 5.2.16 a bounded below and degreewise finitely
generated semi-projective replacement. The argument in the proof of 9.1.19 now
applies when one refers to 9.1.28 in place of 9.1.18.

(iii)⇒ (i): Let 𝐿 ≃−−→ 𝑀 be a semi-projective resolution with 𝐿 degreewise
finitely generated and bounded below; see 5.2.16. The functor Hom𝑅 (𝐿, ), which
by 7.3.21 is RHom𝑅 (𝑀, ), preserves coproducts of modules by 3.1.33 applied
degreewise. It follows that − inf RHom𝑅 (𝑀, 𝑃) ⩽ 𝑛 holds for every free, and hence
every projective, 𝑅-module 𝑃; see 1.3.17. Now invoke 9.1.19.

(iv)⇒ (v): Let 𝑃 ≃−−→ 𝑀 be a semi-projective resolution with 𝑃 degreewise
finitely generated and 𝑃𝑣 = 0 for every 𝑣 < inf 𝑀; see 5.2.16. By assumption,
𝑔 = Gpd𝑅 𝑀 is finite, so the module C𝑣 (𝑃) Gorenstein projective for every integer
𝑣 ⩾ 𝑔; see 9.1.12. It now suffices to show that 𝑛 ⩾ 𝑔. Assume that 𝑛 < 𝑔 holds. Notice
that by the assumption 𝑛 ⩾ sup𝑀 , the module C𝑛 (𝑃) can not be Gorenstein projec-
tive. There is an exact sequence 0→ C𝑔 (𝑃) → 𝑃𝑔−1 → · · · → 𝑃𝑛 → C𝑛 (𝑃) → 0,
which shows that C𝑛 (𝑃) has finite Gorenstein projective dimension, as 𝑃ě𝑛 is a
semi-projective replacement of Σ𝑛C𝑛 (𝑃). Now 9.1.26 yields an exact sequence
0→ 𝑁 → 𝐺 → C𝑛 (𝑃) → 0 of finitely generated 𝑅-modules where 𝐺 is Goren-
stein projective and 𝑁 has finite projective dimension. By 8.1.6 and (iv) one has
Ext1𝑅 (C𝑛 (𝑃), 𝑁) � Ext𝑛+1

𝑅
(𝑀, 𝑁) = 0, so the sequence is split by 7.3.36. Now 9.1.8

implies that C𝑛 (𝑃) is Gorenstein projective, which is a contradiction.
The equalities in the last assertion follow immediately from the equivalence of

(i) and (iii) and 7.3.24. □

The Case of Modules

9.1.30. Notice from 9.1.19 that a non-zero 𝑅-module is Gorenstein projective if and
only if it has Gorenstein projective dimension 0 as an 𝑅-complex.

9.1.31 Theorem. Let 𝑀 be an 𝑅-module of finite Gorenstein projective dimension
and 𝑛 ⩾ 0 an integer. The following conditions are equivalent.

(i) Gpd𝑅 𝑀 ⩽ 𝑛.
(ii) Ext𝑚

𝑅
(𝑀, 𝑁) = 0 holds for every 𝑅-module 𝑁 with pd𝑅 𝑁 finite or id𝑅 𝑁 finite

and all integers 𝑚 > 𝑛.

(iii) Ext𝑚
𝑅
(𝑀, 𝑁) = 0 holds for every projective 𝑅-module 𝑁 and all integers

𝑚 > 𝑛.

(iv) Ext𝑛+1
𝑅
(𝑀, 𝑁) = 0 holds for every 𝑅-module 𝑁 with pd𝑅 𝑁 finite.
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(v) In some/every projective resolution · · · → 𝑃𝑣 → 𝑃𝑣−1 → · · · → 𝑃0 → 𝑀 →
0 the module Coker(𝑃𝑣+1 → 𝑃𝑣) is Gorenstein projective for every 𝑣 ⩾ 𝑛.

(vi) There is an exact sequence of 𝑅-modules 0 → 𝐺 → 𝑃𝑛−1 → · · · → 𝑃0 →
𝑀 → 0 with each 𝑃𝑖 projective and 𝐺 Gorenstein projective.

In particular, there is an equality

Gpd𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | Ext𝑚𝑅 (𝑀, 𝑁) ≠ 0 for some projective 𝑅-module 𝑁 } .

Proof. By 5.2.27 every 𝑅-module 𝑀 has a projective resolution

· · · −→ 𝑃𝑣 −→ 𝑃𝑣−1 −→ · · · −→ 𝑃0 −→ 𝑀 −→ 0 .

In every such resolution, the surjective homomorphism 𝑃0 → 𝑀 yields a semi-
projective resolution of 𝑀 , considered as a complex; cf. 5.2.29. Thus the complex
· · · → 𝑃𝑣 → 𝑃𝑣−1 → · · · → 𝑃0 → 0 is a semi-projective replacement of 𝑀 .
The equivalence of conditions (i)–(vi) is now immediate from 9.1.19, and so is the
asserted equality in view of 7.3.27. □

9.1.32 Theorem. Assume that 𝑅 is left Noetherian. Let 𝑀 be a finitely generated 𝑅-
module of finite Gorenstein projective dimension and 𝑛 ⩾ 0 an integer. The following
conditions are equivalent.

(i) Gpd𝑅 𝑀 ⩽ 𝑛.
(ii) Ext𝑚

𝑅
(𝑀, 𝑁) = 0 holds for every 𝑅-module 𝑁 with fd𝑅 𝑁 finite or id𝑅 𝑁 finite

and all integers 𝑚 > 𝑛.

(iii) Ext𝑚
𝑅
(𝑀, 𝑅) = 0 holds for all integers 𝑚 > 𝑛.

(iv) Ext𝑛+1
𝑅
(𝑀, 𝑁) = 0 for every finitely generated 𝑅-module 𝑁 with pd𝑅 𝑁 finite.

(v) There is an exact sequence 0 → 𝐺 → 𝑃𝑛−1 → · · · → 𝑃0 → 𝑀 → 0
of finitely generated 𝑅-modules with each 𝑃𝑖 projective and 𝐺 Gorenstein
projective.

In particular, there is an equality

Gpd𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | Ext𝑚𝑅 (𝑀, 𝑅) ≠ 0} .

Proof. By 5.1.19 every finitely generated 𝑅-module 𝑀 has a projective resolution

· · · −→ 𝑃𝑣 −→ 𝑃𝑣−1 −→ · · · −→ 𝑃0 −→ 𝑀 −→ 0

with each module 𝑃𝑣 finitely generated. An argument parallel to the proof of 9.1.31
shows that the statement follows from 9.1.29. □

Remark. Examples by Jorgensen and Şega [151] show that in 9.1.32 one can not dispense with
the a priori assumption that Gpd𝑅 𝑀 is finite.

Exercises

E 9.1.1 Show that if every 𝑅-module has finite Gorenstein projective dimension, then every
acyclic complex of projective 𝑅-modules is totally acyclic.
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E 9.1.2 Show that for an 𝑅-module𝑀 the next conditions are equivalent. (i) For every Gorenstein
projective 𝑅-module 𝐺 one has Ext𝑚

𝑅
(𝐺, 𝑀 ) = 0 for all 𝑚 ≫ 0. (ii) For every

Gorenstein projective 𝑅-module 𝐺 one has Ext𝑚
𝑅
(𝐺, 𝑀 ) = 0 for all 𝑚 ⩾ 1. Show that

Gpd𝑅 𝑀 = pd𝑅 𝑀 holds for every 𝑅-module 𝑀 that satisfies these conditions.
E 9.1.3 Let 𝑀 be a complex in D⊏ (𝑅) with H(𝑀 ) ≠ 0 and set 𝑤 = sup𝑀. Show that for every

semi-projective replacement 𝑃 of 𝑀 one has Gpd𝑅 𝑀 = 𝑤 + Gpd𝑅 C𝑤 (𝑃) .
E 9.1.4 Let 𝑀 be a complex in D⊐ (𝑅) . Show that Gpd𝑅 𝑀 is finite if and only if 𝑀 is

isomorphic in D(𝑅) to a bounded complex of Gorenstein projective 𝑅-modules.
E 9.1.5 Show that the full subcategory of 𝑅-complexes of finite Gorenstein projective dimension

is a triangulated subcategory of D⊏ (𝑅) .
E 9.1.6 Let 𝑀 be a complex in D⊏⊐ (𝑅) and 𝐺 a bounded below complex of Gorenstein pro-

jective 𝑅-modules with 𝑀 ≃ 𝐺 in D(𝑅) . Show that for every 𝑅-module 𝑁 with
pd𝑅 𝑁 or id𝑅 𝑁 finite and for all 𝑚 > 0 and 𝑛 ⩾ sup𝑀 one has Ext𝑛+𝑚

𝑅
(𝑀, 𝑁 ) �

Ext𝑚
𝑅
(C𝑛 (𝐺) , 𝑁 ) .

E 9.1.7 Let 𝑛 be an integer. Show that an 𝑅-complex 𝑀 has Gpd𝑅 𝑀 ⩽ 𝑛 if and only if there is
a diagram 𝑃

𝜏−→ 𝑃′
𝜋−→ 𝑀 in C(𝑅) where 𝑃 is a totally acyclic complex of projective

𝑅-modules, 𝜏𝑣 is an isomorphism for 𝑣 ⩾ 𝑛, and 𝜋 is a semi-projective resolution.
E 9.1.8 Assume that 𝑅 is left Noetherian and let 𝑀 be a complex in Df

⊐ (𝑅) . Show that
Gpd𝑅 𝑀 is finite if and only if 𝑀 is isomorphic in D(𝑅) to a bounded complex of
finitely generated Gorenstein projective 𝑅-modules.

E 9.1.9 Assume that 𝑅 is left Noetherian. Let 𝑀 be a complex in Df
⊏⊐ (𝑅) and 𝐺 a bounded

below complex of finitely generated Gorenstein projective 𝑅-modules with 𝑀 ≃ 𝐺 in
D(𝑅) . Show that for every 𝑅-module 𝑁 with fd𝑅 𝑁 or id𝑅 𝑁 finite and for all integers
𝑚 > 0 and 𝑛 ⩾ sup𝑀 there is an isomorphism Ext𝑛+𝑚

𝑅
(𝑀, 𝑁 ) � Ext𝑚

𝑅
(C𝑛 (𝐺) , 𝑁 ) .

E 9.1.10 Assume that 𝑅 is left Noetherian and let 𝑛 be an integer. Show that a complex 𝑀
in Df

⊐ (𝑅) has Gpd𝑅 𝑀 ⩽ 𝑛 if and only if there is a diagram 𝐿
𝜏−→ 𝐿′

𝜋−→ 𝑀 of
degreewise finitely generated 𝑅-complexes where 𝐿 is a totally acyclic complex of free
𝑅-modules, 𝜏𝑣 is an isomorphism for 𝑣 ⩾ 𝑛, and 𝜋 is a semi-free resolution.

E 9.1.11 Let N be the class of 𝑅o-modules 𝑁 with Tor𝑅𝑚 (𝑁, 𝐺) = 0 for every finitely generated
Gorenstein projective 𝑅-module 𝐺 and all 𝑚 > 0. Show that if in an exact sequence
of 𝑅o-modules 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 any two of the modules 𝑁 ′, 𝑁 , and 𝑁 ′′
are in N, then so is the third. Conclude that every 𝑅o-module 𝑁 with fd𝑅o 𝑁 is in N.
Conclude further that if 𝑅 is left Noetherian, then every 𝑅o-module 𝑁 with id𝑅o 𝑁 finite
is in N.

E 9.1.12 Assume that𝑅 is left Noetherian. Let 𝐿 be a degreewise finitely generated semi-projective
𝑅-complex and 𝐸 a semi-injective 𝑅-complex. Show that if 𝐸 has finite flat or finite
injective dimension, then 𝐸 ⊗𝑅 𝜏𝐿Ď𝑛 : 𝐸 ⊗𝑅 𝐿 → 𝐸 ⊗𝑅 𝐿Ď𝑛 is a quasi-isomorphism for
every integer 𝑛 ⩾ Gpd𝑅 𝐿.

9.2 Gorenstein Injective Dimension

Synopsis. Totally acyclic complex of injective modules; Gorenstein injective module; Gorenstein
injective dimension; ∼ vs. injective dimension; ∼ of module.

The Gorenstein injective dimension refines the injective dimension like the Goren-
stein projective dimension refines the projective dimension. This section thus de-
velops in close parallel with Sect. 9.1, though without a counterpart to the theory
surrounding 9.1.29.
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9.2 Gorenstein Injective Dimension 449

Gorenstein Injective Modules

9.2.1 Definition. A complex 𝐼 of injective 𝑅-modules is called totally acyclicif it is
acyclic and Hom𝑅 (𝐸, 𝐼) is acyclic for every injective 𝑅-module 𝐸 .

An 𝑅-module 𝐺 is called Gorenstein injective if one has 𝐺 � Z0 (𝐼) for some
totally acyclic complex 𝐼 of injective 𝑅-modules.

Notice that if 𝐼 is a totally acyclic complex of injective 𝑅-modules, then the
module Z𝑣 (𝐼) is Gorenstein injective for every 𝑣 ∈ ℤ.

9.2.2 Example. Every injective 𝑅-module 𝐼 is Gorenstein injective as the disk
complex D1 (𝐼) = 0 −−→ 𝐼

=−−→ 𝐼 −−→ 0 is totally acyclic.

9.2.3 Example. The Dold complex 𝐷 from 2.1.23 is an acyclic complex of injective
ℤ/4ℤ-modules; cf. 8.2.10. To see that it is totally acyclic, note that by B.14, and
C.23 every injective ℤ/4ℤ-module 𝐸 is free, i.e. 𝐸 � (ℤ/4ℤ) (𝑈) for some set 𝑈.
For every such module 3.1.27 and 4.4.2 yield isomorphisms,

Homℤ/4ℤ (𝐸, 𝐷) � Homℤ/4ℤ ((ℤ/4ℤ) (𝑈) , 𝐷) � Homℤ/4ℤ (ℤ/4ℤ, 𝐷)𝑈 � 𝐷𝑈 .

In particular, the complex Homℤ/4ℤ (𝐸, 𝐷) is acyclic. It follows that ℤ/4ℤ-module
Z0 (𝐷) = 2ℤ/4ℤ � ℤ/2ℤ is Gorenstein injective.

A Gorenstein injective module has a “left resolution” by injective precovers and
interacts with injective modules as if they were projective.

9.2.4 Lemma. Let𝐺 be an 𝑅-module; it is Gorenstein injective if and only if it meets
the following requirements:

(1) For every injective 𝑅-module 𝐸 one has Ext𝑚
𝑅
(𝐸, 𝐺) = 0 for all 𝑚 > 0 .

(2) There exists an exact sequence of 𝑅-modules, · · · → 𝐼1 → 𝐼0 → 𝑀 → 0,
where each 𝐼𝑣 is injective and the sequence

· · · −→ Hom𝑅 (𝐸, 𝐼1) −→ Hom𝑅 (𝐸, 𝐼0) −→ Hom𝑅 (𝐸, 𝑀) −→ 0

is exact for every injective 𝑅-module 𝐸 .

Proof. Assume first that 𝐺 is Gorenstein injective and let 𝐼 be a totally acyclic
complex of injective 𝑅-modules with 𝐺 � Z0 (𝐼); see 9.2.1. The complex 𝐼Ě0 and
the isomorphism 𝐺 � Z0 (𝐼) yield, up to indexing, the exact sequence asserted in
(2). The complex 𝐼ď0 is a semi-injective replacement of 𝐺. For 𝑚 > 0 the definition
of Ext, 7.3.23, and total acyclicity of 𝐼 yield the Ext vanishing asserted in (1):

Ext𝑚𝑅 (𝐸, 𝐺) = H−𝑚 (Hom𝑅 (𝐸, 𝐼ď0)) = H−𝑚 (Hom𝑅 (𝐸, 𝐼)) = 0 .

Assuming now that 𝐺 satisfies the two requirements, let 𝜄 : 𝐺 ≃−−→ 𝐼 ′ be an injective
resolution, see 5.3.31, and denote by 𝐼 the complex · · · → 𝐼1 → 𝐼0 → 0. The
homomorphism 𝐼0 → 𝐺 induces a quasi-isomorphism 𝜋 : 𝐼 → 𝐺, so �̃� = Cone(𝜄𝜋)
is by 4.1.1 and 4.2.16 an acyclic complex of injective 𝑅-modules with 𝐺 � Z0 ( �̃�).
Let 𝐸 be an injective 𝑅-module. By (2) the morphism Hom𝑅 (𝐸, 𝜋) is a quasi-
isomorphism, and by (1) so is Hom𝑅 (𝐸, 𝜄), see 7.3.27. It follows that Hom𝑅 (𝐸, 𝜄𝜋)
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450 9 Gorenstein Homological Dimensions

is a quasi-isomorphism, whence the complex Cone Hom𝑅 (𝐸, 𝜄𝜋) � Hom𝑅 (𝐸, �̃�)
is acyclic, see 4.1.16 and 4.2.16. Thus �̃� is a totally acyclic complex of injective
𝑅-modules and 𝐺 is Gorenstein injective. □

For later reference we prove the following result. It shows that 9.2.4(1) can be
strengthened; however, it is strengthened even further in 9.2.8(c).

9.2.5 Lemma. Let 𝑀 be an 𝑅-module. The following conditions are equivalent.
(i) Ext𝑚

𝑅
(𝐸, 𝑀) = 0 for every injective 𝑅-module 𝐸 and all 𝑚 > 0 .

(ii) Ext𝑚
𝑅
(𝑁, 𝑀) = 0 for every 𝑅-module 𝑁 with id𝑅 𝑁 finite and all 𝑚 > 0 .

Proof. Condition (ii) clearly implies (i). For the converse, induct on 𝑑 = id𝑅 𝑁 . The
base case 𝑑 = 0 is handled by the assumption (i). Now assume that 𝑑 > 0 holds
and that one has Ext𝑚

𝑅
(𝑁 ′, 𝑀) = 0 for every 𝑅-module 𝑁 ′ with id𝑅 𝑁 ′ < 𝑑 and all

𝑚 > 0. Let 𝑁 be an 𝑅-module with id𝑅 𝑁 = 𝑑 and consider an exact sequence
0→ 𝑁 → 𝐸 → 𝑁 ′ → 0 with 𝐸 injective. By 8.2.9 one has id𝑅 𝑁 ′ < 𝑑, and hence
Ext𝑚

𝑅
(𝑁 ′, 𝑀) = 0 = Ext𝑚

𝑅
(𝐸, 𝑀) holds for all 𝑚 > 0. Application of the functor

Hom𝑅 ( , 𝑀) to 0 → 𝑁 → 𝐸 → 𝑁 ′ → 0 induces by 7.3.35 an exact sequence of
Ext modules, which now shows that Ext𝑚

𝑅
(𝑁, 𝑀) = 0 holds for all 𝑚 > 0. □

The next result picks up essential properties of the class of Gorenstein injective
modules. The first assertion in part (a) together with 9.2.2 shows that the class is
so-called injectively resolving.

9.2.6 Proposition. The following assertions hold.
(a) Let 0 → 𝐺′ → 𝐺 → 𝐺′′ → 0 be an exact sequence of 𝑅-modules. If 𝐺′ is

Gorenstein injective, then 𝐺 is Gorenstein injective if and only if 𝐺′′ is so. If
𝐺 and 𝐺′′ are Gorenstein injective, then 𝐺′ is Gorenstein injective if and only
if Ext1𝑅 (𝐸, 𝐺′) = 0 holds for every injective 𝑅-module 𝐸 .

(b) Let {𝐺𝑢}𝑢∈𝑈 be a family of 𝑅-modules. The module
∏
𝑢∈𝑈 𝐺

𝑢 is Gorenstein
injective if and only if each 𝐺𝑢 is Gorenstein injective. In particular, a direct
summand of a Gorenstein injective 𝑅-module is Gorenstein injective.

Proof. Let 0 −−→ 𝐺′
𝛼′−−→ 𝐺

𝛼−−→ 𝐺′′ −−→ 0 be an exact sequence of 𝑅-modules where
𝐺 and 𝐺′ are Gorenstein injective. As 𝐺 and 𝐺′ satisfy condition 9.2.4(1), so does
𝐺′′ by 7.3.35. As 𝐺 and 𝐺′ satisfy 9.2.4(2) there exist complexes

𝐼 = · · · −→ 𝐼1 −→ 𝐼0 −→ 0 and 𝐼 ′ = · · · −→ 𝐼 ′1 −→ 𝐼 ′0 −→ 0

of injective 𝑅-modules and quasi-isomorphisms 𝜋 : 𝐼 → 𝐺 and 𝜋′ : 𝐼 ′ → 𝐺′ such
that Hom𝑅 (𝐸, 𝜋) and Hom𝑅 (𝐸, 𝜋′) are quasi-isomorphisms for every injective
𝑅-module 𝐸 . By 4.1.16 and 4.2.16 the complex Hom𝑅 (𝐸,Cone 𝜋) is acyclic
for every injective 𝑅-module 𝐸 , so A.5 implies that Hom𝑅 (𝐸, 𝜋) is a quasi-
isomorphism for every complex 𝐸 of injective 𝑅-modules. There is an exact sequence
0 −−→ Ker 𝜋 −−→ 𝐼

𝜋−−→ 𝐺 −−→ 0 where Ker 𝜋 = · · · → 𝐼2 → 𝐼1 → Ker 𝜋0 → 0. The
module Ker 𝜋0 is Gorenstein injective, so it follows from 7.3.38 that Hom𝑅 (𝐸, 𝜋) is
surjective for every complex 𝐸 of injective 𝑅-modules. In particular, Hom𝑅 (𝐼 ′, 𝜋) is
a surjective quasi-isomorphism, and hence C(𝑅) (𝐼 ′, 𝜋) : C(𝑅) (𝐼 ′, 𝐼) → C(𝑅) (𝐼 ′, 𝐺)
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9.2 Gorenstein Injective Dimension 451

is surjective by 4.2.7 and 2.3.10. Thus there exists a morphism of 𝑅-complexes
𝛽 : 𝐼 ′ → 𝐼 with 𝜋𝛽 = 𝛼′𝜋′. Let 𝜄 : 𝐼 ′ ↣ Cone 1𝐼 ′ be the canonical morphism from
4.1.5. With 𝐼 ′′ = Coker

(𝛽
𝜄

)
there is a commutative diagram in C(𝑅) with exact rows,

(†)
0 // 𝐼 ′

𝜋′

��

(
𝛽
𝜄

)
//

𝐼
⊕

Cone 1𝐼 ′

𝜋 = ( 𝜋 0 )
��

// 𝐼 ′′

𝜋′′

��

// 0

0 // 𝐺′
𝛼′

// 𝐺
𝛼

// 𝐺′′ // 0 ,

where 𝜋′′ is the induced morphism. As the complex Cone 1𝐼 ′ is contractible, see
4.3.31, the morphism 𝜋 is a quasi-isomorphism and so is Hom𝑅 (𝐸, 𝜋) for every
injective 𝑅-module 𝐸 . The complex 𝐼 ′′ consists of injective modules and is concen-
trated in degrees ⩾ 0 as this is the case for 𝐼, 𝐼 ′ and Cone 1𝐼 ′ ; see 5.3.7.

As 𝜋 and 𝜋′ are quasi-isomorphisms, so is 𝜋′′ by 4.2.5 applied to the diagram (†).
If 𝐸 is an injective 𝑅-module, then application of the functor Hom𝑅 (𝐸, ) to (†)
yields a commutative diagram with exact rows. This is because Ext1𝑅 (𝐸, 𝐼 ′) = 0
holds and because the top row in (†) is degreewise split exact. As Hom𝑅 (𝐸, 𝜋) and
Hom𝑅 (𝐸, 𝜋′) are quasi-isomorphisms, so is Hom𝑅 (𝐸, 𝜋′′) by another application
of 4.2.5. This shows that the module 𝐺′′ satisfies condition 9.2.4(2), and it follows
that the class of Gorenstein injective modules is closed under cokernels of injective
homomorphisms.

Next we show that the class of Gorenstein injective modules is closed under
products. Let {𝐺𝑢}𝑢∈𝑈 be a family of Gorenstein injective 𝑅-modules. By definition
there exists for each 𝑢 ∈ 𝑈 a totally acyclic complex 𝐼𝑢 of injective 𝑅-modules
with 𝐺𝑢 � Z0 (𝐼𝑢). The complex 𝐼 =

∏
𝑢∈𝑈 𝐼

𝑢 consists of injective modules by
1.3.27 and it is acyclic by 3.1.23. For every 𝑅-module 𝐸 there is by 3.1.24 an
isomorphism Hom𝑅 (𝐸, 𝐼) �

∏
𝑢∈𝑈 Hom𝑅 (𝐸, 𝐼𝑢), and this complex is acyclic if 𝐸

is injective. Thus, 𝐼 is a totally acyclic complex of injective 𝑅-modules. Since one
has Z0 (𝐼) �

∏
𝑢∈𝑈 Z0 (𝐼𝑢) �

∏
𝑢∈𝑈 𝐺

𝑢, see 3.1.22(a), it follows that
∏
𝑢∈𝑈 𝐺

𝑢 is
Gorenstein injective.

Having established these properties, it now follows from 9.1.7 that the class of
Gorenstein injective modules is closed under direct summands. This proves (b).

We now finish the proof of (a). To show that the class of Gorenstein injective
modules is closed under extensions, let 0 → 𝐺′ → 𝐺 → 𝐺′′ → 0 be an exact
sequence where 𝐺′ and 𝐺′′ are Gorenstein injective. By the definition 9.2.1 of
Gorenstein injective modules, there exists an exact sequence 0 → 𝐺′′′ → 𝐼 ′′ →
𝐺′′ → 0 with 𝐼 ′′ injective and 𝐺′′′ Gorenstein injective. By 3.4.34 there is a
commutative diagram with exact rows and columns,
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452 9 Gorenstein Homological Dimensions

(‡)

0

��

0

��

𝐺′′′

��

𝐺′′′

��

0 // 𝐺′ // 𝐺 ⊓𝐺′′ 𝐼 ′′ //

��

𝐼 ′′

��

// 0

0 // 𝐺′ // 𝐺

��

// 𝐺′′

��

// 0

0 0 .

As 𝐺′ is Gorenstein injective and 𝐼 ′′ is injective one has Ext1𝑅 (𝐼 ′′, 𝐺′) = 0. Thus
the first row in (‡) is split by 7.3.36, so one has 𝐺 ⊓𝐺′′ 𝐼 ′′ � 𝐺′ ⊕ 𝐼 ′′. This module
is Gorenstein injective by (b). Now the already established part of (a) applied to the
first column in (‡) shows that 𝐺 is Gorenstein injective.

It remains to prove the final assertion in (a). The “only if” part is evident. For the
converse, consider again the diagram (‡). By assumption, 𝐼 ′′ is injective and 𝐺, 𝐺′′,
and 𝐺′′′ are Gorenstein injective. The first column and the already established part
of (a) show that 𝐺 ⊓𝐺′′ 𝐼 ′′ is Gorenstein injective. As Ext1𝑅 (𝐼 ′′, 𝐺′) = 0 holds, by
assumption, it follows from 7.3.36 that the first row is split. Hence part (b) shows
that 𝐺′ is Gorenstein injective. □

We learned the next result from an unpublished work [241] of Šťovíček.

9.2.7 Theorem. Let Y be a class of 𝑅-modules and set
⊥Y = {𝑀 ∈ M(𝑅) | Ext1𝑅 (𝑀,𝑌 ) = 0 for every 𝑌 ∈ Y} .

Assume that for every exact sequence 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 of 𝑅-modules with
𝑀 ′, 𝑀 ∈ ⊥Y one has 𝑀 ′′ ∈ ⊥Y. For every 𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 of
modules in ⊥Y with𝑈 filtered, one has colim𝑢∈𝑈 𝑀𝑢 ∈ ⊥Y.

Proof. We start by establishing the following properties of the class ⊥Y.
(a) For every family {𝑀𝑢}𝑢∈𝑈 of modules in ⊥Y one has

∐
𝑢∈𝑈 𝑀

𝑢 ∈ ⊥Y .
(b) For every 𝑈-direct system {𝜇𝑣𝑢 : 𝑀𝑢 ↣ 𝑀𝑣}𝑢⩽𝑣 of modules in ⊥Y with 𝑈

filtered and each 𝜇𝑣𝑢 is injective, one has colim𝑢∈𝑈 𝑀𝑢 ∈ ⊥Y .
Property (a) follows from (b) in view of 3.3.9, but it is also an immediate consequence
of 7.3.32. To establish property (b) it suffices by 3.3.30 to argue that if an 𝑅-module
𝑀 is the union of a continuous chain {𝑀α }α<λ of submodules with 𝑀α ∈ ⊥Y for
every α < λ, then one has 𝑀 ∈ ⊥Y. However, this follows from Eklof’s lemma D.2:
The assumption on the class ⊥Y applied to the exact sequence

0 −→ 𝑀α −→ 𝑀α+1 −→ 𝑀α+1/𝑀α −→ 0

yields 𝑀α+1/𝑀α ∈ ⊥Y for every ordinal α with α + 1 < λ.
Now, to show the assertion in the theorem, it suffices by another application of

3.3.30 to argue that for every ordinal λ and λ-sequence {𝜇βα : 𝑀α → 𝑀β }α⩽β<λ of
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modules in ⊥Y one has colimα<λ 𝑀
α ∈ ⊥Y. If λ = μ + 1 is a successor ordinal, then

3.2.8 yields colimα<λ 𝑀
α = 𝑀μ ∈ ⊥Y, so one can assume that λ is a limit ordinal.

Consider the homomorphism from 3.2.3,

𝑋 =
∐

α⩽β<λ
𝑀 (α,β)

𝛥= 𝛥𝜇−−−−−→ ∐
α<λ

𝑀α where 𝑀 (α,β) = 𝑀α ,

given by 𝜀 (α,β) (𝑚) ↦→ 𝜀α (𝑚) − 𝜀β𝜇βα (𝑚) for 𝑚 ∈ 𝑀 (α,β) = 𝑀α . Set 𝐼 = Im 𝛥 and
note that by construction there is an exact sequence,

0 −→ 𝐼 −→ ∐
α<λ

𝑀α −→ colim
α<λ

𝑀α −→ 0 .

By property (a) the module
∐

α<λ 𝑀
α is in ⊥Y. Hence, to prove that colimα<λ 𝑀

α is
in ⊥Y, it suffices by the assumption on the class ⊥Y to show that one has 𝐼 ∈ ⊥Y. To
this end, define for every ordinal γ < λ submodules,

𝑋 γ =
∐
α<γ

𝑀 (α,γ ) ⊆ 𝑋 and 𝐼 γ = Im(𝛥 |𝑋γ ) ⊆ 𝐼 .

Note that 𝛥 has the following property:
(†) Given α ⩽ β < γ < λ and 𝑚 ∈ 𝑀 (α,β) = 𝑀α there exists an element 𝑦 ∈ 𝑋 γ

with 𝛥(𝑦) = 𝛥(𝜀 (α,β) (𝑚)) .
Indeed, note that 𝜇βα (𝑚) belongs to 𝑀β = 𝑀 (β,γ ) , and as β < γ holds, the element
𝑦 = 𝜀 (α,γ ) (𝑚) − 𝜀 (β,γ ) (𝜇βα (𝑚)) is in 𝑋 γ . A direct computation yields

𝛥(𝑦) = (𝜀α (𝑚) − 𝜀γ𝜇γα (𝑚)) − (𝜀β (𝜇βα (𝑚)) − 𝜀γ𝜇γβ (𝜇βα (𝑚)))
= 𝜀α (𝑚) − 𝜀β (𝜇βα (𝑚))
= 𝛥(𝜀 (α,β) (𝑚)) .

Next we argue that the family {𝐼 γ }γ<λ of submodules of 𝐼 has the properties:
(1) 𝐼 γ ⊆ 𝐼δ for every γ ⩽ δ < λ .

(2) ⋃
γ<λ 𝐼

γ = 𝐼.
(3) 𝐼 γ ∈ ⊥Y for every γ < λ .

Once this has been proved, properties (1) and (2) together with 3.3.3 show that the
family of embeddings {𝐼 γ ↣ 𝐼δ }γ⩽δ<λ is a λ-direct system with colimγ<λ 𝐼

γ � 𝐼.
As 𝐼 γ ∈ ⊥Y holds for every γ < λ by (3), one concludes from property (b) in the
beginning of the proof that 𝐼 belongs to ⊥Y, as desired.

The inclusion in (1) is trivial for γ = δ, so one can assume that γ < δ. It must be
argued that for every 𝑥 ∈ 𝑋 γ there is a 𝑦 ∈ 𝑋δ with 𝛥(𝑦) = 𝛥(𝑥). By 1.1.20 one can
assume that 𝑥 has the form 𝑥 = 𝜀 (α,γ ) (𝑚) for some α < γ and 𝑚 ∈ 𝑀 (α,γ ) = 𝑀α .
The existence of the element 𝑦 now follows from (†) applied to α ⩽ γ < δ < λ.

To prove (2) we must argue that for every 𝑥 ∈ 𝑋 there exist γ < λ and 𝑦 ∈ 𝑋 γ with
𝛥(𝑦) = 𝛥(𝑥). Every 𝑥 ∈ 𝑋 is a finite sum 𝑥 =

∑𝑛
𝑖=1 𝜀

(α𝑖 ,𝛽𝑖 ) (𝑚𝑖) with α𝑖 ⩽ β𝑖 < λ

and 𝑚𝑖 ∈ 𝑀 (α𝑖 ,β𝑖 ) = 𝑀α𝑖 . Set γ = max{β1, . . . , β𝑛} + 1 and note that γ < λ holds as
λ is a limit ordinal. For 𝑖 ∈ {1, . . . , 𝑛} one has α𝑖 ⩽ β𝑖 < γ < λ so (†) yields a 𝑦𝑖 in
𝑋 γ with 𝛥(𝑦𝑖) = 𝛥(𝜀 (α𝑖 ,β𝑖 ) (𝑚𝑖)). Now 𝑦 =

∑𝑛
𝑖=1 𝑦𝑖 ∈ 𝑋

γ satisfies 𝛥(𝑦) = 𝛥(𝑥).
To prove (3), let γ < λ be given. Consider the composite,
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(‡) 𝑋 γ // 𝜄 // 𝑋 =
∐

α⩽β<λ
𝑀 (α,β)

𝛥
//
∐
α<λ

𝑀α 𝜋
// //
∐
α<γ

𝑀α 𝜑

�
// 𝑋 γ ,

where 𝜄 is the embedding, 𝜋 is the projection, and 𝜑 is the isomorphism given by
𝜀α (𝑚) ↦→ 𝜀 (α,γ ) (𝑚) for α < γ and 𝑚 ∈ 𝑀α = 𝑀 (α,γ ) . For such α and 𝑚 one has

𝜑𝜋𝛥𝜄(𝜀 (α,γ ) (𝑚)) = 𝜑𝜋(𝜀α (𝑚) − 𝜀γ𝜇γα (𝑚)) = 𝜑(𝜀α (𝑚)) = 𝜀 (α,γ ) (𝑚) ,

so the composite (‡) is the identity. Consequently, the surjective homomorphism
𝛥𝜄 : 𝑋 γ ↠ 𝐼 γ = Im(𝛥𝜄) has the left inverse 𝜑𝜋 𝚥 where 𝚥 : 𝐼 γ ↣

∐
α<λ 𝑀

α is the
embedding. Hence 𝛥𝜄 : 𝑋 γ ↠ 𝐼 γ is an isomorphism. It remains to note that since
each module 𝑀α is in ⊥Y by assumption, the module 𝐼 γ � 𝑋 γ �

∐
α<γ 𝑀

α belongs
to ⊥Y by property (a) in the beginning of the proof. □

Among modules of finite Gorenstein injective dimension, Gorenstein injective
modules are characterized by Ext-vanishing. To prove that, the next lemma is key.

9.2.8 Lemma. Let 𝑁 be an 𝑅-module; the following conditions are equivalent.
(i) Ext1𝑅 (𝑁,𝐺) = 0 for every Gorenstein injective 𝑅-module 𝐺.
(ii) Ext𝑚

𝑅
(𝑁,𝐺) = 0 for every Gorenstein injective 𝑅-module 𝐺 and all 𝑚 > 0 .

The class N of 𝑅-modules 𝑁 satifying these conditions has the following properties.
(a) Let 0 → 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 be an exact sequence of 𝑅-modules. If two of

the modules 𝑁 ′, 𝑁 , and 𝑁 ′′ belong to N, then so does the third.
(b) Let {𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁𝑣}𝑢⩽𝑣 be a𝑈-direct system of modules in N. If𝑈 is filtered,

then colim𝑢∈𝑈 𝑁𝑢 belongs to N .

(c) Every 𝑅-module 𝑁 with id𝑅 𝑁 or fd𝑅 𝑁 finite belongs to N .

Proof. The implication (ii)⇒ (i) is trivial. For the converse, let 𝐺 be a Gorenstein
injective 𝑅-module and 𝐼 a totally acyclic complex of injective 𝑅-modules with
𝐺 � Z0 (𝐼). For 𝑚 > 0 one has Ext𝑚

𝑅
(𝑁,𝐺) � Ext1𝑅 (𝑁,Z−𝑚+1 (𝐼)) by 8.2.6, so (i)

implies (ii) as the module Z−𝑚+1 (𝐼) is Gorenstein injective.
(a): It follows from 7.3.35 that 𝑁 ′, 𝑁 ′′ ∈ N implies 𝑁 ∈ N, and that 𝑁, 𝑁 ′′ ∈ N

implies 𝑁 ′ ∈ N. Now assume that 𝑁 ′, 𝑁 ∈ N. Another application of 7.3.35 yields
Ext𝑚

𝑅
(𝑁 ′′, 𝐺) = 0 for every Gorenstein injective 𝑅-module𝐺 and all𝑚 > 1. To show

that also Ext1𝑅 (𝑁 ′′, 𝐺) = 0 holds, note that every Gorenstein injective module 𝐺 by
definition fits into an exact sequence 0→ 𝐺′ → 𝐼 → 𝐺 → 0 with 𝐼 injective and𝐺′
Gorenstein injective. Application of 7.3.35 to this sequence gives an isomorphism
Ext1𝑅 (𝑁 ′′, 𝐺) � Ext2𝑅 (𝑁 ′′, 𝐺′), and the right-hand side is zero, as just shown.

(b): Let Y denotes the class of Gorenstein injective 𝑅-modules. With the notation
from 9.2.7 one has ⊥Y = N. By part (a) this class satisfies the assumption in 9.2.7,
so the assertion follows from that result.

(c): In view of part (a), it suffices to prove that N contains every injective and
every flat 𝑅-module. The first is true by 9.2.4(1). Further, by 8.1.20 every projective
𝑅-module is in N, so part (b) and 5.5.7 imply that every flat 𝑅-module is in N. □

Remark. Following Xu [256] an 𝑅-module 𝑀 is called strongly cotorsion if Ext𝑚
𝑅
(𝑁, 𝑀 ) = 0

holds for every 𝑅-module 𝑁 of finite flat dimension and all 𝑚 > 0. Thus, it follows from 9.2.8(c)
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9.2 Gorenstein Injective Dimension 455

that every Gorenstein injective 𝑅-module is strongly cotorsion. These two classes of modules are
known to coincide over certain rings. Iacob [139], for example, shows that they coincide over
Iwanaga–Gorenstein rings, but that is not the final word on the matter, see e.g. Wang and Li [250].

Gorenstein Injective Dimension

9.2.9 Definition. Let 𝑀 be an 𝑅-complex. The Gorenstein injective dimension of
𝑀 , written Gid𝑅 𝑀 , is defined as

Gid𝑅 𝑀 = inf
{
𝑛 ∈ ℤ

���� There exists a semi-injective replacement 𝐼 of 𝑀 with
H−𝑣 (𝐼) = 0 for all 𝑣 > 𝑛 and Z−𝑛 (𝐼) Gorenstein injective

}
with the convention inf ∅ = ∞. One says that Gid𝑅 𝑀 is finite if Gid𝑅 𝑀 < ∞ holds.

A comment similar to the one after 8.1.2 justifies the last convention in 9.2.9.

9.2.10. Let 𝑀 be an 𝑅-complex. For every semi-injective replacement 𝐼 of 𝑀 one
has H(𝐼) � H(𝑀); the next (in)equalities are hence immediate from the definition,

Gid𝑅 𝑀 ⩾ − inf 𝑀 and Gid𝑅 Σ𝑠𝑀 = Gid𝑅 𝑀 − 𝑠 for every integer 𝑠 .

Moreover, one has Gid𝑅 𝑀 = −∞ if and only if 𝑀 is acyclic.

9.2.11 Lemma. Let 𝑀 be an 𝑅-complex. For every semi-injective replacement 𝐼 of
𝑀 and every integer 𝑣 ⩾ Gid𝑅 𝑀 the module Z−𝑣 (𝐼) is Gorenstein injective.

Proof. By 8.2.13 and 9.2.6 it suffices to prove the assertion for some specific semi-
injective replacement 𝐼 of 𝑀 . One can assume that Gid𝑅 𝑀 is finite; otherwise
the statement is empty. One can also assume that 𝑀 is not acyclic; otherwise 𝐼 =
0 is a semi-injective replacement of 𝑀 . Thus 𝑔 = Gid𝑅 𝑀 is an integer and by
definition, 9.2.9, there is a semi-injective replacement 𝐼 of 𝑀 with H−𝑣 (𝐼) = 0 for
all 𝑣 > 𝑔 and Z−𝑔 (𝐼) Gorenstein injective. Since there are short exact sequences
0→ Z−𝑣 (𝐼) → 𝐼−𝑣 → Z−(𝑣+1) (𝐼) → 0 for all 𝑣 ⩾ 𝑔, it follows from 9.2.2 and 9.2.6
that the modules Z−𝑔 (𝐼),Z−(𝑔+1) (𝐼), . . . are Gorenstein injective. □

The following result is sometimes expressed by saying that Gid𝑅 is a refinement
of id𝑅. It follows, in particular, that a Gorenstein injective module is either injective
or has infinite injective dimension. The Gorenstein injective module from 9.2.3 has
infinite injective dimension; see 8.2.11.

9.2.12 Theorem. Let 𝑀 be an 𝑅-complex. There is an inequality,

Gid𝑅 𝑀 ⩽ id𝑅 𝑀 ,

and equality holds if 𝑀 has finite injective dimension.

Proof. The inequality is evident from the definitions of the dimensions, see 8.2.2
and 9.2.9, and from the fact that every injective module is Gorenstein injective, see
9.2.2. Now assume that 𝚤 = id𝑅 𝑀 is an integer. To prove Gid𝑅 𝑀 ⩾ 𝚤 it must be
shown that if 𝐼 is a semi-injective replacement of 𝑀 with H−𝑣 (𝐼) = 0 for all 𝑣 > 𝑛
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and Z−𝑛 (𝐼) Gorenstein injective, then 𝑛 ⩾ 𝚤 holds. Suppose one has 𝑛 < 𝚤. There
is an exact sequence 0→ Z−𝑛 (𝐼) → 𝐼−𝑛 → Z−(𝑛+1) (𝐼) → 0 and an exact sequence
0→ Z−(𝑛+1) (𝐼) → 𝐼−(𝑛+1) → · · · → 𝐼−(𝚤−1) → Z−𝚤 (𝐼) → 0. The second sequence
shows that the module Z−(𝑛+1) (𝐼) has finite injective dimension, as Z−𝚤 (𝐼) is injective
by 8.2.8, and hence 7.3.36 and 9.2.8(c) imply that the first sequence is split. Thus,
Z−𝑛 (𝐼) is a direct summand of 𝐼−𝑛, in particular, Z−𝑛 (𝐼) is injective. Now another
application of 8.2.8 yields 𝚤 ⩽ 𝑛, which is a contradiction. □

Equality also holds in 9.2.12 if 𝑀 has finite flat dimension; see 9.2.19. By 6.5.24
the next result applies, in particular, to a short exact sequence of complexes.

9.2.13 Proposition. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in
D(𝑅). With 𝑔′ = Gid𝑅 𝑀 ′, 𝑔 = Gid𝑅 𝑀 , and 𝑔′′ = Gid𝑅 𝑀 ′′ there are inequalities,

𝑔′ ⩽ max{𝑔, 𝑔′′ + 1} , 𝑔 ⩽ max{𝑔′, 𝑔′′} , and 𝑔′′ ⩽ max{𝑔′ − 1, 𝑔} .

In particular, if two of the complexes 𝑀 ′, 𝑀 , and 𝑀 ′′ have finite Gorenstein injective
dimension, then so has the third.

Proof. It suffices to prove the second inequality since the first and third inequalities
follow by applying the second inequality and 9.2.10 to the distinguished triangles
Σ−1𝑀 ′′ → 𝑀 ′ → 𝑀 → 𝑀 ′′ and 𝑀 → 𝑀 ′′ → Σ𝑀 ′ → Σ𝑀; see (TR2) in E.2.

To prove the second inequality, apply 8.2.14 to get an exact sequence of complexes
0 → 𝐼 ′ → 𝐼 → 𝐼 ′′ → 0 where 𝐼 ′, 𝐼, and 𝐼 ′′ are semi-injective replacements of
𝑀 ′, 𝑀 , and 𝑀 ′′. Set 𝑢′ = inf 𝑀 ′, 𝑢 = inf 𝑀 , and 𝑢′′ = inf 𝑀 ′′. One can assume
that 𝑔′ and 𝑔′′ are finite and that 𝑀 is not acyclic; otherwise the inequality is trivial.
It follows from 6.5.20 that 𝑀 ′ and 𝑀 ′′ can not both be acyclic, so 𝑔′ or 𝑔′′ is an
integer, and hence so is 𝑚 = max{𝑔′, 𝑔′′}. Note that 9.2.10 and 6.5.20 yield 𝑚 ⩾ −𝑢,
so H−𝑣 (𝐼) = 0 for 𝑣 > 𝑚. As 𝑚 + 1 > 𝑔′ ⩾ −𝑢′ one has H−𝑚−1 (𝐼 ′) = 0, so the
sequence 0→ Z−𝑚 (𝐼 ′) → Z−𝑚 (𝐼) → Z−𝑚 (𝐼 ′′) → 0 is exact by 2.2.16. As 𝑚 ⩾ 𝑔′
and 𝑚 ⩾ 𝑔′′ the modules Z−𝑚 (𝐼 ′) and Z−𝑚 (𝐼 ′′) are Gorenstein injective by 9.2.11,
and hence so is Z−𝑚 (𝐼) by 9.2.6. Thus 𝑔 = Gid𝑅 𝑀 ⩽ 𝑚 holds by 9.2.9. □

Remark. Proposition 9.2.13 essentially shows that the complexes of finite Gorenstein injective
dimension form a triangulated subcategory of D(𝑅); see E 9.2.6.

A module of finite Gorenstein injective dimension can be approximated by a
Gorenstein injective module and one of finite injective dimension. We obtain this as
a corollary to the next result about approximations in the derived category.

9.2.14 Proposition. Let 𝑀 be an 𝑅-complex of finite Gorenstein injective dimension
𝑔 = Gid𝑅 𝑀 . For every semi-injective replacement 𝐼 of 𝑀 and every integer 𝑤 with
𝑔 > 𝑤 there is a distinguished triangle in D(𝑅),

Σ−1𝐾 −→ 𝑁 −→ 𝑀 −→ 𝐾 ,

where the complexes 𝐾 and 𝑁 have the following properties:
(a) There is a degreewise split exact sequence 0→ Σ−𝑤𝐺 → 𝐾 → 𝐼ě−𝑤 → 0 in

C(𝑅) where 𝐺 is a Gorenstein injective 𝑅-module. Furthermore, one has
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Gid𝑅 𝐾 ⩽ 𝑤 and H𝑣 (𝐾) �
{

H𝑣 (𝑀) for 𝑣 ⩾ −𝑤 + 1
0 for 𝑣 ⩽ −𝑤 − 1 .

(b) The complex 𝑁 satisfies

id𝑅 𝑁 = 𝑔 and H𝑣 (𝑁) �
{

0 for 𝑣 ⩾ −𝑤
H𝑣 (𝑀) for 𝑣 ⩽ −𝑤 − 2 .

(c) There is an exact sequence of 𝑅-modules,

0 −→ H−𝑤(𝑀) −→ H−𝑤(𝐾) −→ H−𝑤−1 (𝑁) −→ H−𝑤−1 (𝑀) −→ 0 .

Proof. If 𝑀 is acyclic the statement is void as no integer 𝑤 satisfies −∞ = 𝑔 > 𝑤.
Now assume that 𝑀 is not acyclic, in which case 𝑔 is an integer. By 9.2.11 the
module Z−𝑔 (𝐼) is Gorenstein injective and by 9.2.1 there exists an acyclic 𝑅-
complex 𝐸 = 0→ 𝐺 → 𝐸−𝑤 · · · → 𝐸−𝑔+1 → Z−𝑔 (𝐼) → 0, concentrated in degrees
−𝑤 + 1, . . . ,−𝑔, where the modules 𝐸−𝑤, . . . , 𝐸−𝑔+1 are injective and the kernels are
Gorenstein injective. Set 𝐸−𝑤+1 = 𝐺 and 𝐸−𝑔 = Z−𝑔 (𝐼) and notice that, in particular,
the kernel Z−𝑤(𝐸) � 𝐺 is Gorenstein injective.

Consider the short exact sequence of 𝑅-complexes,

(⋄) 0 −→ 𝐸Ě−𝑔+1 −→ 𝐸ě−𝑔+1
𝛼−−−→ Σ−𝑔+1 Z−𝑔 (𝐼) −→ 0 ,

where 𝛼 is a quasi-isomorphism as 𝐸Ě−𝑔+1 is acyclic; see 4.2.6. Let 𝐽 be any complex
of injective 𝑅-modules. As the complex 𝐸Ě−𝑔+1 consists of Gorenstein injective
modules, it follows from 7.3.38 and 9.2.8(c) that the functor Hom𝑅 (𝐽, ) leaves the
sequence (⋄) exact. As 𝐸Ě−𝑔+1 is an acyclic complex with Z𝑣 (𝐸Ě−𝑔+1) Gorenstein
injective for every 𝑣, it follows from 9.2.8(c) and A.4 that Hom𝑅 (𝐽𝑛, 𝐸Ě−𝑔+1) is
acyclic for every 𝑛 ∈ ℤ, and hence Hom𝑅 (𝐽, 𝐸Ě−𝑔+1) is acyclic by A.5. It now
follows from 4.2.6 that Hom𝑅 (𝐽, 𝛼) is a surjective quasi-isomorphism, whence
the morphism C(𝑅) (𝐽, 𝛼) is surjective as well by 4.2.7 and 2.3.10. Surjectivity of
C(𝑅) (𝐼ě−𝑔+1, 𝛼) yields a commutative diagram of 𝑅-complexes,

𝐼ě−𝑔+1
𝛾
// 𝐸ě−𝑔+1

≃ 𝛼

��

𝐼ě−𝑔+1
𝛽
// Σ−𝑔+1 Z−𝑔 (𝐼) ,

where 𝛽 is induced by 𝜕𝐼−𝑔+1. This diagram—in conjunction with the definition of
distinguished triangles in D(𝑅), see 6.5.5, the axiom (TR3) in E.2, and 6.5.19—
shows that the complexes Cone 𝛽 and Cone 𝛾 are isomorphic in D(𝑅). Evidently,
one has Σ−1Cone 𝛽 = 𝐼Ě−𝑔, and this complex is isomorphic to 𝐼 ≃ 𝑀 in D(𝑅).
Consequently, Σ−1Cone 𝛾 ≃ 𝑀 holds in D(𝑅).

Set 𝐶 = Cone 𝛾. By 2.5.22 and 6.5.24, and by the axiom (TR2) in E.2, there is a
distinguished triangle in D(𝑅),

Σ−1(Σ−1𝐶ě−𝑤+1) −→ Σ−1𝐶ď−𝑤 −→ Σ−1𝐶 −→ Σ−1𝐶ě−𝑤+1 ,

which we argue is the desired one. As noticed, Σ−1𝐶 ≃ 𝑀 in D(𝑅). The complex
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𝐾 = Σ−1𝐶ě−𝑤+1 = · · · −→ 𝐼−𝑤+2 −→ 𝐼−𝑤+1 −→ 𝐼−𝑤 ⊕ 𝐺 −→ 0

is concentrated in degrees ⩾ −𝑤 and fits into the degreewise split exact sequence

(★) 0 −→ Σ−𝑤𝐺 −→ 𝐾 −→ 𝐼ě−𝑤 −→ 0 .

The complex 𝐼 is semi-injective, and so is 𝐼ď−𝑤−1 by 5.3.12. Hence 5.3.20 applied
to the exact sequence 0 → 𝐼ď−𝑤−1 → 𝐼 → 𝐼ě−𝑤 → 0 shows that 𝐼ě−𝑤 is semi-
injective. It follows from 8.2.2 and 9.2.12 that Gid𝑅 (𝐼ě−𝑤) = id𝑅 (𝐼ě−𝑤) ⩽ 𝑤 holds.
As 𝐺 is a Gorenstein injective module, one has Gid𝑅 Σ−𝑤𝐺 ⩽ 𝑤, with equality if 𝐺
is non-zero, so application of 6.5.24 and 9.2.13 to (★) shows that Gid𝑅 𝐾 ⩽ 𝑤. The
assertion about the homology of 𝐾 = Σ−1𝐶ě−𝑤+1 follows as Σ−1𝐶 ≃ 𝑀 in D(𝑅).
Notice that

𝑁 = Σ−1𝐶ď−𝑤 = 0 −→ 𝐸−𝑤 ⊕ 𝐼−𝑤−1 −→ · · · −→ 𝐸−𝑔+2 ⊕ 𝐼−𝑔+1 −→ 𝐸−𝑔+1 −→ 0

is a complex of injective 𝑅-modules concentrated in degrees −𝑤 −1, . . . ,−𝑔. In the
extremal case 𝑤 = 𝑔 − 1 one has 𝑁 = Σ−𝑔𝐸−𝑔+1. In particular, 𝑁 is semi-injective
by 5.3.12 and id𝑅 𝑁 ⩽ 𝑔 holds. Note that 9.2.13 yields 𝑔 ⩽ max{Gid𝑅 𝑁,Gid𝑅 𝐾}.
As Gid𝑅 𝐾 ⩽ 𝑤 < 𝑔 holds one has Gid𝑅 𝑁 ⩾ 𝑔, so 9.2.12 yields id𝑅 𝑁 = 𝑔. The
assertion about the homology of 𝑁 = Σ−1𝐶ď−𝑤 follows as Σ−1𝐶 ≃ 𝑀 in D(𝑅). The
exact sequence in part (c) follows by applying 6.5.19 to the constructed distinguished
triangle. □

9.2.15 Corollary. Let 𝑀 be an 𝑅-module of finite Gorenstein injective dimension
𝑔 = Gid𝑅 𝑀 . The following assertions hold.

(a) There is an exact sequence of 𝑅-modules 0 → 𝐺 → 𝑋 → 𝑀 → 0 where 𝐺
is Gorenstein injective and id𝑅 𝑋 = 𝑔 .

(b) If 𝑔 > 0, then there is an exact sequence of 𝑅-modules 0→ 𝑀 → 𝐺 → 𝑋 → 0
where 𝐺 is Gorenstein injective and id𝑅 𝑋 = 𝑔 − 1 .

Proof. (a): For 𝑤 = −1 the sequence 9.2.14(c) reads

0 −→ H1 (𝐾) −→ H0 (𝑁) −→ 𝑀 −→ 0 .

If follows from 9.2.14(a) that 𝐾 is isomorphic to ΣH1 (𝐾) in D(𝑅), whence one
has Gid𝑅 H1 (𝐾) − 1 = Gid𝑅 𝐾 ⩽ 𝑤 = −1. Consequently, the module H1 (𝐾) is
Gorenstein injective. Similarly, one has 𝑁 ≃ H0 (𝑁) and id𝑅 H0 (𝑁) = id𝑅 𝑁 = 𝑔.

(b): As 𝑔 > 0 one can apply 9.2.14(c) with 𝑤 = 0 to obtain the exact sequence

0 −→ 𝑀 −→ H0 (𝐾) −→ H−1 (𝑁) −→ 0 .

If follows from 9.2.14(a) that 𝐾 is isomorphic to H0 (𝐾) in D(𝑅), whence one has
Gid𝑅 H0 (𝐾) = Gid𝑅 𝐾 ⩽ 𝑤 = 0. That is, the module H0 (𝐾) is Gorenstein injective.
Similarly, one has 𝑁 ≃ Σ−1H−1 (𝑁) and id𝑅 H−1 (𝑁) + 1 = id𝑅 𝑁 = 𝑔. □

The technical result below has a consequence that for our purposes is extremely
useful; see 9.2.17.
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9.2 Gorenstein Injective Dimension 459

9.2.16 Proposition. Let 𝐼 and 𝐸 be semi-injective 𝑅-complexes. If 𝐸 has finite flat
or finite injective dimension, then the morphism

Hom𝑅 (𝐸, 𝜏𝐼Ě−𝑛) : Hom𝑅 (𝐸, 𝐼Ě−𝑛) −→ Hom𝑅 (𝐸, 𝐼)

is a quasi-isomorphism for every integer 𝑛 ⩾ Gid𝑅 𝐼.

Proof. Let 𝐸 ≃−−→ 𝐽 be a semi-injective resolution; by 5.3.24 there is a homotopy
equivalence 𝜄 : 𝐽 → 𝐸 . By 9.2.10 one has −𝑛 ⩽ inf 𝐼, so the map 𝜏𝐼Ě−𝑛 : 𝐼Ě−𝑛 → 𝐼 is
a quasi-isomorphism by 4.2.4. Choose a semi-projective resolution 𝜋 : 𝑃 ≃−−→ 𝐽. In
the commutative diagram,

Hom𝑅 (𝐸, 𝐼Ě−𝑛)
Hom ( 𝜄,𝐼Ě−𝑛 )

≊
//

Hom (𝐸,𝜏𝐼Ě−𝑛 )
��

Hom𝑅 (𝐽, 𝐼Ě−𝑛)

Hom (𝐽,𝜏𝐼Ě−𝑛 )
��

Hom (𝜋,𝐼Ě−𝑛 )
// Hom𝑅 (𝑃, 𝐼Ě−𝑛)

Hom (𝑃,𝜏𝐼Ě−𝑛 )≃
��

Hom𝑅 (𝐸, 𝐼)
Hom ( 𝜄,𝐼 )
≊

// Hom𝑅 (𝐽, 𝐼)
Hom (𝜋,𝐼 )
≃

// Hom𝑅 (𝑃, 𝐼) ,

the left-hand horizontal maps are homotopy equivalences by 4.3.19, and Hom𝑅 (𝜋, 𝐼)
and Hom𝑅 (𝑃, 𝜏𝐼Ě−𝑛) are quasi-isomorphisms by semi-injectivity of 𝐼 and semi-
projectivity of 𝑃. The diagram shows that it suffices to verify that Hom𝑅 (𝜋, 𝐼Ě−𝑛)
is a quasi-isomorphism. Set 𝐶 = Cone 𝜋 and notice that it is an acyclic complex of
modules that are direct sums of projective and injective modules. The goal is to show
that the complex Hom𝑅 (𝐶, 𝐼Ě−𝑛) � Σ−1Cone Hom𝑅 (𝜋, 𝐼Ě−𝑛) is acyclic; cf. 4.1.16.

By 2.5.25 there is an exact sequence 0→ 𝐼Ě−𝑛 → 𝐼 → 𝐼 ′ → 0 with 𝐼 ′ bounded
above. By 9.2.2, 9.2.11, and 9.2.6(a) these are complexes of Gorenstein injective
modules, and it follows from 7.3.38, in view of 9.2.8(c), that the sequence

0 −→ Hom𝑅 (𝐶, 𝐼Ě−𝑛) −→ Hom𝑅 (𝐶, 𝐼) −→ Hom𝑅 (𝐶, 𝐼 ′) −→ 0

is exact. The middle complex is acyclic as 𝐼 is semi-injective and 𝐶 is acyclic.
To prove acyclicity of Hom𝑅 (𝐶, 𝐼Ě−𝑛) it now suffices to see that Hom𝑅 (𝐶, 𝐼 ′) is
acyclic; see 2.5.6. To that end, it suffices by A.2 to argue that Hom𝑅 (𝐶,𝐺) is acyclic
for every Gorenstein injective module 𝐺. It is already known from 9.2.8(c) that
Ext𝑚

𝑅
(𝐶𝑣, 𝐺) = 0 holds for all 𝑣 ∈ ℤ and all 𝑚 > 0, so it suffices by A.1 to argue that

Ext𝑚
𝑅
(C𝑣 (𝐶), 𝐺) = 0 holds for 𝑣 ≪ 0 and all 𝑚 > 0. With the notation from 9.2.8

we need to show that one has C𝑣 (𝐶) ∈ N for 𝑣 ≪ 0.
If 𝐸 has finite injective dimension, then one can assume that the complexes 𝐽 and

𝑃 are bounded below; see 8.2.2 and 5.2.15. It follows that 𝐶 is bounded below; in
particular, C𝑣 (𝐶) = 0 holds for 𝑣 ≪ 0.

If 𝐸 has finite flat dimension, then one can by 5.3.26 assume that the complex 𝐽
is bounded above, and hence one has C𝑣 (𝐶) = C𝑣−1 (𝑃) for 𝑣 ≫ 0. Further, 8.3.11
shows that the module C𝑣−1 (𝑃) is flat for 𝑣 ≫ 0, so 9.2.8(c) implies that one has
C𝑣 (𝐶) ∈ N for 𝑣 ≫ 0. As already noticed, 𝐶𝑣 ∈ N holds for every 𝑣 ∈ ℤ. Using
9.2.8(a) and induction on exact sequences 0 → C𝑣+1 (𝐶) → 𝐶𝑣 → C𝑣 (𝐶) → 0, it
now follows that C𝑣 (𝐶) ∈ N holds for every 𝑣 ∈ ℤ. □
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The gist of 9.2.4 is that projective and injective modules have the same homologi-
cal behavior relative to Gorenstein injective modules. This has the following usseful
consequence:

9.2.17 Corollary. Let 𝑀 be an 𝑅-complex of finite Gorenstein injective dimension
and 𝑁 an 𝑅-complex of finite flat or finite injective dimension. For every semi-
injective replacement 𝐼 of 𝑀 , every semi-injective replacement 𝐸 of 𝑁 , and every
integer 𝑛 ⩾ Gid𝑅 𝑀 there is an isomorhism in D(𝕜),

RHom𝑅 (𝑁, 𝑀) ≃ Hom𝑅 (𝐸, 𝐼Ě−𝑛) .

Proof. The assertion follows immediately from 9.2.16 and 7.3.7. □

A key difference between 9.2.18 below and the main theorem about injective
dimension, 8.2.8, is the a priori assumption in 9.2.18 that the complex has finite
Gorenstein injective dimension.

9.2.18 Theorem. Let 𝑀 be an 𝑅-complex of finite Gorenstein injective dimension
and 𝑛 an integer. The following conditions are equivalent.

(i) Gid𝑅 𝑀 ⩽ 𝑛.
(ii) − inf RHom𝑅 (𝑁, 𝑀) ⩽ 𝑛 + sup 𝑁 holds for every 𝑅-complex 𝑁 with fd𝑅 𝑁 fi-

nite or id𝑅 𝑁 finite.
(iii) − inf RHom𝑅 (𝑁, 𝑀) ⩽ 𝑛 holds for every injective 𝑅-module 𝑁 .
(iv) 𝑛 ⩾ − inf 𝑀 and Ext𝑛+1

𝑅
(𝑁, 𝑀) = 0 for every 𝑅-module 𝑁 with id𝑅 𝑁 finite.

(v) 𝑛 ⩾ − inf 𝑀 and for some, equivalently every, semi-injective replacement 𝐼 of
𝑀 , the module Z−𝑣 (𝐼) is Gorenstein injective for every 𝑣 ⩾ 𝑛.

(vi) There is a semi-injective resolution 𝑀 ≃−−→ 𝐼 with 𝐼−𝑣 = 0 for all 𝑣 < − sup𝑀 ,
H−𝑣 (𝐼) = 0 for all 𝑣 > 𝑛, and Z−𝑣 (𝐼) Gorenstein injective for all 𝑣 ⩾ 𝑛.

In particular, there are equalities

Gid𝑅 𝑀 = sup{− inf RHom𝑅 (𝑁, 𝑀) | 𝑁 is an injective 𝑅-module}
= sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑁, 𝑀) ≠ 0 for some injective 𝑅-module 𝑁 } .

Proof. We start by establishing the equivalence of (i), (ii), and (iii).
(i)⇒ (ii): One can assume that 𝑁 is in D⊏ (𝑅) and not acyclic; otherwise the

inequality is trivial. In this case, 𝑤 = sup 𝑁 is an integer. By 5.3.26 there is a
semi-injective resolution 𝑁 ≃−−→ 𝐽 with 𝐽−𝑣 = 0 for 𝑣 < −𝑤. If fd𝑅 𝑁 or id𝑅 𝑁 is
finite, then 9.2.17 implies that one has RHom𝑅 (𝑁, 𝑀) ≃ Hom𝑅 (𝐽, 𝐼Ě−𝑛), where 𝐼
is any semi-injective replacement of 𝑀 . For every 𝑣 > 𝑛 + 𝑤 and 𝑝 ∈ ℤ one of the
inequalities 𝑝 < −𝑤 or 𝑣 + 𝑝 ⩾ 𝑣 − 𝑤 > 𝑛 holds, so the module

Hom𝑅 (𝐽, 𝐼Ě−𝑛)−𝑣 =
∏
𝑝∈ℤ

Hom𝑅 (𝐽−𝑝 , (𝐼Ě−𝑛)−(𝑣+𝑝) )

is zero. In particular, H−𝑣 (RHom𝑅 (𝑀, 𝑁)) = 0 holds for 𝑣 > 𝑛 + 𝑤 = 𝑛 + sup 𝑁 .
(ii)⇒ (iii): Trivial.
(iii)⇒ (i): By assumption 𝑔 = Gid𝑅 𝑀 is finite, and it must be shown that (iii)

implies 𝑔 ⩽ 𝑛. One can assume that 𝑀 is not acyclic, as otherwise the inequality is
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9.2 Gorenstein Injective Dimension 461

trivial. By definition there exists a semi-injective replacement 𝐼 of 𝑀 with Z−𝑔 (𝐼)
Gorenstein injective. By 9.2.17 there is an isomorphism,

(★) RHom𝑅 (𝐽, 𝑀) ≃ Hom𝑅 (𝐽, 𝐼Ě−𝑔) ,

for every injective 𝑅-module 𝐽. Recall from 9.2.10 that 𝑔 ⩾ − inf 𝑀 = − inf 𝐼. We
consider two different cases:

First assume that 𝑔 = − inf 𝐼 holds; this implies H−𝑔 (𝐼) ≠ 0 so the homomorphism
𝐼−𝑔+1 → Z−𝑔 (𝐼) is not surjective. Since Z−𝑔 (𝐼) is Gorenstein injective there exists, in
particular, a surjection 𝐽 ↠ Z−𝑔 (𝐼)where 𝐽 is an injective module. This map does not
admit a factorization 𝐽 → 𝐼−𝑔+1 → Z−𝑔 (𝐼), as this would force 𝐼−𝑔+1 → Z−𝑔 (𝐼) to
be surjective. Thus the map Hom𝑅 (𝐽, 𝐼−𝑔+1) → Hom𝑅 (𝐽,Z−𝑔 (𝐼)) is not surjective,
so inf Hom𝑅 (𝐽, 𝐼Ě−𝑔) = −𝑔. Now (★) and (iii) yield 𝑔 = − inf RHom𝑅 (𝐽, 𝑀) ⩽ 𝑛.

Next assume that 𝑔 > − inf 𝐼. In this case there is an exact sequence of modules,
0→ Z−𝑔+1 (𝐼) → 𝐼−𝑔+1 → Z−𝑔 (𝐼) → 0. As 𝑔 > − inf 𝐼 and 𝑔 = Gid𝑅 𝑀 , the module
Z−𝑔+1 (𝐼) is not Gorenstein injective. Hence 9.2.6 yields Ext1𝑅 (𝐽,Z−𝑔+1 (𝐼)) ≠ 0 for
some injective module 𝐽, and by 8.2.6 this means that H−𝑔 (RHom𝑅 (𝐽, 𝑀)) ≠ 0.
Hence 𝑔 ⩽ − inf RHom𝑅 (𝐽, 𝑀) ⩽ 𝑛, where the last inequality holds by (iii).

To finish the proof we show the implications (ii)⇒ (iv)⇒ (v)⇒ (vi)⇒ (i).
(ii)⇒ (iv): The second assertion in (iv) is immediate from (ii). The inequality

𝑛 ⩾ − inf 𝑀 follows, in view of 9.2.10, from (i), which is equivalent to (ii).
(iv)⇒ (v): First note that by 8.2.13 and 9.2.6 the “some” version and the “every”

version of condition (v) are equivalent. By assumption, 𝑔 = Gid𝑅 𝑀 is finite, so in
any semi-injective replacement 𝐼 of 𝑀 the module Z−𝑣 (𝐼) Gorenstein injective for
every integer 𝑣 ⩾ 𝑔; see 9.2.11. Thus, to show (v) it is enough to prove 𝑛 ⩾ 𝑔. Assume
towards a contradiction that 𝑛 < 𝑔 holds. Notice that by the assumption 𝑛 ⩾ − inf 𝑀 ,
the module Z−𝑛 (𝐼) can not be Gorenstein injective. There is an exact sequence
0 → Z−𝑛 (𝐼) → 𝐼−𝑛 → · · · → 𝐼−𝑔+1 → Z−𝑔 (𝐼) → 0, which shows that Z−𝑛 (𝐼)
has finite Gorenstein injective dimension, as 𝐼ď−𝑛 is a semi-injective replacement
of Σ−𝑛Z−𝑛 (𝐼). Now 9.2.15 yields an exact sequence 0→ Z−𝑛 (𝐼) → 𝐺 → 𝑁 → 0
where 𝐺 is Gorenstein injective and 𝑁 has finite injective dimension. By 8.2.6 and
(iv) one has Ext1𝑅 (𝑁,Z−𝑛 (𝐼)) � Ext𝑛+1

𝑅
(𝑁, 𝑀) = 0, so the sequence is split by 7.3.36.

Now 9.2.6 implies that Z−𝑛 (𝐼) is Gorenstein injective, which is a contradiction.
(v)⇒ (vi): This implication is immediate in view of 5.3.26.
(vi)⇒ (i): This implication is immediate from the definition, 9.2.9, of Gid𝑅.
The equalities in the last assertion follow immediately from the equivalence of

(i)–(iii) and 7.3.24. □

The next result reflects the inability of Gorenstein injective modules to tell injec-
tive and projective, even flat, modules apart.

9.2.19 Theorem. Let 𝑀 be an 𝑅-complex. If 𝑀 has finite flat dimension, then the
equality Gid𝑅 𝑀 = id𝑅 𝑀 holds.

Proof. The inequality Gid𝑅 𝑀 ⩽ id𝑅 𝑀 holds by 9.2.12. To show the opposite
inequality, one can assume that 𝑔 = Gid𝑅 𝑀 is an integer. Set 𝑤 = − sup𝑀 − 1,
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which is an integer by 8.1.3, and note that one has 𝑤 < − sup𝑀 ⩽ − inf 𝑀 ⩽ 𝑔 by
9.2.10. Thus 9.2.14 yields a distinguished triangle in D(𝑅),

(†) Σ−1𝐾 −→ 𝑁 −→ 𝑀 −→ 𝐾 ,

with Gid𝑅 𝐾 ⩽ 𝑤 and id𝑅 𝑁 = 𝑔. As fd𝑅 𝑀 is finite, 9.2.18 yields

− inf RHom𝑅 (𝑀, 𝐾) ⩽ Gid𝑅 𝐾 + sup𝑀 ⩽ 𝑤 + sup𝑀 = −1 ,

and hence H0 (RHom𝑅 (𝑀, 𝐾)) = 0. By 7.3.26 this means that D(𝑅) (𝑀, 𝐾) = 0,
in particular, the morphism 𝑀 → 𝐾 in the distinguished triangle above is zero. By
E.22 this means the triangle (†) is split, and hence 𝑁 ≃ (Σ−1𝐾) ⊕𝑀 holds in D(𝑅).
In particular, id𝑅 𝑀 ⩽ id𝑅 𝑁 = 𝑔 holds as claimed. □

9.2.20 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; there is an equality,

Gid𝑅
( ∏
𝑢∈𝑈

𝑀𝑢
)
= sup
𝑢∈𝑈
{Gid𝑅 𝑀𝑢} .

Proof. To prove the inequality “⩽”, one can assume that the right-hand side is finite,
say, 𝑠 ∈ ℤ. By the definition, 9.2.9, of Gorenstein injective dimension and by 9.2.11
every 𝑀𝑢 admits a semi-injective replacement 𝐼𝑢 with H−𝑣 (𝐼𝑢) = 0 for all 𝑣 > 𝑠

and Z−𝑣 (𝐼𝑢) Gorenstein injective for all 𝑣 ⩾ 𝑠. Now 𝐼 =
∏
𝑢∈𝑈 𝐼

𝑢 is a semi-injective
replacement of

∏
𝑢∈𝑈 𝑀

𝑢 with H−𝑣 (𝐼) = 0 for all 𝑣 > 𝑠, see 5.3.21 and 3.1.22(d), and
Z−𝑣 (𝐼) =

∏
𝑢∈𝑈 Z−𝑣 (𝐼𝑢) Gorenstein injective for all 𝑣 ⩾ 𝑠, see 3.1.22(a) and 9.2.6.

To prove the opposite inequality “⩾” it suffices, as each 𝑀𝑢 is a direct summand
of

∏
𝑢∈𝑈 𝑀

𝑢, to argue that if 𝑀 ′ is a direct summand of an 𝑅-complex 𝑀 , then
one has Gid𝑅 𝑀 ′ ⩽ Gid𝑅 𝑀 . To this end, one may assume that 𝑀 is not acyclic
and that 𝑔 = Gid𝑅 𝑀 is finite. Let 𝑀 ′′ be an 𝑅-complex with 𝑀 = 𝑀 ′ ⊕ 𝑀 ′′. Let
𝐼 ′ and 𝐼 ′′ be semi-injective replacements of 𝑀 ′ and 𝑀 ′′. Now 𝐼 = 𝐼 ′ ⊕ 𝐼 ′′ is a
semi-injective replacement of 𝑀 , see 5.3.21. As H−𝑣 (𝐼) = 0 holds for all 𝑣 > 𝑔,
even for all 𝑣 > − inf 𝑀 , one has H−𝑣 (𝐼 ′) = 0 for all 𝑣 > 𝑔 by 3.1.23. Per 9.2.11 the
module Z−𝑣 (𝐼) = Z−𝑣 (𝐼 ′) ⊕Z−𝑣 (𝐼 ′′) is Gorenstein injective for every 𝑣 ⩾ 𝑔, whence
Z−𝑣 (𝐼 ′) is Gorenstein injective for 𝑣 ⩾ 𝑔, by 9.2.6, and Gid𝑅 𝑀 ′ ⩽ 𝑔 holds. □

The Case of Modules

9.2.21. Notice from 9.2.18 that a non-zero 𝑅-module is Gorenstein injective if and
only if it has Gorenstein injective dimension 0 as an 𝑅-complex.

9.2.22 Theorem. Let 𝑀 be an 𝑅-module of finite Gorenstein injective dimension
and 𝑛 ⩾ 0 an integer. The following conditions are equivalent.

(i) Gid𝑅 𝑀 ⩽ 𝑛.
(ii) Ext𝑚

𝑅
(𝑁, 𝑀) = 0 holds for every 𝑅-module 𝑁 with fd𝑅 𝑁 finite or id𝑅 𝑁 finite

and all integers 𝑚 > 𝑛.

(iii) Ext𝑚
𝑅
(𝑁, 𝑀) = 0 holds for every injective 𝑅-module 𝑁 and all integers𝑚 > 𝑛.

(iv) Ext𝑛+1
𝑅
(𝑁, 𝑀) = 0 holds for every 𝑅-module 𝑁 with id𝑅 𝑁 finite.
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(v) In some/every injective resolution 0→ 𝑀 → 𝐼0 → · · · → 𝐼−(𝑣−1) → 𝐼−𝑣 →
· · · the module Ker(𝐼−𝑣 → 𝐼−(𝑣+1) ) is Gorenstein injective for every 𝑣 ⩾ 𝑛.

(vi) There is an exact sequence 0 → 𝑀 → 𝐼0 → · · · → 𝐼−(𝑛−1) → 𝐺 → 0 of
𝑅-modules with each 𝐼𝑖 injective and 𝐺 Gorenstein injective.

In particular, there is an equality

Gid𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | Ext𝑚𝑅 (𝑁, 𝑀) ≠ 0 for some injective 𝑅-module 𝑁 } .

Proof. By 5.3.31 every 𝑅-module 𝑀 has an injective resolution

0 −→ 𝑀 −→ 𝐼0 −→ · · · −→ 𝐼−(𝑣−1) −→ 𝐼−𝑣 −→ · · · .

In every such resolution, the injective homomorphism 𝑀 → 𝐼0 yields a semi-
injective resolution of 𝑀 , considered as a complex; cf. 5.3.33. Thus the complex
0 → 𝐼0 → · · · → 𝐼−(𝑣−1) → 𝐼−𝑣 → · · · is a semi-injective replacement of 𝑀 . The
equivalence of conditions (i)–(vi) now immediate from 9.2.18, and so is the asserted
equality in view of 7.3.27. □

Exercises

E 9.2.1 Let {𝑀𝑢 }𝑢∈𝑈 be a family of 𝑅-modules. Show that
∐
𝑢∈𝑈 𝑀

𝑢 is Gorenstein injective
only if 𝑀𝑢 is Gorenstein injective for every 𝑢 ∈ 𝑈.

E 9.2.2 Show that if every 𝑅-module has finite Gorenstein injective dimension, then every acyclic
complex of injective 𝑅-modules is totally acyclic.

E 9.2.3 Show that for an 𝑅-module 𝑀 the next conditions are equivalent. (i) For every Gorenstein
injective 𝑅-module𝐺 one has Ext𝑚

𝑅
(𝑀,𝐺) = 0 for all 𝑚 ≫ 0. (ii) For every Gorenstein

injective 𝑅-module 𝐺 one has Ext𝑚
𝑅
(𝑀,𝐺) = 0 for all 𝑚 ⩾ 1. Show that Gid𝑅 𝑀 =

id𝑅 𝑀 holds for every 𝑅-module 𝑀 that satisfies these conditions.
E 9.2.4 Let 𝑀 be a complex in D⊐ (𝑅) with H(𝑀 ) ≠ 0 and set 𝑢 = inf 𝑀. Show that for every

semi-injective replacement 𝐼 of 𝑀 one has Gid𝑅 𝑀 = Gid𝑅 Z𝑢 (𝐼 ) − 𝑢.
E 9.2.5 Let𝑀 be a complex inD⊏ (𝑅) . Show that Gid𝑅 𝑀 is finite if and only if𝑀 is isomorphic

in D(𝑅) to a bounded complex of Gorenstein injective 𝑅-modules.
E 9.2.6 Show that the full subcategory of 𝑅-complexes of finite Gorenstein injective dimension is

a triangulated subcategory of D⊐ (𝑅) .
E 9.2.7 Let 𝑀 be a complex in D⊏⊐ (𝑅) and 𝐺 a bounded above complex of Gorenstein injective

𝑅-modules with𝑀 ≃ 𝐺 inD(𝑅) . Show that for every 𝑅-module 𝑁 with fd𝑅 𝑁 or id𝑅 𝑁
finite and for all𝑚 > 0 and 𝑛 ⩾ − inf 𝑀 one has Ext𝑛+𝑚

𝑅
(𝑁, 𝑀 ) � Ext𝑚

𝑅
(𝑁, Z−𝑛 (𝐺) ) .

E 9.2.8 Show that if the coproduct of every (countable) family of Gorenstein injective 𝑅-modules
is Gorenstein injective, then 𝑅 is left Noetherian. Hint: 8.2.20.

E 9.2.9 Let 𝑛 be an integer. Show that an 𝑅-complex 𝑀 has Gid𝑅 𝑀 ⩽ 𝑛 if and only if there
is a diagram 𝑀

𝜄−→ 𝐼 ′
𝜏−→ 𝐼 in C(𝑅) where 𝐼 is a totally acyclic complex of injective

𝑅-modules, 𝜏−𝑣 is an isomorphism for 𝑣 ⩾ 𝑛, and 𝜄 is a semi-injective resolution.
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464 9 Gorenstein Homological Dimensions

9.3 Gorenstein Flat Dimension

Synopsis. Totally acyclic complex of flat modules; Gorenstein flat module; Gorenstein flat di-
mension; ∼ vs. Gorenstein injective dimension; ∼ vs. flat dimension; ∼ vs. Gorenstein projective
dimension; ∼ over Noetherian ring; ∼ of module; restricted flat dimension.

The Gorenstein flat dimension refines the flat dimension and, under mild assumptions
on the ring, also the Gorenstein projective dimension. The definition of Gorenstein
flat modules involves a tensor product, and that sets up a duality with Gorenstein
injective modules that is essential for our development of the theory.

Gorenstein Flat Modules

9.3.1 Definition. A complex 𝐹 of flat 𝑅-modules is called totally acyclic if it is
acyclic and 𝐸 ⊗𝑅 𝐹 is acyclic for every injective 𝑅o-module 𝐸 .

An 𝑅-module 𝐺 is called Gorenstein flat if one has 𝐺 � C0 (𝐹) for some totally
acyclic complex 𝐹 of flat 𝑅-modules.

Notice that if 𝐹 is a totally acyclic complex of flat 𝑅-modules, then the module
C𝑣 (𝐹) is Gorenstein flat for every 𝑣 ∈ ℤ.

9.3.2 Example. A flat 𝑅-module 𝐹 is Gorenstein flat as the disk complex D0 (𝐹) =
0 −−→ 𝐹

=−−→ 𝐹 −−→ 0 is totally acyclic.

As projective modules are flat, total acyclicity of a complex of projective modules
could per 9.1.1 and 9.3.1 mean two potentially different things. We avoid confusion
by stating whether we consider such a complex to be totally acyclic as a complex
of projective modules or as a complex of flat modules. For a complex of finitely
generated projective modules the definitions agree, see 9.3.3.
Remark. To avoid the potential confusion discussed above, some authors refer to the complexes
defined in 9.3.1 as ‘F-totally acyclic’. The two notions actually agree under mild assumptions on
the ring: Let 𝑅 be right coherent and 𝑃 a complex of projective 𝑅-modules. If 𝑃 is totally acyclic
in the sense of 9.3.1, then it is totally acyclic in the sense of 9.1.1, and the converse holds if flat
𝑅-modules have finite projective dimension. Both assertions are shown by Christensen and Kato
[67] under the additional but superfluous assumtion that 𝑅 is commutative; see also E 9.3.1.

9.3.3 Example. An acyclic complex of finitely presented 𝑅-modules is by 1.3.47
and 9.1.5 a totally acyclic complex of flat 𝑅-modules if and only if it is totally acyclic
complex of projective 𝑅-modules; in particular, the cokernels in such a complex are
Gorenstein projective and Gorenstein flat.

9.3.4 Example. The Dold complex 𝐷 from 2.1.23 is by 9.1.6 and 9.3.3 an acyclic
complex of flat ℤ/4ℤ-modules. In particular, C0 (𝐷) � ℤ/2ℤ is a Gorenstein flat
ℤ/4ℤ-module.

Relative to a Gorenstein flat module, injective modules act like flat modules.
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9.3 Gorenstein Flat Dimension 465

9.3.5 Lemma. Let 𝐺 be an 𝑅-module; it is Gorenstein flat if and only if it satisfies
the following requirements:

(1) For every injective 𝑅o-module 𝐸 one has Tor𝑅𝑚 (𝐸, 𝐺) = 0 for all 𝑚 > 0 .
(2) There exists an exact sequence of 𝑅-modules, 0 → 𝐺 → 𝐹0 → 𝐹−1 → · · · ,

where each 𝐹𝑣 is flat and the sequence

0 −→ 𝐸 ⊗𝑅 𝐹0 −→ 𝐸 ⊗𝑅 𝐹−1 −→ · · ·

is exact for every injective 𝑅o-module 𝐸 .

Proof. Assume first that 𝐺 is Gorenstein flat and let 𝐹 be a totally acyclic complex
of flat 𝑅-modules with 𝐺 � C0 (𝐹); see 9.3.1. The truncated complex 𝐹Ď0 and the
isomorphism 𝐺 � C0 (𝐹) yield, up to indexing, the exact sequence asserted in (2).
The complex 𝐹ě0 is a semi-flat replacement of𝐺; by 7.4.17 it can be used to compute
the derived tensor product ⊗L

𝑅
𝐺. For 𝑚 > 0 the definition of Tor, 7.4.18, and total

acyclicity of 𝐹 yield

Tor𝑅𝑚 (𝐸, 𝐺) = H𝑚 (𝐸 ⊗𝑅 𝐹ě0) = H𝑚 (𝐸 ⊗𝑅 𝐹) = 0 .

Assuming now that 𝐺 satisfies the two requirements, let 𝜋 : 𝑃 ≃−−→ 𝐺 be a projective
resolution, see 8.3.25, and denote by 𝐹 the complex 0 → 𝐹0 → 𝐹−1 → · · · .
The homomorphism 𝐺 → 𝐹0 induces a quasi-isomorphism 𝜄 : 𝐺 → 𝐹, so 𝐹 =

Σ−1Cone(𝜄𝜋) is by 1.3.43, 4.1.1, and 4.2.16 an acyclic complex of flat 𝑅-modules
with 𝐺 � C0 (𝐹). Let 𝐸 be an injective 𝑅o-module. By (2) the morphism 𝐸 ⊗𝑅 𝜄 is a
quasi-isomorphism, and by (1) so is 𝐸 ⊗𝑅 𝜋, see 7.4.21. It follows that 𝐸 ⊗𝑅 𝜄𝜋 is a
quasi-isomorphism, whence the complex Σ−1Cone(𝐸 ⊗𝑅 𝜄𝜋) � 𝐸 ⊗𝑅 𝐹 is acyclic,
see 4.1.18 and 4.2.16. Thus 𝐹 is a totally acyclic complex of flat 𝑅-modules and 𝐺
is Gorenstein flat. □

9.3.6 Proposition. Let {𝐺𝑢}𝑢∈𝑈 be a family of 𝑅-modules. If every𝐺𝑢 is Gorenstein
flat, then the coproduct

∐
𝑢∈𝑈 𝐺

𝑢 is Gorenstein flat.

Proof. For each 𝑢 ∈ 𝑈 there exists a totally acyclic complex 𝐹𝑢 of flat 𝑅-modules
with 𝐺𝑢 � C0 (𝐹𝑢). The complex 𝐹 =

∐
𝑢∈𝑈 𝐹

𝑢 consists of flat modules by 5.4.22
and it is acyclic by 3.1.11. For every 𝑅o-module 𝐸 there is by 3.1.13 an isomorphism
𝐸 ⊗𝑅 𝐹 �

∐
𝑢∈𝑈 𝐸 ⊗𝑅 𝐹𝑢, and this complex is acyclic if 𝐸 is injective. Thus, 𝐹 is a

totally acyclic complex of flat 𝑅-modules. As C0 (𝐹) �
∐
𝑢∈𝑈 C0 (𝐹𝑢) �

∐
𝑢∈𝑈 𝐺

𝑢

holds by 3.1.10(c), it follows that
∐
𝑢∈𝑈 𝐺

𝑢 is Gorenstein flat. □

The next result smacks of flat–injective duality, but notice that it is not a bicondi-
tional statement.

9.3.7 Proposition. Let𝐺 be an 𝑅-module. If𝐺 is Gorenstein flat, then the 𝑅o-module
Hom𝕜 (𝐺,𝔼) is Gorenstein injective.

Proof. Let 𝐹 be a totally acyclic complex of flat 𝑅-modules with 𝐺 � C0 (𝐹). The
𝑅o-complex 𝐼 = Hom𝕜 (𝐹,𝔼) is acyclic, and each module 𝐼𝑣 is injective; see 5.4.19.
For every 𝑅o-module 𝐸 one has Hom𝑅o (𝐸, 𝐼) � Hom𝕜 (𝐸 ⊗𝑅 𝐹,𝔼) by adjunc-
tion 4.4.12, so Hom𝑅o (𝐸, 𝐼) is acyclic if 𝐸 is injective. Therefore, 𝐼 is a totally
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466 9 Gorenstein Homological Dimensions

acyclic complex of injective 𝑅o-modules; see 9.2.1. By 2.2.19 one has

Z0 (𝐼) � Hom𝕜 (C0 (𝐹),𝔼) � Hom𝕜 (𝐺,𝔼) ,

so Hom𝕜 (𝐺,𝔼) is Gorenstein injective. □

9.3.8 Lemma. Assume that 𝑅 is right Noetherian and let 𝐺 be an 𝑅-module. If the
𝑅o-module Hom𝑅 (𝐺,𝔼) is Gorenstein injective, then there exists an exact sequence,

η = 0 −→ 𝐺 −→ 𝐹0 −→ 𝐹−1 −→ · · · ,

where each 𝐹𝑣 is a flat 𝑅-module and Hom𝑅 (η, 𝑃) is exact for every flat 𝑅-module 𝑃.
Moreover, the sequence 𝐸 ⊗𝑅 η is exact for every injective 𝑅o-module 𝐸 .

Proof. Let η be a sequence of 𝑅-modules and 𝐸 an 𝑅o-module. Adjunction 4.4.12
yields an isomorphism Hom𝕜 (𝐸 ⊗𝑅 η,𝔼) � Hom𝑅 (η,Hom𝕜 (𝐸,𝔼)). If 𝐸 is injec-
tive, then Hom𝕜 (𝐸,𝔼) is a flat 𝑅-module by 8.4.28. Thus if Hom𝑅 (η, 𝑃) is exact
for every flat 𝑅-module 𝑃, then 𝐸 ⊗𝑅 η is exact for every injective 𝑅o-module 𝐸 ;
see 2.5.7(b).

To construct η it is now sufficient to construct a short exact sequence,

(♭) η′ = 0 −→ 𝐺 −→ 𝐹 −→ 𝐺′ −→ 0 ,

where 𝐹 is flat, 𝐺′ has the same property as 𝐺—that is, Hom𝕜 (𝐺′,𝔼) is Gorenstein
injective—and Hom𝑅 (η′, 𝑃) is exact for every flat 𝑅-module 𝑃. To this end, choose
by D.22 a flat preenvelope 𝜑 : 𝐺 → 𝐹. As the 𝑅o-module Hom𝕜 (𝐺,𝔼) is Gorenstein
injective there exists, in particular, a surjective homomorphism 𝐼 ↠ Hom𝕜 (𝐺,𝔼)
where 𝐼 is an injective 𝑅o-module. There are thus injective homomorphisms,

𝐺 ↣→ Hom𝕜 (Hom𝕜 (𝐺,𝔼),𝔼)↣→ Hom𝕜 (𝐼,𝔼) ,

where the first map is biduality 4.5.3. As above the 𝑅-module Hom𝕜 (𝐼,𝔼) is flat,
so 𝐺 maps injectively into a flat 𝑅-module. This fact, combined with the defining
property D.18 of preenvelopes, implies that 𝜑 is injective. Setting 𝐺′ = Coker 𝜑
one obtains a short exact sequence (♭). For every flat 𝑅-module 𝑃 the sequence
Hom𝑅 (η′, 𝑃) is exact as the functor Hom𝑅 ( , 𝑃) is left exact and 𝐺 → 𝐹 is a flat
preenvelope. It remains to see that Hom𝕜 (𝐺′,𝔼) is Gorenstein injective. Consider
the exact sequence

Hom𝕜 (η′,𝔼) = 0 −→ Hom𝕜 (𝐺′,𝔼) −→ Hom𝕜 (𝐹,𝔼) −→ Hom𝕜 (𝐺,𝔼) −→ 0 .

As the module Hom𝕜 (𝐺,𝔼) is Gorenstein injective, by assumption, and Hom𝕜 (𝐹,𝔼)
is injective by 5.4.19, it suffices by 9.2.6 to show that Ext1𝑅o (𝐸,Hom𝕜 (𝐺′,𝔼)) = 0
holds for all injective 𝑅o-modules 𝐸 . In view of 7.3.35 and 7.3.27, it is by injectivity
of Hom𝕜 (𝐹,𝔼) enough to show that Hom𝑅o (𝐸,Hom𝕜 (η′,𝔼)) is exact for every
injective 𝑅o-module 𝐸 . By adjunction 1.2.6 and commutativity 1.2.3, this sequence
is isomorphic to Hom𝑅 (η′,Hom𝕜 (𝐸,𝔼)), which is exact as Hom𝕜 (𝐸,𝔼) is flat. □

The next result is the full analogue of flat–injective duality, 5.4.19.
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9.3.9 Theorem. Assume that 𝑅 is right Noetherian. An 𝑅-module 𝐺 is Gorenstein
flat if and only if the 𝑅o-module Hom𝕜 (𝐺,𝔼) is Gorenstein injective.

Proof. The “only if” part is 9.3.7. To prove the “if” part assume that Hom𝕜 (𝐺,𝔼)
is Gorenstein injective. For every injective 𝑅o-module 𝐸 and all 𝑚 > 0 one has
Hom𝕜 (Tor𝑅𝑚 (𝐸, 𝐺),𝔼) � Ext𝑚

𝑅o (𝐸,Hom𝕜 (𝐺,𝔼)) = 0 by 8.3.1 and 9.2.4(1). Thus
also Tor𝑅𝑚 (𝐸, 𝐺) = 0 holds; see 2.5.7(b). It follows that every projective resolution,

(⋄) · · · −→ 𝑃1 −→ 𝑃0 −→ 𝐺 −→ 0 ,

stays exact under application of the functor 𝐸 ⊗𝑅 for every injective 𝑅o-module
𝐸 . Splicing together the sequences (⋄) and η from 9.3.8 one gets a totally acyclic
complex of flat 𝑅-modules in which 𝐺 is a cokernel. □

9.3.10. Assume that 𝑅 is right Noetherian. It follows from 9.3.9 that the cokernels
of all the homomorphisms in the sequence η in 9.3.8 are Gorenstein flat.

Remark. Theorem 9.3.9 above is crucial for our development of the theory of Gorenstein flat
modules/dimension. Indeed, several of the proofs in this section combine results from Sect. 9.2,
which hold over any ring, with 9.3.9, which require the ring to be right Noetherian. It is therefore
worth pointing out that 9.3.9 actually holds under the weaker assumption that 𝑅 is right coherent, see
[132]. The reason is that the proof of 9.3.9 relies on the existence of flat preenvelopes D.22, whose
proof in turn relies on 8.3.26, and as remarked there, that result holds if the ring is right coherent.
This means, for example, that 9.3.13 below holds with the same proof for a right coherent ring.

By 5.5.18 the class of flat modules is closed under pure submodules and pure
quotients; over a right Noetherian ring, the class of Gorenstein flat modules exhibits
the same behavior.

9.3.11 Corollary. Assume that 𝑅 is right Noetherian and consider a pure exact
sequence of 𝑅-modules, 0→ 𝐺′ → 𝐺 → 𝐺′′ → 0. If 𝐺 is Gorenstein flat then so
are 𝐺′ and 𝐺′′.

Proof. The sequence 0 → Hom𝕜 (𝐺′′,𝔼) → Hom𝕜 (𝐺,𝔼) → Hom𝕜 (𝐺′,𝔼) → 0
is split exact by 5.5.14, so the assertion follows from 9.3.9 and 9.2.6. □

9.3.12 Lemma. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a 𝑈-direct system of 𝑅-modules. If 𝑈
is filtered, then the canonical surjective homomorphism

∐
𝑢∈𝑈 𝑀

𝑢 → colim𝑢∈𝑈 𝑀𝑢

from 3.2.3 is a pure epimorphism.

Proof. Write 𝜋 for the canonical homomorphism. For every finitely presented 𝑅-
module 𝑁 the functor Hom𝑅 (𝑁, ) preserves coproducts and filtered colimits, see
3.1.33 and 3.3.17, so Hom𝑅 (𝑁, 𝜋) is isomorphic to the canonical homomorphism∐
𝑢∈𝑈 Hom𝑅 (𝑁, 𝑀𝑢) → colim𝑢∈𝑈 Hom𝑅 (𝑁, 𝑀𝑢) associated with the𝑈-direct sys-

tem {Hom𝑅 (𝑁, 𝜇𝑣𝑢) : Hom𝑅 (𝑁, 𝑀𝑢) → Hom𝑅 (𝑁, 𝑀𝑣)}𝑢⩽𝑣. As this map is surjec-
tive, so is Hom𝑅 (𝑁, 𝜋). Hence 𝜋 is a pure epimorphism; see 5.5.15. □

The next proposition captures key features of the class of Gorenstein flat modules.
The first assertion in part (a) together with 9.3.2 shows that the class is so-called
projectively resolving.
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9.3.13 Proposition. Assume that 𝑅 is right Noetherian.
(a) Let 0 → 𝐺′ → 𝐺 → 𝐺′′ → 0 be an exact sequence of 𝑅-modules. If 𝐺′′ is

Gorenstein flat, then 𝐺 is Gorenstein flat if and only if 𝐺′ is so. If 𝐺′ and 𝐺
are Gorenstein flat, then 𝐺′′ is Gorenstein flat if and only if Tor𝑅1 (𝐸, 𝐺′′) = 0
holds for every injective 𝑅o-module 𝐸 .

(b) Every direct summand of a Gorenstein flat 𝑅-module is Gorenstein flat.
(c) Let {𝜇𝑣𝑢 : 𝐺𝑢 → 𝐺𝑣}𝑢⩽𝑣 be a 𝑈-direct system of 𝑅-modules. If 𝑈 is filtered

and every module 𝐺𝑢 is Gorenstein flat, then colim𝑢∈𝑈 𝐺𝑢 is Gorenstein flat.

Proof. (a): The sequence 0→ Hom𝕜 (𝐺′′,𝔼) → Hom𝕜 (𝐺,𝔼) → Hom𝕜 (𝐺′,𝔼) →
0 is exact. Furthermore, one has Hom𝕜 (Tor𝑅1 (𝐸, 𝐺′′),𝔼) � Ext1𝑅o (𝐸,Hom𝕜 (𝐺′′,𝔼))
for every 𝑅o-module 𝐸 ; see 8.3.1. The conclusions now follow from 9.3.9 and 9.2.6.

(b): This is a special case of 9.3.11.
(c): This follows from 9.3.6, 9.3.11, and 9.3.12. □

Among modules of finite Gorenstein flat dimension, Gorenstein flat modules are
characterized by Tor vanishing. To prove that, the next lemma is key.

9.3.14 Lemma. Let 𝑁 be an 𝑅o-module; the following conditions are equivalent.
(i) Tor𝑅1 (𝑁,𝐺) = 0 for every Gorenstein flat 𝑅-module 𝐺.
(ii) Tor𝑅𝑚 (𝑁,𝐺) = 0 for every Gorenstein flat 𝑅-module 𝐺 and all 𝑚 > 0 .

The class N of 𝑅o-modules 𝑁 satifying these conditions has the following properties.
(a) Let 0→ 𝑁 ′ → 𝑁 → 𝑁 ′′ → 0 be an exact sequence of 𝑅o-modules. If two of

the modules 𝑁 ′, 𝑁 , and 𝑁 ′′ beong to N, then so does the third.
(b) Let {𝜈𝑣𝑢 : 𝑁𝑢 → 𝑁𝑣}𝑢⩽𝑣 be a𝑈-direct system of modules in N. If𝑈 is filtered,

then colim𝑢∈𝑈 𝑁𝑢 belongs to N .

(c) Every 𝑅o-module 𝑁 with id𝑅 𝑁 or fd𝑅 𝑁 finite belongs to N .

Proof. The implication (ii)⇒ (i) is trivial. For the converse, let 𝐺 be a Gorenstein
flat 𝑅-module and 𝐹 a totally acyclic complex of flat 𝑅-modules with C0 (𝐹) � 𝐺.
For 𝑚 > 0 one has Tor𝑅𝑚 (𝑁,𝐺) � Tor𝑅1 (𝑁,C𝑚−1 (𝐹)) by 8.3.9, so (i) implies (ii) as
the module C𝑚−1 (𝐹) is Gorenstein flat.

(a): It follows from 7.4.29 that 𝑁 ′, 𝑁 ′′ ∈ N implies 𝑁 ∈ N, and that 𝑁, 𝑁 ′′ ∈ N
implies 𝑁 ′ ∈ N. Now assume that 𝑁, 𝑁 ′ ∈ N. Another application of 7.4.29 yields
Tor𝑅𝑚 (𝑁 ′′, 𝐺) = 0 for every Gorenstein flat 𝑅-module 𝐺 and all 𝑚 > 1. To show that
also Tor𝑅1 (𝑁 ′′, 𝐺) = 0 holds, note that every Gorenstein flat module 𝐺 by definition
fits into an exact sequence 0 → 𝐺 → 𝐹 → 𝐺′ → 0 with 𝐹 flat and 𝐺′ Gorenstein
flat. Application of 7.4.29 to this sequence yields Tor𝑅1 (𝑁 ′′, 𝐺) � Tor𝑅2 (𝑁 ′′, 𝐺′),
and the right-hand side is zero, as just shown.

(b): For every 𝑅-module 𝐺 the functor Tor𝑅1 ( , 𝐺) preserves filtered colimits by
7.4.25, so the assertion follows directly from the definition of the class N.

(c): In view of part (a), it suffices to prove that N contains every injective and
every flat 𝑅-module, and that is the case by 9.3.5(1) and 8.3.23. □
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Gorenstein Flat Dimension

9.3.15 Definition. Let 𝑀 be an 𝑅-complex. The Gorenstein flat dimension of 𝑀 ,
written Gfd𝑅 𝑀 , is defined as

Gfd𝑅 𝑀 = inf
{
𝑛 ∈ ℤ

���� There exists a semi-flat replacement 𝐹 of 𝑀 with
H𝑣 (𝐹) = 0 for all 𝑣 > 𝑛 and C𝑛 (𝐹) Gorenstein flat

}
with the convention inf ∅ = ∞. One says that Gfd𝑅 𝑀 is finite if Gfd𝑅 𝑀 < ∞ holds.

A comment similar to the one after 8.1.2 justifies the last convention in 9.3.15.

9.3.16. Let 𝑀 be an 𝑅-complex. For every semi-flat replacement 𝐹 of 𝑀 one has
H(𝐹) � H(𝑀); the next (in)equalities are hence immediate from the definition,

Gfd𝑅 𝑀 ⩾ sup𝑀 and Gfd𝑅 Σ𝑠𝑀 = Gfd𝑅 𝑀 + 𝑠 for every integer 𝑠 .

Moreover, one has Gfd𝑅 𝑀 = −∞ if and only if 𝑀 is acyclic.

Under mild assumptions on the ring, one can show that given any semi-flat
replacement 𝐹 of a complex of Gorenstein flat dimension at most 𝑛 the cokernel
C𝑣 (𝐹) is Gorenstein flat for all 𝑣 ⩾ 𝑛; see 9.3.21.

9.3.17 Proposition. Let 𝑀 be an 𝑅-complex. There is an inequality,

Gid𝑅o Hom𝕜 (𝑀,𝔼) ⩽ Gfd𝑅 𝑀 ,

and equality holds if 𝑅 is right Noetherian.

Proof. To prove the inequality “⩽” one can assume that 𝑔 = Gfd𝑅 𝑀 is an integer.
By definition there is a semi-flat replacement 𝐹 of𝑀 with H𝑣 (𝐹) = 0 for all 𝑣 > 𝑔 and
C𝑔 (𝐹) Gorenstein flat. The complex 𝐼 = Hom𝕜 (𝐹,𝔼) is a semi-injective replacement
of Hom𝕜 (𝑀,𝔼), see 5.4.9, and for 𝑣 ∈ ℤ one has H−𝑣 (𝐼) � Hom𝕜 (H𝑣 (𝐹),𝔼) and
Z−𝑣 (𝐼) � Hom𝕜 (C𝑣 (𝐹),𝔼) by 2.2.19. It follows that H−𝑣 (𝐼) = 0 holds for all
𝑣 > 𝑔 and, in view of 9.3.7, that Z−𝑔 (𝐼) Gorenstein injective. Thus the inequality
Gid𝑅o Hom𝕜 (𝑀,𝔼) ⩽ 𝑔 holds by the definition, 9.2.9.

Assume that 𝑅 is right Noetherian. To prove the inequality “⩾” one can assume that
𝑑 = Gid𝑅o Hom𝕜 (𝑀,𝔼) is an integer. Let 𝐹 be a semi-flat replacement of 𝑀 . As the
complex 𝐼 = Hom𝕜 (𝐹,𝔼) is a semi-injective replacement of Hom𝕜 (𝑀,𝔼), it follows
from 9.2.11 that the module Z−𝑑 (𝐼) � Hom𝕜 (C𝑑 (𝐹),𝔼) is Gorenstein injective, and
hence C𝑑 (𝐹) is Gorenstein flat by 9.3.9. As 𝑑 ⩾ − inf Hom𝕜 (𝑀,𝔼) = sup𝑀 = sup 𝐹
holds by 9.2.10 and 2.5.7(b) one has H𝑣 (𝐹) = 0 for all 𝑣 > 𝑑. Thus the desired
inequality Gfd𝑅 𝑀 ⩽ 𝑑 follows from the definition 9.3.15. □

The next two results compare the Gorenstein flat dimension to the flat dimension.
The first of these is at times expressed by saying that Gfd𝑅 is a refinement of fd𝑅. It
follows, in particular, that a Gorenstein flat module is flat or of infinite flat dimension.
The Gorenstein flat module from 9.3.4 has infinite flat dimension; see 8.3.7.
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9.3.18 Theorem. Let 𝑀 be an 𝑅-complex. There is an inequality,

Gfd𝑅 𝑀 ⩽ fd𝑅 𝑀 ,

and equality holds if 𝑀 has finite flat dimension.

Proof. The inequality is evident from the definitions of the dimensions, see 8.3.3
and 9.3.15, and from the fact that every flat module is Gorenstein flat, see 9.3.2. If
𝑀 has finite flat dimension, then 8.3.17, 9.2.12, and 9.3.17 yield,

fd𝑅 𝑀 = id𝑅o Hom𝕜 (𝑀,𝔼) = Gid𝑅o Hom𝕜 (𝑀,𝔼) ⩽ Gfd𝑅 𝑀 . □

Equality also holds in 9.3.18 if 𝑀 has finite injective dimension. This reflects
9.3.5: To a Gorenstein flat module, injective and flat modules look alike.

9.3.19 Theorem. Assume that 𝑅 is left Noetherian and let 𝑀 be an 𝑅-complex. If
𝑀 has finite injective dimension, then the equality Gfd𝑅 𝑀 = fd𝑅 𝑀 holds.

Proof. One can assume that 𝑀 belongs to D⊏ (𝑅); otherwise the asserted equality
is trivial, see 8.3.4 and 9.3.16. As 𝑅 is left Noetherian, 8.3.18 now shows that the
𝑅o-complex Homk (𝑀,𝔼) has finite flat dimension, and hence the second equality
below holds by 9.2.19. The first equality and the inequality hold by 8.3.17 and 9.3.17.

fd𝑅 𝑀 = id𝑅o Homk (𝑀,𝔼) = Gid𝑅o Homk (𝑀,𝔼) ⩽ Gfd𝑅 𝑀 .

The opposite inequality, fd𝑅 𝑀 ⩾ Gfd𝑅 𝑀 , holds by 9.3.18. □

Remark. The assertion in 9.3.19 holds without the assumption that 𝑅 is left Noetherian; see
Christensen, Estrada, and Thompson [56].

Right Noetherian Rings

Just as the treatment of flat dimension in Sect. 8.3 relies crucially on flat–injective
duality, see 1.3.48, the development below of the Gorenstein flat dimension hinges
on 9.3.9. Hence the assumption in 9.3.20–9.3.30 that the ring is right Noetherian.
Remark. As implied in the Remark after 9.3.10, the theory developed in this section works under
the weaker assumption that 𝑅 is right coherent; in particular, 9.3.17 and 9.3.26 hold under this
assumption; see [132].

Šaroch and Šťovíček [248] have proved that the class of Gorenstein flat 𝑅-modules has the
resolving properties from 9.3.13 without any assumptions on 𝑅; they do so by showing that the
class is the left half of a complete hereditary cotorsion pair. However, this does not appear to be
enough to develop a satisfactory theory of Gorenstein flat dimension. In [55] Christensen, Estrada,
Liang, Thompson, Wu, and Yang develop a variation on the Gorenstein flat dimension; one that
works well over all rings and agrees with the Gorenstein flat dimension over right coherent rings.

The next proposition applies, in particular, to a short exact sequence of complexes,
see 6.5.24.
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9.3.20 Proposition. Assume that 𝑅 is right Noetherian and consider a distinguished
triangle, 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′, in D(𝑅). With 𝑔′ = Gfd𝑅 𝑀 ′, 𝑔 = Gfd𝑅 𝑀 , and
𝑔′′ = Gfd𝑅 𝑀 ′′ there are inequalities,

𝑔′ ⩽ max{𝑔, 𝑔′′ − 1} , 𝑔 ⩽ max{𝑔′, 𝑔′′} , and 𝑔′′ ⩽ max{𝑔′ + 1, 𝑔} .

In particular, if two of the complexes 𝑀 ′, 𝑀 , and 𝑀 ′′ have finite Gorenstein flat
dimension, then so has the third.

Proof. Application of the triangulated functor RHom𝕜 ( ,𝔼) = Hom𝕜 ( ,𝔼) to the
given triangle yields a distinguished triangle in D(𝑅o),

Hom𝕜 (𝑀 ′′,𝔼) → Hom𝕜 (𝑀,𝔼) → Hom𝕜 (𝑀 ′,𝔼) → ΣHom𝕜 (𝑀 ′′,𝔼) .

The assertion now follows from 9.2.13 and 9.3.17. □

Remark. Proposition 9.3.20 essentially shows that the complexes of finite Gorenstein flat dimen-
sion form a triangulated subcategory of D(𝑅); see E 9.3.9.

9.3.21 Lemma. Assume that 𝑅 is right Noetherian and let 𝑀 be an 𝑅-complex. For
every semi-flat replacement 𝐹 of𝑀 and every integer 𝑣 ⩾ Gfd𝑅 𝑀 the module C𝑣 (𝐹)
is Gorenstein flat.

Proof. Set 𝑔 = Gfd𝑅 𝑀 . By 9.3.17 one has Gid𝑅o Hom𝕜 (𝑀,𝔼) = 𝑔, and by 5.4.9
the complex 𝐼 = Hom𝕜 (𝐹,𝔼) is a semi-injective replacement of Hom𝕜 (𝑀,𝔼). Thus
9.2.11 and 2.2.19 imply that the module Z−𝑣 (𝐼) � Hom𝕜 (C𝑣 (𝐹),𝔼) is Gorenstein
injective for every 𝑣 ⩾ 𝑔. Thus C𝑣 (𝐹) is Gorenstein flat for 𝑣 ⩾ 𝑔 by 9.3.9. □

A module of finite Gorenstein flat dimension can be approximated by a Gorenstein
flat module and one of finite flat dimension. We derive this as a corollary to the next
result about approximations in the derived category.

9.3.22 Proposition. Assume that 𝑅 is right Noetherian and let 𝑀 be an 𝑅-complex
of finite Gorenstein flat dimension 𝑔 = Gfd𝑅 𝑀 . For every semi-flat replacement 𝐹
of 𝑀 and every integer 𝑢 with 𝑔 > 𝑢 there is a distinguished triangle in D(𝑅),

𝐾 −→ 𝑀 −→ 𝑁 −→ Σ𝐾 ,

where the complexes 𝐾 and 𝑁 have the following properties:
(a) There is a degreewise split exact sequence 0 → 𝐹ď𝑢 → 𝐾 → Σ𝑢𝐺 → 0 in

C(𝑅) where 𝐺 is a Gorenstein flat 𝑅-module. Furthermore, one has

Gfd𝑅 𝐾 ⩽ 𝑢 and H𝑣 (𝐾) �
{

0 for 𝑣 ⩾ 𝑢 + 1
H𝑣 (𝑀) for 𝑣 ⩽ 𝑢 − 1 .

(b) The complex 𝑁 satisfies

fd𝑅 𝑁 = 𝑔 and H𝑣 (𝑁) �
{

H𝑣 (𝑀) for 𝑣 ⩾ 𝑢 + 2
0 for 𝑣 ⩽ 𝑢 .

(c) There is an exact sequence of 𝑅-modules,

0 −→ H𝑢+1 (𝑀) −→ H𝑢+1 (𝑁) −→ H𝑢 (𝐾) −→ H𝑢 (𝑀) −→ 0 .
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Proof. If 𝑀 is acyclic the statement is void as no integer 𝑢 satisfies −∞ = 𝑔 > 𝑢.
Now assume that𝑀 is not acyclic, in which case 𝑔 is an integer. By 9.3.21 the module
C𝑔 (𝐹) is Gorenstein flat and by 9.3.8 and 9.3.10 there exists an acyclic 𝑅-complex
𝐿 = 0→ C𝑔 (𝐹) → 𝐿𝑔−1 · · · → 𝐿𝑢 → 𝐺 → 0, concentrated in degrees 𝑔, . . . , 𝑢 − 1,
where 𝐿𝑔−1, . . . , 𝐿𝑢 are flat, the cokernels are Gorenstein flat, and Hom𝑅 (𝐿, 𝑃′) is
acyclic for every flat 𝑅-module 𝑃′. Set 𝐿𝑔 = C𝑔 (𝐹) and 𝐿𝑢−1 = 𝐺 and notice that,
in particular, the cokernel C𝑢 (𝐿) � 𝐺 is Gorenstein flat.

As 𝐿 is acyclic so is the truncated complex 𝐿Ď𝑔−1 and the sequence of 𝑅-modules
0 → C𝑔 (𝐹) → 𝐿𝑔−1 → C𝑔−1 (𝐿) → 0 is exact. For every flat 𝑅-module 𝑃′

acyclicity of Hom𝑅 (𝐿, 𝑃′) implies acyclicity of Hom𝑅 (𝐿Ď𝑔−1, 𝑃
′) and exactness of

the sequence

(†) 0→ Hom𝑅 (C𝑔−1 (𝐿), 𝑃′) → Hom𝑅 (𝐿𝑔−1, 𝑃
′) → Hom𝑅 (C𝑔 (𝐹), 𝑃′) → 0 .

Consider the short exact sequence of 𝑅-complexes,

(‡) 0 −→ Σ𝑔−1C𝑔 (𝐹)
𝛼−−−→ 𝐿ď𝑔−1 −→ 𝐿Ď𝑔−1 −→ 0 ,

where 𝛼 is a quasi-isomorphism as 𝐿Ď𝑔−1 is acyclic; see 4.2.6. Let 𝑃 be a complex of
flat 𝑅-modules. It follows from exatness of (†) that the functor Hom𝑅 ( , 𝑃𝑛) leaves
the sequence (‡) exact for every 𝑛 ∈ ℤ. It now follows from 2.3.19 that the functor
Hom𝑅 ( , 𝑃) also leaves the sequence (‡) exact. Furthermore, as Hom𝑅 (𝐿Ď𝑔−1, 𝑃𝑛)
is acyclic for every 𝑛 ∈ ℤ, it follows from A.2 that Hom𝑅 (𝐿Ď𝑔−1, 𝑃) is acyclic.
Now 4.2.6 yields that Hom𝑅 (𝛼, 𝑃) is a surjective quasi-isomorphism, whence the
morphism C(𝑅) (𝛼, 𝑃) is surjective as well by 4.2.7 and 2.3.10. Surjectivity of
C(𝑅) (𝛼, 𝐹ď𝑔−1) yields a commutative diagram of 𝑅-complexes,

Σ𝑔−1C𝑔 (𝐹)
𝛽
//

≃𝛼

��

𝐹ď𝑔−1

𝐿ď𝑔−1
𝛾
// 𝐹ď𝑔−1 ,

where 𝛽 is induced by 𝜕𝐹𝑔 . This diagram—in conjunction with the definition of
distinguished triangles in D(𝑅), see 6.2.3 and 6.5.5, the axiom (TR3) in E.2, and
6.5.19—shows that the complexes Cone 𝛽 and Cone 𝛾 are isomorphic in D(𝑅).
Evidently, one has Cone 𝛽 = 𝐹Ď𝑔, and this complex is isomorphic to 𝐹 ≃ 𝑀 in
D(𝑅). Consequently, Cone 𝛾 ≃ 𝑀 holds in D(𝑅).

Set 𝐶 = Cone 𝛾. By 2.5.22 and 6.5.24 there is a distinguished triangle in D(𝑅),

𝐶ď𝑢 −→ 𝐶 −→ 𝐶ě𝑢+1 −→ Σ𝐶ď𝑢 ,

which we argue is the desired one. As already noticed,𝐶 ≃ 𝑀 inD(𝑅). The complex

𝐾 = 𝐶ď𝑢 = 0 −→ 𝐹𝑢 ⊕ 𝐺 −→ 𝐹𝑢−1 −→ 𝐹𝑢−2 −→ · · ·

fits into the degreewise split exact sequence in C(𝑅),

(♭) 0 −→ 𝐹ď𝑢 −→ 𝐾 −→ Σ𝑢𝐺 −→ 0 .
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The complex 𝐹 is semi-flat, and so is 𝐹ě𝑢+1 by 5.4.8. Hence 5.4.12 applied to the
exact sequence 0→ 𝐹ď𝑢 → 𝐹 → 𝐹ě𝑢+1 → 0 shows that 𝐹ď𝑢 is semi-flat. It follows
from 8.3.3 and 9.3.18 that Gfd𝑅 (𝐹ď𝑢) = fd𝑅 (𝐹ď𝑢) ⩽ 𝑢 holds. As 𝐺 is a Gorenstein
flat module, one has Gfd𝑅 Σ𝑢𝐺 ⩽ 𝑢, with equality if𝐺 is non-zero, so application of
6.5.24 and 9.3.20 to (♭) shows that Gfd𝑅 𝐾 ⩽ 𝑢. The assertion about the homology
of 𝐾 = 𝐶ď𝑢 is immediate as 𝐶 ≃ 𝑀 in D(𝑅). Notice that

𝑁 = 𝐶ě𝑢+1 = 0 −→ 𝐿𝑔−1 −→ 𝐹𝑔−1 ⊕ 𝐿𝑔−2 −→ · · · −→ 𝐹𝑢+1 ⊕ 𝐿𝑢 −→ 0

is a complex of flat 𝑅-modules concentrated in degrees 𝑔, . . . , 𝑢 + 1. In the extremal
case 𝑢 = 𝑔 − 1 one has 𝑁 = Σ𝑔𝐿𝑔−1. Thus 𝑁 is semi-flat by 5.4.8 with fd𝑅 𝑁 ⩽ 𝑔.
Note that 𝑔 ⩽ max{Gfd𝑅 𝐾,Gfd𝑅 𝑁} holds by 9.3.20. As Gfd𝑅 𝐾 ⩽ 𝑢 < 𝑔 holds one
has Gfd𝑅 𝑁 ⩾ 𝑔, so fd𝑅 𝑁 = 𝑔 holds by 9.3.18. The assertion about the homology of
𝑁 = 𝐶ě𝑢+1 is immediate as 𝐶 ≃ 𝑀 in D(𝑅). The exact sequence in part (c) follows
by applying 6.5.19 to the constructed distinguished triangle. □

9.3.23 Corollary. Assume that 𝑅 is right Noetherian and let 𝑀 be an 𝑅-module of
finite Gorenstein flat dimension 𝑔 = Gfd𝑅 𝑀 . The following assertions hold.

(a) There is an exact sequence of 𝑅-modules 0 → 𝑀 → 𝑋 → 𝐺 → 0 where 𝐺
is Gorenstein flat and fd𝑅 𝑋 = 𝑔 .

(b) If 𝑔 > 0, then there is an exact sequence of 𝑅-modules 0→ 𝑋 → 𝐺 → 𝑀 → 0
where 𝐺 is Gorenstein flat and fd𝑅 𝑋 = 𝑔 − 1 .

Proof. (a): For 𝑢 = −1 the sequence 9.3.22(c) reads

0 −→ 𝑀 −→ H0 (𝑁) −→ H−1 (𝐾) −→ 0 .

If follows from 9.3.22(a) that 𝐾 is isomorphic to Σ−1H−1 (𝐾) in D(𝑅), whence one
has Gfd𝑅 H−1 (𝐾) − 1 = Gfd𝑅 𝐾 ⩽ 𝑢 = −1. Consequently, the module H−1 (𝐾) is
Gorenstein flat. Similarly, one has 𝑁 ≃ H0 (𝑁) and fd𝑅 H0 (𝑁) = fd𝑅 𝑁 = 𝑔.

(b): As 𝑔 > 0 one can apply 9.3.22(c) with 𝑢 = 0 to obtain the exact sequence

0 −→ H1 (𝑁) −→ H0 (𝐾) −→ 𝑀 −→ 0 .

If follows from 9.3.22(a) that 𝐾 is isomorphic to H0 (𝐾) in D(𝑅), whence one has
Gfd𝑅 H0 (𝐾) = Gfd𝑅 𝐾 ⩽ 𝑢 = 0. That is, the module H0 (𝐾) is Gorenstein flat.
Similarly, one has 𝑁 ≃ ΣH1 (𝑁) and fd𝑅 H1 (𝑁) + 1 = fd𝑅 𝑁 = 𝑔. □

The utility of the following, technical, result becomes clear in 9.3.25.

9.3.24 Proposition. Assume that 𝑅 is right Noetherian. Let 𝐹 be a semi-flat 𝑅-
complex and 𝐸 a semi-injective 𝑅o-complex. If 𝐸 has finite injective or finite flat
dimension, then the morphism

𝐸 ⊗𝑅 𝜏𝐹Ď𝑛 : 𝐸 ⊗𝑅 𝐹 −→ 𝐸 ⊗𝑅 𝐹Ď𝑛

is a quasi-isomorphism for every integer 𝑛 ⩾ Gfd𝑅 𝐹.

Proof. Let 𝐸 ≃−−→ 𝐽 be a semi-injective resolution; by 5.3.24 there is a homotopy
equivalence 𝜄 : 𝐽 → 𝐸 . By 9.3.16 one has 𝑛 ⩾ sup 𝐹, so the map 𝜏𝐹Ď𝑛 : 𝐹 → 𝐹Ď𝑛 is a
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quasi-isomorphism by 4.2.4. Choose a semi-flat replacement 𝑃 of 𝐸 ; by 6.4.21 there
is a quasi-isomorphism 𝜋 : 𝑃 ≃−−→ 𝐽. In the commutative diagram,

𝑃 ⊗𝑅 𝐹
𝜋⊗𝐹
≃

//

𝑃⊗ 𝜏𝐹Ď𝑛≃
��

𝐽 ⊗𝑅 𝐹

𝐽⊗ 𝜏𝐹Ď𝑛
��

𝜄⊗𝐹
≊

// 𝐸 ⊗𝑅 𝐹

𝐸⊗ 𝜏𝐹Ď𝑛
��

𝑃 ⊗𝑅 𝐹Ď𝑛

𝜋⊗𝐹Ď𝑛
// 𝐽 ⊗𝑅 𝐹Ď𝑛

𝜄⊗𝐹Ď𝑛

≊
// 𝐸 ⊗𝑅 𝐹Ď𝑛 ,

the right-hand horizontal maps are homotopy equivalences by 4.3.20, while 𝑃 ⊗𝑅 𝜏𝐹Ď𝑛
and 𝜋 ⊗𝑅 𝐹 are quasi-isomorphisms by semi-flatness of 𝑃 and 𝐹. The diagram shows
that it is sufficient to verify that 𝜋 ⊗𝑅 𝐹Ď𝑛 is a quasi-isomorphism. Set𝐶 = Cone 𝜋 and
notice that it is an acyclic complex of modules that are direct sums of flat and injective
𝑅o-modules. The goal is to prove that the complex 𝐶 ⊗𝑅 𝐹Ď𝑛 � Cone(𝜋 ⊗𝑅 𝐹Ď𝑛) is
acyclic; see 4.1.19.

By 2.5.24 there is an exact sequence 0→ 𝐹′ → 𝐹 → 𝐹Ď𝑛 → 0 with 𝐹′ bounded
below. By 9.3.2, 9.3.21, and 9.3.13(a) these are all complexes of Gorenstein flat
modules, and it follows from 7.4.30 and 9.3.14(c) that the sequence

0 −→ 𝐶 ⊗𝑅 𝐹′ −→ 𝐶 ⊗𝑅 𝐹 −→ 𝐶 ⊗𝑅 𝐹Ď𝑛 −→ 0

is exact. The complex 𝐶 ⊗𝑅 𝐹 is acyclic as 𝐶 is acyclic and 𝐹 is semi-flat, and thus
it is enough to show that the left-hand complex 𝐶 ⊗𝑅 𝐹′ is acyclic; see 2.5.6. To
that end, it suffices by A.9 to show that 𝐶 ⊗𝑅 𝐺 is acyclic for every Gorenstein flat
module 𝐺. It is already known from 9.3.14(c) that Tor𝑅𝑚 (𝐶𝑣, 𝐺) = 0 holds for all
𝑣 ∈ ℤ and all 𝑚 > 0, so it suffices by A.7 to argue that Tor𝑅𝑚 (C𝑣 (𝐶), 𝐺) = 0 holds
for 𝑣 ≪ 0 and all 𝑚 > 0.

If 𝐸 has finite injective dimension, then one can assume that 𝐽 and 𝑃 are bounded
below; see 8.2.2, 5.2.15 and 5.4.10. It follows that 𝐶 is bounded below; in particular,
C𝑣 (𝐶) = 0 holds for 𝑣 ≪ 0.

If 𝐸 has finite flat dimension, then one can by 8.3.3 and 5.3.26 assume that
the complexes 𝑃 and 𝐽 are bounded above. It follows that 𝐶 is bounded above; in
particular, C𝑣 (𝐶) = 0 holds for 𝑣 ≫ 0. Let 𝐺 be a Gorenstein flat module. For every
𝑣 ∈ ℤ one has Tor𝑅𝑚 (𝐶𝑣, 𝐺) = 0 for all 𝑚 > 0, so in view of 9.3.14(a), induction on
the exact sequences 0→ C𝑣+1 (𝐶) → 𝐶𝑣 → C𝑣 (𝐶) → 0 yields Tor𝑅𝑚 (C𝑣 (𝐶), 𝐺) = 0
for all 𝑣 ∈ ℤ and all 𝑚 > 0. □

The take-away from of 9.3.5 is that flat and injective modules interact with
Gorenstein flat modules in the same way. This has the following useful consequence:

9.3.25 Corollary. Assume that 𝑅 is right Noetherian. Let 𝑀 be an 𝑅-complex of
finite Gorenstein flat dimension and 𝑁 an 𝑅o-complex of finite injective or finite flat
dimension. For every semi-flat replacement 𝐹 of𝑀 , every semi-injective replacement
𝐼 of 𝑁 , and every integer 𝑛 ⩾ Gfd𝑅 𝑀 there is in isomorphism D(𝕜),

𝑁 ⊗L
𝑅 𝑀 ≃ 𝐼 ⊗𝑅 𝐹Ď𝑛 .

Proof. The assertion follows immediately from 9.3.24 and 7.4.17. □
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9.3 Gorenstein Flat Dimension 475

A key difference between the next theorem and the main theorem about flat
dimension, 8.3.11, is the a priori assumption that the complex has finite Gorenstein
flat dimension. Over a commutative Noetherian ring, 19.1.16 offers another way to
compute the Gorenstein flat dimension, in the case it is finite.

9.3.26 Theorem. Assume that 𝑅 is right Noetherian. Let 𝑀 be an 𝑅-complex of
finite Gorenstein flat dimension and 𝑛 an integer. The next conditions are equivalent.

(i) Gfd𝑅 𝑀 ⩽ 𝑛.
(ii) sup (𝑁 ⊗L

𝑅
𝑀) ⩽ 𝑛 + sup 𝑁 holds for every 𝑅o-complex 𝑁 with fd𝑅o 𝑁 finite

or id𝑅o 𝑁 finite.
(iii) sup (𝑁 ⊗L

𝑅
𝑀) ⩽ 𝑛 holds for every injective 𝑅o-module 𝑁 .

(iv) 𝑛 ⩾ sup𝑀 and Tor𝑅
𝑛+1 (𝑁, 𝑀) = 0 for every 𝑅o-module 𝑁 with id𝑅o 𝑁 finite.

(v) 𝑛 ⩾ sup𝑀 and for some, equivalently every, semi-flat replacement 𝐹 of 𝑀 ,
the module C𝑣 (𝐹) is Gorenstein flat for every 𝑣 ⩾ 𝑛.

(vi) There exists a semi-flat replacement 𝐹 of 𝑀 with 𝐹𝑣 = 0 for all 𝑣 < inf 𝑀 ,
H𝑣 (𝐹) = 0 for all 𝑣 > 𝑛, and C𝑣 (𝐹) Gorenstein flat for all 𝑣 ⩾ 𝑛.

In particular, there are equalities,

Gfd𝑅 𝑀 = sup{sup (𝑁 ⊗L
𝑅 𝑀) | 𝑁 is an injective 𝑅o-module}

= sup{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝑁, 𝑀) ≠ 0 for some injective 𝑅o-module 𝑁 } .
Proof. We start by establishing the equivalence of conditions (i)–(iii).

(i)⇒ (ii): One can assume that 𝑁 is in D⊏ (𝑅o) and not acyclic; otherwise the
inequality is trivial. In this case, 𝑤 = sup 𝑁 is an integer. By 5.3.26 there is a semi-
injective resolution 𝑁 ≃−−→ 𝐼 with 𝐼𝑣 = 0 for 𝑣 > 𝑤. If fd𝑅o 𝑁 or id𝑅o 𝑁 is finite, then
9.3.25 yields 𝑁 ⊗L

𝑅
𝑀 ≃ 𝐼 ⊗𝑅 𝐹Ď𝑛 where 𝐹 is any semi-flat replacement of 𝑀 . For

𝑣 > 𝑛 + 𝑤 and 𝑝 ∈ ℤ either 𝑝 > 𝑤 or 𝑣 − 𝑝 ⩾ 𝑣 − 𝑤 > 𝑛 holds, so the module

(𝐼 ⊗𝑅 𝐹Ď𝑛)𝑣 =
∐
𝑝∈ℤ

𝐼𝑝 ⊗𝑅 (𝐹Ď𝑛)𝑣−𝑝

is zero. In particular, one has H𝑣 (𝑁 ⊗L
𝑅
𝑀) = 0 for 𝑣 > 𝑛 + 𝑤.

(ii)⇒ (iii): Trivial.
(iii)⇒ (i): By 9.3.17 the 𝑅o-complex Hom𝕜 (𝑀,𝔼) has finite Gorenstein injective

dimension. Furthermore, for every 𝑅o-module 𝑁 one has

− inf RHom𝑅o (𝑁,Hom𝕜 (𝑀,𝔼)) = − inf Hom𝕜 (𝑁 ⊗L
𝑅 𝑀,𝔼) = sup (𝑁 ⊗L

𝑅 𝑀) ,

where the first equality holds by adjunction 7.5.30 and the second one by 2.5.7(b).
Thus condition (iii) implies, in view of 9.2.18, that one has Gid𝑅 Hom𝕜 (𝑀,𝔼) ⩽ 𝑛,
and hence Gfd𝑅 𝑀 ⩽ 𝑛 holds by another application of 9.3.17.

(ii)⇒ (iv): The vanishing of Tor is immediate from (ii). In view of 9.3.16, the
inequality 𝑛 ⩾ sup𝑀 follows from (i), which is known to be equivalent to (ii).

(iv)⇒ (i): As already mentioned, the 𝑅o-complex Hom𝕜 (𝑀,𝔼) has finite Goren-
stein injective dimension. Moreover, one has sup𝑀 = − inf Hom𝕜 (𝑀,𝔼) by 2.5.7(b)
and Hom𝕜 (Tor𝑅

𝑛+1 (𝑁, 𝑀),𝔼) � Ext𝑛+1
𝑅o (𝑁,Hom𝕜 (𝑀,𝔼)) by 8.3.1. Thus (iv) im-

plies, in view of 9.2.18, that Gid𝑅 Hom𝕜 (𝑀,𝔼) ⩽ 𝑛 holds. Therefore, Gfd𝑅 𝑀 ⩽ 𝑛
holds by 9.3.17.
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Before we connect the equivalent conditions (i)–(iv) to (v), note that by 8.3.16 and
9.3.13 the “some” version and the “every” version of condition (v) are equivalent.

(i)⇒ (v): Follows from 9.3.16 and 9.3.21.
(v)⇒ (vi): This implication is immediate in view of 5.2.15 and 5.4.10.
(vi)⇒ (i): This implication is immediate from the definition, 9.3.15, of Gfd𝑅.
The equalities in the last assertion follow immediately from the equivalence of

(i)–(iii) and 7.4.19. □

9.3.27 Proposition. Assume that 𝑅 is right Noetherian and let {𝑀𝑢}𝑢∈𝑈 be a family
of 𝑅-complexes. There is an equality,

Gfd𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
= sup
𝑢∈𝑈
{Gfd𝑅 𝑀𝑢} .

Proof. By 9.3.17, 3.1.27, and 9.2.20 there are equalities

Gfd𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
= Gid𝑅o Hom𝕜

( ∐
𝑢∈𝑈

𝑀𝑢,𝔼
)

= Gid𝑅o
( ∏
𝑢∈𝑈

Hom𝕜 (𝑀𝑢,𝔼)
)

= sup
𝑢∈𝑈
{Gid𝑅o Hom𝕜 (𝑀𝑢,𝔼)}

= sup
𝑢∈𝑈
{Gfd𝑅 𝑀𝑢} . □

Comparison to Gorenstein Projective Dimension

9.3.28 Lemma. Assume that 𝑅 is right Noetherian and that every flat 𝑅-module has
finite projective dimension. Let X be a class of 𝑅-modules with the next properties:

(1) Every projective 𝑅-module belongs to X.
(2) Every module in X can be embedded into an 𝑅-module of finite flat dimension.
(3) For every exact sequence 0 → 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0 of 𝑅-modules with 𝑋 ′

and 𝑋 in X, also 𝑋 ′′ belongs to X.
If an 𝑅-module 𝑀 is in X and Ext𝑚

𝑅
(𝑀, 𝐿) = 0 holds for every projective 𝑅-module

𝐿 and all integers 𝑚 > 0, then 𝑀 is Gorenstein projective.

Proof. To prove that 𝑀 is Gorenstein projective, it suffices by the assumptions on
𝑀 to verify that it meets condition 9.1.3(2). To this end, it is enough to construct an
exact sequence of 𝑅-modules,

(†) 0 −→ 𝑀 −→ 𝑃 −→ 𝑀 ′ −→ 0 ,

where 𝑃 is projective, 𝑀 ′ has the same properties as 𝑀—that is, 𝑀 ′ is in X and
Ext𝑚

𝑅
(𝑀 ′, 𝐿) = 0 for every projective 𝑅-module 𝐿 and all 𝑚 > 0—and the sequence

(‡) 0 −→ Hom𝑅 (𝑀 ′, 𝐿) −→ Hom𝑅 (𝑃, 𝐿) −→ Hom𝑅 (𝑀, 𝐿) −→ 0

is exact for every projective 𝑅-module 𝐿. Indeed, having constructed such a sequence,
the sequence required in 9.1.3(2) can be constructed recursively.
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By property (2) the module 𝑀 can be embedded into an 𝑅-module 𝐹 of finite flat
dimension, say, 𝑛 = fd𝑅 𝐹. Set F𝑛 = {𝑌 ∈ M(𝑅) | fd𝑅 𝑌 ⩽ 𝑛}. By D.22 there exists
an F𝑛-preenvelope 𝛼 : 𝑀 → 𝑌 , and as 𝐹 belongs to F𝑛 it follows from D.20 that 𝛼
is injective. Let

(♭) 0 −→ 𝑁 −→ 𝑃
𝜋−−−→ 𝑌 −→ 0

be an exact sequence of 𝑅-modules with 𝑃 projective. As 𝑃 and 𝑌 belong to F𝑛,
it follows from 8.3.12 that 𝑁 is in F𝑛, whence pd𝑅 𝑁 is finite by 8.3.14(b). Thus,
one has Ext1𝑅 (𝑀, 𝑁) = 0 by 9.1.4, and appliction of the functor Hom𝑅 (𝑀, ) to the
exact sequence (♭) yields by 7.3.35 and 7.3.27 an exact sequence,

Hom𝑅 (𝑀, 𝑃)
Hom𝑅 (𝑀,𝜋 )−−−−−−−−−−→ Hom𝑅 (𝑀,𝑌 ) −→ 0 .

This gives a homomorphism 𝛽 : 𝑀 → 𝑃 with 𝜋𝛽 = 𝛼, and as 𝛼 is injective, so is 𝛽.
Thus, with 𝑀 ′ = Coker 𝛽 one obtains an exact sequence (†). If 𝐿 is a projective
𝑅-module, or even a module in F𝑛, then the sequence (‡) is exact. Indeed, one has

Hom𝑅 (𝛽, 𝐿) Hom𝑅 (𝜋, 𝐿) = Hom𝑅 (𝛼, 𝐿) ,

and since Hom𝑅 (𝛼, 𝐿) is surjective, see D.20, so is Hom𝑅 (𝛽, 𝐿). As Hom𝑅 ( , 𝐿)
is left exact, see 2.3.10, exactness of the sequence (‡) follows. Application of the
functor Hom𝑅 ( , 𝐿) to (†) yields by 7.3.35 and exactness of (‡) an exact sequence,

Hom𝑅 (𝑀, 𝐿)
0−−−→ Ext1𝑅 (𝑀 ′, 𝐿) −→ Ext1𝑅 (𝑃, 𝐿) −→ Ext1𝑅 (𝑀, 𝐿) −→ · · · .

As one has Ext𝑚
𝑅
(𝑃, 𝐿) = 0 = Ext𝑚

𝑅
(𝑀, 𝐿) for all 𝑚 > 0 by projectivity of 𝑃 and the

assumption on 𝑀 , it now follows that Ext𝑚
𝑅
(𝑀 ′, 𝐿) = 0 holds for all 𝑚 > 0.

It remains to see that 𝑀 ′ is in X. The module 𝑃 belongs to X by property (1). The
exact sequence (†) and property (3) now imply that 𝑀 ′ is in X. □

9.3.29 Lemma. Assume that 𝑅 is right Noetherian and that every flat 𝑅-module has
finite projective dimension. Let 𝑀 be an 𝑅-module and 𝑑 ⩾ 0 an integer. If Gfd𝑅 𝑀
is finite and Ext𝑚

𝑅
(𝑀, 𝐿) = 0 holds for every projective 𝑅-module 𝐿 and all integers

𝑚 > 𝑑, then one has Gpd𝑅 𝑀 ⩽ 𝑑.

Proof. Per 5.1.16 let 𝐹 ≃−−→ 𝑀 be a free resolution. There is an exact sequence,

(†) 0 −→ C𝑑 (𝐹) −→ 𝐹𝑑−1 −→ · · · −→ 𝐹0 −→ 𝑀 −→ 0 .

To prove that Gpd𝑅 𝑀 ⩽ 𝑑 holds, it suffices by 9.1.10 to show that C𝑑 (𝐹) is Goren-
stein projective. Each module 𝐹𝑣 is free, hence flat, and therefore Gorenstein flat by
9.3.2. By assumption, Gfd𝑅 𝑀 is finite, so the exact sequence (†) and 9.3.20 show
that Gfd𝑅 C𝑑 (𝐹) is finite. For every 𝑅-module 𝐿 and integer 𝑚 > 0 there is by 8.1.6
an isomorphism,

Ext𝑚𝑅 (C𝑑 (𝐹), 𝐿) � Ext𝑑+𝑚𝑅 (𝑀, 𝐿) ;

whence Ext𝑚
𝑅
(C𝑑 (𝐹), 𝐿) = 0 holds if 𝐿 is projective. Thus, replacing𝑀 with C𝑑 (𝐹),

it suffices to prove the assertion for 𝑑 = 0.
To prove that finiteness of Gfd𝑅 𝑀 and vansishing of Ext𝑚

𝑅
(𝑀, 𝐿) for every pro-

jective 𝑅-module 𝐿 and all𝑚 > 0 imply that𝑀 is Gorenstein projective, it suffices by
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9.3.28 to argue that the class X of 𝑅-modules of finite Gorenstein flat dimension has
the properties (1), (2), and (3) required in that result. Every projective 𝑅-module is
flat and hence Gorenstein flat by 9.3.2, so (1) holds. Property (2) holds by 9.3.23(a),
and (3) follows from 9.3.20. □

The next result is akin to 8.3.6 and 8.5.20. The assumption about finiteness of
projective dimension of flat 𝑅-modules holds per 8.5.20 if 𝑅 has has finite finitistic
projective dimension; see also the Remark after the proof.

9.3.30 Theorem. Assume that 𝑅 is right Noetherian and that every flat 𝑅-module
has finite projective dimension. Let 𝑀 be an 𝑅-complex; there is an inequality,

Gfd𝑅 𝑀 ⩽ Gpd𝑅 𝑀 .

Moreover, Gfd𝑅 𝑀 is finite if and only if Gpd𝑅 𝑀 is finite.

Proof. First we prove the inequality. By the definitions, 9.1.10 and 9.3.15, of the
dimensions, and by the fact that every semi-projective replacement of 𝑀 is also a
semi-flat replacement, see 5.4.10, it suffices to show that every Gorenstein projective
𝑅-module is Gorenstein flat. To this end we argue that every totally acyclic complex
𝑃 of projective 𝑅-modules is a totally acyclic per 9.3.1 when considered as a complex
of flat 𝑅-modules. Certainly 𝑃 is an acyclic complex of flat modules; see 1.3.43. For
every injective 𝑅o-module 𝐸 the 𝑅-module Hom𝕜 (𝐸,𝔼) is flat by 8.3.18. Hence,
by assumption, Hom𝕜 (𝐸,𝔼) has finite projective dimension. It now follows from
9.1.9(c) that Ext𝑚

𝑅
(𝐺,Hom𝕜 (𝐸,𝔼)) = 0 holds for every Gorenstein projective 𝑅-

module 𝐺 and all 𝑚 > 0; consequently the complex Hom𝑅 (𝑃,Hom𝕜 (𝐸,𝔼)) is
acyclic by A.1. By adjunction 4.4.12 this complex is isomorphic to Hom𝕜 (𝐸 ⊗𝑅 𝑃,𝔼)
which, therefore, is acyclic too. Finally, 2.5.7(b) yields acyclicity of 𝐸 ⊗𝑅 𝑃, so 𝑃 is
totally acyclic as a complex of flat 𝑅-modules.

We now prove the last assertion. From the established inequality it follows that
if Gpd𝑅 𝑀 is finite, then so is Gfd𝑅 𝑀 . To show the converse, recall from 8.3.14(b)
that there is an integer 𝑑 with pd𝑅 𝐹 ⩽ 𝑑 for every flat 𝑅-module 𝐹. Assume that
𝑛 = Gfd𝑅 𝑀 is finite. To prove finiteness of Gpd𝑅 𝑀 one can assume that 𝑀 is not
acyclic, i.e. 𝑛 is an integer, see 9.1.11 and 9.3.16. We proceed to verify the inequality,

(†) Gpd𝑅 𝑀 ⩽ 𝑛 + 𝑑 .

Let 𝑃 be a semi-projective, and hence also a semi-flat, replacement of 𝑀 . By 9.3.26
one has 𝑛 ⩾ sup𝑀 and the module C𝑛 (𝑃) is Gorenstein flat. We argue below that
the inequality Gpd𝑅 C𝑛 (𝑃) ⩽ 𝑑 holds. Having proved this, the exact sequence

0 −→ C𝑛+𝑑 (𝑃) −→ 𝑃𝑛+𝑑−1 −→ · · · −→ 𝑃𝑛 −→ C𝑛 (𝑃) −→ 0

and 9.1.31 show that C𝑛+𝑑 (𝑃) is Gorenstein projective, and thus (†) holds by 9.1.10.
Set𝐶 = C𝑛 (𝑃). To prove that Gpd𝑅 𝐶 ⩽ 𝑑 holds it suffices by 9.3.29 to argue that

one has Ext𝑚
𝑅
(𝐶, 𝐹) = 0 for every projective 𝑅-module 𝐹 and every integer 𝑚 > 𝑑.

Let 𝐹 be a projective 𝑅-module. Define, recursively, 𝑅-modules 𝐹0, 𝐹1, 𝐹2, . . . by
setting 𝐹0 = 𝐹 and 𝐹𝑣+1 = Coker 𝛿𝐹𝑣

𝔼
where 𝛿𝐹𝑣

𝔼
is biduality 1.4.2. By 8.3.28 there

are (pure) exact sequences of 𝑅-modules,
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(‡) 0 −→ 𝐹𝑣 −→ Homk (Homk (𝐹𝑣,𝔼),𝔼) −→ 𝐹𝑣+1 −→ 0 ,

and each module 𝐹𝑣 is flat. Thus, each 𝑅o-module Homk (𝐹𝑣,𝔼) is injective by 5.4.19.
Now, let 𝑣 ⩾ 0 and 𝑚 > 0 be integers. Let 𝑋 be a Gorenstein flat 𝑅-module; in the
computation below, the first isomorphism holds by 8.3.1 and the second by 9.3.5(1).

Ext𝑚𝑅 (𝑋,Homk (Homk (𝐹𝑣,𝔼),𝔼)) � Homk (Tor𝑅𝑚 (Homk (𝐹𝑣,𝔼), 𝑋),𝔼) = 0 .

In view of this computation the exact sequence of Ext modules, induced per 7.3.35
by the short exact sequence (‡), yields for every 𝑣 ⩾ 0 and 𝑚 > 0 an isomorphism,

Ext𝑚𝑅 (𝑋, 𝐹𝑣+1) � Ext𝑚+1𝑅 (𝑋, 𝐹𝑣) .

These isomorphisms combine to show that for every integer 𝑚 > 𝑑 one has:

(♭) Ext𝑚𝑅 (𝑋, 𝐹) = Ext𝑚𝑅 (𝑋, 𝐹0) � Ext𝑚−𝑑𝑅 (𝑋, 𝐹𝑑) .

Thus, to prove that Ext𝑚
𝑅
(𝐶, 𝐹) = 0 holds for every 𝑚 > 𝑑, it suffices by (♭) applied

with 𝑋 = 𝐶 to argue that one has Ext𝑛
𝑅
(𝐶, 𝐹𝑑) = 0 for every 𝑛 > 0. To that end, we

first show that for every flat 𝑅-module 𝐺 and every 𝑛 > 0 one has Ext𝑛
𝑅
(𝐺, 𝐹𝑑) = 0.

Applied with 𝑋 = 𝐺, see 9.3.2, the isomorphism in (♭) yields

Ext𝑛𝑅 (𝐺, 𝐹𝑑) � Ext𝑛+𝑑𝑅 (𝐺, 𝐹) = 0 ,

where the equality follows from 8.1.20, as pd𝑅 𝐺 ⩽ 𝑑 holds by the definition of 𝑑.
In particular, one has Ext1𝑅 (𝐹𝑑+1, 𝐹𝑑) = 0, so the exact sequence

0 −→ 𝐹𝑑 −→ Homk (Homk (𝐹𝑑 ,𝔼),𝔼) −→ 𝐹𝑑+1 −→ 0

is split by 7.3.36 and hence 𝐹𝑑 is a direct summand of Homk (Homk (𝐹𝑑 ,𝔼),𝔼). As
proved above, one has Ext𝑛

𝑅
(𝐶,Homk (Homk (𝐹𝑑 ,𝔼),𝔼)) = 0 for every 𝑛 > 0, and it

follows that also Ext𝑛
𝑅
(𝐶, 𝐹𝑑) = 0 holds for every 𝑛 > 0, as desired. □

Remark. The assumption in 9.3.30 about projective dimension of flat modules can be expressed
by saying that the invariant splf 𝑅 is finite; see E 8.5.11. Gruson and Jensen [113, 148] and Simson
[236] show that a ring 𝑅 of cardinality ℵ𝑛 has splf 𝑅 ⩽ 𝑛 + 1.

9.3.31 Example. The ℤ-module ℚ is flat, see 1.3.43, and hence Gorenstein flat by
9.3.2, so Gfdℤ ℚ = 0. However, one has Gpdℤ ℚ = pdℤ ℚ = 1 by 8.1.5 and 9.1.13.
Thus, the inequality in 9.3.30 can be strict.

Noetherian Rings and Homological Finiteness

For finitely generated modules—and more generally for complexes with finitely gen-
erated homology—over a left Noetherian ring, the projective and flat dimensions
agree; that is the content of 8.3.19. To prove the corresponding result for the Goren-
stein projective and Gorenstein flat dimensions we have to assume that the ring is not
just left Noetherian but Noetherian. This is, of course, because we have developed
the theory of Gorenstein flat dimension over right Noetherian rings.
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480 9 Gorenstein Homological Dimensions

9.3.32 Lemma. Assume that 𝑅 is Noetherian and let 𝐺 be a finitely generated 𝑅-
module. If 𝐺 is Gorenstein flat, then there is an exact sequence of finitely generated
𝑅-modules, 0→ 𝐺 → 𝐿 → 𝐺′ → 0, with 𝐿 free and 𝐺′ Gorenstein flat.

Proof. There exists, by definition, an exact sequence 0→ 𝐺 → 𝐹 → 𝐺′′ → 0 with
𝐹 flat and 𝐺′′ Gorenstein flat. As 𝑅 is left Noetherian, it follows from 5.5.7 that the
map 𝐺 → 𝐹 admits a factorization 𝐺 𝜑−−→ 𝐿 −−→ 𝐹 with 𝐿 finitely generated free.
Notice that 𝜑 is injective and that the module 𝐺′ = Coker 𝜑 is finitely generated.
There is now a commutative diagram with exact rows,

0 // 𝐺 // 𝐿 //

��

𝐺′ //

��

0

0 // 𝐺 // 𝐹 // 𝐺′′ // 0 .

For every injective 𝑅o-module 𝐸 , there is per 7.4.29 and 7.4.21 a commutative
diagram with exact rows,

0 // Tor𝑅1 (𝐸, 𝐺′)

��

// 𝐸 ⊗𝑅 𝐺 // 𝐸 ⊗𝑅 𝐿

��

0 // Tor𝑅1 (𝐸, 𝐺′′) // 𝐸 ⊗𝑅 𝐺 // 𝐸 ⊗𝑅 𝐹 .

Per 9.3.5(1) one has Tor𝑅1 (𝐸, 𝐺′′) = 0, and it follows that also Tor𝑅1 (𝐸, 𝐺′) vanishes.
As 𝑅 is right Noetherian it now follows from 9.3.13 that 𝐺′ is Gorenstein flat. □

9.3.33 Proposition. Assume that 𝑅 is left Noetherian and let𝐺 be a finitely generated
𝑅-module. If𝐺 is Gorenstein projective, then it is Gorenstein flat; the converse holds
if 𝑅 is Noetherian.

Proof. If 𝐺 is Gorenstein projective, then by 9.1.23 it is a cokernel in a totally
acyclic complex 𝑃 of finitely generated free 𝑅-modules. It follows from 9.1.5 that 𝑃
is totally acyclic as a complex of flat modules; see 9.3.1. Thus 𝐺 is Gorenstein flat.

Conversely, assume that 𝑅 is Noetherian and that 𝐺 is Gorenstein flat. It follows
from 9.3.32 that there is an injective quasi-isomorphism 𝜄 : 𝐺 → 𝐿, where 𝐿 is a
complex of finitely generated free 𝑅-modules with 𝐿𝑣 = 0 for 𝑣 > 0 and C𝑣 (𝐿)
Gorenstein flat for every 𝑣 ∈ ℤ. By 5.1.19 there is a free resolution 𝜋 : 𝐹 ≃−−→ 𝐺 with
𝐹 degreewise finitely generated. The complex 𝑃 = Σ−1Cone(𝜄𝜋) is a complex of
finitely generated free 𝑅-modules with C0 (𝑃) = C0 (𝐹) � 𝐺. Moreover, for 𝑣 ≪ 0
the module C𝑣 (𝑃) = C𝑣+1 (𝐿) is Gorenstein flat, so by 9.3.5(1) and A.8 the complex
𝐸 ⊗𝑅 𝑃 is acyclic for every injective 𝑅o-module 𝐸 . That is, 𝑃 is totally acyclic as a
complex of flat modules. □

Remark. The similarities in behavior of Gorenstein and absolute homological dimensions are
strong but not perfect: It follows from 9.3.33 and 9.3.13(c) that over a Noetherian ring, a filtered
colimit of finitely generated Gorenstein projective modules is Gorenstein flat. Over an Iwanaga–
Gorenstein ring every Gorenstein flat module is obtained in this way, see Enochs and Jenda [87,
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10.3], but in general it is not the case, not even if 𝑅 is commutative and local. That is, there is no
analogue of Govorov and Lazard’s theorem 5.5.7; see Holm and Jørgensen [135].

9.3.34 Theorem. Assume that 𝑅 is Noetherian and let 𝑀 be an 𝑅-complex. If 𝑀
belongs to Df

⊐ (𝑅), then there is an equality,

Gfd𝑅 𝑀 = Gpd𝑅 𝑀 .

Proof. Choose by 5.2.16 a degreewise finitely generated semi-projective resolution
𝑃
≃−−→ 𝑀 . The complex 𝑃 is, in particular, a semi-projective and a semi-flat replace-

ment of 𝑀; see 5.4.10. From the definitions, 9.1.10 and 9.3.15, of the dimensions in
question and from 9.1.19 and 9.3.26, it follows that one has

Gpd𝑅 𝑀 = inf{𝑛 ∈ ℤ | 𝑛 ⩾ sup𝑀 and C𝑛 (𝐿) is Gorenstein projective} and
Gfd𝑅 𝑀 = inf{𝑛 ∈ ℤ | 𝑛 ⩾ sup𝑀 and C𝑛 (𝑃) is Gorenstein flat}

As every module C𝑛 (𝑃) is finitely generated, the assertion follows from 9.3.33. □

Remark. Let 𝑅 and 𝑀 be as in 9.3.34. In this context it is standard to write G-dim𝑅 𝑀 for
the Gorenstein projective/flat dimension of 𝑀 and refer to it as the ‘Gorenstein dimension’ or
‘G-dimension’ of 𝑀. This notation and terminology goes back to Auslander and Bridgers original
work [8, 9]; in this book we stay with the notation Gpd𝑅 𝑀.

The Case of Modules

9.3.35. Notice from 9.3.26 that if 𝑅 is right Noetherian, then a non-zero 𝑅-module
is Gorenstein flat if and only if it has Gorenstein flat dimension 0 as an 𝑅-complex.

9.3.36 Theorem. Assume that 𝑅 is right Noetherian. Let 𝑀 be an 𝑅-module of finite
Gorenstein flat dimension and 𝑛 ⩾ 0 an integer. The next conditions are equivalent.

(i) Gfd𝑅 𝑀 ⩽ 𝑛.
(ii) Tor𝑅𝑚 (𝑁, 𝑀) = 0 holds for every 𝑅o-module 𝑁 with fd𝑅o 𝑁 finite or id𝑅o 𝑁

finite and all integers 𝑚 > 𝑛.

(iii) Tor𝑅𝑚 (𝑁, 𝑀) = 0 holds for every injective 𝑅o-module𝑁 and all integers𝑚 > 𝑛.

(iv) Tor𝑅
𝑛+1 (𝑁, 𝑀) = 0 holds for every 𝑅o-module 𝑁 with id𝑅o 𝑁 finite.

(v) In some/every flat resolution · · · → 𝐹𝑣 → 𝐹𝑣−1 → · · · → 𝐹0 → 𝑀 → 0 the
module Coker(𝐹𝑣+1 → 𝐹𝑣) is Gorenstein flat for every 𝑣 ⩾ 𝑛.

(vi) There is an exact sequence of 𝑅-modules 0 → 𝐺 → 𝐹𝑛−1 → · · · → 𝐹0 →
𝑀 → 0 with each 𝐹𝑖 flat and 𝐺 Gorenstein flat.

In particular, there is an equality

Gfd𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | Tor𝑅𝑚 (𝐸, 𝑀) ≠ 0 for some injective 𝑅o-module 𝐸 } .

Proof. By 5.1.16 every 𝑅-module 𝑀 has a flat resolution

· · · −→ 𝐹𝑣 −→ 𝐹𝑣−1 −→ · · · −→ 𝐹0 −→ 𝑀 −→ 0 .

In every such resolution, the surjective homomorphism 𝐹0 → 𝑀 is a quasi-
isomorphism, so the complex · · · → 𝐹𝑣 → 𝐹𝑣−1 → · · · → 𝐹0 → 0 is a semi-flat
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482 9 Gorenstein Homological Dimensions

replacement of 𝑀 , cf. 5.1.18. The equivalence of the conditions (i)–(vi) is now
immediate from 9.1.19, and so is the asserted equality in view of 7.4.21. □

Restricted Flat Dimension

We end this section by introducing yet another homological dimension. In contrast
to the dimensions studied in Sects. 8.1–8.3 and up to this point in this chapter, the
homological dimension introduced below is not defined in terms of replacements.

9.3.37 Definition. Let 𝑀 be an 𝑅-complex. The restricted flat dimension of 𝑀 ,
written Rfd𝑅 𝑀 , is defined as

Rfd𝑅 𝑀 = sup{sup (𝑁 ⊗L
𝑅 𝑀) | 𝑁 is an 𝑅o-module with fd𝑅o 𝑁 < ∞}

with the convention sup∅ = −∞. One says that Rfd𝑅 𝑀 is finite if Rfd𝑅 𝑀 < ∞.

The convention that a complex of restricted flat dimension−∞ has finite restricted
flat dimension may appear odd; as noticed below it only applies to acyclic complexes.

9.3.38. Let 𝑀 be an 𝑅-complex. The inequality below is immediate from the uni-
tor 7.5.4, and the equality follows from 2.5.5, as the derived tensor product per 7.4.5
is a triangulated functor,

Rfd𝑅 𝑀 ⩾ sup𝑀 and Rfd𝑅 Σ𝑠𝑀 = Rfd𝑅 𝑀 + 𝑠 for every integer 𝑠 .

Moreover, one has Rfd𝑅 𝑀 = −∞ if and only if 𝑀 is acyclic.

The next proposition applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

9.3.39 Proposition. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in
D(𝑅). With 𝑓 ′ = Rfd𝑅 𝑀 ′, 𝑓 = Rfd𝑅 𝑀 , and 𝑓 ′′ = Rfd𝑅 𝑀 ′′ there are inequalities,

𝑓 ′ ⩽ max{ 𝑓 , 𝑓 ′′ − 1} , 𝑓 ⩽ max{ 𝑓 ′, 𝑓 ′′} , and 𝑓 ′′ ⩽ max{ 𝑓 ′ + 1, 𝑓 } .

In particular, if two of the complexes 𝑀 ′, 𝑀 , and 𝑀 ′′ have finite restricted flat
dimension, then so has the third.

Proof. For every 𝑅o-module 𝑁 there is a distinguished triangle,

𝑁 ⊗L
𝑅 𝑀

′ −→ 𝑁 ⊗L
𝑅 𝑀 −→ 𝑁 ⊗L

𝑅 𝑀
′′ −→ Σ (𝑁 ⊗L

𝑅 𝑀
′) .

The inequalities now follow from the definition, 9.3.37, in view of 6.5.20. □

The next result compares to the definition, 8.5.16, of the finitistic flat dimension,
see also 9.4.1, but notice that the supremum in 9.3.40 is taken over all modules.
Since there exist rings of infinite finitistic flat dimension, see 20.2.21, it follows that
the restricted flat dimension of a module need not be finite.
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9.3.40 Proposition. There is an equality,

FFD 𝑅o = sup{Rfd𝑅 𝑀 | 𝑀 is an 𝑅-module} .

Moreover, there exists an 𝑅-module 𝑀 with Rfd𝑅 𝑀 = FFD 𝑅o.

Proof. Let 𝑀 be an 𝑅-module. For every 𝑅o-module 𝑁 with fd𝑅o 𝑁 < ∞ one has

sup (𝑁 ⊗L
𝑅 𝑀) ⩽ fd𝑅o 𝑁 ⩽ FFD 𝑅o

by 8.3.11 and 8.5.16. It follows that the inequalities Rfd𝑅 𝑀 ⩽ FFD 𝑅o and hence
FFD 𝑅o ⩾ sup{Rfd𝑅 𝑀 | 𝑀 is an 𝑅-module} hold. It remains to prove the existence
of an 𝑅-module 𝑀 with Rfd𝑅 𝑀 = FFD 𝑅o.

First assume that 𝑛 = FFD 𝑅o is finite. By 8.5.16 there exists an 𝑅o-module 𝑁
with fd𝑅o 𝑁 = 𝑛, and by 8.3.11 there exists an 𝑅-module 𝑀 with sup (𝑁 ⊗L

𝑅
𝑀) = 𝑛,

whence one has Rfd𝑅 𝑀 = 𝑛. If FFD 𝑅o is infinite, then there exists a sequence
{𝑁𝑢}𝑢∈ℕ of 𝑅o-modules with 𝑢 ⩽ fd𝑅o 𝑁𝑢 < ∞ for every 𝑢 ∈ ℕ. By 8.3.11 there
exists for each 𝑢 ∈ ℕ an 𝑅-module 𝑀𝑢 with sup (𝑁𝑢 ⊗L

𝑅
𝑀𝑢) = fd𝑅 𝑁𝑢. Now, set

𝑀 =
∐
𝑣∈ℕ 𝑀𝑣. For every 𝑢 ∈ ℕ one has by 7.4.5 and 3.1.11:

sup (𝑁𝑢 ⊗L
𝑅 𝑀) = sup

(∐
𝑣∈ℕ (𝑁𝑢 ⊗L

𝑅
𝑀𝑣)

)
⩾ sup (𝑁𝑢 ⊗L

𝑅
𝑀𝑢) = fd𝑅 𝑁𝑢 ⩾ 𝑢 .

It follows from 9.3.37 that Rfd𝑅 𝑀 = ∞ holds. □

Exercises

E 9.3.1 Assume that 𝑅 is right coherent and splf 𝑅 is finite. Show that a complex of projective
𝑅-modules that is totally acyclic in the sense of 9.1.1 is totally acyclic in the sense of
9.3.1. Hint: E 3.3.3.

E 9.3.2 Consider an exact sequence 0 → 𝐺′ → 𝐹 → 𝐺 → 0 of 𝑅-modules. Show that if 𝐹
is flat and 𝐺 is Gorenstein flat, then 𝐺′ is Gorenstein flat. Conclude that a complex of
finite Gorenstein flat dimension 𝑛 has a semi-flat replacement 𝐹 with C𝑣 (𝐹 ) Gorenstein
flat for all 𝑣 ⩾ 𝑛.

E 9.3.3 Let 𝑀 be an 𝑅-module. Show that if Tor𝑅𝑚 (𝐼, 𝑀 ) = 0 holds for all injective 𝑅o-modules
𝐼 and all𝑚 > 0, then one has Tor𝑅𝑚 (𝑁, 𝑀 ) = 0 for all 𝑅o-modules 𝑁 with id𝑅o 𝑁 < ∞
and all 𝑚 > 0.

E 9.3.4 Assume that 𝑅 is right Noetherian. Show that if every 𝑅-module has finite Gorenstein
flat dimension, then every acyclic complex of flat 𝑅-modules is totally acyclic.

E 9.3.5 Assume that 𝑅 is right Noetherian and let {𝑀𝑢 }𝑢∈𝑈 be a family of 𝑅-modules. Show
that

∏
𝑢∈𝑈 𝑀

𝑢 is Gorenstein flat only if 𝑀𝑢 is Gorenstein flat for every 𝑢 ∈ 𝑈.
E 9.3.6 Let 𝑅 be right Noetherian and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣 }𝑢∈𝑈 a𝑈-direct system of 𝑅-modules.

Show that Gfd𝑅 (colim𝑢∈𝑈 𝑀𝑢 ) ⩽ sup𝑢∈𝑈 {Gfd𝑅 𝑀𝑢 } holds if𝑈 is filtered.
E 9.3.7 Let 𝑅 be right Noetherian,𝑀 a complex inD⊏ (𝑅) with H(𝑀 ) ≠ 0, and set𝑤 = sup𝑀.

Show that for every semi-flat replacement 𝐹 of 𝑀 one has Gfd𝑅 𝑀 = 𝑤+Gfd𝑅 C𝑤 (𝐹 ) .
E 9.3.8 Let 𝑅 be right Noetherian and𝑀 a complex inD⊐ (𝑅) . Show that Gfd𝑅 𝑀 is finite if and

only if 𝑀 is isomorphic in D(𝑅) to a bounded complex of Gorenstein flat 𝑅-modules.
E 9.3.9 Assume that 𝑅 is right Noetherian. Show that the full subcategory of 𝑅-complexes of

finite Gorenstein flat dimension is a triangulated subcategory of D⊏ (𝑅) .
E 9.3.10 Assume that 𝑅 is right Noetherian. Let 𝑀 be a complex in D⊏⊐ (𝑅) and 𝐺 a bounded

below complex of Gorenstein flat 𝑅-modules with𝑀 ≃ 𝐺 inD(𝑅) . Show that for every
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𝑅o-module 𝑁 with fd𝑅o 𝑁 or id𝑅o 𝑁 finite and for all integers 𝑚 > 0 and 𝑛 ⩾ sup𝑀
there is an isomorphism Tor𝑅𝑛+𝑚 (𝑁, 𝑀 ) � Tor𝑅𝑚 (𝑁, C𝑛 (𝐺) ) .

9.4 Gorenstein Global Dimensions

Synopsis. Finitistic projective/injective/flat dimension; Gorenstein global dimension; Gorenstein
weak global dimension; Iwanaga–Gorenstein ring.

The finitistic Gorenstein dimensions agree with the ordinary finitistic dimensions,
so there is no need to introduce notation for finitistic Gorenstein dimensions.

9.4.1 Proposition. There are equalities,

FPD 𝑅 = sup{Gpd𝑅 𝑀 | 𝑀 is an 𝑅-module with Gpd𝑅 𝑀 < ∞}

= sup
{
Gpd𝑅 𝑀 − sup𝑀

���� 𝑀 is an 𝑅-complex with
H(𝑀) ≠ 0 and Gpd𝑅 𝑀 < ∞

}
and

FID 𝑅 = sup{Gid𝑅 𝑀 | 𝑀 is an 𝑅-module with Gid𝑅 𝑀 < ∞}

= sup
{
Gid𝑅 𝑀 + inf 𝑀

���� 𝑀 is an 𝑅-complex with
H(𝑀) ≠ 0 and Gid𝑅 𝑀 < ∞

}
.

Further, if 𝑅 is right Noetherian, then there are equalities,

FFD 𝑅 = sup{Gfd𝑅 𝑀 | 𝑀 is an 𝑅-module with Gfd𝑅 𝑀 < ∞}

= sup
{
Gfd𝑅 𝑀 − sup𝑀

���� 𝑀 is an 𝑅-complex with
H(𝑀) ≠ 0 and Gfd𝑅 𝑀 < ∞

}
.

Proof. Let 𝑠 and 𝑡 denote the suprema in the first display. The inequality FPD 𝑅 ⩽ 𝑠
holds by 9.1.13, and the opposite inequality holds by 9.1.16(a). Evidently, one has
𝑠 ⩽ 𝑡. To prove that equality holds, let 𝑀 be an 𝑅-complex with Gpd𝑅 𝑀 < ∞
and H(𝑀) ≠ 0. Set 𝑤 = sup𝑀 and note that 𝑤 is an integer by 9.1.11. Given
a semi-projective replacement 𝑃 of 𝑀 , the complex Σ−𝑤𝑃ě𝑤 is a semi-projective
replacement of the module C𝑤(𝑃), so one has Gpd𝑅 𝑀 = 𝑤+Gpd𝑅 C𝑤(𝑃) by 9.1.10
and 9.1.19. It follows that 𝑠 = 𝑡 holds.

The first equality in the second display follows from 9.2.12 and 9.2.15(a). For
an 𝑅-complex 𝑀 with Gid𝑅 𝑀 < ∞ and H(𝑀) ≠ 0 set 𝑢 = inf 𝑀 . It follows from
9.2.9 and 9.2.18 that for every semi-injective replacement 𝐼 of 𝑀 one has Gid𝑅 𝑀 =

Gid𝑅 Z𝑢 (𝐼) − 𝑢. This establishes the second equality in the second display.
If 𝑅 is right Noetherian, then the first equality in the third display follows from

9.3.18 and 9.3.23(a). For an 𝑅-complex 𝑀 with Gfd𝑅 𝑀 < ∞ and H(𝑀) ≠ 0 set
𝑤 = sup𝑀 . It follows from 9.3.15 and 9.3.26 that for every semi-flat replacement 𝐹
of 𝑀 one has Gfd𝑅 𝑀 = 𝑤 + Gfd𝑅 C𝑤(𝐹). This establishes the second equality in
the third display. □
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Gorenstein Global Dimension

9.4.2 Definition. The Gorenstein global dimension of 𝑅, written Ggldim 𝑅, is defined
as

Ggldim 𝑅 = sup{Gpd𝑅 𝑀 | 𝑀 is an 𝑅-module} .

The Gorenstein global dimension is a refinement of the global dimension.

9.4.3 Proposition. There is an inequality,

Ggldim 𝑅 ⩽ gldim 𝑅 ,

and equality holds if 𝑅 has finite global dimension.

Proof. Both assertions follow immediately from 9.1.13 . □

9.4.4 Example. It follows from 8.2.10 and 9.4.15 that one has Ggldimℤ/4ℤ = 0
while gldimℤ/4ℤ = ∞ holds by 8.5.2.

Remark. In view of 9.4.3 the Gorenstein global dimension is not a left–right symmetric invariant,
see the Remark after 8.5.2, but it follows from 9.4.15 and 8.5.30 that it is left–right symmetric for
Noetherian rings. Moreover, Christensen, Estrada, and Thompson [57] prove that Ggldim𝑅 = 0
holds if and only if Ggldim𝑅o = 0 holds, and this condition characterizes quasi-Frobenius rings.

9.4.5 Theorem. There are equalities,

Ggldim 𝑅 = sup{Gpd𝑅 𝑀 − sup𝑀 | 𝑀 is a complex in D⊏ (𝑅) with H(𝑀) ≠ 0}
= sup{Gid𝑅 𝑀 | 𝑀 is an 𝑅-module}
= sup{Gid𝑅 𝑀 + inf 𝑀 | 𝑀 is a complex in D⊐ (𝑅) with H(𝑀) ≠ 0} .

Moreover, the following inequalities hold,

FPD 𝑅 ⩽ Ggldim 𝑅 ⩾ FID 𝑅 .

Proof. The inequality FPD 𝑅 ⩽ Ggldim 𝑅 follows from 9.4.1, and so does the other
inequality once the equalities in the first display are established.

Denote by 𝑠1, 𝑠2, and 𝑠3 the suprema in the first display in the order they appear.
Evidently one has Ggldim 𝑅 ⩽ 𝑠1. To see that equality holds, let 𝑀 be a complex
with H(𝑀) ≠ 0 and 𝑤 = sup𝑀 < ∞. Given a semi-projective replacement 𝑃 of
𝑀 , the complex Σ−𝑤𝑃ě𝑤 is a semi-projective replacement of the module C𝑤(𝑃), so
by 9.1.10 and 9.1.19 one has Gpd𝑅 𝑀 = 𝑤 + Gpd𝑅 C𝑤(𝑃). A similarly argument
invoking 9.2.9 and 9.2.18 shows that 𝑠2 = 𝑠3 holds.

It remains to establish the equality Ggldim 𝑅 = 𝑠2. To that end let 𝑛 ⩾ 0 be
an integer; we proceed to prove that Ggldim 𝑅 ⩽ 𝑛 implies 𝑠2 ⩽ 𝑛 and vice-
versa. Assume first that Ggldim 𝑅 ⩽ 𝑛 holds. From this assumption, 9.1.31, 8.2.19,
and 9.1.20 one immediately gets id𝑅 𝑃 ⩽ 𝑛 for every projective 𝑅-module 𝑃 and
pd𝑅 𝐸 ⩽ 𝑛 for every injective 𝑅-module 𝐸 . Now let 𝑀 be an 𝑅 module and 𝐼 a semi-
injective replacement of 𝑀; by 9.2.9 it suffices to show that the module 𝑍 = Z−𝑛 (𝐼)
is Gorenstein injective.
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Let 𝑃 ≃−−→ 𝑀 be a projective resolution; see 5.2.28. Associated to the short exact
sequence 0 → C1 (𝑃) → 𝑃0 → 𝑀 → 0 there is by 8.2.14 another exact sequence
0→ 𝐼1 → 𝐽0 → 𝐼 → 0 where 𝐼1 and 𝐽0 are semi-injective replacements of C1 (𝑃)
and 𝑃0. It yields by 2.2.16 an exact sequence 0→ Z−𝑛 (𝐼1) → Z−𝑛 (𝐽0) → 𝑍 → 0
where the module Z−𝑛 (𝐽0) is injective by 8.2.8 since id𝑅 𝑃0 ⩽ 𝑛. Proceeding
recursively, the exact sequence 0→ C𝑣+1 (𝑃) → 𝑃𝑣 → C𝑣 (𝑃) → 0 yields, as above,
an exact sequence 0 → Z−𝑛 (𝐼𝑣+1) → Z−𝑛 (𝐽𝑣) → Z−𝑛 (𝐼𝑣) → 0, where Z−𝑛 (𝐽𝑣) is
injective. Splicing together the acyclic complexes

· · · → Z−𝑛 (𝐽1) → Z−𝑛 (𝐽0) → 𝑍 → 0 and 0→ 𝑍 → 𝐼−𝑛 → 𝐼−𝑛−1 → · · ·

one gets an acyclic complex 𝐼 ′ of injective 𝑅-modules with 𝑍 as a cycle module. To
see that 𝐼 ′ is totally acyclic, let 𝐸 be an injective 𝑅-module. As pd𝑅 𝐸 ⩽ 𝑛 holds,
one has Ext1𝑅 (𝐸,Z−𝑣 (𝐼 ′)) � Ext𝑛+1

𝑅
(𝐸,Z𝑛−𝑣 (𝐼 ′)) = 0 by 8.2.6, since the complex

𝐼 ′ď𝑛−𝑣 is a semi-injective replacement of Z𝑛−𝑣 (𝐼 ′). Thus 𝐼 ′ is totally acyclic, and 𝑍
is Gorenstein injective.

Assuming now that 𝑠2 ⩽ 𝑛 holds, it follows from 9.2.22, 8.1.20, and 9.2.19 that
pd𝑅 𝐸 ⩽ 𝑛 holds for every injective 𝑅-module 𝐸 and id𝑅 𝑃 ⩽ 𝑛 holds for every
projective 𝑅-module 𝑃. Let 𝑀 be an 𝑅 module and 𝑃 a semi-projective replacement
of 𝑀; by 9.1.10 it suffices to show that the module C𝑛 (𝑃) is Gorenstein projective,
and that follows from an argument dual to the one given above. □

Remark. In parallel with 8.5.3 one has Ggldim𝑅 = sup{Gpd𝑅 𝑅/𝔞 | 𝔞 is a left ideal in 𝑅 }; this
is shown by Bennis, Hu, and Wang [36] under the assumption that 𝑅 is commutative, but that
assumption is irrelevant for the argument. For a Noetherian ring 𝑅 the equality is proved in 9.4.17.

9.4.6 Corollary. The following conditions are quivalent.
(i) Ggldim 𝑅 is finite.
(ii) Every 𝑅-module has finite Gorenstein projective dimension.
(iii) Every complex in D⊏ (𝑅) has finite Gorenstein projective dimension.
(iv) Every 𝑅-module has finite Gorenstein injective dimension.
(v) Every complex in D⊐ (𝑅) has finite Gorenstein injective dimension.

Moreover, in the case these conditions are satisfied there are equalities,

FPD 𝑅 = Ggldim 𝑅 = FID 𝑅 .

Proof. The equivalence of the conditions follows from 9.4.5, 9.1.21, and 9.2.20. If
these conditions are satisfied, then the asserted equalities hold by 9.4.1. □

Remark. It transpires from the proof of 9.4.5 that the conditions in 9.4.6 are equivalent to finiteness
of the invarianst spli𝑅 and silp𝑅; see E 8.5.16. The Gorenstein projective and injective cases were
originally dealt with separately in works of Gedrich and Gruenberg [105] and Nucinkis [195]; they
are brought together by Emmanouil [82].

Gorenstein Weak Global Dimension

9.4.7 Definition. The Gorenstein weak global dimension of 𝑅, written Gwgldim 𝑅,
is defined as
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Gwgldim 𝑅 = sup{Gfd𝑅 𝑀 | 𝑀 is an 𝑅-module} .

The Gorenstein weak global dimension refines the weak global dimension.

9.4.8 Proposition. There is an inequality,

Gwgldim 𝑅 ⩽ wgldim 𝑅 ,

and equality holds if wgldim 𝑅 is finite.

Proof. Both assertions follow immediately from 9.3.18 . □

9.4.9 Proposition. If 𝑅 is right Noetherian, then there is an inequality,

Gwgldim 𝑅 ⩽ Ggldim 𝑅 .

Proof. Assume that Ggldim 𝑅 is finite. It follows from 9.4.6 and 8.5.18 that every
flat 𝑅-module has finite projective dimension, so the inequality holds by 9.3.30. □

For Noetherian rings equality holds in 9.4.9; this is proved in 9.4.16 and compares
to 8.5.13. In particular, one has Gwgldimℤ/4ℤ = 0 < wgldimℤ/4ℤ = ∞; see 9.4.4
and 8.5.13.
Remark. The inequality in 9.4.9 holds without the Noetherian hypothesis in perfect parallel with
the inequality wgldim𝑅 ⩽ gldim𝑅 from 8.5.6; see for example Wang, Yang, Shao, and Zhang [251].

9.4.10 Lemma. If Gwgldim 𝑅 is finite, then the following assertions hold.
(a) Every injective 𝑅o-module has finite flat dimension.
(b) If 𝑅 is left Noetherian, then every injective 𝑅-module has finite flat dimension.

Proof. Set 𝑛 = Gwgldim 𝑅 and assume that it is finite. Part (b) is immediate from
9.3.19. To prove part (a), let 𝐸 be an injective 𝑅o-module and 𝑀 an 𝑅-module. It
follows from 9.3.15 that 𝑀 has a semi-flat replacement 𝐹 with C𝑑 (𝐹) Gorenstein
flat for some 𝑑 ⩽ 𝑛. For 𝑚 > 𝑛 one now has Tor𝑅𝑚 (𝐸, 𝑀) � Tor𝑅

𝑚−𝑑 (𝐸,C𝑑 (𝐹)) = 0
by 8.3.9 and 9.3.5(1). Thus fd𝑅o 𝐸 ⩽ 𝑛 holds by 8.3.23. □

9.4.11 Lemma. If every injective 𝑅-module and every injective 𝑅o-module has finite
flat dimension, then Gwgldim 𝑅 is finite.

Proof. Since a product of injective modules by 1.3.27 is injective, it follows from
8.3.27 that 𝑑 = sup{fd𝑅 𝐸 | 𝐸 is an injective 𝑅-module} is a non-negative integer;
it suffices to show that every 𝑅-module has Gorenstein flat dimension at most 𝑑.

Let 𝑀 be an 𝑅-module and 𝑃 a semi-projective replacement of 𝑀; by 9.3.15 it
suffices to show that the module 𝐶 = C𝑑 (𝑃) is Gorenstein flat. Let 𝑀 ≃−−→ 𝐼 be an
injective resolution; see 5.3.32. Associated to 0→ 𝑀 → 𝐼0 → Z−1 (𝐼) → 0 there is
an exact sequence 0→ 𝑃→ 𝐿0 → 𝑃−1 → 0 where 𝐿0 and 𝑃−1 are semi-projective
replacements of 𝐼0 and Z−1 (𝐼); see 8.1.13. It yields by 2.2.16 an exact sequence
0 → 𝐶 → C𝑑 (𝐿0) → C𝑑 (𝑃−1) → 0 where the module C𝑑 (𝐿0) is flat by 8.3.11.
Proceeding recursively, the exact sequence 0 → Z−𝑣 (𝐼) → 𝐼−𝑣 → Z−𝑣−1 (𝐼) → 0
yields, as above, an exact sequence 0→ C𝑑 (𝑃−𝑣) → C𝑑 (𝐿−𝑣) → C𝑑 (𝑃−𝑣−1) → 0,
where C𝑑 (𝐿−𝑣) is flat. Splicing together the acyclic complexes
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· · · → 𝑃𝑑+1 → 𝑃𝑑 → 𝐶 → 0 and 0→ 𝐶 → C𝑑 (𝐿0) → C𝑑 (𝐿1) → · · ·

one gets an acyclic complex 𝐹 of flat 𝑅-modules with 𝐶 as a cokernel module.
To see that 𝐹 is totally acyclic, let 𝐸 be an injective 𝑅o-module. By assumption
𝐸 has finite flat dimension, say 𝑛, so for every 𝑣 ∈ ℤ one has Tor𝑅1 (𝐸,C𝑣 (𝐹)) �
Tor𝑅

𝑛+1 (𝐸,C𝑣−𝑛 (𝐹)) = 0 by 8.1.6, as 𝐹ě𝑣−𝑛 is a semi-flat replacement of C𝑣−𝑛 (𝐹).
Thus 𝐹 is totally acyclic and 𝐶 is Gorenstein flat. □

9.4.12 Proposition. If 𝑅 is left Noetherian, then Gwgldim 𝑅 is finite if and only if
every injective 𝑅-module and every injective 𝑅o-module has finite flat dimension.

Proof. The assertion follows immediately from 9.4.10 and 9.4.11. □

Remark. Proposition 9.4.12 shows that finiteness of Gwgldim𝑅 is closely tied to finiteness of the
invariants sfli𝑅 and sfli𝑅o; see also E 9.4.3.

The Gorenstein weak global dimension is left–right symmetric.

9.4.13 Theorem. If 𝑅 is Noetherian, then there is an equality,

Gwgldim 𝑅 = Gwgldim 𝑅o ,

and one has

FFD 𝑅 ⩽ Gwgldim 𝑅

= sup{Gfd𝑅 𝑀 − sup𝑀 | 𝑀 is a complex in D⊏ (𝑅) with H(𝑀) ≠ 0} .

Proof. The inequality FFD 𝑅 ⩽ Gwgldim 𝑅 holds by 9.4.1. To verify the equality
in the same display, let 𝑀 be a complex with H(𝑀) ≠ 0 and 𝑤 = sup𝑀 < ∞. Given
a semi-flat replacement 𝐹 of 𝑀 , the complex Σ−𝑤𝐹ě𝑤 is a semi-flat replacement of
the module C𝑤(𝐹), so by 9.3.15 and 9.3.26 one has Gfd𝑅 𝑀 = 𝑤 + Gfd𝑅 C𝑤(𝐹).

To prove the equality in the first display, notice that Gwgldim 𝑅 and Gwgldim 𝑅o

are simultaneously finite by 9.4.12. Set 𝑛 = Gwgldim 𝑅 and assume that it is fi-
nite. There exists by 9.3.36 an 𝑅-module 𝑀 and an injective 𝑅o-module 𝐸 with
Tor𝑅𝑛 (𝐸, 𝑀) ≠ 0. One has fd𝑅o 𝐸 < ∞ by 9.4.12 and, therefore, 𝑛 ⩽ FFD 𝑅o by
8.3.23. Thus there are inequalities FFD 𝑅 ⩽ Gwgldim 𝑅 ⩽ FFD 𝑅o, and equalities
hold since the same inequalities hold with 𝑅 and 𝑅o interchanged. □

9.4.14 Corollary. If 𝑅 is Noetherian, then the following conditions are equivalent.
(i) Gwgldim 𝑅 is finite.
(ii) Every 𝑅-module has finite Gorenstein flat dimension.
(iii) Every complex in D⊏ (𝑅) has finite Gorenstein flat dimension.

Moreover, in the case these conditions are satisfied there are equalities,

FFD 𝑅 = Gwgldim 𝑅 = FID 𝑅 .

Proof. It follows from 9.4.13 that (i) implies (iii), which in turn implies (ii), and
(ii) implies (i) by 9.3.27. If these conditions are satisfied, then 9.4.1 yields FFD 𝑅 =

Gwgldim 𝑅. Finally, Gwgldim 𝑅 = FFD 𝑅o = FID 𝑅 holds by 9.4.13 and 8.5.27. □
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Remark. In 9.4.13 and 9.4.14 the assumption that 𝑅 is Noetherian is imposed by the reference to
9.3.19 in the proof of 9.4.10, and just like 9.3.19 the statement above remains valid without that
assumption; see Christensen, Estrada, and Thompson [56].

Iwanaga–Gorenstein Rings

A Noetherian ring 𝑅 is Iwanaga–Gorenstein if id𝑅 𝑅 and id𝑅o 𝑅 are finite, see 8.5.29,
and by 9.2.19 this is equivalent to 𝑅 having finite Gorenstein injective dimension over
𝑅 and 𝑅o. Theorem 9.4.15 below is a strong converse: All Gorenstein dimensions of
all modules over an Iwanaga–Gorenstein ring are finite. By definition, the Iwanaga–
Gorenstein property of a Noetherian ring is left–right symmetric, nevertheless it can
be detected by finiteness of the Gorenstein global dimension on one side.
Remark. While a Noetherian ring of finite Gorenstein global dimension on one side is Iwanaga–
Gorenstein, it is as discussed by Kirkman, Kuzmanovich, and Small [158] not known if a Noetherian
ring of finite self-injective dimension on one side is Iwanaga–Gorenstein. For Artin algebras this is
known as the Gorenstein Symmetry Question; it was raised by Auslander and Reiten [13].

9.4.15 Theorem. If 𝑅 is Noetherian, then the following conditions are equivalent.
(i) 𝑅 is Iwanaga–Gorenstein.
(ii) Gwgldim 𝑅 is finite.
(iii) Ggldim 𝑅 is finite.
(iv) sup{Gpd𝑅 𝑅/𝔞 | 𝔞 is a left ideal in 𝑅} is finite.

In the case these conditions are satisfied there are equalities,

id𝑅 𝑅 = Ggldim 𝑅

= sup{Gpd𝑅 𝑅/𝔞 | 𝔞 is a left ideal in 𝑅}
= Gwgldim 𝑅 .

Proof. Conditions (i) and (ii) are equivalent by 8.5.31 and 9.4.12.
(ii)⇒ (iii): The equivalence of (i) and (ii) has already been established, so one

has id𝑅 𝑅 = 𝑛 for some integer 𝑛 ⩾ 0. Now, it follows from 8.5.27 and 8.5.18 that
pd𝑅 𝐹 ⩽ 𝑛 holds for every flat 𝑅-module 𝐹.

Let𝑀 be an 𝑅-module and 𝑃′ ≃ 𝑀 a semi-projective replacement. By assumption
and 9.3.36 the module 𝐺 = C𝑑 (𝑃′) is Gorenstein flat for some 𝑑 ⩾ 0. The complex
Σ−𝑑𝑃′

ě𝑑
is a semi-projective replacement of 𝐺, so it suffices by 9.1.19 to show that

𝐺 has finite Gorenstein projective dimension. Let 𝐹 be a totally acyclic complex of
flat 𝑅-modules with C0 (𝐹) � 𝐺 and hence 𝐺 � Z−1 (𝐹). Let 𝑃 be a semi-projective
replacement of𝐺; it suffices by 9.1.10 to show that the module𝐶 = C𝑛 (𝑃) is Goren-
stein projective. Associated to the exact sequence 0→ 𝐺 → 𝐹−1 → Z−2 (𝐹) → 0
there is an exact sequence 0 → 𝑃 → 𝐿−1 → 𝑃−2 → 0 where 𝐿−1 and 𝑃−2 are
semi-projective replacements of 𝐹−1 and Z−2 (𝐹); see 8.1.13. It yields by 2.2.16
an exact sequence 0 → 𝐶 → C𝑛 (𝐿−1) → C𝑛 (𝑃−2) → 0 where the module
C𝑛 (𝐿−1) is projective by 8.1.8. Proceeding recursively, the short exact sequence
0 → Z−𝑣 (𝐹) → 𝐹−𝑣 → Z−𝑣−1 (𝐹) → 0 yields, as above, an exact sequence
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0 → C𝑛 (𝑃−𝑣) → C𝑛 (𝐿−𝑣) → C𝑛 (𝑃−𝑣−1) → 0, where C𝑛 (𝐿−𝑣) is projective.
Splicing together the acyclic complexes

· · · → 𝑃𝑛+1 → 𝑃𝑛 → 𝐶 → 0 and 0→ 𝐶 → C𝑛 (𝐿−1) → C𝑛 (𝐿−2) → · · ·

one gets an acyclic complex 𝑃 of projective 𝑅-modules with𝐶 as a cokernel module.
To see that 𝑃 is totally acyclic, let 𝐿 be a projective 𝑅-module; as id𝑅 𝑅 ⩽ 𝑛

holds, 8.2.21 yields id𝑅 𝐿 ⩽ 𝑛. For every 𝑣 ∈ ℤ one now has Ext1𝑅 (C𝑣 (𝑃), 𝐿) �
Ext𝑛+1

𝑅
(C𝑣−𝑛 (𝑃), 𝐿) = 0 by 8.1.6, as 𝑃ě𝑣−𝑛 is a semi-projective replacement of

C𝑣−𝑛 (𝑃). Thus 𝑃 is totally acyclic and 𝐶 is Gorenstein projective.
(iii)⇒ (iv): This impilcation is immediate from the definition of Ggldim 𝑅.
(iv)⇒ (i): Set 𝑛 = sup{Gpd𝑅 𝑅/𝔞 | 𝔞 is a left ideal in 𝑅} and assume that it is

finite. From 9.1.32 and 8.2.19 one immediately gets id𝑅 𝑅 ⩽ 𝑛. By 8.3.18 one has
id𝑅o 𝑅 = fd𝑅 Hom𝕜 (𝑅,𝔼), and to prove that this quantity is finite it suffices by 9.3.19
to show that the 𝑅-module 𝐸 = Hom𝕜 (𝑅,𝔼) has finite Gorenstein flat dimension.
This module is by 3.3.5 a filtered colimit of finitely generated 𝑅-modules 𝐸𝑢.

Every finitely generated 𝑅-module has Gorenstein projective dimension at most
𝑛. Indeed, let 𝑀 be generated by elements 𝑥1, . . . , 𝑥𝑚 and proceed by induction
on the number, 𝑚, of generators. For 𝑚 = 1 one has 𝑀 � 𝑅/(0 :𝑅 𝑥1), whence
Gpd𝑅 𝑀 ⩽ 𝑛 holds by assumption. For 𝑚 > 1 set 𝑁 = 𝑅⟨𝑥1, . . . , 𝑥𝑚−1 ⟩; the quotient
module 𝑀/𝑁 is then generated by [𝑥𝑚]𝑁 . By the induction hypothesis and the base
case one has Gpd𝑅 𝑁 ⩽ 𝑛 and Gpd𝑅 𝑀/𝑁 ⩽ 𝑛, so 9.1.14 applied to the exact
sequence 0→ 𝑁 → 𝑀 → 𝑀/𝑁 → 0 yields Gpd𝑅 𝑀 ⩽ 𝑛.

The canonical map
∐
𝑢∈𝑈 𝐸

𝑢 → colim𝑢∈𝑈 𝐸𝑢 � 𝐸 is by 9.3.12 a pure epimor-
phism, so Hom𝕜 (𝐸,𝔼) is by 5.5.14 a direct summand of the module

(♭) Hom𝕜

( ∐
𝑢∈𝑈

𝐸𝑢,𝔼
)
�

∏
𝑢∈𝑈

Hom𝕜 (𝐸𝑢,𝔼) ;

see 3.1.27. As Gpd𝑅 𝐸𝑢 ⩽ 𝑛 holds for all 𝑢 ∈ 𝑈 it follows from 9.3.34, 9.3.17, and
9.2.20 that the product module in (♭), and hence the direct summand Hom𝕜 (𝐸,𝔼),
has Gorenstein injective dimension at most 𝑛. Another application of 9.3.17 now
yields Gfd𝑅 𝐸 ⩽ 𝑛.

Assuming now that conditions (i)–(iv) are satisfied, we address the equalities. For
every left ideal 𝔞 in 𝑅 the inequality Gpd𝑅 𝑅/𝔞 ⩽ id𝑅 𝑅 holds by 9.1.32 and 8.2.19.
Moreover, another application of 8.2.19 yields the existence of a left ideal 𝔞 in 𝑅
with Gpd𝑅 𝑅/𝔞 = id𝑅 𝑅. Thus one

sup{Gpd𝑅 𝑅/𝔞 | 𝔞 is a left ideal in 𝑅} = id𝑅 𝑅 .

Further, 8.5.30 yields

FID 𝑅 = FFD 𝑅 = FPD 𝑅 = id𝑅 𝑅 ,

and the asserted equalities now hold by 9.4.6 and 9.4.14. □

9.4.16 Corollary. If 𝑅 is Noetherian, then the following equalities hold,

Ggldim 𝑅 = Gwgldim 𝑅 = Ggldim 𝑅o .
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Proof. It follows from 9.4.15 that Gwgldim 𝑅 and Ggldim 𝑅 are simultaneously
finite, and in that case the next equalities hold by 9.4.15 and 9.4.13.

Ggldim 𝑅 = Gwgldim 𝑅 = Gwgldim 𝑅o = Ggldim 𝑅o . □

Remark. It is a result of Bouchiba [43] that the equality Gwgldim𝑅 = Ggldim𝑅 in 9.4.16 holds
under the weaker assumption that 𝑅 is left Noetherian, thus providing a perfect parallel to 8.5.13.

9.4.17 Corollary. If 𝑅 is Noetherian, then the one has

Ggldim 𝑅 = sup{Gpd𝑅 𝑅/𝔞 | 𝔞 is a left ideal in 𝑅} .

Proof. It follows from 9.4.15 that the two quantities are simultaneously finite, in
which case they agree. □

Exercises

E 9.4.1 Show that if splf 𝑅 is finite, then every flat Gorenstein projective 𝑅-module is projective.
E 9.4.2 Assume that 𝑅 is right Noetherian. Show that if Gwgldim𝑅 is finite, then the inequality

Gfd𝑅 𝑀 ⩽ Gpd𝑅 𝑀 holds for every 𝑅-complex 𝑀.
E 9.4.3 Show that the next conditions are equivalent.

(i) sup{Gfd𝑅 𝑅/𝔞 | 𝔞 is a finitely generated left ideal in 𝑅 } and
sup{Gfd𝑅o (𝑅/𝔟) | 𝔟 is a finitely generated right ideal in 𝑅 } are finite.

(ii) Gwgldim𝑅 and Gwgldim𝑅o are finite.
(iii) sfli𝑅 and sfli𝑅o are finite.

Show that the equalities FFD𝑅 = Gwgldim𝑅 = Gwgldim𝑅o = FFD𝑅o hold in the case
these conditions are satsified.
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Chapter 10
Dualizing Complexes

In this chapter we treat some fundamental equivalences and dualities of subcategories
of derived catgories. The more important ones, in the context of this book, involve a
so-called dualizing complex. In a nut shell, a dualizing complex is a computational
gadget that in the derived category of a Noetherian ring allows one to mimic the iso-
morphism of a finite rank vector space over a field to its double dual space. Dualizing
complexes came into commutative algebra through Hartshorne’s exposition [114]
of work of Grothendieck and his student Verdier. Neeman reflects on the history in
[193]. The generalization of dualizing complexes to non-commutative rings that we
treat in this chapter is essentially due to Yekutieli and Zhang [259].

10.1 Grothendieck Duality

Synopsis. Homothety formation; dualizing complex; Grothendieck Duality.

The goal of this section is to establish the general, non-commutative version, of the
Grothendieck Duality Theorem for derived categories. The first step towards that
theorem, which is the last result of the section, is to define a dualizing complex. To
this end, let 𝑋 be a complex of 𝑅–𝑆o-bimodules and recall from 4.5.5 the homothety
formation morphisms

𝜒𝑋𝑆o𝑅 : 𝑆 −→ Hom𝑅 (𝑋, 𝑋) and 𝜒𝑋𝑅𝑆o : 𝑅 −→ Hom𝑆o (𝑋, 𝑋) .

If 𝑅 is commutative, then an 𝑅-complex 𝑋 is tacitly considered to be a complex of
symmetric 𝑅–𝑅-bimodules; in this case the two homothety formation morphisms
are the same. Hence:

10.1.1 Definition. If 𝑅 is commutative, then the morphism 𝜒𝑋
𝑅o𝑅 = 𝜒𝑋

𝑅𝑅o in C(𝑅) is
denoted 𝜒𝑋

𝑅
.

493
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Definition and Examples of Dualizing Complexes

10.1.2 Definition. Let 𝑅 be left Noetherian and 𝑆 right Noetherian. A complex 𝐷
of 𝑅–𝑆o-bimodules is called dualizing for (𝑅, 𝑆o) if it meets the requirements:

(1) H(𝐷) is bounded and degreewise finitely generated over 𝑅 and over 𝑆o.
(2) 𝐷 has finite injective dimension over 𝑅 and over 𝑆o.
(3) There exists a complex 𝐽 of 𝑅–𝑆o-bimodules such that

− there is an isomorphism 𝐷 ≃ 𝐽 in D(𝑅–𝑆o) ,
− 𝐽 is semi-injective over 𝑅 and over 𝑆o,
− the next homothety formation maps are quasi-isomorphisms,

𝜒𝐽𝑆o𝑅 : 𝑆 −→ Hom𝑅 (𝐽, 𝐽) and 𝜒𝐽𝑅𝑆o : 𝑅 −→ Hom𝑆o (𝐽, 𝐽) .

10.1.3 Proposition. Let 𝑅 be left Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing
complex for (𝑅, 𝑆o).

(a) For every integer 𝑠 the complex Σ𝑠𝐷 is dualizing for (𝑅, 𝑆o) .
(b) 𝐷 is dualizing for (𝑆o, 𝑅) .

Proof. Part (a) is immediate from 2.3.14, 2.3.16, 8.2.3, and 5.3.10. For part (b)
recall that complex of 𝑅–𝑆o-bimodules is the same as a complex of 𝑆o–𝑅-bimodules,
and a ring is left Noetherian if and only if the opposite ring is right Noetherian. □

In the case of a single Noetherian ring it makes sense to talk about a dualizing
complex for that ring; see also 10.1.6.

10.1.4 Definition. Let 𝑅 be Noetherian. A complex of 𝑅–𝑅o-bimodules is called
dualizing for 𝑅 if it is dualizing for (𝑅, 𝑅o) as defined in 10.1.2.

10.1.5 Example. Let 𝕜 be a field and 𝑅 a finite dimensional 𝕜-algebra; i.e. 𝑅 has
finite rank as a 𝕜-vector space. Consider the 𝑅–𝑅o-bimodule 𝐷 = Hom𝕜 (𝑅, 𝕜). As a
𝕜-vector space 𝐷 is finitely generated, and hence it is finitely generated as a module
over 𝑅 and over 𝑅o. Moreover, 𝐷 is injective over 𝑅 and over 𝑅o by 5.4.26(a). The
isomorphisms in the following commutative diagram in C(𝑅–𝑅o) come from 4.5.6,
4.5.4, and 4.4.10; it shows that 𝜒𝐷

𝑅𝑅o is an isomorphism in C(𝑅–𝑅o).

𝑅
𝜒𝐷

//

𝜒𝑅 �

��

Hom𝑅o (Hom𝕜 (𝑅, 𝕜),Hom𝕜 (𝑅, 𝕜))

Hom𝑅o (𝑅, 𝑅)
Hom (𝑅,𝛿𝑅

𝕜
)

�
// Hom𝑅o (𝑅,Hom𝕜 (Hom𝕜 (𝑅, 𝕜), 𝕜)) .

� 𝜁 𝑅𝐷𝕜

OO

A a similar diagram shows that 𝜒𝐷
𝑅o𝑅 is an isomorphism as well. Thus, with 𝐽 = 𝐷

and 𝑆 = 𝑅 the conditions in 10.1.2 are met, so 𝐷 is dualizing for 𝑅 per 10.1.4.

10.1.6 Definition. Assume that 𝑅 is commutative and Noetherian. An 𝑅-complex
𝐷 is called dualizing for 𝑅 if it is dualizing as defined in 10.1.4 when considered as
a complex of symmetric 𝑅–𝑅-bimodules, cf. 10.1.1.
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10.1.7 Example. If 𝑅 is Noetherian and self-injective, then 𝑅 is a dualizing complex
for 𝑅, as the conditions in 10.1.2 are met by 𝐷 = 𝑅 = 𝐽; see 4.5.6. Commutative
examples include ℤ/𝑛ℤ and 𝕜 [𝑥]/(𝑥𝑛) for every 𝑛 > 1 and any field 𝕜; see 8.2.10.

The next example is generalized in 18.2.2.

10.1.8 Example. Assume that 𝑅 is commutative Artinian and local with unique
maximal ideal 𝔪. The chain 𝔪 ⊇ 𝔪2 ⊇ · · · stabilizes, so 𝔪𝑛 = 𝔪𝑛+1 holds for some
𝑛, whence 𝔪𝑛 = 0 holds by Nakayama’s lemma B.32. In the notation from C.20 one
now has E𝑅 (𝑅/𝔪) = 𝐸𝑛, so E𝑅 (𝑅/𝔪) is finitely generated by C.22, and C.21(c)
yields Hom𝑅 (E𝑅 (𝑅/𝔪),E𝑅 (𝑅/𝔪)) � 𝑅. Thus E𝑅 (𝑅/𝔪) is a dualizing complex
for 𝑅.

Homothety Formation in the Derived Category

Let 𝑋 be a complex of 𝑅–𝑆o-bimodules. Homothety formation from 4.5.5,

𝜒𝑋𝑆o𝑅 : 𝑆 −→ Hom𝑅 (𝑋, 𝑋) and 𝜒𝑋𝑅𝑆o : 𝑅 −→ Hom𝑆o (𝑋, 𝑋) ,

induce morphisms inK(𝑆–𝑆o) andK(𝑅–𝑅o) which we denote by the same symbols.

10.1.9 Construction. Assume that 𝑆 is flat as a 𝕜-module. The functor RHom𝑅 is
by 7.3.13 augmented as follows

RHom𝑅 ( , ) : D(𝑅–𝑆o)op ×D(𝑅–𝑆o) −→ D(𝑆–𝑆o) ,

and for 𝑋 ∈ D(𝑅–𝑆o) and 𝐼 = I𝑅⊗𝕜𝑆o (𝑋) one has RHom𝑅 (𝑋, 𝑋) = Hom𝑅 (𝐼, 𝐼).
It follows that homothety formation 𝜒𝐼

𝑆o𝑅 : 𝑆 → Hom𝑅 (𝐼, 𝐼) in K(𝑆–𝑆o) yields a
morphism in D(𝑆–𝑆o),

(10.1.9.1) 𝝌𝑋𝑆o𝑅 : 𝑆 −→ RHom𝑅 (𝑋, 𝑋) .

Similarly, if 𝑅 is flat as a 𝕜-module, then 𝜒𝐼
𝑅𝑆o : 𝑅 → Hom𝑆o (𝐼, 𝐼) inK(𝑅–𝑅o) yields

a morphism in D(𝑅–𝑅o),

(10.1.9.2) 𝝌𝑋𝑅𝑆o : 𝑅 −→ RHom𝑆o (𝑋, 𝑋) .

10.1.10 Definition. The morphisms (10.1.9.1) and (10.1.9.2) are called homothety
formation. If 𝑅 is commutative, then the morphism 𝝌𝑋

𝑅o𝑅 = 𝝌𝑋
𝑅𝑅o in D(𝑅) that

comes out of 10.1.9 with 𝕜 = 𝑅 is denoted 𝝌𝑋
𝑅

; cf. 10.1.1.

10.1.11 Lemma. Assume that 𝑅 and 𝑆 are flat as 𝕜-modules. Let 𝑋 and 𝐽 be
complexes of 𝑅–𝑆o-bimodules such that 𝑋 ≃ 𝐽 in D(𝑅–𝑆o).

(a) If 𝐽 is semi-injective as an 𝑅-complex, then the morphism 𝝌𝑋
𝑆o𝑅 from 10.1.9

is isomorphic in D(𝑆–𝑆o) to the morphism induced by 𝜒𝐽
𝑆o𝑅 .

(b) If 𝐽 is semi-injective as an 𝑆o-complex, then the morphism 𝝌𝑋
𝑅𝑆o from 10.1.9

is isomorphic in D(𝑅–𝑅o) to the morphism induced by 𝜒𝐽
𝑅𝑆o .
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Proof. We only prove part (a); part (b) follows by interchanging the roles of 𝑅
and 𝑆o. Set 𝐼 = I𝑅⊗𝕜𝑆o (𝑋). By 6.4.21 there is a quasi-isomorphism 𝜑 : 𝐽 → 𝐼 in
K(𝑅–𝑆o). As 𝜑 by the assumption on 𝐽 and 7.3.11(c) is a quasi-isomorphism of
semi-injective 𝑅-complexes, it follows from 5.3.24 and 4.3.19 that Hom𝑅 (𝑀, 𝜑)
is a quasi-isomorphism in K(𝑆–𝑆o) for every complex 𝑀 of 𝑅–𝑆o-bimodules. In
particular, Hom𝑅 (𝐽, 𝜑) is a quasi-isomorphism. As already established, 𝐼 is semi-
injective as an 𝑅-complex, whence Hom𝑅 (𝜑, 𝐼) is a quasi-isomorphism in K(𝑆–𝑆o).
The assertion now follows from the diagram below, which is commutative by 𝑆o-
linearity of 𝜑.

𝑆
𝜒𝐽

//

𝜒𝐼

��

Hom𝑅 (𝐽, 𝐽)

Hom (𝐽,𝜑)≃
��

Hom𝑅 (𝐼, 𝐼)
Hom (𝜑,𝐼 )
≃

// Hom𝑅 (𝐽, 𝐼) . □

10.1.12 Proposition. Assume that 𝑅 and 𝑆 are flat as 𝕜-modules. Let 𝑅 be left
Noetherian and 𝑆 right Noetherian. A complex 𝐷 of 𝑅–𝑆o-bimodules is dualizing for
(𝑅, 𝑆o) if and only if it meets the requirements below.

(1) H(𝐷) is bounded and degreewise finitely generated over 𝑅 and over 𝑆o.
(2) 𝐷 has finite injective dimension over 𝑅 and over 𝑆o.
(3) Homothety formation 𝝌𝐷

𝑆o𝑅 : 𝑆 → RHom𝑅 (𝐷, 𝐷) in D(𝑆–𝑆o) and homothety
formation 𝝌𝐷

𝑅𝑆o : 𝑅 → RHom𝑆o (𝐷, 𝐷) in D(𝑅–𝑅o) are isomorphisms.

Proof. “Only if” follows from 10.1.11. For “if” let 𝐷 ≃−−→ 𝐽 be a semi-injective
resolution in K(𝑅–𝑆o). One has 𝐷 ≃ 𝐽 in D(𝑅–𝑆o), and the complex 𝐽 is semi-
injective over 𝑅 and over 𝑆o; see 7.3.11(c). By assumption, the morphissms 𝝌𝐷

𝑆o𝑅 and
𝝌𝐷
𝑅𝑆o induced by 𝜒𝐽

𝑆o𝑅 and 𝜒𝐽
𝑅𝑆o are isomorphisms in the derived categoriesD(𝑆–𝑆o)

and D(𝑅–𝑅o), so 6.4.17 yields that 𝜒𝐽
𝑆o𝑅 and 𝜒𝐽

𝑅𝑆o are quasi-isomorphisms. □

Remark. There exists a left Noetherian (even a left Artinian local, and even a commutative
Noetherian local) algebra 𝑅 over a field 𝕜 such that there is no dualizing complex for (𝑅, 𝑆o) for
any right Noetherian 𝕜-algebra 𝑆. See Yekutieli and Zhang [259] and Wu and Zhang [255]. In [255]
there is also an example of an Artinian local 𝕜-algebra 𝑅 that does not have a dualizing complex;
however, for some right Artinian 𝕜-algebra 𝑆 the pair (𝑅, 𝑆o) does have a dualizing complex.

We record the next result for use in Sect. 10.4.

10.1.13 Lemma. Assume that 𝑅 and 𝑆 are flat as𝕜-modules. Let 𝑅 be left Noetherian,
𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o). There exists a bounded
complex of 𝑅–𝑆o-bimodules that is isomorphic to 𝐷 in D(𝑅–𝑆o) and semi-injective
over 𝑅 and over 𝑆o.

Proof. Let 𝐷 ≃−−→ 𝐼 be a semi-injective resolution in K(𝑅–𝑆o) with 𝐼𝑣 = 0 for
𝑣 > sup𝐷; see 5.3.26. Recall from 7.3.11(c) that 𝐼 is semi-injective over 𝑅 and over
𝑆o. Thus, for every integer 𝑛 ⩾ max{id𝑅 𝐷, id𝑆o 𝐷} the bounded complex 𝐽 = 𝐼Ě−𝑛
is semi-injective over 𝑅 and over 𝑆o by 8.2.8, and one has 𝐷 ≃ 𝐽 in D(𝑅–𝑆o). □
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Since projectivity and injectivity are categorically dual notions, it should be no
surprise that self-injective rings have excellent duality properties. It is a quality
which, in the realm of derived categories, extends to rings of finite self-injective
dimension; for that reason Iwanaga–Gorenstein rings, see 8.5.29, come up with
frequency in the next chapters.

10.1.14 Example. If 𝑅 is flat as a 𝕜-module and Iwanaga–Gorenstein, then 𝑅 is a
dualizing complex for 𝑅. Indeed, let 𝜄 : 𝑅 ≃−−→ 𝐼 be an injective resolution inK(𝑅–𝑅o).
Per 4.5.6 the homothety morphism 𝜒𝑅

𝑅o𝑅 is an isomorphism, so it follows from the
commutative diagram,

𝑅
𝜒𝑅

�
//

𝜒𝐼

��

Hom𝑅 (𝑅, 𝑅)

Hom (𝑅, 𝜄)≃
��

Hom𝑅 (𝐼, 𝐼)
Hom ( 𝜄,𝐼 )
≃

// Hom𝑅 (𝑅, 𝐼) ,

that 𝜒𝐼
𝑅o𝑅 is a quasi-isomorphism; i.e. the induced morphism 𝝌𝑅

𝑅o𝑅 in D(𝑅–𝑅o) is
an isomorphism. Similarly, 𝝌𝑅

𝑅𝑅o is an isomorphism. Now apply 10.1.12 and 10.1.4.

Existence of Dualizing Complexes

To parse the next result, notice that if 𝕜 is Noetherian and 𝑅 is finitely generated as a
𝕜-module, then 𝑅 is Noetherian as well. Indeed, every finitely generated 𝑅-module
and every finitely generated 𝑅o-module is finitely generated over 𝕜.

10.1.15 Theorem. Let 𝕜 be Noetherian and 𝑅 finitely generated as a 𝕜-module. If
𝐷 is a dualizing complex for 𝕜, then RHom𝕜 (𝑅, 𝐷) is a dualizing complex for 𝑅.

Proof. As a 𝕜-complex, the homology of 𝐸 = RHom𝕜 (𝑅, 𝐷) is bounded and
degreewise finitely generated by 7.6.16 and 8.2.8; in particular, it is degreewise
finitely generated over 𝑅 and over 𝑅o. Moreover, id𝑅 𝐸 and id𝑅o 𝐸 are finite by 8.2.4.

It remains to show that 𝐸 satisfies 10.1.2(3). Let 𝐷 ≃−−→ 𝐼 be a bounded semi-
injective resolution over 𝕜. The complex 𝐽 = Hom𝕜 (𝑅, 𝐼) inK(𝑅–𝑅o) is by 5.4.26(a)
semi-injective over 𝑅 and over 𝑅o, and one has 𝐸 ≃ 𝐽 in D(𝑅–𝑅o). There is a
commutative diagram in K(𝑅–𝑅o),

𝑅
𝜒𝐽

// Hom𝑅 (𝐽, 𝐽)

𝑅 ⊗𝕜 𝕜

�𝜇𝑅𝜐𝑅𝕜

OO

≃𝑅⊗𝜒𝐼
��

Hom𝕜 (𝑅 ⊗𝑅 𝐽, 𝐼)

� 𝜌𝐽𝑅𝐼

OO

𝑅 ⊗𝕜 Hom𝕜 (𝐼, 𝐼) �

𝜂𝐼𝐼𝑅
// Hom𝕜 (𝐽, 𝐼) ,

� Hom (𝜇𝐽 ,𝐼 )

OO
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where adjunction 𝜌𝐽𝑅𝐼 and homomorphism evaluation 𝜂𝐼 𝐼𝑅 are isomorphisms by
4.4.12 and 4.5.13(3,b). The modules in the bounded 𝕜-complex Hom𝕜 (𝐼, 𝐼) are flat
by 8.4.28, so it is semi-flat by 5.4.8. The homothety morphism 𝜒𝐼

𝕜
is by 10.1.12

a quasi-isomorphism and by 5.4.16 also 𝑅 ⊗𝕜 𝜒𝐼𝕜 is a quasi-isomorphism. Now it
follows from the diagram that 𝜒𝐽

𝑅o𝑅 is a quasi-isomorphism, whence 𝝌𝐸
𝑅o𝑅 is an

isomorphism in D(𝑅–𝑅o). With 𝑅 and 𝑅o interchanged the diagram shows that
𝝌𝐸
𝑅𝑅o is an isomorphism. □

Remark. If 𝕜 is Iwanaga–Gorenstein, then by 10.1.15 every 𝕜-algebra that is finitely generated as
a 𝕜-module has a dualizing complex. In the commutative realm every ring with a dualizing complex
arises in this fashion; se the Remark after 18.2.7.

10.1.16 Definition. Let 𝕜 be Artinian. A 𝕜-algebra that is finitely generated as a
𝕜-module is called an Artin algebra or, more elaborately, an Artin 𝕜-algebra.

10.1.17 Example. If 𝕜 is Artinian with Jacobson radical 𝔍, then the injective enve-
lope 𝐷 of 𝕜/𝔍 is a dualizing complex for 𝕜; the local case is handled in 10.1.5 and
the general case is 18.2.2. By 10.1.15 every Artin 𝕜-algebra 𝑅 now has a dualizing
complex, namely RHom𝕜 (𝑅, 𝐷) = Hom𝕜 (𝑅, 𝐷).

Grothendieck Duality

The next example motivates the developments in the rest of this section.

10.1.18 Example. Let 𝑅 be an Artin algebra, by 10.1.17 it has a dualizing complex
𝐷 which is, in fact, an 𝑅–𝑅o-bimodule that is injective over 𝑅 and over 𝑅o. For
every degreewise finitely generated 𝑅-complex 𝑀 there is a commutative diagram
in C(𝑅),

𝑀 ⊗𝑅o 𝑅
�

𝑀⊗𝜒𝐷
//

�𝜇𝑀 𝜐𝑀𝑅

��

𝑀 ⊗𝑅o Hom𝑅o (𝐷, 𝐷)

� 𝜂𝐷𝐷𝑀

��

𝑀
𝛿𝑀
𝐷

// Hom𝑅o (Hom𝑅 (𝑀, 𝐷), 𝐷) ,

where the evaluation morphism 𝜂𝐷𝐷𝑀 is an isomorphism by 4.5.13(3,b). The dia-
gram shows that the biduality morphism 𝛿𝑀

𝐷
is an isomorphism of 𝑅-complexes.

As advertised at the beginning of this chapter, biduality with respect to a dualizing
complex is an isomorphism in the derived category.

10.1.19 Theorem. Assume that 𝑅 and 𝑆 are flat as 𝕜-modules. Let 𝑅 be left Noether-
ian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o). For every complex
𝑀 in Df (𝑅) the biduality morphism from 8.4.4,

𝜹𝑀𝐷 : 𝑀 −→ RHom𝑆o (RHom𝑅 (𝑀, 𝐷), 𝐷) ,

is an isomorphism in D(𝑅).
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Proof. By A.32(c) the functors RHom𝑅 ( , 𝐷) and RHom𝑆o ( , 𝐷) are bounded,
whence the composite functor RHom𝑆o (RHom𝑅 ( , 𝐷), 𝐷) is bounded, and so is
the identity functor on D(𝑅). The transformation 𝜹𝐷 is triangulated by 8.4.3, so by
7.6.14 and A.28(d) it suffices to show that 𝜹𝑀𝐷 is an isomorphism for every finitely
generated 𝑅-module 𝑀 . For such a module the evaluation morphism 𝜼𝐷𝐷𝑀 is an
isomorphism by 8.4.24(b), whence the commutative diagram,

𝑀 ⊗L
𝑅o 𝑅

𝝁𝑀𝝊𝑀𝑅 ≃
��

≃
𝑀⊗L 𝝌𝐷

// 𝑀 ⊗L
𝑅o Hom𝑆o (𝐷, 𝐷)

≃ 𝜼𝐷𝐷𝑀

��

𝑀
𝜹𝑀𝐷

// RHom𝑆o (RHom𝑅 (𝑀, 𝐷), 𝐷) ,

shows that 𝜹𝑀𝐷 is an isomorphism. □

To facilitate the formulation of the Grothendieck Duality Theorem, we introduce
notation for a few more subcategories of the derived category.

10.1.20 Definition. The full subcategories P(𝑅), I(𝑅), and F(𝑅) of D⊏⊐ (𝑅) are
defined by specifying their objects as follows

P(𝑅) = {𝑀 ∈ D⊏⊐ (𝑅) | pd𝑅 𝑀 < ∞} ,
I(𝑅) = {𝑀 ∈ D⊏⊐ (𝑅) | id𝑅 𝑀 < ∞} , and
F(𝑅) = {𝑀 ∈ D⊏⊐ (𝑅) | fd𝑅 𝑀 < ∞} .

The full subcategory P(𝑅) ∩Df (𝑅) is denoted by Pf (𝑅). Similarly, one defines the
subcategories If (𝑅) and Ff (𝑅).

10.1.21 Proposition. The categories P(𝑅), I(𝑅), and F(𝑅) are triangulated sub-
categories of D⊏⊐ (𝑅). Further, if 𝑅 is left Noetherian, then Pf (𝑅), If (𝑅), and Ff (𝑅)
are triangulated subcategories of Df

⊏⊐ (𝑅) and one has Pf (𝑅) = Ff (𝑅).

Proof. The full subcategory P(𝑅) of D⊏⊐ (𝑅) is triangulated by 8.1.3 and 8.1.9.
Similarly, I(𝑅) is triangulated by 8.2.3 and 8.2.9, and F(𝑅) is triangulated by 8.3.4
and 8.3.12. The remaining assertions follow from 7.6.14 and 8.3.19. □

10.1.22 Proposition. Assume that 𝑅 and 𝑆 are flat as 𝕜-modules and let 𝑋 be a
complex of 𝑅–𝑆o-bimodules. There is an adjunction,

D(𝑆o)
RHom𝑆o ( ,𝑋)op

//
D(𝑅)op .

RHom𝑅 ( ,𝑋)
oo

For an 𝑆o-complex 𝑁 the unit of the adjunction is biduality in D(𝑆o),

𝜹𝑁𝑋 : 𝑁 −→ RHom𝑅 (RHom𝑆o (𝑁, 𝑋), 𝑋) ,

and for 𝑅-complex 𝑀 the counit, viewed as a morphism in D(𝑅), is biduality

𝜹𝑀𝑋 : 𝑀 −→ RHom𝑆o (RHom𝑅 (𝑀, 𝑋), 𝑋) .
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Proof. Let 𝑀 be an 𝑅-complex and 𝑁 and 𝑆o-complex. By 7.3.26 and swap 7.5.24
there are natural isomorphisms

D(𝑅)op (RHom𝑆o (𝑁, 𝑋), 𝑀) � H0 (RHom𝑅 (𝑀,RHom𝑆o (𝑁, 𝑋)))
� H0 (RHom𝑆o (𝑁,RHom𝑅 (𝑀, 𝑋)))
� D(𝑆o) (𝑁,RHom𝑅 (𝑀, 𝑋)) .

This establishes the asserted adjunction. The claims about the unit and counit follows
from 4.5.7 applied with 𝑋 replaced by I𝑅⊗𝕜𝑆o (𝑋). □

Grothendieck Duality is the phenomenon that for a commutative Noetherian ring
𝕜 with a dualizing complex 𝐷 the functor RHom𝕜 ( , 𝐷) yields a duality on Df (𝕜).
This is a special case of the next result; see 18.2.3.

10.1.23 Theorem. Assume that 𝑅 and 𝑆 are flat as 𝕜-modules. Let 𝑅 be left Noether-
ian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o). There is an adjoint
equivalence of 𝕜-linear triangulated categories,

Df (𝑆o)
RHom𝑆o ( ,𝐷)op

//
Df (𝑅)op .

RHom𝑅 ( ,𝐷)
oo

It restricts to adjoint equivalences of triangulated subcategories:

Df
⊏ (𝑆o) −−→←−− Df

⊐ (𝑅)op , Df
⊐ (𝑆o) −−→←−− Df

⊏ (𝑅)op , and Df
⊏⊐ (𝑆o) −−→←−− Df

⊏⊐ (𝑅)op ,

and further to
If (𝑆o) −−→←−− Pf (𝑅)op .

Proof. The functors RHom𝑆o ( , 𝐷)op : D(𝑆o) ⇄ D(𝑅)op : RHom𝑅 ( , 𝐷) are ad-
joint by 10.1.22, and they are 𝕜-linear and triangulated by 7.3.6. By A.32(c)
the functor RHom𝑅 ( , 𝐷) is bounded. To prove that it restricts to a functor
Df (𝑆o) ← Df (𝑅)op, it suffices by 7.6.14 and A.34(d) to verify that RHom𝑅 (𝑀, 𝐷)
belongs to Df (𝑆o) for every finitely generated 𝑅-module 𝑀 , and that was already
done in 7.6.16. Similarly, RHom𝑆o ( , 𝐷)op is bounded and restricts to a functor
Df (𝑆o) → Df (𝑅)op. By 10.1.19 these restrictions yield an adjoint equivalence. The
restrictions Df

⊏ (𝑆o) ⇄ Df
⊐ (𝑅)op, Df

⊐ (𝑆o) ⇄ Df
⊏ (𝑅)op, and Df

⊏⊐ (𝑆o) ⇄ Df
⊏⊐ (𝑅)op

now follow from A.31.
To establish the final restriction it suffices to argue that (1) id𝑆o RHom𝑆o (𝑀, 𝐷)

is finite for every 𝑀 ∈ Pf (𝑅) and that (2) pd𝑅 RHom𝑆o (𝑁, 𝐷) is finite for every
𝑁 ∈ If (𝑆o). Here (1) follows from 8.3.15(b). To prove (2), let 𝑁 ∈ If (𝑆o) and 𝔞 be a
left ideal in 𝑅. Now biduality 10.1.19 and swap 7.5.24 yield,

RHom𝑅 ( RHom𝑆o (𝑁, 𝐷), 𝑅/𝔞)
≃ RHom𝑅 (RHom𝑆o (𝑁, 𝐷),RHom𝑆o (RHom𝑅 (𝑅/𝔞, 𝐷), 𝐷))
≃ RHom𝑆o (RHom𝑅 (𝑅/𝔞, 𝐷),RHom𝑅 (RHom𝑆o (𝑁, 𝐷), 𝐷))
≃ RHom𝑆o (RHom𝑅 (𝑅/𝔞, 𝐷), 𝑁) .

Now 8.2.8 and 7.6.7 yield
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− inf RHom𝑆o (RHom𝑅 (𝑅/𝔞, 𝐷), 𝑁) ⩽ id𝑆o 𝑁 + sup𝐷 ,

whence 8.1.14 yields pd𝑅 RHom𝑆o (𝑁, 𝐷) ⩽ id𝑆o 𝑁 + sup𝐷. □

Remark. The equivalence in 10.1.23 specializes to an equivalence D(𝑄–𝑆o ) ⇄ D(𝑅–𝑄o )op;
see E 10.1.3.

10.1.24 Corollary. Let 𝑅 be flat as a 𝕜-module and Noetherian. The next conditions
are equivalent.

(i) 𝑅 is Iwanaga–Gorenstein.
(ii) 𝑅 is a dualizing complex for 𝑅 .
(iii) 𝑅 has a dualizing complex 𝐷 such that pd𝑅 𝐷 and pd𝑅o 𝐷 are finite.

Proof. If 𝑅 is Iwanaga–Gorenstein, then 𝑅 is per 10.1.14 a dualizing complex for 𝑅;
in particular, 𝑅 has a dualizing complex of finite projective dimension over both 𝑅 and
𝑅o. Conversely, if 𝐷 is a dualizing complex for 𝑅 with pd𝑅 𝐷 < ∞, then by definition
one has 𝑅 ≃ RHom𝑅 (𝐷, 𝐷) in D(𝑅o), and 10.1.23 yields id𝑅o RHom𝑅 (𝐷, 𝐷) < ∞.
The same argument applies with the roles of 𝑅 and 𝑅o interchanged. □

Exercises

E 10.1.1 Show that every quasi-Frobenius ring has a dualizing complex.
E 10.1.2 Let 𝑅 be Noetherian. Show that a complex of 𝑅–𝑅o-bimodules is dualizing for 𝑅 if and

only if it is dualizing for 𝑅o.
E 10.1.3 Assume that 𝑅 and 𝑆 are flat as 𝕜-modules and let 𝑋 be a complex of 𝑅–𝑆o-bimodules.

Show that there is an adjunction
RHom𝑆o ( , 𝑋)op : D(𝑄–𝑆o ) −−→←−− D(𝑅–𝑄o )op : RHom𝑅 ( , 𝑋) .

Hint: Zigzag identities.
E 10.1.4 Assume that 𝑅 is flat as a 𝕜-module and Noetherian. A complex𝐶 of 𝑅–𝑅o-bimodules is

called semi-dualizing for 𝑅 if the homothety morphisms 𝝌𝐶
𝑅𝑅o and 𝝌𝐶

𝑅o𝑅 in D(𝑅–𝑅o )
are isomorphisms. Show that 𝑅 is semi-dualizing for 𝑅.

E 10.1.5 Assume that 𝑅 is flat as a 𝕜-module and Noetherian. Let𝐶 be a semi-dualizing complex
for 𝑅; see E 10.1.4. Show that biduality 𝜹𝑀𝐶 is an isomorphism in D(𝑅) for every
complex 𝑀 ∈ Df

⊏⊐ (𝑅) of finite projective dimension and for 𝑀 = 𝐶.
E 10.1.6 Assume that 𝑅 is flat as a 𝕜-module and Noetherian. Let 𝐷 be a dualizing complex for

𝑅 and 𝐷 ≃−→ 𝐼 a semi-injective resolution in K(𝑅–𝑅o ) . Show that for a complex 𝑃
of finitely generated projective 𝑅-modules the complex Hom𝑅 (𝑃, 𝑅) is acyclic if and
only if 𝐼 ⊗𝑅 𝑃 is acyclic. (For a stronger result see Jørgensen [153].)

E 10.1.7 Assume that 𝑅 and 𝑆 are flat as 𝕜-modules. Let 𝑅 be left Noetherian, 𝑆 right Noetherian,
and 𝐷 a dualizing complex for (𝑅, 𝑆o) . Show that for 𝑀 ∈ D(𝑅) and 𝑁 ∈ Df (𝑅)
one has RHom𝑅 (𝑀, 𝑁 ) ≃ RHom𝑆o (RHom𝑅 (𝑁, 𝐷) , RHom𝑅 (𝑀, 𝐷) ) in D(𝕜) .

E 10.1.8 Let 𝑅 be left Noetherian and 𝑆 right Noetherian. Let 𝑀 be an 𝑅-complex and 𝑋
a complex in D⊏⊐ (𝑅–𝑆o ) with id𝑅 𝑋 finite and H(𝑋) degreewise finitely generated
over 𝑆o. Show that RHom𝑅 (𝑀, 𝑋) belongs to Df (𝑆o) and, further, that it belongs to
(a) Df

⊐ (𝑆o) if 𝑋 is in Df
⊏ (𝑅) and (b) Df

⊏⊐ (𝑆o) if 𝑋 is in Df
⊏⊐ (𝑅) .
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10.2 Morita Equivalence

Synopsis. Derived reflexive complex; invertible complex; Morita Equivalence; inverse complex.

We start by recording another situation in which biduality is an isomorphism in the
derived category.

10.2.1 Theorem. Assume that 𝑅 is flat as a 𝕜-module and left Noetherian. Let 𝑀
be a complex in Df

⊏⊐ (𝑅). If pd𝑅 𝑀 is finite, then the biduality morphism

𝜹𝑀𝑅 : 𝑀 −→ RHom𝑅o (RHom𝑅 (𝑀, 𝑅), 𝑅)

is an isomorphism in D(𝑅).

Proof. The vertical isomorphisms in the commutative diagram,

𝑀 ⊗L
𝑅o 𝑅

𝝁𝑀𝝊𝑀𝑅 ≃
��

𝑀⊗L𝝐𝑅

≃
// 𝑀 ⊗L

𝑅o RHom𝑅o (𝑅, 𝑅)

𝜼𝑅𝑅𝑀≃
��

𝑀
𝜹𝑀𝑅

// RHom𝑅o (RHom𝑅 (𝑀, 𝑅), 𝑅) ,

come from 7.5.4, 7.5.14, and homomorphism evaluation 8.4.23/8.4.25(a); it shows
that 𝜹𝑀𝑅 is an isomorphism. □

10.2.2 Corollary. Assume that 𝑅 is flat as a 𝕜-module and Noetherian. Let 𝑀 be a
complex in Df

⊏⊐ (𝑅). If pd𝑅 𝑀 is finite, then the complex RHom𝑅 (𝑀, 𝑅) belongs to
Df
⊏⊐ (𝑅o) and the next equalities hold,

pd𝑅 𝑀 = − inf RHom𝑅 (𝑀, 𝑅) and pd𝑅o RHom𝑅 (𝑀, 𝑅) = − inf 𝑀 ;

in particular, the 𝑅o-complex RHom𝑅 (𝑀, 𝑅) has finite projective dimension.

Proof. The right-hand equality holds by 8.1.15. This equality, together with 7.6.17
and 8.4.26 show that RHom𝑅 (𝑀, 𝑅) is a complex in Df

⊏⊐ (𝑅o) of finite projective
dimension. Another application of 8.1.15 and biduality 10.2.1 now yield:

pd𝑅o RHom𝑅 (𝑀, 𝑅) = − inf RHom𝑅o (RHom𝑅 (𝑀, 𝑅), 𝑅) = − inf 𝑀 . □

10.2.3 Proposition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and let 𝑀 be
a complex in D⊏⊐ (𝑅–𝑆o).

(a) If 𝑅 is left Noetherian, H(𝑀) is degreewise finitely generated over 𝑅, and
pd𝑅 𝑀 is finite, then there is a natural isomorphism of functors,

RHom𝑅 (𝑀, ) ≃ RHom𝑅 (𝑀, 𝑅) ⊗L
𝑅 : D(𝑅) −→ D(𝑆) .

(b) If 𝑆 is right Noetherian, H(𝑀) is degreewise finitely generated over 𝑆o, and
pd𝑆o 𝑀 is finite, then there is a natural isomorphism of functors,

𝑀 ⊗L
𝑆 ≃ RHom𝑆 (RHom𝑆o (𝑀, 𝑆), ) : D(𝑆) −→ D(𝑅) .
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Proof. (a): The first natural isomorphism follows from the unitor 7.5.4 and tensor
evaluation 8.4.10/8.4.13(a),

RHom𝑅 (𝑀, ) ≃ RHom𝑅 (𝑀, 𝑅 ⊗L
𝑅 ) ≃ RHom𝑅 (𝑀, 𝑅) ⊗L

𝑅 .

(b): The first natural isomorphism follows from the counitor 7.5.8 and homomor-
phism evaluation 8.4.23/8.4.25(a),

𝑀 ⊗L
𝑆 ≃ 𝑀 ⊗L

𝑆 RHom𝑆 (𝑆, ) ≃ RHom𝑆 (RHom𝑆o (𝑀, 𝑆), ) . □

Derived Reflexive Complexes

10.2.4 Definition. Assume that 𝑅 is flat as a 𝕜-module. An 𝑅-complex 𝑀 is called
derived reflexive if it satisfies the conditions:

(1) 𝑀 ∈ Df
⊏⊐ (𝑅) .

(2) RHom𝑅 (𝑀, 𝑅) ∈ Df
⊏⊐ (𝑅o) .

(3) Biduality 𝜹𝑀𝑅 :𝑀 → RHom𝑅o (RHom𝑅 (𝑀, 𝑅), 𝑅) is an isomorphism inD(𝑅) .
The full subcategory R(𝑅) of D(𝑅) is defined by specifying its objects as follows:

R(𝑅) = {𝑀 ∈ D(𝑅) | 𝑀 is derived reflexive} .

In 10.4.15 we interpret the derived reflexive complexes in terms of homological
dimensions, for now we record:

10.2.5 Example. Assume that 𝑅 is flat as a 𝕜-module and left Noetherian. It follows
from 10.2.1 and 10.2.2 that every complex in Df

⊏⊐ (𝑅) of finite projective dimension
is derived reflexive.

10.2.6 Proposition. Assume that 𝑅 is flat as a 𝕜-module. If 𝑅 is left Noetherian,
then R(𝑅) is a triangulated subcategory of Df

⊏⊐ (𝑅).

Proof. The functors RHom𝑅 ( , 𝑅) and RHom𝑅o ( , 𝑅) are triangulated by 7.3.6,
and biduality 𝜹𝑅 is per 8.4.3 a triangulated natural transformation. Further, the
subcategories Df

⊏⊐ (𝑅) and Df
⊏⊐ (𝑅o) are triangulated by 7.6.3 and 7.6.14. It now

follows from E.19 and E.20 that R(𝑅) is a triangulated subcategory of Df
⊏⊐ (𝑅). □

10.2.7 Theorem. Assume that 𝑅 is flat as a 𝕜-module and Noetherian. There is an
adjoint equivalence of 𝕜-linear triangulated categories,

R(𝑅o)
RHom𝑅o ( ,𝑅)op

//
R(𝑅)op ,

RHom𝑅 ( ,𝑅)
oo

and it restricts to an adjoint equivalence of triangulated subcategories,

Pf (𝑅o) −−→←−− Pf (𝑅)op .

Proof. The functors RHom𝑅o ( , 𝑅)op : D(𝑅o) ⇄ D(𝑅)op : RHom𝑅 ( , 𝑅) are ad-
joint by 10.1.22 and they are 𝕜-linear and triangulated by 7.3.6. In particular, for
every 𝑅-complex 𝑀 and every 𝑅o-complex 𝑁 one has the zigzag identities
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RHom𝑅 (𝜹𝑀𝑅 , 𝑅) 𝜹
RHom𝑅 (𝑀,𝑅)
𝑅

= 1RHom𝑅 (𝑀,𝑅)

and
RHom𝑅o (𝜹𝑁𝑅 , 𝑅) 𝜹

RHom𝑅o (𝑁,𝑅)
𝑅

= 1RHom𝑅o (𝑁,𝑅) .

It is now immediate from 10.2.4 that the adjoint functors restrict to an equivalence
R(𝑅o) ⇄ R(𝑅)op. That they further restrict to an equivalence Pf (𝑅o) ⇄ Pf (𝑅)op

follows from 10.2.2. □

Homothety Formation in the Derived Category

10.2.8. Assume that 𝑆 is projective as a 𝕜-module. The functor RHom𝑅 is by 7.3.12
augmented as follows

RHom𝑅 ( , ) : D(𝑅–𝑆o)op ×D(𝑅–𝑆o) −→ D(𝑆–𝑆o) ,

and for 𝑋 ∈ D(𝑅–𝑆o) an 𝑃 = P𝑅⊗𝕜𝑆o (𝑋) one has RHom𝑅 (𝑋, 𝑋) = Hom𝑅 (𝑃, 𝑃). It
follows that 𝜒𝑃

𝑆o𝑅 : 𝑆 → Hom𝑅 (𝑃, 𝑃) in K(𝑆–𝑆o) yields a morphism in D(𝑆–𝑆o),

𝑆 −→ RHom𝑅 (𝑋, 𝑋) .

Similarly, if 𝑅 is projective as a 𝕜-module, then 𝜒𝑃
𝑅𝑆o : 𝑅 → Hom𝑆o (𝑃, 𝑃) in

K(𝑅–𝑅o) yields a morphism in D(𝑅–𝑅o),

𝑅 −→ RHom𝑆o (𝑋, 𝑋) .

It is a consequence of the next result that the induced morphisms above agree with
homothety formation from 10.1.10.

10.2.9 Lemma. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑋 and 𝐿 be
complexes of 𝑅–𝑆o-bimodules such that 𝑋 ≃ 𝐿 in D(𝑅–𝑆o).

(a) If 𝐿 is semi-projective as an 𝑅-complex, then the morphism 𝝌𝑋
𝑆o𝑅 from 10.1.9

is isomorphic in D(𝑆–𝑆o) to the morphism induced by 𝜒𝐿
𝑆o𝑅 .

(b) If 𝐿 is semi-projective as an 𝑆o-complex, then the morphism 𝝌𝑋
𝑅𝑆o from 10.1.9

is isomorphic in D(𝑅–𝑅o) to the morphism induced by 𝜒𝐿
𝑅𝑆o .

Proof. We only prove part (a), as (b) follows by interchanging the roles of 𝑅 and 𝑆o.
Set 𝐼 = I𝑅⊗𝕜𝑆o (𝑋); by 6.4.21 there is a quasi-isomorphism 𝜓 : 𝐿 → 𝐼 in K(𝑅–𝑆o).
As 𝐿 is semi-projective over 𝑅, the morphism Hom𝑅 (𝐿, 𝜓) is a quasi-isomorphism
in K(𝑆–𝑆o). It follows from 7.3.11(c) that 𝐼 is semi-injective over 𝑅 and hence
Hom𝑅 (𝜓, 𝐼) is a quasi-isomorphism. The assertion now follows from the diagram
below, which is commutative by 𝑆o-linearity of 𝜑.

𝑆
𝜒𝐿

//

𝜒𝐼

��

Hom𝑅 (𝐿, 𝐿)

Hom (𝐿,𝜓)≃
��

Hom𝑅 (𝐼, 𝐼)
Hom (𝜓,𝐼 )
≃

// Hom𝑅 (𝐿, 𝐼) . □
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Invertible Complexes

Compare the next definition with 10.1.12.

10.2.10 Definition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be
left Noetherian and 𝑆 right Noetherian. A complex 𝑈 of 𝑅–𝑆o-bimodules is called
invertible for (𝑅, 𝑆o) if it satisfies the conditions:

(1) H(𝑈) is bounded and degreewise finitely generated over 𝑅 and over 𝑆o.
(2) 𝑈 has finite projective dimension over 𝑅 and over 𝑆o.
(3) Homothety formation 𝝌𝑈

𝑆o𝑅 : 𝑆 → RHom𝑅 (𝑈,𝑈) in D(𝑆–𝑆o) and homothety
formation 𝝌𝑈

𝑅𝑆o : 𝑅 → RHom𝑆o (𝑈,𝑈) in D(𝑅–𝑅o) are isomorphisms.

Remark. An 𝑅-complex that is isomorphic in D(𝑅) to a bounded complex of finitely generated
projective 𝑅-modules is called perfect. By 8.1.14 an invertible complex for (𝑅, 𝑆o) is thus both a
perfect 𝑅-complex and a perfect 𝑆o-complex.

10.2.11 Proposition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be
left Noetherian, 𝑆 right Noetherian, and𝑈 an invertible complex for (𝑅, 𝑆o).

(a) For every integer 𝑠 the complex Σ𝑠𝑈 is invertible for (𝑅, 𝑆o) .
(b) 𝑈 is invertible for (𝑆o, 𝑅) .

Proof. Part (a) is immediate from 2.3.14, 2.3.16, and 8.1.3. For part (b) recall that
complex of 𝑅–𝑆o-bimodules is the same as a complex of 𝑆o–𝑅-bimodules, and a ring
is left Noetherian if and only if the opposite ring is right Noetherian. □

In the case of a single Noetherian ring it makes sense to talk about an invertible
complex for that ring.

10.2.12 Definition. Let 𝑅 be Noetherian. A complex of 𝑅–𝑅o-bimodules is called
invertible for 𝑅 if it is invertible for (𝑅, 𝑅o) as defined in 10.2.10.

Remark. An invertible complex is a special case of a semi-dualizing complex; see E 10.1.4.

10.2.13 Example. If 𝑅 is projective as a 𝕜-module and Noetherian, then 𝑅 is
invertible for 𝑅, cf. 4.5.6 and 10.2.9.

Morita Equivalence

We now aim for a derived version of Morita’s [186] original theory of equivalences
of module categories. We start with a description of the unit and counit of derived
Hom–tensor adjunction.

10.2.14 Proposition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. For every
complex 𝑋 of 𝑅–𝑆o-bimodules there is an adjunction,

(10.2.14.1) D(𝑆)
𝑋⊗L

𝑆
//
D(𝑅) .

RHom𝑅 (𝑋, )
oo

8-Mar-2024 Draft - use at own risk



506 10 Dualizing Complexes

For an 𝑆-complex 𝑁 the unit 𝜶𝑁
𝑋

is the unique morphism in D(𝑆) that makes the
following diagram commutative,

(10.2.14.2)

𝑆 ⊗L
𝑆
𝑁

≃𝝁𝑁

��

𝝌𝑋⊗L𝑁
// RHom𝑅 (𝑋, 𝑋) ⊗L

𝑆
𝑁

𝜽𝑋𝑋𝑁

��

𝑁
𝜶𝑁
𝑋

// RHom𝑅 (𝑋, 𝑋 ⊗L
𝑆
𝑁) .

It is induced by the unit 𝛼𝑁
𝑃

from 4.5.14 with 𝑃 = P𝑅⊗𝕜𝑆o (𝑋), and if 𝑁 is a complex in
D(𝑆–𝑇o), then 𝜶𝑁

𝑋
is a morphism inD(𝑆–𝑇o). Moreover, the natural transformation

𝜶
𝑋

is triangulated.
For an 𝑅-complex 𝑀 the counit 𝜷𝑀𝑋 is the unique morphism in D(𝑅) that makes

the following diagram commutative,

(10.2.14.3)
𝑋 ⊗L

𝑆
RHom𝑅 (𝑋, 𝑀)

𝜼𝑀𝑋𝑋

��

𝜷𝑀𝑋
// 𝑀

𝝐𝑀≃
��

RHom𝑅 (RHom𝑆o (𝑋, 𝑋), 𝑀)
RHom (𝝌𝑋 ,𝑀 )

// RHom𝑅 (𝑅, 𝑀) .

It is induced by the counit 𝛽𝑀
𝑃

from 4.5.14 with 𝑃 = P𝑅⊗𝕜𝑆o (𝑋), and if 𝑀 is a
complex in D(𝑅–𝑄o), then 𝜷𝑀𝑋 is a morphism in D(𝑅–𝑄o). Moreover, the natural
transformation 𝜷𝑋 is triangulated.

Proof. Set 𝑃 = P𝑅⊗𝕜𝑆o (𝑋) and consider the adjunction from 4.5.14,

(★) C(𝑆)
𝑃⊗𝑆

//
C(𝑅) ,

Hom𝑅 (𝑃, )
oo

whose unit 𝛼
𝑃

and counit 𝛽
𝑃

fit into the commutative diagrams (4.5.14.1) and
(4.5.14.2). The functors in (★) preserve homotopy by 4.3.19 and 4.3.20, so by 6.1.32
there is an induced adjunction,

(⋄) K(𝑆)
𝑃⊗𝑆

//
K(𝑅) ,

Hom𝑅 (𝑃, )
oo

whose unit and counit we still denote by the symbols 𝛼
𝑃

and 𝛽
𝑃

. This is in accor-
dance with the usual convention that the notation ( )¥ gets suppressed. As a natural
transformation of endofunctors on C(𝑆) the unit 𝛼

𝑃
is a Σ-transformation by 4.5.14.

It follows from 6.2.17 that the induced unit of endofunctors on K(𝑆) is triangulated.
Similarly, the counit of endofunctors on K(𝑅) induced by 𝛽

𝑃
is triangulated.

The functors in (⋄) preserve quasi-isomorphisms, see 10.2.8, so 6.4.41 yields an
adjunction,

(♭) D(𝑆)
(𝑃⊗𝑆 )́ ´

//
D(𝑅) ,

Hom𝑅 (𝑃, ) ´́
oo
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which is (10.2.14.1). The unit and counit are 𝜶
𝑋

= ´́𝛼𝑃 and 𝜷𝑋 = ´́𝛽𝑃 . As the
natural transformations 𝛼

𝑃
and 𝛽

𝑃
are triangulated, so are 𝜶

𝑋
and 𝜷𝑋 by 6.5.14.

The commutative diagram (4.5.14.1) in C(𝑆) yields a commutative diagram of
endofunctors on K(𝑆),

𝑆 ⊗𝑆 P𝑆 ( )

�𝜇P ( )

��

𝜒𝑃 ⊗P ( )
// Hom𝑅 (𝑃, 𝑃) ⊗𝑆 P𝑆 ( )

𝜃𝑃𝑃 P ( )

��

P𝑆 ( )
𝛼

P ( )
𝑃

// Hom𝑅 (𝑃, 𝑃 ⊗𝑆 P𝑆 ( )) .

All functors in this diagram preserve quasi-isomorphisms, and by 7.2.11 and 7.2.12
there is a natural isomorphism ´́P𝑆 ≃ IdD(𝑆) . Now 6.4.31 and 6.4.33 apply to yield
the desired commutative diagram (10.2.14.2). As 𝝁𝑁 is an isomorphism, 𝜶𝑁

𝑋
is

the unique morphism in D(𝑆) that makes the diagram (10.2.14.2) commutative.
Evaluated at a complex 𝑁 ∈ D(𝑆–𝑇o) the morphism 𝜶𝑁

𝑋
= ´́𝛼𝑁

𝑃
is a morphism in

D(𝑆–𝑇o) as 𝛼𝑁
𝑃

is a morphism in C(𝑆–𝑇o) by 4.5.14. Similar arguments establish
the assertions about the counit. □

Remark. The adjunction (10.2.14.1) exists without the assumption that 𝑅 and 𝑆 are projective as
𝕜-modules; see E 7.5.5. The diagrams (10.2.14.2) and (10.2.14.3) that link the unit and counit of
the adjunction to the evaluation morphisms do, however, depend on this assumptions on 𝑅 and 𝑆.
This is in part due to the conservative approach to the use of the symbols RHom𝑅 and ⊗L

𝑅
imposed

in 7.3.5 and 7.4.3. A more ad-hoc approach is taken by Christensen, Frankild, and Holm [61].

10.2.15 Lemma. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and𝑈 an invertible complex for (𝑅, 𝑆o). There is an
isomorphism in D(𝑆–𝑅o),

RHom𝑅 (𝑈, 𝑅) ≃ RHom𝑆o (𝑈, 𝑆) .

Denoting this complex𝑈∗ there are natural isomorphisms of functors,

RHom𝑅 (𝑈, ) ≃ 𝑈∗ ⊗L
𝑅 : D(𝑅) −→ D(𝑆) and

𝑈 ⊗L
𝑆 ≃ RHom𝑆 (𝑈∗, ) : D(𝑆) −→ D(𝑅) .

Finally, H(𝑈∗) is bounded and𝑈∗ has finite projective dimension over 𝑆 and 𝑅o.

Proof. The isomorphism of complexes follows from the definition of an invertible
complex and swap 7.5.28,

RHom𝑅 (𝑈, 𝑅) ≃ RHom𝑅 (𝑈,RHom𝑆o (𝑈,𝑈))
≃ RHom𝑆o (𝑈,RHom𝑅 (𝑈,𝑈))
≃ RHom𝑆o (𝑈, 𝑆) .

The natural isomorphisms of functors follow from 10.2.3, and the final assertion
follows from 10.2.1. □
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Rings are said to be derived Morita equivalent if their (bounded) derived cate-
gories are equivalent as triangulated categories. Thus, the next theorem shows that 𝑅
and 𝑆 are derived Morita equivalent if there exists an invertible complex for (𝑅, 𝑆o).

10.2.16 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and𝑈 an invertible complex for (𝑅, 𝑆o). There is an
adjoint equivalence of 𝕜-linear triangulated categories,

D(𝑆)
𝑈⊗L

𝑆
//
D(𝑅) .

RHom𝑅 (𝑈, )
oo

It restricts to adjoint equivalences of triangulated subcategories:

D⊐ (𝑆) −−→←−− D⊐ (𝑅) , D⊏ (𝑆) −−→←−− D⊏ (𝑅) , and D⊏⊐ (𝑆) −−→←−− D⊏⊐ (𝑅) ,

and further to

P(𝑆) −−→←−− P(𝑅) , I(𝑆) −−→←−− I(𝑅) , and F(𝑆) −−→←−− F(𝑅) .

Proof. The displayed functors are adjoints by 10.2.14 and they are 𝕜-linear and
triangulated by 7.3.6 and 7.4.5. By assumption, the homothety morphism 𝝌𝑈

𝑆o𝑅 is
an isomorphism in D(𝑆–𝑆o), and it follows from 8.4.10/8.4.13(a) that the evalu-
ation morphism 𝜽𝑈𝑈𝑁 is an isomorphism in D(𝑆) for every 𝑆-complex 𝑁 . Thus,
the commutative diagram (10.2.14.2) shows that the unit of the adjunction 𝜶

𝑈
is

an isomorphism. Similarly, it follows from 8.4.23/8.4.25(a) and the commutative
diagram (10.2.14.3) that the counit 𝜷𝑈 is an isomorphism in D(𝑅).

By A.26(c) the functor RHom𝑅 (𝑈, ) is bounded, and since fd𝑆𝑈 is finite, see
8.3.6, the functor 𝑈 ⊗L

𝑆
is bounded by A.27(c). The restrictions to equivalences

D⊐ (𝑆) ⇄ D⊐ (𝑅), D⊏ (𝑆) ⇄ D⊏ (𝑅), and D⊏⊐ (𝑆) ⇄ D⊏⊐ (𝑅) now follow from A.25.
The final equivalences follow in view of 8.3.19 and 10.2.15 from 8.3.15(d,a,c). □

Remark. An invertible complex for (𝑅, 𝑆o) is a special instance of a tilting complex inD(𝑅–𝑆o ) ,
and by a theorem of Rickard [212], 𝑅 and 𝑆 are derived Morita equivalent if and only if there exists
a tilting complex in D(𝑅–𝑆o ) .

The equivalence in 10.2.16 specializes per E 10.2.7 to an equivalenceD(𝑆–𝑇o ) ⇄D(𝑅–𝑇o )op.

For Noetherian rings the equivalence in 10.2.16 restricts further to the subcate-
gories of complexes with degreewise finitely generated homology; see 10.2.20.

Inverse Complex

The terminology introduced next is justified by the subsequent results.

10.2.17 Definition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and Noe-
therian. For an invertible complex 𝑈 for (𝑅, 𝑆o), the complex RHom𝑅 (𝑈, 𝑅) ≃
RHom𝑆o (𝑈, 𝑆) in D(𝑆–𝑅o), see 10.2.15, is called the inverse of𝑈 and denoted𝑈∗.
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10.2.18 Proposition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be
left Noetherian, 𝑆 right Noetherian, and 𝑈 an invertible complex for (𝑅, 𝑆o). There
are isomorphisms,

𝑈 ⊗L
𝑆𝑈
∗ ≃ 𝑅 and 𝑈∗ ⊗L

𝑅𝑈 ≃ 𝑆 ,

in D(𝑅–𝑅o) and D(𝑆–𝑆o). Moreover, if 𝑉 ∈ D(𝑆–𝑅o) satisfies 𝑈 ⊗L
𝑆
𝑉 ≃ 𝑅 in

D(𝑅–𝑅o) or 𝑉 ⊗L
𝑅
𝑈 ≃ 𝑆 in D(𝑆–𝑆o), then 𝑉 is isomorphic to𝑈∗.

Proof. From 10.2.16 one gets an isomorphism 𝜷𝑅𝑈 :𝑈 ⊗L
𝑆
𝑈∗ → 𝑅 in D(𝑅) and by

10.2.14 it is an isomorphism in D(𝑅–𝑅o). For a complex 𝑉 with 𝑈 ⊗L
𝑆
𝑉 ≃ 𝑅 in

D(𝑅–𝑅o) the left-hand isomorphism in the next display is 𝜶𝑉
𝑈

,

𝑉 ≃ RHom𝑅 (𝑈,𝑈 ⊗L
𝑆 𝑉) ≃ RHom𝑅 (𝑈, 𝑅) ≃ 𝑈∗ .

Now apply 10.2.11 to finish the proof. □

10.2.19 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and Noetherian.
If𝑈 is an invertible complex for (𝑅, 𝑆o), then the inverse complex𝑈∗ is an invertible
complex for (𝑆, 𝑅o).

Proof. By 10.2.15 the complex𝑈∗ belongs to D⊏⊐ (𝑆–𝑅o) and it has finite projective
dimension over 𝑆 and over 𝑅o. Further, it has degreewise finitely generated homology
over either ring by 7.6.17. It remains to see that the homothety morphisms are
isomorphisms. There is a commutative diagram in D(𝑆–𝑆o),

𝑆
𝝌𝑈

≃
//

𝝌𝑈
∗

��

RHom𝑅 (𝑈,𝑈)

≃ RHom (𝑈,𝛿𝑈
𝑅
)

��

RHom𝑅o (𝑈∗,𝑈∗)
𝜻𝑈
∗𝑅𝑈

≃
// RHom𝑅 (𝑈,RHom𝑅o (𝑈∗, 𝑅)) ,

where the isomorphisms come from biduality 8.4.4/10.2.1, swap 7.5.28, and the
assumptions on 𝑈. It shows that 𝝌𝑈

∗

𝑆𝑅o is an isomorphism in D(𝑆–𝑆o); a similar
diagram with the rings interchanged shows that 𝝌𝑈∗

𝑅o𝑆 is an isomorphism inD(𝑅–𝑅o).
□

Remark. For a Noetherian ring 𝑅, projective as a 𝕜-module, the invertible complexes for 𝑅 form
a group; see E 10.2.4. It is known as the derived Picard group, see e.g. Rouquier and Zimmerman
[221], and it acts on the set of dualizing complexes for 𝑅; see 10.3.17.

For Noetherian rings, 10.2.16 restricts to an equivalence of the subcategories of
complexes with degreewise finitely generated homology.

10.2.20 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and Noetherian.
Let𝑈 be an invertible complex for (𝑅, 𝑆o). There is an adjoint equivalence of 𝕜-linear
triangulated categories,

Df (𝑆)
𝑈⊗L

𝑆
//
Df (𝑅) .

RHom𝑅 (𝑈, )
oo
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It restricts to adjoint equivalences of triangulated subcategories:

Df
⊐ (𝑆) −−→←−− Df

⊐ (𝑅) , Df
⊏ (𝑆) −−→←−− Df

⊏ (𝑅) , and Df
⊏⊐ (𝑆) −−→←−− Df

⊏⊐ (𝑅) ,

and further to
Pf (𝑆) −−→←−− Pf (𝑅) and If (𝑆) −−→←−− If (𝑅) .

Proof. It is sufficient to prove that the equivalence D(𝑆) ⇄ D(𝑅) established in
10.2.16 restricts to an equivalence of triangulated subcategories Df (𝑆) ⇄ Df (𝑅).
As 𝑈 has finite flat dimension, see 8.3.6, the functor 𝑈 ⊗L

𝑆
is bounded by A.27(c).

By 7.6.14 and A.29(d) it is thus enough to show that 𝑈 ⊗L
𝑆
𝑁 belongs to Df (𝑅)

for every finitely generated 𝑆-module 𝑁 , and that follows from 7.6.18. One has
RHom𝑅 (𝑈, ) ≃ 𝑈∗ ⊗L

𝑅
by 10.2.15, and the complex 𝑈∗ is invertible for (𝑆, 𝑅o)

by 10.2.19, so it follows from what has already been proved that the functor
RHom𝑅 (𝑈, ) maps Df (𝑅) to Df (𝑆). □

Exercises

E 10.2.1 Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left Noetherian, 𝑆 right
Noetherian, and𝑈 an invertible complex for (𝑅, 𝑆o) . Show that there exists a bounded
complex of 𝑅–𝑆o-bimodules that is isomorphic to𝑈 in D(𝑅–𝑆o ) and semi-projective
over 𝑅 and over 𝑆o. Hint: See 10.1.13.

E 10.2.2 Let 𝑅 be Noetherian. Show that a complex of 𝑅–𝑅o-bimodules is invertible for 𝑅 if and
only if it is invertible for 𝑅o.

E 10.2.3 Let 𝑅, 𝑆, and 𝑇 be Noetherian. Show that if𝑈 is an invertible complex for (𝑅, 𝑆o) and
𝑉 an invertible complex for (𝑆, 𝑇o) , then𝑈 ⊗L

𝑆
𝑉 is invertible for (𝑅, 𝑇o) .

E 10.2.4 Assume that 𝑅 is projective as a 𝕜-module and Noetherian. Show that the invertible
complexes for 𝑅 form a group.

E 10.2.5 Assume that 𝑅 is projective as a 𝕜-module and Noetherian. Show that if 𝐷 and 𝐷′ are
dualizing complexes for 𝑅, then RHom𝑅 (𝐷, 𝐷′ ) is invertible for 𝑅.

E 10.2.6 Assume that 𝑅 is projective as a 𝕜-module and Noetherian. Show that if 𝐷 is dualizing
complex for 𝑅 and𝑈 is an invertible complex for 𝑅, then𝑈 ⊗L

𝑅
𝐷 is dualizing for 𝑅.

E 10.2.7 Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and let 𝑋 be a complex of 𝑅–𝑆o-
bimodules. Show that there is an adjunction

𝑋 ⊗L
𝑆 : D(𝑆–𝑇o ) −−→←−− D(𝑅–𝑇o ) : RHom𝑅 (𝑋, ) .

Hint: Zigzag identities.
E 10.2.8 Let 𝑅 be left Noetherian and 𝑆 right Noetherian. Let 𝑀 be a complex in Df

⊏⊐ (𝑅) with
pd𝑅 𝑀 finite and 𝑋 a complex in D(𝑅–𝑆o ) with H(𝑋) degreewise finitely generated
over 𝑆o. Show that RHom𝑅 (𝑀, 𝑋) is in Df (𝑆o) and, further, belongs to (a) Df

⊐ (𝑆o) if
𝑋 is inD⊐ (𝑅–𝑆o ); (b)Df

⊏⊐ (𝑆o) if 𝑋 is inD⊏⊐ (𝑅–𝑆o ); (c)Pf (𝑆o) if 𝑋 is inD⊏⊐ (𝑅–𝑆o )
with pd𝑆o 𝑋 finite; and (d) If (𝑆o) if 𝑋 is in D⊏⊐ (𝑅–𝑆o ) with id𝑆o 𝑋 finite.

E 10.2.9 Let 𝑅 and 𝑆 be left Noetherian. Let 𝑁 be a complex in Df
⊏⊐ (𝑆) with pd𝑆 𝑁 finite

and 𝑋 a complex in D(𝑅–𝑆o ) with H(𝑋) degreewise finitely generated over 𝑅. Show
that 𝑋 ⊗L

𝑆
𝑁 belongs to Df (𝑅) and, further, that it belongs to (a) Df

⊏ (𝑅) if 𝑋 is in
D⊏ (𝑅–𝑆o ); (b) Df

⊏⊐ (𝑅) if 𝑋 is in D⊏⊐ (𝑅–𝑆o ); (c) Pf (𝑅) if 𝑋 is in D⊏⊐ (𝑅–𝑆o ) with
pd𝑅 𝑋 finite; and (d) If (𝑅) if 𝑋 is in D⊏⊐ (𝑅–𝑆o ) with id𝑅 𝑋 finite.
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10.3 Foxby–Sharp Equivalence

Synopsis. Auslander Category; Bass Category; Foxby–Sharp Equivalence; projective dimension
of flat modules; parametrization of dualizing complexes; invertible complex.

Let 𝐷 be a dualizing complex for (𝑅, 𝑆o). In this section, we study the adjunction,

D(𝑆)
𝐷⊗L

𝑆
//
D(𝑅) ,

RHom𝑅 (𝐷, )
oo

from 10.2.14.

10.3.1 Lemma. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o).

(a) For 𝑁 in D(𝑆) with fd𝑆 𝑁 finite the unit 𝜶𝑁
𝐷

: 𝑁 → RHom𝑅 (𝐷, 𝐷 ⊗L
𝑆
𝑁) is an

isomorphism in D(𝑆) .
(b) For 𝑀 in D(𝑅) with id𝑅 𝑀 finite the counit 𝜷𝑀𝐷 : 𝐷 ⊗L

𝑆
RHom𝑅 (𝐷, 𝑀) → 𝑀

is an isomorphism in D(𝑅) .

Proof. Part (a) follows from (10.2.14.2) and tensor evaluation 8.4.13(b) and part
(b) from (10.2.14.3) and homomorphism evaluation 8.4.25(b). □

Auslander and Bass Categories

10.3.2 Lemma. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 and 𝐷′ be dualizing complexes for (𝑅, 𝑆o).

(a) For an 𝑆-complex 𝑁 the unit 𝜶𝑁
𝐷

is an isomorphism in D(𝑆) if and only if 𝜶𝑁
𝐷′

is an isomorphism. Furthermore, 𝐷 ⊗L
𝑆
𝑁 has bounded homology if and only

if 𝐷′ ⊗L
𝑆
𝑁 has bounded homology.

(b) For an 𝑅-complex 𝑀 the counit 𝜷𝑀𝐷 is an isomorphism in D(𝑅) if and only if
𝜷𝑀𝐷′ is an isomorphism. Furthermore, RHom𝑅 (𝐷, 𝑀) has bounded homology
if and only if RHom𝑅 (𝐷′, 𝑀) has bounded homology.

Proof. (a): By symmetry it suffices to prove the “if” statement. Consider the complex
𝑈 = RHom𝑆o (𝐷, 𝐷′) in D(𝑅–𝑅o), cf. 7.3.12. As 𝐷 is in If (𝑆o) it follows from
10.1.23 that 𝑈 belongs to Pf (𝑅). Commutativity 𝝊𝑈𝐷 is by 7.5.14 an isomorphism
in D(𝑅–𝑆o). By 10.1.3 and 10.2.14 the counit 𝜷𝐷

′
𝐷 : 𝐷 ⊗L

𝑅o𝑈 → 𝐷′ is a morphism
in D(𝑅–𝑆o), and by 10.3.1 it is an isomorphism; set 𝜷 = 𝜷𝐷

′
𝐷 𝝊𝑈𝐷 :𝑈 ⊗L

𝑅
𝐷 → 𝐷′.

The diagram in D(𝑆),
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𝑁
𝜶𝑁
𝐷′

//

𝜶𝑁
𝐷

��

RHom𝑅 (𝐷′, 𝐷′ ⊗L
𝑆
𝑁)

≃ RHom (𝜷,𝐷′⊗L𝑁 )
��

RHom𝑅 (𝐷, 𝐷 ⊗L
𝑆
𝑁)

≃RHom (𝐷,𝜹𝐷
𝐷′ ⊗

L𝑁 )
��

RHom𝑅 (𝑈 ⊗L
𝑅
𝐷, 𝐷′ ⊗L

𝑆
𝑁)

≃ 𝝆𝐷𝑈 (𝐷
′ ⊗L𝑁 )

��

RHom𝑅 (𝐷,RHom𝑅 (𝑈, 𝐷′) ⊗L
𝑆
𝑁)

RHom (𝐷, 𝜽𝑈𝐷′𝑁 )

≃
// RHom𝑅 (𝐷,RHom𝑅 (𝑈, 𝐷′ ⊗L

𝑆
𝑁)) ,

is commutative. The vertical isomorphism on the left is induced by biduality 10.1.19,
and tensor evaluation 8.4.10/8.4.13(a) induces the lower horizontal isomorphism.
Thus 𝜶𝑁

𝐷′ is an isomorphism if 𝜶𝑁
𝐷

is an isomorphism.
As in the digram one has 𝐷 ⊗L

𝑆
𝑁 ≃ RHom𝑅 (𝑈, 𝐷′ ⊗L

𝑆
𝑁), so if 𝐷′ ⊗L

𝑆
𝑁 has

bounded homology, then it follows from 7.6.7 and 8.1.8 that 𝐷 ⊗L
𝑆
𝑁 has bounded

homology.
(b): Consider the complex 𝑈′ = RHom𝑅 (𝐷′, 𝐷) in D(𝑆–𝑆o), cf. 7.3.12. As

𝐷′ is in If (𝑅) it follows from 10.1.23 that 𝑈′ belongs to Pf (𝑆o). One establishes
a commutative diagram in D(𝑅), similar to the one above, from the following
sequences of isomorphisms induced by biduality 10.1.19, homomorphism evalua-
tion 8.4.23/8.4.25(a), and 10.3.1,

𝐷′ ⊗L
𝑆 RHom𝑅 (𝐷′, 𝑀) ≃ 𝐷′ ⊗L

𝑆 RHom𝑅 (RHom𝑆o (𝑈′, 𝐷), 𝑀)
≃ 𝐷′ ⊗L

𝑆 (𝑈
′ ⊗L

𝑆 RHom𝑅 (𝐷, 𝑀))
≃ 𝐷 ⊗L

𝑆 RHom𝑅 (𝐷, 𝑀) .

The diagram shows that the counit 𝜷𝑀𝐷′ is an isomorphism if 𝜷𝑀𝐷 is an isomorphism.
Further, as in the display above one has RHom𝑅 (𝐷′, 𝑀) ≃ 𝑈′ ⊗L

𝑆
RHom𝑅 (𝐷, 𝑀),

so if RHom𝑅 (𝐷, 𝑀) has bounded homology, then it follows from 8.3.6, 8.3.11, and
7.6.8 that RHom𝑅 (𝐷′, 𝑀) has bounded homology. □

The lemma above ensures that the next definitions are unambiguous.

10.3.3 Definition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o).

The gross Auslander Category of 𝑆, denoted Â(𝑆), is the full subcategory of
D(𝑆) defined by specifying its objects as follows,

Â(𝑆) = {𝑁 ∈ D(𝑆) | the unit morphism 𝜶𝑁𝐷 is an isomorphism} .

The Auslander Category of 𝑆 is the following full subcategory of Â(𝑆),

A(𝑆) = {𝑁 ∈ Â(𝑆) | 𝑁 and 𝐷 ⊗L
𝑆 𝑁 have bounded homology} ;

we also consider the full subcategory Af (𝑆) = A(𝑆) ∩Df (𝑆).
The gross Bass Category of 𝑅, denoted B̂(𝑅), is the full subcategory of D(𝑅)

defined by specifying its objects as follows,
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B̂(𝑅) = {𝑀 ∈ D(𝑅) | the counit morphism 𝜷𝑀𝐷 is an isomorphism} .

The Bass Category of 𝑅 is the following full subcategory of B̂(𝑅),

B(𝑅) = {𝑀 ∈ B̂(𝑅) | 𝑀 and RHom𝑅 (𝐷, 𝑀) have bounded homology} ;

we also considered the full subcategory Bf (𝑅) = B(𝑅) ∩Df (𝑅).

10.3.4 Proposition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o).

(a) The subcategories categories Â(𝑆) ⊆ D(𝑆) and A(𝑆) ⊆ D⊏⊐ (𝑆) are triangu-
lated. If 𝑆 is Noetherian, then Af (𝑆) is a triangulated subcategory of Df

⊏⊐ (𝑅) .
(b) The subcategories B̂(𝑅) ⊆ D(𝑅) and B(𝑅) ⊆ D⊏⊐ (𝑅) and Bf (𝑅) ⊆ Df

⊏⊐ (𝑅)
are triangulated.

Proof. The functors 𝐷 ⊗L
𝑆

and RHom𝑅 (𝐷, ) are triangulated by 7.4.5 and 7.3.6,
and 𝜶

𝐷
and 𝜷𝐷 are triangulated natural transformations by 10.2.14. It follows from

E.19 that Â(𝑆) and B̂(𝑅) are triangulated subcategories of D(𝑆) and D(𝑅). Further,
as D⊏⊐ (𝑆) and D⊏⊐ (𝑅) by 7.6.3 are triangulated subcategories, it follows from E.20
that A(𝑆) and B(𝑅) are triangulated subcategories. Finally, the statements about
Af (𝑆) and Bf (𝑅) follow from 7.6.14. □

The (gross) Auslander Category and (gross) Bass Category are by construction
equivalent; a precise statement is made in 10.3.7. In 10.4.4 and 10.4.7 we interprete
the complexes in these categories in terms of homological dimensions, for now we
record that complexes of finite flat/injective dimension are there.

10.3.5 Proposition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o).

(a) Every 𝑆-complex of finite flat dimension belongs to Â(𝑆); in particular, F(𝑆)
is a subcategory of A(𝑆) whence 𝑆 ∈ A(𝑆) .

(b) Every 𝑅-complex of finite injective dimension belongs to B̂(𝑅); in particular,
I(𝑅) is a subcategory of B(𝑅) whence 𝐷 ∈ B(𝑅) .

Proof. By 10.3.1 every 𝑆-complex of finite flat dimension is in Â(𝑆), and every
𝑅-complex of finite injective dimension is in B̂(𝑅). It follows from 8.3.11 and 7.6.8
thatF(𝑆) is contained inA(𝑆), and I(𝑅) is by 8.2.8 and 7.6.7 contained inB(𝑅). □

10.3.6 Example. Recall from 10.1.14 that if 𝑅 is projective over 𝕜 and Iwanaga–
Gorenstein, then 𝑅 is a dualizing complex for 𝑅. It follows from 7.5.4 and 7.5.8 that
for such a ring there are equalities,

Â(𝑅) = D(𝑅) = B̂(𝑅) and A(𝑅) = D⊏⊐ (𝑅) = B(𝑅) .

In particular, every 𝑅-module belongs to the Auslander/Bass Category but need not
have finite flat/injective dimension; see 8.2.11 and 8.5.32.

The equalities in the example above characterize Iwanaga–Gorenstein rings: If for
a Noetherian ring with a dualizing complex the category A(𝑅) or B(𝑅) coincides
with D⊏⊐ (𝑅), then 𝑅 is Iwanaga–Gorenstein; see 9.4.6, 9.4.15, 10.4.4, and 10.4.7.
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10.3.7 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o). There is an
adjoint equivalence of 𝕜-linear triangulated categories,

Â(𝑆)
𝐷⊗L

𝑆
//
B̂(𝑅) .

RHom𝑅 (𝐷, )
oo

It restricts to adjoint equivalences of triangulated subcategories:

A(𝑆) −−→←−− B(𝑅) and F(𝑆) −−→←−− I(𝑅) .

Proof. As the functor 𝐷 ⊗L
𝑆

is left adjoint for RHom𝑅 (𝐷, ), one has for every
𝑆-complex 𝑁 and every 𝑅-complex 𝑀 the zigzag identities:

𝜷
𝐷⊗L

𝑆
𝑁

𝐷
◦ (𝐷 ⊗L

𝑆 𝜶
𝑁
𝐷 ) = 1𝐷⊗

L
𝑆
𝑁

and
RHom𝑅 (𝐷, 𝜷𝑀𝐷 ) ◦ 𝜶

RHom𝑅 (𝐷,𝑀 )
𝐷

= 1RHom𝑅 (𝐷,𝑀 ) .

It is now immediate from the definitions in 10.3.3 that the functors 𝐷 ⊗L
𝑆

and
RHom𝑅 (𝐷, ) yield an adjoint equivalence Â(𝑆) ⇄ B̂(𝑅). It is evident that this
restricts to an equivalence A(𝑆) ⇄ B(𝑅). It follows from 10.3.5 that F(𝑆) and
I(𝑅) are subcategories of A(𝑆) and B(𝑅). That the already established equivalence
restricts to an equivalence F(𝑆) ⇄ I(𝑅) now follows from 8.4.16(a) and 8.4.27. □

For Noetherian rings, 10.3.7 restricts to an equivalence of the subcategories of
complexes with degreewise finitely generated homology.

10.3.8 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and Noetherian.
Let 𝐷 be a dualizing complex for (𝑅, 𝑆o). There is an adjoint equivalence of 𝕜-linear
triangulated categories,

Af (𝑆)
𝐷⊗L

𝑆
//
Bf (𝑅) ,

RHom𝑅 (𝐷, )
oo

and it restricts to an adjoint equivalence of triangulated subcategories,

Pf (𝑆) −−→←−− If (𝑅) .

Proof. For an 𝑆-complex 𝑁 in Af (𝑆) it follows from 7.6.18 that the 𝑅-complex
𝐷 ⊗L

𝑆
𝑁 has degreewise finitely generated homology, so it is in Bf (𝑅) by 10.3.7.

For an 𝑅-complex 𝑀 in Bf (𝑅) one has

RHom𝑅 (𝐷, 𝑀) ≃ RHom𝑅 (𝐷,RHom𝑆o (RHom𝑅 (𝑀, 𝐷), 𝐷))
≃ RHom𝑆o (RHom𝑅 (𝑀, 𝐷),RHom𝑅 (𝐷, 𝐷))
≃ RHom𝑆o (RHom𝑅 (𝑀, 𝐷), 𝑆)
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by biduality 10.1.19, swap 7.5.28, and 10.1.12. The complex RHom𝑅 (𝑀, 𝐷) be-
longs by 10.1.23 to Df

⊏⊐ (𝑆o), so RHom𝑆o (RHom𝑅 (𝑀, 𝐷), 𝑆) has degreewise finitely
generated homology over 𝑆 by 7.6.16. Hence, RHom𝑅 (𝐷, 𝑀) belongs to Af (𝑆) by
10.3.7.

By 10.3.7 and 10.1.21 the equivalence restricts to Pf (𝑆) ⇄ If (𝑅). □

Derived reflexive complexes belong to the Auslander Category.

10.3.9 Theorem. Assume that 𝑅 is projective as a 𝕜-module and Noetherian. Let 𝐷
be a dualizing complex for 𝑅. A complex in Df

⊏⊐ (𝑅) is derived reflexive if and only if
it belongs to the Auslander Category. That is, there is an equality,

Af (𝑅) = R(𝑅) .

Proof. Let 𝑀 belong to Df
⊏⊐ (𝑅). We first argue that bidulaity 𝜹𝑀𝑅 is an isomorphism

if and only if the unit 𝜶𝑀
𝐷

is an isomorphism. This follows from the commutaive dia-
gram below, where 𝑀∗ denotes the 𝑅o-complex RHom𝑅 (𝑀, 𝑅) and homomorphism
evaluation 𝜼𝐷𝑅𝑀 is an isomorphism by 8.4.25(b).

𝑀
𝜶𝑀
𝐷

//

𝜹𝑀𝑅

��

RHom𝑅 (𝐷, 𝐷 ⊗L
𝑅
𝑀)

RHom (𝐷, (𝑀⊗L𝜖𝐷 )𝝊𝐷𝑀 )≃
��

RHom𝑅o (𝑀∗, 𝑅)

RHom (𝑀∗ ,𝝌𝐷 ) ≃
��

RHom𝑅 (𝐷, 𝑀 ⊗L
𝑅o RHom𝑅 (𝑅, 𝐷))

RHom (𝐷,𝜼𝐷𝑅𝑀 )≃
��

RHom𝑅o (𝑀∗,RHom𝑅 (𝐷, 𝐷))
𝜻𝑀
∗𝐷𝐷

≃
// RHom𝑅 (𝐷,RHom𝑅o (𝑀∗, 𝐷)) .

If 𝑀 is in the Auslander Category, then the complex 𝐷 ⊗L
𝑅
𝑀 belongs to Df

⊏⊐ (𝑅) by
10.3.8, so the 𝑅o-complex

RHom𝑅 (𝐷 ⊗L
𝑅 𝑀, 𝐷) ≃ RHom𝑅 (𝑀,RHom𝑅 (𝐷, 𝐷)) ≃ RHom𝑅 (𝑀, 𝑅)

belongs to Df
⊏⊐ (𝑅o) by 10.1.23, whence 𝑀 is derived reflexive. Conversely, if 𝑀

is derived reflexive, then RHom𝑅 (𝑀, 𝑅) belongs to Df
⊏⊐ (𝑅o) and 10.1.23 yields

RHom𝑅o (RHom𝑅 (𝑀, 𝑅), 𝐷) ∈ Df
⊏⊐ (𝑅). As in the diagram above, homomorphism

evaluation 8.4.25(b), commutativity 7.5.10, and the counitor 7.5.8 yield

RHom𝑅o (RHom𝑅 (𝑀, 𝑅), 𝐷) ≃ 𝑀 ⊗L
𝑅o RHom𝑅 (𝑅, 𝐷) ≃ 𝐷 ⊗L

𝑅 𝑀 ,

so 𝑀 belongs to the category Af (𝑅). □

The next two results are recorded here for later use. To parse the first result, recall
from 10.1.3 that a dualizing complex for (𝑅, 𝑆o) is dualizing for (𝑆o, 𝑅).

10.3.10 Proposition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be
left Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o).

(a) Let 𝑀 ∈ D(𝑅); one has 𝑀 ∈ B(𝑅) if and only if Hom𝕜 (𝑀,𝔼) ∈ A(𝑅o) .
(b) Let 𝑁 ∈ D(𝑆); one has 𝑁 ∈ A(𝑆) if and only if Hom𝕜 (𝑁,𝔼) ∈ B(𝑆o) .
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Proof. (a): Notice from 2.5.7(b) that the complex𝑀 ∈ D(𝑅) has bounded homology
if and only if the 𝑅o-complex Hom𝕜 (𝑀,𝔼) has bounded homology. Assuming that
this is the case, homomorphism evaluation 8.4.23/8.4.25(b) yields an isomorphism

Hom𝕜 (RHom𝑅 (𝐷, 𝑀),𝔼) ≃ 𝐷 ⊗L
𝑅o Hom𝕜 (𝑀,𝔼) ,

and therefore H(RHom𝑅 (𝐷, 𝑀)) is bounded if and only if H(𝐷 ⊗L
𝑅o Hom𝕜 (𝑀,𝔼))

is bounded. This isomorphism induces the right-hand vertical isomorphism in the
following commutative diagram in D(𝑅o),

Hom𝕜 (𝑀,𝔼)
𝜶Hom (𝑀,𝔼)

//

Hom (𝜷𝑀 ,𝔼)
��

RHom𝑆o (𝐷, 𝐷 ⊗L
𝑅o Hom𝕜 (𝑀,𝔼))

RHom (𝐷,𝜂𝔼𝑀𝐷 )≃
��

Hom𝕜 (𝐷 ⊗L
𝑆

RHom𝑅 (𝐷, 𝑀),𝔼) ≃
// RHom𝑆o (𝐷,Hom𝕜 (RHom𝑅 (𝐷, 𝑀),𝔼)) ;

the lower horizontal isomorphism comes from commutativity 7.5.14 and adjunc-
tion 7.5.34. The diagram shows that 𝜷𝑀𝐷 is an isomorphism if and only if 𝜶Hom (𝑀,𝔼)

𝐷

is an isomorphism.
(b): Notice from 2.5.7(b) that H(𝑁) is bounded if and only if H(Hom𝕜 (𝑁,𝔼)) is

bounded. Commutativity 7.5.14 and adjunction 7.5.34 yield the isomorphism

Hom𝕜 (𝐷 ⊗L
𝑆 𝑁,𝔼) ≃ RHom𝑆o (𝐷,Hom𝕜 (𝑁,𝔼)) ,

which shows that H(𝐷 ⊗L
𝑆
𝑁) is bounded if and only if H(RHom𝑆o (𝐷,Hom𝕜 (𝑁,𝔼)))

is bounded. Assuming that this is the case, this isomorphism induces the top hori-
zontal isomorphism in the following commutative diagram in D(𝑆o),

𝐷 ⊗L
𝑅o Hom𝕜 (𝐷 ⊗L

𝑆
𝑁,𝔼) ≃

//

𝜂𝔼(𝐷⊗
L𝑁 )𝐷

��

𝐷 ⊗L
𝑅o RHom𝑆o (𝐷,Hom𝕜 (𝑁,𝔼))

𝜷Hom (𝑁,𝔼)

��

Hom𝕜 (RHom𝑅 (𝐷, 𝐷 ⊗L
𝑆
𝑁),𝔼)

Hom (𝜶𝑁 ,𝔼)
// Hom𝕜 (𝑁,𝔼) ;

the left-hand vertical isomorphism is homomorphism evaluation 8.4.23/8.4.25(b).
The diagram shows that 𝜶𝑁

𝐷
is an isomorphism if and only if 𝜷Hom (𝑁,𝔼)

𝐷
is an

isomorphism. □

The next result is recorded for use in Sect. 10.4.

10.3.11 Proposition. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be
left Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o).

(a) Let {𝑁𝑢}𝑢∈𝑈 be a family of 𝑆-modules. There is an isomorphism in D(𝑅),

𝐷 ⊗L
𝑆

∏
𝑢∈𝑈

𝑁𝑢 ≃
∏
𝑢∈𝑈
(𝐷 ⊗L

𝑆 𝑁
𝑢) ,

and
∏
𝑢∈𝑈 𝑁

𝑢 belongs to Â(𝑆) if and only if 𝑁𝑢 ∈ Â(𝑆) for all 𝑢 ∈ 𝑈.
(b) Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-modules. There is an isomorphism in D(𝑆),
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RHom𝑅

(
𝐷,

∐
𝑢∈𝑈

𝑀𝑢
)
≃

∐
𝑢∈𝑈

RHom𝑅 (𝐷, 𝑀𝑢) ,

and
∐
𝑢∈𝑈 𝑀

𝑢 belongs to B̂(𝑅) if and only if 𝑀𝑢 ∈ B̂(𝑅) for all 𝑢 ∈ 𝑈.

Proof. Set 𝑃 = P𝑅⊗𝕜𝑆o (𝐷) and let 𝜋 : 𝐿 → 𝐷 be a semi-free resolution over 𝑆o with
𝐿 bounded below and degreewise finitely generated; see 5.1.12. By 7.3.17 there is a
homotopy equivalence 𝜗 : 𝑃→ 𝐿 of 𝑆o-complexes.

(a): There is a commutative diagram in C(𝕜),

𝑃 ⊗𝑆
∏
𝑢∈𝑈

𝑁𝑢
𝜑
//

𝜗⊗∏𝑢∈𝑈 𝑁𝑢 ≊
��

∏
𝑢∈𝑈
(𝑃 ⊗𝑆 𝑁𝑢)

∏
𝑢∈𝑈 (𝜗⊗𝑁𝑢 )≊

��

𝐿 ⊗𝑆
∏
𝑢∈𝑈

𝑁𝑢
𝜑′
//
∏
𝑢∈𝑈
(𝐿 ⊗𝑆 𝑁𝑢) ,

where the vertical morphisms are homotopy equivalences by 4.3.20 and 4.3.6. The
horizontal morphisms are the maps from 3.1.30. As 𝐿 is degreewise finitely gen-
erated, 𝜑′ is an isomorphism by 3.1.30 applied degreewise. Thus 𝜑 is a homotopy
equivalence, in particular a quasi-isomorphism, of 𝕜-complexes; as it is 𝑅-linear, it
induces the asserted isomorphism in D(𝑅).

Set 𝑁 =
∏
𝑢∈𝑈 𝑁

𝑢 and consider the commutative diagram in C(𝑆),

𝑁
𝛼𝑁
𝑃

//

∏
𝑢∈𝑈 𝛼

𝑁𝑢

𝑃

��

Hom𝑅 (𝑃, 𝑃 ⊗𝑆 𝑁)

Hom (𝑃,𝜑)≃
��∏

𝑢∈𝑈
Hom𝑅 (𝑃, 𝑃 ⊗𝑆 𝑁𝑢) �

// Hom𝑅

(
𝑃,

∏
𝑢∈𝑈
(𝑃 ⊗𝑆 𝑁𝑢)

)
,

where the lower horizontal isomorphism comes from 3.1.24. Now 10.2.14 shows
that 𝜶𝑁

𝐷
is an isomorphism in D(𝑆) if and only if 𝜶𝑁𝑢

𝐷
is an isomorphism for every

𝑢 ∈ 𝑈.
(b): There is a commutative diagram in C(𝕜),

∐
𝑢∈𝑈

Hom𝑅 (𝑃, 𝑀𝑢)
𝜓
//

∐
𝑢∈𝑈 Hom (𝜗,𝑀𝑢 ) ≊

��

Hom𝑅

(
𝑃,

∐
𝑢∈𝑈

𝑀𝑢
)

Hom (𝜗,∐𝑢∈𝑈 𝑀𝑢 )≊

��∐
𝑢∈𝑈

Hom𝑅 (𝐿, 𝑀𝑢)
𝜓′
// Hom𝑅

(
𝐿,

∐
𝑢∈𝑈

𝑀𝑢
)
,

where the vertical morphisms are homotopy equivalences by 4.3.19 and 4.3.6. The
horizontal morphisms are the maps from 3.1.33. As 𝐿 is degreewise finitely gen-
erated, 𝜓′ is an isomorphism by 3.1.33 applied degreewise. Thus 𝜓 is a homotopy
equivalence, in particular a quasi-isomorphism, of 𝕜-complexes; as it is 𝑆-linear it
induces the asserted isomorphism in D(𝑆).
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By 3.1.27 one has Hom𝕜 (
∐
𝑢∈𝑈 𝑀

𝑢,𝔼) � ∏
𝑢∈𝑈 Hom𝕜 (𝑀𝑢,𝔼). As 𝐷 is a dua-

lizing complex for (𝑆o, 𝑅), the final assertion follows from part (a) and 10.3.10. □

Projective Dimension of Flat Modules

The utility and power of dualizing complexes is illustrated by the next results. The
theorem compares to Jensen’s theorem 8.5.18, and the corollary 10.3.13 provides
the same conclusion as Corollary 8.5.20, but under a different assumption.

10.3.12 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be
left Noetherian, 𝑆 right Noetherian, 𝐷 a dualizing complex for (𝑅, 𝑆o), and 𝑁 an
𝑆-complex. If 𝑁 has finite flat dimension, then one has

pd𝑆 𝑁 ⩽ max{id𝑅 𝐷 + sup (𝐷 ⊗L
𝑆 𝑁) , sup 𝑁 } ;

in particular, 𝑁 has finite projective dimension.

Proof. The quantity 𝑛 = max{id𝑅 𝐷 + sup (𝐷 ⊗L
𝑆
𝑁), sup 𝑁 } is finite by 8.3.11. Let

𝑃
≃−−→ 𝑁 be a semi-projective resolution over 𝑆. It suffices by 8.1.8 to show that

Ext1
𝑆
(C𝑛 (𝑃),C𝑛+1 (𝑃)) is zero. The 𝑆-module𝐶 = C𝑛+1 (𝑃) has finite flat dimension;

indeed, the sequence 0 → C𝑢 (𝑃) → 𝑃𝑢−1 → · · · → 𝑃𝑛+2 → 𝐶 → 0 is exact for
every 𝑢 > 𝑛 + 2, and by 8.3.11 the module C𝑢 (𝑃) is flat for 𝑢 ≫ 0. By 8.1.6, 10.3.5,
and adjunction 7.5.34 there are isomorphisms of 𝕜-modules,

Ext1𝑆 (C𝑛 (𝑃), 𝐶) � H−(𝑛+1) (RHom𝑆 (𝑁,𝐶))
� H−(𝑛+1) (RHom𝑆 (𝑁,RHom𝑅 (𝐷, 𝐷 ⊗L

𝑆 𝐶)))
� H−(𝑛+1) (RHom𝑅 (𝐷 ⊗L

𝑆 𝑁, 𝐷 ⊗
L
𝑆 𝐶)) .

It is now sufficient to show that − inf RHom𝑅 (𝐷 ⊗L
𝑆
𝑁, 𝐷 ⊗L

𝑆
𝐶) is at most 𝑛, and

that follows as 8.2.8 and 8.4.16(a) yield,

− inf RHom𝑅 (𝐷 ⊗L
𝑆 𝑁, 𝐷 ⊗

L
𝑆 𝐶) ⩽ id𝑅 (𝐷 ⊗L

𝑆 𝐶) + sup (𝐷 ⊗L
𝑆 𝑁)

⩽ id𝑅 𝐷 − inf 𝐶 + sup (𝐷 ⊗L
𝑆 𝑁)

⩽ 𝑛 . □

10.3.13 Corollary. Assume that 𝑅 is projective as a 𝕜-module and Noetherian with
a dualizing complex. An 𝑅-complex has finite flat dimension if and only if it has finite
projective dimension.

Proof. The assertion is immediate from 8.3.6 and 10.3.12. □

The next lemma is not needed before Sect. 10.4, but it is natural to record it here.

10.3.14 Lemma. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o). Further, let
𝑀 be an 𝑅-complex and 𝑁 an 𝑆-complex.
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(a) For every 𝑅-complex 𝐼 of finite injective dimension and with H(𝐼) non-zero
and bounded, one has

− inf RHom𝑅 (𝐼, 𝑀) ⩽ id𝑅 𝐷 + sup 𝐼 − inf RHom𝑅 (𝐷, 𝑀) .

(b) For every 𝑆-complex 𝐹 of finite flat dimension and with H(𝐹) non-zero and
bounded, one has

− inf RHom𝑆 (𝑁, 𝐹) ⩽ id𝑅 𝐷 − inf 𝐹 + sup (𝐷 ⊗L
𝑆 𝑁) .

(c) For every 𝑆o-complex 𝐸 of finite injective dimension and with H(𝐸) non-zero
and bounded, one has

sup (𝐸 ⊗L
𝑆 𝑁) ⩽ id𝑅 𝐷 + sup 𝐸 + sup (𝐷 ⊗L

𝑆 𝑁) .
Proof. (a): By 10.3.5 the 𝑅-complex 𝐼 belongs to the Bass Category, so one has

(†)
RHom𝑅 (𝐼, 𝑀) ≃ RHom𝑅 (𝐷 ⊗L

𝑆 RHom𝑅 (𝐷, 𝐼), 𝑀)
≃ RHom𝑆 (RHom𝑅 (𝐷, 𝐼),RHom𝑅 (𝐷, 𝑀))

where the second isomorphism is adjunction 7.5.34. The 𝑆-complex RHom𝑅 (𝐷, 𝐼)
has finite flat dimension by 10.3.7, so 10.3.12 yields the first inequality in the chain

pd𝑆 RHom𝑅 (𝐷, 𝐼) ⩽ max{id𝑅 𝐷 + sup (𝐷 ⊗L
𝑆 RHom𝑅 (𝐷, 𝐼)), sup RHom𝑅 (𝐷, 𝐼)}

⩽ max{id𝑅 𝐷 + sup 𝐼, sup 𝐼 − inf 𝐷}
= id𝑅 𝐷 + sup 𝐼 .

The second inequality follows from 10.3.7 and 7.6.7, and finally the equality follows
in view of 8.2.3. The desired inequality now follows from (†) and 8.1.8.

(b): By 10.3.5 the complex 𝐹 belongs to the Auslander Category, so one has

RHom𝑆 (𝑁, 𝐹) ≃ RHom𝑆 (𝑁,RHom𝑅 (𝐷, 𝐷 ⊗L
𝑆 𝐹)) ≃ RHom𝑅 (𝐷 ⊗L

𝑆 𝑁, 𝐷 ⊗
L
𝑆 𝐹)

where the second isomorphism is adjunction 7.5.34. Now 8.2.8 and 8.4.16(a) yield

− inf RHom𝑆 (𝑁, 𝐹) ⩽ id𝑅 (𝐷 ⊗L
𝑆 𝐹) + sup (𝐷 ⊗L

𝑆 𝑁)
⩽ id𝑅 𝐷 − inf 𝐹 + sup (𝐷 ⊗L

𝑆 𝑁) .

(c): The 𝑆-complex Hom𝕜 (𝐸,𝔼) has finite flat dimension by 8.3.18, so by 2.5.7(b),
adjunction 7.5.34, and part (b) one has

sup (𝐸 ⊗L
𝑆 𝑁) = − inf RHom𝕜 (𝐸 ⊗L

𝑆 𝑁,𝔼)
= − inf RHom𝑆 (𝑁,RHom𝕜 (𝐸,𝔼))
⩽ id𝑅 𝐷 − inf RHom𝕜 (𝐸,𝔼) + sup (𝐷 ⊗L

𝑆 𝑁)
= id𝑅 𝐷 + sup 𝐸 + sup (𝐷 ⊗L

𝑆 𝑁) . □

Parametrization of Dualizing Complexes

We close this chapter with a theorem which we know from Yekutieli [257]; it says
that dualizing complexes are parametrized by invertible complexes.
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10.3.15 Lemma. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and Noetherian.
If 𝐷 is a dualizing complex for (𝑅, 𝑆o) and𝑈 is an invertible complex for 𝑆, then the
complex 𝐷 ⊗L

𝑆
𝑈 is dualizing for (𝑅, 𝑆o).

Proof. By 10.2.20/10.2.11 and 10.3.8 the complex 𝐷 ⊗L
𝑆
𝑈 in D(𝑅–𝑆o) belongs to

If (𝑆o) and to If (𝑅). Furthermore, there is a commutative diagram in D(𝑆–𝑆o),

𝑆
𝝌𝐷⊗

L𝑈
//

≃𝝌𝑈

��

RHom𝑅 (𝐷 ⊗L
𝑆
𝑈, 𝐷 ⊗L

𝑆
𝑈)

𝝆 (𝐷⊗
L𝑈)𝐷𝑈≃

��

RHom𝑆 (𝑈,𝑈)
RHom (𝑈,𝜶𝑈 )

≃
// RHom𝑆 (𝑈,RHom𝑅 (𝐷, 𝐷 ⊗L

𝑆
𝑈)) ,

where the lower horizontal isomorphism comes from 10.3.5 and 10.2.14, while
the right-hand vertical isomorphism is adjunction 7.5.34. The diagram shows that
𝝌𝐷⊗

L𝑈
𝑆o𝑅 is an isomorphism. To see that 𝝌𝐷⊗

L𝑈
𝑅𝑆o is an isomorphism in D(𝑅–𝑅o),

expand the chain of isomorphisms,

RHom𝑆o (𝐷 ⊗L
𝑆𝑈, 𝐷 ⊗

L
𝑆𝑈) ≃ RHom𝑆o (𝐷,RHom𝑆o (𝑈,𝑈 ⊗L

𝑆o 𝐷))
≃ RHom𝑆o (𝐷, 𝐷) ,

into a commutative diagram. The first isomorphism is adjunction 7.5.34, and the
second is induced by the unit 𝜶𝐷

𝑈
, which is an isomorphism by 10.2.16. It now

follows from 10.1.12 that 𝐷 ⊗L
𝑆
𝑈 is a dualizing complex for (𝑅, 𝑆o). □

10.3.16 Lemma. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and Noetherian.
If 𝐷 and 𝐷′ are dualizing complexes for (𝑅, 𝑆o), then the complex RHom𝑅 (𝐷, 𝐷′)
is invertible for 𝑆 with inverse RHom𝑅 (𝐷′, 𝐷).

Proof. It follows from 10.3.8 and from 10.1.23/10.1.3 that the 𝑆–𝑆o-bicomplex
𝑈 = RHom𝑅 (𝐷, 𝐷′) belongs to Pf (𝑆) and Pf (𝑆o). To prove that it is invertible, it
remains to see that the homothety morphisms are isomorphisms; cf. 10.2.10. It is
straightforward to verify that there is a commutative diagram in D(𝑆–𝑆o),

𝑆
𝝌𝑈

//

≃𝝌𝐷
′

��

RHom𝑆 (RHom𝑅 (𝐷, 𝐷′),RHom𝑅 (𝐷, 𝐷′))

RHom𝑅 (𝐷′, 𝐷′) ≃
RHom (𝜷𝐷′ ,𝐷′ )

// RHom𝑅 (𝐷 ⊗L
𝑆

RHom𝑅 (𝐷, 𝐷′), 𝐷′) ,

≃ 𝝆𝐷
′𝐷 RHom (𝐷,𝐷′ )

OO

where the lower horizontal isomorphism comes from 10.3.5 and 10.2.14, while
the right-hand vertical isomorphism is adjunction 7.5.34. It follows that 𝝌𝑈

𝑆o𝑆 is an
isomorphism. In the commutative diagram,
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𝑆
𝝌𝑈

//

≃𝝌𝐷

��

RHom𝑆o (RHom𝑅 (𝐷, 𝐷′),RHom𝑅 (𝐷, 𝐷′))

RHom𝑅 (𝐷, 𝐷) ≃
RHom (𝐷,𝜹𝐷

𝐷′ )
// RHom𝑅 (𝐷,RHom𝑆o (RHom𝑅 (𝐷, 𝐷′), 𝐷′)) ,

≃ 𝜻𝐷𝐷
′ RHom (𝐷,𝐷′ )

OO

the lower horizontal isomorphism is induced by biduality 10.1.19 and the right-
hand vertical isomorphism is swap 7.5.28. The diagram shows that also 𝝌𝑈

𝑆𝑆o is an
isomorphism. Thus𝑈 is invertible. Finally, biduality 10.1.19 and swap 7.5.28 yield,

RHom𝑅 (𝐷′, 𝐷) ≃ RHom𝑅 (𝐷′,RHom𝑆o (RHom𝑅 (𝐷, 𝐷′), 𝐷′))
≃ RHom𝑆o (RHom𝑅 (𝐷, 𝐷′),RHom𝑅 (𝐷′, 𝐷′))
≃ RHom𝑆o (𝑈, 𝑆) ,

whence the inverse of𝑈 is RHom𝑅 (𝐷′, 𝐷); see 10.2.17. □

10.3.17 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and Noetherian.
If 𝐷 is a dualizing complex for (𝑅, 𝑆o), then there is a one-to-one correspondence
of isomorphism classes in derived categories,

{invertible complexes for 𝑆} ←→ {dualizing complexes for (𝑅, 𝑆o)}

given by
𝑈 ↦−→ 𝐷 ⊗L

𝑆𝑈 and RHom𝑅 (𝐷, 𝐷′) ↦−→

𝐷′ .

Proof. For every invertible complex 𝑈 for 𝑆 the complex 𝐷 ⊗L
𝑆
𝑈 is dualizing for

(𝑅, 𝑆o) by 10.3.15. By 10.3.5 the complex𝑈 belongs to A(𝑆), and hence there is an
isomorphism𝑈 ≃ RHom𝑅 (𝐷, 𝐷 ⊗L

𝑆
𝑈) in D(𝑆–𝑆o), see 10.2.14.

For every dualizing complex 𝐷′ for (𝑅, 𝑆o) the complex RHom𝑅 (𝐷, 𝐷′) is in-
vertible for 𝑆 by 10.3.16. By 10.3.5 the complex 𝐷′ belongs to B(𝑅), so there is an
isomorphism 𝐷′ ≃ 𝐷 ⊗L

𝑆
RHom𝑅 (𝐷, 𝐷′) in D(𝑅–𝑆o), see 10.2.14. □

In the case of a commutative Noetherian local ring, a dualizing complex is unique
in the derived category, up to a shift; see 18.2.27. It follows that 𝑅 in this case is the
only invertible complex for 𝑅.

10.3.18 Corollary. Assume that 𝑅 and 𝑆 are projective as𝕜-modules and Noetherian.
If 𝐷 is a dualizing complex for (𝑅, 𝑆o), then there is a one-to-one correspondence
of isomorphism classes

{invertible complexes for 𝑆} ←→ {invertible complexes for 𝑅}

given by

𝑈 ↦−→ RHom𝑆o (𝐷, 𝐷 ⊗L
𝑆𝑈) and RHom𝑅 (𝐷, 𝐷 ⊗L

𝑅o 𝑉) ↦−→

𝑉 .

Proof. Recall from 10.1.3 that a dualizing complex for (𝑅, 𝑆o) is also dualizing for
(𝑆o, 𝑅). The assertions are now immediate from 10.3.17. □
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Exercises

In exercises E 10.3.1–10.3.6 assume that 𝑅 and 𝑆 are projective as 𝕜-modules, let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o) .

E 10.3.1 Let 𝑀 and 𝑁 be 𝑆-complexes. Show that if 𝑁 is in Â(𝑆) , then there is an isomorphism
RHom𝑆 (𝑀, 𝑁 ) ≃ RHom𝑅 (𝐷 ⊗L

𝑆
𝑀, 𝐷 ⊗L

𝑆
𝑁 ) in D(𝕜) .

E 10.3.2 Let𝑀 and 𝑁 be 𝑅-complexes. Show that if𝑀 is in B̂(𝑅) , then there is an isomorphism
RHom𝑅 (𝑀, 𝑁 ) ≃ RHom𝑆 (RHom𝑅 (𝐷, 𝑀 ) , RHom𝑅 (𝐷, 𝑁 ) ) in D(𝕜) .

E 10.3.3 Show that the assertions in 10.3.11 hold for families of uniformly bounded complexes.
Hint: E 3.1.17 and E 3.1.18.

E 10.3.4 Let 𝐹 be a flat 𝑆-module. Show that pd𝑆 𝐹 ⩽ id𝑅 𝐷 + sup𝐷 holds.
E 10.3.5 Show that splf 𝑆 and splf 𝑅o are finite.
E 10.3.6 (a) Let 𝑀 be a complex of 𝑆–𝑅o-bimodules and 𝐸 an 𝑆-complex of finite injective

dimension. Show that 𝑀 ∈ A(𝑅o) implies RHom𝑆 (𝑀, 𝐸 ) ∈ B(𝑅) , and show that
the converse holds if𝐸 is a faithfully injective𝑆-module. (b) Let𝑁 be a complex of𝑅–𝑆o-
bimodules and 𝐸 an 𝑅-complex of finite injective dimension. Show that 𝑁 ∈ B(𝑆o)
implies RHom𝑅 (𝑁, 𝐸 ) ∈ A(𝑆) , and show that the converse holds if 𝐸 is a faithfully
injective 𝑅-module.

E 10.3.7 Assume that 𝑅 and 𝑆 are projective as 𝕜-modules and Noetherian. Let 𝐷 be a dualizing
complex for (𝑅, 𝑆o) and𝑈 an invertible complex for 𝑆. Show directly, i.e. without using
10.3.18, that the complex RHom𝑆o (𝐷, 𝐷 ⊗L

𝑆
𝑈) is invertible for 𝑅.

10.4 Gorenstein Dimensions vs. Auslander and Bass Categories

Synopsis. Gorenstein projective/flat dimension and the Auslander Category; Gorenstein injective
dimension and the Bass Category; derived reflexive complex.

The overarching theme of Chap. 9 is that Gorenstein homological dimensions behave
like the absolute homological dimensions treated in Chap. 8, though the parallel
is imperfect in the sense that assumptions are needed to get, say, the Gorenstein
version of flat–injective duality. Also statements like 8.2.20—a filerted colimit of
injective modules is injective over a left Noetherian ring—have their counterparts
in the theory of Gorenstein homological dimensions. We arrive at these statements
through a categorical characterization of complexes of finite Gorenstein homological
dimensions; one that assumes the existence of a dualizing complex.

The Auslander Category

Per 10.3.7 the Auslander Category A(𝑅) contains the category F(𝑅) of complexes
of finite flat dimension. The first theorem of this section, 10.4.4, shows that all
complexes in A(𝑅) have have finite Gorenstein flat dimension, cf. 9.3.18. We build
up to the proof with a result of indepenent interest.

10.4.1 Proposition. Assume that 𝑅 is flat as a 𝕜-module. Let 𝑅 be left Noetherian
and 𝑆 right Noetherian. Let𝑀 be a complex inDf

⊐ (𝑅), 𝑋 a complex inD⊏⊐ (𝑅 ⊗𝕜 𝑆
o),

and 𝑁 an 𝑆-complex. The tensor evaluation morphism 8.4.6,
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𝜽𝑀𝑋𝑁 : RHom𝑅 (𝑀, 𝑋) ⊗L
𝑆 𝑁 −→ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆 𝑁) ,

is an isomorphism if the invariants id𝑆o𝑋 , fd𝑆o RHom𝑅 (𝑀, 𝑋), and Gfd𝑆 𝑁 are finite.

Proof. Choose by 5.3.26 a semi-injective resolution 𝑋 ≃−−→ 𝐸 over 𝑅 ⊗𝕜 𝑆
o with

𝐸 bounded above. As 𝑅 is flat as a 𝕜-module, 𝐸 is also semi-injective over 𝑆o; see
7.3.11(c). Let 𝑃 ≃−−→ 𝑀 be a semi-projective resolution with 𝑃 bounded below and
degreewise finitely generated; see 5.2.16. Let 𝐹 ≃ 𝑁 be a semi-flat replacement
over 𝑆 and set 𝑛 = Gfd𝑆 𝑁 . By 8.4.11 it suffices to prove that the tensor evaluation
morphism 𝜃𝑃𝐸𝐹 is a quasi-isomorphism in D(𝕜). There is a commutative diagram,

Hom𝑅 (𝑃, 𝐸) ⊗𝑆 𝐹

Hom (𝑃,𝐸 ) ⊗ 𝜏𝐹Ď𝑛 ≃
��

𝜃𝑃𝐸𝐹
// Hom𝑅 (𝑃, 𝐸 ⊗𝑆 𝐹)

Hom (𝑃,𝐸⊗ 𝜏𝐹Ď𝑛 )≃
��

Hom𝑅 (𝑃, 𝐸) ⊗𝑆 𝐹Ď𝑛
𝜃𝑃𝐸𝐹Ď𝑛

�
// Hom𝑅 (𝑃, 𝐸 ⊗𝑆 𝐹Ď𝑛) .

The left-hand vertical morphism is a quasi-isomorphism by 9.3.24. Indeed, it follows
from 5.3.25 that Hom𝑅 (𝑃, 𝐸) is a semi-injective 𝑆o-complex, and fd𝑆o Hom𝑅 (𝑃, 𝐸)
is finite by assumption as Hom𝑅 (𝑃, 𝐸) is RHom𝑅 (𝑀, 𝑋). The morphism 𝐸 ⊗𝑆 𝜏𝐹Ď𝑛
is a quasi-isomorphism, also by 9.3.24, as id𝑆o 𝐸 = id𝑆o 𝑋 is finite by assumption,
and so the right-hand vertical morphism is a quasi-isomorphism by semi-projectivity
of 𝑃. Finally, 𝜃𝑃𝐸𝐹Ď𝑛 is an isomorphism by 4.5.10(1,a). □

10.4.2 Proposition. Assume that 𝑆 is projective as a 𝕜-module and left Noetherian.
Let 𝑀 be an 𝑅-complex, 𝑋 a complex in D⊏⊐ (𝑅 ⊗𝕜 𝑆

o), and 𝑁 a complex in Df
⊐ (𝑆).

The tensor evaluation morphism 8.4.6,

𝜽𝑀𝑋𝑁 : RHom𝑅 (𝑀, 𝑋) ⊗L
𝑆 𝑁 −→ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆 𝑁) ,

is an isomorphism if the invariants Gpd𝑅 𝑀 , pd𝑅 𝑋 , and id𝑅 (𝑋 ⊗L
𝑆
𝑁) are finite.

Proof. By 5.2.15 and 5.2.16 there exist semi-projective resolutions 𝑃 ≃−−→ 𝑀 and
𝐿

≃−−→ 𝑁 with 𝐿 bounded below and degreewise finitely generated. Further, per
5.2.15 let 𝐹 ≃−−→ 𝑋 be a semi-projective resolution over 𝑅 ⊗𝕜 𝑆

o with 𝐹 bounded
below; note that since 𝑆 is projective as a 𝕜-module, 𝐹 is semi-projective as an
𝑅-complex by 7.3.11(a). Now it suffices to show that 𝜃𝑃𝐹𝐿 is a quasi-isomorphism.
To that end, set 𝑛 = Gpd𝑅 𝑀 and consider the commutative diagram,

Hom𝑅 (𝑃Ď𝑛, 𝐹) ⊗𝑆 𝐿

Hom (𝜏𝑃Ď𝑛 ,𝐹 ) ⊗𝐿 ≃
��

𝜃𝑃Ď𝑛𝐹𝐿

�
// Hom𝑅 (𝑃Ď𝑛, 𝐹 ⊗𝑆 𝐿)

Hom (𝜏𝑃Ď𝑛 ,𝐹⊗𝐿)≃
��

Hom𝑅 (𝑃, 𝐹) ⊗𝑆 𝐿
𝜃𝑃𝐹𝐿

// Hom𝑅 (𝑃, 𝐹 ⊗𝑆 𝐿) .

The map Hom𝑅 (𝜏𝑃Ď𝑛, 𝐹) is a quasi-isomorphism by 9.1.17 as 𝐹 is semi-projective
as an 𝑅-complex and pd𝑅 𝐹 = pd𝑅 𝑋 is finite. As the 𝑆-complex 𝐿 is semi-flat, see
5.4.10, it follows that the left-hand vertical morphism is a quasi-isomorphism. The
𝑅-complex 𝐹 ⊗𝑆 𝐿 is semi-projective by 5.2.22 and id𝑅 (𝐹 ⊗𝑆 𝐿) = id𝑅 (𝑋 ⊗L

𝑆
𝑁) is

8-Mar-2024 Draft - use at own risk



524 10 Dualizing Complexes

finite by assumption. Thus, another application of 9.1.17 shows that the right-hand
vertical morphism is a quasi-isomorphism. Finally, 𝜃𝑃Ď𝑛𝐹𝐿 is an isomorphism by
tensor evaluation 4.5.10(2,a). □

10.4.3 Lemma. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o). A module 𝐺
inA(𝑆) is Gorenstein projective if Ext𝑚

𝑆
(𝐺, 𝐿) = 0 holds for all projective 𝑆-modules

𝐿 and all 𝑚 > 0.

Proof. By 10.3.12 every flat 𝑆-module has finite projective dimension. Thus, to
prove the assertion, it suffices by 9.3.28 to argue that the class X = M(𝑆) ∩A(𝑆) has
the properties (1), (2), and (3) required in that result. By 10.3.5(a) every projective 𝑆-
module belongs toA(𝑆), so (1) holds. Property (3) follows from 6.5.24 and 10.3.4(a).
To verify (2) let 𝐺 be a module in the Auslander category A(𝑆). Choose by 10.1.13
a bounded complex 𝐼 of 𝑅 ⊗𝕜 𝑆

o-bimodules that is semi-injective over 𝑅 and over
𝑆o and isomorphic to 𝐷 in D(𝑅 ⊗𝕜 𝑆

o). By assumption H(𝐷 ⊗L
𝑆
𝐺) is bounded, so

by 5.3.26 there is a semi-injective resolution 𝐷 ⊗L
𝑆
𝐺

≃−−→ 𝐽 over 𝑅 with 𝐽𝑣 = 0 for
𝑣 ≫ 0. InD(𝑆) one now has𝐺 ≃ RHom𝑅 (𝐷, 𝐷 ⊗L

𝑆
𝐺) ≃ Hom𝑅 (𝐼, 𝐽), as𝐺 belongs

to A(𝑆). By 2.5.12 and 8.4.28 the complex 𝑋 = Hom𝑅 (𝐼, 𝐽) is bounded above and
consists of flat 𝑆-modules. One has 𝐺 � H0 (𝑋) and H𝑣 (𝑋) = 0 for 𝑣 ≠ 0, so 𝐺 is
per 2.2.12(d) isomorphic to a submodule of 𝐶 = C0 (𝑋), and 𝑋ě0

≃−−→ 𝐶 is a flat
resolution. As 𝑋 is bounded above, 𝐶 has finite flat dimension; see 8.3.23. □

The equivalence of the first two conditions in the next theorem is already known
from 9.3.30 and 10.3.12.

10.4.4 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be
left Noetherian, 𝑆 right Noetherian, 𝐷 a dualizing complex for (𝑅, 𝑆o), and 𝑁 an
𝑆-complex. The following conditions are equivalent.

(i) Gpd𝑆 𝑁 is finite.
(ii) Gfd𝑆 𝑁 is finite.
(iii) 𝑁 belongs to Â(𝑆) and 𝐷 ⊗L

𝑆
𝑁 to D⊏ (𝑅) .

Moreover, if 𝑁 is in D⊐ (𝑆), then conditions (i)–(iii) are equivalent to
(iv) 𝑁 belongs to A(𝑆) .

Proof. An acyclic complex satisfies all four conditions, so one may assume that 𝑁
is not acyclic. The implication (i)⇒ (ii) is immediate from 9.3.30 and 10.3.12.

(ii)⇒ (iii): Let 𝑁 be an 𝑆-complex of finite Gorenstein flat dimension. It follows
from 9.3.26 that the homology of the complex𝐷 ⊗L

𝑆
𝑁 is bounded above. By 10.4.1(a)

tensor evaluation 𝜽𝐷𝐷𝑁 is an isomorphism. Now it follows from (10.2.14.2) that the
unit 𝜶𝑁

𝐷
is an isomorphism, whence 𝑁 belongs to Â(𝑆) per 10.3.3.

(iii)⇒ (i): Let 𝑁 be in Â(𝑆) and 𝐷 ⊗L
𝑆
𝑁 in D⊏ (𝑅); notice from 7.6.7 that

sup 𝑁 = sup RHom𝑅 (𝐷, 𝐷 ⊗L
𝑆 𝑁) ⩽ sup (𝐷 ⊗L

𝑆 𝑁) − inf 𝐷 < ∞

holds. Set 𝑛 = max{id𝑅 𝐷 + sup (𝐷 ⊗L
𝑆
𝑁), sup 𝑁 }; by assumption 𝑛 is an integer.

Choose a semi-projective resolution 𝑃 ≃−−→ 𝑁 . Per 9.1.10 it suffices to show that the
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module C𝑛 (𝑃) is Gorenstein projective. For every projective 𝑆-module 𝐿 one has
− inf RHom𝑆 (𝑁, 𝐿) ⩽ 𝑛 by 10.3.14(b), it follows from 8.1.6 that Ext𝑚

𝑆
(C𝑛 (𝑃), 𝐿) =

0 holds for all 𝑚 > 0. Moreover, in the exact sequence of 𝑆-complexes,

0 −→ 𝑃ď𝑛−1 −→ 𝑃Ď𝑛 −→ Σ𝑛C𝑛 (𝑃) −→ 0 ,

the middle term 𝑃Ď𝑛 ≃ 𝑁 belongs to Â(𝑆) by assumption, and the left-hand complex
is in A(𝑆) by 10.3.5 as it has finite projective dimension. Thus, C𝑛 (𝑃) belongs to
A(𝑆), as it is a triangulated subcategory per 10.3.4, and it follows from 10.4.3 that
C𝑛 (𝑃) is Gorenstein projective.

For a complex 𝑁 in D⊐ (𝑆) conditions (ii) and (iii) are by 9.3.16 and 7.6.8
equivalent to 𝑁 ∈ A(𝑆). □

The Bass Category

Per 10.3.7 the Bass Category B(𝑅) contains the category I(𝑅) of complexes of
finite injective dimension. Next we show that all complexes in B(𝑅) have have finite
Gorenstein injective dimenion, cf. 9.2.12.

10.4.5 Proposition. Assume that 𝑆 is flat as a 𝕜-module and right Noetherian. Let
𝑀 be an 𝑅-complex, 𝑋 a complex in D⊏⊐ (𝑅 ⊗𝕜 𝑆

o), and 𝑁 a complex in Df
⊐ (𝑆o).

The homomorphism evaluation morphism 8.4.19,

𝜼𝑀𝑋𝑁 : 𝑁 ⊗L
𝑆 RHom𝑅 (𝑋, 𝑀) −→ RHom𝑅 (RHom𝑆o (𝑁, 𝑋), 𝑀) ,

is an isomorphism if the invariants Gid𝑅 𝑀 , id𝑅 𝑋 and fd𝑅 RHom𝑆o (𝑁, 𝑋) are finite.

Proof. Choose a semi-injective resolution 𝑋 ≃−−→ 𝐸 over 𝑅 ⊗𝕜 𝑆
o with 𝐸𝑣 = 0 for

𝑣 ≫ 0. As 𝑆 is flat as a 𝕜-module, the complex 𝐸 is also semi-injective over 𝑅; see
7.3.11(c). Let 𝑃 ≃−−→ 𝑁 be a semi-projective resolution with 𝑃 bounded below and
degreewise finitely generated; see 5.2.16. Let 𝑀 ≃−−→ 𝐼 be a semi-injective resolution
and set 𝑛 = Gid𝑅 𝑀 . By 8.4.19 one has to prove that the homomorphism evaluation
morphism 𝜂𝐼𝐸𝑃 is a quasi-isomorphism. There is a commutative diagram,

𝑃 ⊗𝑆 Hom𝑅 (𝐸, 𝐼Ě−𝑛)
𝜂𝐼Ě−𝑛𝐸𝑃

//

𝑃⊗Hom (𝐸,𝜏𝐼Ě−𝑛 ) ≃
��

Hom𝑅 (Hom𝑆o (𝑃, 𝐸), 𝐼Ě−𝑛)

Hom (Hom (𝑃,𝐸 ) ,𝜏𝐼Ě−𝑛 )≃
��

𝑃 ⊗𝑆 Hom𝑅 (𝐸, 𝐼)
𝜂𝐼𝐸𝑃

// Hom𝑅 (Hom𝑆o (𝑃, 𝐸), 𝐼) .

As id𝑅 𝐸 = id𝑅 𝑋 is finite by assumption, the left-hand vertical morphism is
a quasi-isomorphism by 9.2.16 and semi-projectivity of 𝑃. The right-hand mor-
phism is also a quasi-isomorphism by 9.2.16. Indeed, it follows from 5.3.25 that
Hom𝑆o (𝑃, 𝐸) is a semi-injective 𝑅-complex, and by assumption fd𝑅 Hom𝑆o (𝑃, 𝐸) =
fd𝑅 RHom𝑆o (𝑁, 𝑋) is finite. Now 𝜂𝐼Ě−𝑛𝐸𝑃 is an isomorphism by 4.5.13(1,a). □

10.4.6 Lemma. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o). A module 𝐺
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in B(𝑅) is Gorenstein injective if Ext𝑚
𝑅
(𝐸, 𝐺) = 0 holds for all injective 𝑅-modules

𝐸 and all 𝑚 > 0.

Proof. By the assumptions on 𝐺, it is enough to verify that it meets requirement
9.2.4(2). To that end it suffices to construct an exact sequence of 𝑅-modules,

(⋄) 0 −→ 𝐺′ −→ 𝐼 −→ 𝐺 −→ 0 ,

where 𝐼 is injective and 𝐺′ has the same properties as 𝐺—that is, 𝐺′ belongs to
B(𝑅) and Ext𝑚

𝑅
(𝐸, 𝐺′) = 0 holds for all injective 𝑅-modules 𝐸 and all 𝑚 > 0.

Indeed, for every injective 𝑅-module 𝐸 the induced sequence,

0 −→ Hom𝑅 (𝐸, 𝐺′) −→ Hom𝑅 (𝐸, 𝐼) −→ Hom𝑅 (𝐸, 𝐺) −→ 0 ,

is per 7.3.35 and 7.3.27 exact by vanishing Ext1𝑅 (𝐸, 𝐺′). Therefore, having con-
structed (⋄), the sequence required in 9.2.4(2) can be constructed recursively.

First we argue that 𝐺 is a homomorphic image of a module 𝑍 of finite injective
dimension. Choose by 10.1.13 a bounded complex 𝐽 of 𝑅 ⊗𝕜 𝑆

o-bimodules that is
semi-injective over 𝑅 and over 𝑆o and isomorphic to 𝐷 in D(𝑅 ⊗𝕜 𝑆

o). Choose a
semi-projective resolution 𝑃 ≃−−→ RHom𝑅 (𝐷,𝐺) over 𝑆 with 𝑃𝑣 = 0 for 𝑣 ≪ 0. In
D(𝑅) one now has 𝐽 ⊗𝑆 𝑃 ≃ 𝐷 ⊗L

𝑆
RHom𝑅 (𝐷,𝐺) ≃ 𝐺, as 𝐺 belongs to B(𝑅). By

2.5.18 and 8.4.17 the complex 𝑋 = 𝐽 ⊗𝑆 𝑃 is bounded below and consists of injective
𝑅-modules. One has 𝐺 � H0 (𝑋) and H𝑣 (𝑋) = 0 for 𝑣 ≠ 0, so 𝐺 is per 2.2.12(c) a
homomorphic image of 𝑍 = Z0 (𝑋), and 𝑍 ≃−−→ 𝑋ď0 is an injective resolution. As 𝑋
is bounded below, 𝑍 has finite injective dimension; see 8.2.19.

Next we argue that 𝐺 is a homomorphic image of an injective module. There is
by 5.3.30 and 8.2.9 an exact sequence of 𝑅-modules,

0 −→ 𝑍
𝜀−−−→ 𝐼 ′ −→ 𝐶 −→ 0 ,

where 𝐼 ′ is injective and id𝑅 𝐶 is finite. By 9.2.5 one has Ext1𝑅 (𝐶,𝐺) = 0, whence
Hom𝑅 (𝜀, 𝐺) : Hom𝑅 (𝐼 ′, 𝐺) → Hom𝑅 (𝑍, 𝐺) is surjective; see 7.3.35 and 7.3.27.
Thus the homomorphism 𝑍 ↠ 𝐺 factors through 𝜀; i.e. there is a surjection 𝐼 ′ ↠ 𝐺.

Finally we can construct (⋄). By C.10 there exists an injective precover 𝜑 : 𝐼 → 𝐺,
and since 𝐺 is a homomorphic image of an injective module, 𝜑 is surjective per C.9.
Set 𝐺′ = Ker 𝜑; we argue that this yields the desired sequence (⋄). The injective
module 𝐼 is in B(𝑅) by 10.3.5, and 𝐺 is in B(𝑅) by assumption, so as B(𝑅) is a
triangualted subcategory ofD(𝑅), see 10.3.4, it follows that𝐺′ is inB(𝑅); cf. 6.5.24.
Let 𝐸 be an injective 𝑅-module; one has Ext𝑚

𝑅
(𝐸, 𝐺′) � Ext𝑚−1

𝑅
(𝐸, 𝐺) = 0 for

𝑚 ⩾ 2 by 7.3.35. To see that Ext1𝑅 (𝐸, 𝐺′) vanishes, consider the exact sequence of
𝕜-modules from 7.3.35 and 7.3.27,

(★) Hom𝑅 (𝐸, 𝐼)
Hom (𝐸,𝜑)−−−−−−−−−→ Hom𝑅 (𝐸, 𝐺) −→ Ext1𝑅 (𝐸, 𝐺′) −→ 0 .

As Hom𝑅 (𝐸, 𝜑) is surjective, see C.9, exactness of (★) yields Ext1𝑅 (𝐸, 𝐺′) = 0. □

10.4.7 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be
left Noetherian, 𝑆 right Noetherian, 𝐷 a dualizing complex for (𝑅, 𝑆o), and 𝑀 an
𝑅-complex. The following conditions are equivalent.
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(i) Gid𝑅 𝑀 is finite.
(ii) 𝑀 belongs to B̂(𝑅) and RHom𝑅 (𝐷, 𝑀) to D⊐ (𝑅) .

Moreover, if 𝑀 is in D⊏ (𝑅), then conditions (i) and (ii) are equivalent to
(iii) 𝑀 belongs to B(𝑅) .

Proof. An acyclic complex trivially satisfies all three conditions, so one may assume
that 𝑀 is not acyclic.

(i)⇒ (ii): Let 𝑀 be an 𝑅-complex of finite Gorenstein injective dimension. By
9.2.18 the homology of the complex RHom𝑅 (𝐷, 𝑀) is bounded below. By 10.4.5
homomorphism evaluaion 𝜼𝑀𝐷𝐷 is an isomorphism. Now (10.2.14.3) shows that
the counit 𝜷𝑀𝐷 is an isomorphism, whence 𝑀 belongs to B̂(𝑅) per 10.3.3.

(ii)⇒ (i): Let 𝑀 be in B̂(𝑅) and RHom𝑅 (𝐷, 𝑀) in D⊐ (𝑅); note from 7.6.8 that

inf 𝑀 = inf (𝐷 ⊗L
𝑆 RHom𝑅 (𝐷, 𝑀)) ⩾ inf 𝐷 + inf RHom𝑅 (𝐷, 𝑀) > −∞

holds. Set 𝑛 = max{id𝑅 𝐷 − inf RHom𝑅 (𝐷, 𝑀),− inf 𝑀 }; by assumption 𝑛 is an
integer. Choose a semi-injective resolution 𝑀 ≃−−→ 𝐼. Per 9.2.9 it suffices to show
that the module Z−𝑛 (𝐼) is Gorenstein injective. For every injective 𝑅-module 𝐸 one
has − inf RHom𝑅 (𝐸, 𝑀) ⩽ 𝑛 by 10.3.14(a), so 8.2.6 yields Ext𝑚

𝑅
(𝐸,Z−𝑛 (𝐼)) = 0

for all 𝑚 > 0. Moreover, in the exact sequence,

0 −→ Σ−𝑛Z−𝑛 (𝐼) −→ 𝐼Ě−𝑛 −→ 𝐼ě−𝑛+1 −→ 0 ,

of 𝑅-complexes the middle term 𝐼Ě−𝑛 ≃ 𝑀 belongs to B̂(𝑅) by assumption, and the
right-hand complex is in B(𝑅) by 10.3.5 as it has finite injective dimension. Thus,
Z−𝑛 (𝐼) belongs to B(𝑅), as it is a triangulated subcategory per 10.3.4, and it follows
from 10.4.6 that Z−𝑛 (𝐼) is Gorenstein injective.

For a complex 𝑀 in D⊏ (𝑅) conditions (i) and (ii) are by 9.2.10 and 7.6.7 equiv-
alent to 𝑀 ∈ B(𝑅). □

The next result is a companion to 9.3.17 and parallels 8.3.18.

10.4.8 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o). If FFD 𝑅o

is finite and 𝑀 is a complex in D⊏ (𝑅), then the next equality holds

Gfd𝑅o Hom𝕜 (𝑀,𝔼) = Gid𝑅 𝑀 .

Proof. It follows from 2.5.7(b), 10.3.10, 10.4.4, and 10.4.7 that Gid𝑅 𝑀 is finite if
and only if Gfd𝑅o Hom𝕜 (𝑀,𝔼) is finite.

Let 𝐽 be a semi-injective replacement of 𝑀 with 𝐽𝑣 = 0 for 𝑣 ≫ 0; see
5.3.26. It follows from 8.4.28 and 5.4.8 that Hom𝕜 (𝐽,𝔼) is a semi-flat replace-
ment of Hom𝕜 (𝑀,𝔼). For 𝑛 ⩾ − inf 𝑀 one has 𝑛 ⩾ sup Hom𝕜 (𝑀,𝔼) and
Hom𝕜 (Z−𝑛 (𝐽),𝔼) = C𝑛 (Hom𝕜 (𝐽,𝔼)), see 2.5.7(b) and 2.2.19. To prove the as-
serted equality, it is by 9.2.18 and 9.3.26 sufficient to show that an 𝑅-module 𝑍 is
Gorenstein injective if and only if the 𝑅o-module Hom𝕜 (𝑍,𝔼) is Gorenstein flat.

Set 𝑑 = FFD 𝑅o and assume that it is finite. Assume first that 𝑍 is Gorenstein
injective. Let 𝐼 be a totally acyclic complex of injective modules with Z−𝑑 (𝐼) � 𝑍 .
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The module Z0 (𝐼) is Gorenstein injective, so by what has already been proved the
module Hom𝕜 (Z0 (𝐼),𝔼) has finite Gorenstein flat dimension, and 9.3.23(a) yields
Gfd𝑅o Hom𝕜 (Z0 (𝐼),𝔼) ⩽ 𝑑. The complex 𝐼ď0 yields an injective resolution of Z0 (𝐼),
so as above Hom𝕜 (𝐼ď0,𝔼) yields a flat resolution of Hom𝕜 (Z0 (𝐼),𝔼). It now follows
from exactness of the sequence

0→Hom𝕜 (𝑍,𝔼) →Hom𝕜 (𝐼−𝑑+1,𝔼) → ···→Hom𝕜 (𝐼0,𝔼) →Hom𝕜 (Z0 (𝐼),𝔼) → 0

that Hom𝕜 (𝑍,𝔼) is Gorenstein flat; see 9.3.36.
Now assume that Hom𝕜 (𝑍,𝔼) is Gorenstein flat, it follows from what has already

been proved that Gid𝑅 𝑍 is finite. By 9.2.15 there exists an exact sequence

0 −→ 𝐺 −→ 𝑋 −→ 𝑍 −→ 0 ,

where𝐺 is Gorenstein injective and id𝑅 𝑋 = Gid𝑅 𝑍 . As already proved, Hom𝕜 (𝐺,𝔼)
is Gorenstein flat, and by assumption, so is Hom𝕜 (𝑍,𝔼). Therefore, exactness of

0 −→ Hom𝕜 (𝑍,𝔼) −→ Hom𝕜 (𝑋,𝔼) −→ Hom𝕜 (𝐺,𝔼) −→ 0

implies that Hom𝕜 (𝑋,𝔼) is Gorenstein flat; see 9.3.13. In particular, one has

Gid𝑅 𝑍 = id𝑅 𝑋 = fd𝑅o Hom𝕜 (𝑋,𝔼) = Gfd𝑅o Hom𝕜 (𝑋,𝔼) = 0 .

Here the second equality holds by 8.3.18 and the third holds by 9.3.18. □

Recall from 9.3.13 and 9.2.6 that a filtered colimit of Gorenstein flat modules
is Gorenstein flat and that a product of Gorenstein injective modules is Gorenstein
injective. In the presence of a dualizing complex the roles can be switched.

10.4.9 Theorem. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o).

(a) Let {𝑁𝑢}𝑢∈𝑈 be a family of Gorenstein flat 𝑆-modules. If FFD 𝑆 is finite, then
the module

∏
𝑢∈𝑈 𝑁

𝑢 is Gorenstein flat.
(b) Let {𝑀𝑢}𝑢∈𝑈 be a family of Gorenstein injective 𝑅-modules. If FID 𝑅 is finite,

then the module
∐
𝑢∈𝑈 𝑀

𝑢 is Gorenstein injective.
(c) Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 be a𝑈-direct system of 𝑅-modules. If FID 𝑅 is finite

and𝑈 is filtered, then the module colim𝑢∈𝑈 𝑀𝑢 is Gorenstein injective.

Proof. (a): Set 𝑑 = FFD 𝑆. For every module 𝑁𝑢 choose a totally acyclic complex
𝐹𝑢 of flat 𝑆-modules with C𝑑 (𝐹𝑢) = 𝑁𝑢 and set 𝐶𝑢 = C0 (𝐹𝑢). For every 𝑢 ∈ 𝑈 the
module 𝐶𝑢 is Gorenstein flat. It follows from 9.3.26 that sup (𝐷 ⊗L

𝑆
𝐶𝑢) ⩽ sup𝐷

holds for every 𝑢, so 10.3.11 and 3.1.23 yield

sup
(
𝐷 ⊗L

𝑆

∏
𝑢∈𝑈

𝐶𝑢
)
= sup

( ∏
𝑢∈𝑈
(𝐷 ⊗L

𝑆 𝐶
𝑢)

)
⩽ sup𝐷 .

It now follows from 10.3.11 and 10.4.4 that the module 𝐶 =
∏
𝑢∈𝑈 𝐶

𝑢 has finite
Gorenstein flat dimension. The complex 𝐹 =

∏
𝑢∈𝑈 𝐹

𝑢
ě0 yields by 8.3.26 a flat

resolution of𝐶. By 9.3.23(a) one has Gfd𝑆 𝐶 ⩽ 𝑑, so the module C𝑑 (𝐹) =
∏
𝑢∈𝑈 𝑁

𝑢,
see 3.1.22(c), is Gorenstein flat by 9.3.36.

(b): By 3.1.27 there is an isomorphism of 𝑅o-modules,
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(★) Hom𝕜

( ∐
𝑢∈𝑈

𝑀𝑢,𝔼
)
�

∏
𝑢∈𝑈

Hom𝕜 (𝑀𝑢,𝔼) .

The assumption that FID 𝑅 is finite implies by 8.5.27 that FFD 𝑅o is finite. Since 𝐷
by 10.1.3 is dualizing for (𝑆o, 𝑅) it follows from 10.4.8 and part (a) that the product∏
𝑢∈𝑈 Hom𝕜 (𝑀𝑢,𝔼) is a Gorenstein flat. From (★) and another application of 10.4.8

it now follows that
∐
𝑢∈𝑈 𝑀

𝑢 is Gorenstein injective.
(c): By 9.3.12 the canonical homomorphism

∐
𝑢∈𝑈 𝑀

𝑢 ↠ colim𝑢∈𝑈 𝑀𝑢 is a pure
epimorphism, so it follows from 5.5.14 that Hom𝕜 (colim𝑢∈𝑈 𝑀𝑢,𝔼) is a direct sum-
mand of the 𝑅o-module Hom𝕜 (

∐
𝑢∈𝑈 𝑀

𝑢,𝔼), which as shown above is Gorenstein
flat. From 9.3.13(b) it now follows that Hom𝕜 (colim𝑢∈𝑈 𝑀𝑢,𝔼) is a Gorenstein flat
𝑅o-module, so colim𝑢∈𝑈 𝑀𝑢 is Gorenstein injective by 10.4.8. □

10.4.10 Corollary. Assume that 𝑅 and 𝑆 are projective as 𝕜-modules. Let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o).

(a) Let {𝑁𝑢}𝑢∈𝑈 be a family of 𝑆-modules. If FFD 𝑆 is finite, then one has

Gfd𝑆
( ∏
𝑢∈𝑈

𝑁𝑢
)
= sup
𝑢∈𝑈
{Gfd𝑆 𝑁𝑢} .

(b) Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-modules. If FID 𝑅 is finite, then one has

Gid𝑅
( ∐
𝑢∈𝑈

𝑁𝑢
)
= sup
𝑢∈𝑈
{Gid𝑅 𝑀𝑢} .

Proof. (a): For every 𝑢 ∈ 𝑈 the module 𝑁𝑢 is a direct summand of
∏
𝑢∈𝑈 𝑁

𝑢, so the
inequality “⩾” holds by 9.3.27. For the opposite inequality one can assume that the
quantity 𝑠 = sup𝑢∈𝑈{Gfd𝑆 𝑁𝑢} is an integer. By 9.3.26 each module 𝑁𝑢 has a semi-
flat replacement 𝐹𝑢 with 𝐹𝑢𝑣 = 0 for all 𝑣 < 0 and C𝑠 (𝐹𝑢) Gorenstein flat. There
is an isomorphism

∏
𝑢∈𝑈 𝐹

𝑢 ≃ ∏
𝑢∈𝑈 𝑁

𝑢 in D(𝑆), and the complex
∏
𝑢∈𝑈 𝐹

𝑢 is
semi-flat by 8.3.26 and 5.4.8. It follows from 3.1.22(c) and 10.4.9(a) that the module
C𝑠 (

∏
𝑢∈𝑈 𝐹

𝑢) � ∏
𝑢∈𝑈 C𝑠 (𝐹𝑢) is Gorenstein flat. Thus “⩽” holds by 9.3.26.

(b): The assumption that FID 𝑅 is finite implies by 8.5.27 that FFD 𝑅o is finite.
Since 𝐷 by 10.1.3 is dualizing for (𝑆o, 𝑅), the equality (b) follows from 3.1.27,
10.4.8, and part (a). □

Remark. The proof of 10.4.10 applies to families of appropriately bounded complexes; see E 10.4.6
and E 10.4.7, and see also the Remarks after 8.2.21 and 8.3.27.

Our primary interest in the main theorems, 10.4.4 and 10.4.7, of this section is that they allow us
to prove statements like 10.4.8–10.4.10; we don’t know if these results hold in general, i.e. without
the presence of a dualizing complex. It is worth noting that 10.4.4 and 10.4.7 also provide new
insight on the Auslander Category and Bass Category; see E 10.4.1 and E 10.4.2.

Derived Reflexive Complexes

Over a Noetherian ring, the category of derived reflexive complexes introduced in
10.2.4 can also be interpreted in terms of Gorenstein homological dimensions; that
is the content of 10.4.15, which we move towards with the next result.
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10.4.11 Lemma. Let 𝑃 be a complex of finitely generated projective 𝑅-modules. If 𝑃
is totally acyclic, then Hom𝑅 (𝑃, 𝑅) is a totally acyclic complex of finitely generated
projective 𝑅o-modules.

Proof. Let 𝑃 be a totally acyclic complex of finitely generated projective 𝑅-modules.
By 4.5.4 and the assumption, Hom𝑅 (𝑃, 𝑅) is an acyclic complex of finitely generated
projective 𝑅o-modules. As one has 𝑃 � Hom𝑅o (Hom𝑅 (𝑃, 𝑅), 𝑅), still by 4.5.4, it
follows that Hom𝑅 (𝑃, 𝑅) is totally acyclic; see 9.1.5. □

10.4.12 Proposition. Assume that 𝑅 is left Noetherian. For every finitely generated
Gorenstein projective 𝑅-module 𝐺 the 𝑅o-module Hom𝑅 (𝐺, 𝑅) is finitely generated
Gorenstein projective.

Proof. By 9.1.23 there exists a totally acyclic complex 𝑃 of finitely generated projec-
tive 𝑅-modules with 𝐺 � C0 (𝑃). It now follows from 10.4.11 and the isomorphism
Hom𝑅 (C0 (𝑃), 𝑅) � C1 (Hom𝑅 (𝑃, 𝑅)) that the 𝑅o-module Hom𝑅 (𝐺, 𝑅) is finitely
generated and Gorenstein projective. □

The next characterization of finitely generated Gorenstein projective modules
over a Noetherian ring is, in fact, the first published definition of such modules;
see Auslander [8]. A module that satisfies the second condition is called reflexive,
which clarifies the alternate name for Gorenstein projective modules mentioned in
the Remark after 9.1.23.

10.4.13 Proposition. Assume that 𝑅 is left Noetherian. A finitely generated 𝑅-module
𝐺 is Gorenstein projective if and only if it satisfies the next conditions.

(1) Ext𝑚
𝑅
(𝐺, 𝑅) = 0 = Ext𝑚

𝑅o (Hom𝑅 (𝐺, 𝑅), 𝑅) holds for all 𝑚 > 0 .
(2) Biduality 𝛿𝐺

𝑅
: 𝐺 → Hom𝑅o (Hom𝑅 (𝐺, 𝑅), 𝑅) is an isomorphism.

Proof. Assume that 𝐺 is Gorenstein projective. From 9.1.3(1) and 10.4.12 one gets
vanishing of Ext𝑚

𝑅
(𝐺, 𝑅) and Ext𝑚

𝑅o (Hom𝑅 (𝐺, 𝑅), 𝑅) for all 𝑚 > 0. Choose by
9.1.23 a totally acyclic complex 𝑃 of finitely generated projective 𝑅-modules with
C0 (𝑃) � 𝐺. Acyclicity of 𝑃∗ = Hom𝑅 (𝑃, 𝑅) and Hom𝑅o (𝑃∗, 𝑅), see 10.4.11, yields

C0 (Hom𝑅o (𝑃∗, 𝑅)) � Hom𝑅o (C1 (𝑃∗), 𝑅) � Hom𝑅o (Hom𝑅 (C0 (𝑃), 𝑅), 𝑅) ,

so 𝛿𝐺
𝑅

is a restriction of the biduality isomorphism 𝛿𝑃
𝑅

; see 4.5.4.
Conversely, assume that Ext𝑚

𝑅
(𝐺, 𝑅) = 0 = Ext𝑚

𝑅o (Hom𝑅 (𝐺, 𝑅), 𝑅) holds for all
𝑚 > 0 and that 𝛿𝐺

𝑅
is an isomorphism. Let 𝜋 : 𝐿 ≃−−→ 𝐺 and 𝜋′ : 𝐿′ ≃−−→ Hom𝑅 (𝐺, 𝑅)

be free resolutions over 𝑅 and 𝑅o with 𝐿 and 𝐿′ degreewise finitely generated;
see 5.1.19. As Ext𝑚

𝑅o (Hom𝑅 (𝐺, 𝑅), 𝑅) vanishes for 𝑚 > 0, the homology of
Hom𝑅o (𝐿′, 𝑅) is Hom𝑅o (Hom𝑅 (𝐺, 𝑅), 𝑅), so Hom𝑅o (𝜋′, 𝑅) is an injective quasi-
isomorphism. As Hom𝑅o (𝐿′, 𝑅) by 4.5.4 is a complex of finitely generated projective
𝑅-modules, the complex

𝑃 = Σ−1Cone(Hom𝑅o (𝜋′, 𝑅)𝛿𝐺𝑅 𝜋)

is an acyclic complex of finitely generated free 𝑅-modules with C0 (𝑃) � C0 (𝐿) � 𝐺.
For 𝑣 ⩽ −1 one has H𝑣 (Hom𝑅 (𝑃, 𝑅)) = Ext−𝑣

𝑅
(𝐺, 𝑅) = 0, and for 𝑣 > 0 one
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has H𝑣 (Hom𝑅 (𝑃, 𝑅)) = H𝑣 (Hom𝑅 (Hom𝑅o (𝐿′, 𝑅), 𝑅)) � H𝑣 (𝐿′) = 0 by bidual-
ity 4.5.4. Finally, Z0 (𝑃) = Ker(Hom𝑅o (𝜋′0, 𝑅)𝛿

𝐺
𝑅
𝜋0) = Ker 𝜋0 holds as 𝛿𝐺

𝑅
is an iso-

morphism and Hom𝑅o (𝜋′0, 𝑅) is injective. Further, one has Ker 𝜋0 = B0 (𝐿) = B0 (𝑃),
and it follows that also H0 (Hom𝑅 (𝑃, 𝑅)) is zero. □

Remark. Notice from the proof that the “only if” statement in 10.4.13 holds under the assumption
that 𝑅 is left Noetherian, while the proof of “if” uses the full Noetherian hypothesis. This is why the
terminology ‘totally reflexive’ is only used in the Noetherian setting, cf. the Remark after 9.1.23.

10.4.14 Lemma. Assume that 𝑅 is flat as a 𝕜-module. Let 𝐺 be a bounded complex
of 𝑅-modules. If for every 𝑣 ∈ ℤ and all 𝑚 > 0 one has

Ext𝑚𝑅 (𝐺𝑣, 𝑅) = 0 = Ext𝑚𝑅o (Hom𝑅 (𝐺𝑣, 𝑅), 𝑅) ,

then𝐺 is derived reflexive if and only if biduality 𝛿𝐺
𝑅

in C(𝑅) is a quasi-isomorphism.

Proof. Let 𝜄 : 𝑅 ≃−−→ 𝐼 be an injective resolution over 𝑅 ⊗𝕜 𝑅
o; see 5.3.31. Since 𝑅

is flat as a 𝕜-module, it follows from 7.3.11(c) that 𝐼 is semi-injective both as an 𝑅-
and as an 𝑅o-complex. Consider the commutative diagram,

𝐺
𝛿𝐺
𝐼

//

𝛿𝐺
𝑅

��

Hom𝑅o (Hom𝑅 (𝐺, 𝐼), 𝐼)

Hom (Hom (𝐺, 𝜄) ,𝐼 )≃
��

Hom𝑅o (Hom𝑅 (𝐺, 𝑅), 𝑅)
Hom (Hom (𝐺,𝑅) , 𝜄)

≃
// Hom𝑅o (Hom𝑅 (𝐺, 𝑅), 𝐼) .

To see that the right-hand map is a quasi-isomorphism, set 𝐶 = Cone 𝜄; is the
complex 0→ 𝑅 → 𝐼0 → 𝐼−1 → · · · . By the assumptions on 𝐺, it follows from
A.4 that Hom𝑅 (𝐺,𝐶) is acyclic. Thus, Hom𝑅 (𝐺, 𝜄) is a quasi-isomorphism,
see 4.1.16; in particular, RHom𝑅 (𝐺, 𝑅) ≃ Hom𝑅 (𝐺, 𝑅) has bounded homo-
logy. By semi-injectivity of 𝐼 as an 𝑅o-complex, also Hom𝑅o (Hom𝑅 (𝐺, 𝜄), 𝐼)
is a quasi-isomorphism, and one can repeat the argument above to show that
Hom𝑅o (Hom𝑅 (𝐺, 𝑅), 𝜄) is a quasi-isomorphism. By commutativity of the diagram,
𝛿𝐺
𝑅

is a quasi-isomorphism if and only if 𝛿𝐺
𝐼

is a quasi-isomorphism. Per 8.4.1
and 6.4.18 biduality 𝜹𝐺𝑅 is an isomorphism in D(𝑅) if and only if 𝛿𝐺

𝐼
is a quasi-

isomorphism. □

The next theorem interprets the category R(𝑅) of derived reflexive 𝑅-complexes.
Note that if 𝑅 has a dualizing complex, 10.4.4 and 10.4.15 combine to give an alter-
native proof of the equality Af (𝑅) = R(𝑅) from 10.3.9; indeed, both subcategories
consist of the complexes in Df

⊏⊐ (𝑅) with finite Gorenstein projective dimension.

10.4.15 Theorem. Assume that 𝑅 is flat as a 𝕜-module and Noetherian. For every
complex 𝑀 ∈ Df

⊐ (𝑅) the following conditions are equivalent.
(i) Gpd𝑅 𝑀 is finite.
(ii) 𝑀 is derived reflexive.

Proof. One may assume that 𝑀 is not acyclic. Let 𝜋 : 𝑃 ≃−−→ 𝑀 be a semi-projective
resolution with 𝑃 bounded below and degreewise finitely generated; see 5.2.16.
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(i)⇒ (ii): If 𝑛 = Gpd𝑅 𝑀 is finite, then 𝑀 has bounded homology; see 9.1.11.
Now 𝑃Ď𝑛 is by 9.1.19 a bounded complex of finitely generated Gorenstein projective
modules. It follows from 10.4.13 that 𝑃Ď𝑛 satisfies the conditions in 10.4.14 and that
biduality 𝛿𝑃Ď𝑛

𝑅
is an isomorphism, as each component (𝛿𝑃Ď𝑛

𝑅
)𝑣 = 𝛿 (𝑃Ď𝑛 )𝑣

𝑅
is so. Since

𝑀 ≃ 𝑃Ď𝑛 in D(𝑅) it now follows from 10.4.14 that 𝑀 is derived reflexive.
(ii)⇒ (i): Set 𝑛 = − inf RHom𝑅 (𝑀, 𝑅) and notice that 𝑛 ⩾ sup𝑀 holds by 7.6.7

and the isomorphism 𝑀 ≃ RHom𝑅o (RHom𝑅 (𝑀, 𝑅), 𝑅) in D(𝑅); the goal is to
prove that C𝑛 (𝑃) is Gorenstein projective. To this end, notice that biduality 𝜹𝑃ď𝑛

𝑅
is

an isomorphim inD(𝑅) by 10.2.1, as 𝑃ď𝑛 is a complex of finite projective dimension.
Since𝑀 ≃ 𝑃Ď𝑛 holds inD(𝑅), biduality 𝜹𝑃Ď𝑛

𝑅
is an isomorphism by assumption. The

canonical exact sequence 0→ 𝑃ď𝑛−1 → 𝑃Ď𝑛 → Σ𝑛C𝑛 (𝑃) → 0 and biduality 8.4.2
induce by 6.5.24 a commutative diagram in D(𝑅), which by 6.5.19 shows that
also 𝜹C𝑛 (𝑃)

𝑅
is an isomorphism. By assumption, Ext𝑚

𝑅
(C𝑛 (𝑃), 𝑅) = 0 holds for

all 𝑚 > 0, see 8.1.6. It follows that there is an isomorphism Hom𝑅 (C𝑛 (𝑃), 𝑅) ≃
RHom𝑅 (C𝑛 (𝑃), 𝑅) in D(𝑅), and as 𝜹C𝑛 (𝑃)

𝑅
is an isomorphism one has, for every

𝑣 ≠ 0,

Ext𝑣𝑅o (Hom𝑅 (C𝑛 (𝑃), 𝑅), 𝑅) � H−𝑣 (RHom𝑅o (RHom𝑅 (C𝑛 (𝑃), 𝑅), 𝑅))
� H−𝑣 (C𝑛 (𝑃)) = 0 .

It now follows from 10.4.14 that biduality 𝛿C𝑛 (𝑃)
𝑅

is a quasi-isomorphism, and hence
an isomorphism as it is a map of modules. Finally it follows from 10.4.13 that C𝑛 (𝑃)
is Gorenstein projective. □

In view of 9.1.13 the next result generalizes 10.2.2.

10.4.16 Corollary. Assume that 𝑅 is flat as a 𝕜-module and Noetherian. Let 𝑀 be
a complex in Df

⊏⊐ (𝑅). If Gpd𝑅 𝑀 is finite, then the complex RHom𝑅 (𝑀, 𝑅) belongs
to Df

⊏⊐ (𝑅o) and the next equalities hold,

Gpd𝑅 𝑀 = − inf RHom𝑅 (𝑀, 𝑅) and Gpd𝑅o RHom𝑅 (𝑀, 𝑅) = − inf 𝑀 ;

in particular, RHom𝑅 (𝑀, 𝑅) has finite Gorenstein projective dimension over 𝑅o.

Proof. The assertions follow straight from 10.2.7, 9.1.29, and 10.4.15. □

Exercises

In exercises E 10.4.1–10.4.9 assume that 𝑅 and 𝑆 are projective as 𝕜-modules, let 𝑅 be left
Noetherian, 𝑆 right Noetherian, and 𝐷 a dualizing complex for (𝑅, 𝑆o) .

E 10.4.1 Assume that FFD 𝑆 is finite and let {𝑁𝑢 }𝑢∈𝑈 be a family of 𝑆-modules. Show that∐
𝑢∈𝑈 𝑁

𝑢 belongs to A(𝑆) if and only if each module 𝑁𝑢 belongs to A(𝑆) .
E 10.4.2 Assume that FID𝑅 is finite and let {𝑀𝑢 }𝑢∈𝑈 be a family of 𝑅-modules. Show that∏

𝑢∈𝑈 𝑀
𝑢 belongs to B(𝑅) if and only if each module 𝑀𝑢 belongs to B(𝑅) .

E 10.4.3 Show that there is a complex 𝑁 in Â(𝑆) with Gfd𝑆 𝑁 = ∞.
E 10.4.4 Show that there is a complex 𝑀 in B̂(𝑅) with Gid𝑅 𝑀 = ∞.
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E 10.4.5 Assume that FID𝑅 is finite and let 0→ 𝐺′ → 𝐺 → 𝐺′′ → 0 be a pure exact sequence
of 𝑅-modules. Show that if 𝐺 is Gorenstein injective, then so are 𝐺′ and 𝐺′′.

E 10.4.6 Assume that FFD 𝑆 is finite. Let {𝑀𝑢 }𝑢∈𝑈 be a family of 𝑅-complexes. Show that if
inf𝑢∈𝑈 { inf 𝑀𝑢 } > −∞ holds, then Gfd𝑅 (

∏
𝑢∈𝑈 𝑀

𝑢 ) = sup𝑢∈𝑈 {Gfd𝑅 𝑀𝑢 } holds.
E 10.4.7 Assume that FID𝑅 is finite. Let {𝑀𝑢 }𝑢∈𝑈 be a family of 𝑅-complexes. Show that if

sup𝑢∈𝑈 {sup𝑀𝑢 } < ∞ holds, then Gid𝑅 (
∐
𝑢∈𝑈 𝑀

𝑢 ) = sup𝑢∈𝑈 {Gid𝑅 𝑀𝑢 } holds.
E 10.4.8 Assume that FID𝑅 is finite. Let {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣 }𝑢∈𝑈 be a 𝑈-direct system of 𝑅-

modules. Show that the inequality Gid𝑅 (colim𝑢∈𝑈 𝑀𝑢 ) ⩽ sup𝑢∈𝑈 {Gid𝑅 𝑀𝑢 } holds
if𝑈 is filtered.

E 10.4.9 Show that 10.4.1(b) is valid without boundedness assumptions on the complex 𝑋.
E 10.4.10 Assume that 𝑅 is flat as a 𝕜-module and 𝑆 is Noetherian. Let 𝑀 be an 𝑅-complex,

𝑋 a complex in D⊏⊐ (𝑅 ⊗𝕜 𝑆
o ) , and 𝑁 a complex in Df

⊐ (𝑆) . Show that the tensor
evaluation morphism 𝜽𝑀𝑋𝑁 from 8.4.6 is an isomorphism in D(𝕜) if the dimensions
id𝑆o 𝑋, fd𝑆o RHom𝑅 (𝑀, 𝑋) , and Gfd𝑆 𝑁 are finite.

E 10.4.11 Assume that 𝑆 is flat as a 𝕜-module and that 𝑅 is left Noetherian. Let𝑀 be a complex in
Df
⊏⊐ (𝑅) , 𝑋 a complex of 𝑅–𝑆o-bimodules, and 𝑁 an 𝑆-complex. Show that the tensor

evaluation morphism 𝜽𝑀𝑋𝑁 from 8.4.6 is an isomorphism in D(𝕜) if the dimensions
Gpd𝑅 𝑀, fd𝑅 𝑋, id𝑅 (𝑋 ⊗L

𝑆
𝑁 ) are finite.

E 10.4.12 Assume that 𝑅 is flat as a 𝕜-module and that 𝑆 is right Noetherian. Let 𝑀 be an
𝑅-complex, 𝑋 a complex of 𝑅–𝑆o-bimodules, and 𝑁 a complex in Df

⊏⊐ (𝑆o) . Show
that the homomorphism evaluation morphism 𝜼𝑀𝑋𝑁 from 8.4.19, is an isomorphism
if the dimensions fd𝑆o 𝑋, fd𝑆 RHom𝑅 (𝑋, 𝑀 ) , and Gpd𝑆o 𝑁 are finite. Hint: E 9.1.12.

E 10.4.13 Let𝑀 be a complex of Gorenstein projective 𝑅-modules andN be as in 9.1.9. (a) Show
that Hom𝑅 (𝑀, ) preserves quasi-isomorphisms of bounded below complexes of
modules from N. (b) Show that if 𝑀 is bounded below, then Hom𝑅 (𝑀, ) preserves
quasi-isomorphisms of bounded above complexes of modules from N.

E 10.4.14 Let 𝑀 be a complex of Gorenstein injective 𝑅-modules and N be as in 9.2.8. (a) Show
that Hom𝑅 ( , 𝑀 ) preserves quasi-isomorphisms of bounded above complexes of mod-
ules from N. (b) Show that if 𝑀 is bounded above, then Hom𝑅 ( , 𝑀 ) preserves
quasi-isomorphisms of bounded below complexes of modules from N.

E 10.4.15 Let 𝑀 be a complex of Gorenstein flat 𝑅-modules and N be as in 9.3.14. (a) Show that
⊗𝑅 𝑀 preserves quasi-isomorphisms of bounded above complexes of modules from

N. (b) Show that if 𝑀 is bounded below, then ⊗𝑅 𝑀 preserves quasi-isomorphisms
of bounded below complexes of modules from N.

E 10.4.16 Assume that 𝑅 is projective as a 𝕜-module and Noetherian with a dualizing complex.
Show that one has A(𝑅) ∩ I(𝑅) = P(𝑅) ∩ I(𝑅) = P(𝑅) ∩B(𝑅) .
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Chapter 11
Torsion and Completion

Torsion, completion, and the associated local (co)homology theories are in their
own right the topics of books: Brodman and Sharp’s [45] is a classic that focuses
on the torsion/local cohomology side as does Lipman’s [173]; in [224] Schenzel and
Simon treat both theories and their interactions. Compared to these and other treaties,
the path we cut here and continue in Chap. 13 is a pretty narrow one. It takes us
without many detours to a theorem of Alonso Tarrío, Jeremías López, and Lipman
[3] on the equivalence of the categories of derived torsion and derived complete
complexes. This theorem—13.4.13 in this text—was inspired by work of Greenlees
and May [109] and is known as the Greenlees–May Equivalence. All this is over
commutative rings; Vyas and Yekutieli [249] establish a non-commutative version of
the equivalence, which they call the MGM Equivalence with the first ‘M’ referring
to Matlis [181] .

Throughout this chapter, the rings 𝑹 and 𝑺 are assumed to be commutative.

11.1 Completion

Synopsis. The functor Λ𝔞 ; independence of base; 𝔞-complete complex; 𝔞-completion of ring;
𝑅𝔞-structure on 𝔞-complete complex; 𝔞-dense morphism; idempotence of Λ𝔞 .

By convention, a sequence in 𝑅 is understood to be a non-empty finite sequence of
elements in 𝑅. The standard notation for such a sequence is 𝑥𝑥𝑥; it may introduced as
𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 if the number 𝑛 of elements is relevant.

Towers from Ideals and Sequences

11.1.1 Definition. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅. For 𝑢 ⩾ 1 the symbol 𝑥𝑥𝑥𝑢
denotes the sequence 𝑥𝑢1 , . . . , 𝑥

𝑢
𝑛 of 𝑢th powers.
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11.1.2 Definition. Let 𝔞 be an ideal in 𝑅; there is a canonical tower of 𝑅-modules,

(11.1.2.1) {𝜗𝑢𝔞 : 𝑅/𝔞𝑢 −↠ 𝑅/𝔞𝑢−1}𝑢>1 .

For a sequence 𝑥𝑥𝑥 in 𝑅 there is another canonical tower of 𝑅-modules,

(11.1.2.2) {𝜗𝑢𝑥𝑥𝑥 : 𝑅/(𝑥𝑥𝑥𝑢) −↠ 𝑅/(𝑥𝑥𝑥𝑢−1)}𝑢>1 .

For 𝔞 = (𝑥𝑥𝑥) the inclusions (𝑥𝑥𝑥𝑢) ⊆ (𝑥𝑥𝑥)𝑢 = 𝔞𝑢 yield a canonical comparison morphism
of the towers above,

(11.1.2.3) {𝜉𝑢𝑥𝑥𝑥 : 𝑅/(𝑥𝑥𝑥𝑢) −↠ 𝑅/(𝑥𝑥𝑥)𝑢}𝑢⩾1 .

11.1.3. Let 𝔞 be an ideal in 𝑅. Note that there is a commutative diagram,

𝑅

�� �� '' ''

· · ·
𝜗3
𝔞

// // 𝑅/𝔞2
𝜗2
𝔞

// // 𝑅/𝔞 .

Applying a functor F: C(𝑅) → C(𝑆) to this diagram, the univeral property of limits
3.4.5 yields a canonical morphism F(𝑅) → lim𝑢⩾1 F(𝑅/𝔞𝑢) inC(𝑆). More generally,
a functor F: C(𝑅) × U→ C(𝑆) yields a natural transformation,

F(𝑅,−) −→ lim
𝑢⩾1

F(𝑅/𝔞𝑢,−) ,

of functors from U to C(𝑆). Similarly, a functor G: C(𝑅)op × U→ C(𝑆) induces by
3.2.5 a natural transformation of functors from U to C(𝑆),

colim
𝑢⩾1

G(𝑅/𝔞𝑢,−) −→ G(𝑅,−) .

Completion Functor

11.1.4 Definition. Let 𝔞 be an ideal in 𝑅. The tower (11.1.2.1) yields a functor

Λ𝔞 = lim
𝑢⩾1
(𝑅/𝔞𝑢 ⊗𝑅 ) : C(𝑅) −→ C(𝑅) ;

see 3.5.2. It is called the 𝔞-completion functor. Denote by

𝜆𝔞 : IdC(𝑅) −→ Λ𝔞

the natural transformation obtained from the unitor 4.4.1 and 11.1.3 with F = ⊗𝑅.

Remark. The functor Λ𝔞 is in parts of the literature called the ‘𝔞-adic completion’ functor; we opt
for the shorter term ‘𝔞-completion’.

Completion with respect to the trivial ideals is a trivial affaire.

11.1.5 Example. Clearly, Λ𝑅 is the zero functor and Λ0 the identity functor on C(𝑅).
In fact, for every nilpotent ideal 𝔞 one has Λ𝔞 � IdC(𝑅) 3.5.8(b) and 4.4.1.
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11.1.6 Addendum (to 11.1.4). Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra. It follows
from 11.1.4 and 2.4.10 that the 𝔞-completion functor Λ𝔞 is an endofunctor on C(𝑆)
and 𝜆𝔞 a natural transformation IdC(𝑆) → Λ𝔞 .

The next result shows that 𝔞-completion is independent of base.

11.1.7 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝑁 an 𝑆-complex.
There is a commutative diagram inC(𝑆) where the horizontal map is an isomorphism,

𝑁
𝜆𝔞𝑆
𝑁

��

𝜆𝔞
𝑁

��

Λ𝔞𝑆 (𝑁)
�

// Λ𝔞 (𝑁) .

Proof. Recall from 11.1.6 that Λ𝔞 (𝑁) is an 𝑆-complex and that 𝜆𝔞
𝑁

:𝑁→ Λ𝔞 (𝑁)
is 𝑆-linear. In the computation below, the equality is trivial, the first isomorphism
follows from 1.1.10, and the second holds by associativity 4.4.7 and the unitor 4.4.1:

𝑆/(𝔞𝑆)𝑢 ⊗𝑆 𝑁 = 𝑆/𝔞𝑢𝑆 ⊗𝑆 𝑁 � (𝑅/𝔞𝑢 ⊗𝑅 𝑆) ⊗𝑆 𝑁 � 𝑅/𝔞𝑢 ⊗𝑅 𝑁 .

As 𝑁 is an 𝑆-complex, so are the tensor product complexes above, see 2.4.10, and the
isomorphisms are 𝑆-linear. From 11.1.4 one gets an induced isomorphism,Λ𝔞𝑆 (𝑁) �
Λ𝔞 (𝑁), of 𝑆-complexes, which makes the desired diagram commutative. □

11.1.8 Definition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex.
(1) If 𝜆𝔞

𝑀
is injective, then 𝑀 is called 𝔞-separated.

(2) If 𝜆𝔞
𝑀

is a surjective, then 𝑀 is called 𝔞-quasi-complete.
(3) If 𝜆𝔞

𝑀
is an isomorphism, then 𝑀 is called 𝔞-complete.

The next result remains valid, with the same proof, if one replaces “-complete”
with “-quasi-complete” or “-separated”.

11.1.9 Corollary. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝑁 an 𝑆-complex. The
complex 𝑁 is 𝔞𝑆-complete if and only if it is 𝔞-complete as an 𝑅-complex.

Proof. The assertion follows immediately from 11.1.7 and 11.1.8. □

We proceed to develop concrete descriptions of Λ𝔞 and 𝜆𝔞 .

11.1.10. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. By 1.1.10 the tensor prod-
uct 𝑅/𝔞𝑢 ⊗𝑅 𝑀 is isomorphic to 𝑀/𝔞𝑢𝑀 and via this isomorphism, the compos-
ite 𝑀 �−−→ 𝑅 ⊗𝑅 𝑀 ↠ 𝑅/𝔞𝑢 ⊗𝑅 𝑀 is identified with the canonical quotient map
𝜋𝑢
𝑀

: 𝑀 ↠ 𝑀/𝔞𝑢𝑀 . By the universal property of limits, it follows that 𝜆𝔞
𝑀

is the
unique morphism that makes the diagram

𝑀

𝜆𝔞
𝑀

��

𝜋𝑢
𝑀

(( ((

𝑀/𝔞𝑢𝑀

Λ𝔞 (𝑀)
𝜈𝑢
𝑀

66
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commutative for every 𝑢 ⩾ 1; here 𝜈𝑢
𝑀

is the canonical morphism from (3.4.3.1).
Notice that 3.5.5 yields an isomorphism,

Λ𝔞 (𝑀) �
{
( [𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 ∈

∏
𝑢⩾1

𝑀/𝔞𝑢𝑀
��� 𝑚𝑢 − 𝑚𝑢+1 ∈ 𝔞𝑢𝑀 for all 𝑢 ⩾ 1

}
.

Via this isomorphism, the morphism 𝜆𝔞
𝑀

: 𝑀 → Λ𝔞 (𝑀) is identified with the one
given by 𝑚 ↦→ ([𝑚]𝔞𝑢𝑀 )𝑢⩾1.

11.1.11 Example. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Notice from 11.1.10
that 𝑀 is 𝔞-separated if and only if ⋂𝑢⩾1 𝔞

𝑢𝑀 = 0 holds. Notice also that if 𝔞𝑢𝑀 = 0
holds for some 𝑢 ⩾ 1, then 𝑀 is 𝔞-complete.

11.1.12. Let 𝔞 be an ideal in 𝑅. The functorΛ𝔞 restricts to a functorM(𝑅) →M(𝑅),
and it can be recovered from this restriction by the procedure in 2.1.48. In this sense,
Λ𝔞 on C(𝑅) is extended from Λ𝔞 on M(𝑅). This follows from 11.1.4 in view of 2.4.1
and 3.4.7. Moreover, for an 𝑅-complex 𝑀 and 𝑣 ∈ ℤ one has (𝜆𝔞

𝑀
)𝑣 = 𝜆𝔞𝑀𝑣 .

In addition to the properties listed in the next proposition, the 𝔞-completion
functor is idempotent if the ideal 𝔞 is finitely generated; see 11.1.38. The functor
does not preserve coproducts; see 11.1.34.

11.1.13 Theorem. Let 𝔞 be an ideal in 𝑅. The 𝔞-completion functor Λ𝔞 is 𝑅-linear
and bounded. It is also a ♮- and Σ-functor, and the natural transformation 𝜆𝔞 is a
Σ-transformation. Moreover, if 𝔞 is finitely generated, then Λ𝔞 preserves products.

Proof. All assertions but the last one follow from properties of tensor products and
extended functors: 2.1.48, A.14, 2.1.53, and 4.1.13. If 𝔞 is finitely generated, then
each module 𝑅/𝔞𝑢 is finitely presented, so by 3.1.30 the functors 𝑅/𝔞𝑢 ⊗𝑅 preserve
products. Finally, limits and products commute by 3.4.8 and 3.4.13. □

Let 𝔞 be an ideal in 𝑅. Every 𝑅-module 𝑀 can be equipped with the so-called
𝔞-adic topology, where a basis of open neighbourhoods of 0 are the sets {𝔞𝑢𝑀}𝑢⩾1.
In this topology, a sequence 𝑥1, 𝑥2, . . . of elements in 𝑀 converges to 𝑥 ∈ 𝑀 if
every neighborhood 𝔞𝑣𝑀 contains the difference 𝑥 − 𝑥𝑢 for 𝑢 ≫ 0. The next result
shows that for any 𝑚 = ( [𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 in Λ𝔞 (𝑀) the sequence 𝜆𝔞

𝑀
(𝑚1), 𝜆𝔞

𝑀
(𝑚2), . . .

converges to 𝑚 in the 𝔞-adic topology on Λ𝔞 (𝑀), so the image of the morphism
𝜆𝔞
𝑀

: 𝑀 → Λ𝔞 (𝑀) is dense in Λ𝔞 (𝑀) in this topology. We will not pursue this
topological point of view, but in 11.1.29 we give an algebraic analogue of density
with respect to 𝔞, and we show in 11.1.37 that the morphism 𝜆𝔞

𝑀
: 𝑀 → Λ𝔞 (𝑀) is

dense in this sense.

11.1.14 Lemma. Let 𝔞 be a finitely generated ideal in 𝑅 and 𝑀 an 𝑅-complex. For
every element 𝑚 = ( [𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 in Λ𝔞 (𝑀) and 𝑢 ⩾ 1, the difference 𝑚 − 𝜆𝔞

𝑀
(𝑚𝑢)

belongs to 𝔞𝑢 Λ𝔞 (𝑀).

Proof. Fix 𝑢 ⩾ 1 and let {𝑥1, . . . , 𝑥𝑡 } be a set of generators for the finitely generated
ideal 𝔞𝑢. For every 𝑖 ⩾ 1 one has 𝑚𝑖+1 −𝑚𝑖 ∈ 𝔞𝑖𝑀 , in particular, 𝑚𝑖+1 −𝑚𝑖 belongs
to 𝔞𝑢 (𝔞𝑖−𝑢𝑀) for 𝑖 > 𝑢. Thus, for every 𝑖 > 𝑢 one can write
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𝑚𝑖+1 − 𝑚𝑖 =
𝑡∑
𝑗=1
𝑥 𝑗𝑛

𝑖 𝑗 where 𝑛𝑖1, . . . , 𝑛𝑖𝑡 ∈ 𝔞𝑖−𝑢𝑀 .

It follows that for every 𝑘 ⩾ 1 one has

𝑚𝑢+𝑘 − 𝑚𝑢 =
𝑢+𝑘−1∑
𝑖=𝑢
(𝑚𝑖+1 − 𝑚𝑖)

=
𝑢+𝑘−1∑
𝑖=𝑢

𝑡∑
𝑗=1
𝑥 𝑗𝑛

𝑖 𝑗

=
𝑡∑
𝑗=1
𝑥 𝑗

(𝑢+𝑘−1∑
𝑖=𝑢

𝑛𝑖 𝑗
)

=
𝑡∑
𝑗=1
𝑥 𝑗 �̄�

𝑘 𝑗 ,

where the last equality holds with �̄�𝑘 𝑗 = ∑𝑢+𝑘−1
𝑖=𝑢

𝑛𝑖 𝑗 ∈ 𝑀 . For 𝑗 ∈ {1, . . . , 𝑡} set

�̄� 𝑗 = ( [�̄�1 𝑗 ]𝔞𝑀 , [�̄�2 𝑗 ]𝔞2𝑀 , [�̄�3 𝑗 ]𝔞3𝑀 , . . . )

and note that �̄� 𝑗 is in Λ𝔞 (𝑀) since �̄�(𝑘+1) 𝑗 − �̄�𝑘 𝑗 = 𝑛(𝑢+𝑘 ) 𝑗 ∈ 𝔞 (𝑢+𝑘 )−𝑢𝑀 = 𝔞𝑘𝑀

holds for every 𝑘 ⩾ 1. To finish the proof we show that 𝑚 − 𝜆𝔞
𝑀
(𝑚𝑢) = ∑𝑡

𝑗=1 𝑥 𝑗 �̄�
𝑗

holds; indeed, the right-hand side belongs to 𝔞𝑢 Λ𝔞 (𝑀). For every 𝑙 ⩾ 1 it must be
proved that modulo 𝔞𝑙𝑀 one has the congruence,

(⋄) 𝑚𝑙 − 𝑚𝑢 ≡
𝑡∑
𝑗=1
𝑥 𝑗 �̄�

𝑙 𝑗 .

For 𝑙 ⩽ 𝑢 the left-hand side in (⋄) is zero modulo 𝔞𝑙𝑀 , and so is the right-hand side as
𝑥1, . . . , 𝑥𝑡 ∈ 𝔞𝑢 ⊆ 𝔞𝑙 . For 𝑙 > 𝑢 write 𝑙 = 𝑢+ 𝑘 where 𝑘 ⩾ 1. By construction, the left-
hand side in (⋄) equals ∑𝑡

𝑗=1 𝑥 𝑗 �̄�
𝑘 𝑗 , so we must argue that ∑𝑡

𝑗=1 𝑥 𝑗 �̄�
𝑘 𝑗 ≡ ∑𝑡

𝑗=1 𝑥 𝑗 �̄�
𝑙 𝑗

holds modulo 𝔞𝑙𝑀 . This follows as 𝑥 𝑗 belongs to 𝔞𝑢, one has �̄�𝑘 𝑗 ≡ �̄�𝑙 𝑗 modulo
𝔞𝑘𝑀 , and 𝑢 + 𝑘 = 𝑙. □

The powers of an ideal 𝔞 in 𝑅 form a basis of open neighbourhoods of 0 in the
𝔞-adic topology in 𝑅. As said above, we do not pursue this topological point of view
in our treatment of 𝔞-completion, but it does shed light on the next definition.

11.1.15 Definition. Ideals 𝔞 and 𝔟 in 𝑅 are called topologically equivalent if there
exist natural numbers 𝑚 and 𝑛 such that 𝔞𝑚 ⊆ 𝔟 and 𝔟𝑛 ⊆ 𝔞 hold.

11.1.16 Proposition. Let 𝔞 and 𝔟 be ideals in 𝑅. If 𝔞 and 𝔟 are topologically
equivalent, then Λ𝔞 and Λ𝔟 are naturally isomorphic endofunctors on C(𝑅).

Proof. By assumption, there exist natural numbers𝑚 and 𝑛with 𝔞𝑚 ⊆ 𝔟 and 𝔟𝑛 ⊆ 𝔞.
We may assume that 𝑚 > 1. The induced descending chain of ideals,

𝔞 ⊇ 𝔟𝑛 ⊇ 𝔞𝑚𝑛 ⊇ 𝔟𝑚𝑛
2 ⊇ 𝔞𝑚

2𝑛2 ⊇ 𝔟𝑚
2𝑛3 ⊇ · · ·

yields for every 𝑅-complex 𝑀 a tower,
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· · · −↠ 𝑅/𝔟𝑚𝑛2 ⊗𝑅 𝑀 −↠ 𝑅/𝔞𝑚𝑛 ⊗𝑅 𝑀 −↠ 𝑅/𝔟𝑛 ⊗𝑅 𝑀 −↠ 𝑅/𝔞 ⊗𝑅 𝑀 .

The limit of this tower agrees with the limits of the towers induced by the morphisms

· · · −↠ 𝑅/𝔞 (𝑚𝑛)2 −↠ 𝑅/𝔞𝑚𝑛 −↠ 𝑅/𝔞
and

· · · −↠ 𝑅/𝔟(𝑚𝑛)2𝑛 −↠ 𝑅/𝔟(𝑚𝑛)𝑛 −↠ 𝑅/𝔟𝑛 ;

this follows from 3.4.15. Thus, with 𝑝 = 𝑚𝑛 > 1 one has

lim
𝑢⩾0
(𝑅/𝔞𝑝𝑢 ⊗𝑅 𝑀) � lim

𝑢⩾0
(𝑅/𝔟𝑛𝑝𝑢 ⊗𝑅 𝑀) .

As 𝑝 is strictly greater that 1, another application of 3.4.15 and the definition, 11.1.4,
of the completion functor yield:

Λ𝔞 (𝑀) � lim
𝑢⩾0
(𝑅/𝔞𝑝𝑢 ⊗𝑅 𝑀) and lim

𝑢⩾0
(𝑅/𝔟𝑛𝑝𝑢 ⊗𝑅 𝑀) � Λ𝔟 (𝑀) .

As the tensor product is a functor, see 2.4.9, all three isomorphisms above are natural
in 𝑀 , cf. 3.4.10, so this proves the desired natural isomorphism of functors. □

11.1.17 Proposition. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑀 an 𝑅-complex. The map

lim
𝑢⩾1
(𝜉𝑢𝑥𝑥𝑥 ⊗𝑅 𝑀) : lim

𝑢⩾1
(𝑅/(𝑥𝑥𝑥𝑢) ⊗𝑅 𝑀) −→ lim

𝑢⩾1
(𝑅/(𝑥𝑥𝑥)𝑢 ⊗𝑅 𝑀)

induced by (11.1.2.3) and 3.5.2 is an isomorphism. In particular, one has

Λ(𝑥𝑥𝑥 ) (𝑀) � lim
𝑢⩾1
(𝑅/(𝑥𝑥𝑥𝑢) ⊗𝑅 𝑀) .

Proof. For every 𝑢 ⩾ 1 the morphism 𝜉𝑢𝑥𝑥𝑥 from (11.1.2.3) is surjective, and hence
so is 𝜉𝑢𝑥𝑥𝑥 ⊗𝑅 𝑀 by 2.4.9. It follows that there is a short exact sequence,

0 −→ Ker(𝜉𝑢𝑥𝑥𝑥 ⊗𝑅 𝑀)
𝜄𝑢−−−→ 𝑅/(𝑥𝑥𝑥𝑢) ⊗𝑅 𝑀

𝜉𝑢𝑥𝑥𝑥 ⊗𝑀−−−−−−→ 𝑅/(𝑥𝑥𝑥)𝑢 ⊗𝑅 𝑀 −→ 0 ,

where 𝜄𝑢 is the embedding. Recall from 11.1.2 that the families {𝑅/(𝑥𝑥𝑥𝑢) ⊗𝑅 𝑀 }𝑢⩾1
and {𝑅/(𝑥𝑥𝑥)𝑢 ⊗𝑅 𝑀 }𝑢⩾1 constitute towers, whose morphisms are {𝜗𝑢𝑥𝑥𝑥 ⊗𝑅 𝑀 }𝑢>1 and
{𝜗𝑢(𝑥𝑥𝑥 ) ⊗𝑅 𝑀 }𝑢>1 , and that {𝜉𝑢𝑥𝑥𝑥 ⊗𝑅 𝑀 }𝑢⩾1 is a morphism of these towers. Write 𝜒𝑢

for the morphisms on kernels induced by 𝜗𝑢𝑥𝑥𝑥 ⊗𝑅 𝑀; they form a tower and {𝜄𝑢}𝑢⩾1
is a morphism of towers.

Let 𝑢 ⩾ 1 be given. Let 𝑛 be the number of elements in 𝑥𝑥𝑥 and set 𝑣 = 𝑛𝑢. One
has (𝑥𝑥𝑥)𝑣 ⊆ (𝑥𝑥𝑥𝑢), so the canonical map 𝑅/(𝑥𝑥𝑥𝑣) ↠ 𝑅/(𝑥𝑥𝑥𝑢) admits a factorization
𝑅/(𝑥𝑥𝑥𝑣) ↠ 𝑅/(𝑥𝑥𝑥)𝑣 𝜋

↠ 𝑅/(𝑥𝑥𝑥𝑢). In the notation above this means 𝜗𝑢+1𝑥𝑥𝑥 · · · 𝜗𝑣𝑥𝑥𝑥 = 𝜋𝜉𝑣𝑥𝑥𝑥 .
Consequently, one has

𝜄𝑢𝜒𝑢+1 · · · 𝜒𝑣 = (𝜗𝑢+1𝑥𝑥𝑥 ⊗𝑅 𝑀) · · · (𝜗𝑣𝑥𝑥𝑥 ⊗𝑅 𝑀)𝜄𝑣 = (𝜋 ⊗𝑅 𝑀) (𝜉𝑣𝑥𝑥𝑥 ⊗𝑅 𝑀)𝜄𝑣 = 0 ,

and hence 𝜒𝑢+1 · · · 𝜒𝑣 = 0 as 𝜄𝑢 is injective. This shows that the tower of kernels
satisfies the trivial Mittag-Leffler Condition; see 3.5.9. Now it follows from 3.5.13
and 3.5.17 that the map lim𝑢⩾1 (𝜉𝑢𝑥𝑥𝑥 ⊗𝑅 𝑀) is an isomorphism. □
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Completion of a Ring

Given an ideal 𝔞 in 𝑅, the 𝔞-completion of 𝑅 is itself a ring and it inherits key
properties from 𝑅.

11.1.18. Let 𝔞 be an ideal in 𝑅. A priori, Λ𝔞 (𝑅) is an 𝑅-module, however, it is
elementary to check that it is a commutative ring with multiplication given by

( [𝑟𝑢]𝔞𝑢 )𝑢⩾1 ( [𝑠𝑢]𝔞𝑢 )𝑢⩾1 = ( [𝑟𝑢𝑠𝑢]𝔞𝑢 )𝑢⩾1 ,

cf. 11.1.10. That is, Λ𝔞 (𝑅) is a subring of the product ring
∏
𝑢⩾1 𝑅/𝔞𝑢. Further,

Λ𝔞 (𝑅) is an 𝑅-algebra with structure map 𝜆𝔞
𝑅

, see 11.1.4.

11.1.19 Definition. Let 𝔞 be an ideal in 𝑅. Considered as a ring, the 𝔞-completion
Λ𝔞 (𝑅) is denoted 𝑅𝔞 .

The next result shows that every 𝔞-complete 𝑅-complex is an 𝑅𝔞-complex.

11.1.20 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. The complex
Λ𝔞 (𝑀) is an 𝑅𝔞-complex with action given by

𝑟𝑚 = ( [𝑟𝑢𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1

for elements 𝑟 = ( [𝑟𝑢]𝔞𝑢 )𝑢⩾1 ∈ 𝑅𝔞 and𝑚 = ( [𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 ∈ Λ𝔞 (𝑀). Consequently,
Λ𝔞 can be viewed as a functor,

Λ𝔞 : C(𝑅) −→ C(𝑅𝔞) .

Proof. We verify that the asserted 𝑅𝔞-action is well-defined; it is then straight-
forward to see that it makes Λ𝔞 (𝑀) into an 𝑅𝔞-complex. If there are equalities
( [𝑟𝑢]𝔞𝑢 )𝑢⩾1 = ( [𝑠𝑢]𝔞𝑢 )𝑢⩾1 in 𝑅𝔞 and ( [𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 = ( [𝑛𝑢]𝔞𝑢𝑀 )𝑢⩾1 in Λ𝔞 (𝑀),
then the element 𝑟𝑢𝑚𝑢 − 𝑠𝑢𝑛𝑢 = (𝑟𝑢 − 𝑠𝑢)𝑚𝑢 + 𝑠𝑢 (𝑚𝑢 −𝑛𝑢) belongs to 𝔞𝑢𝑀 for each
𝑢 ⩾ 1. Hence ( [𝑟𝑢𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 = ( [𝑠𝑢𝑛𝑢]𝔞𝑢𝑀 )𝑢⩾1 holds in Λ𝔞 (𝑀). □

11.1.21. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅𝔞-complex. By 11.1.6 and 11.1.20 the
𝑅-complex Λ𝔞 (𝑀) is an 𝑅𝔞-complex in two, potentially different, ways. We argue
below that they are the same if 𝔞 is finitely generated; that is, the diagram

C(𝑅𝔞)

res𝑅𝔞
𝑅

��

Λ𝔞

(from 11.1.6)
// C(𝑅𝔞)

C(𝑅) Λ𝔞

(from 11.1.20)
// C(𝑅𝔞)

is commutative if 𝔞 is finitely generated. Indeed, for elements

𝑟 = ( [𝑟𝑢]𝔞𝑢 )𝑢⩾1 ∈ 𝑅𝔞 and 𝑚 = ( [𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 ∈ Λ𝔞 (𝑀)

the 𝑅𝔞-actions from 11.1.6 and 11.1.20 are given by

𝑟𝑚 = ( [𝑟𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 and 𝑟𝑚 = ( [𝑟𝑢𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 = ( [𝜆𝔞𝑅 (𝑟
𝑢)𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 .
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The last equality holds as 𝑀 is an 𝑅-complex via restriction of scalars along the ring
homomorphism 𝜆𝔞

𝑅
: 𝑅 → 𝑅𝔞 . Similarly, with 𝔟 denoting the extension 𝔞𝑅𝔞 one has

𝔞𝑢𝑀 = 𝔟𝑢𝑀 . Thus, to prove that the two 𝑅𝔞-structures on Λ𝔞 (𝑀) agree, it suffices
to argue that the element 𝑟 − 𝜆𝔞

𝑅
(𝑟𝑢) for every 𝑢 ⩾ 1 belongs to the ideal 𝔟𝑢 = 𝔞𝑢𝑅𝔞 ,

but this follows from 11.1.14 provided that 𝔞 is finitely generated.

To a commutative algebraist the next statement may appear awkward, as it is
common practice in that field to include the Noetherian condition in the definition
of a local ring. That is not the convention in this book, but in Part III all rings are
Noetherian and this point conveniently becomes moot.

11.1.22 Proposition. Let 𝔞 be a finitely generated proper ideal in 𝑅.
(a) If 𝑅 is Noetherian, then 𝑅𝔞 is Noetherian.
(b) If 𝑅 is local, then 𝑅𝔞 is local.

Proof. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence that generates 𝔞. Consider the power
series algebra 𝑅⟦𝑋1, . . . , 𝑋𝑛⟧. The assignments 𝑋𝑖 ↦→ 𝑥𝑖 define a family of 𝑅-
algebra homomorphisms 𝑅⟦𝑋1, . . . , 𝑋𝑛⟧ → 𝑅/𝔞𝑢 that are compatible with the
homomorphisms 𝑅/𝔞𝑢+1 ↠ 𝑅/𝔞𝑢 in the tower that defines 𝑅𝔞 . By 3.4.5 they de-
termine a unique homomorphism 𝛼 : 𝑅⟦𝑋1, . . . , 𝑋𝑛⟧ → 𝑅𝔞 of 𝑅-modules given by
𝛼(𝑝) = ( [𝑝(𝑥1, . . . , 𝑥𝑛)]𝔞𝑢 )𝑢⩾1 for 𝑝 ∈ 𝑅⟦𝑋1, . . . , 𝑋𝑛⟧, and it is elementary to verify
that it is a homomorphism of 𝑅-algebras. To see that it is surjective, let ( [𝑟𝑢]𝔞𝑢 )𝑢⩾1
be an element in 𝑅𝔞 . For every 𝑢 ⩾ 1 the element 𝑟𝑢+1−𝑟𝑢 belongs to 𝔞𝑢, see 11.1.10,
so there is a homogeneous polynomial 𝑝𝑢 of degree 𝑢 in the variables 𝑋1, . . . , 𝑋𝑛
with 𝑝𝑢 (𝑥1, . . . , 𝑥𝑛) = 𝑟𝑢 − 𝑟𝑢+1. Set 𝑝0 = 𝑟1 ∈ 𝑅 and 𝑝 =

∑
𝑢⩾0 𝑝

𝑢, which is a
well-defined element of 𝑅⟦𝑋1, . . . , 𝑋𝑛⟧. For every 𝑢 ⩾ 1 one now has

[𝑝(𝑥1, . . . , 𝑥𝑛)]𝔞𝑢 =
[
𝑝0 +

𝑢−1∑
𝑖=1

𝑝𝑖 (𝑥1, . . . , 𝑥𝑛)
]
𝔞𝑢

=
[
𝑟1 +

𝑢−1∑
𝑖=1
(𝑟 𝑖+1 − 𝑟 𝑖)

]
𝔞𝑢

= [𝑟𝑢]𝔞𝑢 ,

and hence 𝛼(𝑝) = ( [𝑟𝑢]𝔞𝑢 )𝑢⩾1. Thus, 𝑅𝔞 is a quotient of 𝑅⟦𝑋1, . . . , 𝑋𝑛⟧.
(a): If 𝑅 is Noetherian, then so is 𝑅⟦𝑋1, . . . , 𝑋𝑛⟧—this is a version of Hilbert’s

Basis Theorem—and hence the quotient ring 𝑅𝔞 is Noetherian too.
(b): If 𝑅 is local with maximal ideal 𝔪, then 𝑅⟦𝑋1, . . . , 𝑋𝑛⟧ is local with maximal

ideal generated by𝔪 and 𝑋1, . . . , 𝑋𝑛, whence the quotient ring 𝑅𝔞 is local as well. □

11.1.23 Lemma. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁
an 𝑆-complex. For 𝜑 ∈ Hom𝑅 (𝑁, 𝑀/𝔞𝑀), 𝑠 ∈ 𝔞𝑆, and 𝑛 ∈ 𝑁 one has 𝜑(𝑠𝑛) = 0.

Proof. As 𝑠 is in 𝔞𝑆 it has the form 𝑠 =
∑𝑘
𝑖=1 𝑎𝑖𝑠𝑖 where 𝑎𝑖 ∈ 𝔞 and 𝑠𝑖 ∈ 𝑆 for every

𝑖 ∈ {1, . . . , 𝑘 }. Thus, one has 𝜑(𝑠𝑛) = ∑𝑘
𝑖=1 𝑎𝑖𝜑(𝑠𝑖𝑛). Each term in this sum is zero

as 𝑎𝑖 belongs to 𝔞 and 𝜑(𝑠𝑖𝑛) to 𝑀/𝔞𝑀 . □
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To parse the next result, recall from 11.1.20 that for every ideal 𝔞 in 𝑅 and every
𝑅-complex 𝑀 there is a canonical 𝑅𝔞-structure on Λ𝔞 (𝑀). Furthermore, recall from
2.3.11 that if 𝑁 and 𝑋 are 𝑅𝔞-complexes, then Hom𝑅 (𝑁, 𝑋) is a complex of, not
necessarily symmetric, 𝑅𝔞–𝑅𝔞-bimodules.

11.1.24 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 an 𝑅-complex, and 𝑁 an 𝑅𝔞-
complex. If 𝔞 is finitely generated, then Hom𝑅 (𝑁,Λ𝔞 (𝑀)) is a complex of symmetric
𝑅𝔞–𝑅𝔞-bimodules, and there is an equality of 𝑅𝔞-complexes,

Hom𝑅 (𝑁,Λ𝔞 (𝑀)) = Hom
𝑅𝔞 (𝑁,Λ𝔞 (𝑀)) .

Proof. It suffices to show that for all elements 𝑟 = ( [𝑟𝑢]𝔞𝑢 )𝑢⩾1 in 𝑅𝔞 , 𝑛 ∈ 𝑁 , and
𝜑 ∈ Hom𝑅 (𝑁,Λ𝔞 (𝑀)) one has 𝑟𝜑(𝑛) = 𝜑(𝑟𝑛). By 11.1.10 and 3.4.23 one has

Hom𝑅 (𝑁,Λ𝔞 (𝑀)) = Hom𝑅

(
𝑁, lim

𝑢⩾1
𝑀/𝔞𝑢𝑀

)
� lim

𝑢⩾1
Hom𝑅 (𝑁, 𝑀/𝔞𝑢𝑀) .

Consequently, we may identify 𝜑 with an element in lim𝑢⩾1 Hom𝑅 (𝑁, 𝑀/𝔞𝑢𝑀),
that is, a sequence (𝜑𝑢)𝑢⩾1 with 𝜑𝑢 ∈ Hom𝑅 (𝑁, 𝑀/𝔞𝑢𝑀) such that the composite

𝑁
𝜑𝑢−−→ 𝑀/𝔞𝑢𝑀 −↠ 𝑀/𝔞𝑢−1𝑀

is 𝜑𝑢−1 for every 𝑢 > 1, see 3.5.5. With this identification, the map 𝜑 : 𝑁 → Λ𝔞 (𝑀)
is given by 𝜑(𝑛) = (𝜑𝑢 (𝑛))𝑢⩾1 for 𝑛 ∈ 𝑁 . This explains the 1st equality below; the
2nd equality holds by 11.1.20 and the 3rd one holds as each 𝜑𝑢 : 𝑁 → 𝑀/𝔞𝑢𝑀 is
𝑅-linear. The 4th equality holds as 𝑁 is an 𝑅-complex via restriction of scalars along
the ring homomorphism 𝜆𝔞

𝑅
: 𝑅 → 𝑅𝔞 .

𝑟𝜑(𝑛) = ( [𝑟𝑢]𝔞𝑢 )𝑢⩾1 (𝜑𝑢 (𝑛))𝑢⩾1

= (𝑟𝑢𝜑𝑢 (𝑛))𝑢⩾1

= (𝜑𝑢 (𝑟𝑢𝑛))𝑢⩾1

= (𝜑𝑢 (𝜆𝔞𝑅 (𝑟
𝑢)𝑛))𝑢⩾1 .

As one has 𝜑(𝑟𝑛) = (𝜑𝑢 (𝑟𝑛))𝑢⩾1, it remains to argue that 𝜑𝑢 (𝑟𝑛) = 𝜑𝑢 (𝜆𝔞
𝑅
(𝑟𝑢)𝑛)

holds for each 𝑢 ⩾ 1. To this end notice that 𝑟 − 𝜆𝔞
𝑅
(𝑟𝑢) belongs to 𝔞𝑢𝑅𝔞 by 11.1.14.

Now 11.1.23 yields

𝜑𝑢 (𝑟𝑛) − 𝜑𝑢 (𝜆𝔞𝑅 (𝑟
𝑢)𝑛) = 𝜑𝑢 ((𝑟 − 𝜆𝔞𝑅 (𝑟

𝑢))𝑛) = 0 . □

11.1.25 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. If 𝔞 is finitely
generated, then Hom𝑅 (𝑅𝔞 ,Λ𝔞 (𝑀)) is a complex of symmetric 𝑅𝔞–𝑅𝔞-bimodules,
and there is an isomorphism of 𝑅𝔞-complexes,

Hom𝑅 (𝑅𝔞 ,Λ𝔞 (𝑀)) �−−−→ Λ𝔞 (𝑀) given by 𝜑 ↦−→ 𝜑(1
𝑅𝔞 ) ,

for 𝜑 ∈ Hom𝑅 (𝑅𝔞 ,Λ𝔞 (𝑀)).

Proof. The first assertion follows from 11.1.24, applied with 𝑁 = 𝑅𝔞 , and so does
the second in view of the counitor 4.4.2. □
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11.1.26 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑁 an 𝑆-module. Homothety forma-
tion,

𝜒𝑁𝑆𝑅 : 𝑆 −→ Hom𝑅 (𝑁, 𝑁) ,
from 4.5.5 is a morphism of 𝑅-algebras.

Proof. It is known from 4.5.5 that 𝜒𝑁
𝑆𝑅

is a map of 𝑆–𝑆-bimodules; in particular, it
is 𝑅-linear. For elements 𝑠, 𝑠′ ∈ 𝑆 and 𝑛 ∈ 𝑁 one has

𝜒𝑁𝑆𝑅 (𝑠𝑠
′) (𝑛) = (𝑠𝑠′)𝑛 = 𝑠(𝑠′𝑛) = 𝜒𝑁𝑆𝑅 (𝑠) (𝑠

′𝑛) = (𝜒𝑁𝑆𝑅 (𝑠) ◦ 𝜒
𝑁
𝑆𝑅 (𝑠

′)) (𝑛) ,

so the map 𝜒𝑁
𝑆𝑅

also preserves multiplication. □

11.1.27 Proposition. Let 𝔞 be an ideal in 𝑅. If 𝔞 is finitely generated, then homothety
formation 4.5.5 is an isomorphism of 𝑅-algebras,

𝜒𝑅
𝔞

𝑅𝔞𝑅
: 𝑅𝔞 �−−−→ Hom𝑅 (𝑅𝔞 , 𝑅𝔞) .

Proof. By 11.1.24 one has Hom𝑅 (𝑅𝔞 , 𝑅𝔞) = Hom
𝑅𝔞 (𝑅𝔞 , 𝑅𝔞), so the homothety

formation map in question is identical to the map

𝜒𝑅
𝔞

𝑅𝔞
: 𝑅𝔞 −→ Hom

𝑅𝔞 (𝑅𝔞 , 𝑅𝔞)

from 10.1.1, which is an isomorphism of 𝑅-algebras by 11.1.26. □

Density and Failure of Half-Exactness

By the next proposition, the 𝔞-completion functor preserves surjective morphisms.
In general, however, it is not right exact; in fact, it is not even half exact, see 11.1.32.

11.1.28 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝛼 : 𝑀 → 𝑁 a morphism of 𝑅-
complexes. The following conditions are equivalent.

(i) 𝑁 = 𝔞𝑁 + Im𝛼.

(ii) 𝑁 = 𝔞𝑢𝑁 + Im𝛼 and 𝔞𝑢𝑁 = 𝔞𝑢+1𝑁 + 𝛼(𝔞𝑢𝑀) hold for every 𝑢 ⩾ 1 .
(iii) The sequence

0 −→ lim
𝑢⩾1

Ker𝛼𝑢 −→ Λ𝔞 (𝑀) Λ𝔞 (𝛼)−−−−−→ Λ𝔞 (𝑁) −→ 0

is exact; here 𝛼𝑢 : 𝑀/𝔞𝑢𝑀 → 𝑁/𝔞𝑢𝑁 is the morphism induced by 𝛼.
(iv) Λ𝔞 (𝛼) is surjective.

In particular, the functor Λ𝔞 preserves surjective morphisms.

Proof. (i)⇒ (ii): The second equality holds as (i) yields

𝔞𝑢𝑁 = 𝔞𝑢 (𝔞𝑁 + 𝛼(𝑀)) = 𝔞𝑢+1𝑁 + 𝔞𝑢 𝛼(𝑀) = 𝔞𝑢+1𝑁 + 𝛼(𝔞𝑢𝑀) .

The first equality is proved by induction on 𝑢. Assume that 𝑁 = 𝔞𝑢𝑁 + Im𝛼 holds
for some 𝑢 ⩾ 1. The already established equality now yields

𝑁 = 𝔞𝑢𝑁 + Im𝛼 = (𝔞𝑢+1𝑁 + 𝛼(𝔞𝑢𝑀)) + Im𝛼 = 𝔞𝑢+1𝑁 + Im𝛼 .
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(ii)⇒ (iii): The first equality in (ii) implies that 𝛼𝑢 is surjective, so the sequence

0 −→ Ker𝛼𝑢 −→ 𝑀/𝔞𝑢𝑀 𝛼𝑢−−−→ 𝑁/𝔞𝑢𝑁 −→ 0

is exact. Furthermore, the induced morphism Ker𝛼𝑢+1 → Ker𝛼𝑢 is surjective.
Indeed, for [𝑥]𝔞𝑢𝑀 in Ker𝛼𝑢 one has 𝛼(𝑥) ∈ 𝔞𝑢𝑁 . By the second equality in (ii) one
has 𝛼(𝑥) = 𝑦 + 𝛼(𝑧) for some 𝑦 ∈ 𝔞𝑢+1𝑁 and 𝑧 ∈ 𝔞𝑢𝑀 . As 𝛼(𝑥 − 𝑧) = 𝑦 ∈ 𝔞𝑢+1𝑁
holds, the element [𝑥−𝑧]𝔞𝑢+1𝑀 belongs to Ker𝛼𝑢+1, and the map Ker𝛼𝑢+1 → Ker𝛼𝑢
sends [𝑥− 𝑧]𝔞𝑢+1𝑀 to [𝑥− 𝑧]𝔞𝑢𝑀 = [𝑥]𝔞𝑢𝑀 . Now 3.5.17 and 3.5.10 yield the asserted
exact sequence.

(iii)⇒ (iv): The exact sequence shows, in particular, that Λ𝔞 (𝛼) is surjective.
(iv)⇒ (i): Let 𝑛 belong to 𝑁 . Consider the element 𝑦 = ( [𝑛]𝔞𝑁 , [𝑛]𝔞2𝑁 , . . . ) in

Λ𝔞 (𝑁); see 11.1.10. As Λ𝔞 (𝛼) is surjective there exists 𝑥 = ( [𝑚1]𝔞𝑀 , [𝑚2]𝔞2𝑀 , . . . )
in Λ𝔞 (𝑀) with Λ𝔞 (𝛼) (𝑥) = 𝑦. In particular, [𝛼(𝑚1)]𝔞𝑁 = [𝑛]𝔞𝑁 holds, so 𝑛−𝛼(𝑚1)
is in 𝔞𝑁 and, thus, 𝑛 belongs to 𝔞𝑁 + Im𝛼.

For the final assertion, note that if 𝛼 is surjective, then (i) holds. □

11.1.29 Definition. Let 𝔞 be an ideal in 𝑅. A morphism 𝛼 in C(𝑅) that satisfies the
equivalent conditions in 11.1.28 is said to be 𝔞-dense.

11.1.30 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. One has Λ𝔞 (𝑀) = 0
if and only if 𝑅/𝔞 ⊗𝑅 𝑀 = 0 holds.

Proof. Consider the zero homomorphism 𝜁 : 0→ 𝑀 . The condition Λ𝔞 (𝑀) = 0 is
equivalent to Λ𝔞 (𝜁) being surjective, which by 11.1.28 is equivalent to the identity
𝑀 = 𝔞𝑀 + Im 𝜁 = 𝔞𝑀 . The desired conclusion now follows from 1.1.10. □

To demonstrate that the functor Λ𝔞 is not half exact, we need some preparations.

11.1.31. Let 𝔞 be an ideal in 𝑅 and 0 −−→ 𝐾
𝜄−−→ 𝑀

𝛼−−→ 𝑁 −−→ 0 an exact sequence
of 𝑅-complexes. Consider for every 𝑢 ⩾ 1 the commutative diagram,

𝐾/𝔞𝑢𝐾

𝜋𝑢

����

𝜄𝑢

%%

0 // Ker𝛼𝑢 // 𝑀/𝔞𝑢𝑀 𝛼𝑢
// 𝑁/𝔞𝑢𝑁 // 0 ,

where 𝜄𝑢 and 𝛼𝑢 are the morphisms induced by 𝜄 and 𝛼. As 𝛼𝑢𝜄𝑢 = 0 holds, the
morphism 𝜄𝑢 factors uniquely through Ker𝛼𝑢, and that defines the morphism 𝜋𝑢. As
Ker𝛼𝑢 = Im 𝜄𝑢 holds, see 1.1.10 and 2.4.9, the morphism 𝜋𝑢 is surjective.

Notice that the complex Ker𝛼𝑢 may be identified with 𝐾/𝜄−1 (𝔞𝑢𝑀), and with
this identification the morphisms 𝜋𝑢 : 𝐾/𝔞𝑢𝐾 → Ker𝛼𝑢 and Ker𝛼𝑢 → 𝑀/𝔞𝑢𝑀
are given by [𝑥]𝔞𝑢𝐾 ↦→ [𝑥] 𝜄−1 (𝔞𝑢𝑀 ) and [𝑥] 𝜄−1 (𝔞𝑢𝑀 ) ↦→ [𝜄(𝑥)]𝔞𝑢𝑀 respectively.

Passing to limits one gets, with 𝜋 = lim𝑢⩾1 𝜋
𝑢, the commutative diagram,
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Λ𝔞 (𝐾)

𝜋

��

Λ𝔞 ( 𝜄)

%%

0 // lim
𝑢⩾1

Ker𝛼𝑢 // Λ𝔞 (𝑀) Λ𝔞 (𝛼)
// Λ𝔞 (𝑁) // 0 .

The bottom row is exact by 11.1.28. It follows that

Λ𝔞 (𝐾) Λ𝔞 ( 𝜄)−−−−→ Λ𝔞 (𝑀) Λ𝔞 (𝛼)−−−−−→ Λ𝔞 (𝑁)

is an exact sequence if and only if 𝜋 is surjective.

11.1.32 Example. Let 𝑎 > 1 be an integer and set 𝔞 = 𝑎ℤ. For 𝑛 ⩾ 1 consider the
exact sequence

0 −→ ℤ/𝔞 𝑎𝑛−1

−−−−→ ℤ/𝔞𝑛 −→ ℤ/𝔞𝑛−1 −→ 0

of ℤ-modules. Forming coproducts yields the exact sequence,

0 −→
∐
𝑛⩾1

ℤ/𝔞
∐
𝑛⩾1 𝑎

𝑛−1

−−−−−−−−→
∐
𝑛⩾1

ℤ/𝔞𝑛 −→
∐
𝑛⩾1

ℤ/𝔞𝑛−1 −→ 0 .

Write 0 −−→ 𝐾
𝜄−−→ 𝑀

𝛼−−→ 𝑁 −−→ 0 for this sequence. To show that the functor Λ𝔞 is
not half exact we argue that the map 𝜋 = lim𝑢⩾1 𝜋

𝑢 from 11.1.31 is not surjective.
Fix 𝑢 ⩾ 1. As 𝔞𝐾 = 0 it follows that 𝔞𝑢𝐾 = 0 and hence 𝐾/𝔞𝑢𝐾 � 𝐾 . Next note

that 𝔞𝑢𝑀 is the submodule

0 ⊕ · · · ⊕ 0 ⊕ 𝔞𝑢/𝔞𝑢+1 ⊕ 𝔞𝑢/𝔞𝑢+2 ⊕ · · · ,

with 𝑢 leading zeros, of 𝑀 =
∐
𝑛⩾1 ℤ/𝔞𝑛. It follows that 𝜄−1 (𝔞𝑢𝑀) is the submodule

0 ⊕ · · · ⊕ 0 ⊕ ℤ/𝔞 ⊕ ℤ/𝔞 ⊕ · · · , with 𝑢 leading zeros, of 𝐾 =
∐
𝑛⩾1 ℤ/𝔞 and, conse-

quently, one has 𝐾/𝜄−1 (𝔞𝑢𝑀) � (ℤ/𝔞)𝑢. Via this isomorphism and the previously
established isomorphism 𝐾/𝔞𝑢𝐾 � 𝐾 , the homomorphisms

𝐾/𝔞𝑢𝐾 −↠ 𝐾/𝔞𝑢−1𝐾 and 𝐾/𝜄−1 (𝔞𝑢𝑀) −↠ 𝐾/𝜄−1 (𝔞𝑢−1𝑀)

in the towers in 11.1.31 are given by the identity 1𝐾 : 𝐾 → 𝐾 and the surjec-
tion (ℤ/𝔞)𝑢 ↠ (ℤ/𝔞)𝑢−1 that maps (𝑥1, . . . , 𝑥𝑢−1, 𝑥𝑢) to (𝑥1, . . . , 𝑥𝑢−1). Further-
more, the map 𝜋𝑢 : 𝐾/𝔞𝑢𝐾 ↠ 𝐾/𝜄−1 (𝔞𝑢𝑀) is identified with 𝐾 ↠ (ℤ/𝔞)𝑢 given
by (𝑥𝑛)𝑛⩾1 ↦→ (𝑥1, . . . , 𝑥𝑢). In view of 3.5.7 it is now elementary to verify that
𝜋 = lim𝑢⩾1 𝜋

𝑢 is the canonical embedding 𝐾 =
∐
𝑛⩾1 ℤ/𝔞 ↣

∏
𝑛⩾1 ℤ/𝔞, which is

not surjective as 𝑎 > 1 holds.

Complete Complexes

Recall from 11.1.8 the notions of 𝔞-seperated/quasi-complete/complete complexes.

11.1.33 Proposition. Let 𝔞 be an ideal in 𝑅.
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(a) Let 𝑀 and 𝑁 be 𝑅-complexes. The direct sum 𝑀 ⊕ 𝑁 is 𝔞-separated, 𝔞-quasi-
complete, or 𝔞-complete if and only if both 𝑀 and 𝑁 have said property.

(b) Assume that the ideal 𝔞 is finitely generated and let {𝑀𝑢}𝑢∈𝑈 be a family
of 𝑅-complexes. The product

∏
𝑢∈𝑈 𝑀

𝑢 is 𝔞-separated, 𝔞-quasi-complete, or
𝔞-complete if and only if each complex 𝑀𝑢 has said property.

Proof. The functorΛ𝔞 is additive, and if 𝔞 is finitely generated, it preserves products
by 11.1.13. Thus, for the direct sum 𝑀 ⊕ 𝑁 in (a) one has 𝜆𝔞

𝑀⊕𝑁 � 𝜆
𝔞
𝑀
⊕ 𝜆𝔞

𝑁
and

for the product 𝑃 =
∏
𝑢∈𝑈 𝑀

𝑢 in (b) one has 𝜆𝔞
𝑃
�

∏
𝑢∈𝑈 𝜆

𝔞
𝑀𝑢 by 3.1.20. The

conslusions now follow immediately from the definitions in 11.1.8. □

11.1.34 Example. By 11.1.11 the modules 𝐾 , 𝑀 , and 𝑁 in 11.1.32 are coproducts
of 𝔞-complete modules. As the sequence 0 → Λ𝔞 (𝐾) → Λ𝔞 (𝑀) → Λ𝔞 (𝑁) → 0 is
not exact, it follows in particular that Λ𝔞 does not preserve coproducts.

The homology of an 𝔞-complete complex need not be 𝔞-complete; it is, though,
𝔞-quasi-complete. This is proved in 11.1.41; the proof requires a few preliminary
results on 𝔞-density and the notions from 11.1.8. Examples of 𝔞-complete complexes
with not 𝔞-complete homology are discussed in the Remark after 13.1.34.

11.1.35 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝛼 : 𝑀 → 𝑁 and 𝛽 : 𝑁 → 𝐿 morphisms
of 𝑅-complexes. If 𝛼 is 𝔞-dense, 𝐿 is 𝔞-separated, and 𝛽𝛼 = 0 holds, then 𝛽 = 0.

Proof. As 𝛽𝛼 = 0 holds one has 0 = Λ𝔞 (𝛽𝛼) = Λ𝔞 (𝛽) Λ𝔞 (𝛼). By assumption,
Λ𝔞 (𝛼) is surjective, see 11.1.29, wence Λ𝔞 (𝛽) = 0 holds. Consequently, one has
𝜆𝔞
𝐿
𝛽 = Λ𝔞 (𝛽)𝜆𝔞

𝑁
= 0, and since 𝜆𝔞

𝐿
is assumed to be injective, 𝛽 = 0 holds. □

11.1.36 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝛼 : 𝑀 → 𝑁 a morphism of 𝑅-complexes.
(a) If 𝛼 is injective and 𝑁 is 𝔞-separated, then 𝑀 is 𝔞-separated.
(b) If 𝛼 is 𝔞-dense and 𝑀 is 𝔞-quasi-complete, then 𝑁 is 𝔞-quasi-complete.

Proof. (a): If 𝛼 and 𝜆𝔞
𝑁

are injective, then so is the composite 𝜆𝔞
𝑁
𝛼 = Λ𝔞 (𝛼)𝜆𝔞

𝑀
,

whence 𝜆𝔞
𝑀

is injective.
(b): If 𝛼 is 𝔞-dense, thenΛ𝔞 (𝛼) is surjective, see 11.1.29. Thus, if 𝜆𝔞

𝑀
is surjective,

then so is the composite Λ𝔞 (𝛼)𝜆𝔞
𝑀

= 𝜆𝔞
𝑁
𝛼, which implies that 𝜆𝔞

𝑁
is surjective. □

11.1.37 Proposition. Let 𝔞 be a finitely generated ideal in 𝑅 and 𝑀 an 𝑅-complex.
(a) The morphism

𝜆𝑢 : 𝑀/𝔞𝑢𝑀 −→ Λ𝔞 (𝑀)/𝔞𝑢 Λ𝔞 (𝑀)
induced by 𝜆𝔞

𝑀
: 𝑀 → Λ𝔞 (𝑀) is an isomorphism for every 𝑢 ⩾ 1 .

(b) The morphism Λ𝔞 (𝜆𝔞
𝑀
) is an isomorphism, in particular, 𝜆𝔞

𝑀
is 𝔞-dense.

Proof. By definition one has Λ𝔞 (𝜆𝔞
𝑀
) = lim𝑢⩾1 𝜆

𝑢, so part (b) follows from (a).
Every element in 𝔞𝑢 Λ𝔞 (𝑀) leads per 11.1.10 with 𝑢 zeroes, i.e. has the form

( [0]𝔞𝑀 , . . . , [0]𝔞𝑢𝑀 , [𝑚𝑢+1]𝔞𝑢+1𝑀 , [𝑚𝑢+2]𝔞𝑢+2𝑀 , . . . ) .

Thus, if [𝑚]𝔞𝑢𝑀 is in Ker𝜆𝑢, then 𝜆𝔞
𝑀
(𝑚) = ( [𝑚]𝔞𝑀 , [𝑚]𝔞2𝑀 , . . . ) is in 𝔞𝑢 Λ𝔞 (𝑀),

so in particular [𝑚]𝔞𝑢𝑀 = 0 holds. Therefore, 𝜆𝑢 is injective.
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To see that 𝜆𝑢 is surjective, let 𝑚 = ( [𝑚𝑢]𝔞𝑢𝑀 )𝑢⩾1 be any element Λ𝔞 (𝑀). We
claim that 𝜆𝑢 maps [𝑚𝑢]𝔞𝑢𝑀 to the element [𝑚]𝔞𝑢 Λ𝔞 (𝑀 ) . This amounts to showing
that the difference 𝑚 − 𝜆𝔞

𝑀
(𝑚𝑢) is in 𝔞𝑢 Λ𝔞 (𝑀), which it is by 11.1.14. □

If the ideal 𝔞t is finitely generated, then the completion functor Λ𝔞 is idempotent.

11.1.38 Theorem. Let 𝔞 be an finitely generated ideal in 𝑅 and 𝑀 an 𝑅-complex.
There is an equality Λ𝔞 (𝜆𝔞

𝑀
) = 𝜆𝔞

Λ𝔞 (𝑀 ) of morphisms Λ𝔞 (𝑀) → Λ𝔞 (Λ𝔞 (𝑀)), and
this map is an isomorphism. In particular, the 𝑅-complex Λ𝔞 (𝑀) is 𝔞-complete.

Proof. Once the equality Λ𝔞 (𝜆𝔞
𝑀
) = 𝜆𝔞

Λ𝔞 (𝑀 ) has been established, the remaining
assertions follow from 11.1.37 and the definition of 𝔞-completeness, see 11.1.8.

To prove the desired equality of morphisms, consider the maps from 11.1.10:

𝑀

𝜆𝔞
𝑀

��

𝜋𝑢
𝑀

(( ((

𝑀/𝔞𝑢𝑀

Λ𝔞 (𝑀)
𝜈𝑢
𝑀

66
and

Λ𝔞 (𝑀)

𝜆𝔞
Λ𝔞 (𝑀)

��

𝜋𝑢
Λ𝔞 (𝑀)

** **

Λ𝔞 (𝑀)/𝔞𝑢 Λ𝔞 (𝑀) .

Λ𝔞 (Λ𝔞 (𝑀))
𝜈𝑢
Λ𝔞 (𝑀)

44

Since 𝜆𝔞
Λ𝔞 (𝑀 ) is uniquely determined by commutativity of the rightmost diagram for

every 𝑢 ⩾ 1, the equality Λ𝔞 (𝜆𝔞
𝑀
) = 𝜆𝔞

Λ𝔞 (𝑀 ) follows once we establish the identity

(★) 𝜈𝑢
Λ𝔞 (𝑀 )Λ

𝔞 (𝜆𝔞𝑀 ) = 𝜋𝑢
Λ𝔞 (𝑀 ) .

Every morphism 𝛾 : 𝑀 → 𝐿 induces a morphism 𝛾𝑢 : 𝑀/𝔞𝑢𝑀 → 𝐿/𝔞𝑢𝐿, and by
definition of the functor Λ𝔞 one has 𝜈𝑢

𝐿
Λ𝔞 (𝛾) = 𝛾𝑢𝜈𝑢

𝑀
. Applied to the morphism

𝜆 = 𝜆𝔞
𝑀

: 𝑀 → Λ𝔞 (𝑀) this shows that (★) can be written as:

(⋄) 𝜆𝑢𝜈𝑢𝑀 = 𝜋𝑢
Λ𝔞 (𝑀 ) .

The morphism 𝜆𝑢 : 𝑀/𝔞𝑢𝑀 → Λ𝔞 (𝑀)/𝔞𝑢 Λ𝔞 (𝑀) induced by 𝜆 = 𝜆𝔞
𝑀

satisfies by
definition the second equality below, and the first equality holds by commutativity
of the leftmost diagram above:

(♭) 𝜆𝑢𝜈𝑢𝑀𝜆
𝔞
𝑀 = 𝜆𝑢𝜋𝑢𝑀 = 𝜋𝑢

Λ𝔞 (𝑀 )𝜆
𝔞
𝑀 .

As the module Λ𝔞 (𝑀)/𝔞𝑢 Λ𝔞 (𝑀) is annihilated by 𝔞𝑢, it is 𝔞-complete by 11.1.11;
in particular, it is 𝔞-separated. Furthemore, the morphism 𝜆𝔞

𝑀
is 𝔞-dense by 11.1.37;

thus by 11.1.35 one may cancel 𝜆𝔞
𝑀

in (♭), which yields (⋄), as desired. □

Remark. In [258] Yekutieli provides an exampel of an ideal 𝔞, of course not finitely generated,
and a module 𝑀 such that the module Λ𝔞 (𝑀 ) is not 𝔞-complete.

To parse the next statement, recall from 11.1.20 that for an ideal 𝔞 in 𝑅 and an
𝑅-complex 𝑀 the complex Λ𝔞 (𝑀) is an 𝑅𝔞-complex.

11.1.39 Corollary. Let 𝔞 be a finitely generated ideal in 𝑅 and 𝑀 an 𝑅-complex. The
𝑅𝔞-complex Λ𝔞 (𝑀) is 𝔞𝑅𝔞-complete. In particular, the ring 𝑅𝔞 is 𝔞𝑅𝔞-complete.
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Proof. Considered as an 𝑅-complex,Λ𝔞 (𝑀) is 𝔞-complete by 11.1.38 as 𝔞 is finitely
generated. Hence Λ𝔞 (𝑀) is also 𝔞𝑅𝔞-complete by 11.1.9. □

11.1.40 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝛼 : 𝑀 → 𝑁 a morphism of 𝔞-
complete 𝑅-complexes.

(a) If 𝔞 is finitely generated, then the complex Ker𝛼 is 𝔞-complete.
(b) The complex Coker𝛼 is 𝔞-quasi-complete, and one has Coker𝛼 = 0 if and

only if 𝑅/𝔞 ⊗𝑅 Coker𝛼 = 0 holds.

Proof. (a): Set 𝐾 = Ker𝛼 and let 𝜄 : 𝐾 → 𝑀 be the embedding. Consider the
following commutative diagram,

0 // 𝐾
𝜄

//

𝜆𝔞
𝐾

��

𝑀
𝛼

//

𝜆𝔞
𝑀�

��

𝑁

𝜆𝔞
𝑁�

��

Λ𝔞 (𝐾) Λ𝔞 ( 𝜄)
// Λ𝔞 (𝑀) Λ𝔞 (𝛼)

// Λ𝔞 (𝑁) .

As 𝛼𝜄 = 0 holds, the morphism (𝜆𝔞
𝑀
)−1 Λ𝔞 (𝜄) satisfies

𝛼(𝜆𝔞𝑀 )
−1 Λ𝔞 (𝜄) = (𝜆𝔞𝑁 )

−1 Λ𝔞 (𝛼) Λ𝔞 (𝜄) = (𝜆𝔞𝑁 )
−1 Λ𝔞 (𝛼𝜄) = 0 .

Thus (𝜆𝔞
𝑀
)−1 Λ𝔞 (𝜄) factors uniquely through 𝜄 : 𝐾 → 𝑀 , that is, there is a unique

morphism 𝜑 : Λ𝔞 (𝐾) → 𝐾 with 𝜄𝜑 = (𝜆𝔞
𝑀
)−1 Λ𝔞 (𝜄). Hence 𝜄𝜑𝜆𝔞

𝐾
= 𝜄 = 𝜄1𝐾 , and

thus 𝜑𝜆𝔞
𝐾

= 1𝐾 holds as 𝜄 is injective. This shows that 𝐾 is a direct summand of
Λ𝔞 (𝐾), so the desired conclusion now follows from 11.1.33 and 11.1.38.

(b): The complex Coker𝛼 is 𝔞-quasi-complete by 11.1.36, and the “only if” part
of the last assertion is trivial. To prove the “if” part, set 𝐶 = Coker𝛼 = 𝑁/Im𝛼

and assume that 𝑅/𝔞 ⊗𝑅 𝐶 = 0 holds, equivalently 𝔞𝐶 = 𝐶, see 1.1.10. This means
that one has (𝔞𝑁 + Im𝛼)/Im𝛼 = 𝑁/Im𝛼 and hence 𝔞𝑁 + Im𝛼 = 𝑁 . By 11.1.28
this means that Λ𝔞 (𝛼) is surjective. As 𝑀 and 𝑁 are 𝔞-complete, it follows from the
diagram above that 𝛼 is surjective, so 𝐶 = 0. □

11.1.41 Proposition. Let 𝔞 be a finitely generated ideal in 𝑅 and 𝑀 an 𝑅-complex.
If 𝑀 is 𝔞-complete, then H(𝑀) is 𝔞-quasi-complete, and for every 𝑣 ∈ ℤ one has:

(a) 𝑀𝑣 = 0 if and only if 𝑅/𝔞 ⊗𝑅 𝑀𝑣 = 0 .
(b) H𝑣 (𝑀) = 0 if and only if 𝑅/𝔞 ⊗𝑅 H𝑣 (𝑀) = 0 .

Proof. Assuming that 𝑀 is 𝔞-complete, each module 𝑀𝑣 is 𝔞-complete by 11.1.12,
so part (a) is an immediate consequence of 11.1.30. By 11.1.40(a) each cycle module
Z𝑣 (𝑀) is 𝔞-complete. As H𝑣 (𝑀) is the cokernel of the corestricted differential
𝑀𝑣+1 → Z𝑣 (𝑀) it is quasi-complete by 11.1.40(b), which also yields part (b). □

Remark. As the result above suggests, the homology of an 𝔞-complete complex need not be
𝔞-complete; see the Remark after 13.1.34.
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Exercises

E 11.1.1 (Cf. 11.1.20) Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Verify that Λ𝔞 (𝑀 ) is an 𝑅𝔞-
complex with the action given by ( [𝑟𝑢 ]𝔞𝑢 )𝑢⩾1 ( [𝑚𝑢 ]𝔞𝑢𝑀 )𝑢⩾1 = ( [𝑟𝑢𝑚𝑢 ]𝔞𝑢𝑀 )𝑢⩾1 .

E 11.1.2 Let 𝔞 be an ideal in 𝑅 and 𝑢 ⩾ 1 an integer. Show that there is an isomorphism of rings
𝑅/𝔞𝑢 � 𝑅/𝔞𝑢 ⊗𝑅 𝑅𝔞 .

E 11.1.3 Show that topological equivalence is an equivalence relation on the set of ideals in 𝑅.
E 11.1.4 Let 𝔞 and 𝔟 be topologically equivalent ideals in 𝑅. Show that there is an isomorphism

𝑅𝔞 � 𝑅𝔟 of rings.
E 11.1.5 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that if 𝑀 is 𝔞-separated and

𝑅/𝔞 ⊗𝑅 𝑀 = 0, then 𝑀 = 0.
E 11.1.6 Let 𝔞 be a finitely generated ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. Show that if 𝑀 is

a complex of projective modules and 𝑀 or 𝑁 is bounded, then there is an isomorphism
Λ𝔞 Hom𝑅 (𝑀, 𝑁 ) � Hom𝑅 (𝑀,Λ𝔞 𝑁 ) of 𝑅𝔞-complexes.

11.2 Torsion

Synopsis. The functor Γ𝔞 ; indepence of base; 𝔞-torsion (sub)complex; 𝑅𝔞-structure on 𝔞-torsion
complex; idempotence of Γ𝔞 ; torsion(-free) module; flat module over principal ideal domain.

While the 𝔞-completion functor, treated in the previous section, is defined in terms of
limits, the 𝔞-torsion functor is defined in terms of colimits, which are overall simpler
to handle, and that alone tempers the technical complexity of this section. In terms
of the structure, however, the two sections are closely aligned in order to emphasize
parallels, such as independece of base, between 𝔞-completion and 𝔞-torsion.

Torsion Functor

11.2.1 Definition. Let 𝔞 be an ideal in 𝑅. The tower (11.1.2.1) yields a functor

Γ𝔞 = colim
𝑢⩾1

Hom𝑅 (𝑅/𝔞𝑢, ) : C(𝑅) −→ C(𝑅) ;

see 3.3.32. It is called the 𝔞-torsion functor. Denote by

𝛾𝔞 : Γ𝔞 −→ IdC(𝑅)

the natural transformation obtained from 11.1.3 with G = Hom𝑅 via 4.4.2.

Torsion with respect to the trivial ideals is a trivial affaire.

11.2.2 Example. Clearly, Γ𝑅 is the zero functor and Γ0 the identity functor on C(𝑅).
In fact, for every nilpotent ideal 𝔞 one has Γ𝔞 � IdC(𝑅) by 3.3.36(b).

11.2.3 Addendum (to 11.2.1). Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra. It follows
from 11.2.1 and 2.3.11 that the 𝔞-torsion functor Γ𝔞 is an endofunctor on C(𝑆) and
𝛾𝔞 a natural transformation Γ𝔞 → IdC(𝑆) .

8-Mar-2024 Draft - use at own risk



11.2 Torsion 551

The next result shows that 𝔞-torsion, like 𝔞-completion, is independent of base.

11.2.4 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝑁 an 𝑆-complex.
There is a commutative diagram inC(𝑆) where the horizontal map is an isomorphism,

Γ𝔞𝑆 (𝑁)

𝛾𝑁
𝔞𝑆

��

�
// Γ𝔞 (𝑁)

𝛾𝑁𝔞
��

𝑁 .

Proof. Recall from 11.2.3 that Γ𝔞 (𝑁) is an 𝑆-complex and that 𝛾𝑁𝔞 : Γ𝔞 (𝑁) → 𝑁

is 𝑆-linear. In the computation below, the equality is trivial, the first isomorphism
follows from 1.1.10, and the second holds by adjunction 4.4.12 and the counitor 4.4.2:

Hom𝑆 (𝑆/(𝔞𝑆)𝑢, 𝑁) = Hom𝑆 (𝑆/𝔞𝑢𝑆, 𝑁)
� Hom𝑆 (𝑅/𝔞𝑢 ⊗𝑅 𝑆, 𝑁)
� Hom𝑅 (𝑅/𝔞𝑢, 𝑁) .

As 𝑁 is an 𝑆-complex, so are the Hom complexes above, and the isomorphisms
are 𝑆-linear. From 11.2.1 one gets an induced isomorphism, Γ𝔞𝑆 (𝑁) � Γ𝔞 (𝑁), of
𝑆-complexes, which makes the desired diagram commutative. □

We start by developing concrete descriptions of Γ𝔞 and 𝛾𝔞 .

11.2.5. Let 𝔞 be an ideal in 𝑅. By the universal property of colimits, 𝛾𝑀𝔞 is the
unique morphism that for every 𝑢 ⩾ 1 makes the diagram

Γ𝔞 (𝑀)

𝛾𝑀𝔞

��

Hom𝑅 (𝑅/𝔞𝑢, 𝑀)

𝜇𝑢
𝑀

55

**

**
𝑀

commutative; here 𝜇𝑢
𝑀

is the canonical morphism from (3.2.3.1) and the unlabeled
morphism maps 𝜑 to 𝜑( [1]𝔞𝑢 ).

11.2.6 Definition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. As the differential
𝜕𝑀 is 𝑅-linear, it maps the graded submodule (0 :𝑀♮ 𝔞) of 𝑀♮ to itself. Thus the
submodule specifies a subcomplex of 𝑀 , which we henceforth denote (0 :𝑀 𝔞).

An element 𝑚 of 𝑀 is called 𝔞-torsion if 𝔞𝑢𝑚 = 0 holds for some 𝑢 ⩾ 1. The
𝔞-torsion elements form a subcomplex ⋃

𝑢⩾1 (0 :𝑀 𝔞𝑢) of 𝑀 , called the 𝔞-torsion
subcomplex, and 𝑀 is called 𝔞-torsion if this is all of 𝑀 .

Remark. In parts of the literature, 𝔞-torsion elements and (sub)complexes are called ‘𝔞-power
torsion’ which, albeit more accurate, is longer whence we opt for ‘𝔞-torsion’.

11.2.7 Proposition. Let 𝔞 be an ideal in 𝑅 and 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 an exact
sequence of 𝑅-complexes. If 𝑀 is 𝔞-torsion, then 𝑀 ′ and 𝑀 ′′ are 𝔞-torsion.
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Proof. The assertion follows immediately from the definition, 11.2.6. □

Remark. If 𝔞 is a finitely generated ideal in 𝑅, then the converse of the statement in 11.2.7 also
holds, see E 11.2.5, so the class of 𝔞-torsion complexes constitutes a Serre subcategory of C(𝑅) .

The next result justifies the name of the functor Γ𝔞 , as it shows that Γ𝔞 (𝑀) can be
identified with the 𝔞-torsion subcomplex of 𝑀 .

11.2.8 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. One has

Γ𝔞 (𝑀) �
⋃
𝑢⩾1
(0 :𝑀 𝔞𝑢) ,

and the morphism 𝛾𝑀𝔞 is via this isomorphism the embedding ⋃
𝑢⩾1 (0 :𝑀 𝔞𝑢)↣ 𝑀 .

In particular, 𝑀 is 𝔞-torsion if and only if 𝛾𝑀𝔞 is an isomorphism.

Proof. For every 𝑢 ⩾ 1 there is an isomorphism Hom𝑅 (𝑅/𝔞𝑢, 𝑀) � (0 :𝑀 𝔞𝑢) of
𝑅-complexes; see 1.1.8 and 11.2.6. These subcomplexes form an increasing chain, so
one identifies Γ𝔞 (𝑀) = colim𝑢⩾1 Hom𝑅 (𝑅/𝔞𝑢, 𝑀) with ⋃

𝑢⩾1 (0 :𝑀 𝔞𝑢); see 3.3.34.
Recall from 3.3.2 that every element in Γ𝔞 (𝑀) has the form 𝜇𝑢

𝑀
(𝜑) for some 𝜑 ∈

Hom𝑅 (𝑅/𝔞𝑢, 𝑀); the last assertion now follows from 11.2.5. □

11.2.9 Example. Let 𝑅 be an integral domain. For an 𝑅-module 𝑀 one has⋃
𝑥≠0

Γ(𝑥 ) (𝑀) = 𝑀T .

11.2.10 Example. Let 𝑥 ∈ 𝑅 and set 𝑋 = {𝑥𝑛 | 𝑛 ⩾ 0}. An 𝑅-complex 𝑀 is
(𝑥)-torsion, i.e. Γ(𝑥 ) (𝑀) = 𝑀 , if and only if the localized complex 𝑋−1𝑀 is zero.

Recall that H(𝑋−1𝑀) � 𝑋−1 H(𝑀) holds by 2.2.19, as localization is exact by
2.1.50. Consequently, H(𝑀) is (𝑥)-torsion if and only if 𝑋−1𝑀 is acyclic.

11.2.11 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝑁 an 𝑆-complex.
The complex 𝑁 is 𝔞𝑆-torsion if and only if it is 𝔞-torsion as an 𝑅-complex.

Proof. The statement follows from 11.2.4 and the last assertion in 11.2.8. □

The next result is parallel to 11.1.30.

11.2.12 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. One has Γ𝔞 (𝑀) = 0
if and only if Hom𝑅 (𝑅/𝔞, 𝑀) = 0 holds.

Proof. In view of 1.1.8 the “only if” statement is trivial. To prove the converse, one
needs by 11.2.8 to argue that the complex Hom𝑅 (𝑅/𝔞𝑢, 𝑀) � (0 :𝑀 𝔞𝑢) is zero for
every 𝑢 ⩾ 1. We proceed by induction on 𝑢. The case 𝑢 = 1 holds by assumption.
Now let 𝑢 ⩾ 1 and assume that one has (0 :𝑀 𝔞𝑢) = 0. For every 𝑥 in (0 :𝑀 𝔞𝑢+1)
one has 𝔞𝑢 (𝔞𝑥) = 𝔞𝑢+1𝑥 = 0, and hence 𝔞𝑥 ⊆ (0 :𝑀 𝔞𝑢) = 0. Therefore, 𝑥 belongs
to (0 :𝑀 𝔞), and consequently 𝑥 = 0, again by the assumption. □

11.2.13. Let 𝔞 be an ideal in 𝑅. The functor Γ𝔞 restricts to a functorM(𝑅) →M(𝑅),
and it can be recovered from this restriction by the procedure in 2.1.48. In this sense,
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Γ𝔞 on C(𝑅) is extended from Γ𝔞 on M(𝑅). This follows from the definition, 11.2.1,
in view of 2.3.1 and 3.2.7 but, indeed, it is also evident from 11.2.8. Moreover, for
an 𝑅-complex 𝑀 and 𝑣 ∈ ℤ one has (𝛾𝑀𝔞 )𝑣 = 𝛾

𝑀𝑣
𝔞 .

11.2.14 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. If 𝑀 is 𝔞-torsion,
then H(𝑀) is 𝔞-torsion and, further, for every 𝑣 ∈ ℤ one has:

(a) 𝑀𝑣 = 0 if and only if Hom𝑅 (𝑅/𝔞, 𝑀𝑣) = 0 .
(b) H𝑣 (𝑀) = 0 if and only if Hom𝑅 (𝑅/𝔞,H𝑣 (𝑀)) = 0 .

Proof. Assuming that 𝑀 is 𝔞-torsion, each module 𝑀𝑣 is 𝔞-torsion by 11.2.13, and
hence so is each cycle module Z𝑣 (𝑀) and homology module H𝑣 (𝑀) by 11.2.7. From
these facts and 11.2.12 the assertions (a) and (b) follow. □

In addition to the properties listed in the next proposition, the 𝔞-torsion functor
is idempotent; see 11.2.18. It does not preserve products; see 11.2.17.

11.2.15 Theorem. Let 𝔞 be an ideal in 𝑅. The 𝔞-torsion functor Γ𝔞 is left exact,
𝑅-linear, and bounded. It is also a ♮- and Σ-functor, and the natural transformation
𝛾𝔞 is a Σ-transformation. Moreover, the functor Γ𝔞 preserves coproducts, and if 𝔞 is
finitely generated, then it preserves filtered colimits.

Proof. All but the last assertion are straightforward consequences of 11.2.8. Alter-
natively: It follows from 2.3.10 and 3.3.10 that Γ𝔞 is left exact. Since Γ𝔞 and 𝛾𝔞 , as
noted in 11.2.13, are extended from their restrictions to modules, it follows from
properties of extended functors and transformations—see 2.1.48, A.14, 2.1.53, and
4.1.13—that Γ𝔞 is 𝑅-linear, bounded, a ♮-functor, and a Σ-functor and that 𝛾𝔞 is a
Σ-transformation. Further, Γ𝔞 preserves coproducts by 3.1.33, 3.2.9, and 3.2.13. If 𝔞
is finitely generated, then each module 𝑅/𝔞𝑢 is finitely presented, so by 3.3.17 and
another application of 3.2.13 the functor Γ𝔞 preserves filtered colimits. □

11.2.16 Corollary. Let 𝔞 be a finitely generated ideal in 𝑅 and {𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 a
𝑈-direct system in C(𝑅). If 𝑈 is filtered and H(𝑀𝑢) is 𝔞-torsion for every 𝑢 ∈ 𝑈,
then H(colim𝑢∈𝑈 𝑀𝑢) is 𝔞-torsion.

Proof. The functors H andΓ𝔞 preserve filtered colimits by 3.3.15(d) and 11.2.15. □

11.2.17 Example. The functor Γ𝔞 does not preserve products. Indeed, let 𝔞 be an
ideal in 𝑅 such that the powers 𝔞𝑢 for 𝑢 ⩾ 1 form a strictly descending chain; while
𝑅/𝔞𝑢 is 𝔞-torsion for every 𝑢 ⩾ 1 the product

∏
𝑢⩾1 𝑅/𝔞𝑢 is not as the element

( [1]𝔞 , [1]𝔞2 , . . . ) is not annihilated by any power of 𝔞.

The 𝔞-torsion functor is idempotent, even if 𝔞 is not finitely generated, cf. 11.1.38.

11.2.18 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. There is an equality
Γ𝔞 (𝛾𝑀𝔞 ) = 𝛾

Γ𝔞 (𝑀 )
𝔞 of morphisms Γ𝔞 (Γ𝔞 (𝑀)) → Γ𝔞 (𝑀), and this map is an isomor-

phism. In particular, the 𝑅-complex Γ𝔞 (𝑀) is 𝔞-torsion.

Proof. Set 𝑁 =
⋃
𝑢⩾1 (0 :𝑀 𝔞𝑢). Evidently one has 𝑁 =

⋃
𝑢⩾1 (0 :𝑁 𝔞𝑢), so via the

isomorphism in 11.2.8 both Γ𝔞 (𝛾𝑀𝔞 ) and 𝛾Γ𝔞 (𝑀 )𝔞 are identified with 1𝑁 . □
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To parse the next result, recall the notation from 11.1.1.

11.2.19 Proposition. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 and 𝑀 an 𝑅-complex.
With the identification from 11.2.8 there is an equality of subcomplexes,

Γ(𝑥𝑥𝑥 ) (𝑀) =
𝑛⋂
𝑖=1

Γ(𝑥𝑖 ) (𝑀) .

Moreover, one has

Γ(𝑥𝑥𝑥 ) (𝑀) � colim
𝑢⩾1

Hom𝑅 (𝑅/(𝑥𝑥𝑥𝑢), 𝑀) .

Proof. For every 𝑢 one has (𝑥𝑥𝑥)𝑛𝑢 ⊆ (𝑥𝑥𝑥𝑢) ⊆ (𝑥𝑥𝑥)𝑢 and ⋂𝑛
𝑖=1 (0 :𝑀 𝑥𝑢

𝑖
) = (0 :𝑀 (𝑥𝑥𝑥𝑢))

and, therefore,⋃
𝑢⩾1
(0 :𝑀 (𝑥𝑥𝑥)𝑢) =

⋃
𝑢⩾1
(0 :𝑀 (𝑥𝑥𝑥𝑢)) =

𝑛⋂
𝑖=1

⋃
𝑢⩾1
(0 :𝑀 𝑥𝑢𝑖 ) .

In view of 11.2.8 these equalities yield the first assertion. The first equality alone
yields the second assertion, as one identifies Hom𝑅 (𝑅/(𝑥𝑥𝑥𝑢), 𝑀) with (0 :𝑀 (𝑥𝑥𝑥𝑢));
see 1.1.8 and 3.3.34. □

Recall from 11.1.15 the definition of topological equivalence for ideals.

11.2.20 Proposition. Let 𝔞 and 𝔟 be ideals in 𝑅. If 𝔞 and 𝔟 are topologically
equivalent, then Γ𝔞 and Γ𝔟 are naturally isomorphic endofunctors on C(𝑅).

Proof. Let 𝑀 be an 𝑅-complex. By 11.2.8 one can identify Γ𝔞 (𝑀) with the sub-
complex ⋃

𝑢⩾1 (0 :𝑀 𝔞𝑢) of 𝑀 . By assumption, there exist𝑚, 𝑛 ∈ ℕwith 𝔞𝑚 ⊆ 𝔟 and
𝔟𝑛 ⊆ 𝔞. Thus, for every 𝑢 ⩾ 1 one has 𝔞𝑚𝑢 ⊆ 𝔟𝑢 and 𝔟𝑛𝑢 ⊆ 𝔞𝑢 and, consequently,

(0 :𝑀 𝔟𝑢) ⊆ (0 :𝑀 𝔞𝑚𝑢) ⊆ Γ𝔞 (𝑀) and (0 :𝑀 𝔞𝑢) ⊆ (0 :𝑀 𝔟𝑛𝑢) ⊆ Γ𝔟 (𝑀) .

Thus the subcomplexes Γ𝔞 (𝑀) and Γ𝔟 (𝑀) are identical. □

The next result extends 11.1.37(a).

11.2.21 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal and 𝑀 and 𝑁 be 𝑅-complexes. If 𝑁 is
𝔞-torsion, then there is an isomorphism in C(𝑅),

𝑁 ⊗𝑅 𝜆𝔞𝑀 : 𝑁 ⊗𝑅 𝑀 −→ 𝑁 ⊗𝑅 Λ𝔞 (𝑀) .

Proof. First note that if 𝑢 ⩾ 1 is an integer and 𝑋 an 𝑅/𝔞𝑢-complex, then 𝑋 ⊗𝑅 𝜆𝔞𝑀
is an isomorphism. Indeed, by the unitor 4.4.1 and associativity 4.4.7 one has

𝑋 ⊗𝑅 𝜆𝔞𝑀 � (𝑋 ⊗𝑅/𝔞𝑢 𝑅/𝔞
𝑢) ⊗𝑅 𝜆𝔞𝑀 � 𝑋 ⊗𝑅/𝔞𝑢 (𝑅/𝔞𝑢 ⊗𝑅 𝜆𝔞𝑀 ) ,

and the map 𝑅/𝔞𝑢 ⊗𝑅 𝜆𝔞𝑀 is an isomorphism by 11.1.37(a) and 1.1.10.
In the computation below, the first isomorphism holds by 11.2.8 as 𝑁 is 𝔞-torsion,

and the second isomorphism follows from 3.2.22.

𝑁 ⊗𝑅 𝜆𝔞𝑀 �
(
colim
𝑢⩾1

Hom𝑅 (𝑅/𝔞𝑢, 𝑁)
)
⊗𝑅 𝜆𝔞𝑀
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� colim
𝑢⩾1
(Hom𝑅 (𝑅/𝔞𝑢, 𝑁) ⊗𝑅 𝜆𝔞𝑀 ) .

As Hom𝑅 (𝑅/𝔞𝑢, 𝑁) is an 𝑅/𝔞𝑢-complex, see 2.3.11, the first part of the proof shows
that Hom𝑅 (𝑅/𝔞𝑢, 𝑁) ⊗𝑅 𝜆𝔞𝑀 is an isomorphism, and hence so is 𝑁 ⊗𝑅 𝜆𝔞𝑀 . □

11.2.22 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. If 𝑁 is
𝔞-torsion, then there is an isomorphism in C(𝑅),

Hom𝑅 (𝑁, 𝛾𝑀𝔞 ) : Hom𝑅 (𝑁, Γ𝔞 (𝑀)) −→ Hom𝑅 (𝑁, 𝑀) .

Proof. Recall the descriptions of Γ𝔞 and 𝛾𝔞 from 11.2.8. As 𝛾𝑀𝔞 is injective and the
functor Hom𝑅 (𝑁, ) is left exact, see 2.3.10, the morphism Hom𝑅 (𝑁, 𝛾𝑀𝔞 ) is injec-
tive. As 𝑁 is 𝔞-torsion, every homomorphism 𝛼 : 𝑁 → 𝑀 satisfies Im𝛼 ⊆ Γ𝔞 (𝑀),
and hence Hom𝑅 (𝑁, 𝛾𝑀𝔞 ) is also surjective. □

𝑅𝔞-Structure on 𝔞-Torsion Complexes

Recall from 11.1.18 that 𝑅𝔞 is an 𝑅-algebra with structure map 𝜆𝔞
𝑅

: 𝑅 → 𝑅𝔞 . The
next result shows that every 𝔞-torsion 𝑅-complex is an 𝑅𝔞-complex.

11.2.23 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. The complex
Γ𝔞 (𝑀) is an 𝑅𝔞-complex with action given by

𝑟𝑚 = 𝑟𝑢𝑚

for elements 𝑟 = ( [𝑟𝑣]𝔞𝑣 )𝑣⩾1 ∈ 𝑅𝔞 and 𝑚 ∈ (0 :𝑀 𝔞𝑢) ⊆ Γ𝔞 (𝑀). Consequently, Γ𝔞
can be viewed as a functor,

Γ𝔞 : C(𝑅) −→ C(𝑅𝔞) .

Proof. For every 𝑢 ⩾ 1 the 𝑅-complex (0 :𝑀 𝔞𝑢) has a canonical 𝑅/𝔞𝑢-structure
given by [𝑟 ′]𝔞𝑢𝑚 = 𝑟 ′𝑚 for 𝑟 ′ ∈ 𝑅 and 𝑚 ∈ (0 :𝑀 𝔞𝑢). In turn, restriction of scalars
along the ring homomorphism 𝑅𝔞 → 𝑅/𝔞𝑢 equips (0 :𝑀 𝔞𝑢) with the structure of an
𝑅𝔞-complex given by 𝑟𝑚 = 𝑟𝑢𝑚 for 𝑟 = ( [𝑟𝑣]𝔞𝑣 )𝑣⩾1 ∈ 𝑅𝔞 and 𝑚 ∈ (0 :𝑀 𝔞𝑢). Note
that (0 :𝑀 𝔞𝑢) is an 𝑅𝔞-subcomplex of (0 :𝑀 𝔞𝑢+1); indeed, as 𝑟𝑢 − 𝑟𝑢+1 ∈ 𝔞𝑢 one
has (𝑟𝑢 − 𝑟𝑢+1)𝑚 = 0, and hence 𝑟𝑢𝑚 = 𝑟𝑢+1𝑚, for every 𝑚 ∈ (0 :𝑀 𝔞𝑢). It follows
that Γ𝔞 (𝑀) =

⋃
𝑢⩾1 (0 :𝑀 𝔞𝑢) is an 𝑅𝔞-complex with the asserted multiplication. □

11.2.24. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅𝔞-complex. By 11.2.3 and 11.2.23 the
𝑅-complex Γ𝔞 (𝑀) is an 𝑅𝔞-complex in two, potentially different, ways. We argue
below that they are the same if 𝔞 is finitely generated; that is, the diagram

C(𝑅𝔞)

res𝑅𝔞
𝑅

��

Γ𝔞

(from 11.2.3)
// C(𝑅𝔞)

C(𝑅) Γ𝔞

(from 11.2.23)
// C(𝑅𝔞)
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is commutative if 𝔞 is finitely generated. Indeed, for elements

𝑟 = ( [𝑟𝑣]𝔞𝑣 )𝑣⩾1 ∈ 𝑅𝔞 and 𝑚 ∈ (0 :𝑀 𝔞𝑢) ⊆ Γ𝔞 (𝑀)

the 𝑅𝔞-action from 11.2.23 is given by 𝑟𝑚 = 𝑟𝑢𝑚 = 𝜆𝔞
𝑅
(𝑟𝑢)𝑚, where the last equality

holds as 𝑀 is an 𝑅-complex via restriction of scalars along the ring homomorphism
𝜆𝔞
𝑅

: 𝑅 → 𝑅𝔞 . The 𝑅𝔞-structure on Γ𝔞 (𝑀) from 11.2.3 is the restriction to the sub-
complex Γ𝔞 (𝑀) of the 𝑅𝔞-structure on 𝑀 . To prove that the two 𝑅𝔞-structures on
Γ𝔞 (𝑀) agree, it suffices to argue that the element 𝑟 − 𝜆𝔞

𝑅
(𝑟𝑢) ∈ 𝑅𝔞 annihilates ev-

ery 𝑚 ∈ (0 :𝑀 𝔞𝑢). To compute the subcomplex (0 :𝑀 𝔞𝑢) one views 𝑀 as an
𝑅-complex; viewing 𝑀 as an 𝑅𝔞-complex one can also consider the subcomplex
(0 :𝑀 𝔟𝑢) where 𝔟 = 𝔞𝑅𝔞 . Evidently, one has (0 :𝑀 𝔞𝑢) = (0 :𝑀 𝔟𝑢), so it suffices
to see that 𝑟 − 𝜆𝔞

𝑅
(𝑟𝑢) belongs to the ideal 𝔟𝑢 = 𝔞𝑢𝑅𝔞 . By 11.1.14 this is the case if

𝔞 is finitely generated.

11.2.25 Lemma. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁
an 𝑆-complex. For elements 𝑚 ∈ (0 :𝑀 𝔞) and 𝑠 ∈ 𝔞𝑆 the next assertions hold.

(a) For every 𝜑 ∈ Hom𝑅 (𝑀, 𝑁) one has 𝑠𝜑(𝑚) = 0 .
(b) For every 𝑛 ∈ 𝑁 one has 𝑠𝑛 ⊗ 𝑚 = 0 in 𝑁 ⊗𝑅 𝑀 .

Proof. As 𝑠 is in 𝔞𝑆 it has the form 𝑠 =
∑𝑘
𝑖=1 𝑎𝑖𝑠𝑖 with 𝑎𝑖 ∈ 𝔞 and 𝑠𝑖 ∈ 𝑆 for every

𝑖 ∈ {1, . . . , 𝑘 }. Thus, for every 𝜑 ∈ Hom𝑅 (𝑀, 𝑁) and 𝑛 ∈ 𝑁 one has

𝑠𝜑(𝑚) = ∑𝑘
𝑖=1 𝑠𝑖𝜑(𝑎𝑖𝑚) and 𝑠𝑛 ⊗ 𝑚 =

∑𝑘
𝑖=1 𝑠𝑖𝑛 ⊗ 𝑎𝑖𝑚 .

Each term in these sums is zero because 𝑚 is in (0 :𝑀 𝔞) and hence 𝑎𝑖𝑚 = 0. □

To parse the next result, recall from 11.2.23 that for every ideal 𝔞 in 𝑅 and every
𝑅-complex 𝑀 there is a canonical 𝑅𝔞-structure on Γ𝔞 (𝑀). Furthermore, recall from
2.3.11 and 2.4.10 that if 𝑋 and 𝑁 are 𝑅𝔞-complexes, then Hom𝑅 (𝑋, 𝑁) and 𝑁 ⊗𝑅 𝑋
are complexes of, not necessarily symmetric, 𝑅𝔞–𝑅𝔞-bimodules.

11.2.26 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal,𝑀 an 𝑅-complex, and 𝑁 an 𝑅𝔞-complex.
If 𝔞 is finitely generated, then the following assertions hold.

(a) Hom𝑅 (Γ𝔞 (𝑀), 𝑁) is a complex of symmetric 𝑅𝔞–𝑅𝔞-bimodules, and there is
an equality of 𝑅𝔞-complexes,

Hom𝑅 (Γ𝔞 (𝑀), 𝑁) = Hom
𝑅𝔞 (Γ𝔞 (𝑀), 𝑁) .

(b) 𝑁 ⊗𝑅 Γ𝔞 (𝑀) is a complex of symmetric 𝑅𝔞–𝑅𝔞-bimodules, and there is an
equality of 𝑅𝔞-complexes,

𝑁 ⊗𝑅 Γ𝔞 (𝑀) = 𝑁 ⊗
𝑅𝔞 Γ𝔞 (𝑀) .

Proof. (a): It suffices to show that for every 𝑟 = ( [𝑟𝑣]𝔞𝑣 )𝑣⩾1 in 𝑅𝔞 , 𝑚 ∈ Γ𝔞 (𝑀), and
𝜑 ∈ Hom𝑅 (Γ𝔞 (𝑀), 𝑁) one has 𝜑(𝑟𝑚) = 𝑟𝜑(𝑚). By 11.2.8 one has 𝑚 ∈ (0 :𝑀 𝔞𝑢)
for some 𝑢 ⩾ 1, so the first equality below holds by 11.2.23. The middle equality
holds as 𝜑 is 𝑅-linear, and the last one holds as 𝑁 is an 𝑅-complex via restriction of
scalars along the ring homomorphism 𝜆𝔞

𝑅
: 𝑅 → 𝑅𝔞 .
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𝜑(𝑟𝑚) = 𝜑(𝑟𝑢𝑚) = 𝑟𝑢𝜑(𝑚) = 𝜆𝔞𝑅 (𝑟
𝑢)𝜑(𝑚) .

To see that 𝜆𝔞
𝑅
(𝑟𝑢)𝜑(𝑚) = 𝑟𝜑(𝑚) holds, notice that by 11.2.25(a) the difference

𝑟𝜑(𝑚) − 𝜆𝔞𝑅 (𝑟
𝑢)𝜑(𝑚) = (𝑟 − 𝜆𝔞𝑅 (𝑟

𝑢))𝜑(𝑚)

is zero, as 𝑟 − 𝜆𝔞
𝑅
(𝑟𝑢) belongs to 𝔞𝑢𝑅𝔞 by 11.1.14 and 𝑚 is in (0 :𝑀 𝔞𝑢).

(b): It suffices to show that for 𝑟 = ( [𝑟𝑣]𝔞𝑣 )𝑣⩾1 in 𝑅𝔞 , 𝑛 ∈ 𝑁 , and 𝑚 ∈ Γ𝔞 (𝑀)
one has 𝑟𝑛 ⊗ 𝑚 = 𝑛 ⊗ 𝑟𝑚 in 𝑁 ⊗𝑅 Γ𝔞 (𝑀). By 11.2.8 one has 𝑚 ∈ (0 :𝑀 𝔞𝑢) for
some 𝑢 ⩾ 1, so the first equality below holds by 11.2.23. The middle equality holds
as ⊗ is middle 𝑅-linear, and the last one holds as 𝑁 is an 𝑅-complex via restriction
of scalars along the ring homomorphism 𝜆𝔞

𝑅
.

𝑛 ⊗ 𝑟𝑚 = 𝑛 ⊗ 𝑟𝑢𝑚 = 𝑟𝑢𝑛 ⊗ 𝑚 = 𝜆𝔞𝑅 (𝑟
𝑢)𝑛 ⊗ 𝑚 .

To see that 𝑟𝑛 ⊗ 𝑚 = 𝜆𝔞
𝑅
(𝑟𝑢)𝑛 ⊗ 𝑚 holds, notice that by 11.2.25(b) the difference

𝑟𝑛 ⊗ 𝑚 − 𝜆𝔞𝑅 (𝑟
𝑢)𝑛 ⊗ 𝑚 = (𝑟 − 𝜆𝔞𝑅 (𝑟

𝑢))𝑛 ⊗ 𝑚

is zero, as 𝑟 − 𝜆𝔞
𝑅
(𝑟𝑢) belongs to 𝔞𝑢𝑅𝔞 by 11.1.14 and 𝑚 is in (0 :𝑀 𝔞𝑢). □

11.2.27 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. If 𝔞 is finitely
generated, then 𝑅𝔞 ⊗𝑅 Γ𝔞 (𝑀) is a complex of symmetric 𝑅𝔞–𝑅𝔞-bimodules, and
there is an isomorphism of 𝑅𝔞-complexes,

𝑅𝔞 ⊗𝑅 Γ𝔞 (𝑀) �−−−→ Γ𝔞 (𝑀) given by 𝑟 ⊗ 𝑚 ↦−→ 𝑟𝑢𝑚 ,

for 𝑟 = ( [𝑟𝑣]𝔞𝑣 )𝑣⩾1 ∈ 𝑅𝔞 and 𝑚 ∈ (0 :𝑀 𝔞𝑢) ⊆ Γ𝔞 (𝑀).

Proof. The first assertion follows from 11.2.26(b) applied with 𝑁 = 𝑅𝔞 , and so does
the second in view of the unitor 4.4.1. □

Torsion and Flatness over Principal Ideal Domains

First a result that compares to 1.3.31.

11.2.28 Proposition. Let 𝑅 be an integral domain with field of fractions 𝑄. Every
flat 𝑅-module is torsion-free, and for every 𝑅-module 𝑀 there is an exact sequence

0 −→ 𝑀T −→ 𝑀 −→ 𝑄 ⊗𝑅 𝑀 .

Proof. Application of ⊗𝑅 𝑀 to the embedding 𝜄 : 𝑅↣ 𝑄 yields a homomorphism
𝜄 ⊗𝑅 𝑀 from 𝑅 ⊗𝑅 𝑀 � 𝑀 to 𝑄 ⊗𝑅 𝑀 . As this can be identified with the canonical
map 𝑀 → (𝑅 \ {0})−1𝑀 , it follows that Ker(𝜄 ⊗𝑅 𝑀) is the torsion submodule 𝑀T.
If 𝑀 is flat, then 𝜄 ⊗𝑅 𝑀 is injective, so one has 𝑀T = 0. □

Torsion-freeness does not imply flatness.

11.2.29 Example. Let 𝕜 be a field and consider the integral domain 𝑅 = 𝕜 [𝑥, 𝑦]. As
an 𝑅-module, the ideal 𝔐 = (𝑥, 𝑦) is evidently torsion-free. However, it is not flat
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since the homomorphism obtained by applying ⊗𝑅𝔐 to the embedding 𝜄 : 𝔐↣ 𝑅

is not injective. Indeed, in 𝑅 ⊗𝑅𝔐 one has

(𝜄 ⊗𝑅𝔐) (𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥) = 𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥 = 1 ⊗ 𝑥𝑦 − 1 ⊗ 𝑦𝑥 = 0 ,

but in 𝔐 ⊗𝑅𝔐 the element 𝑡 = 𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥 is non-zero. To see why, note that the
homomorphism 𝔐 ⊗𝑅𝔐 → 𝕜 given by 𝑓 ⊗ 𝑔 ↦→ 𝑓 ′𝑥 (0, 0)𝑔′𝑦 (0, 0) maps 𝑡 to 1 ≠ 0.

11.2.30 Proposition. Let 𝑅 be an integral domain. A finitely generated 𝑅-module is
torsion-free if and only if it can be embedded into a finitely generated free 𝑅-module.

Proof. A submodule of a free module is evidently torsion-free. Let 𝑀 be a torsion-
free 𝑅-module generated by elements 𝑚1, . . . , 𝑚𝑝 . Consider the injective homomor-
phism 𝛼 : 𝑀 → 𝑄 ⊗𝑅 𝑀 from 11.2.28. The elements 1 ⊗ 𝑚1, . . . , 1 ⊗ 𝑚𝑝 generate
the vector space 𝑄 ⊗𝑅 𝑀 , so some subset, say, 1 ⊗ 𝑚1, . . . , 1 ⊗ 𝑚𝑡 is a basis. Write
1 ⊗ 𝑚𝑣 =

∑𝑡
𝑖=1 𝑞𝑣𝑖 (1 ⊗ 𝑚𝑖) with 𝑞𝑣𝑖 ∈ 𝑄, and choose 𝑥 ≠ 0 in 𝑅 such that 𝑥𝑞𝑣𝑖 ∈ 𝑅

for all 𝑣 ∈ {1, . . . , 𝑝} and 𝑖 ∈ {1, . . . , 𝑡}. The 𝑅-submodule 𝑅⟨ 1
𝑥
⊗𝑚1, . . . ,

1
𝑥
⊗𝑚𝑡 ⟩ of

𝑄 ⊗𝑅 𝑀 is free and contains Im𝛼 � 𝑀 . □

Remark. See E 11.2.10 for an alternative proof of 11.2.30. The number 𝑡 occuring in the proof
of 11.2.30, i.e. the rank of the 𝑄-vector space 𝑄 ⊗𝑅 𝑀, is known as the rank of the torsion-free
module 𝑀.

The next theorem compares to 1.3.21 and 1.3.32. Notice that the last assertion
also follows from 8.5.2 and 8.5.6.

11.2.31 Theorem. Let 𝑅 be a principal ideal domain. An 𝑅-module is flat if and
only if it is torsion-free. In particular, every submodule of a flat 𝑅-module is flat.

Proof. Every flat 𝑅-module is torsion-free by 11.2.28. Let 𝑀 be a torsion-free 𝑅-
module. It follows from 3.3.4 that 𝑀 is the filtered colimit of its finitely generated
submodules; so by 5.4.21 it suffices to argue that every finitely generated submodule
of 𝑀 is flat. By 11.2.30 every such module 𝐹 is a submodule of a free 𝑅-module.
As 𝑅 is a principal ideal domain, 𝐹 is free by 1.3.11, in particular 𝐹 is flat. □

It transpires from the proof above that every flat module over a principal ideal
domain is a colimit of finitely generated free modules. This is true in general and
known as Govorov and Lazard’s theorem; see 5.5.1.

We close this section with a technical result that, though it is only used in Chap. 19,
fits naturally here. It shows, in particular, that to remove the torsion part of a finitely
generated module over an integral domain it suffices to invert the powers of a single
element, which is far from going all the way to the field of fractions, cf. 11.2.28.

11.2.32 Lemma. Let 𝑅 be an integral domain and 𝑀1, . . . , 𝑀𝑘 finitely generated 𝑅-
modules. There exists a non-zero element 𝑥 in 𝑅 such that with 𝑋 = {𝑥𝑛 | 𝑛 ⩾ 0} ⊆ 𝑅
the modules 𝑋−1𝑀1, . . . , 𝑋

−1𝑀𝑘 are finitely generated free 𝑋−1𝑅-modules.

Proof. We start by proving the assertion for 𝑘 = 1. Set 𝑀 = 𝑀1, let 𝑄 = 𝑅(0)
be the field of fractions of 𝑅 and {𝑚1, . . . , 𝑚𝑠} a set of generators of 𝑀 . Choose
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𝑒1, . . . , 𝑒𝑡 in 𝑀 such that { 𝑒1
1 , . . . ,

𝑒𝑡
1 } is a basis for the𝑄-vector space 𝑀(0) . For each

𝑖 ∈ {1, . . . , 𝑠} there exist unique elements 𝑟𝑖1
𝑢𝑖1
, . . . ,

𝑟𝑖𝑡
𝑢𝑖𝑡
∈ 𝑄 with

(★)
𝑡∑
𝑗=1

𝑟𝑖 𝑗

𝑢𝑖 𝑗

𝑒 𝑗

1 =
𝑚𝑖
1 .

Let 𝑥 be the product of the denominators 𝑢𝑖 𝑗 for 𝑖 ∈ {1, . . . , 𝑠} and 𝑗 ∈ {1, . . . , 𝑡}, set
𝑋 = {𝑥𝑛 | 𝑛 ⩾ 0}, and consider the homomorphism of 𝑋−1𝑅-modules,

𝛼 : (𝑋−1𝑅)𝑡 −→ 𝑋−1𝑀 given by (𝑎1, . . . , 𝑎𝑡 ) ↦−→
𝑡∑
𝑖=1
𝑎𝑖
𝑒𝑖
1 .

By the definition of the element 𝑥, each fraction 𝑟𝑖 𝑗

𝑢𝑖 𝑗
is an element of the subring

𝑋−1𝑅 ⊆ 𝑄, so 𝛼 is surjective by (★). Further, there is a commutative diagram,

(𝑋−1𝑅)𝑡
��

��

𝛼
// 𝑋−1𝑀

��

𝑄𝑡
𝛽

�
// 𝑀(0) ,

where the vertical maps are the canonical ones and 𝛽 is the isomorphism given by
(𝑞1, . . . , 𝑞𝑡 ) ↦→

∑𝑡
𝑖=1 𝑞𝑖

𝑒𝑖
1 . Consequently, 𝛼 is injective and thus an isomorphism.

Now, let𝑀1, . . . , 𝑀𝑘 be finitely generated 𝑅-modules. As proved above, there exist
non-zero elements 𝑥1, . . . , 𝑥𝑘 in 𝑅 such that for each 𝑣 ∈ {1, . . . , 𝑘} the 𝑋−1

𝑣 𝑅-module
𝑋−1
𝑣 𝑀𝑣 is free where 𝑋𝑣 = {𝑥𝑛𝑣 | 𝑛 ⩾ 0}. Let 𝑥 be the non-zero product 𝑥1 · · · 𝑥𝑘 and

set 𝑋 = {𝑥𝑛 | 𝑛 ⩾ 0}. Fix 𝑣 ∈ {1, . . . , 𝑘} and let 𝑌 denote the image of 𝑋 under the
canonical ring homomorphism 𝑅 → 𝑋−1

𝑣 𝑅. There are isomorphisms,

𝑌−1 (𝑋−1
𝑣 𝑅) � 𝑋−1𝑅 and 𝑌−1 (𝑋−1

𝑣 𝑀𝑣) � 𝑋−1𝑀𝑣 .

Since a localization of a free module is free, see 1.1.11 and 5.1.15(a), it now follows
that 𝑋−1𝑀𝑣 is a free 𝑋−1𝑅-module. □

Exercises

E 11.2.1 Let 𝑅 be local and 𝑥 ∈ 𝑅. Show that if Γ(𝑥) is exact, then 𝑥 is nilpotent or a unit.
E 11.2.2 Show that Γ( [3]6ℤ ) is exact on the category of ℤ/6ℤ-modules.
E 11.2.3 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-module; show that Γ𝔞 (𝑀/Γ𝔞 (𝑀 ) ) = 0 holds.
E 11.2.4 Let 𝔞 be an ideal in 𝑅 and𝑀 a finitely generated 𝑅-module. Show that if𝑀 is 𝔞-torsion,

then it is 𝔞-complete.
E 11.2.5 Let 𝔞 be a finitely generated ideal in 𝑅. Show that in an exact sequence of 𝑅-complexes,

0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0, the complex 𝑀 is 𝔞-torsion if and only if both complexes
𝑀 ′ and 𝑀 ′′ are 𝔞-torsion.

E 11.2.6 Let 𝔞 be an ideal in 𝑅 and𝑀 and 𝑁 be 𝑅-complexes. (a) Show that if𝑀 is bounded and
degreewise finitely presented, then one has Γ𝔞 Hom𝑅 (𝑀, 𝑁 ) � Hom𝑅 (𝑀, Γ𝔞 (𝑁 ) ) .
(b) Show that if 𝔞 is finitely generated, 𝑁 is a complex of flat 𝑅-modules, and 𝑀 or 𝑁
is bounded, then one has Γ𝔞 (𝑀 ⊗𝑅 𝑁 ) � Γ𝔞 (𝑀 ) ⊗𝑅 𝑁 .

E 11.2.7 Show that for every 𝑅-module 𝑀 one has 𝑀T =
⋃

Γ(𝑥) (𝑀 ) where the union is over
all non-zerodivisors 𝑥 ∈ 𝑅.
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E 11.2.8 Let 𝑀 be a finitely generated 𝑅-module. Show that the biduality homomorphism 𝛿𝑀
𝑅

is injective if and only if 𝑀 is a submodule of a free 𝑅-module. (A module with this
property is called torsionless.)

E 11.2.9 Let 𝑅 be an integral domain, 𝑀 an 𝑅-module, and 𝑚 ∈ 𝑀. Show that (0 :𝑅 𝑚) = 0
holds if there is a homomorphism 𝜑 : 𝑀 → 𝑅 with 𝜑 (𝑚) ≠ 0. Show that the converse
holds if 𝑀 is finitely generated.

E 11.2.10 Let 𝑅 be an integral domain and𝑀 a finitely generated 𝑅-module. Show that the kernel
of the biduality homomorphism 𝛿𝑀

𝑅
is the torsion submodule 𝑀T. Conclude that a

finitely generated torsion-free 𝑅-module is a submodule of a free 𝑅-module.
E 11.2.11 Show that if every submodule of a free 𝑅-module is free, then 𝑅 is a principal ideal

domain.
E 11.2.12 Let 𝑅 be an integral domain with field of fractions𝑄. Show that𝑄 is finitely generated

as an 𝑅-module if and only if 𝑅 is a field, in which case 𝑅 = 𝑄 holds.
E 11.2.13 Let 𝑅 be an integral domain, not a field, with field of fractions𝑄. Show that every free

𝑅-submodule of 𝑄 is cyclic and that 𝑄 is not a submodule of a free 𝑅-module.
E 11.2.14 Let 𝑅 be an integral domain. (a) Show that every submodule of a free 𝑅-module is

torsion-free. (b) Give an example of a torsion-free 𝑅-module that is not a submodule
of a free 𝑅-module.

E 11.2.15 Let 𝑅 be an integral domain and 𝑀 an 𝑅-module. Show that 𝑀/𝑀T is torsion-free.
Conclude that 𝑀/𝑀T is injective for every divisible 𝑅-module 𝑀.

E 11.2.16 Let 𝜑 : 𝑀 → 𝑁 be a homomorphism of 𝑅-modules; show that it restricts to a homo-
morphism 𝜑T : 𝑀T → 𝑁T. Conclude that ( )T is a functor and show that it is left exact
but not exact.

E 11.2.17 Let 𝑅 be an integral domain with field of fractions 𝑄. Show that there is a natural
isomorphism ( )T � Tor𝑅1 ( , 𝑄/𝑅) of functors on M(𝑅) , cf. E 11.2.16.

E 11.2.18 Let 𝑅 be an integral domain with field of fractions 𝑄 and 𝑀 be an 𝑅-module. Show
that one has 𝑀T ⊗𝑅 𝑄 = 0 and 𝑀 ⊗𝑅 𝑄 � (𝑀/𝑀T ) ⊗𝑅 𝑄.

E 11.2.19 Let 𝑅 be an integral domain and 𝑀 and 𝑁 be 𝑅-modules. Show that Tor𝑅𝑚 (𝑀, 𝑁 ) is
a torsion module for every 𝑚 ∈ ℕ.

E 11.2.20 Let 𝑅 be an integral domain and 𝑀 a finitely generated 𝑅-module. Show that for every
𝑅-module 𝑁 the equality Hom𝑅 (𝑀, 𝑁 )T = Hom𝑅 (𝑀, 𝑁T ) holds.

E 11.2.21 Let 𝑅 be an integral domain, not a field, and 𝑀 ≠ 0 a finitely generated 𝑅-module.
Show that 𝑀 is not injective.

E 11.2.22 Let 𝑅 be an integral domain, not a field, and 𝑀 a divisible 𝑅-module. Show that for
every finitely generated 𝑅-module 𝑁 one has Hom𝑅 (𝑀, 𝑁 ) = 0. Hint: Start with
𝑁 = 𝑅.

E 11.2.23 Let 𝔞 be a finitely generated ideal in 𝑅 and𝑀 and 𝑁 be 𝑅-complexes. Show that if 𝑁 is
a complex of injective modules and 𝑀 or 𝑁 is bounded, then there is an isomorphism
Λ𝔞 Hom𝑅 (𝑀, 𝑁 ) � Hom𝑅 (Γ𝔞 𝑀, 𝑁 ) of 𝑅𝔞-complexes.

11.3 Local Homology and Cohomology

Synopsis. The functor LΛ𝔞 ; local homology H𝔞 ; the functor RΓ𝔞 ; local cohomology H𝔞 .

We start the study of the functors on the derived category obtained from the 𝔞-
completion and 𝔞-torsion functors from the previous sections. Here we only develop
the standard properties that follow from the general theory of derived functors. In
the Noetherian setting there is much more to say, and that is the topic of Chap. 13.
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Local Homology

The 𝔞-completion functor Λ𝔞 induces by 11.1.12 and 6.1.22 an endofunctor on the
homotopy category K(𝑅), so by 7.2.8 it has a left derived functor LΛ𝔞 which can be
computed by way of semi-projective resolutions.

11.3.1 Proposition. Let 𝔞 be an ideal in 𝑅. The left derived 𝔞-completion functor
LΛ𝔞 : D(𝑅) → D(𝑅) is 𝑅-linear and triangulated.

Proof. It follows from 11.1.13, 6.1.20, and 6.2.16 that the endufunctor on K(𝑅)
induced by Λ𝔞 is 𝑅-linear and triangulated. Now invoke 7.2.14. □

We also need notation for the natural transformation induced by the one in 11.1.4.

11.3.2 Definition. Let 𝔞 be an ideal in 𝑅. The Σ-transformation 𝜆𝔞 : IdK(𝑅) → Λ𝔞

from 11.1.4/11.1.13 yields by 6.2.17 and 6.5.14 a triangulated natural transformation,

𝝀𝔞 = L𝜆𝔞 : IdD(𝑅) −→ LΛ𝔞 ,

see 7.2.8 and 7.2.11.

11.3.3 Definition. Let 𝔞 be an ideal in 𝑅. An 𝑅-complex 𝑀 is called derived 𝔞-
complete if 𝝀𝔞𝑀 : 𝑀 → LΛ𝔞 (𝑀) from 11.3.2 is an isomorphism in D(𝑅). The full
subcategory D𝔞-com (𝑅) of D(𝑅) is defined by specifying its objects as follows:

D𝔞-com (𝑅) = {𝑀 ∈ D(𝑅) | 𝑀 is derived 𝔞-complete} .

The full subcategory D𝔞-com (𝑅) ∩D⊐ (𝑅) is denoted by D𝔞-com
⊐ (𝑅). Similarly, one

defines the subcategories D𝔞-com
⊏ (𝑅) and D𝔞-com

⊏⊐ (𝑅).

Over a Noetherian ring it follows from 11.1.13 that the 𝔞-completion functor
preserves products, but it does not follow from the general theory in Chap. 7 that its
left derived functor enjoys the same property. Nevertheless, it does preserve products,
and that is proved in 13.1.15.

11.3.4 Addendum (to 11.3.1). By definition, LΛ𝔞 is the endofunctor on D(𝑅) in-
duced by the endofunctorΛ𝔞 P𝑅 onK(𝑅), where P𝑅 is the semi-projective resolution
functor from 6.3.11. Thus, it follows from 11.1.20 that LΛ𝔞 can be viewed as a functor

LΛ𝔞 : D(𝑅) −→ D(𝑅𝔞) .

11.3.5. Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra. By 11.1.6 one can view Λ𝔞

as an endofunctor on C(𝑆). This functor has per 7.2.8 a left derived functor,
E: D(𝑆) → D(𝑆), induced by the endofunctor Λ𝔞 P𝑆 on K(𝑆), where P𝑆 is the
semi-projective resolution functor over 𝑆, see 6.3.11. Even though LΛ𝔞 according to
7.2.8 is the corrrect notation for the derived functor E, we only use it in situations
where the following diagram is commutative up to natural isomorphism,
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D(𝑆) E
//

res𝑆
𝑅

��

D(𝑆)

res𝑆
𝑅

��

D(𝑅) LΛ𝔞

// D(𝑅) ;

that is, in situations where E is an augmentation of LΛ𝔞 . It is proved in 13.1.12 that
this diagram is commutative up to natural isomorphism if 𝑅 and 𝑆 are Noetherian.

11.3.6 Definition. Let 𝔞 be an ideal in 𝑅. For 𝑚 ∈ ℤ denote by H𝔞
𝑚 the functor

H𝑚 LΛ𝔞 : D(𝑅) −→ M(𝑅) ;

it is called the 𝑚th local homology functor supported at 𝔞.

11.3.7. Let 𝔞 be an ideal in 𝑅. It follows from 11.3.1 and 6.5.17 that the local ho-
mology functors H𝔞

𝑚 are 𝑅-linear. Further, for an 𝑅-complex 𝑀 one has H𝔞
𝑚 (𝑀) = 0

for 𝑚 < inf 𝑀 by 7.2.15.

11.3.8 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. For every pair of
integers 𝑚, 𝑠 there is an isomorphism of 𝑅-modules,

H𝔞
𝑚 (Σ𝑠𝑀) � H𝔞

𝑚−𝑠 (𝑀) ,

and it is natural in 𝑀 .

Proof. The functor LΛ𝔞 is triangulated by 11.3.1, so in D(𝑅) there is an isomor-
phism, LΛ𝔞 (Σ𝑠𝑀) ≃ Σ𝑠 LΛ𝔞 (𝑀), in D(𝑅) which is natural in 𝑀 . Apply the functor
H𝑚 to this isomorphism and recall from 6.5.17 that one has H𝑚 Σ𝑠 = H𝑚−𝑠 . The
assertion now follows from the definition, 11.3.6, of local homology. □

Per 6.5.24 the next result applies, in particular, to a commutative diagram in the
category of complexes whose rows are short exact sequences.

11.3.9 Theorem. Let 𝔞 be an ideal in 𝑅 and consider a morphism of distinguished
triangles in D(𝑅),

𝑀 ′

𝜑′

��

𝛼′
// 𝑀

𝜑

��

𝛼
// 𝑀 ′′

𝜑′′

��

𝛼′′
// Σ𝑀 ′

Σ𝜑′

��

𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′

𝛽′′
// Σ𝑁 ′ .

There is a commutative diagram in M(𝑅) with exact rows,

· · · // H𝔞
𝑚 (𝑀 ′)

H𝔞
𝑚 (𝛼′ )
//

H𝔞
𝑚 (𝜑′ )
��

H𝔞
𝑚 (𝑀)

H𝔞
𝑚 (𝛼)
//

H𝔞
𝑚 (𝜑)
��

H𝔞
𝑚 (𝑀 ′′)

H𝔞
𝑚 (𝛼′′ )

//

H𝔞
𝑚 (𝜑′′ )
��

H𝔞
𝑚−1 (𝑀

′) //

H𝔞
𝑚−1 (𝜑

′ )
��

· · ·

· · · // H𝔞
𝑚 (𝑁 ′) H𝔞

𝑚 (𝛽′ )
// H𝔞
𝑚 (𝑁) H𝔞

𝑚 (𝛽)
// H𝔞
𝑚 (𝑁 ′′) H𝔞

𝑚 (𝛽′′ )
// H𝔞
𝑚−1 (𝑁

′) // · · · .

8-Mar-2024 Draft - use at own risk
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Proof. The functor LΛ𝔞 is triangulated, see 11.3.1, so the desired conclusion follows
from 6.5.21 and the definition, 11.3.6, of local homology modules. □

11.3.10. Let 𝔞 be an ideal in 𝑅 and𝑀 an 𝑅-complex. Recall from 11.3.4 that LΛ𝔞 (𝑀)
is an 𝑅𝔞-complex. It follows that the isomorphism in 11.3.8 is an isomorphism of
𝑅𝔞-modules, and the second commutative diagram in 11.3.9 is a diagram in M(𝑅𝔞).

11.3.11 Proposition. Let 𝔞 be a finitely generated ideal in 𝑅 and 𝑀 an 𝑅-complex.
For every 𝑚 ∈ ℤ the local homology module H𝔞

𝑚 (𝑀) is 𝔞-quasi-complete, and one
has H𝔞

𝑚 (𝑀) = 0 if and only if 𝑅/𝔞 ⊗𝑅 H𝔞
𝑚 (𝑀) = 0 holds.

Proof. Let 𝑃 be a semi-projective replacement of 𝑀; by definition the modules
H𝔞
𝑚 (𝑀) are the homology modules of the complex Λ𝔞 (𝑃). By 11.1.38 this complex

is 𝔞-complete, so the assertion follows from 11.1.41. □

11.3.12. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-module. It follows from 11.3.6 that there
is a canonical homomorphism H𝔞

0 (𝑀) → Λ𝔞 (𝑀), which is natural in 𝑀 .

The functor Λ𝔞 is not right exact, in fact, it is not even half exact as demonstrated
in 11.1.32. Thus, for a module 𝑀 the canonical map H𝔞

0 (𝑀) → Λ𝔞 (𝑀) from 11.3.12
need not be an isomorphism; an example of such behavior follows below. However,
as shown in 11.3.14 there is still a close connection between H𝔞

0 (𝑀) and Λ𝔞 (𝑀).

11.3.13 Example. Consider the short exact sequence 0 −−→ 𝐾
𝜄−−→ 𝑀

𝛼−−→ 𝑁 −−→ 0
from 11.1.32 and the associated commutative diagram,

(11.3.13.1)
H𝔞

0 (𝐾)
H𝔞

0 ( 𝜄)
//

𝜑𝐾

��

H𝔞
0 (𝑀)

H𝔞
0 (𝛼)
//

𝜑𝑀

��

H𝔞
0 (𝑁)

𝜑𝑁

��

Λ𝔞 (𝐾) Λ𝔞 ( 𝜄)
// Λ𝔞 (𝑀) Λ𝔞 (𝛼)

// Λ𝔞 (𝑁) ,

where 𝜑 : H𝔞
0→ Λ𝔞 is the natural transformation from 11.3.12. By 11.3.7, 11.3.9, and

11.1.28 the maps H𝔞
0 (𝛼) and Λ𝔞 (𝛼) are surjective, but this is not important here. By

11.3.9 the upper row in (11.3.13.1) is exact, but as shown in 11.1.32 the lower row is
not exact. Thus, at least one of the maps 𝜑𝐾 , 𝜑𝑀 , and 𝜑𝑁 fails to be an isomorphism.

Notice that 𝐾 is a ℤ/𝔞-module. As the extension of 𝔞 to ℤ/𝔞 is the zero ideal,
one has Λ𝔞 (𝐾) = 𝐾 by 11.1.7 and 11.1.5. It is proved in 13.1.21(a) that also local
homology is independent of base, whence one has H𝔞

0 (𝐾) = 𝐾 . It follows that 𝜑𝐾 is
an isomorphism. Next note that that the modules 𝑀 and 𝑁 are identical, though 𝛼 is
not an isomorphism; it follows that neither 𝜑𝑀 nor 𝜑𝑁 is an isomorphism.

11.3.14 Proposition. Let 𝔞 be a finitely generated ideal in 𝑅 and 𝑀 an 𝑅-module.
One has Λ𝔞 (𝑀) = 0 if and only if H𝔞

0 (𝑀) = 0 holds.

Proof. Let 𝐿′ → 𝐿 → 𝑀 → 0 be a free presentation of 𝑀 and consider the
following commutative diagram,
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𝐿′

𝜆𝔞
𝐿′

��

// 𝐿

𝜆𝔞
𝐿

��

// 𝑀

��

// 0

Λ𝔞 (𝐿′) // Λ𝔞 (𝐿) // H𝔞
0 (𝑀) // 0 .

In this diagram, the bottom row is exact by definition of H𝔞
0 (𝑀), and the homomor-

phism 𝑀 → H𝔞
0 (𝑀) is induced by the commutative square to the left. Application

of the right exact functor 𝑅/𝔞 ⊗𝑅 to the diagram yields a commutative diagram
with exact rows. By 11.1.37 and 1.1.10 the maps 𝑅/𝔞 ⊗𝑅 𝜆𝔞𝐿′ and 𝑅/𝔞 ⊗𝑅 𝜆𝔞𝐿 are
isomorphisms, so 𝑅/𝔞 ⊗𝑅 𝑀 � 𝑅/𝔞 ⊗𝑅 H𝔞

0 (𝑀) holds by the Five Lemma 1.1.2. In
view of this isomorphism, the assertion follows from 11.1.30 and 11.3.11. □

Local Cohomology

The 𝔞-torsion functor induces by 11.2.13 and 6.1.22 an endofunctor on the homotopy
category K(𝑅), so by 7.2.8 it has a right derived functor RΓ𝔞 which can be computed
by way of semi-injective resolutions.

11.3.15 Proposition. Let 𝔞 be an ideal in 𝑅. The right derived 𝔞-torsion functor
RΓ𝔞 : D(𝑅) → D(𝑅) is 𝑅-linear and triangulated.

Proof. It follows from 11.2.15, 6.1.20, and 6.2.16 that the endofunctor on K(𝑅)
induced by Γ𝔞 is 𝑅-linear and triangulated. Now invoke 7.2.14. □

We also need notation for the natural transformation induced by the one in 11.2.1.

11.3.16 Definition. Let 𝔞 be an ideal in 𝑅. The Σ-transformation 𝛾𝔞 : Γ𝔞 → IdC(𝑅)
from 11.2.1/11.2.15 yields by 6.2.17 and 6.5.14 a triangulated natural transformation,

𝜸𝔞 = R𝛾𝔞 : RΓ𝔞 −→ IdD(𝑅) ,

see 7.2.8 and 7.2.11.

11.3.17 Definition. Let 𝔞 be an ideal in 𝑅. An 𝑅-complex 𝑀 is called derived 𝔞-
torsion if the map 𝜸𝑀𝔞 : RΓ𝔞 (𝑀) → 𝑀 from 11.3.16 is an isomorphism inD(𝑅). The
full subcategory D𝔞-tor (𝑅) of D(𝑅) is defined by specifying its objects as follows:

D𝔞-tor (𝑅) = {𝑀 ∈ D(𝑅) | 𝑀 is derived 𝔞-torsion} .

The full subcategory D𝔞-tor (𝑅) ∩ D⊏ (𝑅) is denoted by D𝔞-tor
⊏ (𝑅). Similarly, one

defines the subcategories D𝔞-tor
⊐ (𝑅) and D𝔞-tor

⊏⊐ (𝑅).

By 11.2.15 the 𝔞-torsion functor preserves coproducts, but it does not follow from
the general theory in Chap. 7 that its right derived functor enjoys the same property.
Over a Noetherian ring it does preserve coproducts, which is proved in 13.3.18.

11.3.18 Addendum (to 11.3.15). By definition, RΓ𝔞 is the endofunctor on D(𝑅)
induced by the endofunctor Γ𝔞 I𝑅 on K(𝑅), where I𝑅 is the semi-injective resolution
functor from 6.3.17. It follows from 11.2.23 that RΓ𝔞 can be viewed as a functor
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RΓ𝔞 : D(𝑅) −→ D(𝑅𝔞) .

11.3.19. Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra. By 11.2.3 one can view
Γ𝔞 as an endofunctor on C(𝑆). This functor has per 7.2.8 a right derived functor,
E: D(𝑆) → D(𝑆), induced by the endofunctor Γ𝔞 I𝑆 on K(𝑆), where I𝑆 is the semi-
injective resolution functor over 𝑆, see 6.3.17. Even though RΓ𝔞 according to 7.2.8
is the correct notation for the derived functor E, we only use it in situations where
the following diagram is commutative up to natural isomorphism,

D(𝑆) E
//

res𝑆
𝑅

��

D(𝑆)

res𝑆
𝑅

��

D(𝑅) RΓ𝔞
// D(𝑅) ;

that is, in situations where E is an augmentation of RΓ𝔞 . It is proved in 13.3.15 that
this diagram is commutative up to natural isomorphism if 𝑅 and 𝑆 are Noetherian.

11.3.20 Definition. Let 𝔞 be an ideal in 𝑅. For 𝑚 ∈ ℤ denote by H𝑚𝔞 the functor

H−𝑚 RΓ𝔞 : D(𝑅) −→ M(𝑅) ;

it is called the 𝑚th local cohomology functor supported at 𝔞.

11.3.21. Let 𝔞 be an ideal in 𝑅. It follows from 11.3.15 and 6.5.17 that the lo-
cal cohomology functors H𝑚𝔞 are 𝑅-linear. Further, for an 𝑅-complex 𝑀 one has
H𝑚𝔞 (𝑀) = 0 for 𝑚 < − sup𝑀 by 7.2.15.

11.3.22 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. For every pair
of integers 𝑚, 𝑠 there is an isomorphism of 𝑅-modules,

H𝑚𝔞 (Σ𝑠𝑀) � H𝑚+𝑠𝔞 (𝑀) ,

and it is natural in 𝑀 .

Proof. The functor RΓ𝔞 is triangulated by 11.3.15, so there is an isomorphism,
RΓ𝔞 (Σ𝑠𝑀) ≃ Σ𝑠RΓ𝔞 (𝑀), in D(𝑅) which is natural in 𝑀 . Apply the functor H−𝑚
to this isomorphism and recall from 6.5.17 that one has H−𝑚 Σ𝑠 = H−(𝑚+𝑠) . The
assertion now follows from the definition, 11.3.20, of local cohomology. □

Per 6.5.24 the next result applies, in particular, to a commutative diagram in the
category of complexes whose rows are short exact sequences.

11.3.23 Theorem. Let 𝔞 be an ideal in 𝑅 and consider a morphism of distinguished
triangles in D(𝑅),

𝑀 ′

𝜑′

��

𝛼′
// 𝑀

𝜑

��

𝛼
// 𝑀 ′′

𝜑′′

��

𝛼′′
// Σ𝑀 ′

Σ𝜑′

��

𝑁 ′
𝛽′
// 𝑁

𝛽
// 𝑁 ′′

𝛽′′
// Σ𝑁 ′ .
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There is a commutative diagram in M(𝑅) with exact rows,

· · · // H𝑚𝔞 (𝑀 ′)
H𝑚𝔞 (𝛼′ )

//

H𝑚𝔞 (𝜑′ )
��

H𝑚𝔞 (𝑀)
H𝑚𝔞 (𝛼)

//

H𝑚𝔞 (𝜑)
��

H𝑚𝔞 (𝑀 ′′)
H𝑚𝔞 (𝛼′′ )

//

H𝑚𝔞 (𝜑′′ )
��

H𝑚+1𝔞 (𝑀 ′) //

H𝑚+1𝔞 (𝜑′ )
��

· · ·

· · · // H𝑚𝔞 (𝑁 ′) H𝑚𝔞 (𝛽′ )
// H𝑚𝔞 (𝑁) H𝑚𝔞 (𝛽)

// H𝑚𝔞 (𝑁 ′′) H𝑚𝔞 (𝛽′′ )
// H𝑚+1𝔞 (𝑁 ′) // · · · .

Proof. The functor RΓ𝔞 is triangulated, see 11.3.15, so the desired conclusion
follows from 6.5.21 and the definition, 11.3.20, of local cohomology modules. □

11.3.24 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. For every 𝑚 ∈ ℤ
the local cohomology module H𝑚𝔞 (𝑀) is 𝔞-torsion, and one has H𝑚𝔞 (𝑀) = 0 if and
only if Hom𝑅 (𝑅/𝔞,H𝑚𝔞 (𝑀)) = 0 holds.

Proof. Let 𝐼 be a semi-injective replacement of 𝑀; by definition, the modules
H𝑚𝔞 (𝑀) are the homology modules of the complex Γ𝔞 (𝐼). By 11.2.18 this complex
is 𝔞-torsion, so the assertion follows from 11.2.14. □

11.3.25. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Recall from 11.3.18 that
RΓ𝔞 (𝑀) is an 𝑅𝔞-complex. Thus the isomorphism in 11.3.22 is an isomorphism of
𝑅𝔞-modules, and the second commutative diagram in 11.3.23 is a diagram inM(𝑅𝔞).

Exercises

E 11.3.1 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that for every 𝑚 ∈ ℤ there is a
canonical homomorphism 𝜑𝑀𝑚 : H𝔞

𝑚 (𝑀 ) → lim𝑢⩾1 Tor𝑅𝑚 (𝑅/𝔞𝑢 , 𝑀 ) Show that if 𝑀
is a module, then 𝜑𝑀0 is the canonical homomorphism H𝔞

0 (𝑀 ) → Λ𝔞 (𝑀 ) from 11.3.12.
E 11.3.2 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that for every 𝑚 ∈ ℤ there is a

canonical isomorphism colim𝑢⩾1 Ext𝑚
𝑅
(𝑅/𝔞𝑢 , 𝑀 ) → H𝑚𝔞 (𝑀 ) .

E 11.3.3 Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 an 𝑅-module, and 𝐸 an injective 𝑅-module. Show that for
every𝑚 ∈ ℤ there is an isomorphism Hom𝑅 (H𝑚𝔞 (𝑀 ) , 𝐸 ) � H𝔞

𝑚 (Hom𝑅 (𝑀, 𝐸 ) ) . See
also 13.1.4.

11.4 Koszul and Čech Complexes

Synopsis. Koszul complex; Čech complex; base change; semi-free resolution of Čech complex.

In earlier chapters, the Koszul complex mainly served as an example to illustrate
basic notions in the theory of complexes. In this section it plays a cental role in the
study of a related object: the Čech complex. This study provides the foundation for
the treatment in Chap. 13 of the derived 𝔞-torsion and derived 𝔞-completion functors,
which culminates in the Greenlees–May Equivalence Theorem.
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The Koszul Complex

11.4.1. For every element 𝑥 in 𝑅 the complex

(11.4.1.1) 0 −→ 𝑅
𝑥−−−→ 𝑅 −→ 0 ,

concentrated in degrees 1 and 0, is isomorphic to the Koszul complex K𝑅 (𝑥); see
(2.2.9.1). We henceforth identify K𝑅 (𝑥) with the complex (11.4.1.1), and for a
sequence 𝑥1, . . . , 𝑥𝑛 in 𝑅 we make per 4.4.8 the identification

(11.4.1.2) K𝑅 (𝑥1, . . . , 𝑥𝑛) = K𝑅 (𝑥1) ⊗𝑅 · · · ⊗𝑅 K𝑅 (𝑥𝑛) .

Where it causes no ambiguity, we suppress the superscript 𝑅 in the notation for the
Koszul complex.

The gist of 11.4.1 is that we ignore the product on the Koszul complex to consider
it, simply, as a complex of free 𝑅-modules.

11.4.2 Example. Representing the maps between free 𝑅-modules by matrices that
act by left multiplication on column vectors, the Koszul complexes on sequences of
two and three elements look as follows:

K (𝑥1, 𝑥2) = 0 −→ 𝑅

( −𝑥2
𝑥1

)
−−−−−→ 𝑅2 ( 𝑥1 𝑥2 )−−−−−−→ 𝑅 −→ 0

and

K (𝑥1, 𝑥2, 𝑥3) = 0 −→ 𝑅

(
𝑥3−𝑥2
𝑥1

)
−−−−−→ 𝑅3

( −𝑥2 −𝑥3 0
𝑥1 0 −𝑥3
0 𝑥1 𝑥2

)
−−−−−−−−−−−−−→ 𝑅3 ( 𝑥1 𝑥2 𝑥3 )−−−−−−−−−→ 𝑅 −→ 0 .

We record some frequently used properties of Koszul complexes.

11.4.3 Proposition. Let 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 and set 𝐾 = K𝑅 (𝑥1, . . . , 𝑥𝑛).
(a) One has H0 (𝐾) � 𝑅/(𝑥1, . . . , 𝑥𝑛) .
(b) 𝐾 is, up to isomorphism in C(𝑅), invariant under permutation of 𝑥1, . . . , 𝑥𝑛 .

(c) 𝐾 is a complex of finitely generated free 𝑅-modules and concentrated in
degrees 𝑛, . . . , 0; in partiulcar, 𝐾 is semi-free and pd𝑅 𝐾 ⩽ 𝑛 holds.

(d) There is an inclusion 𝜕𝐾 (𝐾) ⊆ (𝑥1, . . . , 𝑥𝑛)𝐾 .

Proof. The homology module in part (a) is computed in 2.2.9.
(b): The claim follows from 4.4.8 and commutativity 4.4.4 of the tensor product.
(c): By induction on 𝑛, it follows from the definition, 2.4.1, of the tensor product

and 1.3.10 that 𝐾 is a complex of finitely generated free 𝑅-modules and concentrated
in degrees 𝑛, . . . , 0. Now 𝐾 is semi-free by 5.1.3 and 8.1.2 yields pd𝑅 𝐾 ⩽ 𝑛.

(d): The inclusion follows from the last display in 2.1.25. Alternatively, it follows
from 11.4.1 and the definition, 2.4.1, of the tensor product complex. □

11.4.4 Corollary. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑀 an 𝑅-module. One has:

H0 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) � 𝑅/(𝑥𝑥𝑥) ⊗𝑅 𝑀 � 𝑀/(𝑥𝑥𝑥)𝑀 .(a)
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H0 (Hom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀)) � Hom𝑅 (𝑅/(𝑥𝑥𝑥), 𝑀) � (0 :𝑀 (𝑥𝑥𝑥)) .(b)

Proof. The first isomorphism in (a) follows from 11.4.3 combined with 2.5.18(c),
and the last isomorphism holds by 1.1.10. The first isomorphism in (b) follows from
11.4.3 combined with 2.5.12(c), and the last isomorphism holds by 1.1.8. □

A Koszul complex can be viewed as the mapping cone of a homothety, cf. 2.1.9.

11.4.5 Proposition. Let 𝑥 ∈ 𝑅 and 𝑀 be an 𝑅-complex. There is an isomorphism
of 𝑅-complexes, K (𝑥) ⊗𝑅 𝑀 � Cone 𝑥𝑀 .

Proof. There is an isomorphism of complexes K (𝑥) � Cone 𝑥𝑅, and the unitor 4.4.1
identifies 𝑥𝑅 ⊗𝑅 𝑀 with 𝑥𝑀 . Now apply 4.1.19. □

11.4.6 Proposition. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 and 𝑀 an 𝑅-complex.
(a) One has (𝑥𝑥𝑥) H(K (𝑥𝑥𝑥) ⊗𝑅 𝑀) = 0 .
(b) For every 𝑢 ⩾ 1 one has (𝑥𝑥𝑥)𝑛𝑢 H(K (𝑥𝑥𝑥𝑢) ⊗𝑅 𝑀) = 0; in particular, the complex

H(K (𝑥𝑥𝑥𝑢) ⊗𝑅 𝑀) is (𝑥𝑥𝑥)-torsion and (𝑥𝑥𝑥)-complete.

Proof. (a): For every element 𝑥𝑖 one has K (𝑥𝑥𝑥) ⊗𝑅 𝑀 � K (𝑥𝑖) ⊗𝑅 𝑀 ′ for some
complex 𝑀 ′, see 11.4.3(b). Thus it follows from 11.4.5 and 4.1.3 that the complex
H(K (𝑥𝑥𝑥) ⊗𝑅 𝑀) is annihilated by each 𝑥𝑖 and hence by the ideal (𝑥𝑥𝑥).

(b): The complex H(K (𝑥𝑥𝑥𝑢) ⊗𝑅 𝑀) is by part (a) annihilated by (𝑥𝑥𝑥𝑢), and hence
by (𝑥𝑥𝑥)𝑛𝑢 ⊆ (𝑥𝑥𝑥𝑢), so by 11.2.8 and 11.1.11 it is (𝑥𝑥𝑥)-torsion and (𝑥𝑥𝑥)-complete. □

The next isomorphism gets referred to as “self-duality” of the Koszul complex.

11.4.7 Lemma. For every sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 in 𝑅 there are isomorphisms,

Hom𝑅 (K (𝑥𝑥𝑥), 𝑅) � Hom𝑅 (K (𝑥1), 𝑅) ⊗𝑅 · · · ⊗𝑅 Hom𝑅 (K (𝑥𝑛), 𝑅) � Σ−𝑛K (𝑥𝑥𝑥) .

Proof. For an element 𝑥 ∈ 𝑅, the complex Hom𝑅 (K (𝑥), 𝑅) is concentrated in
degrees 0 and −1, and after identification of Hom𝑅 (𝑅, 𝑅) with 𝑅 the non-trivial
differential is multiplication by −𝑥; cf. 2.3.1. Thus Hom𝑅 (K (𝑥), 𝑅) � Σ−1K (𝑥)
holds. For 𝑛 = 1 this proves the second isomorphism; the first is tautological. The
general case now follows by induction: Set 𝑥𝑥𝑥′ = 𝑥1, . . . , 𝑥𝑛−1; now (11.4.1.2) together
with adjunction 4.4.12, the unitor 4.4.1, and tensor evaluation 4.5.10(d) yield

Hom𝑅 (K (𝑥𝑥𝑥), 𝑅) � Hom𝑅 (K (𝑥𝑥𝑥′) ⊗𝑅 K (𝑥𝑛), 𝑅)
� Hom𝑅 (K (𝑥𝑥𝑥′),Hom𝑅 (K (𝑥𝑛), 𝑅))
� Hom𝑅 (K (𝑥𝑥𝑥′), 𝑅) ⊗𝑅 Hom𝑅 (K (𝑥𝑛), 𝑅) .

The first of the asserted isomorphisms is now immediate, and the second follows in
view of 2.4.13 and 2.4.14 from another application of (11.4.1.2). □

11.4.8 Construction. For every 𝑥 ∈ 𝑅 and every 𝑢 > 1 there is a morphism in C(𝑅),
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K (𝑥𝑢)

𝜘𝑢𝑥
��

given by

0 // 𝑅
𝑥𝑢
//

𝑥

��

𝑅 // 0

K (𝑥𝑢−1) 0 // 𝑅
𝑥𝑢−1
// 𝑅 // 0 .

The dual morphism of complexes, concentrated indegrees 0 and −1, takes the form

Hom𝑅 (K (𝑥𝑢−1), 𝑅)

Hom (𝜘𝑢𝑥 ,𝑅)
��

given by

0 // 𝑅
−𝑥𝑢−1

// 𝑅 //

𝑥

��

0

Hom𝑅 (K (𝑥𝑢), 𝑅) 0 // 𝑅
−𝑥𝑢
// 𝑅 // 0 ;

see 11.4.7. For a sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 in 𝑅 set

𝜘𝑢𝑥𝑥𝑥 = 𝜘𝑢𝑥1 ⊗𝑅 · · · ⊗𝑅 𝜘
𝑢
𝑥𝑛

and 𝜅𝑢𝑥𝑥𝑥 = Hom𝑅 (𝜘𝑢+1𝑥𝑥𝑥 , 𝑅) .

The family
{𝜘𝑢𝑥𝑥𝑥 : K (𝑥𝑥𝑥𝑢) −→ K (𝑥𝑥𝑥𝑢−1)}𝑢>1

is a tower, and the dual family

(11.4.8.1) {𝜅𝑢𝑥𝑥𝑥 : Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅) −→ Hom𝑅 (K (𝑥𝑥𝑥𝑢+1), 𝑅)}𝑢⩾1 .

is a telescope. Notice that in view of 11.4.7 one has

(11.4.8.2) 𝜅𝑢𝑥𝑥𝑥 � 𝜅𝑢𝑥1 ⊗𝑅 · · · ⊗𝑅 𝜅
𝑢
𝑥𝑛
.

The Čech Complex

11.4.9 Definition. For an element 𝑥 in 𝑅, the complex

Č𝑅(𝑥) = 0 −→ 𝑅
𝜌𝑥−−−→ {𝑥𝑛 | 𝑛 ⩾ 0}−1𝑅 −→ 0 ,

concentrated in degrees 0 and −1 and with 𝜌𝑥 given by 𝑟 ↦→ 𝑟
1 , is called the Čech

complex on 𝑥. The Čech complex on a sequence 𝑥1, . . . , 𝑥𝑛 in 𝑅 is

Č𝑅(𝑥1, . . . , 𝑥𝑛) = Č𝑅(𝑥1) ⊗𝑅 · · · ⊗𝑅 Č𝑅(𝑥𝑛) .

It is standard to set Č𝑅𝑣 (𝑥1, . . . , 𝑥𝑛) = Č𝑅(𝑥1, . . . , 𝑥𝑛)𝑣. Where it causes no ambiguity,
we often suppress the superscript 𝑅 in the notation for the Čech complex.

11.4.10 Proposition. Let 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 and set 𝐶 = Č𝑅(𝑥1, . . . , 𝑥𝑛).
(a) One has H0 (𝐶) � Γ(𝑥1 ,. . . ,𝑥𝑛 ) (𝑅) .
(b) 𝐶 is, up to isomorphism in C(𝑅), invariant under permutation of 𝑥1, . . . , 𝑥𝑛 .

(c) 𝐶 is a complex of flat 𝑅-modules and concentrated in degrees 0, . . . ,−𝑛; in
particular, 𝐶 is semi-flat and of flat dimension at most 0 .
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Proof. Part (b) follows from 11.4.9 and commutativity 4.4.4 of the tensor product.
(c): The complex𝐶 is by 11.4.9 and 2.4.1 concentrated in degrees 0, . . . ,−𝑛. Each

module 𝐶𝑣 is by 1.3.42 and 5.4.23 flat, whence the complex is semi-flat by 5.4.8 and
of flat dimension at most 0 by 8.3.3.

(a): In view of part (c), the module H0 (𝐶) is the kernel of 𝜕𝐶0 = (𝜌𝑥1 . . . 𝜌𝑥𝑛 )t,
which maps an element in 𝑟 in𝐶0 � 𝑅 to ( 𝑟1 , . . . ,

𝑟
1 ) in𝐶−1 = 𝑅𝑥1 ⊕ · · · ⊕ 𝑅𝑥𝑛 . As the

kernel of each map 𝜌𝑥𝑖 is Γ(𝑥𝑖 ) (𝑅), one has H0 (𝐶) � Γ(𝑥1 ,. . . ,𝑥𝑛 ) (𝑅) by 11.2.19. □

At the end of this section we show that the Čech complex has finite projective
dimension. For now, we proceed to show that the Čech complex can be obtained as
a colimit of dual Koszul complexes, which amounts to a concrete manifestation of
Govorov and Lazard’s Theorem 5.5.1.

11.4.11 Construction. For every 𝑥 ∈ 𝑅 and every 𝑢 ⩾ 1 there is a morphism
in C(𝑅),

Hom𝑅 (K (𝑥𝑢), 𝑅)

𝜚𝑢𝑥

��

that is

0 // 𝑅
−𝑥𝑢

// 𝑅 //

��

0

Č (𝑥) 0 // 𝑅
𝜌𝑥
// {𝑥𝑛 | 𝑛 ⩾ 0}−1𝑅 // 0 ,

where the map in degree −1 maps 𝑟 to − 𝑟
𝑥𝑢

. Evidently, one has 𝜚𝑢𝑥 = 𝜚𝑢+1𝑥 𝜅𝑢𝑥 .
Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅. It follows in view of (11.4.8.2) that the

morphisms 𝜚𝑢𝑥1 ⊗ · · · ⊗ 𝜚
𝑢
𝑥𝑛

induce a family

(11.4.11.1) {𝜚𝑢𝑥𝑥𝑥 : Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅) −→ Č (𝑥𝑥𝑥)}𝑢⩾1

of morphisms that are compatible with the morphisms in the telescope (11.4.8.1),
that is, 𝜚𝑢𝑥𝑥𝑥 = 𝜚𝑢+1𝑥𝑥𝑥 𝜅𝑢𝑥𝑥𝑥 holds for all 𝑢 ⩾ 1.

11.4.12 Theorem. Let 𝑥𝑥𝑥 be a sequence in 𝑅. The unique morphism

colim
𝑢⩾1

Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅) −→ Č (𝑥𝑥𝑥)

determined by the family (11.4.11.1) and 3.2.5 is an isomorphism.

Proof. By 3.3.11 it suffices to consider the case where 𝑥𝑥𝑥 = 𝑥 is a single element.
Let 𝜚 : colim𝑢⩾1 Hom𝑅 (K (𝑥𝑢), 𝑅) → Č (𝑥) be the unique morphism that every 𝜚𝑢𝑥
factors through. The component 𝜚−1 is an isomorphism by 3.2.7 and 3.3.35, and 𝜚0
is an isomorphism as well as one has (𝜅𝑢𝑥)0 = 1𝑅 = (𝜚𝑢𝑥)0 for all 𝑢 ⩾ 1. □

11.4.13 Proposition. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑀 an 𝑅-complex. The homology
complex H(Č (𝑥𝑥𝑥) ⊗𝑅 𝑀) is (𝑥𝑥𝑥)-torsion.

Proof. By 11.4.7, 11.4.12, and 3.2.22 the complex Č (𝑥𝑥𝑥) ⊗𝑅 𝑀 is isomorphic, up to
a shift, to a filtered colimit of the complexes K (𝑥𝑥𝑥𝑢) ⊗𝑅 𝑀 . The homology of each of
these complexes is (𝑥𝑥𝑥)-torsion by 11.4.6, so the claim follows from 11.2.16. □
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11.4.14 Definition. Let 𝑥 be an element in 𝑅. Denote by 𝜀𝑥 the canonical morphism
Č (𝑥) → 𝑅. For a sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 in 𝑅 set, cf. the unitor 4.4.1,

𝜀𝑥𝑥𝑥 = 𝜀𝑥1 ⊗𝑅 · · · ⊗𝑅 𝜀𝑥𝑛 : Č (𝑥𝑥𝑥) −→ 𝑅 .

11.4.15 Lemma. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑀 an 𝑅-complex. If H(𝑀) is
(𝑥𝑥𝑥)-torsion, then 𝜀𝑥𝑥𝑥 ⊗𝑅 𝑀 : Č (𝑥𝑥𝑥) ⊗𝑅 𝑀 → 𝑅 ⊗𝑅 𝑀 is a quasi-isomorphism.

Proof. By the definitions, 11.4.9 and 11.4.14, and semi-flatness of Čech complexes,
see 11.4.10(c), it suffices to consider the case where 𝑥𝑥𝑥 = 𝑥 is a single element. The
exact sequence 0→ Σ−1({𝑥𝑛 | 𝑛 ⩾ 0}−1𝑅) → Č (𝑥) 𝜀𝑥→ 𝑅 → 0 is degreewise split,
so per 2.4.12 it remains exact after application of the functor ⊗𝑅 𝑀 . The assertion
now follows from 2.1.50, 11.2.10, and 4.2.6. □

It follows from 2.2.9 that H1 (Kℤ (2)) is zero while H1 (Kℤ (2, 4)) is non-zero as
[4]2ℤ = 0. That is, even though the sequences 2 and 2, 4 generate the same ideal
in ℤ, the Koszul complexes Kℤ (2) and Kℤ (2, 4) are not isomorphic in D(ℤ). The
Čech complex does not exhibit this phenomenon.

11.4.16 Proposition. Let 𝑥𝑥𝑥 and 𝑦𝑦𝑦 be sequences of elements in 𝑅. If they generate
the same ideal, (𝑥𝑥𝑥) = (𝑦𝑦𝑦), then there is an isomorphism Č (𝑥𝑥𝑥) ≃ Č (𝑦𝑦𝑦) in D(𝑅).

Proof. The homology complex H(Č (𝑦𝑦𝑦)) is (𝑥𝑥𝑥)-torsion by 11.4.13, so 11.4.15 yields
a quasi-isomorphism Č (𝑥𝑥𝑥) ⊗𝑅 Č (𝑦𝑦𝑦) −−→ Č (𝑦𝑦𝑦). The isomorphism in D(𝑅) now
follows by symmetry in 𝑥𝑥𝑥 and 𝑦𝑦𝑦 and commutativity 4.4.4 of the tensor product. □

11.4.17 Proposition. Let 𝑥𝑥𝑥 be a sequence in 𝑅. The next conditions are equivalent.
(i) The Koszul complex K𝑅 (𝑥𝑥𝑥) is acyclic.
(ii) The Čech complex Č𝑅(𝑥𝑥𝑥) is acyclic.
(iii) One has (𝑥𝑥𝑥) = 𝑅 .

Proof. By 11.4.3(a) one has H0 (K (𝑥𝑥𝑥)) � 𝑅/(𝑥𝑥𝑥), so (i) implies (iii).
(iii)⇒ (ii): One has (𝑥𝑥𝑥) = (1), so 11.4.16 yields an isomorphism Č (𝑥𝑥𝑥) ≃ Č (1)

in D(𝑅). The complex Č (1) is the disk complex D0 (𝑅), in particular it is acyclic,
and hence so is Č (𝑥𝑥𝑥).

(ii)⇒ (i): The homology of K (𝑥𝑥𝑥) is (𝑥𝑥𝑥)-torsion, see 11.4.6(b). Now it follows
from 11.4.15 that there is a quasi-isomorphism,

𝜀𝑥𝑥𝑥 ⊗𝑅 K (𝑥𝑥𝑥) : Č (𝑥𝑥𝑥) ⊗𝑅 K (𝑥𝑥𝑥) ≃−−−→ 𝑅 ⊗𝑅 K (𝑥𝑥𝑥) .

As K (𝑥𝑥𝑥) is semi-free, in particular semi-flat, see 11.4.3(c), the complex Č (𝑥𝑥𝑥) ⊗𝑅K (𝑥𝑥𝑥)
is acyclic and per the unitor 4.4.1 so is the Koszul complex K (𝑥𝑥𝑥). □

Base Change

If 𝑆 is an 𝑅-algebra, then elements of 𝑅 can be considered as elements of 𝑆 via the
structure map, and for a sequence 𝑥𝑥𝑥 in 𝑅 one can thus consider the Koszul and Čech
complexes K𝑆 (𝑥𝑥𝑥) and Č𝑆(𝑥𝑥𝑥).
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11.4.18 Proposition. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑆 be an 𝑅-algebra. There are
isomorphisms of 𝑆-complexes,

𝑆 ⊗𝑅 K𝑅 (𝑥𝑥𝑥) � K𝑆 (𝑥𝑥𝑥) and 𝑆 ⊗𝑅 Č𝑅(𝑥𝑥𝑥) � Č𝑆(𝑥𝑥𝑥) .

Proof. For an element 𝑥 ∈ 𝑅 one has per (11.4.1.1), the unitor 4.4.1, and 𝑅-linearity
of the tensor product, see 2.4.9, an isomorphism of 𝑆-complexes,

𝑆 ⊗𝑅 K𝑅 (𝑥) � 0 −→ 𝑆
𝑥−−−→ 𝑆 −→ 0 = K𝑆 (𝑥) .

The first of the asserted isomorphisms now follows from 4.4.1 and (11.4.1.2). Simi-
larly, the second isomorphism follows from 4.4.1 and 11.4.9, as there is an isomor-
phism of 𝑆-complexes,

𝑆 ⊗𝑅 Č𝑅(𝑥) � 0 −→ 𝑆
𝜌𝑥−−−→ {𝑥𝑛 | 𝑛 ⩾ 0}−1𝑆 −→ 0 = Č𝑆(𝑥) . □

Semi-Free Resolution of the Čech Complex

11.4.19 Construction. Let 𝑥 be an element in 𝑅. Consider the complex of free
𝑅-modules concentrated in degrees 0 and −1,

L(𝑥) = 0 −→ 𝑅⟨𝐸 ⟩ ð
𝑥

−−−→ 𝑅⟨𝐸 ⟩ −→ 0 ,

where 𝐸 = {𝑒𝑖 | 𝑖 ∈ ℕ0 } and the differential ð𝑥 is given by

ð𝑥 (𝑒𝑖) =
{

𝑒0 for 𝑖 = 0
𝑒𝑖−1 − 𝑥𝑒𝑖 for 𝑖 ⩾ 1 .

For every 𝑢 ⩾ 1 the differential ð𝑥 maps the submodule 𝑅⟨𝑒0, . . . , 𝑒𝑢 ⟩ of 𝑅⟨𝐸 ⟩ to
itself, whence one has the following subcomplex of L(𝑥),

L𝑢 (𝑥) = 0 −→ 𝑅⟨𝑒0, . . . , 𝑒𝑢 ⟩
ð𝑥−−−→ 𝑅⟨𝑒0, . . . , 𝑒𝑢 ⟩ −→ 0 .

Write 𝜄𝑢𝑥 : L𝑢 (𝑥)↣ L𝑢+1 (𝑥) and 𝜄𝑢𝑥 : L𝑢 (𝑥)↣ L(𝑥) for the canonical embeddings.
For a sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 in 𝑅 and 𝑢 ⩾ 1 set

L(𝑥𝑥𝑥) = L(𝑥1) ⊗𝑅 · · · ⊗𝑅 L(𝑥𝑛) ,
L𝑢 (𝑥𝑥𝑥) = L𝑢 (𝑥1) ⊗𝑅 · · · ⊗𝑅 L𝑢 (𝑥𝑛) ,

𝜄𝑢𝑥𝑥𝑥 = 𝜄𝑢𝑥1 ⊗𝑅 · · · ⊗𝑅 𝜄
𝑢
𝑥𝑛
, and

𝜄𝑢𝑥𝑥𝑥 = 𝜄𝑢𝑥1 ⊗𝑅 · · · ⊗𝑅 𝜄
𝑢
𝑥𝑛
.

Notice that L(𝑥𝑥𝑥) and L𝑢 (𝑥𝑥𝑥) are bounded complexes of free 𝑅-modules concentrated
in degrees 0, . . . ,−𝑛; in particular, they are semi-free per 5.1.3. Further, 𝜄𝑢𝑥𝑥𝑥 and 𝜄𝑢𝑥𝑥𝑥 are
morphisms L𝑢 (𝑥𝑥𝑥) → L𝑢+1 (𝑥𝑥𝑥) and L𝑢 (𝑥𝑥𝑥) → L(𝑥𝑥𝑥).

The complexes and morphisms constructed in 11.4.19 are denoted by symbols
that do refer to the ring 𝑅. In situations where this might cause ambiguity, we add a
superscript “𝑅”; for example, we write L𝑅 (𝑥𝑥𝑥) instead of L(𝑥𝑥𝑥), just as for Koszul and
Čech complexes, see 11.4.1 and 11.4.9.
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11.4.20 Proposition. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑆 an 𝑅-algebra. There is an
isomorphisms of 𝑆-complexes,

𝑆 ⊗𝑅 L𝑅 (𝑥𝑥𝑥) � L𝑆 (𝑥𝑥𝑥) .
Proof. For an element 𝑥 ∈ 𝑅 there is by 11.4.19, 3.1.13, 4.4.1, and 𝑅-linearity of
the tensor product, see 2.4.9, an isomorphism of 𝑆-complexes,

𝑆 ⊗𝑅 L𝑅 (𝑥) � 0 −→ 𝑆⟨𝐸 ⟩ (ð
𝑥 )𝑆−−−→ 𝑆⟨𝐸 ⟩ −→ 0 = L𝑆 (𝑥) .

The asserted isomorphism now follows from another application of the unitor 4.4.1
and the definitions of L𝑅 (𝑥𝑥𝑥) and L𝑆 (𝑥𝑥𝑥), see 11.4.19. □

11.4.21 Lemma. Let 𝑥𝑥𝑥 be a sequence in 𝑅. For every 𝑢 ⩾ 1 the morphisms 𝜄𝑢𝑥𝑥𝑥 and
𝜄𝑢𝑥𝑥𝑥 are injective, and the exact sequences

0 −−→ L𝑢 (𝑥𝑥𝑥) 𝜄𝑢𝑥𝑥𝑥−−→ L𝑢+1 (𝑥𝑥𝑥) −−→ L𝑢+1 (𝑥𝑥𝑥)/L𝑢 (𝑥𝑥𝑥) −−→ 0 and

0 −−→ L𝑢 (𝑥𝑥𝑥) 𝜄𝑢𝑥𝑥𝑥−−→ L(𝑥𝑥𝑥) −−→ L(𝑥𝑥𝑥)/L𝑢 (𝑥𝑥𝑥) −−→ 0

are degreewise split.

Proof. For a sequence of one element, this is clear from the definitions in 11.4.19.
The general case follows in view of (2.4.5.1) and 2.4.11/2.4.12 by induction. □

11.4.22 Lemma. Let 𝑥𝑥𝑥 be a sequence in 𝑅. The colimit of the telescope

{𝜄𝑢𝑥𝑥𝑥 : L𝑢 (𝑥𝑥𝑥) ↣→ L𝑢+1 (𝑥𝑥𝑥)}𝑢⩾1

is L(𝑥𝑥𝑥) with canonical morphisms 𝜄𝑢𝑥𝑥𝑥 : L𝑢 (𝑥𝑥𝑥)↣ L(𝑥𝑥𝑥).
Proof. The claims are evident for a sequence of one element, see 3.3.34. By 3.3.11
the general case follows by induction on the number of elements in 𝑥𝑥𝑥. □

11.4.23 Construction. Let 𝑥 ∈ 𝑅 and 𝑢 ⩾ 1. Consider the morphism of complexes

L𝑢 (𝑥)

𝜋𝑢𝑥

��

that is

0 // 𝑅⟨𝑒0, . . . , 𝑒𝑢 ⟩

(𝜋𝑢𝑥 )0
��

ð𝑥
// 𝑅⟨𝑒0, . . . , 𝑒𝑢 ⟩

(𝜋𝑢𝑥 )−1

��

// 0

Hom𝑅 (K (𝑥𝑢), 𝑅) 0 // 𝑅
−𝑥𝑢

// 𝑅 // 0

given by

(𝜋𝑢𝑥)0 (𝑒𝑖) =
{

1 for 𝑖 = 0
0 for 1 ⩽ 𝑖 ⩽ 𝑢

and (𝜋𝑢𝑥)−1 (𝑒𝑖) = −𝑥𝑢−𝑖 for 0 ⩽ 𝑖 ⩽ 𝑢 .

Furthermore, let

L(𝑥)

𝜋𝑥

��

that is

0 // 𝑅⟨𝐸 ⟩

(𝜋𝑥 )0
��

ð𝑥
// 𝑅⟨𝐸 ⟩

(𝜋𝑥 )−1
��

// 0

Č (𝑥) 0 // 𝑅
𝜌𝑥

// {𝑥𝑛 | 𝑛 ⩾ 0}−1𝑅 // 0
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be the morphism given by

(𝜋𝑥)0 (𝑒𝑖) =
{

1 for 𝑖 = 0
0 for 𝑖 ⩾ 1

and (𝜋𝑥)−1 (𝑒𝑖) =
1
𝑥𝑖

for 𝑖 ⩾ 0 .

Finally, for a sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 in 𝑅 set

𝜋𝑢𝑥𝑥𝑥 = 𝜋𝑢𝑥1 ⊗𝑅 · · · ⊗𝑅 𝜋
𝑢
𝑥𝑛

and 𝜋𝑥𝑥𝑥 = 𝜋𝑥1 ⊗𝑅 · · · ⊗𝑅 𝜋𝑥𝑛 .

Note that 𝜋𝑥𝑥𝑥 is a morphism L(𝑥𝑥𝑥) → Č (𝑥𝑥𝑥). In view of 11.4.7 consider 𝜋𝑢𝑥𝑥𝑥 as a
morphism L𝑢 (𝑥𝑥𝑥) → Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅).

11.4.24 Lemma. Let 𝑥𝑥𝑥 be a sequence in 𝑅. The morphisms from 11.4.23, 11.4.19,
and (11.4.8.1) fit into a commutative diagram,

L𝑢 (𝑥𝑥𝑥)

𝜋𝑢𝑥𝑥𝑥

��

𝜄𝑢𝑥𝑥𝑥
// L𝑢+1 (𝑥𝑥𝑥)

𝜋𝑢+1𝑥𝑥𝑥

��

Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅)
𝜅𝑢𝑥𝑥𝑥
// Hom𝑅 (K (𝑥𝑥𝑥𝑢+1), 𝑅) .

Thus, {𝜋𝑢𝑥𝑥𝑥 }𝑢⩾0 is a morphism between the telescopes from 11.4.22 and (11.4.8.1).

Proof. By the definitions of the maps it is sufficient to consider the case where 𝑥𝑥𝑥 = 𝑥
is a single element, and in that case commutativity is straightforward to verify from
the definitions. □

11.4.25 Theorem. Let 𝑥𝑥𝑥 be a sequence in 𝑅. The following assertions about the
morphisms from 11.4.23 hold.

(a) For every 𝑢 ⩾ 1 the morphism 𝜋𝑢𝑥𝑥𝑥 is a homotopy equivalence.
(b) There is an identity 𝜋𝑥𝑥𝑥 = colim𝑢⩾1 𝜋

𝑢
𝑥𝑥𝑥 of morphisms from L(𝑥𝑥𝑥) to Č (𝑥𝑥𝑥) .

(c) The morphism 𝜋𝑥𝑥𝑥 : L(𝑥𝑥𝑥) ≃−−→ Č (𝑥𝑥𝑥) is a semi-free resolution.

Proof. (a): By 4.3.20 it suffices in view of (2.4.5.1) to consider the case where
𝑥𝑥𝑥 = 𝑥 is a single element. Since 𝜋𝑢𝑥 is morphism between bounded complexes of free
modules, it suffices by 5.2.8 and 5.2.21 to argue that 𝜋𝑢𝑥 is a quasi-isomorphism.

The homomorphism H0 (𝜋𝑢𝑥) is the (co)restriction of (𝜋𝑢𝑥)0 to kernels, i.e. the map

𝑅⟨𝑒0, . . . , 𝑒𝑢 ⟩ ∩ Ker ð𝑥 −→ (0 :𝑅 𝑥𝑢)

that sends 𝑧 = 𝑟0𝑒0 + · · · + 𝑟𝑢𝑒𝑢 to (𝜋𝑢𝑥)0 (𝑧) = 𝑟0; see 11.4.11 and 11.4.23. From

0 = ð𝑥 (𝑧) = (𝑟0 + 𝑟1)𝑒0 + (𝑟2 − 𝑥𝑟1)𝑒1 + · · · + (𝑟𝑢 − 𝑥𝑟𝑢−1)𝑒𝑢−1 − 𝑥𝑟𝑢𝑒𝑢
one gets 𝑟1 = −𝑟0, 𝑟2 = −𝑥𝑟0, . . . , 𝑟𝑢 = −𝑥𝑢−1𝑟0, and 𝑥𝑟𝑢 = 0. Hence 𝑥𝑢𝑟0 = 0 and
𝑧 has the form 𝑧 = 𝑟0 (𝑒0 − 𝑒1 − 𝑥𝑒2 − · · · − 𝑥𝑢−1𝑒𝑢). Thus H0 (𝜋𝑢𝑥) is bĳective with
inverse given by 𝑟 ↦→ 𝑟 (𝑒0 − 𝑒1 − 𝑥𝑒2 − · · · − 𝑥𝑢−1𝑒𝑢).

The homomorphism H−1 (𝜋𝑢𝑥) is the by (𝜋𝑢𝑥)−1 induced map on cokernels,

Coker ð𝑥 −→ 𝑅/(𝑥𝑢) ,
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where ð𝑥 is considered as an endomorphism on 𝑅⟨𝑒0, . . . , 𝑒𝑢 ⟩. Since (𝜋𝑢𝑥)−1 is
surjective, so is H−1 (𝜋𝑢𝑥). To prove injectivity, let 𝑧 = 𝑟0𝑒0 + · · · + 𝑟𝑢𝑒𝑢 be an element
in 𝑅⟨𝑒0, . . . , 𝑒𝑢 ⟩ with (𝜋𝑢𝑥)−1 (𝑧) ∈ (𝑥𝑢). As one has

(𝜋𝑢𝑥)−1 (𝑧) = −𝑥𝑢𝑟0 − 𝑥𝑢−1𝑟1 − · · · − 𝑥𝑟𝑢−1 − 𝑟𝑢 ,

the equality −𝑥𝑢𝑟0 − 𝑥𝑢−1𝑟1 − · · · − 𝑥𝑟𝑢−1 − 𝑟𝑢 = 𝑥𝑢𝑠 holds for some 𝑠 ∈ 𝑅. The goal
is to construct an element 𝑤 = 𝑠0𝑒0 + · · · + 𝑠𝑢𝑒𝑢 in 𝑅⟨𝑒0, . . . , 𝑒𝑢 ⟩ with ð𝑥 (𝑤) = 𝑧.
This amounts to finding elements 𝑠0, . . . , 𝑠𝑢 in 𝑅 with

𝑠0 + 𝑠1 = 𝑟0 , 𝑠𝑖+1 − 𝑥𝑠𝑖 = 𝑟𝑖 for 𝑖 ∈ {1, . . . , 𝑢 − 1} , and − 𝑥𝑠𝑢 = 𝑟𝑢 .

Set 𝑠0 = −𝑠. Solving the equations one gets 𝑠1 = 𝑟0 + 𝑠, 𝑠2 = 𝑟1 + 𝑥𝑠1 = 𝑟1 + 𝑥𝑟0 + 𝑥𝑠,
and generally 𝑠𝑖+1 = 𝑟𝑖 + · · · + 𝑥𝑖−1𝑟1 + 𝑥𝑖𝑟0 + 𝑥𝑖𝑠 for 𝑖 ∈ {1, . . . , 𝑢 − 1}. It remains to
see that the last of these elements, that is, 𝑠𝑢 = 𝑟𝑢−1 + · · · + 𝑥𝑢−2𝑟1 + 𝑥𝑢−1𝑟0 + 𝑥𝑢−1𝑠,
satisfies −𝑥𝑠𝑢 = 𝑟𝑢, but this follows from the defining property of 𝑠.

(b): By 3.2.10, 11.4.12, and 11.4.22 it is sufficient to argue that the diagram

L𝑢 (𝑥𝑥𝑥)

𝜋𝑢𝑥𝑥𝑥

��

𝜄𝑢𝑥𝑥𝑥
// L(𝑥𝑥𝑥)

𝜋𝑥𝑥𝑥

��

Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅)
𝜚𝑢𝑥𝑥𝑥
// Č (𝑥𝑥𝑥)

is commutative for every 𝑢 ⩾ 1. By the definitions of the morphisms involved, it
suffices to consider the case where 𝑥𝑥𝑥 = 𝑥 is a single element. That is, it must be
verified that (𝜋𝑥)𝑣 (𝜄𝑢𝑥 )𝑣 = (𝜚𝑢𝑥)𝑣 (𝜋𝑢𝑥)𝑣 holds for 𝑣 ∈ {−1, 0}. For 𝑣 = 0 one has

(𝜋𝑥)0 (𝜄𝑢𝑥 )0 (𝑒0) = (𝜋𝑥)0 (𝑒0) = 1 = (𝜚𝑢𝑥)0 (1) = (𝜚𝑢𝑥)0 (𝜋𝑢𝑥)0 (𝑒0)
and
(𝜋𝑥)0 (𝜄𝑢𝑥 )0 (𝑒𝑖) = (𝜋𝑥)0 (𝑒𝑖) = 0 = (𝜚𝑢𝑥)0 (0) = (𝜚𝑢𝑥)0 (𝜋𝑢𝑥)0 (𝑒𝑖) for 1 ⩽ 𝑖 ⩽ 𝑢 .

For 𝑣 = −1 the equality also holds since for every 𝑖 ∈ {0, . . . , 𝑢} one has

(𝜋𝑥)−1 (𝜄𝑢𝑥 )−1 (𝑒𝑖) = (𝜋𝑥)−1 (𝑒𝑖) = 1
𝑥𝑖

= (𝜚𝑢𝑥)−1 (−𝑥𝑢−𝑖) = (𝜚𝑢𝑥)−1 (𝜋𝑢𝑥)−1 (𝑒𝑖) .

(c): The complex L(𝑥𝑥𝑥) is bounded and semi-free, see 11.4.19. The morphism 𝜋𝑥𝑥𝑥
is a quasi-isomorphism by parts (a) and (b), 4.3.4, and 4.2.12. □

11.4.26 Corollary. Let 𝑥𝑥𝑥 be a sequence in 𝑅. The Čech complex Č𝑅(𝑥𝑥𝑥) has projective
dimension at most 0.

Proof. By 11.4.25(c) the complex Č𝑅(𝑥𝑥𝑥) has a semi-free resolution concentrated
in non-positive degrees, so the assertion follows from 5.2.11 and 8.1.2. □

Exercises

E 11.4.1 Write the dual of the complex 𝐾 = K (𝑥1, 𝑥2 ) from 11.4.2 explicitly with the differential
represented by matrices and determine an isomorphism Hom𝑅 (𝐾, 𝑅) → Σ−2𝐾 .

E 11.4.2 Give explicit descriptions, as in 11.4.2, of the complexes Č (𝑥1, 𝑥2 ) and Č (𝑥1, 𝑥2, 𝑥3 ) .
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E 11.4.3 Let 𝐾 be the Koszul complex on a sequence of elements in 𝑅. Show that for every
𝑅-complex 𝑀 there is isomorphism Hom𝑅 (𝑀, 𝐾 ) � Hom𝑅 (𝑀, 𝑅) ⊗𝑅 𝐾 .

E 11.4.4 Let 𝐾 be the Koszul complex on a sequence of 𝑛 elements in 𝑅. Show that for every
𝑅-complex 𝑀 there is an isomorphism Hom𝑅 (𝐾, 𝑀 ) � Σ−𝑛 (𝐾 ⊗𝑅 𝑀 ) .

E 11.4.5 Let 𝑥 ∈ 𝑅 and 𝑀 be an 𝑅-module. Show that the homothety 𝑥𝑀 is injective if and only
if H1 (K (𝑥 ) ⊗𝑅 𝑀 ) = 0 holds and surjective if and only if H0 (K (𝑥 ) ⊗𝑅 𝑀 ) = 0.

E 11.4.6 Let 𝑥 ∈ 𝑅 and show directly from the defintion that 𝜋𝑥 : L(𝑥 ) → Č (𝑥 ) is a quasi-
isomorphism.

E 11.4.7 Let 𝑥𝑥𝑥 be a sequence of 𝑛 elements in 𝑅. Show that (𝑥𝑥𝑥 )𝑛𝑢 H(L𝑢 (𝑥𝑥𝑥 ) ⊗𝑅 𝑀 ) = 0 holds
for every 𝑅-complex 𝑀.

E 11.4.8 Let 𝑥𝑥𝑥 and 𝑦𝑦𝑦 be sequences in 𝑅. Show that if the ideals (𝑥𝑥𝑥 ) and (𝑦𝑦𝑦) are topologically
equivalent, then there is an isomorphism Č (𝑥𝑥𝑥 ) ≃ Č (𝑦𝑦𝑦) in D(𝑅) .

E 11.4.9 Let 𝑥𝑥𝑥 be a sequence in 𝑅. Show that the Koszul complex K𝑅 (𝑥𝑥𝑥 ) is contractible if and
only if the Čech complex Č𝑅 (𝑥𝑥𝑥 ) is pure acyclic.
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Applications
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The mainstream homological theory of commutative Noetherian rings is the topic
of this third part of the book. Results from the previous two parts and from the ap-
pendices are used extensively. Because modules over a commutative ring always are
considered to be symmetric bimodules, several key results from Parts I and II simplify
in the commutative setting. The simplifications are particularly compelling when it
comes to statements about the (derived) Hom and tensor product functors, standard
isomorphisms, and evaluation morphisms—enough so to warrant restatement here
in Part III. The greater part of Chap. 12 is dedicated to these simplified versions
of statements from Sects. 4.4–4.5, 7.3–7.6, and 8.4; this is where a commutative
algebraist acquainted with derived categories can pick up the track.

Parts I and II and the appendices are essentially self-contained—they rely only on
basic facts from ring theory and category theory—but in this third part we appeal to
a few “real theorems”. They are with one exception classic results, such as the Artin–
Rees Lemma, that can be found in any standard textbook on commutative algebra,
including [182]. The exception is André’s work [5] on the Homological Conjectures,
which we invoke through the existence of Big Cohen–Macaulay modules.

The transition to commutative rings happened already in Chap. 11, but the ma-
terial there is still part of general ring theory rather than commutative algebra. If
commutative algebra has a mark of Cain, it must be the reliance on prime ideal
spectra. Readers are expected to be familiar with the various sets of prime ideals
that get linked to rings and modules in classic commutative algebra, but to fix termi-
nology and notation we include a brief review in Sect. 12.4. Matlis’ structure theory
for injective modules—in itself a quintessential example of the importance of prime
ideal spectra—may also be familiar to many readers, nevertheless it is included in
Appn. C. This is not only to honor the promise that “we assume no prerequisites in
homological algebra” but also because we need several technical statements from
the theory, not just the main structure theorem.

The forerunners of this book, and this third part in particular, are two sets of
notes [95, 96] used by Foxby for his lectures at the University of Copenhagen. Both
sets ultimately had wider circulation, but only in printed form. Building on the
foundations laid down by Dold [73] and by Grothendieck and Hartshorne [114] the
lecture notes present systematic extensions of homological invariants from modules
to complexes. Further, established results on homological properties of modules are
reproved in the broader context of complexes and often improved in the process. Some
of these definitions and results made it into Foxby’s papers [91, 92, 93, 100, 94] from
the late 1970s and others appeared in background sections of his later collaborative
works with Avramov [20, 21, 22, 23, 24], Iyengar [98], and his students [59, 97].

Throughout this part—that is, in Chaps. 12 through 20—the rings 𝕜, 𝑸, 𝑹, 𝑺,
and 𝑻 are assumed to be commutative and Noetherian. When only considering
complexes over a single ring, 𝑅, one can simply invoke results from Parts I and II
with 𝕜 = 𝑅. In multi-ring situations, that approach assigns priority to 𝑅—the rings
𝑄, 𝑆, and 𝑇 are assumed to be algebras over 𝕜—so we keep the ground ring 𝕜 around
and only assume relations between 𝑄, 𝑅, 𝑆, and 𝑇 where needed.
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Chapter 12
A Brief for Commutative Ring Theorists

In this chapter we recapitulate some key results from Parts I and II whose formulations
become notably simpler in the setting of commutative Noetherian rings. A convention
introduced in Chap. 1, namely that modules over a commutative ring tacitly are
considered to be symmetric bimodules, now becomes crucial. The convention is
both standard and useful, and not to adopt it might as a matter of fact be outright
confusing: As we do not distinguish between a commutative ring and its opposite
ring, there would be a clash with the conventions that all modules are left modules.
The convention does not surrender any generality: In the case one needs to consider
two disinct actions of a commutative ring on the same Abelian group 𝑀 , one simply
uses two different symbols, say 𝑅 and 𝑅′, for the ring to distingush the actions. This
way, 𝑀 becomes a symmetric 𝑅–𝑅o-bimodule, a symmetric 𝑅′–𝑅′o-bimodule, and,
provided that the actions are compatible, an 𝑅–𝑅′-bimodule.

The convention means that objects in M(𝑅) are tacitly considered objects in the
categoryM(𝑅–𝑅) = M(𝑅 ⊗𝕜 𝑅). One can, of course, not identify the two categories,
but one can avoid considering objects in M(𝑅 ⊗𝕜 𝑅) that are not symmetric bimod-
ules. This can be achieved quit easily thanks to the orthographic trick discussed
above and by way of 12.1.1 and 12.1.3.

12.1 Standard Isomorphisms and Evaluation Morphisms in C

Synopsis. Symmetric bimodule; the functors Hom and ⊗; unitor; counitor; commutativity; asso-
ciativity; swap; adjunction; biduality; tensor evaluation; homomophism evaluation; base change;
cobase change; dual numbers.

We start this section by observing that the assumption that 𝑅-modules are symmetric
bimodules very conveniently implies that the Hom as well as the tensor product of
two 𝑅-modules is a symmetric bimodule.
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Hom Functor

12.1.1. Let 𝑀 and 𝑁 be 𝑅-modules; by convention they are both symmetric 𝑅–𝑅-
bimodules, so Hom𝑅 (𝑀, 𝑁) is by 1.1.30 an object in M(𝑅–𝑅) = M(𝑅 ⊗𝕜 𝑅) with
one 𝑅-action coming from 𝑀 and the other from 𝑁 . However, for 𝜑 ∈ Hom𝑅 (𝑀, 𝑁),
𝑚 ∈ 𝑀 , and 𝑛 ∈ 𝑁 and, one has

(𝑟𝜑) (𝑚) = 𝜑(𝑚𝑟) = 𝜑(𝑟𝑚) = 𝑟 (𝜑(𝑚)) = (𝜑(𝑚))𝑟 = (𝜑𝑟) (𝑚) .

Indeed, the 1st and 5th equalities come from 1.1.30, the 2nd and 4th hold because
𝑀 and 𝑁 are symmetric bimodules, and the 3rd equality holds by 𝑅-linearity of 𝜑.
This shows that Hom𝑅 (𝑀, 𝑁) is a symmetric 𝑅–𝑅-bimodule. By convention, every
object in M(𝑅) is a symmetric bimodule, so one can without ambiguity talk about
the functor

Hom𝑅 ( , ) : M(𝑅)op ×M(𝑅) −→ M(𝑅) .
For modules 𝑀 ∈ M(𝑅–𝑄) and 𝑁 ∈ M(𝑅–𝑆) the module Hom𝑅 (𝑀, 𝑁), which
by 1.1.30 is a 𝑄–𝑆-bimodule, thus has a third compatible ring action, namely the
symmetric 𝑅-actions through 𝑀 and 𝑁 . We do not introduce a notation for such
trimodules but point out that in the case 𝑄 is an 𝑅-algebra and 𝑀 a 𝑄-module,
or 𝑆 is an 𝑅-algebra and 𝑁 an 𝑆-module, the 𝑅-action is accounted for as every
𝑄–𝑆-bimodule is an 𝑅-module via the structure map.

The Hom functor on 𝑅-complexes is established in 2.3.10, but its output is more
than a 𝕜-complex now that 𝑅 is assumed to be commutative.

12.1.2. By 2.3.11 and 12.1.1 there is a functor

Hom𝑅 ( , ) : C(𝑅)op × C(𝑅) −→ C(𝑅) .

More generally, 2.3.11 yields a functor

(12.1.2.1) Hom𝑅 ( , ) : C(𝑅–𝑄)op × C(𝑅–𝑆) −→ C(𝑄–𝑆) .

In particular, if 𝑄 and 𝑆 are 𝑅-algebras, then there is a functor

Hom𝑅 ( , ) : C(𝑄)op × C(𝑆) −→ C(𝑄–𝑆) .

By 3.1.24 and 3.1.27 these functors preserve products in both variables.

Caveat. To avoid 𝑅–𝑅-bimodules that are not symmetric, (12.1.2.1) should for 𝑄 = 𝑅 be inter-
preted narrowly to mean only that Hom𝑅 is a functor fromC(𝑅)op×C(𝑅–𝑆) toC(𝑅–𝑆) . Similarly,
for 𝑆 = 𝑅 one should interpret it to mean that Hom𝑅 is a functor from C(𝑅–𝑄)op × C(𝑅) to
C(𝑄–𝑅) . For 𝑄 = 𝑆 there is no guarantee that the 𝑄- and 𝑆-actions on Hom𝑅 are symmetric, so
the only remedy is use two symbols for the ring.

Tensor Product Functor

12.1.3. Let 𝑀 and 𝑁 be 𝑅-modules; by convention they are both symmetric 𝑅–𝑅-
bimodules, so 𝑀 ⊗𝑅 𝑁 is by 1.1.33 an object in M(𝑅–𝑅) = M(𝑅 ⊗𝕜 𝑅) with one
𝑅-action coming from 𝑀 and the other from 𝑁 . Yet, for 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 one has
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𝑟 (𝑚 ⊗ 𝑛) = 𝑟𝑚 ⊗ 𝑛 = 𝑚𝑟 ⊗ 𝑛 = 𝑚 ⊗ 𝑟𝑛 = 𝑚 ⊗ 𝑛𝑟 = (𝑚 ⊗ 𝑛)𝑟 .

Indeed, the 1st and 5th equalities come from 1.1.33, the 2nd and 4th hold because
𝑀 and 𝑁 are symmetric bimodules, and the 3rd equality holds by the definition of
the tensor product over 𝑅. This shows that 𝑀 ⊗𝑅 𝑁 is a symmetric 𝑅–𝑅-bimodule.
By convention every object in M(𝑅) is a symmetric bimodule, so one can without
ambiguity talk about the functor

⊗𝑅 : M(𝑅) ×M(𝑅) −→ M(𝑅) .

For modules 𝑀 ∈ M(𝑄–𝑅) and 𝑁 ∈ M(𝑅–𝑆) the module 𝑀 ⊗𝑅 𝑁 , which by 1.1.33
is a 𝑄–𝑆-bimodule, thus has a third compatible ring action, namely the symmetric
𝑅-actions through 𝑀 and 𝑁 . Notice that in the important special cases where𝑄 is an
𝑅-algebra and 𝑀 a𝑄-module, or 𝑆 is an 𝑅-algebra and 𝑁 an 𝑆-module, the 𝑅-action
is accounted for as every 𝑄–𝑆-bimodule is an 𝑅-module via the structure map.

The tensor product functor on 𝑅-complexes is established in 2.4.9, but its output
is more than a 𝕜-complex now that 𝑅 is assumed to be commutative.

12.1.4. By 2.4.10 and 12.1.3 there is a functor

⊗𝑅 : C(𝑅) × C(𝑅) −→ C(𝑅) .

More generally, 2.4.10 yields a functor

(12.1.4.1) ⊗𝑅 : C(𝑄–𝑅) × C(𝑅–𝑆) −→ C(𝑄–𝑆) .

In particular, if 𝑄 and 𝑆 are 𝑅-algebras, then there is a functor

⊗𝑅 : C(𝑄) × C(𝑆) −→ C(𝑄–𝑆) .

By 3.1.30 and 3.1.31 these functors preserve coproducts in both variables.

Caveat. To avoid 𝑅–𝑅-bimodules that are not symmetric, (12.1.4.1) should for 𝑄 = 𝑅 be inter-
preted narrowly to mean only that ⊗𝑅 is a functor from C(𝑅) ×C(𝑅–𝑆) to C(𝑅–𝑆) and, similarly,
for 𝑅 = 𝑆 that it is a functor from C(𝑄–𝑅) × C(𝑅) to C(𝑄–𝑅) . For𝑄 = 𝑆 there is no guarantee
that the 𝑄- and 𝑆-actions on the tensor product are symmetric, so one needs two symbols for that
ring.

Standard Isomorphisms

Proposition. For a complex 𝑀 ∈ C(𝑅–𝑆) the maps

𝑅 ⊗𝑅 𝑀
𝜇𝑀
𝑅−−−−−→ 𝑀 (unitor)12.1.5

𝑀
𝜖𝑀
𝑅−−−−−→ Hom𝑅 (𝑅, 𝑀) (counitor)12.1.6

from 4.4.1 and 4.4.2 are isomorphisms in C(𝑅–𝑆).

Proof. The claims are special cases of 4.4.1 and 4.4.2. □
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For 𝑅-complexes 𝑀 and 𝑁 , commutativity 𝜐𝑀𝑁 is by default an isomorphism of
𝕜-complexes, see 4.4.4. We now show that 𝜐𝑀𝑁 is an isomorphism of 𝑅-complexes.
One could of course get that by applying 4.4.4 with 𝕜 = 𝑅, but taking that shortcut
would constrain our ability to consider additional ring actions on 𝑀 and 𝑁 , as all
rings are assumed to be 𝕜-algebras.

12.1.7 Proposition. For 𝑅-complexes 𝑀 and 𝑁 the commutativity map,

𝜐𝑀𝑁 : 𝑀 ⊗𝑅 𝑁 −→ 𝑁 ⊗𝑅 𝑀 ,

is an isomorphism in C(𝑅). If 𝑀 belongs to C(𝑄–𝑅), then 𝜐𝑀𝑁 is an isomorphism
in C(𝑄–𝑅), and if 𝑁 belongs to C(𝑅–𝑆), then 𝜐𝑀𝑁 is an isomorphism in C(𝑅–𝑆).
Moreover, if 𝑄 and 𝑆 are 𝑅-algebras, 𝑀 a 𝑄-complex, and 𝑁 an 𝑆-complex, then
𝜐𝑀𝑁 is an isomorphism in C(𝑄–𝑆).

Proof. The assertions about 𝜐𝑀𝑁 being an isomorphism in C(𝑅), C(𝑄–𝑅), or
C(𝑅–𝑆) are in view of 12.1.4 special cases of 4.4.4. If 𝑄 is an 𝑅-algebra and 𝑀 a
𝑄-complex, then 𝑀 belongs to C(𝑄–𝑅), and similarly an 𝑆-complex 𝑁 is in C(𝑅–𝑆)
if 𝑆 is an 𝑅-algebra; in this case, 𝜐𝑀𝑁 is an isomorphism in C(𝑄–𝑆) by 4.4.4. □

In keeping with the purpose of this chapter, 12.1.7 as well as 12.1.8–12.1.13
below are not stated in their most general form for commutative rings but rather
in a generality that serves our needs and does no unduly invite consideration of
asymmetric bimodule structures.

Proposition. For complexes 𝑀 ∈ C(𝑅), 𝑋 ∈ C(𝑅–𝑆), and 𝑁 ∈ C(𝑆) the maps

(𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁
𝜔𝑀𝑋𝑁−−−−−→ 𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁) (associativity)12.1.8

Hom𝑅 (𝑀,Hom𝑆 (𝑁, 𝑋))
𝜁𝑀𝑋𝑁

−−−−−→ Hom𝑆 (𝑁,Hom𝑅 (𝑀, 𝑋)) (swap)12.1.9

Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀)
𝜌𝑀𝑋𝑁

−−−−−→ Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀)) (adjunction)12.1.10

from 4.4.6, 4.4.9, and 4.4.11 are isomorphisms in C(𝑅–𝑆). Moreover, if 𝑄 is an
𝑅-algebra and 𝑀 a 𝑄-complex, and 𝑇 is an 𝑆-algebra and 𝑁 a 𝑇-complex, then as-
sociativity𝜔𝑀𝑋𝑁 , swap 𝜁𝑀𝑋𝑁 , and adjunction 𝜌𝑀𝑋𝑁 are isomorphisms inC(𝑄–𝑇).

Proof. The assertions follow from 4.4.7, 4.4.10, and 4.4.12. Take as an example
associativity 𝜔𝑀𝑋𝑁 . As 𝑀 and 𝑁 are complexes of symmetric bimodules, it follows
from 4.4.7 that 𝜔𝑀𝑋𝑁 is an isomorphism in C(𝑅–𝑆), cf. 12.1.4. Moreover, if 𝑄 and
𝑇 are algebras over 𝑅 and 𝑆, respectively, then a 𝑄-complex belongs to C(𝑄–𝑅)
and a 𝑇-complex belongs to C(𝑆–𝑇), so it follows from 4.4.7 that 𝜔𝑀𝑋𝑁 is an
isomorphism in C(𝑄–𝑇). □

Remark. For more general versions of 12.1.7–12.1.10 see E 12.1.6–E 12.1.9.

Evaluation Morphisms

12.1.11 Proposition. For complexes 𝑀 ∈ C(𝑅) and 𝑋 ∈ C(𝑅–𝑆) the biduality map,
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𝛿𝑀𝑋 : 𝑀 −→ Hom𝑆 (Hom𝑅 (𝑀, 𝑋), 𝑋) ,

from 4.5.1 is a morphism in C(𝑅). Further, if𝑄 is an 𝑅-algebra and 𝑀 a𝑄-complex,
then biduality 𝛿𝑀

𝑋
is a morphism in C(𝑄).

Proof. The claims follow from 4.5.2 like in the proof of 12.1.8–12.1.10. □

Proposition. For complexes 𝑀 ∈ C(𝑅), 𝑋 ∈ C(𝑅–𝑆), and 𝑁 ∈ C(𝑆) the maps

Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁
𝜃𝑀𝑋𝑁−−−−−→ Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁) (tensor evaluation)12.1.12

𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀)
𝜂𝑀𝑋𝑁

−−−−−→ Hom𝑅 (Hom𝑆 (𝑁, 𝑋), 𝑀) (hom. evaluation)12.1.13

from 4.5.8 and 4.5.11 are morphisms in C(𝑅–𝑆). Moreover, if𝑄 is an 𝑅-algebra and
𝑀 a 𝑄-complex, and 𝑇 is an 𝑆-algebra and 𝑁 a 𝑇-complex, then tensor evaluation
𝜃𝑀𝑋𝑁 and homomorphism evaluation 𝜂𝑀𝑋𝑁 are morphisms in C(𝑄–𝑇).

Proof. The claims hold by 4.5.9 and 4.5.12 like in the proof of 12.1.8–12.1.10. □

Remark. For a complex 𝑀 ∈ C(𝑅–𝑄) biduality 𝛿𝑀
𝑋

is per 4.5.2 morphism in C(𝑅–𝑄) , but we
won’t need that. See E 12.1.10 and E 12.1.11 for similarly more general statements about tensor
evaluation and homomorphism evaluation.

Finally we recall conditions under which the evaluation morphisms are invertible.

12.1.14 Theorem. For every complex 𝑃 of finitely generated projective 𝑅-modules,
Hom𝑅 (𝑃, 𝑅) is a complex of finitely generated projective 𝑅-modules, and biduality

𝛿𝑃𝑅 : 𝑃 −→ Hom𝑅 (Hom𝑅 (𝑃, 𝑅), 𝑅)

is an isomorphism.

Proof. This is a special case of 4.5.4. □

12.1.15 Theorem. Let 𝑀 ∈ C(𝑅), 𝑋 ∈ C(𝑅–𝑆), and 𝑁 ∈ C(𝑆). Tensor evaluation,

𝜃𝑀𝑋𝑁 : Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 −→ Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁) ,

is an isomorphism if the complexes meet one of the boundedness conditions (1)–(3)
and one of the conditions (a)–(c) on their modules.

(1) 𝑀 is bounded below, and 𝑋 and 𝑁 are bounded above.
(2) 𝑀 is bounded above, and 𝑋 and 𝑁 are bounded below.
(3) Two of the complexes 𝑀 , 𝑋 , and 𝑁 are bounded.
(a) 𝑀 or 𝑁 is a complex of finitely generated projective modules.
(b) 𝑀 is a complex of projective modules and 𝑁 is degreewise finitely generated.
(c) 𝑀 is degreewise finitely generated and 𝑁 is a complex of flat modules.
Furthermore, 𝜃𝑀𝑋𝑁 is an isomorphism if 𝑀 or 𝑁 is a bounded complex of finitely

generated modules and one of the following conditions is satisfied.
(d) 𝑀 is a complex of projective modules.
(e) 𝑁 is a complex of flat modules.
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Proof. This is a specialization of 4.5.10. □

12.1.16 Theorem. Let 𝑀 ∈ C(𝑅), 𝑋 ∈ C(𝑅–𝑆), and 𝑁 ∈ C(𝑆). Homorphism
evaluation,

𝜂𝑀𝑋𝑁 : 𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀) −→ Hom𝑅 (Hom𝑆 (𝑁, 𝑋), 𝑀) ,

is an isomorphism if the complexes meet one of the boundedness conditions (1)–(3)
and condition (a) or (b) on their modules.

(1) 𝑀 and 𝑁 are bounded below, and 𝑋 is bounded above.
(2) 𝑀 and 𝑁 are bounded above, and 𝑋 is bounded below.
(3) Two of the complexes 𝑀 , 𝑋 , and 𝑁 are bounded.
(a) 𝑁 is a complex of finitely generated projective modules.
(b) 𝑁 is degreewise finitely generated and 𝑀 is a complex of injective modules.
Furthermore, 𝜂𝑀𝑋𝑁 is an isomorphism if 𝑁 is a bounded complex of finitely

generated modules and one of the following conditions are satisfied.
(c) 𝑁 is a complex of projective modules.
(d) 𝑀 is a complex of injective modules.

Proof. This is a specialization of 4.5.13. □

Base Change

Assuming that 𝑆 is an 𝑅-algebra, recall from 2.1.49 that for every 𝑅-complex 𝑀 one
has the base changed 𝑆-complex 𝑆 ⊗𝑅 𝑀 .

12.1.17 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑀 and 𝑁 be 𝑅-complexes. There
is an isomorphism in C(𝑆),

𝑆 ⊗𝑅 (𝑀 ⊗𝑅 𝑁) � (𝑆 ⊗𝑅 𝑀) ⊗𝑆 (𝑆 ⊗𝑅 𝑁) .

Proof. Associativity 12.1.8 and commutativity 12.1.7 of the tensor product together
with the unitor 12.1.5 yield isomorphisms in C(𝑆),

𝑆 ⊗𝑅 (𝑀 ⊗𝑅 𝑁) � (𝑆 ⊗𝑅 𝑀) ⊗𝑅 𝑁
� (𝑆 ⊗𝑆 (𝑆 ⊗𝑅 𝑀)) ⊗𝑅 𝑁
� ((𝑆 ⊗𝑅 𝑀) ⊗𝑆 𝑆) ⊗𝑅 𝑁
� (𝑆 ⊗𝑅 𝑀) ⊗𝑆 (𝑆 ⊗𝑅 𝑁) . □

12.1.18 Proposition. Let 𝑆 be an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁 an 𝑆-complex.
There are isomorphisms in C(𝑆),

𝑀 ⊗𝑅 𝑁 � (𝑆 ⊗𝑅 𝑀) ⊗𝑆 𝑁 and 𝑁 ⊗𝑅 𝑀 � 𝑁 ⊗𝑆 (𝑆 ⊗𝑅 𝑀) .

Proof. The unitor 12.1.5 in combination with associativity 12.1.8 and commutativ-
ity 12.1.7 of the tensor product yields isomorphisms in C(𝑆),

𝑀 ⊗𝑅 𝑁 � 𝑀 ⊗𝑅 (𝑆 ⊗𝑆 𝑁)
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� (𝑀 ⊗𝑅 𝑆) ⊗𝑆 𝑁
� (𝑆 ⊗𝑅 𝑀) ⊗𝑆 𝑁 .

This shows the first of the asserted isomorphisms; the second follows per 12.1.7. □

12.1.19 Proposition. Let 𝑆 be an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁 an 𝑆-complex.
There is an isomorphism in C(𝑆),

Hom𝑅 (𝑀, 𝑁) � Hom𝑆 (𝑆 ⊗𝑅 𝑀, 𝑁) .

Proof. The counitor 12.1.6 and adjunction 12.1.10 yield isomorphisms in C(𝑆),

Hom𝑅 (𝑀, 𝑁) � Hom𝑅 (𝑀,Hom𝑆 (𝑆, 𝑁)) � Hom𝑆 (𝑆 ⊗𝑅 𝑀, 𝑁) . □

Flat Base Change

12.1.20 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑀 an 𝑅-complex.
(a) If𝑀 is degreewise finitely generated, then the 𝑆-complex 𝑆 ⊗𝑅 𝑀 is degreewise

finitely generated. The converse holds if 𝑆 is faithfully flat as an 𝑅-module.
(b) If 𝑆 is flat as an 𝑅-module, then there is an isomorphism of 𝑆-complexes,

H(𝑆 ⊗𝑅 𝑀) � 𝑆 ⊗𝑅 H(𝑀) .

(c) If 𝑆 is flat as an 𝑅-module and H(𝑀) is degreewise finitely generated, then the
𝑆-complex H(𝑆 ⊗𝑅 𝑀) is degreewise finitely generated. The converse holds if
𝑆 is faithfully flat as an 𝑅-module.

Proof. (a): One can assume that 𝑀 is a module. The first statement is a special
case of 1.3.14. Conversely, assume that 𝑆 is faithfully flat as an 𝑅-module and that
the 𝑆-module 𝑆 ⊗𝑅 𝑀 is finitely generated by, say, 𝑥1, . . . , 𝑥𝑛. For each 𝑖 ∈ {1, . . . , 𝑛}
write 𝑥𝑖 =

∑𝑘
𝑗=1 𝑠𝑖 𝑗 ⊗ 𝑚𝑖 𝑗 with 𝑠𝑖 𝑗 ∈ 𝑆 and 𝑚𝑖 𝑗 ∈ 𝑀 . View the free 𝑅-module 𝑅𝑛𝑘

as the module M𝑛×𝑘 (𝑅) and let {𝑒𝑖 𝑗 | 1 ⩽ 𝑖 ⩽ 𝑛, 1 ⩽ 𝑗 ⩽ 𝑘 } be its standard basis.
We argue that the homomorphism 𝛼 : 𝑅𝑛𝑘 → 𝑀 given by 𝑒𝑖 𝑗 ↦→ 𝑚𝑖 𝑗 is surjective
and 𝑀 hence finitely generated. As 𝑆 is faithfully flat as an 𝑅-module, it suffices to
show that 𝑆 ⊗𝑅 𝛼 : 𝑆 ⊗𝑅 𝑅𝑛𝑘 → 𝑆 ⊗𝑅 𝑀 is surjective, but this is evident as 𝑆 ⊗𝑅 𝛼
maps 𝑠𝑖 𝑗 ⊗ 𝑒𝑖 𝑗 to 𝑠𝑖 𝑗 ⊗ 𝑚𝑖 𝑗 .

(b): As 𝑆 is flat as an 𝑅-module, 2.2.19 yields the asserted isomorphism.
(c): In view of the isomorphism in part (b), the assertions follow from (a). □

12.1.21 Proposition. Let 𝑆 be an 𝑅-algebra, flat as an 𝑅-module, and 𝑀 and 𝑁 be
𝑅-complexes. If 𝑀 is degreewise finitely generated and condition (a) or (b) below is
satisfied, then there is an isomorphism in C(𝑆),

𝑆 ⊗𝑅 Hom𝑅 (𝑀, 𝑁) � Hom𝑆 (𝑆 ⊗𝑅 𝑀, 𝑆 ⊗𝑅 𝑁) .

(a) 𝑀 or 𝑁 is bounded.
(b) 𝑀 is bounded below and 𝑁 is bounded above.
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Proof. Two applications of commutativity 12.1.7 in combination with tensor eval-
uation 12.1.15(3,c)/(1,c) explain the first isomorphism in C(𝑆) below; the second
isomorphism holds by 12.1.19,

𝑆 ⊗𝑅 Hom𝑅 (𝑀, 𝑁) � Hom𝑅 (𝑀, 𝑆 ⊗𝑅 𝑁) � Hom𝑆 (𝑆 ⊗𝑅 𝑀, 𝑆 ⊗𝑅 𝑁) . □

12.1.22. Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra that is flat as an 𝑅-module. It
follows from 1.3.49 and 12.1.4 that the homomorphism 𝑆 ⊗𝑅 𝔞 → 𝔞𝑆 induced by
𝑆 ⊗𝑅 𝑅 �−−→ 𝑆 is an isomorphism of 𝑆-modules.

To parse the next result recall from 5.5.11 the definition of a pure exact sequence.

12.1.23 Proposition. Let 𝑆 be an 𝑅-algebra with structure map 𝜑 : 𝑅 → 𝑆. The
following conditions are equivalent.

(i) 𝑆 is faithfully flat as an 𝑅-module.
(ii) 𝑆 is flat as an 𝑅-module and the sequence 0 −−→ 𝑅

𝜑−−→ 𝑆 −−→ 𝑆/𝑅 −−→ 0 is
pure exact.

(iii) 𝜑 is injective and the 𝑅-module 𝑆/𝑅 is flat.

Proof. Let η denote the sequence 0 −−→ 𝑅
𝜑−−→ 𝑆 −−→ 𝑆/Im 𝜑 −−→ 0.

(i)⇒ (ii): Let 𝑀 be an 𝑅-module; to prove that 𝑀 ⊗𝑅 η is exact it suf-
fices by faithful flatness of 𝑆 to show that 𝑆 ⊗𝑅 (𝑀 ⊗𝑅 η) is exact. As the ten-
sor product is right exact, this comes down to showing that the canonical map
𝑆 ⊗𝑅 (𝑀 ⊗𝑅 𝑅) → 𝑆 ⊗𝑅 (𝑀 ⊗𝑅 𝑆) is injective, which follows as the 𝑅-linear map
given by 𝑠 ⊗ (𝑚 ⊗ 𝑠′) ↦→ 𝑠𝑠′ ⊗ (𝑚 ⊗ 1) is a left inverse. Thus, η is pure exact by
5.5.14; in particular, one has Im 𝜑 � 𝑅.

(ii)⇒ (i): By assumption 𝑆 is flat as an 𝑅-module, and for every 𝑅-module 𝑀 ≠ 0
exactness of 𝑀 ⊗𝑅 η implies that 𝑀 ⊗𝑅 𝑆 is non-zero. Thus 𝑆 is faithfully flat.

(ii)⇒ (iii): The map 𝜑 is given to be injective and 𝑆/𝑅 is flat by 5.5.18.
(iii)⇒ (ii): By injectivity of 𝜑, the sequence η is exact with Im 𝜑 � 𝑅, and

flatness of 𝑆/𝑅 implies by 5.5.18 that η is pure. □

12.1.24 Example. The polynomial and power series algebras 𝑅[𝑥1, . . . , 𝑥𝑛] and
𝑅⟦𝑥1, . . . , 𝑥𝑛⟧ are faithfully flat as 𝑅-modules, see 7.3.14.

12.1.25 Proposition. For an element 𝑓 in 𝑅⟦𝑥1, . . . , 𝑥𝑛⟧ the next assertions hold.
(a) 𝑓 is a unit in 𝑅⟦𝑥1, . . . , 𝑥𝑛⟧ if and only if 𝑓 (0, . . . , 0) is a unit in 𝑅 .
(b) 𝑓 belongs to the Jacobson radical of 𝑅⟦𝑥1, . . . , 𝑥𝑛⟧ if and only if 𝑓 (0, . . . , 0)

belongs to the Jacobson radical of 𝑅 .
In particular, if 𝔍 is the Jacobson radical of 𝑅, then 𝔍 + (𝑥1, . . . , 𝑥𝑛) is the Jacobson
radical of 𝑅⟦𝑥1, . . . , 𝑥𝑛⟧.

Proof. By recursion, it suffices to prove the assertions for 𝑛 = 1; set 𝑥 = 𝑥1.
(a): If 𝑓 is a unit in 𝑅⟦𝑥⟧, then there exists 𝑔 ∈ 𝑅⟦𝑥⟧ with 𝑓 𝑔 = 1. It follows that

one has 𝑓 (0)𝑔(0) = 1, so 𝑓 (0) is a unit in 𝑅. For the converse, write 𝑓 = ∑∞
𝑖=0 𝑎𝑖𝑥

𝑖 and
assume that 𝑓 (0) = 𝑎0 is a unit in 𝑅. We must prove the existence of an element 𝑔 =
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𝑗=0 𝑏 𝑗𝑥

𝑗 in 𝑅⟦𝑥⟧ such that the product 𝑓 𝑔 =
∑∞
𝑘=0 (

∑
𝑖+ 𝑗=𝑘 𝑎𝑖𝑏 𝑗 )𝑥𝑘 equals 1; i.e.

we must prove the existence of elements 𝑏0, 𝑏1, 𝑏2, . . . in 𝑅 that solve the equations

𝑎0𝑏0 = 1
𝑎0𝑏1 + 𝑎1𝑏0 = 0

𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0 = 0
...

As 𝑎0 is a unit, one can solve the first equation for 𝑏0, the second equation for 𝑏1 etc.
(b): Assume that 𝑓 does not belong to the Jacobson radical of 𝑅⟦𝑥⟧. For some

maximal ideal 𝔐 in 𝑅⟦𝑥⟧ one then has 𝑓 ∉ 𝔐 and, therefore, 𝔐 + ( 𝑓 ) = 𝑅⟦𝑥⟧.
Thus there exists an element 𝑔 in 𝑅⟦𝑥⟧ with 1− 𝑓 𝑔 ∈ 𝔐. Hence 1− 𝑓 𝑔 is not a unit,
so 1 − 𝑓 (0)𝑔(0) is by part (a) not a unit in 𝑅. It follows that there exists a maximal
ideal 𝔪 in 𝑅 with 1− 𝑓 (0)𝑔(0) ∈ 𝔪. This shows that 𝑓 (0) is not in 𝔪 and hence not
in the Jacobson radical of 𝑅.

Conversely, assume that 𝑓 (0) does not belong to the Jacobson radical of 𝑅. For
some maximal ideal 𝔪 in 𝑅 one then has 𝑓 (0) ∉ 𝔪 and, therefore, 𝔪 + ( 𝑓 (0)) = 𝑅.
Thus there exists an element 𝑟 in 𝑅 with 1 − 𝑟 𝑓 (0) ∈ 𝔪. Hence 1 − 𝑟 𝑓 (0) is not
a unit in 𝑅, so 1 − 𝑟 𝑓 is by part (a) not a unit in 𝑅⟦𝑥⟧. It follows that there exists
a maximal ideal 𝔐 in 𝑅⟦𝑥⟧ with 1 − 𝑟 𝑓 ∈ 𝔐. This shows that 𝑓 is not in 𝔐 and
hence not in the Jacobson radical of 𝑅⟦𝑥⟧. □

Cobase Change

Assuming that 𝑆 is an 𝑅-algebra, recall from 2.1.49 that for every 𝑅-complex 𝑀 one
has the cobase changed 𝑆-complex Hom𝑅 (𝑆, 𝑀).

12.1.26 Proposition. Let 𝑆 be an 𝑅-algebra and𝑀 an 𝑅-complex. If𝑀 is degreewise
finitely generated and 𝑆 is finitely generated as an 𝑅-module, then Hom𝑅 (𝑆, 𝑀) is
degreewise finitely generated over 𝑅 and over 𝑆.

Proof. Considering 𝑆 and 𝑀 as 𝑅-modules, it follows from 1.3.13 that the complex
Hom𝑅 (𝑆, 𝑀) is degreewise finitely generated over 𝑅. As the 𝑅-action factors through
𝑆, it is degreewise finitely generated over 𝑆. □

12.1.27 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑀 and 𝑁 be 𝑅-complexes. There
is an isomorphism in C(𝑆),

Hom𝑅 (𝑆,Hom𝑅 (𝑀, 𝑁)) � Hom𝑆 (𝑆 ⊗𝑅 𝑀,Hom𝑅 (𝑆, 𝑁)) .

Proof. Swap 12.1.9 and 12.1.19 yield isomorphisms in C(𝑆),

Hom𝑅 (𝑆,Hom𝑅 (𝑀, 𝑁)) � Hom𝑅 (𝑀,Hom𝑅 (𝑆, 𝑁))
� Hom𝑆 (𝑆 ⊗𝑅 𝑀,Hom𝑅 (𝑆, 𝑁)) . □

12.1.28 Proposition. Let 𝑆 be an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁 an 𝑆-complex.
There is an isomorphism in C(𝑆),
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Hom𝑅 (𝑁, 𝑀) � Hom𝑆 (𝑁,Hom𝑅 (𝑆, 𝑀)) .

Proof. The unitor 12.1.5 and adjunction 12.1.10 yield isomorphisms in C(𝑆),

Hom𝑅 (𝑁, 𝑀) � Hom𝑅 (𝑆 ⊗𝑆 𝑁, 𝑀) � Hom𝑆 (𝑀,Hom𝑅 (𝑆, 𝑀)) . □

The Dual Numbers

The ring 𝑅[𝑥]/(𝑥2) is known as the dual numbers over 𝑅; viewed as an 𝑅-module,
it is free with basis {1, 𝑥}. There are canonical ring homomorphisms,

𝑅↣→ 𝑅[𝑥]/(𝑥2) −↠ 𝑅 ,

given by 𝑟 ↦→ 𝑟 and 𝑟 + 𝑠𝑥 ↦→ 𝑟 for 𝑟, 𝑠 ∈ 𝑅. Thus, starting with an 𝑅-complex
there are a few canonical ways to turn it into an 𝑅[𝑥]/(𝑥2)-complex, namely by
base change or cobase change along the ring homomorphism 𝑅↣ 𝑅[𝑥]/(𝑥2) or by
restriction of scalars along 𝑅[𝑥]/(𝑥2) ↠ 𝑅.

12.1.29 Lemma. There is an isomorphism of 𝑅[𝑥]/(𝑥2)-modules,

𝜉 : 𝑅[𝑥]/(𝑥2) −→ Hom𝑅 (𝑅[𝑥]/(𝑥2), 𝑅) ,
given by

𝜉 (𝑟 + 𝑠𝑥) (𝑎 + 𝑏𝑥) = 𝑟𝑏 + 𝑠𝑎 for 𝑎, 𝑏, 𝑟, 𝑠 ∈ 𝑅 .

The inverse of 𝜉 is given by 𝜉−1 (𝛼) = 𝛼(𝑥) + 𝛼(1)𝑥 for 𝛼 ∈ Hom𝑅 (𝑅[𝑥]/(𝑥2), 𝑅) .

Proof. As the 𝑅-algebra 𝑅[𝑥]/(𝑥2) is free as an 𝑅-module with basis {1, 𝑥}, the 𝑅-
module Hom𝑅 (𝑅[𝑥]/(𝑥2), 𝑅) is free with dual basis {1∗, 𝑥∗}, see 1.4.1. By definition,
𝜉 is given by 1 ↦→ 𝑥∗ and 𝑥 ↦→ 1∗ while 𝜉−1 is given by 1∗ ↦→ 𝑥 and 𝑥∗ ↦→ 1, so 𝜉 and
𝜉−1 are mutually inverse homomorphisms of 𝑅-modules. Finally, it is straightforward
to verify that 𝜉 is 𝑅[𝑥]/(𝑥2)-linear. □

12.1.30 Proposition. Let 𝑀 be an 𝑅-complex. There is an isomorphism,

𝑅[𝑥]/(𝑥2) ⊗𝑅 𝑀 � Hom𝑅 (𝑅[𝑥]/(𝑥2), 𝑀) ,

of 𝑅[𝑥]/(𝑥2)-complexes which is natural in 𝑀; i.e. base change and cobase along
the ring homomorphism 𝑅↣ 𝑅[𝑥]/(𝑥2) are naturally isomorphic functors.

Proof. Consider the composite of isomorphisms of 𝑅[𝑥]/(𝑥2)-complexes that com-
bines 12.1.29, 12.1.4, tensor evaluation 12.1.12/12.1.15(d), and the unitor 12.1.5,

𝑅[𝑥]/(𝑥2) ⊗𝑅 𝑀

𝜉 ⊗𝑀 �

��

// Hom𝑅 (𝑅[𝑥]/(𝑥2), 𝑀)

Hom𝑅 (𝑅[𝑥]/(𝑥2), 𝑅) ⊗𝑅 𝑀
𝜃𝑅 [𝑥 ]/(𝑥

2 )𝑅𝑀

�
// Hom𝑅 (𝑅[𝑥]/(𝑥2), 𝑅 ⊗𝑅 𝑀) .

� Hom (𝑅[𝑥 ]/(𝑥2 ) ,𝜇𝑀
𝑅
)

OO

Note that all three isomorphisms are natural in 𝑀 . □
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Remark. As illustrated by 2.1.49 and 12.1.30 it is possible to have functors F : U −−→←−− V :G where
F is both left and right adjoint to G. Such a situation is called an ‘ambidextrous adjunction’. Other
names are ‘ambiadjunction’, ‘ambĳunction’, and ‘Frobenius adjunction’.

Exercises

E 12.1.1 Show that every commutative ring has IBN.
E 12.1.2 Show that the polynomial ring in countably many variables over a field is coherent but

not Noetherian.
E 12.1.3 Show that the ring { 𝑓 ∈ ℚ[𝑥 ] | 𝑓 (0) ∈ ℤ} is not Noetherian by constructing an ideal

that is not finitely generated.
E 12.1.4 Let 𝑆 be an 𝑅-algebra that is faithfully flat as an 𝑅-module. Show: (a) An 𝑅-module 𝐼

is injective if the 𝑆-module 𝑆 ⊗𝑅 𝐼 is injective. (b) An 𝑅-module 𝑃 is finitely generated
and projective if and only if the 𝑆-module 𝑆 ⊗𝑅 𝑃 is finitely generated and projective.

E 12.1.5 Let 𝑆 be an 𝑅-algebra that is is faithfully projective as an 𝑅-module. Show that an
𝑅-module 𝐹 is flat if the 𝑆-module Hom𝑅 (𝑆, 𝐹 ) is flat.

In exercises E 12.1.6–12.1.11 let 𝑀 ∈ C(𝑄–𝑅) , 𝑋 ∈ C(𝑅–𝑆) , and 𝑁 ∈ C(𝑆–𝑇 ) .

E 12.1.6 Show that the𝑄-, 𝑅-, and 𝑆-actions on 𝑀 ⊗𝑅 𝑋 and 𝑋 ⊗𝑅 𝑀 are compatible and that
commutativity 𝜐𝑀𝑋 is 𝑄-, 𝑅-, and 𝑆-linear.

E 12.1.7 Show that the 𝑄-, 𝑅-, 𝑆-, and 𝑇-actions on (𝑀 ⊗𝑅 𝑋) ⊗𝑆 𝑁 and 𝑀 ⊗𝑅 (𝑋 ⊗𝑆 𝑁 )
are compatible and that associativity 𝜔𝑀𝑋𝑁 is 𝑄-, 𝑅-, 𝑆-, and 𝑇-linear.

E 12.1.8 Show that the 𝑄-, 𝑅-, 𝑆-, and 𝑇-actions on the complexes Hom𝑅 (𝑀,Hom𝑆 (𝑁, 𝑋) )
and Hom𝑆 (𝑁,Hom𝑅 (𝑀, 𝑋) ) are compatible and that swap 𝜁𝑀𝑋𝑁 is 𝑄-, 𝑅-, 𝑆-,
and 𝑇-linear.

E 12.1.9 Show that the 𝑄-, 𝑅-, 𝑆-, and 𝑇-actions on the complexes Hom𝑅 (𝑋 ⊗𝑆 𝑁, 𝑀 ) and
Hom𝑆 (𝑁,Hom𝑅 (𝑋, 𝑀 ) ) are compatible and that adjunction 𝜌𝑀𝑋𝑁 is 𝑄-, 𝑅-, 𝑆-,
and 𝑇-linear.

E 12.1.10 Show that the 𝑄-, 𝑅-, 𝑆-, and 𝑇-actions on the complexes Hom𝑅 (𝑀, 𝑋) ⊗𝑆 𝑁 and
Hom𝑅 (𝑀, 𝑋 ⊗𝑆 𝑁 ) are compatible and that tensor evaluation 𝜃𝑀𝑋𝑁 is 𝑄-, 𝑅-, 𝑆-,
and 𝑇-linear.

E 12.1.11 Show that the 𝑄-, 𝑅-, 𝑆-, and 𝑇-actions on the complexes 𝑁 ⊗𝑆 Hom𝑅 (𝑋, 𝑀 ) and
Hom𝑅 (Hom𝑆 (𝑁, 𝑋) , 𝑀 ) are compatible and that homomorphism evaluation 𝜂𝑀𝑋𝑁
is 𝑄-, 𝑅-, 𝑆-, and 𝑇-linear.

E 12.1.12 (Cf. 12.1.29) Show that the maps that appear in 12.1.29 are 𝑅[𝑥 ]/(𝑥2 )-linear.

12.2 Derived Hom and Tensor Product Functors

Synopsis. The functors RHom and ⊗L; boundedness and finiteness.

In Chap. 7 we handled derived functors on categories of complexes of bimodules by
introducing ring homomorphisms, say 𝑅 ⊗𝕜 𝑆

o → 𝐵, and placing conditions on 𝐵
as an 𝑅- or 𝑆-module. This setup also handles the case where 𝑆 is an 𝑅-algebra.

12.2.1. Let 𝑆 be an 𝑅-algebra with structure map 𝜑 : 𝑅 → 𝑆. The composite

(12.2.1.1) 𝑅 −→ 𝑅 ⊗𝕜 𝑆 −→ 𝑆
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of the canonical ring homomorphism 𝑅 → 𝑅 ⊗𝕜 𝑆 and the map given by multipli-
cation, 𝑟 ⊗ 𝑠 ↦→ 𝑟𝑠, is a ring homomorphism as 𝑅 and 𝑆 are commutative, and it
coincides with the structure map 𝜑. In particular, the algebra 𝑆 is projective/flat as an
𝑅-module, i.e. via 𝜑, if and only if it is projective/flat as an 𝑅-module via (12.2.1.1).

Notice that for 𝑆 = 𝑅 the composite (12.2.1.1) is simply the retract. Notice also
that the convention that 𝑅-modules are symmetric 𝑅–𝑅-bimodules corresponds to
restriction of scalars along the second map 𝑅e → 𝑅 of the composite; see 7.3.15.

Derived Hom Functor

The derived functor RHom𝑅 is defined in 7.3.1; now that 𝑅 is assumed to be
commutative, RHom𝑅 is as already observed in 7.3.15 augmented to a functor that
outputs 𝑅-complexes.

12.2.2 Proposition. The right derived Hom functor is augmented as follows:

RHom𝑅 ( , ) : D(𝑅–𝑄)op ×D(𝑅) −→ D(𝑄–𝑅) ,

induced by the functor Hom𝑅 ( , I𝑅 ( )) from K(𝑅–𝑄)op ×K(𝑅) to K(𝑄–𝑅), and

RHom𝑅 ( , ) : D(𝑅)op ×D(𝑅–𝑆) −→ D(𝑅–𝑆) ,

induced by the functor Hom𝑅 (P𝑅 ( ), ) from K(𝑅)op ×K(𝑅–𝑆) to K(𝑅–𝑆).
In particular, if 𝑄 and 𝑆 are 𝑅-algebras, then RHom𝑅 is augmented to functors

D(𝑄)op ×D(𝑅) −→ D(𝑄) and D(𝑅)op ×D(𝑆) −→ D(𝑆) .

These functors are 𝕜-bilinear, they preserves products in both variables, and they
are triangulated in both variables.

Proof. With 𝐴 = 𝑅 ⊗𝕜 𝑄 and 𝑆 = 𝑅 = 𝐵 it follows from 12.2.1 that condition (b) in
7.3.6 is satisfied, and with𝑄 = 𝑅 = 𝐴 and 𝐵 = 𝑅 ⊗𝕜 𝑆 condition 7.3.6(a) is satisfied.
In either case RHom𝑅 is augmented and induced as asserted. It also follows from
7.3.6 that these functors are 𝕜-bilinear, preserves products in both variables, and that
they are triangulated in both variables.

If 𝑄 and 𝑆 are 𝑅-algebras, then D(𝑄)op, D(𝑄), and D(𝑆) are subcategories of
D(𝑅–𝑄)op, D(𝑄–𝑅), and D(𝑅–𝑆), so that last assertions follow by (co)restriction
of the already established functors. □

Remark. Strong assumptions on 𝕜, see 7.3.14, ensure that RHom𝑅 is always—i.e. without addi-
tional assumptions on𝑄, 𝑅, or 𝑆—augmented to a functor D(𝑅–𝑄)op ×D(𝑅–𝑆) −→D(𝑄–𝑆) .

12.2.3 Proposition. Let 𝑄 and 𝑆 be 𝑅-algebras. If 𝑄 is projective as an 𝑅-module,
then RHom𝑅 is augmented as follows:

RHom𝑅 ( , ) : D(𝑄)op ×D(𝑆) −→ D(𝑄–𝑆) ;

it is induced by Hom𝑅 (P𝑄 ( ), ) : K(𝑄)op ×K(𝑆) → K(𝑄–𝑆).
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Proof. With 𝐴 = 𝑄 and 𝐵 = 𝑆 it follows from 12.2.1 that condition (a) in 7.3.6 is
satisfied, so RHom𝑅 is augmented and induced as asserted. □

12.2.4 Proposition. Let 𝑄 and 𝑆 be 𝑅-algebras. If 𝑆 is flat as an 𝑅-module, then
RHom𝑅 is augmented as follows:

RHom𝑅 ( , ) : D(𝑄)op ×D(𝑆) −→ D(𝑄–𝑆) ;

it is induced by Hom𝑅 ( , I𝑆 ( )) : K(𝑄)op ×K(𝑆) → K(𝑄–𝑆).

Proof. With 𝐴 = 𝑄 and 𝐵 = 𝑆 it follows from 12.2.1 that condition (b) in 7.3.6 is
satisfied, so RHom𝑅 is augmented and induced as as claimed. □

12.2.5. something about ext

12.2.6 Proposition. Let 𝑆 be an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁 an 𝑆-complex.
If 𝑀 is in Df

⊐ (𝑅) and 𝑁 in Df
⊏ (𝑆), then RHom𝑅 (𝑀, 𝑁) belongs to Df

⊏ (𝑆).

Proof. The assertion is a special case of 7.6.16. □

12.2.7 Proposition. Let 𝑆 be an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁 an 𝑆-complex.
If 𝑆 is finitely generated as an 𝑅-module, 𝑁 is in Df

⊐ (𝑆), and 𝑀 is in Df
⊏ (𝑅), then

RHom𝑅 (𝑁, 𝑀) belongs to Df
⊏ (𝑆).

Proof. As 𝑆 is finitely generated as an 𝑅-module, 𝑁 belongs to Df
⊐ (𝑅) by 1.3.15,

whence RHom𝑅 (𝑁, 𝑀) belongs to Df
⊏ (𝑅) by 12.2.6 applied with 𝑆 = 𝑅. By 12.2.4

the complex RHom𝑅 (𝑁, 𝑀) has an 𝑆-structure, so by another application of 1.3.15
the homology H(RHom𝑅 (𝑁, 𝑀)) is also degreewise finitely generated over 𝑆. □

Derived Tensor Product Functor

The left derived tensor product functor ⊗L
𝑅

is defined in 7.4.1; now that 𝑅 is assumed
to be commutative, ⊗L

𝑅
is as already observed in 7.4.12 augmented to a functor that

outputs 𝑅-complexes.

12.2.8 Proposition. The derived tensor product functor is augmented as follows:

⊗L
𝑅 : D(𝑄–𝑅) ×D(𝑅) −→ D(𝑄–𝑅) ,

induced by the functor ⊗𝑅 P𝑅 ( ) from K(𝑄–𝑅) ×K(𝑅) to K(𝑄–𝑅), and

⊗L
𝑅 : D(𝑅) ×D(𝑅–𝑆) −→ D(𝑅–𝑆) ,

induced by the functor P𝑅 ( ) ⊗𝑅 from K(𝑅) ×K(𝑅–𝑆) to K(𝑅–𝑆).
In particular, if 𝑄 and 𝑆 are 𝑅-algebras, then ⊗L

𝑅
is augmented to functors

D(𝑄) ×D(𝑅) −→ D(𝑄) and D(𝑅) ×D(𝑆) −→ D(𝑆) .

These functors are 𝕜-bilinear, they preserves coproducts in both variables, and
they are triangulated in both variables.
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Proof. With 𝐴 = 𝑄 ⊗𝕜 𝑅 and 𝑆 = 𝑅 = 𝐵 it follows from 12.2.1 that condition (b) in
7.4.5 is satisfied, and with𝑄 = 𝑅 = 𝐴 and 𝐵 = 𝑅 ⊗𝕜 𝑆 condition 7.4.5(a) is satisfied.
In either case ⊗L

𝑅
is augmented and induced as asserted. It also follows from 7.4.5

that these functors are 𝕜-bilinear, preserves coproducts in both variables, and that
they are triangulated in both variables.

If𝑄 and 𝑆 are 𝑅-algebras, thenD(𝑄) andD(𝑆) are subcategories ofD(𝑄–𝑅) and
D(𝑅–𝑆) so that last assertions follow by (co)restriction of the already established
functors. □

Remark. Under strong assumptions on 𝕜, the functor ⊗L is always—i.e. without extra assumptions
on𝑄, 𝑅, or 𝑆—augmented to a functor D(𝑄–𝑅) ×D(𝑅–𝑆) −→D(𝑄–𝑆); see the commentary
after 7.4.11.

12.2.9 Proposition. Let 𝑄 and 𝑆 be 𝑅-algebras. If 𝑄 is flat as an 𝑅-module, then
⊗L
𝑅

is augmented as follows:

⊗L
𝑅 : D(𝑄) ×D(𝑆) −→ D(𝑄–𝑆) ;

it is induced by P𝑄 ( ) ⊗𝑅 : K(𝑄) ×K(𝑆) → K(𝑄–𝑆).

Proof. With 𝐴 = 𝑄 and 𝐵 = 𝑆 it follows from 12.2.1 that condition (a) in 7.4.5 is
satisfied, so ⊗L

𝑅
is augmented and induced as asserted. □

12.2.10 Proposition. Let 𝑄 and 𝑆 be 𝑅-algebras. If 𝑆 is flat as an 𝑅-module, then
⊗L
𝑅

is augmented as follows:

⊗L
𝑅 : D(𝑄) ×D(𝑆) −→ D(𝑄–𝑆) ;

it is induced by ⊗𝑅 P𝑆 ( ) : K(𝑄) ×K(𝑆) → K(𝑄–𝑆).

Proof. With 𝐴 = 𝑄 and 𝐵 = 𝑆 it follows from 12.2.1 that condition (b) in 7.4.5 is
satisfied, so ⊗L

𝑅
is augmented and induced as asserted. □

12.2.11. something about Tor

12.2.12 Proposition. Let 𝑆 be an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁 an 𝑆-complex.
If 𝑀 is in Df

⊐ (𝑅) and 𝑁 in Df
⊐ (𝑆), then the complex 𝑁 ⊗L

𝑅
𝑀 belongs to Df

⊐ (𝑆).

Proof. The assertion is a special case of 7.6.18. □

12.3 Standard Isomorphisms and Evaluation Morphisms in D

Synopsis. Unitor; counitor; commutativity; associativity; swap; adjunction; biduality; tensor eval-
uation; homomophism evaluation; derived base change; derived cobase change.

Under mild assumptions the derived Hom and tensor product functors uphold ad-
ditional ring actions; the morphisms that compare composites of these functors
follow suit. We start by recording in 12.3.3–12.3.11 the most basic versions of these
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morphisms. For the unitor and counitor there is nothing more to say, but more re-
fined versions of commutativity, associativity, swap, adjunction, and the evaluation
morphisms are recorded in 12.3.12–12.3.27.

Standard Isomorphisms

12.3.1. By 12.2.8 there is a functor,

𝑅 ⊗L
𝑅 : D(𝑅–𝑆) −→ D(𝑅–𝑆) induced by 𝑅 ⊗𝑅 .

As in 7.5.2 the unitor 7.1.11 induces a natural isomorphism,

𝝁𝑅 : 𝑅 ⊗L
𝑅 −→ IdD(𝑅–𝑆) ,

of endofunctors on D(𝑅–𝑆), which is called unitor.

12.3.2. By 12.2.2 there is a functor,

RHom𝑅 (𝑅, ) : D(𝑅–𝑆) −→ D(𝑅–𝑆) induced by Hom𝑅 (𝑅, ) .

As in 7.5.6 the counitor 7.1.12 induces a natural isomorphism,

𝝐𝑅 : RHom𝑅 (𝑅, ) −→ IdD(𝑅–𝑆) ,

of endofunctors on D(𝑅–𝑆), which is called counitor.

Proposition. For a complex 𝑀 ∈ D(𝑅–𝑆) there are isomorphisms

𝑅 ⊗L
𝑅 𝑀

𝝁𝑀
𝑅−−−−→ 𝑀 (unitor)12.3.3

𝑀
𝝐𝑀
𝑅−−−−→ RHom𝑅 (𝑅, 𝑀) (counitor)12.3.4

in D(𝑅–𝑆). As natural transformations of functors, 𝝁
𝑅

and 𝝐
𝑅

are triangulated.

Proof. The arguments in the proofs of 7.5.4 and 7.5.8 apply verbatim. □

For 𝑅-complexes 𝑀 and 𝑁 , commutativity 𝝊𝑀𝑁 is by default an isomorphism
in D(𝕜), see 7.5.10. Just as for commutativity in the category of complexes we now
show that 𝝊𝑀𝑁 is 𝑅-linear and not by applying 7.5.10 with 𝕜 = 𝑅, as that would
constrict our ability to consider additional ring actions on 𝑀 and 𝑁 .

12.3.5 Proposition. For complexes 𝑀 and 𝑁 in D(𝑅) commutativity,

𝝊𝑀𝑁 : 𝑀 ⊗L
𝑅 𝑁 −→ 𝑁 ⊗L

𝑅 𝑀 ,

is an isomorphism in D(𝑅). If 𝑀 belongs to D(𝑄–𝑅), then 𝝊𝑀𝑁 is an isomorphism
in D(𝑄–𝑅), and if 𝑁 belongs to D(𝑅–𝑆), then 𝝊𝑀𝑁 is an isomorphism in D(𝑅–𝑆).
As a natural transformation of functors, 𝝊 is triangulated in each variable.

Proof. It follows from 12.2.1 that condition (b) in 7.5.13 is satisfied with 𝐴 = 𝑄 ⊗𝕜 𝑅
and 𝑆 = 𝑅 = 𝐵; similarly (a) is satisfied with with 𝑄 = 𝑅 = 𝐴 and 𝐵 = 𝑅 ⊗𝕜 𝑆. □
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Proposition. For complexes 𝑀 ∈ D(𝑅), 𝑋 ∈ D(𝑅–𝑆), and 𝑁 ∈ D(𝑆), the mor-
phisms

(𝑀 ⊗L
𝑅 𝑋) ⊗L

𝑆 𝑁
𝝎𝑀𝑋𝑁−−−−→ 𝑀 ⊗L

𝑅 (𝑋 ⊗L
𝑆 𝑁) (associativity)12.3.6

RHom𝑅 (𝑀,RHom𝑆 (𝑁, 𝑋))
𝜻𝑀𝑋𝑁

−−−−→ RHom𝑆 (𝑁,RHom𝑅 (𝑀, 𝑋)) (swap)12.3.7

RHom𝑅 (𝑋 ⊗L
𝑆 𝑀, 𝑁)

𝝆𝑀𝑋𝑁

−−−−→ RHom𝑆 (𝑀,RHom𝑅 (𝑋, 𝑁)) (adj.)12.3.8

defined in 7.5.17, 7.5.24, and 7.5.30 are isomorphisms in D(𝑅–𝑆). As natural
transformations of functors 𝝎, 𝜻 , and 𝝆 are triangulated in each variable.

Proof. It follows from 12.2.1 that condition (a) in 7.5.20, 7.5.27, and 7.5.33 is
satisfied with 𝑄 = 𝑅 = 𝐴 and 𝐵 = 𝑅 ⊗𝕜 𝑆 and 𝑇 = 𝑆 = 𝐶. □

Evaluation Morphisms

12.3.9 Proposition. For complexes 𝑀 ∈ D(𝑄–𝑅) and 𝑋 ∈ D(𝑅) biduality,

𝜹𝑀𝑋 : 𝑀 −→ RHom𝑅 (RHom𝑅 (𝑀, 𝑋), 𝑋) ,

defined in 8.4.2 is a morphism in D(𝑄–𝑅). As a natural transformation of functors,
𝜹𝑋 is triangulated.

Proof. The assertions follow per 12.2.1 from 8.4.3 applied with 𝑆 = 𝑅 = 𝐵. □

Proposition. For complexes 𝑀 ∈ D(𝑅), 𝑋 ∈ D(𝑅–𝑆), and 𝑁 ∈ D(𝑆) the mor-
phisms

RHom𝑅 (𝑀, 𝑋) ⊗L
𝑆 𝑁

𝜽𝑀𝑋𝑁−−−−−→ RHom𝑅 (𝑀, 𝑋 ⊗L
𝑆 𝑁) (tensor evaluation)12.3.10

𝑁 ⊗L
𝑆 RHom𝑅 (𝑋, 𝑀)

𝜼𝑀𝑋𝑁

−−−−−→ RHom𝑅 (RHom𝑆 (𝑁, 𝑋), 𝑀) (hom. eval.)12.3.11

defined in 8.4.6 and 8.4.19 are morphisms in D(𝑅–𝑆). As natural transformations
of functors, 𝜽 and 𝜼 are triangulated in each variable.

Proof. The assertions follow per 12.2.1 from 8.4.9 and 8.4.22 applied with 𝑄 =

𝑅 = 𝐴 and 𝐵 = 𝑅 ⊗𝕜 𝑆 and 𝑇 = 𝑆 = 𝐶. □

Commutativity

12.3.12 Proposition. Let𝑄 and 𝑆 be 𝑅-algebras and let 𝑀 ∈ D(𝑄) and 𝑁 ∈ D(𝑆).
If 𝑄 or 𝑆 is flat as an 𝑅-module, then commutativity,

𝝊𝑀𝑁 : 𝑀 ⊗L
𝑅 𝑁 −→ 𝑁 ⊗L

𝑅 𝑀 ,

is an isomorphism in D(𝑄–𝑆).

Proof. Apply 7.5.13 with 𝐴 = 𝑄 and 𝐵 = 𝑆, cf. 12.2.1. □
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Associativity

12.3.13 Proposition. Let 𝑄 be an 𝑅-algebra and 𝑇 an 𝑆-algebra. For complexes
𝑀 ∈ D(𝑄), 𝑋 ∈ D(𝑅–𝑆), and 𝑁 ∈ D(𝑇) associativity,

𝝎𝑀𝑋𝑁 : (𝑀 ⊗L
𝑅 𝑋) ⊗L

𝑆 𝑁 −→ 𝑀 ⊗L
𝑅 (𝑋 ⊗L

𝑆 𝑁) ,

is an isomorphism in D(𝑄–𝑇) if one of the following conditions is satisfied.
(a) 𝑄 is flat as an 𝑅-module and 𝑇 is flat as an 𝑆-module.
(b) 𝑄 is flat as an 𝑅-module and 𝑆 is an 𝑅-algebra.
(c) 𝑇 is flat as an 𝑆-module and 𝑅 is an 𝑆-algebra.

Proof. The assertions follow from applications of associativity 7.5.20 with 𝐴 = 𝑄

and 𝐶 = 𝑇 , cf. 12.2.1. Indeed, if condition (a) is satisfied, then so is (a) in 7.5.20
with 𝐵 = 𝑅 ⊗𝕜 𝑆, if condition (b) is satisfied, then so is (b) in 7.5.20 with 𝐵 = 𝑆, and
if condition (c) is satisfied, then so is (c) in 7.5.20 with 𝐵 = 𝑅. □

12.3.14 Corollary. Let 𝑀 , 𝑋 , and 𝑁 be 𝑅-complexes. Associativity,

𝝎𝑀𝑋𝑁 : (𝑀 ⊗L
𝑅 𝑋) ⊗L

𝑅 𝑁 −→ 𝑀 ⊗L
𝑅 (𝑋 ⊗L

𝑅 𝑁) ,

is an isomorphism in D(𝑅). Moreover, the following assertions hold:
(a) If𝑄 is an 𝑅-algebra and 𝑀 ∈ D(𝑄), then𝝎𝑀𝑁𝑋 is an isomorphism inD(𝑄) .
(b) If 𝑇 is an 𝑅-algebra and 𝑁 ∈ D(𝑇), then 𝝎𝑀𝑁𝑋 is an isomorphism in D(𝑇) .

Proof. With 𝑅 = 𝑆 = 𝑇 condition (c) in 12.3.13 is trivially satisfied, and this yields
part (a); similarly condition (b) is satisfied with 𝑄 = 𝑅 = 𝑆, and that yields (b). □

Swap

12.3.15 Proposition. Let 𝑄 be an 𝑅-algebra and 𝑇 an 𝑆-algebra. For complexes
𝑀 ∈ D(𝑄), 𝑋 ∈ D(𝑅–𝑆), and 𝑁 ∈ D(𝑇) swap,

𝜻𝑀𝑋𝑁 : RHom𝑅 (𝑀,RHom𝑆 (𝑁, 𝑋)) −→ RHom𝑆 (𝑁,RHom𝑅 (𝑀, 𝑋)) ,

is an isomorphism in D(𝑄–𝑇) if one of the following conditions is satisfied.
(a) 𝑄 is projective as an 𝑅-module and 𝑇 is projective as an 𝑆-module.
(b) 𝑄 is projective as an 𝑅-module and 𝑆 is an 𝑅-algebra.
(c) 𝑇 is projective as an 𝑆-module and 𝑅 is an 𝑆-algebra.

Proof. The assertions follow from applications of swap 7.5.27 with 𝐴 = 𝑄 and
𝐶 = 𝑇 , cf. 12.2.1. Indeed, if condition (a) is satisfied, then so is (a) in 7.5.27 with
𝐵 = 𝑅 ⊗𝕜 𝑆, if condition (b) is satisfied, then so is (b) in 7.5.27 with 𝐵 = 𝑆, and if
condition (c) is satisfied, then so is (c) in 7.5.27 with 𝐵 = 𝑅. □

12.3.16 Corollary. Let 𝑀 , 𝑋 , and 𝑁 be 𝑅-complexes. Swap,

𝜻𝑀𝑋𝑁 : RHom𝑅 (𝑀,RHom𝑅 (𝑁, 𝑋)) −→ RHom𝑅 (𝑁,RHom𝑅 (𝑀, 𝑋)) ,

is an isomorphism in D(𝑅). Moreover, the following assertions hold:
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(a) If𝑄 is an 𝑅-algebra and 𝑀 ∈ D(𝑄), then 𝜻𝑀𝑁𝑋 is an isomorphism in D(𝑄) .
(b) If 𝑇 is an 𝑅-algebra and 𝑁 ∈ D(𝑇), then 𝜻𝑀𝑁𝑋 is an isomorphism in D(𝑇) .

Proof. With 𝑅 = 𝑆 = 𝑇 condition (c) in 12.3.15 is trivially satisfied, and this yields
part (a); similarly condition (b) is satisfied with 𝑄 = 𝑅 = 𝑆, and that yields (b). □

Adjunction

12.3.17 Proposition. Let 𝑄 be an 𝑅-algebra and 𝑇 an 𝑆-algebra. For complexes
𝑀 ∈ D(𝑄), 𝑋 ∈ D(𝑅–𝑆), and 𝑁 ∈ D(𝑇) adjunction,

𝝆𝑀𝑋𝑁 : RHom𝑅 (𝑋 ⊗L
𝑆 𝑁, 𝑀) −→ RHom𝑆 (𝑁,RHom𝑅 (𝑋, 𝑀)) ,

is an isomorphism in D(𝑄–𝑇) if one of the following conditions is satisfied.
(a) 𝑄 is flat as an 𝑅-module and 𝑇 is projective as an 𝑆-module.
(b) 𝑄 is flat as an 𝑅-module and 𝑆 is an 𝑅-algebra.
(c) 𝑇 is projective as an 𝑆-module and 𝑅 is an 𝑆-algebra.

Proof. The assertions follow from applications of adjunction 7.5.33 with 𝐴 = 𝑄

and 𝐶 = 𝑇 , cf. 12.2.1. Indeed, if condition (a) is satisfied, then so is (a) in 7.5.33
with 𝐵 = 𝑅 ⊗𝕜 𝑆, if condition (b) is satisfied, then so is (b) in 7.5.33 with 𝐵 = 𝑆, and
if condition (c) is satisfied, then so is (c) in 7.5.33 with 𝐵 = 𝑅. □

12.3.18 Corollary. Let 𝑀 , 𝑋 , and 𝑁 be 𝑅-complexes. Adjunction,

𝝆𝑀𝑋𝑁 : RHom𝑅 (𝑋 ⊗L
𝑅 𝑁, 𝑀) −→ RHom𝑅 (𝑁,RHom𝑅 (𝑋, 𝑀)) ,

is an isomorphism in D(𝑅). Moreover, the following assertions hold:
(a) If𝑄 is an 𝑅-algebra and 𝑀 ∈ D(𝑄), then 𝝆𝑀𝑁𝑋 is an isomorphism in D(𝑄) .
(b) If 𝑇 is an 𝑅-algebra and 𝑁 ∈ D(𝑇), then 𝝆𝑀𝑁𝑋 is an isomorphism in D(𝑇) .

Proof. With 𝑅 = 𝑆 = 𝑇 condition (c) in 12.3.17 is trivially satisfied, and this yields
part (a); similarly condition (b) is satisfied with 𝑄 = 𝑅 = 𝑆, and that yields (b). □

Biduality

12.3.19 Proposition. Let 𝑄 be an 𝑅-algebra. For complexes 𝑋 ∈ D(𝑅) and 𝑀 ∈
D(𝑄) biduality,

𝜹𝑀𝑋 : 𝑀 −→ RHom𝑅 (RHom𝑅 (𝑀, 𝑋), 𝑋) ,

is a morphism in D(𝑄).

Proof. If𝑄 is an 𝑅-algebra, thenD(𝑄) is a subcategory of D(𝑄–𝑅), so the asserted
morphism is a (co)restriction of the morphism from 12.3.9. □
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12.3.20 Theorem. Let 𝑀 in Df
⊏⊐ (𝑅) be a complex of finite projective dimension. The

biduality morphism 𝜹𝑀𝑅 is an isomorphism in D(𝑅) and the next equalities hold.

pd𝑅 𝑀 = − inf RHom𝑅 (𝑀, 𝑅) and pd𝑅 RHom𝑅 (𝑀, 𝑅) = − inf 𝑀 ;

in particular, RHom𝑅 (𝑀, 𝑅) is complex in Df
⊏⊐ (𝑅) of finite projective dimension.

Further, there are natural isomorphisms of endofunctors on D(𝑅),

RHom𝑅 (𝑀, ) ≃ RHom𝑅 (𝑀, 𝑅) ⊗L
𝑅

and
⊗L
𝑅 𝑀 ≃ RHom𝑆 (RHom𝑅 (𝑀, 𝑅), ) .

Proof. Biduality 𝜹𝑀𝑅 is an isomorphism by 10.2.1 applied with 𝕜 = 𝑅, and the
equalities hold by 10.2.2. The natural isomorphisms of functors come from 10.2.3
and commutativity 12.3.5. □

Tensor Evaluation

12.3.21 Proposition. Let 𝑄 be an 𝑅-algebra, projective as an 𝑅-module, and 𝑇
an 𝑆-algebra, flat as an 𝑆-module. For complexes 𝑀 ∈ D(𝑄), 𝑋 ∈ D(𝑅–𝑆), and
𝑁 ∈ D(𝑇) tensor evaluation,

𝜽𝑀𝑋𝑁 : RHom𝑅 (𝑀, 𝑋) ⊗L
𝑆 𝑁 −→ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑆 𝑁) ,

is a morphism in D(𝑄–𝑇).

Proof. Apply 8.4.9 with 𝐴 = 𝑄 and 𝐵 = 𝑅 ⊗𝕜 𝑆 and 𝐶 = 𝑇 , cf. 12.2.1. □

12.3.22 Theorem. Let 𝑄 be an 𝑅-algebra, projective as an 𝑅-module, and 𝑇 an
𝑆-algebra, flat as an 𝑆-module. Let 𝑀 ∈ D(𝑄), 𝑋 ∈ D(𝑅–𝑆), and 𝑁 ∈ D(𝑇).

If𝑄 is finitely generated as an 𝑅-module, then the morphism 𝜽𝑀𝑋𝑁 from 12.3.21
is an isomorphism in D(𝑄–𝑇) provided that one of the next conditions is satisfied.

(a) 𝑀 is in Df
⊏⊐ (𝑄) and pd𝑄 𝑀 is finite.

(b) 𝑀 is in Df
⊐ (𝑄), 𝑋 is in D⊏ (𝑅–𝑆), and fd𝑇 𝑁 is finite.

If 𝑇 is finitely generated as an 𝑆-module, then the morphism 𝜽𝑀𝑋𝑁 from 12.3.21
is an isomorphism in D(𝑄–𝑇) provided that one of the next conditions is satisfied.

(c) 𝑁 is in Df
⊏⊐ (𝑇) and pd𝑇 𝑁 is finite.

(d) pd𝑄 𝑀 is finite, 𝑋 is in D⊐ (𝑅–𝑆), and 𝑁 is in Df
⊐ (𝑇) .

Proof. Apply 8.4.12 with 𝐴 = 𝑄 and 𝐵 = 𝑅 ⊗𝕜 𝑆 and 𝐶 = 𝑇 , cf. 12.2.1. □

12.3.23 Corollary. Let 𝑀 , 𝑋 , and 𝑁 be 𝑅-complexes. Tensor evaluation,

𝜽𝑀𝑋𝑁 : RHom𝑅 (𝑀, 𝑋) ⊗L
𝑅 𝑁 −→ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑅 𝑁) ,

is an isomorphism in D(𝑅) if one of the next conditions is satisfied.
(a) 𝑀 is in Df

⊏⊐ (𝑅) and pd𝑅 𝑀 is finite.
(b) 𝑀 is in Df

⊐ (𝑅), 𝑋 is in D⊏ (𝑅), and fd𝑅 𝑁 is finite.
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(c) 𝑁 is in Df
⊏⊐ (𝑅) and pd𝑅 𝑁 is finite.

(d) pd𝑅 𝑀 is finite, 𝑋 is in D⊐ (𝑅), and 𝑁 is in Df
⊐ (𝑅) .

Proof. This is the special case of 12.3.22 with 𝑄 = 𝑅 = 𝑆 = 𝑇 . □

12.3.24 Theorem. Let 𝑀 , 𝑋 , and 𝑁 be 𝑅-complexes. Tensor evaluation,

𝜽𝑀𝑋𝑁 : RHom𝑅 (𝑀, 𝑋) ⊗L
𝑅 𝑁 −→ RHom𝑅 (𝑀, 𝑋 ⊗L

𝑅 𝑁) ,

is an isomorphism in D(𝑅) if one of the next conditions is satisfied.
(a) 𝑀 ∈ D⊏⊐ (𝑅) with pd𝑅 𝑀 finite, 𝑋 ∈ D⊏⊐ (𝑅) with fd𝑅 𝑋 finite, and 𝑁 ∈ Df (𝑅) .
(b) 𝑀 ∈ Df (𝑅), 𝑋 ∈ D⊏⊐ (𝑅) with id𝑅 𝑋 finite, and 𝑁 ∈ D⊏⊐ (𝑅) with fd𝑅 𝑁 finite.

Proof. (a): By the assumptions on 𝑀 and 𝑋 it follows from A.26(c), A.27(c), and
commutativity 12.3.5 that the functors RHom𝑅 (𝑀, ) and 𝑋 ⊗L

𝑅
are bounded,

and hence so is the composite functor RHom𝑅 (𝑀, 𝑋 ⊗L
𝑅
). Further, the complex

RHom𝑅 (𝑀, 𝑋) is in D⊏⊐ (𝑅) and fd𝑅 RHom𝑅 (𝑀, 𝑋) is finite by 8.4.14(b). Thus, it
follows from A.27(c) and 12.3.5 that the functor RHom𝑅 (𝑀, 𝑋) ⊗L

𝑅
is bounded.

To prove that the triangulated natural transformation 𝜽𝑀𝑋𝑁 is an isomorphism for
every 𝑁 ∈ Df (𝑅), one can now by 7.6.14 and A.28(d) assume that 𝑁 is a finitely
generated 𝑅-module, and in this case 𝜽𝑀𝑋𝑁 is an isomorphism by 12.3.23(d).

(b): By the assumptions on 𝑋 and 𝑁 it follows from A.32(c) and A.27(c) that
the functors RHom𝑅 ( , 𝑋) and ⊗L

𝑅
𝑁 are bounded, and hence so is the compos-

ite functor RHom𝑅 ( , 𝑋) ⊗L
𝑅
𝑁 . Moreover, the complex 𝑋 ⊗L

𝑅
𝑁 is in D⊏⊐ (𝑅) and

id𝑅 (𝑋 ⊗L
𝑅
𝑁) is finite by 8.4.16(a). Thus, another application of A.32(c) shows that

the functor RHom𝑅 ( , 𝑋 ⊗L
𝑅
𝑁) is bounded. To prove that the triangulated natural

transformation 𝜽𝑀𝑋𝑁 is an isomorphism for every 𝑀 ∈ Df (𝑅), one can by 7.6.14
and A.33(d) assume that 𝑀 is a finitely generated 𝑅-module, and in that case 𝜽𝑀𝑋𝑁
is an isomorphism by 12.3.23(b). □

Homomorphism Evaluation

12.3.25 Proposition. Let 𝑄 be an 𝑅-algebra, flat as an 𝑅-module, and 𝑇 an 𝑆-
algebra, projective as an 𝑆-module. For complexes 𝑀 ∈ D(𝑄), 𝑋 ∈ D(𝑅–𝑆), and
𝑁 ∈ D(𝑇) homomorphism evaluation,

𝜼𝑀𝑋𝑁 : 𝑁 ⊗L
𝑆 RHom𝑅 (𝑋, 𝑀) −→ RHom𝑅 (RHom𝑆 (𝑁, 𝑋), 𝑀) ,

is a morphism in D(𝑄–𝑇).

Proof. Apply 8.4.22 with 𝐴 = 𝑄 and 𝐵 = 𝑅 ⊗𝕜 𝑆 and 𝐶 = 𝑇 , cf. 12.2.1. □

12.3.26 Theorem. Let𝑄 be an 𝑅-algebra, flat as an 𝑅-module, and 𝑇 an 𝑆-algebra,
finitely generated and projective as an 𝑆-module. Let 𝑀 ∈ D(𝑄), 𝑋 ∈ D(𝑅–𝑆), and
𝑁 ∈ D(𝑇). If one of the next conidtions is satisfied, then the morphism 𝜼𝑀𝑋𝑁 from
12.3.25 is an isomorphism in D(𝑄–𝑇).

(a) 𝑁 is in Df
⊏⊐ (𝑇) and pd𝑇 𝑁 is finite.
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(b) 𝑁 is in Df
⊐ (𝑇), 𝑋 is in D⊏ (𝑅–𝑆), and id𝑄 𝑀 is finite.

Proof. Apply 8.4.24 with 𝐴 = 𝑄 and 𝐵 = 𝑅 ⊗𝕜 𝑆 and 𝐶 = 𝑇 , cf. 12.2.1. □

12.3.27 Corollary. Let 𝑀 , 𝑋 , and 𝑁 be 𝑅-complexes. Homomorphism evaluation,

𝜼𝑀𝑋𝑁 : 𝑁 ⊗L
𝑅 RHom𝑅 (𝑋, 𝑀) −→ RHom𝑅 (RHom𝑅 (𝑁, 𝑋), 𝑀) ,

is an isomorphism in D(𝑅) if one of the next conditions is satisfied.
(a) 𝑁 is in Df

⊏⊐ (𝑅) and pd𝑅 𝑁 is finite.
(b) 𝑁 is in Df

⊐ (𝑅), 𝑋 is in D⊏ (𝑅), and id𝑅 𝑀 is finite.

Proof. This is the special case of 12.3.26 with 𝑄 = 𝑅 = 𝑆 = 𝑇 . □

12.3.28 Theorem. Let 𝑀 , 𝑋 , and 𝑁 be 𝑅-complexes. Homomorphism evaluation,

𝜼𝑀𝑋𝑁 : 𝑁 ⊗L
𝑅 RHom𝑅 (𝑋, 𝑀) −→ RHom𝑅 (RHom𝑅 (𝑁, 𝑋), 𝑀) ,

is an isomorphism in D(𝑅) if 𝑁 is in Df (𝑅) and 𝑋 and 𝑀 are in D⊏⊐ (𝑅) with id𝑅 𝑋
and id𝑅 𝑀 finite.

Proof. By the assumptions on 𝑋 and 𝑀 it follows from A.32(c) that the func-
tors RHom𝑅 ( , 𝑋) and RHom𝑅 ( , 𝑀) are bounded, and hence so is the composite
functor RHom𝑅 (RHom𝑅 ( , 𝑋), 𝑀). Moreover, the complex RHom𝑅 (𝑋, 𝑀) is in
D⊏⊐ (𝑅) and fd𝑅 RHom𝑅 (𝑋, 𝑀) is finite by 8.4.27. Thus, A.27(c) shows that the
functor ⊗L

𝑅
RHom𝑅 (𝑋, 𝑀) is bounded. To prove that the triangulated natural trans-

formation 𝜼𝑀𝑋𝑁 is an isomorphism for every 𝑁 ∈ Df (𝑅), one can by 7.6.14 and
A.28(d) assume that 𝑁 is a finitely generated 𝑅-module, and in that case 𝜼𝑀𝑋𝑁 is
an isomorphism by 12.3.27(b). □

Derived Base Change

Assume that 𝑆 is an 𝑅-algebra. For every 𝑅-complex 𝑀 the derived base changed
complex 𝑆 ⊗L

𝑅
𝑀 is an 𝑆-complex; see 12.2.8.

12.3.29 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑀 an 𝑅-complex. If 𝑀 belongs to
Df
⊐ (𝑅), then the complex 𝑆 ⊗L

𝑅
𝑀 belongs to Df

⊐ (𝑆). In particular, Tor𝑅𝑚 (𝑆, 𝑀) is a
finitely generated 𝑆-module for every 𝑚 ∈ ℤ.

Proof. The claims follow from 12.2.12 and the definition, 7.4.18, of Tor. □

12.3.30 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑀 and 𝑁 be 𝑅-complexes. There
is an isomorphism in D(𝑆),

𝑆 ⊗L
𝑅 (𝑀 ⊗L

𝑅 𝑁) ≃ (𝑆 ⊗L
𝑅 𝑀) ⊗L

𝑆 (𝑆 ⊗
L
𝑅 𝑁) .

Proof. The asserted isomorphism in D(𝑆) follows from two applications of asso-
ciativity 12.3.13 together with commutativity 12.3.5 and the unitor 12.3.3,

𝑆 ⊗L
𝑅 (𝑀 ⊗L

𝑅 𝑁) ≃ (𝑆 ⊗L
𝑅 𝑀) ⊗L

𝑅 𝑁
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≃ (𝑆 ⊗L
𝑆 (𝑆 ⊗

L
𝑅 𝑀)) ⊗L

𝑅 𝑁

≃ ((𝑆 ⊗L
𝑅 𝑀) ⊗L

𝑆 𝑆) ⊗
L
𝑅 𝑁

≃ (𝑆 ⊗L
𝑅 𝑀) ⊗L

𝑆 (𝑆 ⊗
L
𝑅 𝑁) . □

12.3.31 Proposition. Let 𝑆 be an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁 an 𝑆-complex.
There are isomorphism in D(𝑆),

𝑀 ⊗L
𝑅 𝑁 ≃ (𝑆 ⊗L

𝑅 𝑀) ⊗L
𝑆 𝑁 and 𝑁 ⊗L

𝑅 𝑀 ≃ 𝑁 ⊗L
𝑆 (𝑆 ⊗

L
𝑅 𝑀) .

Proof. The unitor 12.3.3 in combination with associativity 12.3.6 and commutativ-
ity 12.3.5 of the tensor product yields isomorphisms in D(𝑆),

𝑀 ⊗L
𝑅 𝑁 ≃ 𝑀 ⊗L

𝑅 (𝑆 ⊗L
𝑆 𝑁)

≃ (𝑀 ⊗L
𝑅 𝑆) ⊗L

𝑆 𝑁

≃ (𝑆 ⊗L
𝑅 𝑀) ⊗L

𝑆 𝑁 .

This shows the first of the asserted isomorphisms; the second follows per 12.3.5. □

12.3.32 Proposition. Let 𝑆 be an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁 an 𝑆-complex.
There is an isomorphism in D(𝑆),

RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑆 (𝑆 ⊗L
𝑅 𝑀, 𝑁) .

Proof. The counitor 12.3.4 and adjunction 12.3.8 yield isomorphisms in D(𝑆),

RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (𝑀,RHom𝑆 (𝑆, 𝑁)) ≃ RHom𝑆 (𝑆 ⊗L
𝑅 𝑀, 𝑁) . □

12.3.33 Proposition. Let 𝑆 be an 𝑅-algebra, flat as an 𝑅-module, and 𝑀 and 𝑁 be
𝑅-complexs. There is an isomorphism,

𝑆 ⊗L
𝑅 RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑆 (𝑆 ⊗L

𝑅 𝑀, 𝑆 ⊗L
𝑅 𝑁) ,

in D(𝑆) if one of the next conditions is satisfied.
(a) 𝑀 is in Df

⊐ (𝑅) and 𝑁 is in D⊏ (𝑅) .
(b) 𝑀 is in Df (𝑅) and 𝑁 is in D⊏⊐ (𝑅) with id𝑅 𝑁 finite.

Proof. Since 𝑆 is flat as an 𝑅-module, 12.3.21 shows that tensor evaluation,

𝜽𝑀𝑁𝑆 : RHom𝑅 (𝑀, 𝑁) ⊗L
𝑅 𝑆 −→ RHom𝑅 (𝑀, 𝑁 ⊗L

𝑅 𝑆) ,

is a morphism in D(𝑆). Under the assumptions in part (a) it is an isomorphism by
6.4.37 and 12.3.23(b). Under the assumptions in part (b) it is an isomorphism by
6.4.37 and 12.3.24(b). This, combined with commutativity 12.3.5, explains the first
isomorphism in D(𝑆) below, while the second holds by 12.3.32.

𝑆 ⊗L
𝑅 RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (𝑀, 𝑆 ⊗L

𝑅 𝑁) ≃ RHom𝑆 (𝑆 ⊗L
𝑅 𝑀, 𝑆 ⊗L

𝑅 𝑁) . □
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Derived Cobase Change

Assume that 𝑆 is an 𝑅-algebra. For every 𝑅-complex 𝑀 the derived derived cobase
changed complex RHom𝑅 (𝑆, 𝑀) is an 𝑆-complex; see 12.2.2.

12.3.34 Proposition. Let 𝑆 be an 𝑅-algebra and𝑀 an 𝑅-complex. If 𝑆 is finitely gen-
erated as an 𝑅-module and 𝑀 belongs to Df

⊏ (𝑅), then the complex RHom𝑅 (𝑆, 𝑀)
belongs to Df

⊏ (𝑆). In particular, Ext𝑚
𝑅
(𝑆, 𝑀) is a finitely generated 𝑆-module for

every 𝑚 ∈ ℤ.

Proof. The claims follow from 12.2.7 and the definition, 7.3.23, of Ext. □

12.3.35 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑀 and 𝑁 be 𝑅-complexes. There
is an isomorphism in D(𝑆),

RHom𝑅 (𝑆,RHom𝑅 (𝑀, 𝑁)) ≃ RHom𝑆 (𝑆 ⊗L
𝑅 𝑀,RHom𝑅 (𝑆, 𝑁)) .

Proof. Swap 12.3.16 and 12.3.32 yield isomorphisms in D(𝑆),

RHom𝑅 (𝑆,RHom𝑅 (𝑀, 𝑁)) ≃ RHom𝑅 (𝑀,RHom𝑅 (𝑆, 𝑁))
≃ RHom𝑆 (𝑆 ⊗L

𝑅 𝑀,RHom𝑅 (𝑆, 𝑁)) . □

12.3.36 Proposition. Let 𝑆 be an 𝑅-algebra, 𝑀 an 𝑅-complex, and 𝑁 an 𝑆-complex.
There is an isomorphism in D(𝑆),

RHom𝑅 (𝑁, 𝑀) ≃ RHom𝑆 (𝑁,RHom𝑅 (𝑆, 𝑀)) .

Proof. The unitor 12.3.3 and adjunction 12.3.8 yield isomorphisms in D(𝑆),

RHom𝑅 (𝑁, 𝑀) ≃ RHom𝑅 (𝑆 ⊗L
𝑆 𝑁, 𝑀) ≃ RHom𝑆 (𝑀,RHom𝑅 (𝑆, 𝑀)) . □

Exercises

E 12.3.1 Let 𝑆 be an 𝑅-algebra, finitely generated as an 𝑅-module, and𝑀 and 𝑁 be 𝑅-complexes.
Show that there is an isomorphism

𝑆 ⊗L
𝑅 RHom𝑅 (𝑀, 𝑁 ) ≃ RHom𝑆 (RHom𝑅 (𝑆, 𝑀 ) , RHom𝑅 (𝑆, 𝑁 ) )

in D(𝑆) if 𝑆 is projective as an 𝑅-module.
E 12.3.2 Let 𝑆 be an 𝑅-algebra and𝑀 and 𝑁 be 𝑅-complexes. Show that there is an isomorphism

RHom𝑅 (𝑆, 𝑀 ⊗L
𝑅
𝑁 ) ≃ RHom𝑅 (𝑆, 𝑀 ) ⊗L

𝑆
(𝑆 ⊗L

𝑅
𝑁 ) in D(𝑆) if 𝑆 is finite finitely

generated and projective as an 𝑅-module.
E 12.3.3 Let 𝑀 be an 𝑅-complex. Show that there is a distinguished triangle in D(𝑅[𝑥 ]/(𝑥2 ) ) ,

𝑀 → RHom𝑅 (𝑅[𝑥 ]/(𝑥2 ) , 𝑀 ) → 𝑀 → Σ𝑀.
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12.4 Prime Ideals

Synopsis. Prime ideal spectrum; Krull dimension; classic support; minimal/associated/maximal
prime ideal; vanishing of functor on finitely generated module.

We recall some terminology, notation, and a few facts from commutative algebra
which can be found in [182]—or any other textbook on commutative algebra—and
are used in this text without further reference.

The set of prime ideals in 𝑅 is called the spectrum of 𝑅 and denoted Spec 𝑅; it
is partially ordered under inclusion. The Krull dimension of 𝑅, denoted dim 𝑅, is
the supremum of lengths of chains in Spec 𝑅. As 𝑅 is Noetherian, every such chain
has finite length, but the Krull dimension of 𝑅 may well be infinite. The process of
adjoining a polynomial variable increases the Krull dimension by one: dim 𝑅[𝑥] =
dim 𝑅 + 1. In particular, for a field 𝕜 the algebra 𝕜 [𝑥1, . . . , 𝑥𝑛] of polynomials in 𝑛
variables with coefficients in 𝕜 has Krull dimension 𝑛.

For an 𝑅-module 𝑀 and a prime ideal 𝔭 in 𝑅, the localization of 𝑀 at the
multiplicative subset 𝑅 \ 𝔭 is written 𝑀𝔭. The support of 𝑀 , denoted Supp𝑅 𝑀 , is
the set of prime ideals 𝔭 with 𝑀𝔭 ≠ 0. As a subset of the partially ordered set Spec 𝑅,
the support of 𝑀 is specialization closed; that is, for a prime ideal 𝔭 ∈ Supp𝑅 𝑀
every larger prime ideal 𝔮 ⊇ 𝔭 also belongs to Supp𝑅 𝑀 . The Krull dimension of 𝑀
is the quantity

dim𝑅 𝑀 = sup{dim 𝑅/𝔭 | 𝔭 ∈ Supp𝑅 𝑀 } ;

it captures the supremum of lengths of chains in the support of 𝑀 . Adhering to
the convention sup∅ = −∞, the Krull dimension of the zero module is −∞. As an
𝑅-module, 𝑅 has full support, i.e. Supp𝑅 𝑅 = Spec 𝑅, so dim 𝑅 agrees with the Krull
dimension of 𝑅 as an 𝑅-module.

A prime ideal 𝔭 in 𝑅 belongs to the support of an 𝑅-module 𝑀 if and only if
it contains the annihilator (0 :𝑅 𝑚) of some element 𝑚 ∈ 𝑀 , for in that case the
fraction 𝑚

1 is a non-zero element in 𝑀𝔭. One says that 𝔭 is associated to 𝑀 if it is
the annihilator (0 :𝑅 𝑚) of some element 𝑚 ∈ 𝑀 . The associated prime ideals are
maximal among annihilator ideals (0 :𝑅 𝑚) for 𝑚 ≠ 0 and belong to Supp𝑅 𝑀 . In
particular, the set Ass𝑅 𝑀 of associated prime ideals of 𝑀 is empty if and only if
Supp𝑅 𝑀 is empty if and only if 𝑀 = 0. The minimal elements in Supp𝑅 𝑀 are
associated to 𝑀; an associated prime ideal that is not minimal in Supp𝑅 𝑀 is called
an embedded prime ideal. With the notation Min𝑅 𝑀 for the set of minimal elements
in Supp𝑅 𝑀 one has

Min𝑅 𝑀 ⊆ Ass𝑅 𝑀 ⊆ Supp𝑅 𝑀 ⊆ Spec 𝑅 .

One writes Min 𝑅 for the set of minimal prime ideals in 𝑅 and Max 𝑅 for the set of
maximal ideals in 𝑅. In keeping with this, one uses the abridged notation Ass 𝑅 for
the set of associated prime ideals of the 𝑅-module 𝑅. The union ⋃

𝔭∈Ass𝑅 𝔭 is the set
of zerodivisors in 𝑅. Since the support of an 𝑅-module 𝑀 is a specialization closed
subset of Spec 𝑅, the maximal elements in Supp𝑅 𝑀 are maximal ideals of 𝑅. With
the notation Max𝑅 𝑀 for the set of maximal elements in Supp𝑅 𝑀 one has

Max𝑅 𝑀 = Supp𝑅 𝑀 ∩Max 𝑅 .
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For a family {𝑀𝑢}𝑢∈𝑈 of 𝑅-modules there are equalities,

Ass𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
=

⋃
𝑢∈𝑈

Ass𝑅 𝑀𝑢 and Supp𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
=

⋃
𝑢∈𝑈

Supp𝑅 𝑀𝑢 .

Every finitely generated 𝑅-module 𝑀 has a filtration; that is, there is an increasing
sequence 0 = 𝑀0 ⊂ 𝑀1 ⊂ · · · ⊂ 𝑀𝑛 = 𝑀 of submodules, such that each quotient
𝑀𝑢/𝑀𝑢−1 is isomorphic to 𝑅/𝔭𝑢 for some prime ideal 𝔭𝑢. For every such filtration
one has Ass𝑅 𝑀 ⊆ {𝔭1, . . . , 𝔭𝑛} ⊆ Supp𝑅 𝑀 . In particular, for a finitely generated
𝑅-module 𝑀 the sets Ass𝑅 𝑀 and, therefore, Min𝑅 𝑀 are finite.

Let𝑈 be a multiplicative subset of 𝑅. The assignment 𝔭 ↦→ 𝑈−1𝔭 yields an order
preserving one-to-one correspondence,

{𝔭 ∈ Spec 𝑅 | 𝔭 ∩𝑈 = ∅} ←→ Spec𝑈−1𝑅 .

For a prime ideal𝔓 in𝑈−1𝑅 the inverse mapping is given by𝔓 ↦→ {𝑥 ∈ 𝑅 | 𝑥1 ∈ 𝔓}.
Given a prime ieal 𝔭 in 𝑅with 𝔭 ∩𝑈 = ∅ there is an isomorphism (𝑈−1𝑅)𝑈−1𝔭 � 𝑅𝔭
of rings and for an 𝑅-module 𝑀 an isomorphism (𝑈−1𝑀)𝑈−1𝔭 � 𝑀𝔭 of modules
over these isomorphic rings. The correspondence above restricts to the subsets of
spectra affiliated with 𝑀 and𝑈−1𝑀 ,

{𝔭 ∈ Supp𝑅 𝑀 | 𝔭 ∩𝑈 = ∅} ←→ Supp𝑈−1𝑅𝑈
−1𝑀 ,

Ass𝑅𝑈−1𝑀 = {𝔭 ∈ Ass𝑅 𝑀 | 𝔭 ∩𝑈 = ∅} ←→ Ass𝑈−1𝑅𝑈
−1𝑀 , and

Min𝑅𝑈−1𝑀 = {𝔭 ∈ Min𝑅 𝑀 | 𝔭 ∩𝑈 = ∅} ←→ Min𝑈−1𝑅𝑈
−1𝑀 .

For an ideal 𝔞 in 𝑅 it is standard to write V(𝔞) for the set {𝔭 ∈ Spec 𝑅 | 𝔞 ⊆ 𝔭}. The
sets of this form are precisely the closed subsets in the Zariski topology on Spec 𝑅.
The assignment 𝔭 ↦→ 𝔭/𝔞 yields an order preserving one-to-one correspondence,

Supp𝑅 𝑅/𝔞 = V(𝔞) ←→ Spec 𝑅/𝔞 .

For a prime ideal𝔓 in 𝑅/𝔞 the inverse mapping is given by𝔓 ↦→ {𝑥 ∈ 𝑅 | [𝑥]𝔞 ∈ 𝔓}.
The radical of 𝔞 is the ideal

√
𝔞 = {𝑥 ∈ 𝑅 | 𝑥𝑛 ∈ 𝔞 for some 𝑛 ∈ ℕ}; it is the inter-

section of the (minimal) prime ideals over 𝔞, that is,
√
𝔞 =

⋂
𝔭∈V(𝔞)

𝔭 =
⋂

𝔭∈Min𝑅 𝑅/𝔞
𝔭 .

For a primary ideal 𝔞 there is a unique element, say 𝔭, in Min𝑅 𝑅/𝔞 = Ass𝑅 𝑅/𝔞, so√
𝔞 = 𝔭 holds and 𝔞 is for emphasis called 𝔭-primary. If 𝔭 is maximal, then every

ideal 𝔞 in 𝑅 with
√
𝔞 = 𝔭 is 𝔭-primary. For an element 𝑥 in 𝑅,

For a sequence 𝑥1, . . . , 𝑥𝑛 in 𝑅, a result of Krull says that the inequality dim 𝑅𝔭 ⩽ 𝑛
holds for every prime ideal 𝔭 in Min𝑅 𝑅/(𝑥1, . . . , 𝑥𝑛). The special case 𝑛 = 1 is known
as Krull’s principal ideal theorem. The result is restated as Corollary 18.4.19, but we
recall it here for use in Examples 14.4.22, 17.2.35, and the proof of Lemma 17.4.21.

For an ideal 𝔞 contained in the Jacobson radical of 𝑅, Krull’s intersection the-
orem yields ⋂

𝑢⩾1 𝔞
𝑢 = 0. This is proved in 15.3.7 but recalled here for use in

Example 14.1.8.
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Given a multiplicative subset 𝑈 of 𝑅, the set [𝑈]𝔞 = { [𝑢]𝔞 | 𝑢 ∈ 𝑈 } is a
multiplicative subset of 𝑅/𝔞, and localization commutes with the quotient construc-
tion in the following sense: There are isomorphisms 𝑈−1 (𝑅/𝔞) � 𝑈−1𝑅/𝑈−1𝔞 �
[𝑈]−1

𝔞 (𝑅/𝔞) of rings and for an 𝑅-module 𝑀 isomorphisms

𝑈−1 (𝑀/𝔞𝑀) � 𝑈−1𝑀/𝑈−1 (𝔞𝑀) � [𝑈]−1
𝔞 (𝑀/𝔞𝑀)

of modules over these isomorphic rings. In view of 1.1.10 and 1.1.11 this is a
consequence of commutativity 12.1.7 and associativity 12.1.8 of the tensor prod-
uct. The support of the 𝑅-module 𝑀/𝔞𝑀 is evidently contained in V(𝔞), and the
isomorphisms above yields

Supp𝑅/𝔞 𝑀/𝔞𝑀 = {𝔭/𝔞 | 𝔭 ∈ Supp𝑅 𝑀/𝔞𝑀 } .

For objects in the derived category there is a more natural notion of support,
which is introduced in 15.1.5. For an 𝑅-module𝑀 it is a subset of the classic support,
Supp𝑅 𝑀 , discussed above, so it is natural to denote it supp𝑅 𝑀 . To distinguish the
two notions terminologically, we henceforth refer to the set Supp𝑅 𝑀 as the classic
support of 𝑀 and reserve “support” for supp𝑅 𝑀 . For finitely generated modules the
two sets agree, see 15.1.9.

Vanishing of Half Exact Functors I

The existence of filtrations ensures that vanishing of a functor on finitely generated
𝑅-modules can be tested on cyclic modules 𝑅/𝔭, where 𝔭 is a prime ideal.

12.4.1 Lemma. Let U be an Abelian category, F: M(𝑅) → U a half exact functor,
and 𝑀 a finitely generated 𝑅-module. If F(𝑀) ≠ 0 holds, then there is a prime ideal
𝔭 in Supp𝑅 𝑀 with F(𝑅/𝔭) ≠ 0. In particular, the next conditions are equivalent.

(i) F(𝑅/𝔭) = 0 holds for every prime ideal 𝔭 in 𝑅 .
(ii) F(𝑀) = 0 holds for every finitely generated 𝑅-module 𝑀 .

Proof. Choose a filtration 0 = 𝑀0 ⊂ 𝑀1 ⊂ · · · ⊂ 𝑀𝑛−1 ⊂ 𝑀𝑛 = 𝑀 such that for
each index 𝑢 one has 𝑀𝑢/𝑀𝑢−1 � 𝑅/𝔭𝑢 for some 𝔭𝑢 ∈ Supp𝑅 𝑀 . The canonical
exact sequences 0→ 𝑀𝑢−1 → 𝑀𝑢 → 𝑅/𝔭𝑢 → 0 yield exact sequences

F(𝑀𝑢−1) −→ F(𝑀𝑢) −→ F(𝑅/𝔭𝑢) .

Recall that F is additive so that one has F(0) = 0. As F(𝑀) is non-zero, it follows
from these sequences that one has F(𝑅/𝔭𝑢) ≠ 0 for at least one 𝑢 ∈ {1, . . . , 𝑛}. □

The lemma above is key to a series of results 12.4.2–12.4.11 on vanishing of half
exact functors; beware that 12.4.3 deals with a left exact functor.

12.4.2 Proposition. Let U be an Abelian category, F: M(𝑅) → U a half exact
functor, and 𝔞 an ideal in 𝑅. If one has F(𝑅/𝔞) ≠ 0, then there is a prime ideal 𝔭 ⊇ 𝔞

in 𝑅 with F(𝑅/𝔭) ≠ 0 such that F(𝑅/𝔟) = 0 holds for every ideal 𝔟 ⊃ 𝔭.
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Proof. By assumption the set of ideals {𝔟 ⊇ 𝔞 | F(𝑅/𝔟) ≠ 0} is non-empty. As
𝑅 is Noetherian it has a maximal element 𝔠. By 12.4.1 there is a prime ideal 𝔭 in
Supp𝑅 𝑅/𝔠 = V(𝔠) with F(𝑅/𝔭) ≠ 0, and by maximality of 𝔠 one has 𝔠 = 𝔭. □

12.4.3 Proposition. Let F: M(𝑅) →M(𝑅) be a left exact and 𝑅-linear functor and
𝑀 be a finitely generated 𝑅-module. If F(𝑀) ≠ 0 holds, then there exists a prime
ideal 𝔭 in Supp𝑅 𝑀 with F(𝑅/𝔭)𝔭 ≠ 0.

Proof. By 12.4.1 there exists a prime ideal 𝔭 in Supp𝑅 𝑀 with F(𝑅/𝔭) ≠ 0. For
every 𝑥 in 𝑅 \ 𝔭 multiplication by 𝑥 on 𝑅/𝔭 is injective, so it follows from the
assumptions on F that the sequence

0 −→ F(𝑅/𝔭) 𝑥−−−→ F(𝑅/𝔭)

is exact. Thus the canonical homomorphism F(𝑅/𝔭) → F(𝑅/𝔭)𝔭 is injective; in
particular, one has F(𝑅/𝔭)𝔭 ≠ 0. □

Note that for 𝔞 = 0 the next result is a special case of 12.4.1 above.

12.4.4 Proposition. Let 𝔞 be an ideal in 𝑅 and F: M(𝑅) →M(𝑅) a half exact and
𝑅-linear functor with the property that 𝑅/𝔞 ⊗𝑅 F(𝑅/𝔭) ≠ 0 holds for every prime
ideal 𝔭 in 𝑅 with F(𝑅/𝔭) ≠ 0. Let 𝑀 be a finitely generated 𝑅-module. If one has
F(𝑀) ≠ 0, then there exists a prime ideal 𝔭 in V(𝔞) ∩ Supp𝑅 𝑀 with F(𝑅/𝔭) ≠ 0.

In particular, the following conditions are equivalent.
(i) F(𝑅/𝔭) = 0 holds for every prime ideal 𝔭 in V(𝔞) .
(ii) F(𝑀) = 0 holds for every finitely generated 𝑅-module 𝑀 .

Proof. By 12.4.1 the set 𝑈 = {𝔭 ∈ Supp𝑅 𝑀 | F(𝑅/𝔭) ≠ 0} is not empty; as 𝑅 is
Noetherian,𝑈 has a maximal element 𝔭. We argue that 𝔭 is in V(𝔞). Assume towards
a contradiction that it is not the case and choose an element 𝑥 ∈ 𝔞 \ 𝔭. Consider the
exact sequence,

0 −→ 𝑅/𝔭 𝑥−−−→ 𝑅/𝔭 −→ 𝑅/(𝔭 + (𝑥)) −→ 0 .

By half exactness and 𝑅-linearity of F there is an induced exact sequence,

(★) F(𝑅/𝔭) 𝑥−−−→ F(𝑅/𝔭) −→ F(𝑅/(𝔭 + (𝑥))) .

If F(𝑅/(𝔭+(𝑥))) were non-zero, then 12.4.1 would yield a prime ideal 𝔮 in V(𝔭+(𝑥))
with F(𝑅/𝔮) ≠ 0, contradicting the maximality of 𝔭 in𝑈. Thus F(𝑅/(𝔭 + (𝑥))) = 0
holds, so it follows from (★) that multiplication by 𝑥 on F(𝑅/𝔭) is surjective. As 𝑥 is
in 𝔞, this contradicts per 1.1.10 the assumption 𝑅/𝔞 ⊗𝑅 F(𝑅/𝔭) ≠ 0. □

12.4.5 Corollary. Let 𝔍 be the Jacobson radical of 𝑅 and F: M(𝑅) →M(𝑅) a half
exact and 𝑅-linear functor such that F(𝑅/𝔭) is finitely generated for every prime
ideal 𝔭 in 𝑅. The following conditions are equivalent.

(i) F(𝑅/𝔭) = 0 holds for every prime ideal 𝔭 in V(𝔍) .
(ii) F(𝑀) = 0 holds for every finitely generated 𝑅-module 𝑀 .
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Proof. Let 𝔭 be a prime ideal in 𝑅. Since F(𝑅/𝔭) ≠ 0 implies 𝑅/𝔍 ⊗𝑅 F(𝑅/𝔭) ≠ 0
by Nakayama’s lemma B.32, the assertion follows from 12.4.4. □

12.4.6 Corollary. Let 𝔞 be an ideal in 𝑅 and F: M(𝑅) →M(𝑅) a half exact and
𝑅-linear functor such that F(𝑅/𝔭) is 𝔞-complete for every prime ideal 𝔭 in 𝑅. The
following conditions are equivalent.

(i) F(𝑅/𝔭) = 0 holds for every prime ideal 𝔭 in V(𝔞) .
(ii) F(𝑀) = 0 holds for every finitely generated 𝑅-module 𝑀 .

Proof. Let 𝔭 be a prime ideal in 𝑅. Since F(𝑅/𝔭) ≠ 0 implies 𝑅/𝔞 ⊗𝑅 F(𝑅/𝔭) ≠ 0
by 11.1.30, the assertion follows from 12.4.4. □

Vanishing of Half Exact Functors II

12.4.7 Lemma. LetU be an Abelian category, G: M(𝑅)op → U a half exact functor,
and 𝑀 a finitely generated 𝑅-module. If G(𝑀) ≠ 0 holds, then there is a prime ideal
𝔭 in Supp𝑅 𝑀 with G(𝑅/𝔭) ≠ 0. In particular, the next conditions are equivalent.

(i) G(𝑅/𝔭) = 0 holds for every prime ideal 𝔭 in 𝑅 .
(ii) G(𝑀) = 0 holds for every finitely generated 𝑅-module 𝑀 .

Proof. Apply 12.4.1 to the opposite functor Gop : M(𝑅) → Uop. □

12.4.8 Proposition. Let U be an Abelian category, G: M(𝑅)op → U a half exact
functor, and 𝔞 an ideal in 𝑅. If one has G(𝑅/𝔞) ≠ 0, then there is a prime ideal
𝔭 ⊇ 𝔞 in 𝑅 with G(𝑅/𝔭) ≠ 0 such that G(𝑅/𝔟) = 0 holds for every ideal 𝔟 ⊃ 𝔭.

Proof. Apply 12.4.2 to the opposite functor Gop : M(𝑅) → Uop. □

12.4.9 Proposition. Let G: M(𝑅)op →M(𝑅) be a half exact and 𝑅-linear functor
and 𝑀 be a finitely generated 𝑅-module. If G(𝑀) ≠ 0 holds, then there exists a
prime ideal 𝔭 in Supp𝑅 𝑀 with G(𝑅/𝔭)𝔭 ≠ 0.

Proof. By 12.4.7 the set 𝑈 = {𝔭 ∈ Supp𝑅 𝑀 | G(𝑅/𝔭) ≠ 0} is non-empty; as 𝑅
is Noetherian, the set has a maximal element 𝔭. For every 𝑥 in 𝑅 \ 𝔭, consider the
exact sequence,

0 −→ 𝑅/𝔭 𝑥−−−→ 𝑅/𝔭 −→ 𝑅/(𝔭 + (𝑥)) −→ 0 .

It follows from the assumptions that G induces an exact sequence,

G(𝑅/(𝔭 + (𝑥))) −→ G(𝑅/𝔭) 𝑥−−−→ G(𝑅/𝔭) .

If G(𝑅/(𝔭+(𝑥)))were non-zero, then 12.4.7 would yield a prime ideal 𝔮 in V(𝔭+(𝑥))
with G(𝑅/𝔮) ≠ 0, contradicting the maximality of 𝔭 in 𝑈. Thus the sequence
0 −−→ G(𝑅/𝔭) 𝑥−−→ G(𝑅/𝔭) is exact, whence one has G(𝑅/𝔭)𝔭 ≠ 0. □

Note that for 𝔞 = 0 the next result is a special case of 12.4.1 above.
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12.4.10 Proposition. Let 𝔞 be an ideal in 𝑅 and G: M(𝑅)op →M(𝑅) a half exact
and 𝑅-linear functor with the property that Hom𝑅 (𝑅/𝔞,G(𝑅/𝔭)) ≠ 0 holds for every
prime ideal 𝔭 in 𝑅 with G(𝑅/𝔭) ≠ 0. Let 𝑀 be a finitely generated 𝑅-module. If one
has G(𝑀) ≠ 0, then there is a prime ideal 𝔭 in V(𝔞) ∩ Supp𝑅 𝑀 with G(𝑅/𝔭) ≠ 0.

In particular, the following conditions are equivalent.
(i) G(𝑅/𝔭) = 0 holds for every prime ideal 𝔭 in V(𝔞) .
(ii) G(𝑀) = 0 holds for every finitely generated 𝑅-module 𝑀 .

Proof. By 12.4.7 the set 𝑈 = {𝔭 ∈ Supp𝑅 𝑀 | G(𝑅/𝔭) ≠ 0} is not empty; as 𝑅 is
Noetherian,𝑈 has a maximal element 𝔭. We argue that 𝔭 is in V(𝔞). Assume towards
a contradiction that it is not the case and choose an element 𝑥 ∈ 𝔞 \ 𝔭. Consider the
exact sequence,

0 −→ 𝑅/𝔭 𝑥−−−→ 𝑅/𝔭 −→ 𝑅/(𝔭 + (𝑥)) −→ 0 .

By half exactness and 𝑅-linearity of G there is an induced exact sequence,

(★) G(𝑅/(𝔭 + (𝑥))) −→ G(𝑅/𝔭) 𝑥−−−→ G(𝑅/𝔭) .

If G(𝑅/(𝔭+(𝑥)))were non-zero, then 12.4.7 would yield a prime ideal 𝔮 in V(𝔭+(𝑥))
with G(𝑅/𝔮) ≠ 0, contradicting the maximality of 𝔭 in𝑈. Thus G(𝑅/(𝔭 + (𝑥))) = 0
holds, so it follows from (★) that multiplication by 𝑥 on G(𝑅/𝔭) is injective. As 𝑥 is
in 𝔞, this contradicts per 1.1.8 the assumption Hom𝑅 (𝑅/𝔞,G(𝑅/𝔭)) ≠ 0. □

An important special case of the next corollary is recorded in 14.2.14; it compares
to 12.4.5 the way 12.4.11 compares to 12.4.6..

12.4.11 Corollary. Let 𝔞 be an ideal in 𝑅 and G: M(𝑅)op →M(𝑅) a half exact
and 𝑅-linear functor such that G(𝑅/𝔭) is 𝔞-torsion for every prime ideal 𝔭 in 𝑅. The
following conditions are equivalent.

(i) G(𝑅/𝔭) = 0 holds for every prime ideal 𝔭 in V(𝔞) .
(ii) G(𝑀) = 0 holds for every finitely generated 𝑅-module 𝑀 .

Proof. Let 𝔭 be a prime ideal in 𝑅. As G(𝑅/𝔭) ≠ 0 forces Hom𝑅 (𝑅/𝔞,G(𝑅/𝔭)) ≠ 0
by 11.2.12, the assertion follows from 12.4.10. □

Exercises

E 12.4.1 Let 𝔞 and 𝔟 be ideals in 𝑅, show that they are equal if and only if there is an isomorphims
of 𝑅-modules 𝑅/𝔞 � 𝑅/𝔟. Compare to E 8.2.16.

E 12.4.2 Let 𝑀 be an 𝑅-module; show that one has Supp𝑅 𝑀 =
⋃

𝔭∈Min𝑅 𝑀 V(𝔭) .
E 12.4.3 Let 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be an exact sequence of 𝑅-modules. Show that one

has Supp𝑅 𝑀 = Supp𝑅 𝑀 ′ ∪ Supp𝑅 𝑀 ′′.
E 12.4.4 Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝔞-torsion 𝑅-module. Show that Supp𝑅 𝑀 ⊆ V(𝔞) .
E 12.4.5 Let 𝑀 be an 𝑅-module; show that one has {𝑟 ∈ 𝑅 | 𝑟𝑚 = 0 for some 0 ≠ 𝑚 ∈ 𝑀 } =⋃

𝔭∈Ass𝑅 𝑀 𝔭.
E 12.4.6 Let 𝔭 be a maximal ideal in 𝑅. Show that an ideal 𝔞 in 𝑅 is 𝔭-primary if and only if it

contains a power of 𝔭.

8-Mar-2024 Draft - use at own risk
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E 12.4.7 Let 𝐹 be a flat 𝑅-module. Show that one has ⋃
𝔭∈Ass𝑅 𝐹 𝔭 ⊆ ⋃

𝔭∈Ass𝑅 𝑅 𝔭.
E 12.4.8 Let 𝕜 be a field and consider the algebra 𝑅 = 𝕜⟦𝑥, 𝑦⟧. Let𝑀 denote 𝑅 viewed as an 𝑅-

module. Show that the set {𝔭 ∈ Supp𝑅 𝑀 | 𝔭 ∩ 𝑅 \ (𝑥 ) = ∅}, which is in one-to-one
correspondence with Spec𝑅(𝑥) = Supp𝑅(𝑥) 𝑀(𝑥) , differs from Supp𝑅 𝑀(𝑥) .

E 12.4.9 Let𝑀 be a finitely generated 𝑅-module. Show that there is an injective homomorphism
𝑅/(0 :𝑅 𝑀 ) → 𝑀𝑛 for some suitable 𝑛 ∈ ℕ.

E 12.4.10 Let 𝑀 be a finitely generated 𝑅-module. Show that if 𝑀 ⊗𝑅 𝑅/𝔭 = 0 holds for every
𝔭 in Min𝑅 𝑀, then 𝑀 = 0.

E 12.4.11 Let 𝑀 be a finitely generated 𝑅-module and {𝑀𝑢 }𝑢∈𝑈 a family of 𝑅-modules. Show
that if every direct sum ⊕𝑛

𝑖=1 𝑀
𝑢𝑖 is a direct summand of 𝑀, then 𝑀𝑢 = 0 holds for all

but finitely many 𝑢 ∈ 𝑈. Hint: Reduces by E 12.4.10 to the case of an integral domain.
E 12.4.12 Let U be an Abelian category and F: M(𝑅) → U a non-zero half exact functor that

preserves filtered colimits. Show that there is a prime ideal 𝔭 in 𝑅 with F(𝑅/𝔭) ≠ 0.
E 12.4.13 Show that the next equalities hold for every 𝑅-complex 𝑀.

inf{ inf (𝑅/𝔭 ⊗L
𝑅 𝑀 ) | 𝔭 ∈ Spec𝑅 } = inf 𝑀

inf{− sup RHom𝑅 (𝑅/𝔭, 𝑀 ) | 𝔭 ∈ Spec𝑅 } = − sup𝑀 .
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Chapter 13
Derived Torsion and Completion

Much of the theory of derived 𝔞-completion and 𝔞-torsion presented in this chap-
ter works beyond the setting of Noetherian rings. The framework and most main
results—notably Theorems 13.1.15, 13.3.18, 13.4.1, and 13.4.13—require only a
technical condtion on the ideal 𝔞: it has to be generated by a so-called proregular
sequence, which ensures that the associated Čech complex has the right homologi-
cal properties. In this generality the Greenlees–May Equivalence (13.4.13) was first
proved by Porta, Shaul, and Yekutieli [204] building on work of Schenzel [223].
Every ideal in a Noetherian ring is generated by a proregular sequence, so Čech
complexes automatically have the right properties; this is the contents of 13.1.4.

13.1 Derived Completion

Synopsis. The functor LΛ𝔞 and local homology H𝔞 ; derived 𝔞-completion via Čech complex;
derived 𝔞-completion and change of rings; 𝔞-completion and flatness; derived 𝔞-complete complex.

For an ideal 𝔞 in 𝑅 the 𝔞-completion functor only depends on the radical of 𝔞.

13.1.1 Lemma. Let 𝔞 and 𝔟 be ideals in 𝑅. The inclusion 𝔞 ⊆ √𝔟 holds if and only
if 𝔟 contains a power of 𝔞. In particular,

√
𝔞 =
√
𝔟 holds if and only if 𝔞 and 𝔟 are

topologically equivalent.

Proof. If 𝔟 contains a power of 𝔞, then the inclusion 𝔞 ⊆ √𝔟 holds by the definition
of the radical. Now, let 𝑥1, . . . , 𝑥𝑛 be a sequence that generates 𝔞. If 𝔞 ⊆ √𝔟 holds,
then there exists for each generator 𝑥𝑖 an 𝑚𝑖 ∈ ℕ such that 𝑥𝑚𝑖

𝑖
belongs to 𝔟. With

𝑚 =
∑𝑛
𝑖=1 𝑚𝑖 one has 𝔞𝑚 ⊆ 𝔟. □

13.1.2 Proposition. Let 𝔞 and 𝔟 be ideals in 𝑅. If
√
𝔞 =
√
𝔟 holds, then there is a

natural isomorphism Λ𝔞 � Λ𝔟 of endofunctors on C(𝑅).

Proof. The assertion follows from 11.1.16 in view of 13.1.1. □

Recall that H𝔞
𝑚 = H𝑚 LΛ𝔞 is the 𝑚th local homology functor supported at 𝔞.

609
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13.1.3 Proposition. Let 𝔞 and 𝔟 be ideals in 𝑅. If
√
𝔞 =
√
𝔟 holds, then there is

a natural isomorphism LΛ𝔞 ≃ LΛ𝔟 of endofunctors on D(𝑅) and hence natural
isomorphisms of local homology functors H𝔞

𝑚 � H𝔟
𝑚 for all 𝑚 ∈ ℤ.

Proof. The assertions follow immediately from 13.1.2 and 11.3.6. □

Čech Complexes and Injective Modules

The following technical result is crucial to the next theorem on the docket, 13.1.15,
which affords a representation of the derived 𝔞-completion functor.

13.1.4 Proposition. Let 𝑥𝑥𝑥 be a sequence and 𝔭 a prime ideal in 𝑅.
(a) If (𝑥𝑥𝑥) ⊆ 𝔭, then one has Č (𝑥𝑥𝑥) ⊗𝑅 E𝑅 (𝑅/𝔭) � E𝑅 (𝑅/𝔭) in C(𝑅) .
(b) If (𝑥𝑥𝑥) ⊈ 𝔭, then the complex Č (𝑥𝑥𝑥) ⊗𝑅 E𝑅 (𝑅/𝔭) is contractible.

In particular, H𝑣 (Č (𝑥𝑥𝑥) ⊗𝑅 𝐼) = 0 holds for every injective 𝑅 module 𝐼 and all 𝑣 ≠ 0.

Proof. By 11.4.9 and 4.3.20 it is sufficient to consider the case of a single element
𝑥𝑥𝑥 = 𝑥. Set 𝐸 = E𝑅 (𝑅/𝔭); it follows from 11.4.9 and 1.1.11 that the complex
Č (𝑥) ⊗𝑅 𝐸 is concentrated in degrees 0 and −1 and isomorphic to the following
complex, where 𝜌 maps an element 𝑒 to 𝑒

1 ,

(★) 0 −→ 𝐸
𝜌−−−→ {𝑥𝑛 | 𝑛 ⩾ 0}−1𝐸 −→ 0 .

(a): The module 𝐸 is 𝔭-torsion; see C.14. Thus, if 𝑥 belongs to 𝔭, then for every
𝑒 ∈ 𝐸 there is a 𝑛 > 0 with 𝑥𝑛𝑒 = 0; in particular, one has {𝑥𝑛 | 𝑛 ⩾ 0}−1𝐸 = 0.

(b): If 𝑥 is not in 𝔭, then the homothety 𝑥𝐸 : 𝐸 → 𝐸 is an isomorphism by C.17.
If 𝜌(𝑒) = 0, then 𝑥𝑛𝑒 = 0 holds for some 𝑛 > 0, whence 𝑒 = 0 by injectivity of 𝑥𝐸 .
Thus 𝜌 is injective. To prove surjectivity, let 𝑒

𝑥𝑛
∈ {𝑥𝑛 | 𝑛 ⩾ 0}−1𝐸 be given. By

surjectivity of 𝑥𝐸 there is an element 𝑒′ with 𝑥𝑛𝑒′ = 𝑒, and hence 𝜌(𝑒′) = 𝑒
𝑥𝑛

. The
complex (★) is the mapping cone of 𝜌 considered as a morphism of complexes, so it
is contractible by 4.3.31.

Tensor products and homology preserve coproducts, see 3.1.13 and 3.1.10(d). For
an injective 𝑅-module 𝐼 and 𝑣 ≠ 0 it thus follows from parts (a) and (b), in view of
Matlis’ structure theorem C.23, that the module H𝑣 (Č (𝑥𝑥𝑥) ⊗𝑅 𝐼) vanishes. □

13.1.5 Corollary. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑆 an 𝑅-algebra. For every injective
𝑆-module 𝐽 one has H𝑣 (Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝐽) = 0 for all 𝑣 ≠ 0.

Proof. Combining 12.1.18 with 11.4.18 one gets isomorphisms of 𝑆-complexes,

Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝐽 � (𝑆 ⊗𝑅 Č𝑅(𝑥𝑥𝑥)) ⊗𝑆 𝐽 � Č𝑆(𝑥𝑥𝑥) ⊗𝑆 𝐽 .

The statement now follows from the last assertion in 13.1.4. □
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13.1 Derived Completion 611

Derived Completion via Čech Complexes

With the next construction we start the preparations for Theorem 13.1.15, which
establishes the representation of the derived 𝔞-completion functor that facilitates the
proof of the Greenlees–May Equivalence. The corresponding representation of the
derived 𝔞-torsion functor is proved in 13.3.18.

13.1.6 Construction. Let 𝑥𝑥𝑥 be a sequence in 𝑅. For 𝑢 ⩾ 1 consider the composite,

K (𝑥𝑥𝑥𝑢) 𝛿
K (𝑥𝑥𝑥𝑢 )
𝑅−−−−−−→
�

Hom𝑅 (Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅), 𝑅)
Hom𝑅 (𝜋𝑢𝑥𝑥𝑥 ,𝑅)−−−−−−−−−−−→

≊
Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ,

where the biduality map is an isomorphism by 12.1.14 and the second morphism
is a homotopy equivalence by 11.4.25(a) and 4.3.19. The resulting morphism is a
homotopy equivalence denoted �̌�𝑢𝑥𝑥𝑥 . Naturalness of biduality combined with 11.4.24
yields a commutative diagram,

(13.1.6.1)

K (𝑥𝑥𝑥𝑢)
�̌�𝑢𝑥𝑥𝑥

≊
//

𝜘𝑢𝑥𝑥𝑥
��

Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅)

Hom𝑅 ( 𝜄𝑢−1
𝑥𝑥𝑥 ,𝑅)

��

K (𝑥𝑥𝑥𝑢−1)
�̌�𝑢−1
𝑥𝑥𝑥

≊
// Hom𝑅 (L𝑢−1 (𝑥𝑥𝑥), 𝑅) ;

see 11.4.8. The complex Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) is concentrated in degrees 𝑣 ⩾ 0; this
explains the first morphism below and the second isomorphism comes from 11.4.3(a),

Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) −→ H0 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅))
H0 ( �̌�𝑢𝑥𝑥𝑥 )−1

−−−−−−−−→
�

H0 (K (𝑥𝑥𝑥𝑢)) � 𝑅/(𝑥𝑥𝑥𝑢) .

Let 𝜏𝑢𝑥𝑥𝑥 denote the displayed composite and notice that H0 (𝜏𝑢𝑥𝑥𝑥 ) is an isomorphism.

13.1.7 Lemma. Let 𝑥𝑥𝑥 be a sequence in 𝑅. In the tower,

{Hom𝑅 (𝜄𝑢−1
𝑥𝑥𝑥 , 𝑅) : Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) → Hom𝑅 (L𝑢−1 (𝑥𝑥𝑥), 𝑅)}𝑢>1 ,

induced by the telescope in 11.4.22, every morphism is surjective. Moreover, for
every 𝑣 > 0 the induced tower in homology,

{H𝑣 (Hom𝑅 (𝜄𝑢−1
𝑥𝑥𝑥 , 𝑅)) : H𝑣 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅)) → H𝑣 (Hom𝑅 (L𝑢−1 (𝑥𝑥𝑥), 𝑅))}𝑢>1 ,

satisfies the trivial Mittag-Leffler Condition.

Proof. The first assertion follows from 11.4.21 and 2.3.13. Fix 𝑣 > 0; the tower
induced by H𝑣 is by (13.1.6.1) isomorphic to the tower

{H𝑣 (𝜘𝑢𝑥𝑥𝑥) : H𝑣 (K (𝑥𝑥𝑥𝑢)) → H𝑣 (K (𝑥𝑥𝑥𝑢−1))}𝑢>1 .

For every injective 𝑅-module 𝐼 it induces a telescope {Hom𝑅 (H𝑣 (𝜘𝑢𝑥𝑥𝑥), 𝐼)}𝑢⩾1 , and
we first argue that it suffices to show that every such telescope has colimit zero.

For every 𝑢 there is by 5.3.30 an injective 𝑅-module 𝐼 and an injective homomor-
phism 𝜄 in Hom𝑅 (H𝑣 (K (𝑥𝑥𝑥𝑢)), 𝐼). If colim𝑢⩾1 Hom𝑅 (H𝑣 (K (𝑥𝑥𝑥𝑢)), 𝐼) = 0 holds, then
3.3.2(b) yields a 𝑤 > 𝑢 such that one has
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612 13 Derived Torsion and Completion

0 = (Hom𝑅 (H𝑣 (𝜘𝑤𝑥𝑥𝑥 ), 𝐼) · · ·Hom𝑅 (H𝑣 (𝜘𝑢+1𝑥𝑥𝑥 ), 𝐼)) (𝜄) = 𝜄H𝑣 (𝜘𝑢+1𝑥𝑥𝑥 ) · · ·H𝑣 (𝜘𝑤𝑥𝑥𝑥 ) .

As 𝜄 is injective, this implies that the composite H𝑣 (𝜘𝑢+1𝑥𝑥𝑥 ) · · ·H𝑣 (𝜘𝑤𝑥𝑥𝑥 ) is zero. Thus
the tower in question satisfies the trivial Mittag-Leffler Condition; see 3.5.9.

Let 𝐼 be an injective 𝑅-module. In the next chain of isomorphisms, the first holds
as the exact functor Hom𝑅 ( , 𝐼) commutes with homology and homology preserves
filtered colimits; see 2.2.19 and 3.3.15(d). The telescope {Hom𝑅 (𝜘𝑢𝑥𝑥𝑥 , 𝐼)}𝑢⩾1 is by
tensor evaluation 12.1.15(d) isomorphic to the telescope {𝜅𝑢𝑥𝑥𝑥 ⊗𝑅 𝐼 }𝑢⩾1 induced by
(11.4.8.1); this explains the second isomorphism. The last two isomorphisms follow
from 3.2.22 and 11.4.12.

colim
𝑢⩾1

Hom𝑅 (H𝑣 (K (𝑥𝑥𝑥𝑢)), 𝐼) � H−𝑣
(
colim
𝑢⩾1

Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝐼)
)

� H−𝑣
(
colim
𝑢⩾1
(Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅) ⊗𝑅 𝐼)

)
� H−𝑣

( (
colim
𝑢⩾1

Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅)
)
⊗𝑅 𝐼

)
� H−𝑣 (Č (𝑥𝑥𝑥) ⊗𝑅 𝐼) .

It now remains to recall that H−𝑣 (Č (𝑥𝑥𝑥) ⊗𝑅 𝐼) = 0 holds by 13.1.4. □

13.1.8 Construction. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑀 an 𝑅-complex. Denote by
𝜙𝑀𝑥𝑥𝑥 the unique morphism that makes the following diagram commutative,

Hom𝑅 (L(𝑥𝑥𝑥), 𝑀)
𝜙𝑀𝑥𝑥𝑥

//

�

��

Λ(𝑥𝑥𝑥 ) (𝑀)

Hom𝑅

(
colim
𝑢⩾1

L𝑢 (𝑥𝑥𝑥), 𝑀
)

�

��

lim
𝑢⩾1
(𝑅/(𝑥𝑥𝑥𝑢) ⊗𝑅 𝑀)

lim𝑢⩾1 ( 𝜉𝑢𝑥𝑥𝑥 ⊗𝑀 )�

OO

lim
𝑢⩾1

Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑀) lim
𝑢⩾1
(Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝑀) .

lim𝑢⩾1 𝜃
L𝑢 (𝑥𝑥𝑥)𝑅𝑀

�
oo

lim𝑢⩾1 (𝜏𝑢𝑥𝑥𝑥 ⊗𝑀 )

OO

The left-hand vertical isomorphisms come from 11.4.22 and 3.4.29, and the mor-
phisms on the right come from 11.1.17 and 13.1.6. The horizontal isomorphism is
induced by tensor evaluation 12.1.15(d) and the unitor 12.1.5.

Let 𝑆 be an 𝑅-algebra and 𝑁 an 𝑆-complex. It follows from 12.1.4 and 11.1.6 that
Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝑁) and Λ(𝑥𝑥𝑥 ) (𝑁) are 𝑆-complexes, and it is straightforward to verify
that the morphism,

𝜙𝑁𝑥𝑥𝑥 : Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝑁) −→ Λ(𝑥𝑥𝑥 ) (𝑁) ,

constructed above is 𝑆-linear.

13.1.9 Lemma. Let 𝑥𝑥𝑥 be a sequence in 𝑅, let 𝑆 be an 𝑅-algebra and 𝑁 an 𝑆-complex.
The morphism

𝜙𝑁𝑥𝑥𝑥 : Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝑁) −→ Λ(𝑥𝑥𝑥 ) (𝑁)
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13.1 Derived Completion 613

constructed in 13.1.8 is natural in 𝑁 , and as a natural transformation of functors,
𝜙𝑥𝑥𝑥 is a Σ-transformation.

Proof. The claims follow per 4.1.16, 4.1.18, 3.4.21, and 11.1.13 from the construc-
tion 13.1.8 of 𝜙𝑁𝑥𝑥𝑥 . □

13.1.10 Lemma. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑆 an 𝑅-algebra. For every complex
𝐹 of flat 𝑆-modules the morphism of 𝑆-complexes,

𝜙𝐹𝑥𝑥𝑥 : Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝐹) −→ Λ(𝑥𝑥𝑥 ) (𝐹)

from 13.1.9 is a quasi-isomorphism.

Proof. First we consider the special case 𝑆 = 𝑅. It follows from 2.3.12, 4.1.16, and
A.15(c) that Hom𝑅 (L𝑅 (𝑥𝑥𝑥), ) is a ♮-functor, a Σ-functor, and bounded; by 11.1.13
the functor Λ(𝑥𝑥𝑥 ) has the same properties. Furthermore, 𝜙𝑥𝑥𝑥 is a Σ-transformation by
13.1.9. Thus, by A.17(d) one can assume that 𝐹 is a flat 𝑅-module.

Proving that 𝜙𝐹𝑥𝑥𝑥 is a quasi-isomorphism is by 13.1.8 equivalent to showing that

lim
𝑢⩾1
(𝜏𝑢𝑥𝑥𝑥 ⊗𝑅 𝐹) : lim

𝑢⩾1
(Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝐹) −→ lim

𝑢⩾1
(𝑅/(𝑥𝑥𝑥𝑢) ⊗𝑅 𝐹)

is a quasi-isomorphism. The codomain of this map is a module, so one must prove:
(†) H𝑣 (lim𝑢⩾1 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝐹)) = 0 for every 𝑣 ≠ 0, and
(‡) H0 (lim𝑢⩾1 (𝜏𝑢𝑥𝑥𝑥 ⊗𝑅 𝐹)) is an isomorphism.

The homology modules in (†) are zero for 𝑣 < 0; cf. 11.4.19. The next step is to
verify the assumptions in 3.5.19 in order to conclude that the canonical morphism,

𝜓𝑣 : H𝑣
(

lim
𝑢⩾1
(Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝐹)

)
−→ lim

𝑢⩾1
H𝑣 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝐹) ,

is an isomorphism for 𝑣 ⩾ 0. The maps in the tower {Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝐹}𝑢⩾1 are
{Hom𝑅 (𝜄𝑢𝑥𝑥𝑥 , 𝑅) ⊗𝑅 𝐹}𝑢⩾1 , and they are surjective by 13.1.7. In particular, this tower
satisfies the Mittag-Leffler Condition; see 3.5.10. As 𝐹 is flat, 2.2.19 yields

H𝑣 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝐹) � H𝑣 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅)) ⊗𝑅 𝐹 ,

and, therefore, the tower {H𝑣 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝐹)}𝑢⩾1 is isomorphic to the tower
{H𝑣 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅)) ⊗𝑅 𝐹}𝑢⩾1 , whose maps are {H𝑣 (Hom𝑅 (𝜄𝑢𝑥𝑥𝑥 , 𝑅)) ⊗𝑅 𝐹}𝑢⩾1 .
For 𝑣 > 0 it follows from 13.1.7 that this tower satisfies the trivial Mittag-Leffler
Condition. This establishes that 𝜓𝑣 is an isomorphism for 𝑣 ⩾ 0, and by 3.5.13 the
codomain of 𝜓𝑣 is zero for 𝑣 > 0, so (†) follows.

The isomorphism 𝜓0 fits by 3.4.18 into the commutative diagram,

H0
(

lim
𝑢⩾1
(Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝐹)

) H0 (lim𝑢⩾1 (𝜏𝑢𝑥𝑥𝑥 ⊗𝐹 ) )
//

𝜓0 �

��

H0
(

lim
𝑢⩾1
(𝑅/(𝑥𝑥𝑥𝑢) ⊗𝑅 𝐹)

)
lim
𝑢⩾1

H0 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝐹)
lim𝑢⩾1 H0 (𝜏𝑢𝑥𝑥𝑥 ⊗𝐹 )

// lim
𝑢⩾1

H0 (𝑅/(𝑥𝑥𝑥𝑢) ⊗𝑅 𝐹) ,
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614 13 Derived Torsion and Completion

where the equality on the right holds as 𝑅/(𝑥𝑥𝑥𝑢) and 𝐹 are modules. Thus, to establish
(‡) it suffices to verify that lim𝑢⩾1 H0 (𝜏𝑢𝑥𝑥𝑥 ⊗𝑅 𝐹) is an isomorphism. Each map H0 (𝜏𝑢𝑥𝑥𝑥 )
is an isomorphism by 13.1.6 and hence so is H0 (𝜏𝑢𝑥𝑥𝑥 ) ⊗𝑅 𝐹 � H0 (𝜏𝑢𝑥𝑥𝑥 ⊗𝑅 𝐹).

Finally, we consider the general case where 𝑆 is an 𝑅-algebra. Let 𝐹 be an
𝑆-complex, 12.1.19 and 11.4.20 yield isomorphisms of 𝑆-complexes,

Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝐹) � Hom𝑆 (𝑆 ⊗𝑅 L𝑅 (𝑥𝑥𝑥), 𝐹) � Hom𝑆 (L𝑆 (𝑥𝑥𝑥), 𝐹) .

Moreover, the extension (𝑥𝑥𝑥)𝑆 of the ideal (𝑥𝑥𝑥) ⊆ 𝑅 to 𝑆 is the ideal in 𝑆 generated
by 𝑥𝑥𝑥 viewed as a sequence in 𝑆. Thus, in view of 11.1.7 and the isomorphisms
above, it follows that the map 𝜙𝐹𝑥𝑥𝑥 : Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝐹) −−→ Λ(𝑥𝑥𝑥 ) (𝐹)may be identified
with 𝜙𝐹𝑥𝑥𝑥 : Hom𝑆 (L𝑆 (𝑥𝑥𝑥), 𝐹) → Λ(𝑥𝑥𝑥 ) (𝐹), where 𝑥𝑥𝑥 viewed as a sequence in 𝑆. By the
already established case, the latter map is an isomorphism if 𝐹 is a complex of flat
𝑆-modules. □

We now continue the discussion from 11.3.5.

13.1.11 Construction. Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra. By 11.1.6 one
can view Λ𝔞 as an endofunctor on C(𝑆); we temporarily denote this functor by the
symbol L𝔞 to distinguish it from the functor Λ𝔞 : C(𝑅) → C(𝑅). There is a diagram,
not necssarily commutative, and a natural transformation:

K(𝑆) L𝔞 P𝑆
//

res𝑆
𝑅

��

K(𝑆)

res𝑆
𝑅

��

K(𝑅) Λ𝔞 P𝑅
// K(𝑅)

and Λ𝔞 P𝑅 res𝑆𝑅
Λ𝔞 𝜚𝑆

𝑅−−−−−→ Λ𝔞 res𝑆𝑅 P𝑆 = res𝑆𝑅 L𝔞 P𝑆 ,

where 𝜚𝑆
𝑅

is the natural transformation of functors K(𝑆) → K(𝑅) from 6.3.21. By
6.4.31, 6.4.40, and the definition, 7.2.8, of left derived functors, one gets an induced
diagram and an induced natural transformation:

D(𝑆) LL𝔞

//

res𝑆
𝑅

��

D(𝑆)

res𝑆
𝑅

��

D(𝑅) LΛ𝔞

// D(𝑅)

and LΛ𝔞 res𝑆𝑅 −→ res𝑆𝑅 LL𝔞 .

The gist of the next statement is that the functor LL𝔞 on D(𝑆) is an augmentation
of LΛ𝔞 on D(𝑅), cf. Chap. 7.

13.1.12 Proposition. The transformation LΛ𝔞 res𝑆
𝑅
−−→ res𝑆

𝑅
LL𝔞 from 13.1.11 is a

natural isomorphism.

Proof. We suppress the restriction of scalars functor res𝑆
𝑅

. Set 𝜚 = 𝜚𝑆
𝑅

and write 𝜑
for the natural transformation under consideration. Let 𝑁 be an 𝑆-complex. To prove
that 𝜑𝑁 is an isomorphism in D(𝑅) it suffices, by the definition of this morphism,
to prove that Λ𝔞 (𝜚𝑁 ) is a quasi-isomorphism. Consider the 𝑅-complex 𝑃 = P𝑅 (𝑁)
and the 𝑆-complex 𝐿 = P𝑆 (𝑁). Let 𝑥𝑥𝑥 be a sequence that generates 𝔞 and L𝑅 (𝑥𝑥𝑥) be
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the semi-free replacement of the Čech complex Č𝑅(𝑥𝑥𝑥) from 11.4.25(c). By 6.3.21
the map 𝜚𝑁 : 𝑃→ 𝐿 is a quasi-isomorphism and hence so is Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝜚𝑁 ).
The natural transformation 𝜙𝑥𝑥𝑥 from 13.1.9 yields a commutative diagram,

Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝑃)
Hom𝑅 (L𝑅 (𝑥𝑥𝑥 ) , 𝜚𝑁 )

≃
//

𝜙𝑃𝑥𝑥𝑥
��

Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝐿)

𝜙𝐿𝑥𝑥𝑥
��

Λ𝔞 (𝑃)
Λ𝔞 ( 𝜚𝑁 )

// Λ𝔞 (𝐿) .

Since the vertical maps 𝜙𝑃𝑥𝑥𝑥 and 𝜙𝐿𝑥𝑥𝑥 are quasi-isomorphisms by 13.1.10, it follows
that Λ𝔞 (𝜚𝑁 ) is a quasi-isomorphism. □

The result above justifies the following extension of 11.3.2.

13.1.13 Definition. Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra. We write LΛ𝔞 for
the left derived functor of Λ𝔞 viewed as an endofunctor on C(𝑆). Just as in 11.3.2
the Σ-transformation 𝜆𝔞 : IdC(𝑆) → Λ𝔞 from 11.1.6 induces a triangulated natural
transformation of endofunctors on D(𝑆),

𝝀𝔞 = L𝜆𝔞 : IdD(𝑆) −→ LΛ𝔞 .

13.1.14. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅𝔞-complex. Let 𝑃 be a semi-projective
replacement of 𝑀 in C(𝑅𝔞). By 11.1.21 the two 𝑅𝔞-structures on Λ𝔞 (𝑃) coming
from 11.1.6 and 11.1.20 coincide. It follows that the two 𝑅𝔞-structures on LΛ𝔞 (𝑀) =
Λ𝔞 (𝑃) coming from 13.1.13 and 11.3.4 are the same. In other words, LΛ𝔞 (𝑀) is a
complex of symmetric 𝑅𝔞–𝑅𝔞-bimodules and the following diagram is commutative,

D(𝑅𝔞)

res𝑅𝔞
𝑅

��

LΛ𝔞

(from 13.1.13)
// D(𝑅𝔞)

D(𝑅) LΛ𝔞

(from 11.3.4)
// D(𝑅𝔞) .

To parse the next theorem, recall from 11.4.14 and 11.4.25 the natural transfor-
mations 𝜀𝑥𝑥𝑥 and 𝜋𝑥𝑥𝑥 . A consequence of the theorem and 11.4.16 is that the derived
𝔞-completion functor is idempotent. A precise statement is made in 13.4.1.

13.1.15 Theorem. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥, and 𝑆 be an
𝑅-algebra. The endofunctor LΛ𝔞 on D(𝑆) is bounded and preserves products, there
are triangulated natural isomorphisms of endofunctors on D(𝑆),

LΛ𝔞 ( ) ≃ Hom𝑅 (L𝑅 (𝑥𝑥𝑥), ) ≃ RHom𝑅 (Č𝑅(𝑥𝑥𝑥), ) ,

and isomorphisms of natural transformations,

𝝀𝔞 ≃ Hom𝑅 (𝜀𝑥𝑥𝑥𝜋𝑥𝑥𝑥 , ) ≃ RHom𝑅 (𝜀𝑥𝑥𝑥 , ) .

Let 𝑁 be an 𝑆-complex. For every complex 𝐹 of flat 𝑆-modules with 𝐹 ≃ 𝑀 in D(𝑆)
there is an isomorphism in D(𝑆),
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LΛ𝔞 (𝑁) ≃ Λ𝔞 (𝐹) .

Proof. By 11.4.25(c) the morphism 𝜋𝑥𝑥𝑥 : L𝑅 (𝑥𝑥𝑥) → Č𝑅(𝑥𝑥𝑥) is a semi-free resolution.
Thus, in the following commutative diagram of natural transformations of endofunc-
tors on D(𝑆), the horizontal transformation is a natural isomorphism,

RHom𝑅 (𝑅, )
RHom𝑅 (𝜀𝑥𝑥𝑥 , )

xx

RHom𝑅 (𝜀𝑥𝑥𝑥 𝜋𝑥𝑥𝑥 , )

&&

RHom𝑅 (Č𝑅(𝑥𝑥𝑥), )
RHom𝑅 (𝜋𝑥𝑥𝑥 , )

≃
// RHom𝑅 (L𝑅 (𝑥𝑥𝑥), ) .

Hence the functor RHom𝑅 (Č𝑅(𝑥𝑥𝑥), ) and the natural transformation RHom𝑅 (𝜀𝑥𝑥𝑥 , )
may be identified with the functor RHom𝑅 (L𝑅 (𝑥𝑥𝑥), ) and the natural transformation
RHom𝑅 (𝜀𝑥𝑥𝑥𝜋𝑥𝑥𝑥 , ). As 𝑅 and L𝑅 (𝑥𝑥𝑥) are semi-free 𝑅-complexes, one has

RHom𝑅 (𝑅, ) = Hom𝑅 (𝑅, ) and RHom𝑅 (L𝑅 (𝑥𝑥𝑥), ) = Hom𝑅 (L𝑅 (𝑥𝑥𝑥), ) ,

and also RHom𝑅 (𝜀𝑥𝑥𝑥𝜋𝑥𝑥𝑥 , ) = Hom𝑅 (𝜀𝑥𝑥𝑥𝜋𝑥𝑥𝑥 , ). This establishes the isomorphisms
Hom𝑅 (L𝑅 (𝑥𝑥𝑥), ) ≃ RHom𝑅 (Č𝑅(𝑥𝑥𝑥), ) and Hom𝑅 (𝜀𝑥𝑥𝑥𝜋𝑥𝑥𝑥 , ) ≃ RHom𝑅 (𝜀𝑥𝑥𝑥 , ).

Now, consider the natural transformations of endofunctors on K(𝑆),

Λ𝔞 (P𝑆 ( ))
𝜙

P𝑆 ( )
𝑥𝑥𝑥←−−−−−− Hom𝑅 (L𝑅 (𝑥𝑥𝑥), P𝑆 ( ))

Hom (L𝑅 (𝑥𝑥𝑥 ) , 𝜋
𝑆
)−−−−−−−−−−−−−→ Hom𝑅 (L𝑅 (𝑥𝑥𝑥), ) ,

induced by 13.1.9 and 6.3.11. By the same references and 6.2.17, both transfor-
mations are triangulated. Evaluated at an 𝑆-complex, they are quasi-isomorphisms
by 13.1.10 and by 6.3.11 and semi-freeness of L𝑅 (𝑥𝑥𝑥), see 11.4.25(c). Per 7.2.8,
7.2.11, and 6.5.14 the diagram above yields a triangulated natural isomorphism
LΛ𝔞 ( ) ≃ Hom𝑅 (L𝑅 (𝑥𝑥𝑥), ). It follows that LΛ𝔞 is bounded, see 11.4.26 and A.26(c),
and it preserves products by 7.3.6 and 7.2.13(b).

Let 𝐹 be a complex of flat 𝑆-modules that is isomorphic to 𝑁 in D(𝑆) and let
𝑃 be a semi-projective replacement of 𝑁 . By 6.4.20 there is a quasi-isomorphism
𝑃 → 𝐹 of 𝑆-complexes, so by semi-freeness of L𝑅 (𝑥𝑥𝑥) the middle morphism in (⋄)
below is a quasi-isomorphism. The left- and right-hand morphisms in (⋄) are quasi-
isomorphisms by 13.1.10; this accounts for the isomorphism LΛ𝔞 (𝑀) ≃ Λ𝔞 (𝐹) in
D(𝑆).

(⋄) Λ𝔞 (𝑃) 𝜙𝑃𝑥𝑥𝑥←−−− Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝑃) −→ Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝐹)
𝜙𝐹𝑥𝑥𝑥−−−→ Λ𝔞 (𝐹) .

Finally we show that there is an isomorphism between the natural transformations
𝝀𝔞 and Hom𝑅 (𝜀𝑥𝑥𝑥𝜋𝑥𝑥𝑥 , ). In D(𝑆) every 𝑆-complex is naturally isomorphic to its
semi-projective resolution by 6.3.11. It thus suffices to argue that the morphisms 𝜆𝔞

𝑃

and Hom𝑅 (𝜀𝑥𝑥𝑥𝜋𝑥𝑥𝑥 , 𝑃) are isomorphic in D(𝑆) for every semi-projective 𝑆-complex
𝑃, and that follows from commutativity of the following diagram,
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13.1 Derived Completion 617

𝑃

𝜖 𝑃
𝑅
�

��

𝜆𝔞
𝑃

// Λ𝔞 (𝑃)

Hom𝑅 (𝑅, 𝑃)
Hom (𝜀𝑥𝑥𝑥 𝜋𝑥𝑥𝑥 ,𝑃)

// Hom𝑅 (L𝑅 (𝑥𝑥𝑥), 𝑃) .

≃ 𝜙𝑃𝑥𝑥𝑥

OO

□

Remark. The derived 𝔞-completion of an 𝑅-complex can also be computed as the 𝔞-completion
of an isomorphic K-flat complex; see E 13.1.2.

13.1.16 Corollary. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝐹 an 𝑆-module. If
𝐹 is flat, then one has

H𝔞
0 (𝐹) � Λ𝔞 (𝐹) and H𝔞

𝑚 (𝐹) = 0 for all 𝑚 > 0 .

Proof. The assertion is a special case of the last isomorphism in 13.1.15. □

Even the special case 𝐹 = 𝑆 of 13.1.16 can be of interest.

13.1.17 Example. Let 𝔞 be an ideal in 𝑅. For every ideal 𝔟 in 𝑅[𝑥1, . . . , 𝑥𝑛] the
𝑅-algebra 𝑆 = 𝑅[𝑥1, . . . , 𝑥𝑛]/𝔟 satisfies

H𝔞
0 (𝑆) � Λ𝔞 (𝑆) and H𝔞

𝑚 (𝑆) = 0 for all 𝑚 > 0 .

Remark. Let 𝔞 be an ideal in 𝑅. Had the 𝔞-completion functor been right exact, which by 11.1.32
it is not, then the modules H𝔞

0 (𝑀 ) and Λ𝔞 (𝑀 ) would have been isomorphic for every 𝑅-module
𝑀; see E 7.2.9. By 13.1.16 these modules are isomorphic and the higher local homology modules
vanish if 𝑀 is flat; Simon [233, 234] identifies several other classes of modules with this propterty,
among them the 𝔞-complete modules. For a finitely generated 𝑅-module 𝑀 it follows from 13.2.6
that the isomorphism H𝔞

0 (𝑀 ) � Λ𝔞 (𝑀 ) holds, as does H𝔞
𝑚 (𝑀 ) = 0 for 𝑚 > 0. It is shown in

[234] that this behavior persists for 𝑈-fold coproducts of a finitely generated module. In [235]
Simon constructs a module 𝑀 such that H𝔞

0 (𝑀 ) � 𝑀 holds but 𝑀 is not 𝔞-complete; see also
Schenzel and Simon [224, 2.5].

Theorem 13.1.15 provides for simple proofs of several useful properties LΛ𝔞 .

13.1.18 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. There is
a commutative diagram in D(𝑅), where the horizontal morphism is an isomorphism,

RHom𝑅 (𝑀, 𝑁)
𝝀𝔞RHom (𝑀,𝑁 )

zz

RHom (𝑀,𝝀𝔞
𝑁
)

$$

LΛ𝔞 (RHom𝑅 (𝑀, 𝑁)) ≃
// RHom𝑅 (𝑀, LΛ𝔞 (𝑁)) .

If 𝑆 is an 𝑅-algebra and 𝑀 an 𝑆-complex, then this is a diagram in D(𝑆).
Proof. Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. By 12.3.16 there is a commutative
diagram in D(𝑅), where the horizontal morphisms are isomorphisms,

RHom𝑅 (𝑅,RHom𝑅 (𝑀, 𝑁))

RHom (𝜀𝑥𝑥𝑥 ,RHom (𝑀,𝑁 ) )
��

≃
𝜻𝑅𝑁𝑀

// RHom𝑅 (𝑀,RHom𝑅 (𝑅, 𝑁))

RHom (𝑀,RHom (𝜀𝑥𝑥𝑥 ,𝑁 ) )
��

RHom𝑅 (Č (𝑥𝑥𝑥),RHom𝑅 (𝑀, 𝑁)) ≃
𝜻 Č (𝑥𝑥𝑥)𝑁𝑀

// RHom𝑅 (𝑀,RHom𝑅 (Č (𝑥𝑥𝑥), 𝑁)) ;
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if 𝑀 is an 𝑆-complex, then this is a diagram in D(𝑆). The assertions now follow
from 13.1.15 in view of the counitor 12.3.4. □

13.1.19 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. There is a
commutative diagram in D(𝑅),

𝑀 ⊗L
𝑅
𝑁

𝝀𝔞
𝑀⊗L𝑁

""

𝝀𝔞
𝑀
⊗L𝑁

||

LΛ𝔞 (𝑀) ⊗L
𝑅
𝑁 // LΛ𝔞 (𝑀 ⊗L

𝑅
𝑁) .

If 𝑆 is an 𝑅-algebra and𝑁 an 𝑆-complex, then this is a diagram inD(𝑆). Furthermore,
if one of the conditions (a), (b), or (c) below is satisfied, then the horizontal morphism
in the diagram above is an isomorphism.

(a) 𝑁 is in Df
⊏⊐ (𝑅) and pd𝑅 𝑁 is finite.

(b) 𝑀 is in D⊐ (𝑅) and 𝑁 in Df
⊐ (𝑅) .

(c) 𝑀 is in D⊏⊐ (𝑅), fd𝑅 𝑀 is finite, and 𝑁 is in Df (𝑅) .

Proof. Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. By 12.3.10 one has the commutative
diagram below, where the upper horizontal morphism is an isomorphism by tensor
evaluation 12.3.23(a). By 13.1.15 and the counitor 12.3.4 this yields the asserted
commutative diagram.

RHom𝑅 (𝑅, 𝑀) ⊗L
𝑅
𝑁

RHom (𝜀𝑥𝑥𝑥 ,𝑀 ) ⊗L𝑁
��

𝜽𝑅𝑀𝑁

≃
// RHom𝑅 (𝑅, 𝑀 ⊗L

𝑅
𝑁)

RHom (𝜀𝑥𝑥𝑥 ,𝑀⊗L𝑁 )
��

RHom𝑅 (Č (𝑥𝑥𝑥), 𝑀) ⊗L
𝑅
𝑁

𝜽Č (𝑥𝑥𝑥)𝑀𝑁
// RHom𝑅 (Č (𝑥𝑥𝑥), 𝑀 ⊗L

𝑅
𝑁) .

Under the assumptions in part (a) the morphism 𝜽 Č (𝑥𝑥𝑥 )𝑀𝑁 is an isomorphism by
12.3.23(c). Recall from 11.4.10(c) and 11.4.26 that Č (𝑥𝑥𝑥) is in D⊏⊐ (𝑅) and pd𝑅 Č (𝑥𝑥𝑥)
is finite. Thus, under the assumptions in parts (b) and (c) the morphism 𝜽 Č (𝑥𝑥𝑥 )𝑀𝑁 is
an isomorphism by 12.3.23(d) and 12.3.24(a). □

13.1.20 Proposition. Let 𝔞 and 𝔟 be ideals in 𝑅 and 𝑀 an 𝑅-complex; there is an
isomorphism in D(𝑅),

LΛ𝔞 (LΛ𝔟 (𝑀)) ≃ LΛ𝔞+𝔟 (𝑀) .

Proof. Let 𝑥𝑥𝑥 and 𝑦𝑦𝑦 be sequences that generate 𝔞 and 𝔟, and note that the concatenated
sequence 𝑥𝑥𝑥, 𝑦𝑦𝑦 generates the ideal 𝔞 + 𝔟. In the computation below, the 1st and 4th

isomorphisms follow from 13.1.15. The 2nd isomorphism holds by adjunction 12.3.8,
commutativity 12.3.5, and semi-flatness of the Čech complex; see 11.4.10(c). The
3rd isomorphism follows from the definition, 11.4.9, of the Čech complex.

LΛ𝔞 (LΛ𝔟 (𝑀)) ≃ RHom𝑅 (Č (𝑥𝑥𝑥),RHom𝑅 (Č (𝑦𝑦𝑦), 𝑀))
≃ RHom𝑅 (Č (𝑥𝑥𝑥) ⊗𝑅 Č (𝑦𝑦𝑦), 𝑀)
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≃ RHom𝑅 (Č (𝑥𝑥𝑥, 𝑦𝑦𝑦), 𝑀)
≃ LΛ𝔞+𝔟 (𝑀) . □

Independence of Base

For an ideal 𝔞 in 𝑅, an 𝑅-algebra 𝑆, and an 𝑆-complex 𝑁 the complex LΛ𝔞 (𝑁) is
an 𝑆-complex; see 13.1.13. Part (a) of the next result, which is a derived version of
11.1.7, is referred to as “independence of base” for local homology. To parse the
statements recall the definition of derived 𝔞-completeness from 11.3.3.

13.1.21 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra.
(a) Let 𝑁 be an 𝑆-complex. There is a commutative diagram in D(𝑆),

𝑁

𝝀𝔞
𝑁

��

𝝀𝔞𝑆
𝑁

��

LΛ𝔞𝑆 (𝑁) ≃
// LΛ𝔞 (𝑁) ,

where the horizontal morphism is an isomorphism. In particular, 𝑁 is derived
𝔞𝑆-complete if and only if it is derived 𝔞-complete as an 𝑅-complex. Further,
for every 𝑚 ∈ ℤ there is an isomorphism of 𝑆-modules,

H𝔞𝑆
𝑚 (𝑁) � H𝔞

𝑚 (𝑁) .

(b) Let 𝑀 be an 𝑅-complex. There is a commutative diagram in D(𝑆),

RHom𝑅 (𝑆, 𝑀)
𝝀𝔞𝑆RHom (𝑆,𝑀)

zz

RHom (𝑆,𝝀𝔞
𝑀
)

$$

LΛ𝔞𝑆 (RHom𝑅 (𝑆, 𝑀)) ≃
// RHom𝑅 (𝑆, LΛ𝔞 (𝑀)) ,

where the horizontal morphism is an isomorphism, If𝑀 is derived 𝔞-complete,
then RHom𝑅 (𝑆, 𝑀) is derived 𝔞𝑆-complete; the converse holds if 𝑆 is faithfully
projective as an 𝑅-module. Moreover, if 𝑆 is projective as an 𝑅-module, then
there is for every 𝑚 ∈ ℤ an isomorphism of 𝑆-modules,

H𝔞𝑆
𝑚 (Hom𝑅 (𝑆, 𝑀)) � Hom𝑅 (𝑆,H𝔞

𝑚 (𝑀)) .

Proof. Let 𝑥𝑥𝑥 be a sequence that generats 𝔞; viewed as a sequence in 𝑆 it generates 𝔞𝑆.
(a): The asserted commutative diagram inD(𝑆), with the horizontal morphism an

isomorphism, exists by 11.1.7 and the definition, 13.1.13, of the functors LΛ𝔞𝑆 and
LΛ𝔞 and the natural transformations 𝝀𝔞𝑆 and 𝝀𝔞 . From this diagram it follows that 𝝀𝔞𝑆𝑁
is an isomorphism in D(𝑆) if and only if 𝝀𝔞𝑁 is an isomorphism in D(𝑆), which by
6.4.37 is equivalent to 𝝀𝔞𝑁 being an isomorphism in D(𝑅). By 11.3.3 this means that
𝑁 is derived 𝔞𝑆-complete if and only if it is derived 𝔞-complete as an 𝑅-complex.
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In view of the isomorphism in the commutative diagram, the isomorphisms of local
homology modules follow straight from the definition, 11.3.6.

(b): Consider the diagram in D(𝑆) below. The left-hand triangle is commutative
by part (a) applied to 𝑁 = RHom𝑅 (𝑆, 𝑀). Commutativity of the right-hand triangle
follows from 13.1.18.

RHom𝑅 (𝑆, 𝑀)
𝝀𝔞𝑆RHom (𝑆,𝑀)

uu

𝝀𝔞RHom (𝑆,𝑀)

��

RHom (𝑆,𝝀𝔞
𝑀
)

))

LΛ𝔞𝑆 (RHom𝑅 (𝑆, 𝑀)) ≃
// LΛ𝔞 (RHom𝑅 (𝑆, 𝑀)) ≃

// RHom𝑅 (𝑆, LΛ𝔞 (𝑀)) .

This establishes the asserted commutative diagram. It follows that if 𝝀𝔞𝑀 is an
isomorphism in D(𝑅), then 𝝀𝔞𝑆RHom𝑅 (𝑆,𝑀 ) is an isomorphism in D(𝑆), i.e. if 𝑀 is
derived 𝔞-complete, then RHom𝑅 (𝑆, 𝑀) is derived 𝔞𝑆-complete, see 11.3.3.

Assume now that 𝑆 is projective as an 𝑅-module and let 𝑚 ∈ ℤ. From the
isomorphism LΛ𝔞𝑆 (RHom𝑅 (𝑆, 𝑀)) � RHom𝑅 (𝑆, LΛ𝔞 (𝑀)) it follows, in view of
11.3.6 and 2.2.19, that

H𝔞𝑆
𝑚 (Hom𝑅 (𝑆, 𝑀)) � Hom𝑅 (𝑆,H𝔞

𝑚 (𝑀))

holds. The commutative diagram above and another application of 2.2.19 yield

H(𝝀𝔞𝑆Hom (𝑆,𝑀 ) ) � Hom𝑅 (𝑆,H(𝝀𝔞𝑀 )) .

Assuming, further, that 𝑆 is faithfully projective as an 𝑅-module, it follows from
6.5.17 that if 𝝀𝔞𝑆Hom𝑅 (𝑆,𝑀 ) is an isomorphism in D(𝑆), then 𝝀𝔞𝑀 is an isomorphism in
D(𝑅); i.e. if Hom𝑅 (𝑆, 𝑀) is derived 𝔞𝑆-complete, then𝑀 is derived 𝔞-complete. □

In part (b) above, the converse statement—that is, 𝑀 is derived 𝔞-complete if
RHom𝑅 (𝑆, 𝑀) is derived 𝔞𝑆-complete—fails without assumptions on 𝑆. Indeed, for
every ideal 𝔞 in 𝑅 and every 𝑅-complex 𝑀 , the 𝑅/𝔞-complex RHom𝑅 (𝑅/𝔞, 𝑀)
is trivially derived 0-complete, see 11.1.5, and the zero ideal is the extension of 𝔞
to 𝑅/𝔞. This last observation combined with part (a) above yields:

13.1.22 Corollary. Let 𝔞 be an ideal in 𝑅. Every 𝑅/𝔞-complex is derived 𝔞-complete
as an 𝑅-complex.

Proof. As the extension of 𝔞 to the 𝑅-algebra 𝑅/𝔞 is the zero ideal, the assertion
follows from 11.1.5 and 13.1.21(a). □

13.1.23 Example. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Considered as
𝑅-complexes, 𝑅/𝔞 ⊗𝑅 𝑀 , 𝑅/𝔞 ⊗L

𝑅
𝑀 , Hom𝑅 (𝑅/𝔞, 𝑀), and RHom𝑅 (𝑅/𝔞, 𝑀) are

derived 𝔞-complete, see 12.1.4, 12.2.8, 12.1.2, and 12.2.2.

Recall from 6.4.37 that for every 𝑅-algebra 𝑆 the restriction of scalars functor
D(𝑆) → D(𝑅) is conservative. This means that a morphism in D(𝑆) is an isomor-
phism if (and only if) it is an isomorphism in D(𝑅). However, an isomorphism in
D(𝑅) of 𝑆-complexes can in general not be lifted to an isomorphism in D(𝑆), not
even if 𝑅 and 𝑆 are fields, see 13.1.25. Here is a situation where it can be done.
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13.1.24 Proposition. Let 𝔞 ⊂ 𝑅 be an ideal and 𝑀 and 𝑁 be 𝑅𝔞-complexes that
are derived 𝔞-complete as 𝑅-complexes. The complexes 𝑀 and 𝑁 are isomorphic in
D(𝑅𝔞) if and only if they are isomorphic in D(𝑅) .

Proof. The “only if” part is evident. Now assume that 𝑀 and 𝑁 are isomorphic in
D(𝑅). Recall from 11.3.4 that LΛ𝔞 is a functor from D(𝑅) to D(𝑅𝔞), and as one
has 𝑀 ≃ 𝑁 in D(𝑅), it follows that LΛ𝔞 (𝑀) ≃ LΛ𝔞 (𝑁) holds in D(𝑅𝔞). To finish
the proof it suffices to argue that LΛ𝔞 (𝑀) ≃ 𝑀 and LΛ𝔞 (𝑁) ≃ 𝑁 hold in D(𝑅𝔞).
Per 13.1.14 the 𝑅𝔞-structure on LΛ𝔞 (𝑀) is inherited from the 𝑅𝔞-structure on 𝑀;
further, 𝝀𝔞𝑀 : 𝑀 → LΛ𝔞 (𝑀) is a morphism in D(𝑅𝔞) by 13.1.13. By assumption,
𝑀 is derived 𝔞-complete as an 𝑅-complex, so 𝝀𝔞𝑀 is an isomorphism in D(𝑅) by
11.3.3 and hence also an isomorphism in D(𝑅𝔞) by 6.4.37. This proves that one has
LΛ𝔞 (𝑀) ≃ 𝑀 in D(𝑅𝔞). Similarly, one also has LΛ𝔞 (𝑁) ≃ 𝑁 in D(𝑅𝔞). □

13.1.25 Example. The ℝ-vector spaces ℝ and ℝ2 have different ranks and hence
they are not isomorphic, neither in M(ℝ) nor in D(ℝ), see 6.4.15. However, as ℚ-
vector spaces, ℝ and ℝ2 are isomorphic as they have the same infinite rank, namely
2ℵ0 .

Completion and Flatness

For an ideal 𝔞 in 𝑅 and a flat 𝑅-module 𝐹 the next result shows that the 𝑅-module
Λ𝔞 (𝐹) is flat. Faithful flatness is not necessarily preserved under completion, see
15.3.5, but it is shown in 15.3.6 that 𝑅𝔞 is faithfully flat as an 𝑅-module if and only
if 𝔞 contained in the Jacobson radical of 𝑅.

13.1.26 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝐹 complex of flat 𝑅-modules. If 𝐹 is
a bounded below, then there is an inequality

fd𝑅 Λ𝔞 (𝐹) ⩽ sup 𝐹♮ .

In particular, for a flat 𝑅-module 𝐹 the module Λ𝔞 (𝐹) is flat.

Proof. Let 𝔟 be an ideal in 𝑅 and set �̄� = (𝔞 + 𝔟)/𝔟. In the next sequence of
isomorphisms in D(𝑅), the first follows from commutativity 12.3.5 and 13.1.19(b)
and the second from 13.1.21(a); the third holds by semi-flatness of 𝐹, see 5.4.8.

𝑅/𝔟 ⊗L
𝑅 LΛ𝔞 (𝐹) ≃ LΛ𝔞 (𝑅/𝔟 ⊗L

𝑅 𝐹) ≃ LΛ�̄� (𝑅/𝔟 ⊗L
𝑅 𝐹) ≃ LΛ�̄� (𝑅/𝔟 ⊗𝑅 𝐹) .

By 13.1.15 one hasΛ𝔞 (𝐹) ≃ LΛ𝔞 (𝐹), and since 𝑅/𝔟 ⊗𝑅 𝐹 per 5.4.18(a) is a semi-flat
𝑅/𝔟-complex, one also has Λ�̄� (𝑅/𝔟 ⊗𝑅 𝐹) ≃ LΛ�̄� (𝑅/𝔟 ⊗𝑅 𝐹). Therefore,

sup (𝑅/𝔟 ⊗L
𝑅 Λ

𝔞 (𝐹)) = supΛ�̄� (𝑅/𝔟 ⊗𝑅 𝐹) ⩽ sup 𝐹♮ .

The inequality fd𝑅 Λ𝔞 (𝐹) ⩽ sup 𝐹♮ now follows from 8.3.11. The last assertion is
now immediate, see 8.3.21. □

13.1.27 Corollary. Let 𝔞 be an ideal in 𝑅. As an 𝑅-module, 𝑅𝔞 is flat.
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Proof. The assertion is a special case of 13.1.26. □

13.1.28 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝐹 a semi-flat 𝑅-complex. If 𝐹 is
bounded below, then the 𝑅-complex Λ𝔞 (𝐹) is semi-flat.

Proof. For every 𝑣 ∈ ℤ one has Λ𝔞 (𝐹)𝑣 = Λ𝔞 (𝐹𝑣), see 11.1.12. Thus Λ𝔞 (𝐹) is by
13.1.26 a bounded below complex of flat 𝑅-modules and hence semi-flat by 5.4.8. □

Remark. An example by Christensen, Ferraro, and Thompson [58] shows that the boundedness
condition in 13.1.28 is necessary.

13.1.29 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-module. If 𝑀 is 𝔞-complete,
then there is a flat resolution · · · → 𝐹𝑣 → 𝐹𝑣−1 → · · · → 𝐹0 → 𝑀 → 0 where each
module 𝐹𝑣 is 𝔞-complete.

Proof. Choose by 1.3.12 a surjective homomorphism 𝜋 : 𝐿 → 𝑀 where 𝐿 is free.
The induced homomorphism Λ𝔞 (𝜋) : Λ𝔞 (𝐿) → Λ𝔞 (𝑀) is surjective by 11.1.28, and
one has Λ𝔞 (𝑀) � 𝑀 as 𝑀 is 𝔞-complete. By 11.1.38 and 13.1.26 the 𝑅-module
Λ𝔞 (𝐿) is 𝔞-complete and flat. By 11.1.40 the kernel of Λ𝔞 (𝜋) is 𝔞-complete, so the
desired resolution is constructed by repeating this procedure. □

Derived Complete Complexes

Recall the definition of derived 𝔞-completeness from 11.3.3.

13.1.30 Proposition. Let 𝔞 be an ideal in 𝑅.
(a) The subcategory D𝔞-com (𝑅) of D(𝑅) is triangulated.
(b) Every complex in D𝔞-com

⊐ (𝑅) has an 𝔞-complete semi-flat replacement.

Proof. As the functors IdD(𝑅) and LΛ𝔞 and the natural transformation 𝝀𝔞 are trian-
gulated, see 11.3.2, it follows from E.19 that the subcategory D𝔞-com (𝑅) is triangu-
lated. This proves (a). To prove (b), let 𝑀 be a complex in D𝔞-com

⊐ (𝑅). By 5.2.15 the
complex 𝑀 has a bounded below semi-projective replacement 𝑃. The 𝑅-complex
Λ𝔞 (𝑃) is 𝔞-complete by 11.1.38, and it follows from 5.4.10 and 13.1.28 that it is
semi-flat. In D(𝑅) it is isomorphic to LΛ𝔞 (𝑀) ≃ 𝑀 . □

From 13.1.30(a) and 7.6.3 it follows that D𝔞-com
⊏ (𝑅), D𝔞-com

⊐ (𝑅), and D𝔞-com
⊏⊐ (𝑅)

are triangulated subcategories of D(𝑅).

13.1.31 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 a derived 𝔞-complete 𝑅-complex,
and 𝑁 an 𝑅-complex.

(a) The complex RHom𝑅 (𝑁, 𝑀) is derived 𝔞-complete.
(b) If 𝑀 is in D⊐ (𝑅) and 𝑁 in Df

⊐ (𝑅), then 𝑁 ⊗L
𝑅
𝑀 is derived 𝔞-complete.

Proof. By assumption, 𝝀𝔞𝑀 is an isomorphism in D(𝑅). It follows from 13.1.18 that
𝝀𝔞RHom𝑅 (𝑁,𝑀 ) is an isomorphism, which proves (a). Under the assumptions in (b), it
follows by commutativity 12.3.5 from 13.1.19(b) that 𝝀𝔞

𝑁⊗L
𝑅
𝑀

is an isomorphism. □
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Let 𝔞 be an ideal in 𝑅 and recall from 11.1.8 that an 𝑅-complex 𝑀 is 𝔞-complete
if the morphism 𝜆𝔞

𝑀
: 𝑀 → Λ𝔞 (𝑀) is an isomorphism in C(𝑅). For a derived 𝔞-

complete complex 𝑀 one has H𝑚 (𝑀) � H𝔞
𝑚 (𝑀) for every 𝑚 ∈ ℤ; in particular,

H(𝑀) is 𝔞-quasi-complete, see 11.3.11. The next result comes close to a converse.

13.1.32 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. If the homology
complex H(𝑀) is 𝔞-complete, then 𝑀 is derived 𝔞-complete; in symbols:

𝜆𝔞H (𝑀 ) : H(𝑀) �−−−→ Λ𝔞 (H(𝑀)) =⇒ 𝝀𝔞𝑀 : 𝑀 ≃−−−→ LΛ𝔞 (𝑀) .

Proof. The functors IdD(𝑅) and LΛ𝔞 and the natural transformation 𝝀𝔞 are triangu-
lated, see 11.3.2. The subcategory ofD(𝑅) consisting of complexes with 𝔞-complete
homology is evidently closed under shifts and soft truncations. The identity functor
is bounded, and by 13.1.15 so is LΛ𝔞 . By A.28(d) it now suffices to show that every
𝔞-complete 𝑅-module is derived 𝔞-complete. Let 𝑀 be an 𝔞-complete 𝑅-module.
It follows from 13.1.29 that there is a complex 𝐹 of 𝔞-complete flat 𝑅-modules
with 𝐹 ≃ 𝑀 in D(𝑅). Now 13.1.15 yields LΛ𝔞 (𝑀) = Λ𝔞 (𝐹), and 𝝀𝔞𝑀 = 𝜆𝔞

𝐹
is an

isomorphism as 𝐹 is degreewise 𝔞-complete. □

13.1.33 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-module. If 𝑀 is 𝔞-complete,
then it is derived 𝔞-complete.

Proof. As H(𝑀) = 𝑀 is 𝔞-complete, 𝑀 is derived 𝔞-complete by 13.1.32. □

13.1.34 Example. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥, and 𝑀 be
an 𝑅-complex. It follows from 11.4.6(a), 11.1.11, and 13.1.32 that the complex
K (𝑥𝑥𝑥) ⊗𝑅 𝑀 is derived 𝔞-complete.

Remark. The converse of the implication in 13.1.32 fails—for 𝔞-torsion the situation is better,
see 13.3.29. The example by Simon discussed in the Remark after 13.1.17 serves as an example
of a module which is derived 𝔞-complete but not 𝔞-complete, see Schenzel and Simon [224, 2.5].
Porta, Shaul, and Yekutieli [204] give an example of a complex of amplitude 1 which is derived
𝔞-complete though its homology is not 𝔞-complete.

Notice that given a derived 𝔞-complete complex 𝑀 such that H(𝑀 ) is not complete and a semi-
projective replacement 𝑃 of 𝑀, the complex Λ𝔞 (𝑃) is by 11.1.38 𝔞-complete but its homology
H(Λ𝔞 (𝑃) ) � H(𝑃) � H(𝑀 ) is not 𝔞-complete. Recall, though, from 11.1.41 that the homology
of an 𝔞-complete complex is 𝔞-quasi-complete.

13.1.35 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 a derived 𝔞-complete 𝑅-complex.
For every 𝑣 ∈ ℤ one has H𝑣 (𝑀) = 0 if and only if 𝑅/𝔞 ⊗𝑅 H𝑣 (𝑀) = 0.

Proof. As 𝑀 is derived 𝔞-complete one has H𝑣 (𝑀) � H𝔞
𝑣 (𝑀) for all 𝑣 ∈ ℤ. The

assertion now follows from 11.3.11. □

Exercises

In exercises E 13.1.1–13.1.4 let 𝔞 be an ideal in 𝑅.

E 13.1.1 Let 𝑍 be a K-flat 𝑅-complex. Show that if 𝑍 is acyclic, then Λ𝔞 (𝑍 ) is acyclic. Hint:
3.5.16.
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624 13 Derived Torsion and Completion

E 13.1.2 Let 𝑀 be an 𝑅-complex and 𝑍 a K-flat 𝑅-complex isomorphic to 𝑀 in D(𝑅) . Show
that there is an isomorphism LΛ𝔞 (𝑀 ) ≃ Λ𝔞 (𝑍 ) in D(𝑅) .

E 13.1.3 Let 𝑀 be a complex in D⊏⊐ (𝑅) . (a): Show that if fd𝑅 𝑀 is finite, then fd𝑅 LΛ𝔞 (𝑀 ) is
finite. (b): Show that if id𝑅 𝑀 is finite, then id𝑅 LΛ𝔞 (𝑀 ) is finite.

E 13.1.4 Let 𝑀 be an 𝑅-complex and 𝐸 an injective 𝑅-module. Show that for every𝑚 ∈ ℤ there
is an isomorphism Hom𝑅 (H𝑚𝔞 (𝑀 ) , 𝐸 ) � H𝔞

𝑚 (Hom𝑅 (𝑀, 𝐸 ) ) .
E 13.1.5 With the convention that the Čech complex on the empty sequence is 𝑅, show that

13.1.15 remains valid for the empty sequence generating the zero ideal.
E 13.1.6 Calculate the ℤ-modules H𝑝ℤ𝑚 (ℤ) , H𝑝ℤ𝑚 (ℚ) , and H𝑝ℤ𝑚 (ℚ/ℤ) for 𝑝 ∈ ℕ0 and 𝑚 ∈ ℤ.

Hint: 3.5.3.
E 13.1.7 Let 𝕜 be a field and consider in 𝑅 = 𝕜⟦𝑥, 𝑦⟧/(𝑥2 ) the ideals 𝔭 = (𝑥 ) and 𝔪 = (𝑥, 𝑦) .

(a) Show that there is an isomorphism 𝑅𝔭 � { 𝑦𝑛 | 𝑛 ⩾ 0}−1𝑅 and conclude that
there is an exact sequence 0 → Σ−1𝑅𝔭 → Č𝑅 (𝑦) → 𝑅 → 0. (b) Calculate the radical√(𝑦) . (c) Show that RHom𝑅 (𝑅𝔭 , 𝑀 ) → 𝑀 → LΛ𝔪 (𝑀 ) → ΣRHom𝑅 (𝑅𝔭 , 𝑀 ) is a
distinguished triangle in D(𝑅) for every 𝑅-complex 𝑀.

13.2 Derived Completion and Homological Finiteness

Synopsis. Exactness of 𝔞-completion functor; 𝔞-completion of degreewise finitely generated com-
plex; derived 𝔞-completion of complex with degreewise finitely generated homology.

The theory of 𝔞-completion simplifies significantly when one restricts attention to
degreewise finitely generated complexes: As discussed in 11.1.20 the 𝔞-completion
of an 𝑅-complex 𝑀 is an 𝑅𝔞-complex, and in this case it is simply the base changed
complex 𝑅𝔞 ⊗𝑅 𝑀 . Further, 𝔞-completion is an exact functor on Cf (𝑅), so it becomes
a functor on Df (𝑅).

To get started we need the following classic result; it is proved in [182, §8].

The Artin–Rees Lemma. Let 𝔞 be an ideal in 𝑅. Let 𝑀 be a finitely generated
𝑅-module and 𝐾 a submodule of 𝑀 . There is an integer 𝑐 > 0 such that

𝐾 ∩ 𝔞𝑖𝑀 = 𝔞𝑖−𝑐 (𝐾 ∩ 𝔞𝑐𝑀)

holds for all 𝑖 ⩾ 𝑐.

Completion and Finiteness

Recall from 11.1.32 that the completion functor, in general, is not even half exact.

13.2.1 Proposition. Let 𝔞 be an ideal in 𝑅. The restricted 𝔞-completion functor
Λ𝔞 ( ) : Cf (𝑅) −−→ C(𝑅) is exact.

Proof. Let 0 −−→ 𝐾
𝜄−−→ 𝑀

𝛼−−→ 𝑁 −−→ 0 be an exact sequence of degreewise finitely
generated 𝑅-complexes; in view of 11.1.12, one can assume that 𝐾 , 𝑀 , and 𝑁 are
finitely generated 𝑅-modules. Adopt the notation from 11.1.31; it suffices to show
that 𝜋 is an isomorphism. Without loss of generality, assume that 𝐾 is a submodule
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13.2 Derived Completion and Homological Finiteness 625

of 𝑀 and that 𝜄 is the embedding. In this case, one has 𝜄−1 (𝔞𝑢𝑀) = 𝐾 ∩ 𝔞𝑢𝑀 , so
there is an exact sequence,

0 −→ (𝐾 ∩ 𝔞𝑢𝑀)/𝔞𝑢𝐾 −→ 𝐾/𝔞𝑢𝐾 𝜋𝑢−−−→ 𝐾/𝜄−1 (𝔞𝑢𝑀) −→ 0 .

To prove that 𝜋 = lim𝑢⩾1 𝜋
𝑢 is an isomorphism, it suffices by 3.5.13 and 3.5.17

to show that the tower {(𝐾 ∩ 𝔞𝑢𝑀)/𝔞𝑢𝐾 → (𝐾 ∩ 𝔞𝑢−1𝑀)/𝔞𝑢−1𝐾 }𝑢>1 satisfies the
trivial Mittag-Leffler Condition 3.5.9. Let 𝑐 > 0 be as in the Artin–Rees Lemma.
For every 𝑢 ⩾ 1 one now has 𝐾 ∩ 𝔞𝑢+𝑐𝑀 = 𝔞𝑢 (𝐾 ∩ 𝔞𝑐𝑀) ⊆ 𝔞𝑢𝐾 , so the composite

(𝐾 ∩ 𝔞𝑢+𝑐𝑀)/𝔞𝑢+𝑐𝐾 −→ · · · −→ (𝐾 ∩ 𝔞𝑢𝑀)/𝔞𝑢𝐾

is zero; i.e the tower in question satisfies the trivial Mittag-Leffler Condition. □

13.2.2. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Recall from (3.4.16.1) that there
is a canonical morphism of 𝑅𝔞-complexes, which is easily seen to be natural in 𝑀 ,

Λ𝔞 (𝑅) ⊗𝑅 𝑀 =
(
lim
𝑢⩾1

𝑅/𝔞𝑢
)
⊗𝑅 𝑀

𝛼𝑀−−−→ lim
𝑢⩾1
(𝑅/𝔞𝑢 ⊗𝑅 𝑀) = Λ𝔞 (𝑀) .

As a transformation of functors, 𝛼 is by 4.1.13 a Σ-transformation.

13.2.3 Theorem. Let 𝔞 be an ideal in 𝑅. The transformation from 13.2.2 yields a
natural isomorphism of functors,

Λ𝔞 ( ) � Λ𝔞 (𝑅) ⊗𝑅 : Cf (𝑅) −→ C(𝑅) .

Proof. To prove that 𝛼𝑀 is an isomorphism for every complex 𝑀 in Cf (𝑅), it
suffices in view of 11.1.12 to consider the case of a finitely generated 𝑅-module. By
2.4.9 the functor Λ𝔞 (𝑅) ⊗𝑅 is right exact, and by 13.2.1 the functor Λ𝔞 is exact
on the category of finitely generated 𝑅-modules. Both functors are additive, and the
map 𝛼𝑅 is evidently an isomorphism, so 𝛼𝐿 is an isomorphism for every finitely
generated free 𝑅-module 𝐿. A free presentation 𝐿′ → 𝐿 → 𝑀 → 0 with 𝐿 and 𝐿′
finitely generated now yields a commutative diagram with exact rows,

Λ𝔞 (𝑅) ⊗𝑅 𝐿′ //

� 𝛼𝐿
′

��

Λ𝔞 (𝑅) ⊗𝑅 𝐿 //

� 𝛼𝐿

��

Λ𝔞 (𝑅) ⊗𝑅 𝑀 //

𝛼𝑀

��

0

Λ𝔞 (𝐿′) // Λ𝔞 (𝐿) // Λ𝔞 (𝑀) // 0 ,

and it follows from the Five Lemma 1.1.2 that 𝛼𝑀 is an isomorphism. □

Recall from 11.1.19 that 𝑅𝔞 is notation for Λ𝔞 (𝑅) considered as an 𝑅-algebra;
by 11.1.22 it is a Noetherian ring. It follows from 13.2.1 and 13.2.3 that 𝑅𝔞 as an
𝑅-module is flat, which is already known from 13.1.27. In 15.3.6 it is proved that 𝑅𝔞

is faithfully flat if and only if 𝔞 contained in the Jacobson radical of 𝑅.

13.2.4 Corollary. Let 𝔞 be an ideal in 𝑅; there is a natural isomorphism of functors,

Λ𝔞 ( ) � 𝑅𝔞 ⊗𝑅 : Cf (𝑅) −→ Cf (𝑅𝔞) .
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626 13 Derived Torsion and Completion

Proof. For an 𝑅-complex 𝑀 the complexes Λ𝔞 (𝑀) and 𝑅𝔞 ⊗𝑅 𝑀 are 𝑅𝔞-complexes
by 11.1.20 and 2.1.49. For 𝑀 in Cf (𝑅) the complex 𝑅𝔞 ⊗𝑅 𝑀 belongs to Cf (𝑅𝔞) by
2.5.19. Per 13.2.2 the assertion now follows from 13.2.3. □

Derived Completion and Homological Finiteness

13.2.5 Theorem. Let 𝔞 be an ideal in 𝑅; there is a triangulated natural isomorphism
of functors,

LΛ𝔞 ( ) ≃ Λ𝔞 (𝑅) ⊗𝑅 : Df (𝑅) −→ D(𝑅) .

Proof. Consider the natural transformations of endofunctors on K(𝑅),

Λ𝔞 (𝑅) ⊗𝑅
Λ𝔞 (𝑅) ⊗ 𝜋←−−−−−−−−− Λ𝔞 (𝑅) ⊗𝑅 P( ) 𝛼P ( )

−−−−−→ Λ𝔞 (P( )) ,

induced by 13.2.2 and 6.3.11. By the same references, 6.2.17, and 7.1.8 both transfor-
mations are triangulated, and for every 𝑅-complex 𝑀 the morphism Λ𝔞 (𝑅) ⊗𝑅 𝜋𝑀
is a quasi-isomorphism by flatness of Λ𝔞 (𝑅), see 13.1.27. The diagram above estab-
lishes a triangulated natural transformation 𝜏 : Λ𝔞 (𝑅) ⊗𝑅 → LΛ𝔞 ( ) of endofunc-
tors on D(𝑅). The functors are bounded by 13.1.15 and A.27(c). Thus, to see that
𝜏𝑀 is an isomorphism for 𝑀 in Df (𝑅), it suffices per 7.6.14 and A.28(d) to consider
the case where 𝑀 is a finitely generated 𝑅-module. By 5.2.16 one can take P(𝑀)
to be bounded below and degreewise finitely generated. It now follows from 13.2.3
that 𝛼P (𝑀 ) is an isomorphism in C(𝑅), whence 𝜏𝑀 is an isomorphism in D(𝑅). □

13.2.6 Corollary. Let 𝔞 be an ideal in 𝑅. For every complex 𝑀 in Cf (𝑅) there is an
isomorphism LΛ𝔞 (𝑀) ≃ Λ𝔞 (𝑀) in D(𝑅).

In particular, for every finitely generated 𝑅-module 𝑀 one has

H𝔞
0 (𝑀) � Λ𝔞 (𝑀) and H𝔞

𝑚 (𝑀) = 0 for all 𝑚 > 0 .

Proof. A complex in Cf (𝑅) belongs to Df (𝑅), so the isomorphism follows from
13.2.5 and 13.2.3. The last assertion is now immediate from the definition, 11.3.6,
of local homology. □

Recall from 11.1.19 that 𝑅𝔞 is notation for Λ𝔞 (𝑅) considered as an 𝑅-algebra; by
11.1.22 it is a Noetherian ring.

13.2.7 Corollary. Let 𝔞 be an ideal in 𝑅; there is a triangulated natural isomorphism
of functors,

LΛ𝔞 ( ) ≃ 𝑅𝔞 ⊗𝑅 : Df (𝑅) −→ Df (𝑅𝔞) .

Proof. For an 𝑅-complex 𝑀 it follows from 11.3.10 and 2.1.49 that LΛ𝔞 (𝑀) and
𝑅𝔞 ⊗𝑅 𝑀 are 𝑅𝔞-complexes. For𝑀 inDf (𝑅) it follows by flatness of 𝑅𝔞 , see 13.1.27,
from 12.1.20(c) that the complex 𝑅𝔞 ⊗𝑅 𝑀 belongs to Df (𝑅𝔞). The assertion now
follows from 13.2.5. □

8-Mar-2024 Draft - use at own risk



13.3 Derived Torsion 627

Exercises

In the following exercises let 𝔞 be an ideal in 𝑅.

E 13.2.1 Show by example that the isomorphism Λ𝔞 (𝑀 ) � 𝑅𝔞 ⊗𝑅 𝑀 may fail if 𝑀 is an 𝑅-
module that is not finitely generated.

E 13.2.2 Let 𝑆 be an 𝑅-algebra and 𝑁 a complex in Cf (𝑆) . Show that there is an isomorphism
LΛ𝔞 (𝑁 ) ≃ Λ𝔞 (𝑁 ) in D(𝑅) .

13.3 Derived Torsion

Synopsis. The functor RΓ𝔞 and local cohomology H𝔞 ; 𝔞-torsion and semi-injectivity; derived
𝔞-torsion via Čech complex; derived 𝔞-torsion and change of rings; derived 𝔞-torsion complex.

For an ideal 𝔞 in 𝑅 the 𝔞-torsion functor only depends on the radical of 𝔞.

13.3.1 Proposition. Let 𝔞 and 𝔟 be ideals in 𝑅. If
√
𝔞 =
√
𝔟 holds, then there is a

natural isomorphism Γ𝔞 � Γ𝔟 of endofunctors on C(𝑅).

Proof. The assertion follows from 11.2.20 in view of 13.1.1. □

Recall that H𝑚𝔞 = H−𝑚 RΓ𝔞 is the 𝑚th local cohomology functor supported at 𝔞.

13.3.2 Proposition. Let 𝔞 and 𝔟 be ideals in 𝑅. If
√
𝔞 =
√
𝔟 holds, then there is

a natural isomorphism RΓ𝔞 ≃ RΓ𝔟 of endofunctors on D(𝑅) and hence natural
isomorphisms of local cohomology functors H𝑚𝔞 � H𝑚

𝔟
for all 𝑚 ∈ ℤ.

Proof. The assertions follow immediately from 13.3.1 and 11.3.20. □

Torsion and Injectivity

For an ideal 𝔞 in 𝑅 and a faithfully injective 𝑅-module 𝐸 the 𝑅-module Γ𝔞 (𝐸) is
injective but not necessarily faithfully so, see 15.3.3.

13.3.3 Lemma. Let 𝔞 be an ideal in 𝑅. For every prime ideal 𝔭 in 𝑅 one has

Γ𝔞 (E𝑅 (𝑅/𝔭)) =
{

E𝑅 (𝑅/𝔭) if 𝔞 ⊆ 𝔭

0 if 𝔞 ⊈ 𝔭 .

Proof. By C.14 the module E𝑅 (𝑅/𝔭) is 𝔭-torsion, so Γ𝔞 (E𝑅 (𝑅/𝔭)) = E𝑅 (𝑅/𝔭)
holds if 𝔞 is contained in 𝔭. On the other hand, if there exists an element 𝑥 ∈ 𝔞 \ 𝔭,
then multiplication by any power of this 𝑥 on E𝑅 (𝑅/𝔭) is an automorphism by C.17,
so no non-zero element in E𝑅 (𝑅/𝔭) is 𝔞-torsion. □

13.3.4 Proposition. Let 𝐼 be an injective 𝑅-module decomposed per C.23 as

𝐼 �
∐

𝔭∈Spec𝑅
E𝑅 (𝑅/𝔭) (𝑈 (𝔭) ) .

8-Mar-2024 Draft - use at own risk
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There is an isomorphism,

Γ𝔞 (𝐼) �
∐
𝔭⊇𝔞

E𝑅 (𝑅/𝔭) (𝑈 (𝔭) ) ;

in particular, Γ𝔞 (𝐼) is an injective 𝑅-module.

Proof. The isomorphism follows immediately from 13.3.3 as the 𝔞-torsion functor
preserves coproduct by 11.2.15. □

13.3.5 Corollary. Let 𝔭 be a prime ideal in 𝑅 and 𝐼 an injective 𝑅-module decom-
posed per C.23 as

𝐼 �
∐

𝔮∈Spec𝑅
E𝑅 (𝑅/𝔮) (𝑈 (𝔮) ) .

There are isomorphisms of 𝑅𝔭-modules,

Γ𝔭𝔭 (𝐼𝔭) � E𝑅𝔭
(𝑅𝔭/𝔭𝔭) (𝑈 (𝔭) ) � Γ𝔭 (𝐼)𝔭 .

Proof. The isomorphisms follow immediately from 13.3.4 and C.24. □

13.3.6 Example. Let 𝔞 be an ideal and 𝔭 a prime ideal in 𝑅. If 𝔞 ⊆ 𝔭 holds, then
11.2.23 and 13.3.3 show that E𝑅 (𝑅/𝔭) is an 𝑅𝔞-module with the action given by

𝑟𝑚 = 𝑟𝑢𝑚

for 𝑟 = ( [𝑟𝑣]𝔞𝑣 )𝑣⩾1 ∈ 𝑅𝔞 and 𝑚 ∈ (0 :E𝑅 (𝑅/𝔭) 𝔭𝑢) ⊆ E𝑅 (𝑅/𝔭).

13.3.7 Proposition. Let 𝔞 be an ideal and 𝔭 a prime ideal in 𝑅. If 𝔞 ⊆ 𝔭 holds, then
there is an isomorphism of 𝑅𝔞-modules,

𝑅𝔞 ⊗𝑅 E𝑅 (𝑅/𝔭) �−−−→ E𝑅 (𝑅/𝔭) given by 𝑟 ⊗ 𝑚 ↦−→ 𝑟𝑢𝑚 ,

for 𝑟 = ( [𝑟𝑣]𝔞𝑣 )𝑣⩾1 ∈ 𝑅𝔞 and 𝑚 ∈ (0 :E𝑅 (𝑅/𝔭) 𝔭𝑢) ⊆ E𝑅 (𝑅/𝔭).

Proof. The assertion follows from 13.3.3 and 11.2.27 with 𝑀 = E𝑅 (𝑅/𝔭). □

The boundedness condition in the next result is necessary, see 17.5.16.

13.3.8 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝐼 a semi-injective 𝑅-complex. If 𝐼 is
bounded above, then the 𝑅-complex Γ𝔞 (𝐼) is semi-injective.

Proof. For every 𝑣 ∈ ℤ one has Γ𝔞 (𝐼)𝑣 = Γ𝔞 (𝐼𝑣), see 11.2.13. It now follows from
13.3.4 that Γ𝔞 (𝐼) is a bounded above complex of injective 𝑅-modules and hence
semi-injective by 5.3.12. □

13.3.9 Lemma. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 a graded 𝑅-module, and 𝑁 ⊆ 𝑀 a graded
submodule. If 𝑁 is essential in 𝑀 , then Γ𝔞 (𝑁) is an essential submodule of Γ𝔞 (𝑀).

Proof. By 11.2.8 one identifies Γ𝔞 (𝑀) with a graded submodule of 𝑀 . Let 𝑀 ′ ≠ 0
be a graded submodule of Γ𝔞 (𝑀) and thus of 𝑀 . By assumption the module 𝑀 ′ ∩ 𝑁
is non-zero and, clearly, one has 𝑀 ′ ∩ 𝑁 = 𝑀 ′ ∩ Γ𝔞 (𝑀) ∩ 𝑁 = 𝑀 ′ ∩ Γ𝔞 (𝑁). □
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13.3.10 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝐼 a complex of injective 𝑅-modules.
If 𝐼 is minimal, then Γ𝔞 (𝐼) is a minimal complex of injective 𝑅-modules.

Proof. For every 𝑣 ∈ ℤ one has Γ𝔞 (𝐼)𝑣 = Γ𝔞 (𝐼𝑣), see 11.2.13, so it follows from
13.3.4 that Γ𝔞 (𝐼) is a complex of injective 𝑅-modules. By 11.2.8 one identifies Γ𝔞 (𝐼)
with a subcomplex of 𝐼. It follows from B.21 that Z(𝐼) is an essential submodule of
𝐼♮, so by 13.3.9 the submodule Γ𝔞 (Z(𝐼)) is essential in Γ𝔞 (𝐼♮) = Γ𝔞 (𝐼)♮. The cycle
functor is left exact, see 2.2.16, so one has Z(Γ𝔞 (𝐼)) = Γ𝔞 (Z(𝐼)), see 1.1.41. Thus,
Z(Γ𝔞 (𝐼)) is an essential submodule of Γ𝔞 (𝐼)♮, whence Γ𝔞 (𝐼) is minimal by B.21. □

Derived Torsion via Čech Complexes

13.3.11 Construction. Let 𝑥𝑥𝑥 be a sequence in 𝑅. One has H0 (K (𝑥𝑥𝑥)) � 𝑅/(𝑥𝑥𝑥) by
11.4.3(a), so 2.5.10 yields a canonical morphism 𝜋𝑥𝑥𝑥 : K (𝑥𝑥𝑥) ↠ 𝑅/(𝑥𝑥𝑥). For every
𝑅-complex 𝑀 and every 𝑢 ⩾ 1 this morphism conspires with those from (11.1.2.2)
and 11.4.8 to yield a commutative diagram,

Hom𝑅 (𝑅/(𝑥𝑥𝑥𝑢), 𝑀)
(𝜃K (𝑥𝑥𝑥𝑢 )𝑅𝑀 )−1 Hom (𝜋𝑥𝑥𝑥𝑢 ,𝑀 )

//

Hom (𝜗𝑢+1𝑥𝑥𝑥 ,𝑀 )
��

Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅) ⊗𝑅 𝑀

𝜅𝑢𝑥𝑥𝑥 ⊗𝑀
��

Hom𝑅 (𝑅/(𝑥𝑥𝑥𝑢+1), 𝑀)
(𝜃K (𝑥𝑥𝑥𝑢+1 )𝑅𝑀 )−1 Hom (𝜋

𝑥𝑥𝑥𝑢+1 ,𝑀 )
// Hom𝑅 (K (𝑥𝑥𝑥𝑢+1), 𝑅) ⊗𝑅 𝑀 .

Thus, the composites 𝜛𝑀
𝑥𝑥𝑥𝑢 = (𝜃K (𝑥𝑥𝑥𝑢 )𝑅𝑀 )−1 Hom𝑅 (𝜋𝑥𝑥𝑥𝑢 , 𝑀) form a morphism of

telescopes. Let 𝜛𝑀
𝑥𝑥𝑥 be the morphism defined by commutativity of the diagram,

colim
𝑢⩾1

Hom𝑅 (𝑅/(𝑥𝑥𝑥𝑢), 𝑀)
colim𝑢⩾1 𝜛

𝑀
𝑥𝑥𝑥𝑢
//

�
��

colim
𝑢⩾1
(Hom𝑅 (K (𝑥𝑥𝑥𝑢), 𝑅) ⊗𝑅 𝑀)

�
��

Γ(𝑥𝑥𝑥 ) (𝑀)
𝜛𝑀
𝑥𝑥𝑥

// Č (𝑥𝑥𝑥) ⊗𝑅 𝑀 ,

where the vertical isomorphisms come from 11.2.19, 3.2.22, and 11.4.12.
Let 𝑆 be an 𝑅-algebra and 𝑁 an 𝑆-complex. It follows from 11.1.6 and 12.1.4 that

Γ(𝑥𝑥𝑥 ) (𝑁) and Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝑁 are 𝑆-complexes, and it is straightforward to verify that
the morphism,

𝜛𝑁
𝑥𝑥𝑥 : Γ(𝑥𝑥𝑥 ) (𝑁) −→ Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝑁 ,

from above is 𝑆-linear.

The isomorphism in the next lemma specializes to 11.4.10(a).

13.3.12 Lemma. Let 𝑥𝑥𝑥 be a sequence in 𝑅, let 𝑆 be an 𝑅-algebra and𝑁 an 𝑆-complex.
The morphism

𝜛𝑀
𝑥𝑥𝑥 : Γ(𝑥𝑥𝑥 ) (𝑁) −→ Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝑁

constructed in 13.3.11 is natural in 𝑁 , and as a natural transformation of functors,
𝜛𝑥𝑥𝑥 is a Σ-transformation. Moreover, if 𝑁 is an 𝑆-module, then the induced map
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H0 (𝜛𝑁
𝑥𝑥𝑥 ) : Γ(𝑥𝑥𝑥 ) (𝑁) −→ H0 (Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝑁)

is an isomorphism.

Proof. The functors Γ(𝑥𝑥𝑥 ) and Č (𝑥𝑥𝑥) ⊗𝑅 are Σ-functors, see 11.2.15 and 4.1.18, so
in view of 3.2.20 it is straightforward to verify that 𝜛𝑥𝑥𝑥 is a Σ-transformation.

Let 𝑁 be an 𝑆-module. It suffices by 3.3.15(d) to show that each map H0 (𝜛𝑁
𝑥𝑥𝑥𝑢
) is

an isomorphism. To this end it is by the definition of 𝜛𝑁
𝑥𝑥𝑥𝑢

enough to prove that

H0 (Hom𝑅 (𝜋𝑥𝑥𝑥𝑢 , 𝑁)) : H0 (Hom𝑅 (𝑅/(𝑥𝑥𝑥𝑢), 𝑁)) −→ H0 (Hom𝑅 (K𝑅 (𝑥𝑥𝑥𝑢), 𝑁))

is an isomorphism, and that follows from 2.5.10 as H0 (K𝑅 (𝑥𝑥𝑥𝑢)) � 𝑅/(𝑥𝑥𝑥𝑢). □

13.3.13 Lemma. Let 𝑥𝑥𝑥 be a sequence in 𝑅 and 𝑆 an 𝑅-algebra. For every complex
𝐽 of injective 𝑆-modules the morphism of 𝑆-complexes,

𝜛𝐽
𝑥𝑥𝑥 : Γ(𝑥𝑥𝑥 ) (𝐽) −→ Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝐽 ,

from 13.3.12 is a quasi-isomorphism.

Proof. By 13.3.11 the map 𝜛𝐽
𝑥𝑥𝑥 is 𝑆-linear for every 𝑆-complex 𝐽. Thus, proving

that 𝜛𝐽
𝑥𝑥𝑥 is a quasi-isomorphism in C(𝑆) is equivalent to showing that it is a quasi-

isomorphism in C(𝑅), see 6.1.24. Viewing Č𝑅(𝑥𝑥𝑥) ⊗𝑅 and Γ(𝑥𝑥𝑥 ) as endofunctors
on C(𝑅), it follows from 2.4.11, 4.1.18, and A.16 that Č𝑅(𝑥𝑥𝑥) ⊗𝑅 is a ♮-functor,
a Σ-functor, and bounded; by 11.2.15 the functor Γ(𝑥𝑥𝑥 ) has the same properties.
Moreover,𝜛𝑥𝑥𝑥 is a Σ-transformation by 13.3.12. Thus, by A.17 one can assume that 𝐽
is an injective 𝑆-module, and the assertion now follows from 13.1.5 and 13.3.12. □

We now continue the discussion from 11.3.19.

13.3.14 Construction. Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra. By 11.2.3 one
can view Γ𝔞 as an endofunctor on C(𝑆); we temporarily denote this functor by the
symbol G𝔞 to distinguish it from the functor Γ𝔞 : C(𝑅) → C(𝑅). There is a diagram,
not necssarily commutative, and a natural transformation:

K(𝑆) G𝔞 I𝑆
//

res𝑆
𝑅

��

K(𝑆)

res𝑆
𝑅

��

K(𝑅) Γ𝔞 I𝑅
// K(𝑅)

and res𝑆𝑅 G𝔞 I𝑆 = Γ𝔞 res𝑆𝑅 I𝑆
Γ𝔞 𝜀

𝑆
𝑅−−−−−→ Γ𝔞 I𝑅 res𝑆𝑅 ,

where 𝜀𝑆
𝑅

is the natural transformation of functors K(𝑆) → K(𝑅) from 6.3.22. By
6.4.31, 6.4.40, and the definition, 7.2.8, of right derived functors, one gets an induced
diagram and a natural transformation:

D(𝑆) RG𝔞
//

res𝑆
𝑅

��

D(𝑆)

res𝑆
𝑅

��

D(𝑅) RΓ𝔞
// D(𝑅)

and res𝑆𝑅 RG𝔞 −→ RΓ𝔞 res𝑆𝑅 .
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The gist of the next statement is that RG𝔞 on D(𝑆) is an augmentation of RΓ𝔞 on
D(𝑅), cf. Chap. 7.

13.3.15 Proposition. The transformation res𝑆
𝑅

RG𝔞 → RΓ𝔞 res𝑆
𝑅

from 13.3.14 is a
natural isomorphism.

Proof. We suppress the restriction of scalars functor res𝑆
𝑅

, set 𝜀 = 𝜀𝑆
𝑅

, and write 𝜑
for the natural transformation under consideration. Let 𝑁 be an 𝑆-complex. To prove
that 𝜑𝑁 is an isomorphism in D(𝑅) it suffices, by the definition of this morphism, to
prove that Γ𝔞 (𝜀𝑁 ) is a quasi-isomorphism. Consider the 𝑆-complex 𝐽 = I𝑆 (𝑁) and
the 𝑅-complex 𝐼 = I𝑅 (𝑁). By 6.3.22 the map 𝜀𝑁 : 𝐽 → 𝐼 is a quasi-isomorphism
and hence so is Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝜀𝑁 by semi-flatness of the Čech complex, see 11.4.10(c).
Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. The natural transformation 𝜛𝑥𝑥𝑥 from 13.3.12
yields a commutative diagram,

Γ𝔞 (𝐽)
Γ𝔞 (𝜀𝑁 )

//

𝜛𝐽
𝑥𝑥𝑥

��

Γ𝔞 (𝐼)

𝜛𝐼
𝑥𝑥𝑥

��

Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝐽
Č𝑅 (𝑥𝑥𝑥 ) ⊗ 𝜀𝑁

≃
// Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝐼 .

As the maps 𝜛𝐽
𝑥𝑥𝑥 and 𝜛𝐼

𝑥𝑥𝑥 are quasi-isomorphisms by 13.3.13, it follows that Γ𝔞 (𝜀𝑁 )
is a quasi-isomorphism. □

The result above justifies the following extension of 11.3.16.

13.3.16 Definition. Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra. We write RΓ𝔞 for
the right derived functor of Γ𝔞 viewed as an endofunctor on C(𝑆). Just as in 11.3.16
the Σ-transformation 𝛾𝔞 : Γ𝔞→ IdC(𝑆) from 11.2.3 induces a triangulated natural
transformation on endofunctors on D(𝑆),

𝜸𝔞 = R𝛾𝔞 : RΓ𝔞 −→ IdD(𝑆) .

13.3.17. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅𝔞-complex. Let 𝐼 be a semi-injective
replacement of 𝑀 in C(𝑅𝔞). By 11.2.24 the two 𝑅𝔞-structures on Γ𝔞 (𝐼) coming from
11.2.3 and 11.2.23 coincide. It follows that the two 𝑅𝔞-structures on RΓ𝔞 (𝑀) = Γ𝔞 (𝐼)
coming from 13.3.16 and 11.3.18 are the same. In other words, RΓ𝔞 (𝑀) is a complex
of symmetric 𝑅𝔞–𝑅𝔞-bimodules and the following diagram is commutative,

D(𝑅𝔞)

res𝑅𝔞
𝑅

��

RΓ𝔞
(from 13.3.16)

// D(𝑅𝔞)

D(𝑅) RΓ𝔞
(from 11.3.18)

// D(𝑅𝔞) .

To parse the next theorem, recall from 11.4.14 the natural transformation 𝜀𝑥𝑥𝑥 . An
immediate consequence of the theorem and 11.4.16 is that the derived 𝔞-torsion
functor is idempotent. A more precise statement is made in 13.4.1.
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13.3.18 Theorem. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥, and 𝑆 be
an 𝑅-algebra. The endofunctor RΓ𝔞 on D(𝑆) is bounded and preserves coproducts,
there is a triangulated natural isomorphism of endofunctors on D(𝑆),

RΓ𝔞 ( ) ≃ Č𝑅(𝑥𝑥𝑥) ⊗𝑅 = Č𝑅(𝑥𝑥𝑥) ⊗L
𝑅 ,

and an isomorphism of natural transformations,

𝜸𝔞 ≃ 𝜀𝑥𝑥𝑥 ⊗𝑅 = 𝜀𝑥𝑥𝑥 ⊗L
𝑅 .

Let 𝑁 be an 𝑆-complex. For every complex 𝐽 of injective 𝑆-modules with 𝑁 ≃ 𝐽 in
D(𝑆) there is an isomorphism,

RΓ𝔞 (𝑁) ≃ Γ𝔞 (𝐽) ,

in D(𝑆), and if 𝑁 is a module, then there is an isomorphism H0
𝔞 (𝑁) � Γ𝔞 (𝑁).

Proof. Consider the natural transformations of endofunctors on K(𝑆),

Γ𝔞 (I𝑆 ( ))
𝜛

I𝑆 ( )
𝑥𝑥𝑥−−−−−−→ Č𝑅(𝑥𝑥𝑥) ⊗𝑅 I𝑆 ( )

Č𝑅 (𝑥𝑥𝑥 ) ⊗ 𝜄
𝑆←−−−−−−−−− Č𝑅(𝑥𝑥𝑥) ⊗𝑅 ,

induced by 13.3.12 and 6.3.17. By the same references and 6.2.17, both transforma-
tions are triangulated. Evaluated at an 𝑆-complex they are quasi-isomorphisms by
13.3.13, 6.3.17, and semi-flatness of the Čech complex, see 11.4.10(c). Per 7.2.8
and 6.5.14 the diagram above establishes the triangulated natural isomorphism
RΓ𝔞 ( ) ≃ Č𝑅(𝑥𝑥𝑥) ⊗𝑅 . Further, one has Č𝑅(𝑥𝑥𝑥) ⊗𝑅 = Č𝑅(𝑥𝑥𝑥) ⊗L

𝑅
by semi-flatness

of the Čech complex; see 7.4.16. The final assertion about modules is now imme-
diate from 13.3.12. Furthermore, it follows from 11.4.10(c) and A.27(c) that RΓ𝔞 is
bounded and from 7.1.8 and 6.4.31 that RΓ𝔞 preserves coproducts.

Let 𝐽 be a complex of injective 𝑆-modules that is isomorphic to 𝑁 in D(𝑆) and
let 𝐼 be a semi-injective replacement of 𝑁 . By 6.4.21 there is a quasi-isomorphism
𝐽 → 𝐼 of 𝑆-complexes, so by semi-flatness of Č𝑅(𝑥𝑥𝑥) the middle morphism in (†)
below is a quasi-isomorphism. The left- and right-hand morphisms in (†) are quasi-
isomorphisms by 13.3.13; this accounts for the isomorphism RΓ𝔞 (𝑁) ≃ Γ𝔞 (𝐽) in
D(𝑆).

(†) Γ𝔞 (𝐼)
𝜛𝐼
𝑥𝑥𝑥−−−→ Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝐼 ←− Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝐽

𝜛𝐽
𝑥𝑥𝑥←−−− Γ𝔞 (𝐽) .

Next we show that there is an isomorphism between the natural transformations 𝜸𝔞
and 𝜀𝑥𝑥𝑥 ⊗𝑅 . In D(𝑆) every 𝑆-complex is naturally isomorphic to its semi-injective
resolution, so it suffices to argue that the morphisms 𝛾𝐼𝔞 and 𝜀𝑥𝑥𝑥 ⊗𝑅 𝐼 are naturally
isomorphic in D(𝑆) for every semi-injective 𝑆-complex 𝐼. The desired conclusion
now follows from commutativity of the diagram:

Γ𝔞 (𝐼)

𝜛𝐼
𝑥𝑥𝑥 ≃
��

𝛾𝐼𝔞
// 𝐼

Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝐼
𝜀𝑥𝑥𝑥 ⊗ 𝐼

// 𝑅 ⊗𝑅 𝐼 .

� 𝜇𝐼
𝑅

OO
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Finally, one has 𝜀𝑥𝑥𝑥 ⊗𝑅 = 𝜀𝑥𝑥𝑥 ⊗L
𝑅

since 𝜀𝑥𝑥𝑥 : Č𝑅(𝑥𝑥𝑥) → 𝑅 is a morphism of semi-flat
𝑅-complexes. □

Theorem 13.3.18 provides for simple proofs of several useful properties RΓ𝔞 .

13.3.19 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. There is
a commutative diagram in D(𝑅), where the horizontal morphism is an isomorphism,

RΓ𝔞 (𝑀) ⊗L
𝑅
𝑁

𝜸𝑀𝔞 ⊗L𝑁
""

≃
// RΓ𝔞 (𝑀 ⊗L

𝑅
𝑁)

𝜸𝑀⊗
L𝑁

𝔞||

𝑀 ⊗L
𝑅
𝑁 .

If 𝑆 is an 𝑅-algebra and 𝑁 an 𝑆-complex, then this is a diagram in D(𝑆).

Proof. Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. By 12.3.14 there is a commutative
diagram where the horizontal morphisms are isomorphisms,

(Č (𝑥𝑥𝑥) ⊗L
𝑅
𝑀) ⊗L

𝑅
𝑁 ≃

𝝎Č (𝑥𝑥𝑥)𝑀𝑁
//

(𝜀𝑥𝑥𝑥⊗L𝑁 ) ⊗L𝑁

��

Č (𝑥𝑥𝑥) ⊗L
𝑅
(𝑀 ⊗L

𝑅
𝑁)

𝜀𝑥𝑥𝑥 ⊗L (𝑀⊗L𝑁 )
��

(𝑅 ⊗L
𝑅
𝑀) ⊗L

𝑅
𝑁 ≃

𝝎𝑅𝑀𝑁
// 𝑅 ⊗L

𝑅
(𝑀 ⊗L

𝑅
𝑁) ;

if 𝑀 is an 𝑆-complex, then this is a diagram in D(𝑆). The assertions now follow
from 13.3.18 in view of the unitor 12.3.3. □

13.3.20 Theorem. Let 𝔞 an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. There is a
commutative diagram in D(𝑅),

RΓ𝔞 (RHom𝑅 (𝑀, 𝑁))

𝜸RHom (𝑀,𝑁 )
𝔞

$$

// RHom𝑅 (𝑀,RΓ𝔞 (𝑁))

RHom (𝑀,𝜸𝑁𝔞 )
zz

RHom𝑅 (𝑀, 𝑁) .

If 𝑆 is an 𝑅-algebra and𝑁 an 𝑆-complex, then this is a diagram inD(𝑆). Furthermore,
if one of the conditions (a), (b), or (c) below is satisfied, then the horizontal morphism
in the diagram above is an isomorphism.

(a) 𝑀 is in Df
⊏⊐ (𝑅) and pd𝑅 𝑀 is finite.

(b) 𝑀 is in Df
⊐ (𝑅) and 𝑁 in D⊏ (𝑅) .

(c) 𝑀 is in Df (𝑅), 𝑁 is in D⊏⊐ (𝑅), and id𝑅 𝑁 is finite.

Proof. Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. By 12.3.10 one has the commuta-
tive diagram below, where the lower horizontal morphism is an isomorphism by
12.3.23(c). In view of 13.3.18, commutativity 12.3.5, and the unitor 12.3.3 this
yields the asserted commutative diagram.
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RHom𝑅 (𝑀, 𝑁) ⊗L
𝑅

Č (𝑥𝑥𝑥)

RHom (𝑀,𝑁 ) ⊗L 𝜀𝑥𝑥𝑥
��

𝜽𝑀𝑁 Č (𝑥𝑥𝑥)
// RHom𝑅 (𝑀, 𝑁 ⊗L

𝑅
Č (𝑥𝑥𝑥))

RHom (𝑀,𝑁 ⊗L 𝜀𝑥𝑥𝑥 )
��

RHom𝑅 (𝑀, 𝑁) ⊗L
𝑅
𝑅

𝜽𝑀𝑁𝑅

≃
// RHom𝑅 (𝑀, 𝑁 ⊗L

𝑅
𝑅) .

Under the assumptions in part (a) the morphism 𝜽𝑀𝑁 Č (𝑥𝑥𝑥 ) is an isomorphism by
12.3.23(a). Recall from 11.4.10(c) that Č (𝑥𝑥𝑥) is in D⊏⊐ (𝑅) and fd𝑅 Č (𝑥𝑥𝑥) is finite.
Thus, under the assumptions in parts (b) and (c) the morphism 𝜽𝑀𝑁 Č (𝑥𝑥𝑥 ) is an
isomorphism by 12.3.23(b) and 12.3.24(b). □

13.3.21 Proposition. Let 𝔞 and 𝔟 be ideals in 𝑅 and 𝑀 an 𝑅-complex; there is an
isomorphism in D(𝑅),

RΓ𝔞 (RΓ𝔟 (𝑀)) ≃ RΓ𝔞+𝔟 (𝑀) .

Proof. Let 𝑥𝑥𝑥 and 𝑦𝑦𝑦 be sequences that generate 𝔞 and 𝔟, and note that the concatenated
sequence 𝑥𝑥𝑥, 𝑦𝑦𝑦 generates the ideal 𝔞 + 𝔟. In the computation below, the 1st and 4th iso-
morphisms follow from 13.3.18. The 2nd isomorphism holds by associativity 12.3.6
and semi-flatness of the Čech complex; see 11.4.10(c). The 3rd isomorphism follows
from the definition, 11.4.9, of the Čech complex.

RΓ𝔞 (RΓ𝔟 (𝑀)) ≃ Č (𝑥𝑥𝑥) ⊗L
𝑅 (Č (𝑦𝑦𝑦) ⊗L

𝑅 𝑀)
≃ (Č (𝑥𝑥𝑥) ⊗𝑅 Č (𝑦𝑦𝑦)) ⊗L

𝑅 𝑀

≃ Č (𝑥𝑥𝑥, 𝑦𝑦𝑦) ⊗L
𝑅 𝑀

≃ RΓ𝔞+𝔟 (𝑀) . □

13.3.22 Proposition. Let 𝔞 be an ideal in 𝑅 and {𝜇𝑣𝑢 : 𝑀𝑢 → 𝑀𝑣}𝑢⩽𝑣 a 𝑈-direct
system in C(𝑅). If𝑈 is filtered, then there is an isomorphism of 𝑅-modules,

H𝔞
𝑚

(
colim
𝑢∈𝑈

𝑀𝑢
)
� colim

𝑢∈𝑈
H𝑚𝔞 (𝑀𝑢) ,

for every 𝑚 ∈ ℤ.

Proof. Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. By 3.2.23 and 3.3.15(d) there are
isomorphisms,

H
(
Č𝑅(𝑥𝑥𝑥) ⊗𝑅 colim

𝑢∈𝑈
𝑀𝑢

)
� H

(
colim
𝑢∈𝑈

(Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝑀𝑢)
)

� colim
𝑢∈𝑈

H(Č𝑅(𝑥𝑥𝑥) ⊗𝑅 𝑀𝑢) .

The asserted isomorphisms now follow from 13.3.18 and the definition, 11.3.20, of
local cohomology. □

Independence of Base

For an ideal 𝔞 in 𝑅, an 𝑅-algebra 𝑆, and an 𝑆-complex 𝑁 the complex RΓ𝔞 (𝑁) is
an 𝑆-complex; see 13.3.16. Part (a) of the next result, which is a derived version of
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11.2.4, is traditionally referred to as “independence of base” for local cohomology.
To parse the statements recall the definition of derived 𝔞-torsionness from 11.3.17.

13.3.23 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑆 an 𝑅-algebra.
(a) Let 𝑁 be an 𝑆-complex. There is a commutative diagram in D(𝑆),

RΓ𝔞𝑆 (𝑁)

𝜸𝑁
𝔞𝑆

��

≃
// RΓ𝔞 (𝑁)

𝜸𝑁𝔞
��

𝑁 ,

where the horizontal morphism is an isomorphism. In particular, 𝑁 is derived
𝔞𝑆-torsion if and only if it is derived 𝔞-torsion as an 𝑅-complex. Moreover,
for every 𝑚 ∈ ℤ there is an isomorphism of 𝑆-modules,

H𝑚𝔞𝑆 (𝑁) � H𝑚𝔞 (𝑁) .

(b) Let 𝑀 be an 𝑅-complex. There is a commutative diagram in D(𝑆),

RΓ𝔞𝑆 (𝑆 ⊗L
𝑅
𝑀)

𝜸𝑆⊗
L𝑀

𝔞𝑆
��

≃
// 𝑆 ⊗L

𝑅
RΓ𝔞 (𝑀)

𝑆⊗L 𝜸𝑀𝔞
��

𝑆 ⊗L
𝑅
𝑀

where the horizontal morphism is an isomorphism. If 𝑀 is derived 𝔞-torsion,
then 𝑆 ⊗L

𝑅
𝑀 is derived 𝔞𝑆-torsion; the converse holds if 𝑆 is faithfully flat as

an 𝑅-module. Moreover, if 𝑆 is flat as an 𝑅-module, then there is for every
𝑚 ∈ ℤ an isomorphism of 𝑆-modules,

H𝑚𝔞𝑆 (𝑆 ⊗𝑅 𝑀) � 𝑆 ⊗𝑅 H𝑚𝔞 (𝑀) .

Proof. Let 𝑥𝑥𝑥 be a sequence that generats 𝔞; viewed as a sequence in 𝑆 it generates 𝔞𝑆.
(a): The asserted commutative diagram in D(𝑆), with the horizontal morphism

an isomorphism, exists by 11.2.4, the definition, 13.3.16, of the functors RΓ𝔞𝑆 and
RΓ𝔞 and the natural transformations 𝜸

𝔞𝑆
and 𝜸𝔞 . From this diagram it follows that

𝜸𝑁
𝔞𝑆

is an isomorphism in D(𝑆) if and only if 𝜸𝑁𝔞 is an isomorphism in D(𝑆), which
by 6.4.37 is equivalent to saying that 𝜸𝑁𝔞 is an isomorphism in D(𝑅). By 11.3.17
this means that 𝑁 is derived 𝔞𝑆-torsion if and only if it is derived 𝔞-torsion as an 𝑅-
complex. In view of the isomorphism in the commutative diagram, the isomorphisms
of local cohomology modules follow straight from the definition, 11.3.20.

(b): Consider the diagram in D(𝑆) below. The left-hand triangle is commutative
by part (a) applied to 𝑁 = 𝑆 ⊗L

𝑅
𝑀 . Commutativity of the right-hand triangle follows

by 12.3.5 from 13.3.19.
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RΓ𝔞𝑆 (𝑆 ⊗L
𝑅
𝑀)

𝜸𝑆⊗
L𝑀

𝔞𝑆 ''

≃
// RΓ𝔞 (𝑆 ⊗L

𝑅
𝑀) ≃

//

𝜸𝑆⊗
L𝑀

𝔞

��

𝑆 ⊗L
𝑅

RΓ𝔞 (𝑀)

𝑆⊗L 𝜸𝑀𝔞ww

𝑆 ⊗L
𝑅
𝑀

This establishes the asserted commutative diagram. It follows that if 𝜸𝑀𝔞 is an
isomorphism in D(𝑅), then 𝜸𝑆⊗

L
𝑅
𝑀

𝔞𝑆
is an isomorphism in D(𝑆), i.e. if 𝑀 is derived

𝔞-torsion, then 𝑆 ⊗L
𝑅
𝑀 is derived 𝔞𝑆-torsion, see 11.3.17.

Assume now that 𝑆 is flat as an 𝑅-module and let 𝑚 ∈ ℤ. From the isomorphism
RΓ𝔞𝑆 (𝑆 ⊗L

𝑅
𝑀) � 𝑆 ⊗L

𝑅
RΓ𝔞 (𝑀) it follows, in view of 11.3.20 and 12.1.20(b), that

H𝑚𝔞𝑆 (𝑆 ⊗𝑅 𝑀) � 𝑆 ⊗𝑅 H𝑚𝔞 (𝑀)

holds. The commutative diagram above and another application of 12.1.20(b) yield

H(𝜸𝑆⊗𝑅𝑀
𝔞𝑆

) � 𝑆 ⊗𝑅 H(𝜸𝑀𝔞 ) .

Assuming, further, that 𝑆 is faithfully flat as an 𝑅-module, it follows from 6.5.17 that
if 𝜸𝑆⊗𝑅𝑀

𝔞𝑆
is an isomorphism in D(𝑆), then 𝜸𝑀𝔞 is an isomorphism in D(𝑅). That is,

if 𝑆 ⊗𝑅 𝑀 is derived 𝔞𝑆-torsion, then 𝑀 is derived 𝔞-torsion. □

In part (b) above, the converse statement—that is,𝑀 is derived 𝔞-torsion if 𝑆 ⊗L
𝑅
𝑀

is derived 𝔞𝑆-torsion—fails without assumptions on 𝑆. Indeed, for every ideal 𝔞 in 𝑅
and every 𝑅-complex 𝑀 , the 𝑅/𝔞-complex 𝑅/𝔞 ⊗L

𝑅
𝑀 is trivially derived 0-torsion,

see 11.2.2, and the zero ideal is the extension of 𝔞 to 𝑅/𝔞. This last observation
combined with part (a) above yields:

13.3.24 Corollary. Let 𝔞 be an ideal in 𝑅. Every 𝑅/𝔞-complex is derived 𝔞-torsion
as an 𝑅-complex.

Proof. As the extension of 𝔞 to the 𝑅-algebra 𝑅/𝔞 is the zero ideal, the assertion
follows from 11.2.2 and 13.3.23(a). □

13.3.25 Example. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Considered as
𝑅-complexes, 𝑅/𝔞 ⊗𝑅 𝑀 , 𝑅/𝔞 ⊗L

𝑅
𝑀 , Hom𝑅 (𝑅/𝔞, 𝑀), and RHom𝑅 (𝑅/𝔞, 𝑀) are

derived 𝔞-torsion, see 12.1.4, 12.2.8, 12.1.2, and 12.2.2.

Example 13.1.25 and the text before 13.1.24 contextualize the next result.

13.3.26 Proposition. Let 𝔞 ⊂ 𝑅 be an ideal and 𝑀 and 𝑁 be 𝑅𝔞-complexes that
are derived 𝔞-torsion as 𝑅-complexes. The complexes 𝑀 and 𝑁 are isomorphic in
D(𝑅𝔞) if and only if they are isomorphic in D(𝑅).

Proof. The “only if” part is evident. Now assume that 𝑀 and 𝑁 are isomorphic in
D(𝑅). Recall from 11.3.18 that RΓ𝔞 is a functor from D(𝑅) to D(𝑅𝔞), and as one
has 𝑀 ≃ 𝑁 in D(𝑅), it follows that RΓ𝔞 (𝑀) ≃ RΓ𝔞 (𝑁) holds in D(𝑅𝔞). To finish
the proof it suffices to argue that RΓ𝔞 (𝑀) ≃ 𝑀 and RΓ𝔞 (𝑁) ≃ 𝑁 hold in D(𝑅𝔞).
Per 13.3.17 the 𝑅𝔞-structure on RΓ𝔞 (𝑀) is inherited from the 𝑅𝔞-structure on 𝑀;
further, 𝜸𝑀𝔞 : RΓ𝔞 (𝑀) → 𝑀 is a morphism in D(𝑅𝔞) by 13.3.16. By assumption,
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𝑀 is derived 𝔞-torsion as an 𝑅-complex, so 𝜸𝑀𝔞 is an isomorphism in D(𝑅) by
11.3.17 and hence also an isomorphism in D(𝑅𝔞) by 6.4.37. This proves that one
has RΓ𝔞 (𝑀) ≃ 𝑀 in D(𝑅𝔞). Similarly, one also has RΓ𝔞 (𝑁) ≃ 𝑁 in D(𝑅𝔞). □

Derived Torsion Complexes

Recall the definition of derived 𝔞-torsionness from 11.3.17.

13.3.27 Proposition. Let 𝔞 be an ideal in 𝑅.
(a) The subcategory D𝔞-tor (𝑅) of D(𝑅) is triangulated.
(b) Every complex in D𝔞-tor

⊏ (𝑅) has an 𝔞-torsion semi-injective replacement.

Proof. As the functors RΓ𝔞 and IdD(𝑅) and the natural transformation 𝜸𝔞 are trian-
gulated, see 11.3.16, the subcategory D𝔞-tor (𝑅) is triangulated by E.19. This proves
(a). To prove (b), let 𝑀 be a complex in D𝔞-tor

⊏ (𝑅). It follows from 5.3.26 that 𝑀
has a bounded above semi-injective replacement 𝐼. By 13.3.8 the complex Γ𝔞 (𝐼) is
semi-injective, and it is isomorphic in D(𝑅) to RΓ𝔞 (𝑀) ≃ 𝑀 . □

From 13.3.27(a) and 7.6.3 it follows that D𝔞-tor
⊏ (𝑅), D𝔞-tor

⊐ (𝑅), and D𝔞-tor
⊏⊐ (𝑅) are

triangulated subcategories of D(𝑅).

13.3.28 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 a derived 𝔞-torsion 𝑅-complex, and
𝑁 an 𝑅-complex.

(a) The complex 𝑀 ⊗L
𝑅
𝑁 is derived 𝔞-torsion.

(b) If 𝑀 is in D⊏ (𝑅) and 𝑁 in Df
⊐ (𝑅), then RHom𝑅 (𝑁, 𝑀) is derived 𝔞-torsion.

Proof. By assumption, 𝜸𝑀𝔞 is an isomorphism in D(𝑅). It follows from 13.3.19
that 𝜸𝑀⊗

L
𝑅
𝑁

𝔞 is an isomorphism, which proves (a). Under the assumptions in (b), it
follows from 13.3.20(b) that 𝜸RHom𝑅 (𝑁,𝑀 )

𝔞 is an isomorphism. □

Let 𝔞 be an ideal in 𝑅 and recall from 11.2.8 that an 𝑅-complex 𝑀 is 𝔞-torsion if
the morphism 𝛾𝑀𝔞 : Γ𝔞 (𝑀) → 𝑀 is an isomorphism in C(𝑅). For a derived 𝔞-torsion
complex 𝑀 one has H−𝑚 (𝑀) � H𝑚𝔞 (𝑀) for every 𝑚 ∈ ℤ; in particular H(𝑀) is
𝔞-torsion, see for example 11.3.24. Next we prove that the converse holds.

13.3.29 Theorem. Let 𝔞 be an ideal in 𝑅. An 𝑅-complex 𝑀 is derived 𝔞-torsion if
and only if the homology complex H(𝑀) is 𝔞-torsion; in symbols:

𝛾
H (𝑀 )
𝔞 : Γ𝔞 (H(𝑀)) �−−−→ H(𝑀) ⇐⇒ 𝜸𝑀𝔞 : RΓ𝔞 (𝑀) ≃−−−→ 𝑀 .

Proof. The “only if” is immediate from 13.3.18 and 11.4.13. Conversely, if H(𝑀)
is 𝔞-torsion, then the morphism 𝜀𝑥𝑥𝑥 ⊗𝑅 𝑀 : Č (𝑥𝑥𝑥) ⊗𝑅 𝑀 → 𝑅 ⊗𝑅 𝑀 , where 𝑥𝑥𝑥 is a
sequence that generates 𝔞, is an isomorphism in D(𝑅) by 11.4.15, and hence so is
𝜸𝑀𝔞 by 13.3.18. □

13.3.30 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. If 𝑀 is 𝔞-torsion,
then it is derived 𝔞-torsion.
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Proof. If 𝑀 is 𝔞-torsion, then the homology complex H(𝑀) is 𝔞-torsion by 11.2.14,
so it follows from 13.3.29 that 𝑀 is derived 𝔞-torsion. □

13.3.31 Example. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥, and 𝑀 be an
𝑅-complex. Per 11.4.6 and 13.3.29 the complex K (𝑥𝑥𝑥) ⊗𝑅 𝑀 is derived 𝔞-torsion.

13.3.32 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 a derived 𝔞-torsion 𝑅-complex.
For every 𝑣 ∈ ℤ one has H𝑣 (𝑀) = 0 if and only if Hom𝑅 (𝑅/𝔞,H𝑣 (𝑀)) = 0.

Proof. As 𝑀 is derived 𝔞-torsion one has H𝑣 (𝑀) � H−𝑣𝔞 (𝑀) for all 𝑣 ∈ ℤ. The
assertion now follows from 11.3.24. □

Exercises

E 13.3.1 Let 𝑥𝑥𝑥 be a sequence in 𝑅. Prove without recourse to 13.3.12 that Z0 (Č (𝑥𝑥𝑥 ) ) is Γ(𝑥𝑥𝑥) (𝑅) .
E 13.3.2 Let 𝔞 be an ideal in 𝑅 and 𝑀 a complex in D⊏⊐ (𝑅) . (a): Show that if pd𝑅 𝑀 is finite,

then pd𝑅 RΓ𝔞 (𝑀 ) is finite. (b): Show that if fd𝑅 𝑀 is finite, then fd𝑅 RΓ𝔞 (𝑀 ) is finite.
(c): Show that if id𝑅 𝑀 is finite, then id𝑅 RΓ𝔞 (𝑀 ) is finite.

E 13.3.3 With the convention that the Čech complex on the empty sequence is 𝑅, show that
13.3.18 remains valid for the empty sequence generating the zero ideal.

E 13.3.4 Let 𝔞 be an ideal in 𝑅. Show that the category D𝔞-tor (𝑅) is closed under soft truncations.
E 13.3.5 Let 𝔟 ⊆ 𝔞 be ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that if 𝑀 is derived 𝔞-torsion, then

it is derived 𝔟-torsion.
E 13.3.6 Calculate the ℤ-modules H𝑚

𝑝ℤ (ℤ) , H𝑚
𝑝ℤ (ℚ) , and H𝑚

𝑝ℤ (ℚ/ℤ) for 𝑝 ∈ ℕ0 and 𝑚 ∈ ℤ.
Hint: C.13.

13.4 Greenlees–May Equivalence

Synopsis. Idempotence of the functors LΛ𝔞 and RΓ𝔞 ; derived 𝔞-complete complex; derived 𝔞-
torsion complex; adjointness of RΓ𝔞 and LΛ𝔞 ; Greenlees–May Equivalence.

The isomorphisms (a) and (b) in the next theorem show that the functors RΓ𝔞 and
LΛ𝔞 are idempotent. The isomorphisms (c) and (d) say, loosely speaking, that when
the two functors act successively, only the last action survives.

13.4.1 Theorem. Let 𝔞 be an ideal in 𝑅. The following morphisms in D(𝑅) are
isomorphisms.

LΛ𝔞 (𝝀𝔞𝑀 ) : LΛ𝔞 (𝑀) −→ LΛ𝔞 (LΛ𝔞 (𝑀)) .(a)
RΓ𝔞 (𝜸𝑀𝔞 ) : RΓ𝔞 (RΓ𝔞 (𝑀)) −→ RΓ𝔞 (𝑀) .(b)
LΛ𝔞 (𝜸𝑀𝔞 ) : LΛ𝔞 (RΓ𝔞 (𝑀)) −→ LΛ𝔞 (𝑀) .(c)
RΓ𝔞 (𝝀𝔞𝑀 ) : RΓ𝔞 (𝑀) −→ RΓ𝔞 (LΛ𝔞 (𝑀)) .(d)

Furthermore, there are equalities of morphisms in D(𝑅),

𝝀𝔞LΛ𝔞 (𝑀 ) = LΛ𝔞 (𝝀𝔞𝑀 ) and 𝜸RΓ𝔞 (𝑀 )
𝔞 = RΓ𝔞 (𝜸𝑀𝔞 ) .
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Proof. Let 𝑥𝑥𝑥 be a sequence that generates 𝔞 and denote by 𝜔𝑥𝑥𝑥 the composite
𝜀𝑥𝑥𝑥𝜋𝑥𝑥𝑥 : L(𝑥𝑥𝑥) → 𝑅; see 11.4.14 and 11.4.23. The functors and natural transformations
from 11.3.2 and 11.3.16 can be realized as follows:

LΛ𝔞 ≃ Hom𝑅 (L(𝑥𝑥𝑥), ) , 𝝀𝔞 ≃ Hom𝑅 (𝜔𝑥𝑥𝑥 , ) ,
RΓ𝔞 ≃ L(𝑥𝑥𝑥) ⊗𝑅 , and 𝜸𝔞 ≃ 𝜔𝑥𝑥𝑥 ⊗𝑅 ;

see 13.1.15, 11.4.25(c), and 13.3.18.
Swap 12.1.9 yields

(♭)
LΛ𝔞 (𝝀𝔞𝑀 ) ≃ Hom𝑅 (L(𝑥𝑥𝑥),Hom𝑅 (𝜔𝑥𝑥𝑥 , 𝑀))

� Hom𝑅 (𝜔𝑥𝑥𝑥 ,Hom𝑅 (L(𝑥𝑥𝑥), 𝑀))
≃ 𝝀𝔞LΛ𝔞 (𝑀 ) ,

and associativity 12.1.8 and commutativity 12.1.7 yield

(⋄) RΓ𝔞 (𝜸𝑀𝔞 ) ≃ L(𝑥𝑥𝑥) ⊗𝑅 (𝜔𝑥𝑥𝑥 ⊗𝑅 𝑀) � 𝜔𝑥𝑥𝑥 ⊗𝑅 (L(𝑥𝑥𝑥) ⊗𝑅 𝑀) ≃ 𝜸RΓ𝔞 (𝑀 )
𝔞 .

Below we show that the morphisms LΛ𝔞 (𝝀𝔞𝑀 ) and RΓ𝔞 (𝜸𝑀𝔞 ) from parts (a) and (b)
are isomorphisms. Once this has been proved it follows from (♭) and (⋄) that 𝝀𝔞LΛ𝔞 (𝑀 )
and 𝜸RΓ𝔞 (𝑀 )

𝔞 are isomorphisms too, and hence 6.3.20 yields the asserted equalities,

𝝀𝔞LΛ𝔞 (𝑀 ) = LΛ𝔞 (𝝀𝔞𝑀 ) and 𝜸RΓ𝔞 (𝑀 )
𝔞 = RΓ𝔞 (𝜸𝑀𝔞 ) .

(a): By (♭) combined with adjunction 12.1.10 one has

LΛ𝔞 (𝝀𝔞𝑀 ) ≃ Hom𝑅 (L(𝑥𝑥𝑥) ⊗𝑅 𝜔𝑥𝑥𝑥 , 𝑀) .

Thus, it follows from 4.3.19 and the fact that L(𝑥𝑥𝑥) ⊗𝑅 𝜔𝑥𝑥𝑥 is a homotopy equivalence
that LΛ𝔞 (𝝀𝔞𝑀 ) is an isomorphism in D(𝑅).

(b): The tensor product preserves homotopy, see 4.3.20, so to prove that the
morphism RΓ𝔞 (𝜸𝑀𝔞 ) is an isomorphism in D(𝑅), it suffices per (⋄) to show that
L(𝑥𝑥𝑥) ⊗𝑅 𝜔𝑥𝑥𝑥 is a homotopy equivalence. In the commutative diagram,

L(𝑥𝑥𝑥) ⊗𝑅 L(𝑥𝑥𝑥) L(𝑥𝑥𝑥 ) ⊗𝜔𝑥𝑥𝑥
//

≃𝜋𝑥𝑥𝑥 ⊗ 𝜋𝑥𝑥𝑥
��

L(𝑥𝑥𝑥) ⊗𝑅 𝑅

≃ 𝜋𝑥𝑥𝑥 ⊗𝑅
��

Č (𝑥𝑥𝑥) ⊗𝑅 Č (𝑥𝑥𝑥) ≃
Č (𝑥𝑥𝑥 ) ⊗ 𝜀𝑥𝑥𝑥

// Č (𝑥𝑥𝑥) ⊗𝑅 𝑅 ,

the vertical maps are quasi-isomorphisms by 11.4.25(c) and semi-flatness of the
complexes L(𝑥𝑥𝑥) and Č (𝑥𝑥𝑥); see 5.4.10 and 11.4.10(c). The lower horizontal morphism
is a quasi-isomorphism by 11.4.13 and 11.4.15. The diagram shows that L(𝑥𝑥𝑥) ⊗𝑅 𝜔𝑥𝑥𝑥
is a quasi-isomorphism and hence a homotopy equivalence as both domain and
codomain are semi-free complexes; see 5.1.10, 5.2.11, and 5.2.21.

(d): To show that RΓ𝔞 (𝝀𝔞𝑀 ) ≃ L(𝑥𝑥𝑥) ⊗𝑅 Hom𝑅 (𝜔𝑥𝑥𝑥 , 𝑀) is an isomorphism in
D(𝑅) is per 6.4.18 equivalent to proving that L(𝑥𝑥𝑥) ⊗𝑅 Hom𝑅 (𝜔𝑥𝑥𝑥 , 𝑀) is a quasi-
isomorphism in C(𝑅). The first two isomorphisms in the next computation follow
from 11.4.22 and 3.2.22,
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L(𝑥𝑥𝑥) ⊗𝑅 Hom𝑅 (𝜔𝑥𝑥𝑥 , 𝑀) �
(
colim
𝑢⩾1

L𝑢 (𝑥𝑥𝑥)
)
⊗𝑅 Hom𝑅 (𝜔𝑥𝑥𝑥 , 𝑀)

� colim
𝑢⩾1
(L𝑢 (𝑥𝑥𝑥) ⊗𝑅 Hom𝑅 (𝜔𝑥𝑥𝑥 , 𝑀))

� colim
𝑢⩾1

Hom𝑅 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥), 𝑀) ,

the last isomorphism holds by homomorphism evaluation 12.1.16(c), as L𝑢 (𝑥𝑥𝑥) is a
bounded complex of finitely generated free 𝑅-modules, see 11.4.19. To show that the
morphism colim𝑢⩾1 Hom𝑅 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥), 𝑀) is a quasi-isomorphism, it suf-
fices by 4.2.12, 4.3.4(b), and 4.3.19 to argue that each morphism Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥)
is a homotopy equivalence. As the domain and codomain of Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥),
that is, Hom𝑅 (L𝑢 (𝑥𝑥𝑥),L(𝑥𝑥𝑥)) and Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅), are bounded complexes of free
𝑅-modules, and hence semi-projective by 5.2.8, it suffices by 5.2.21 to prove that
Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥) is a quasi-isomorphism. By definition one has

Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥) = Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜀𝑥𝑥𝑥) Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜋𝑥𝑥𝑥) .

The morphism 𝜋𝑥𝑥𝑥 is a quasi-isomorphism by 11.4.25(c), thus so is Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜋𝑥𝑥𝑥).
It remains to show that Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜀𝑥𝑥𝑥) is a quasi-isomorphism. Biduality 12.1.14,
homomorphism evaluation 12.1.16(c), and the counitor 12.1.6 yield isomorphisms,

Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜀𝑥𝑥𝑥) � Hom𝑅 (Hom𝑅 (Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅), 𝑅), 𝜀𝑥𝑥𝑥)
� Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 Hom𝑅 (𝑅, 𝜀𝑥𝑥𝑥)
� Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝜀𝑥𝑥𝑥 .

By 13.1.6 one has H(Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅)) � H(K (𝑥𝑥𝑥𝑢)), and this complex is (𝑥𝑥𝑥)-torsion
by 11.4.6. Now 11.4.15 yields that Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝜀𝑥𝑥𝑥 is a quasi-isomorphism.

(c): Showing that LΛ𝔞 (𝜸𝑀𝔞 ) ≃ Hom𝑅 (L(𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥 ⊗𝑅 𝑀) in an isomorphism in
D(𝑅) is per 6.4.18 equivalent to proving that Hom𝑅 (L(𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥 ⊗𝑅 𝑀) is a quasi-
isomorphism. From 11.4.22 and 3.4.29 one gets,

Hom𝑅 (L(𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥 ⊗𝑅 𝑀) � Hom𝑅

(
colim
𝑢⩾1

L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥 ⊗𝑅 𝑀
)

� lim
𝑢⩾1

Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥 ⊗𝑅 𝑀) .

Set 𝜔𝑢,𝑀𝑥𝑥𝑥 = Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥 ⊗𝑅 𝑀); it must be proved that lim𝑢⩾1 𝜔
𝑢,𝑀
𝑥𝑥𝑥 is a quasi-

isomorphism. To this end, set 𝐾𝑥𝑥𝑥 = Ker𝜔𝑥𝑥𝑥 and consider the exact sequence,

0 −→ 𝐾𝑥𝑥𝑥
𝛼𝑥𝑥𝑥−−−→ L(𝑥𝑥𝑥) 𝜔𝑥𝑥𝑥−−−→ 𝑅 −→ 0 ,

which is degreewise split, see 5.2.2. It induces by 2.4.12 exact sequences,

0 −−→ Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝐾𝑥𝑥𝑥 ⊗𝑅 𝑀)
𝛼
𝑢,𝑀
𝑥𝑥𝑥−−−−−→ Hom𝑅 (L𝑢 (𝑥𝑥𝑥),L(𝑥𝑥𝑥) ⊗𝑅 𝑀)

𝜔
𝑢,𝑀
𝑥𝑥𝑥−−−−−→ Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝑅 ⊗𝑅 𝑀) −→ 0 .

The families {𝛼𝑢,𝑀𝑥𝑥𝑥 }𝑢⩾1 and {𝜔𝑢,𝑀𝑥𝑥𝑥 }𝑢⩾1 are morphisms of towers. The morphisms
in all three towers are surjective as they are induced by the degreewise split em-
beddings L𝑢 (𝑥𝑥𝑥) ↣ L𝑢+1 (𝑥𝑥𝑥) from 11.4.21. By 3.5.10 all three towers satisfy the

8-Mar-2024 Draft - use at own risk



13.4 Greenlees–May Equivalence 641

Mittag-Leffler Condition, so 3.5.17 implies that lim𝑢⩾1 𝜔
𝑢,𝑀
𝑥𝑥𝑥 is surjective with ker-

nel isomorphic to lim𝑢⩾1 Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝐾𝑥𝑥𝑥 ⊗𝑅 𝑀). Thus, showing that lim𝑢⩾1 𝜔
𝑢,𝑀
𝑥𝑥𝑥

is a quasi-isomorphism is by 4.2.6 equivalent to showing that the complex

lim
𝑢⩾1

Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝐾𝑥𝑥𝑥 ⊗𝑅 𝑀)

is acyclic. As already mentioned, the tower {Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝐾𝑥𝑥𝑥 ⊗𝑅 𝑀)}𝑢⩾1 satisfies
the Mittag-Leffler Condition, so by 3.5.16 it it enough to argue that each complex
Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝐾𝑥𝑥𝑥 ⊗𝑅 𝑀) is acyclic. By another application of 4.2.6 this is equivalent
to showing that 𝜔𝑢,𝑀𝑥𝑥𝑥 is a quasi-isomorphism. One has

𝜔
𝑢,𝑀
𝑥𝑥𝑥 = Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥 ⊗𝑅 𝑀) � Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥) ⊗𝑅 𝑀

by tensor evaluation 12.1.15(d). In the proof of (c) we showed that Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥)
is a homotopy equivalence, and hence so is Hom𝑅 (L𝑢 (𝑥𝑥𝑥), 𝜔𝑥𝑥𝑥) ⊗𝑅 𝑀 by 4.3.20. □

Derived Complete Complexes

13.4.2 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. The complex
LΛ𝔞 (𝑀) is derived 𝔞-complete.

Proof. It follows from last assertion in 13.4.1 combined with 13.4.1(a) that the
morphism 𝝀𝔞LΛ𝔞 (𝑀 ) is an isomorphism. □

13.4.3 Proposition. Let 𝔞 be an ideal in 𝑅. There is an adjunction,

D(𝑅)
LΛ𝔞

//
D𝔞-com (𝑅) ,oo

where the right adjoint is the inclusion functor. For a complex 𝑀 in D(𝑅) the unit of
the adjunction is the morphism 𝝀𝔞𝑀 : 𝑀 → LΛ𝔞 (𝑀). For a complex 𝑁 in D𝔞-com (𝑅)
the counit is the isomorphism (𝝀𝔞𝑁 )−1 : LΛ𝔞 (𝑁) → 𝑁 .

Proof. It follows from 13.4.2 that the image of LΛ𝔞 is contained in D𝔞-com (𝑅). To
see that the functors are adjoint with the asserted unit and counit, it suffices to verify
the zigzag identities. That is, for 𝑀 in D(𝑅) and 𝑁 in D𝔞-com (𝑅) the composites

LΛ𝔞 (𝑀)
LΛ𝔞 (𝝀𝔞

𝑀
)

−−−−−−−→ LΛ𝔞 (LΛ𝔞 (𝑀))
(𝝀𝔞LΛ𝔞 (𝑀) )

−1

−−−−−−−−−−→ LΛ𝔞 (𝑀)
and

𝑁
𝝀𝔞
𝑁−−−→ LΛ𝔞 (𝑁)

(𝝀𝔞
𝑁
)−1

−−−−−−→ 𝑁

must be identities. The last assertion in 13.4.1 shows that the first composite is the
identity on LΛ𝔞 (𝑀). Evidently, the second composite is the identity on 𝑁 . □

Remark. It is not surprising that the counit of adjunction in 13.4.3 is an isomorphism; indeed this
is well-known to be equivalent to the right adjont being fully faithful, which is evident, as it is
the inclusion functor D𝔞-com (𝑅) → D(𝑅) . The fact that this inclusion functor has a left adjoint
expresses that D𝔞-com (𝑅) is a reflective subcategory of D(𝑅) .
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We collect characterizations of what it means to be derived 𝔞-complete.

13.4.4 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. The following
conditions are equivalent.

(i) 𝑀 is derived 𝔞-complete.
(ii) There is an isomorphism 𝑀 ≃ LΛ𝔞 (𝑀) in D(𝑅) .
(iii) For some 𝑅-complex 𝑋 there is an isomorphism 𝑀 ≃ LΛ𝔞 (𝑋) in D(𝑅) .

Moreover, the next condition implies (i)–(iii).
(iv) H(𝑀) is 𝔞-complete.

Proof. The three first conditions are equivalent by 13.4.2. Further, if H(𝑀) is 𝔞-
complete, then 𝑀 is derived 𝔞-complete by 13.1.32. □

13.4.5 Corollary. Let 𝔟 ⊆ 𝔞 be ideals in 𝑅 and 𝑀 an 𝑅-complex. If 𝑀 is derived
𝔞-complete, then it is derived 𝔟-complete.

Proof. By the assumption on 𝑀 and 13.1.20 there are isomorphisms,

LΛ𝔟 (𝑀) ≃ LΛ𝔟 (LΛ𝔞 (𝑀)) ≃ LΛ𝔟+𝔞 (𝑀) ≃ LΛ𝔞 (𝑀) ≃ 𝑀,

in D(𝑅), whence 𝑀 is derived 𝔟-complete by 13.4.4. □

For a prime ideal 𝔭 in 𝑅 and an 𝑅-complex 𝑀 , the complex 𝑅/𝔭 ⊗L
𝑅
𝑀 is derived

𝔭-complete by 13.1.22 and, therefore, derived 𝔞-complete for every ideal 𝔞 contained
in 𝔭, see 13.4.5. The assumption on 𝑀 in the next lemma is thus trivially satisfied
for prime ideals in V(𝔞). Notice from 13.1.31(b) that the assumption is also satisfied
if 𝑀 is derived 𝔞-complete and belongs to D⊐ (𝑅).

13.4.6 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex such that the
complex 𝑅/𝔭 ⊗L

𝑅
𝑀 is derived 𝔞-complete for every prime ideal 𝔭 in 𝑅. For every

integer 𝑚, the following conditions are equivalent.
(i) Tor𝑅𝑚 (𝑅/𝔭, 𝑀) = 0 holds for every prime ideal 𝔭 in V(𝔞) .
(ii) Tor𝑅𝑚 (𝐾, 𝑀) = 0 holds for every 𝑅-module 𝐾 .

In particular, if H𝑚 (𝑀) ≠ 0 then H𝑚 (𝑅/𝔭 ⊗L
𝑅
𝑀) ≠ 0 for some 𝔭 ∈ V(𝔞), whence

one has the inequality,

sup{sup (𝑅/𝔭 ⊗L
𝑅 𝑀) | 𝔭 ∈ V(𝔞) } ⩾ sup𝑀 .

Proof. By 3.3.5 every 𝑅-module is a filtered colimit of finitely generated modules
and the functor Tor𝑅𝑚 ( , 𝑀) preserves filtered colimits by 7.4.25. Thus, condition
(ii) is equivalent to the following condition:
(ii′) Tor𝑅𝑚 (𝐾, 𝑀) = 0 holds for every finitely generated 𝑅-module 𝐾 .

The functor F = Tor𝑅𝑚 ( , 𝑀) is 𝑅-linear, see 7.4.18, and half exact by 7.4.29.
For every prime ideal 𝔭 in 𝑅, the complex 𝑅/𝔭 ⊗L

𝑅
𝑀 is derived 𝔞-complete by

assumption, so 13.1.35 shows that F(𝑅/𝔭) ≠ 0 implies 𝑅/𝔞 ⊗𝑅 F(𝑅/𝔭) ≠ 0. Now
the equivalence of conditions (i) and (ii′) follows from 12.4.4.
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Finally, for 𝑚 ∈ ℤ with H𝑚 (𝑀) ≠ 0 one has H𝑚 (𝑅 ⊗L
𝑅
𝑀) = Tor𝑅𝑚 (𝑅, 𝑀) ≠ 0,

so H𝑚 (𝑅/𝔭 ⊗L
𝑅
𝑀) = Tor𝑅𝑚 (𝑅/𝔭, 𝑀) ≠ 0 holds for some 𝔭 ∈ V(𝔞). From this

observation the asserted inequality follows. □

Derived Torsion Complexes

13.4.7 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. The complex
RΓ𝔞 (𝑀) is derived 𝔞-torsion.

Proof. It follows from last assertion in 13.4.1 combined with 13.4.1(b) that the
morphism 𝜸RΓ𝔞 (𝑀 )

𝔞 is an isomorphism. □

13.4.8 Proposition. Let 𝔞 be an ideal in 𝑅. There is an adjunction,

D𝔞-tor (𝑅) //
D(𝑅) ,

RΓ𝔞
oo

where the left adjoint is the inclusion functor. For a complex 𝑀 in D𝔞-tor (𝑅) the unit
of the adjunction is the isomorphism (𝜸𝑀𝔞 )−1 : 𝑀 → RΓ𝔞 (𝑀). For a complex 𝑁 in
D(𝑅) the counit is the morphism 𝜸𝑁𝔞 : RΓ𝔞 (𝑁) → 𝑁 .

Proof. It follows from 13.4.7 that the image of RΓ𝔞 is contained in D𝔞-tor (𝑅). To
see that the functors are adjoint with the asserted unit and counit, it suffices to verify
the zigzag identities. That is, for 𝑀 in D𝔞-tor (𝑅) and 𝑁 in D(𝑅) the composites

𝑀
(𝜸𝑀𝔞 )−1

−−−−−−→ RΓ𝔞 (𝑀)
𝜸𝑀𝔞−−−→ 𝑀

and

RΓ𝔞 (𝑁)
(𝜸RΓ𝔞 (𝑁 )

𝔞 )−1

−−−−−−−−−−→ RΓ𝔞 (RΓ𝔞 (𝑁))
RΓ𝔞 (𝜸𝑁𝔞 )−−−−−−−→ RΓ𝔞 (𝑁)

must be identities. Evidently, the first composite is the identity on 𝑀 . The last
assertion in 13.4.1 shows that the second composite is the identity on RΓ𝔞 (𝑁). □

Remark. It is not surprising that the unit of adjunction in 13.4.8 is an isomorphism; indeed, by
adjoint functor theory this is equivalent to the left adjont being fully faithful, which is evident in
this case, as it is the inclusion functor D𝔞-tor (𝑅) →D(𝑅) . The fact that this inclusion functor has
a right adjoint expresses that D𝔞-tor (𝑅) is a coreflective subcategory of D(𝑅) .

We collect characterizations of what it means to be derived 𝔞-torsion.

13.4.9 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. The next conditions
are equivalent.

(i) H(𝑀) is 𝔞-torsion.
(ii) 𝑀 is derived 𝔞-torsion.
(iii) There is an isomorphism 𝑀 ≃ RΓ𝔞 (𝑀) in D(𝑅) .
(iv) For some 𝑅-complex 𝑋 there is an isomorphism 𝑀 ≃ RΓ𝔞 (𝑋) in D(𝑅) .

Proof. The conditions are equivalent by 13.3.29 and 13.4.7. □
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13.4.10 Corollary. Let 𝔟 ⊆ 𝔞 be ideals in 𝑅 and 𝑀 an 𝑅-complex. If 𝑀 is derived
𝔞-torsion, then it is derived 𝔟-torsion.

Proof. By the assumption on 𝑀 and 13.3.21 there are isomorphisms,

RΓ𝔟 (𝑀) ≃ RΓ𝔟 (RΓ𝔞 (𝑀)) ≃ RΓ𝔟+𝔞 (𝑀) ≃ RΓ𝔞 (𝑀) ≃ 𝑀,

in D(𝑅), whence 𝑀 is derived 𝔟-torsion by 13.4.9. □

For a prime ideal 𝔭 in 𝑅 and an 𝑅-complex 𝑀 , the complex RHom𝑅 (𝑅/𝔭, 𝑀)
is derived 𝔭-torsion by 13.3.24 and, therefore, derived 𝔞-torsion for every ideal 𝔞
contained in 𝔭, see 13.4.10. The assumption on 𝑀 in the next lemma is thus trivially
satisfied for prime ideals in V(𝔞). Notice from 13.3.28(b) that the assumption is also
satisfied if 𝑀 is derived 𝔞-torsion and belongs to D⊏ (𝑅).

13.4.11 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex such that the
complex RHom𝑅 (𝑅/𝔭, 𝑀) is derived 𝔞-torsion for every prime ideal 𝔭 in 𝑅. For
every integer 𝑚, the following conditions are equivalent.

(i) Ext𝑚
𝑅
(𝑅/𝔭, 𝑀) = 0 holds for every prime ideal 𝔭 in V(𝔞) .

(ii) Ext𝑚
𝑅
(𝐾, 𝑀) = 0 holds for every finitely generated 𝑅-module 𝐾 .

In particular, if H𝑚 (𝑀) ≠ 0 then H𝑚 (RHom𝑅 (𝑅/𝔭, 𝑀)) ≠ 0 for some 𝔭 in V(𝔞),
whence one has the inequality,

sup{− inf RHom𝑅 (𝑅/𝔭, 𝑀) | 𝔭 ∈ V(𝔞) } ⩾ − inf 𝑀 .

Proof. The functor G = Ext𝑚
𝑅
( , 𝑀) is 𝑅-linear, see 7.3.23, and half exact by 7.3.35.

For every prime ideal 𝔭 in 𝑅, the complex RHom𝑅 (𝑅/𝔭, 𝑀) is derived 𝔞-torsion by
assumption, so 13.3.32 shows that G(𝑅/𝔭) ≠ 0 implies Hom𝑅 (𝑅/𝔞,G(𝑅/𝔭)) ≠ 0.
Now the equivalence of conditions (i) and (ii) follows from 12.4.10.

Finally, for every integer 𝑚 with H𝑚 (𝑀) ≠ 0 the module H𝑚 (RHom𝑅 (𝑅, 𝑀)) =
Ext−𝑚

𝑅
(𝑅, 𝑀) is non-zero, so H𝑚 (RHom𝑅 (𝑅/𝔭, 𝑀)) = Ext−𝑚

𝑅
(𝑅/𝔭, 𝑀) ≠ 0 holds

for some 𝔭 ∈ V(𝔞). From this observation the asserted inequality follows. □

Greenlees–May Equivalence

To parse the formulas for the unit and counit in the next theorem see 13.4.1(c,d).

13.4.12 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. There is
an isomorphism in D(𝑅),

RHom𝑅 (RΓ𝔞 (𝑀), 𝑁) ≃ RHom𝑅 (𝑀, LΛ𝔞 (𝑁)) ,

which is natural in 𝑀 and 𝑁 . In particular, RΓ𝔞 is left adjoint for LΛ𝔞 . The unit and
counit of this adjunction are given by the composites

𝑀
𝝀𝔞
𝑀−−−→ LΛ𝔞 (𝑀) LΛ𝔞 (𝜸𝑀𝔞 )−1

−−−−−−−−−→ LΛ𝔞 (RΓ𝔞 (𝑀))
and

RΓ𝔞 (LΛ𝔞 (𝑀)) RΓ𝔞 (𝝀𝔞𝑀 )
−1

−−−−−−−−−→ RΓ𝔞 (𝑀)
𝜸𝑀𝔞−−−→ 𝑀 .
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Proof. The isomorphism follows from 13.3.18, adjunction 12.3.18, and 13.1.15.
Indeed, given a sequence 𝑥𝑥𝑥 that generates 𝔞 one has

RHom𝑅 (RΓ𝔞 (𝑀), 𝑁) ≃ RHom𝑅 (Č (𝑥𝑥𝑥) ⊗L
𝑅 𝑀, 𝑁)

≃ RHom𝑅 (𝑀,RHom𝑅 (Č (𝑥𝑥𝑥), 𝑁))
≃ RHom𝑅 (𝑀, LΛ𝔞 (𝑁)) .

In view of 7.3.26 this shows, in particular, that RΓ𝔞 is left adjoint for LΛ𝔞 . To see that
the unit and counit of the adjunction are given by the asserted formulas, it suffices
to verify the zigzag identities. That is, with

F = RΓ𝔞 , G = LΛ𝔞 , 𝛼 = (G 𝜸𝔞)−1 ◦ 𝝀𝔞 , and 𝛽 = 𝜸𝔞 ◦ (F𝝀𝔞)−1

it must be shown that the composites F F𝛼−−→ FGF 𝛽F−−→ F and G 𝛼G−−→ GFG G𝛽−−→ G are
the identities on F and G. As 𝝀𝔞 : IdD(𝑅) → G is a natural transformation, one has
for every morphism 𝜑 : 𝑁 → 𝑀 in D(𝑅) the left-hand commutative diagram below.

𝑁

𝜑

��

𝝀𝔞
𝑁
// G(𝑁)

G(𝜑)
��

𝑀
𝝀𝔞
𝑀
// G(𝑀)

FF(𝑀)

F(𝜸𝑀𝔞 ) ≃
��

F(𝝀𝔞F(𝑀) )

≃
// FGF(𝑀)

FG(𝜸𝑀𝔞 )≃
��

F(𝑀)
F(𝝀𝔞

𝑀
)

≃
// FG(𝑀)

The right-hand commutative diagram arises by applying the functor F to the diagram
on the left in the case where 𝜑 is the morphism 𝜸𝑀𝔞 : F(𝑀) → 𝑀; all morphisms in
this diagram are isomorphisms by 13.4.1. By definition, one has

F(𝛼𝑀 ) = FG(𝜸𝑀𝔞 )−1 ◦ F(𝝀𝔞𝑀 ) and 𝛽F(𝑀 ) = 𝜸F(𝑀 )
𝔞 ◦ F(𝝀𝔞F(𝑀 ) )

−1 .

From these formulas and the right-hand commutative diagram above, one gets

𝛽F(𝑀 ) ◦ F(𝛼𝑀 ) = 𝜸F(𝑀 )
𝔞 ◦ F(𝜸𝑀𝔞 )−1 .

By 13.4.1 the morphisms 𝜸F(𝑀 )
𝔞 = 𝜸RΓ𝔞 (𝑀 )

𝔞 and F(𝜸𝑀𝔞 ) = RΓ𝔞 (𝜸𝑀𝔞 ) are equal, so
the composite 𝛽F(𝑀 ) ◦ F(𝛼𝑀 ) is the identity on F(𝑀) = RΓ𝔞 (𝑀). This proves the
first of the two zigzag identities; the other is proved similarly. □

13.4.13 Theorem. Let 𝔞 be an ideal in 𝑅. There is an adjoint equivalence of 𝑅-linear
triangulated categories,

D𝔞-com (𝑅)
RΓ𝔞

//
D𝔞-tor (𝑅) .

LΛ𝔞
oo

Proof. By 13.4.7 the image of RΓ𝔞 is contained in D𝔞-tor (𝑅) and the image of LΛ𝔞

is by 13.4.2 contained in D𝔞-com (𝑅). It is immediate from 13.4.12 that the unit of
the adjuction is an isomorphism for every complex in D𝔞-com (𝑅) and that the counit
is an isomorphism for every complex in D𝔞-tor (𝑅). The functors RΓ𝔞 and LΛ𝔞 are
𝑅-linear and triangulated, see 11.3.15 and 11.3.1. □
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13.4.14 Example. Let 𝔞 be an ideal in 𝑅 generated by a sequence 𝑥𝑥𝑥. The Čech
complex Č𝑅(𝑥𝑥𝑥) ≃ RΓ𝔞 (𝑅), see 13.3.18, belongs by 13.4.7 to D𝔞-tor (𝑅). Under
the equivalence in 13.4.13, it corresponds to LΛ𝔞 (RΓ𝔞 (𝑅)) ≃ LΛ𝔞 (𝑅) ≃ Λ𝔞 (𝑅)
in D𝔞-com (𝑅), see 13.4.1(c) and 13.2.5. Every complex in D𝔞-tor (𝑅) ∩D𝔞-com (𝑅)
corresponds to itself under the equivalence 13.4.13; in particular, every 𝑅/𝔞-complex
corresponds to itself, see 13.1.23 and 13.3.25.

Derived Completion and Torsion of Derived Hom and Tensor Products

13.4.15. Let 𝔞 be an ideal in 𝑅. As an 𝑅-module, 𝑅𝔞 is flat by 13.1.27, so it follows
from 12.2.4 and 12.2.9 that RHom𝑅 and ⊗L

𝑅
are augmented to functors,

RHom𝑅 ( , ) : D(𝑅𝔞)op ×D(𝑅𝔞) −→ D(𝑅𝔞–𝑅𝔞) and

⊗L
𝑅 : D(𝑅𝔞) ×D(𝑅𝔞) −→ D(𝑅𝔞–𝑅𝔞) ,

induced by Hom𝑅 ( , I𝑅𝔞 ( )) and P
𝑅𝔞 ( ) ⊗𝑅 . On the level of objects, the output

of these functors is complexes of 𝑅𝔞–𝑅𝔞-bimodules, which are not necessarily sym-
metric. As LΛ𝔞 and RΓ𝔞 are functors from D(𝑅) to D(𝑅𝔞), see 11.3.4 and 11.3.18,
there are composite functors,

RHom𝑅 ( , LΛ𝔞 ( )) : D(𝑅𝔞)op ×D(𝑅) −→ D(𝑅𝔞–𝑅𝔞) ,
RHom𝑅 (RΓ𝔞 ( ), ) : D(𝑅)op ×D(𝑅𝔞) −→ D(𝑅𝔞–𝑅𝔞) , and

⊗L
𝑅 RΓ𝔞 ( ) : D(𝑅𝔞) ×D(𝑅) −→ D(𝑅𝔞–𝑅𝔞) .

The functors recalled above are studied in the next result, which yields derived
versions of 11.1.24 and 11.2.26. The proofs of parts (b) and (c) use 11.2.26; however,
the proof of part (a) is different in nature and does not make use of 11.1.24.

13.4.16 Theorem. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 an 𝑅-complex, and 𝑁 an 𝑅𝔞-complex.
The following objects are complexes of symmetric 𝑅𝔞–𝑅𝔞-bimodules,

RHom𝑅 (𝑁, LΛ𝔞 (𝑀)) , RHom𝑅 (RΓ𝔞 (𝑀), 𝑁) , and 𝑁 ⊗L
𝑅 RΓ𝔞 (𝑀) ,

and there are isomorphisms in D(𝑅𝔞),

RHom𝑅 (𝑁, LΛ𝔞 (𝑀)) ≃ RHom
𝑅𝔞 (𝑁, LΛ𝔞 (𝑀)) .(a)

RHom𝑅 (RΓ𝔞 (𝑀), 𝑁) ≃ RHom
𝑅𝔞 (RΓ𝔞 (𝑀), 𝑁) .(b)

𝑁 ⊗L
𝑅 RΓ𝔞 (𝑀) ≃ 𝑁 ⊗L

𝑅𝔞
RΓ𝔞 (𝑀) .(c)

Proof. (b): Let 𝐼 be a semi-injective replacement of the 𝑅-complex 𝑀 and 𝐽 a semi-
injective replacement of the 𝑅𝔞-complex 𝑁 . The complex RHom𝑅 (RΓ𝔞 (𝑀), 𝑁)
of 𝑅𝔞–𝑅𝔞-bimodules is Hom𝑅 (Γ𝔞 (𝐼), 𝐽). By 11.2.26(a) this complex consists of
symmetric 𝑅𝔞–𝑅𝔞-bimodules and one has Hom𝑅 (Γ𝔞 (𝐼), 𝐽) = Hom

𝑅𝔞 (Γ𝔞 (𝐼), 𝐽).
The right-hand complex is RHom

𝑅𝔞 (RΓ𝔞 (𝑀), 𝑁).
(c): Let 𝑃 be a semi-projective replacement of the 𝑅𝔞-complex 𝑁 and 𝐼 a

semi-injective replacement of the 𝑅-complex 𝑀 . The complex 𝑁 ⊗L
𝑅

RΓ𝔞 (𝑀) of
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𝑅𝔞–𝑅𝔞-bimodules is 𝑃 ⊗𝑅 Γ𝔞 (𝐼). By 11.2.26(b) this complex consists of symmetric
𝑅𝔞–𝑅𝔞-bimodules and there is an equality 𝑃 ⊗𝑅 Γ𝔞 (𝐼) = 𝑃 ⊗𝑅𝔞 Γ𝔞 (𝐼). The right-hand
side is 𝑁 ⊗L

𝑅𝔞
RΓ𝔞 (𝑀).

(a): The morpism𝜸𝑁𝔞 : RΓ𝔞 (𝑁) → 𝑁 inD(𝑅𝔞) from 13.3.16 induces a morphism,

RHom𝑅 (𝜸𝑁𝔞 , LΛ𝔞 (𝑀)) : RHom𝑅 (𝑁, LΛ𝔞 (𝑀)) −→ RHom𝑅 (RΓ𝔞 (𝑁), LΛ𝔞 (𝑀)) ,

in D(𝑅𝔞–𝑅𝔞). To show that this is an isomorphism, it suffices by 6.4.37 to argue that
it is an isomorphism in D(𝑅). By the adjunction 13.4.12 one has

RHom𝑅 (𝜸𝑁𝔞 , LΛ𝔞 (𝑀)) ≃ RHom𝑅 (RΓ𝔞 (𝜸𝑁𝔞 ), 𝑀)

in D(𝑅), and the right-hand side is an isomorphism by 13.4.1(b). This shows that
RHom𝑅 (𝑁, LΛ𝔞 (𝑀)) and RHom𝑅 (RΓ𝔞 (𝑁), LΛ𝔞 (𝑀)) are isomorphic inD(𝑅𝔞–𝑅𝔞).
Part (b) shows that the latter, and hence also the former, is a complex of symmetric
𝑅𝔞–𝑅𝔞-bimodules. In the following chain of isomorphisms in D(𝑅𝔞), the 1st one
has just been established and the 2nd holds by part (b). The 3rd isomorphism holds
by 13.3.23(a) and the 4th follows from the adjunction 13.4.12. The 𝑅𝔞-complex
LΛ𝔞 (𝑀) is derived 𝔞𝑅𝔞-complete; indeed, this follows from 13.1.21(a) and the fact
that LΛ𝔞 (𝑀) is derived 𝔞-complete as an 𝑅-complex, see 13.4.2. This explains the
5th and last isomorphism.

RHom𝑅 (𝑁, LΛ𝔞 (𝑀)) ≃ RHom𝑅 (RΓ𝔞 (𝑁), LΛ𝔞 (𝑀))
≃ RHom

𝑅𝔞 (RΓ𝔞 (𝑁), LΛ𝔞 (𝑀))
≃ RHom

𝑅𝔞 (RΓ𝔞𝑅𝔞 (𝑁), LΛ𝔞 (𝑀))
≃ RHom

𝑅𝔞 (𝑁, LΛ𝔞𝑅𝔞 (LΛ𝔞 (𝑀)))
≃ RHom

𝑅𝔞 (𝑁, LΛ𝔞 (𝑀)) . □

As a consequence of 13.4.16 one gets the following formulas for derived cobase
change of the left derived completion functor and base change of the right derived
torsion functor.

13.4.17 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. There are isomor-
phisms in D(𝑅𝔞),

RHom𝑅 (𝑅𝔞 , LΛ𝔞 (𝑀)) ≃ LΛ𝔞 (𝑀) and 𝑅𝔞 ⊗𝑅 RΓ𝔞 (𝑀) ≃ RΓ𝔞 (𝑀) .

In particular, if 𝑀 is a derived 𝔞-complete module, then one has Ext𝑚
𝑅
(𝑅𝔞 , 𝑀) = 0

for every 𝑚 > 0.

Proof. The first isomorphism is the special case 𝑁 = 𝑅𝔞 of 13.4.16(a) combined
with the counitor 12.3.4. As 𝑅𝔞 is flat as an 𝑅-module, see 13.1.27, the second iso-
morphism the special case 𝑁 = 𝑅𝔞 of 13.4.16(c) combined with the unitor 12.3.3. If
𝑀 is a derived 𝔞-complete 𝑅-module, then one has LΛ𝔞 (𝑀) ≃ 𝑀 inD(𝑅), and it fol-
lows from the first isomorphism that the homology of the complex RHom𝑅 (𝑅𝔞 , 𝑀)
is concentrated in degree 0. Thus, the last assertion follows from the definition,
7.3.23, of Ext. □
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Remark. If the ideal 𝔞 is contained in the Jacobson radical of 𝑅 and 𝑀 is a finitely generated
𝑅-module, then vanishing of Ext𝑚

𝑅
(𝑅𝔞 , 𝑀 ) for all 𝑚 > 0 means that 𝑀 is 𝔞-complete. This is

a partial converse to the last assertion in 13.4.17; it was proved by Frankild and Sather-Wagstaff
[101].

13.4.18 Corollary. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 an 𝑅/𝔞-complex, and 𝑁 an 𝑅𝔞-
complex. There are isomorphisms in D(𝑅𝔞):

RHom𝑅 (𝑁, 𝑀) ≃ RHom
𝑅𝔞 (𝑁, 𝑀) .(a)

RHom𝑅 (𝑀, 𝑁) ≃ RHom
𝑅𝔞 (𝑀, 𝑁) .(b)

𝑁 ⊗L
𝑅 𝑀 ≃ 𝑁 ⊗L

𝑅𝔞
𝑀 .(c)

In particular, these isomorphisms hold for 𝑀 = 𝑅/𝔞.

Proof. Every 𝑅/𝔞-complex is both derived 𝔞-complete and derived 𝔞-torsion, see
13.1.22 and 13.3.24. Thus the isomorphisms follow directly from 13.4.16. □

The final results in this section complement 13.1.18 and 13.3.19. The adjunctions
in 13.4.3 and 13.4.8 are per 7.3.26 special cases of the first isomorphisms in parts
(a) and (b) below. In each of the three parts, the first and last objects are by 13.4.16
complexes of symmetric 𝑅𝔞–𝑅𝔞-bimodules. The middle complex in each part has
only a single 𝑅𝔞-structure.

13.4.19 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes.
(a) The morphisms RHom𝑅 (𝝀𝔞𝑀 , LΛ

𝔞 (𝑁)) and RHom𝑅 (𝜸𝑀𝔞 , LΛ𝔞 (𝑁)) in D(𝑅𝔞)
are isomorphisms:

RHom𝑅 (LΛ𝔞 (𝑀), LΛ𝔞 (𝑁)) ≃ RHom𝑅 (𝑀, LΛ𝔞 (𝑁))
≃ RHom𝑅 (RΓ𝔞 (𝑀), LΛ𝔞 (𝑁)) .

(b) The morphisms RHom𝑅 (RΓ𝔞 (𝑀), 𝜸𝑁𝔞 ) and RHom𝑅 (RΓ𝔞 (𝑀), 𝝀𝔞𝑁 ) in D(𝑅𝔞)
are isomorphisms:

RHom𝑅 (RΓ𝔞 (𝑀),RΓ𝔞 (𝑁)) ≃ RHom𝑅 (RΓ𝔞 (𝑀), 𝑁)
≃ RHom𝑅 (RΓ𝔞 (𝑀), LΛ𝔞 (𝑁)) .

(c) The morphisms RΓ𝔞 (𝑀) ⊗L
𝑅
𝜸𝑁𝔞 and RΓ𝔞 (𝑀) ⊗L

𝑅
𝝀𝔞𝑁 in D(𝑅𝔞) are isomor-

phisms:

RΓ𝔞 (𝑀) ⊗L
𝑅 RΓ𝔞 (𝑁) ≃ RΓ𝔞 (𝑀) ⊗L

𝑅 𝑁 ≃ RΓ𝔞 (𝑀) ⊗L
𝑅 LΛ𝔞 (𝑁) .

Proof. (a): Set 𝛼 = RHom𝑅 (𝝀𝔞𝑀 , LΛ
𝔞 (𝑁)) and 𝛽 = RHom𝑅 (𝜸𝑀𝔞 , LΛ𝔞 (𝑁)); they

are morphisms in D(𝑅𝔞). To see that they are isomorphisms, it suffices by 6.4.37 to
argue that they are isomorphisms in D(𝑅). In this category one has

𝛼 ≃ RHom𝑅 (RΓ𝔞 (𝝀𝔞𝑀 ), 𝑁) and 𝛽 ≃ RHom𝑅 (RΓ𝔞 (𝜸𝑀𝔞 ), 𝑁)

by 13.4.12, so the conclusion follows from 13.4.1(b,d).
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(b): Set 𝛼 = RHom𝑅 (RΓ𝔞 (𝑀), 𝜸𝑁𝔞 ) and 𝛽 = RHom𝑅 (RΓ𝔞 (𝑀), 𝝀𝔞𝑁 ); they are
morphisms in D(𝑅𝔞). To see that they are isomorphisms, it suffices by 6.4.37 to
argue that they are isomorphisms in D(𝑅). In this category one has

𝛼 ≃ RHom𝑅 (𝑀, LΛ𝔞 (𝜸𝑁𝔞 )) and 𝛽 ≃ RHom𝑅 (𝑀, LΛ𝔞 (𝝀𝔞𝑁 ))

by 13.4.12, so the conclusion follows from 13.4.1(a,c).
(c): Set 𝛼 = RΓ𝔞 (𝑀) ⊗L

𝑅
𝜸𝑁𝔞 and 𝛽 = RΓ𝔞 (𝑀) ⊗L

𝑅
𝝀𝔞𝑁 ; they are morphisms in

D(𝑅𝔞). To see that they are isomorphisms, it suffices by 6.4.37 to argue that they are
isomorphisms in D(𝑅). In this category, 13.3.19 and commutativity 12.3.5 yield

𝛼 ≃ 𝑀 ⊗L
𝑅 RΓ𝔞 (𝜸𝑁𝔞 ) and 𝛽 ≃ 𝑀 ⊗L

𝑅 RΓ𝔞 (𝝀𝔞𝑁 ) ,

so the conclusion follows from 13.4.1(b,d). □

13.4.20 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes.
(a) If 𝑁 is derived 𝔞-complete, then RHom𝑅 (𝑀, 𝑁) is derived 𝔞-complete and the

morphisms RHom𝑅 (𝝀𝔞𝑀 , 𝑁) and RHom𝑅 (𝜸𝑀𝔞 , 𝑁) inD(𝑅) are isomorphisms:

RHom𝑅 (LΛ𝔞 (𝑀), 𝑁) ≃ RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (RΓ𝔞 (𝑀), 𝑁) .

(b) If 𝑀 is derived 𝔞-torsion, then RHom𝑅 (𝑀, 𝑁) is derived 𝔞-complete and the
morphisms RHom𝑅 (𝑀, 𝜸𝑁𝔞 ) and RHom𝑅 (𝑀, 𝝀𝔞𝑁 ) inD(𝑅) are isomorphisms:

RHom𝑅 (𝑀,RΓ𝔞 (𝑁)) ≃ RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (𝑀, LΛ𝔞 (𝑁)) .

(c) If 𝑀 is derived 𝔞-torsion, then the complex 𝑀 ⊗L
𝑅
𝑁 is derived 𝔞-torsion and

the morphisms 𝑀 ⊗L
𝑅
𝜸𝑁𝔞 and 𝑀 ⊗L

𝑅
𝝀𝔞𝑁 in D(𝑅) are isomorphisms,

𝑀 ⊗L
𝑅 RΓ𝔞 (𝑁) ≃ 𝑀 ⊗L

𝑅 𝑁 ≃ 𝑀 ⊗L
𝑅 LΛ𝔞 (𝑁) .

Proof. (a): Assume that 𝑁 is derived 𝔞-complete. The complex RHom𝑅 (𝑀, 𝑁) is
derived 𝔞-complete by 13.1.31(a). By 11.3.3 there is an isomorphism 𝑁 ≃ LΛ𝔞 (𝑁)
in D(𝑅), so the asserted isomorphisms follow directly from 13.4.19(a).

(b): Assume that 𝑀 is derived 𝔞-torsion. By 11.3.17 there is an isomorphism 𝑀 ≃
RΓ𝔞 (𝑀) inD(𝑅), so the asserted isomorphisms follow from 13.4.19(b). The complex
LΛ𝔞 (𝑁) is derived 𝔞-complete by 13.4.2, and hence so is RHom𝑅 (𝑀, LΛ𝔞 (𝑁)) by
13.1.31(a). As already argued, the latter complex is isomorphic to RHom𝑅 (𝑀, 𝑁),
which is therefore also derived 𝔞-complete.

(c): Assume that𝑀 is derived 𝔞-torsion. The complex𝑀 ⊗L
𝑅
𝑁 is derived 𝔞-torsion

by commutativity 12.3.5 and 13.3.28(a). By 11.3.17 there is an isomorphism 𝑀 ≃
RΓ𝔞 (𝑀) in D(𝑅), so the asserted isomorphisms follow directly from 13.4.19(c). □

13.4.21 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. The
following conditions are equivalent.

(i) There is an isomorphism LΛ𝔞 (𝑀) ≃ LΛ𝔞 (𝑁) in D(𝑅) .
(ii) There is an isomorphism RΓ𝔞 (𝑀) ≃ RΓ𝔞 (𝑁) in D(𝑅) .

If 𝑀 and 𝑁 satisfy these conditions, then there are natural isomorphisms:
(a) RHom𝑅 (𝑀,𝑌 ) ≃ RHom𝑅 (𝑁,𝑌 ) for every derived 𝔞-complete complex 𝑌 .
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650 13 Derived Torsion and Completion

(b) RHom𝑅 (𝑋, 𝑀) ≃ RHom𝑅 (𝑋, 𝑁) for every derived 𝔞-torsion complex 𝑋 .
(c) 𝑋 ⊗L

𝑅
𝑀 ≃ 𝑋 ⊗L

𝑅
𝑁 for every derived 𝔞-torsion complex 𝑋 .

Proof. The natural isomorphisms RΓ𝔞 LΛ𝔞 ≃ RΓ𝔞 and LΛ𝔞 RΓ𝔞 ≃ LΛ𝔞 from
13.4.1(c,d) yield the equivalence of (i) and (ii). For a derived 𝔞-complete complex
𝑌 and a derived 𝔞-torsion complex 𝑋 there are by 13.4.20 natural isomorphisms:

RHom𝑅 (𝑀,𝑌 ) ≃ RHom𝑅 (RΓ𝔞 (𝑀), 𝑌 ) ,
RHom𝑅 (𝑋, 𝑀) ≃ RHom𝑅 (𝑋,RΓ𝔞 (𝑀)) , and

𝑋 ⊗L
𝑅 𝑀 ≃ 𝑋 ⊗L

𝑅 RΓ𝔞 (𝑀) .

Thus, if one has RΓ𝔞 (𝑀) ≃ RΓ𝔞 (𝑁), then the asserted isomorphisms follow. □

Exercises

In following exercises let 𝔞 be an ideal in 𝑅.

E 13.4.1 Let 𝑀 ∈ D⊏ (𝑅) be a derived 𝔞-torsion complex. Show that there is an equality
inf{− sup RHom𝑅 (𝑅/𝔭, 𝑀 ) | 𝔭 ∈ V(𝔞) } = − sup𝑀.

E 13.4.2 Let 𝑀 ∈ D⊐ (𝑅) be a derived 𝔞-complete complex. Show that there is an equality
inf{ inf (𝑅/𝔭 ⊗L

𝑅
𝑀 ) | 𝔭 ∈ V(𝔞) } = inf 𝑀.

E 13.4.3 Let {𝑀𝑢 → 𝑀𝑣 }𝑢⩽𝑣 be a𝑈-direct system in C(𝑅) . Show that if𝑈 is filtered and each
complex 𝑀𝑢 is derived 𝔞-torsion, then the complex colim𝑢∈𝑈 𝑀𝑢 is derived 𝔞-torsion.

E 13.4.4 With F𝔞-tor (𝑅) = F (𝑅) ∩D𝔞-tor (𝑅) etc. show that the equivalence in 13.4.13 restricts
to F𝔞-tor (𝑅) ⇄ F𝔞-com (𝑅) and I𝔞-tor (𝑅) ⇄ I𝔞-com (𝑅) .

E 13.4.5 Let𝑀 be an𝑅-complex. Show that RHom𝑅 (𝑀, 𝑅/𝔞) is derived 𝔞-complete and derived
𝔞-torsion and that there are isomorphisms in D(𝑅) ,

RHom𝑅 (RΓ𝔞 (𝑀 ) , 𝑅/𝔞) ≃ RHom𝑅 (𝑀, 𝑅/𝔞) ≃ RHom𝑅 (LΛ𝔞 (𝑀 ) , 𝑅/𝔞) .
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Chapter 14
Krull Dimension, Depth, and Width

A fundamental idea in commutative algebra is to link a module with particular
subsets of the prime ideal spectrum of the ring. The study of these sets and the
information they capture goes by the name of support theories. The classic support
of a module, with its subsets of minimal and associated prime ideals, was already
recalled in Sect. 12.4. The next chapter covers more modern notions of support that
conform better to derived category methods, but here we are concerned with the
classic notion. In the first sections it is extended to complexes along with the related
numerical invariant: the Krull dimension. Later sections extend the classic notion of
depth, and the dual notion of width, to complexes.

14.1 Classic Support for Complexes

Synopsis. Classic support for complexes; localization; classic support of (derived) tensor product;
classic suppoort of derived Hom; colocalization.

In Sect. 12.4 we recalled basic properties of the prime ideal spectrum of 𝑅 and the
classic support of an 𝑅-module. For ease of reference, we open this chapter with a
standard result that can certainly be found in any textbook on commutative algebra.

14.1.1 Proposition. Let 𝑀 be an 𝑅-module. If 𝑀 is finitely generated, then one has

Supp𝑅 𝑀 = V(0 :𝑅 𝑀) and dim𝑅 𝑀 = dim 𝑅/(0 :𝑅 𝑀) .

Proof. Let𝑚1, . . . , 𝑚𝑛 be a set of generators for 𝑀 . If a prime ideal 𝔭 in 𝑅 belongs to
Supp𝑅 𝑀 , then it contains the annihilator (0 :𝑅 𝑚) for some𝑚 ∈ 𝑀 , in particular, one
has (0 :𝑅 𝑀) ⊆ 𝔭. Conversely, if a prime ideal𝔭 contains (0 :𝑅 𝑀) =

⋂𝑛
𝑖=1 (0 :𝑅 𝑚𝑖),

then it contains (0 :𝑅 𝑚𝑖) for some 𝑖 ∈ {1, . . . , 𝑛} and therefore 𝔭 is in Supp𝑅 𝑀 .
This proves the first equality. The equality of Krull dimensions holds as V(0 :𝑅 𝑀)
is in an order preserving one-to-one correspondence with Spec 𝑅/(0 :𝑅 𝑀). □

14.1.2 Example. For 𝑛 ∈ ℕ one has Suppℤ ℤ/𝑛ℤ = { 𝑝ℤ | 𝑝 is prime and 𝑝 |𝑛}.
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14.1.3 Proposition. Let 𝔞 be an ideal in 𝑅 and𝑀 an 𝑅-module. There is an inclusion
Supp𝑅 𝑀 ⊆ V(𝔞) if and only if 𝑀 is 𝔞-torsion.

Proof. A prime ideal belongs to Supp𝑅 𝑀 if and only if it contains the annihilator
(0 :𝑅 𝑚) of some element 𝑚 ∈ 𝑀 . If 𝑀 is 𝔞-torsion, then every annihilator (0 :𝑅 𝑚)
contains a power of 𝔞, and a prime ideal contains a power of 𝔞 if and only if it
contains 𝔞. For the converse, assume that Supp𝑅 𝑀 ⊆ V(𝔞) holds and let 𝑚 be an
element of 𝑀 . The assumption implies that every prime ideal that contains (0 :𝑅 𝑚)
contains 𝔞, so one has 𝔞 ⊆ √(0 :𝑅 𝑚). Now it follows from 13.1.1 that (0 :𝑅 𝑚)
contains a power of 𝔞, whence 𝑚 is 𝔞-torsion. □

An elementary way to extend invariants and other notions from the realm of
modules to complexes is to apply them to the homology modules of a complex.

14.1.4 Definition. Let 𝑀 be an 𝑅-complex. The classic support of 𝑀 is the set

Supp𝑅 𝑀 =
⋃
𝑣∈ℤ

Supp𝑅 H𝑣 (𝑀) .

Since an 𝑅-module has empty classic support if and only if it is the zero module,
an 𝑅-complex has empty classic support if and only if it is acyclic; see also 14.2.4.
Notice that the classic support of a complex is a union of specialization closed
subsets of Spec 𝑅 and hence itself a specialization closed subset of Spec 𝑅.

14.1.5 Example. Let 𝔞 be an ideal in 𝑅 generated by a sequence 𝑥𝑥𝑥. From 11.4.6(a)
and 14.1.1 one gets Supp𝑅 K𝑅 (𝑥𝑥𝑥) ⊆ V(𝔞), and it follows from 11.4.3(a) that equality
holds. Similarly, one gets Supp𝑅 Č𝑅(𝑥𝑥𝑥) ⊆ V(𝔞) from 11.4.13 and 14.1.3; in fact,
equality holds, this follows from 15.1.27 in view of 15.1.9.

14.1.6 Example. Let 𝑀 be a complex in Df
⊏⊐ (𝑅). For all but finitely many 𝑣 ∈ ℤ one

has H𝑣 (𝑀) = 0 and thus (0 :𝑅 H𝑣 (𝑀)) = 𝑅, so 14.1.1 yields

Supp𝑅 𝑀 = V
( ⋂
𝑣∈ℤ
(0 :𝑅 H𝑣 (𝑀))

)
.

14.1.7 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; one has

Supp𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
=

⋃
𝑢∈𝑈

Supp𝑅 𝑀𝑢 .

Proof. Homology commutes with coproducts, see 3.1.10(d), and for every 𝑣 ∈ ℤ
one has Supp𝑅

∐
𝑢∈𝑈 H𝑣 (𝑀𝑢) = ⋃

𝑢∈𝑈 Supp𝑅 H𝑣 (𝑀𝑢). □

The classic support of a product
∏
𝑢∈𝑈 𝑀

𝑢 of 𝑅-modules contains by 14.1.7 the
classic support of each module 𝑀𝑢, but it may also contain ideals not present in any
of the sets Supp𝑅 𝑀𝑢. The next example shows how big the discrepancy can be.

14.1.8 Example. Let 𝑅 be local with unique maximal ideal 𝔪. By C.15(b) one has

Supp𝑅 E𝑅 (𝑅/𝔪) = {𝔪} .
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As in C.20 set 𝐸 = E𝑅 (𝑅/𝔪) and 𝐸𝑢 = (0 :𝐸 𝔪𝑢) for 𝑢 ∈ ℕ; by C.22 each of
these submodules has finite length. For each 𝑢 let 𝑒𝑢,1, . . . , 𝑒𝑢,𝑛𝑢 be a minimal set
of generators for 𝐸𝑢 and consider the element 𝑒 = (𝑒1,1, . . . , 𝑒1,𝑛1 , 𝑒2,1, . . . , 𝑒2,𝑛2 , . . . )
in the countable product 𝑃 =

∏
𝑢∈ℕ

∏𝑛𝑢
𝑖=1 𝐸 . The homomorphism 𝑅 → 𝑃 defined

by the assignment 1 ↦→ 𝑒 is injective. Indeed, one has (0 :𝑅 𝐸𝑢) = 𝔪𝑢 by C.21(c),
so an element in the kernel belongs to ⋂

𝑢∈ℕ 𝔪𝑢, which is 0 by Krull’s intersection
theorem, see also 15.3.7. As localization is exact, one now has 𝑃𝔭 ≠ 0 for every
𝔭 ∈ Spec 𝑅 and, therefore,

Supp𝑅
(
E𝑅 (𝑅/𝔪)ℕ

)
= Spec 𝑅 .

Thus, for every prime ideal 𝔭 ≠ 𝔪 one has E𝑅 (𝑅/𝔪)𝔭 = 0 but (E𝑅 (𝑅/𝔪)ℕ)𝔭 ≠ 0.

Localization

Recall from 2.1.50 and 6.4.32 that localization at a multiplicative subset𝑈 of 𝑅 is a
functor C(𝑅) → C(𝑈−1𝑅) and D(𝑅) → D(𝑈−1𝑅).

We extend a standard notation for modules, recalled in Sect. 12.4, to complexes.

14.1.9 Definition. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅-complex. The localization
of 𝑀 at the multiplicative subset 𝑅 \ 𝔭 is denoted 𝑀𝔭.

14.1.10. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅-complex. By 2.1.50, flatness of 𝑅𝔭
as an 𝑅-module, see 1.3.42, and 7.4.16 there are isomorphisms in C(𝑅𝔭) and D(𝑅𝔭):

𝑀𝔭 � 𝑅𝔭 ⊗𝑅 𝑀 and 𝑀𝔭 ≃ 𝑅𝔭 ⊗L
𝑅 𝑀 .

Viewed as a functor C(𝑅) → C(𝑅𝔭), localization ( )𝔭 is exact, see 2.1.50, and as a
functor D(𝑅) → D(𝑅𝔭) it is triangulated, see 12.2.8.

14.1.11 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅-complex. One has:

H(𝑀𝔭) � H(𝑀)𝔭 .(a)
Supp𝑅𝔭

𝑀𝔭 = {𝔮𝔭 | 𝔮 ∈ Supp𝑅 𝑀 and 𝔮 ⊆ 𝔭} .(b)

inf 𝑀𝔭 ⩾ inf 𝑀 , sup𝑀𝔭 ⩽ sup𝑀 , and amp𝑀𝔭 ⩽ amp𝑀 .(c)

Moreover, if 𝑀 belongs to Cf (𝑅), then 𝑀𝔭 belongs to Cf (𝑅𝔭), and if 𝑀 belongs to
Df (𝑅), then 𝑀𝔭 belongs to Df (𝑅𝔭).

Proof. The isomorphism (a) follows from 12.1.20(b) and implies the (in)equalities
in (b) and (c). The last assertions follow from 12.1.20(a,c). □

14.1.12 Corollary. Let 𝑀 be an 𝑅-complex; one has

Supp𝑅 𝑀 = {𝔭 ∈ Spec 𝑅 | H(𝑀𝔭) ≠ 0} .

Proof. The equality is immediate from 14.1.4 and 14.1.11(a). □

The second equality below is improved in 17.6.4; the first compares to 17.6.11.
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14.1.13 Corollary. Let 𝑀 be an 𝑅-complex; there are equalities,

inf{inf 𝑀𝔭 | 𝔭 ∈ Spec 𝑅} = inf 𝑀 and sup{sup𝑀𝔭 | 𝔭 ∈ Spec 𝑅} = sup𝑀 .

Proof. It follows from 14.1.11(c) that the inequalities inf{inf 𝑀𝔭 | 𝔭 ∈ Spec 𝑅} ⩾
inf 𝑀 and sup{sup𝑀𝔭 | 𝔭 ∈ Spec 𝑅} ⩽ sup𝑀 hold. On the other hand, for every
integer 𝑣 with H𝑣 (𝑀) ≠ 0 one can choose a prime ideal 𝔭 in Supp𝑅 H𝑣 (𝑀), and then
14.1.11(a) yields inf 𝑀𝔭 ⩽ 𝑣 and sup𝑀𝔭 ⩾ 𝑣. □

Let 𝔭 be a prime ideal in 𝑅. Recall from 12.1.4 and 12.2.9 that there are functors,

⊗𝑅 : C(𝑅𝔭) × C(𝑅𝔭) −→ C(𝑅𝔭–𝑅𝔭) and

⊗L
𝑅 : D(𝑅𝔭) ×D(𝑅𝔭) −→ D(𝑅𝔭–𝑅𝔭) ,

where the latter per 14.1.10 is induced by P𝑅𝔭
( ) ⊗𝑅 . We now show that the output

of these functors, in fact, is complexes of symmetric 𝑅𝔭–𝑅𝔭-bimodules. Note that
the result below has the same flavor as 11.2.26(b) and 13.4.16(c).

14.1.14 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅𝔭-complexes.
(a) The object 𝑀 ⊗𝑅 𝑁 is a complex of symmetric 𝑅𝔭–𝑅𝔭-bimodules, and there is

an equality of 𝑅𝔭-complexes,

𝑀 ⊗𝑅 𝑁 = 𝑀 ⊗𝑅𝔭
𝑁 .

In particular, one has 𝑅𝔭 ⊗𝑅 𝑁 � 𝑁 .
(b) The object 𝑀 ⊗L

𝑅
𝑁 is a complex of symmetric 𝑅𝔭–𝑅𝔭-bimodules and there is

an isomorphism in D(𝑅𝔭),

𝑀 ⊗L
𝑅 𝑁 ≃ 𝑀 ⊗L

𝑅𝔭
𝑁 .

In particular, one has 𝑅𝔭 ⊗L
𝑅
𝑁 ≃ 𝑁 .

Proof. (a): It suffices to show that for all elements 𝑟
𝑢
∈ 𝑅𝔭, 𝑚 ∈ 𝑀 , and 𝑛 ∈ 𝑁 there

is an equality 𝑟
𝑢
𝑚 ⊗ 𝑛 = 𝑚 ⊗ 𝑟

𝑢
𝑛 in 𝑀 ⊗𝑅 𝑁; and that follows as one has:

𝑟
𝑢
𝑚 ⊗ 𝑛 = 1

𝑢
𝑚 ⊗ 𝑟𝑛 = 1

𝑢
𝑚 ⊗ 𝑟

𝑢
𝑢𝑛 = 𝑢

𝑢
𝑚 ⊗ 𝑟

𝑢
𝑛 = 𝑚 ⊗ 𝑟

𝑢
𝑛 .

The isomorphism 𝑅𝔭 ⊗𝑅 𝑁 � 𝑁 now follows from the unitor 12.1.5.
(b): Let 𝑃 ≃−−→ 𝑀 be a semi-projective resolution in C(𝑅𝔭). The complex 𝑀 ⊗L

𝑅
𝑁

of 𝑅𝔭–𝑅𝔭-bimodules is 𝑃 ⊗𝑅 𝑁 , see 12.2.9. By part (a) this is a complex of symmetric
𝑅𝔭–𝑅𝔭-bimodules and there is an equality 𝑃 ⊗𝑅 𝑁 = 𝑃 ⊗𝑅𝔭

𝑁 . Since the 𝑅𝔭-complex
𝑃 ⊗𝑅𝔭

𝑁 is 𝑀 ⊗L
𝑅𝔭
𝑁 , the assertion follows. The isomorphism 𝑅𝔭 ⊗L

𝑅
𝑁 ≃ 𝑁 now

follows from the unitor 12.3.3. □

14.1.15 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes.
There are isomorphisms in C(𝑅𝔭) and D(𝑅𝔭),

(𝑀 ⊗𝑅 𝑁)𝔭 � 𝑀𝔭 ⊗𝑅𝔭
𝑁𝔭 and (𝑀 ⊗L

𝑅 𝑁)𝔭 ≃ 𝑀𝔭 ⊗L
𝑅𝔭
𝑁𝔭 .

In particular, for every 𝑚 ∈ ℤ there is an isomorphism of 𝑅𝔭-modules,
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Tor𝑅𝑚 (𝑀, 𝑁)𝔭 � Tor𝑅𝔭

𝑚 (𝑀𝔭, 𝑁𝔭) .

Proof. The isomorphisms of complexes are special cases of 12.1.17 and 12.3.30.
The last isomorphism is immediate from 14.1.11(a), the isomorphism in D(𝑅𝔭), and
the definition, 7.4.18, of Tor. □

14.1.16 Corollary. Let 𝔭 be a prime ideal in 𝑅, let 𝑀 be an 𝑅-complex and 𝑋 an
𝑅𝔭-complex.

(a) There are isomorphisms in C(𝑅𝔭) ,

(𝑋 ⊗𝑅 𝑀)𝔭 � 𝑋 ⊗𝑅 𝑀 � 𝑋 ⊗𝑅𝔭
𝑀𝔭 .

(b) There are isomorphisms in D(𝑅𝔭) ,

(𝑋 ⊗L
𝑅 𝑀)𝔭 ≃ 𝑋 ⊗L

𝑅 𝑀 ≃ 𝑋 ⊗L
𝑅𝔭
𝑀𝔭 .

Proof. Since 𝑋 ⊗𝑅 𝑀 and 𝑋 ⊗L
𝑅
𝑀 are 𝑅𝔭-complexes by 12.1.4 and 12.2.8, the first

isomorphisms in (a) and (b) follow from idempotence of localization, see the “in
particular” statements in 14.1.14. In view of 14.1.10 the remaining isomorphisms
are special cases of 12.1.18 and 12.3.31. □

14.1.17 Corollary. Let 𝑀 and 𝑁 be 𝑅-complexes; one has

Supp𝑅 (𝑀 ⊗L
𝑅 𝑁) ⊆ Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 .

Proof. The inclusion follows from 14.1.12 and 14.1.15. □

14.1.18 Theorem. Let 𝑀 and 𝑁 be 𝑅-modules. There are inclusions,

Supp𝑅 (𝑀 ⊗𝑅 𝑁) ⊆ Supp𝑅 (𝑀 ⊗L
𝑅 𝑁) ⊆ Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 .

If𝑀 and𝑁 are finitely generated, then both inclusions are equalities and the following
conditions are equivalent.

(i) 𝑀 ⊗𝑅 𝑁 = 0 .
(ii) H(𝑀 ⊗L

𝑅
𝑁) = 0 .

(iii) Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 = ∅ .

Proof. The second inclusion was proved in 14.1.17. The first inclusion follows from
the definition, 14.1.4, as one has H0 (𝑀 ⊗L

𝑅
𝑁) � 𝑀 ⊗𝑅 𝑁 by 7.6.8. Assume now

that 𝑀 and 𝑁 are finitely generated, it must be shown that (𝑀 ⊗𝑅 𝑁)𝔭 ≠ 0 holds
for 𝔭 ∈ Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 . By the isomorphism (𝑀 ⊗𝑅 𝑁)𝔭 � 𝑀𝔭 ⊗𝑅𝔭

𝑁𝔭 from
14.1.15, it is sufficient to show that for finitely generated modules 𝐾 ≠ 0 and 𝐿 ≠ 0
over a local ring 𝑆 one has 𝐾 ⊗𝑆 𝐿 ≠ 0. Denote by 𝔫 the maximal ideal of 𝑆; it is
the Jacobson radical of 𝑆, so 𝑆/𝔫 ⊗𝑆 𝐾 and 𝑆/𝔫 ⊗𝑆 𝐿 are by 1.1.10 and Nakayama’s
lemma B.32 non-zero vector spaces over the field 𝑆/𝔫. By 12.1.17 one has

𝑆/𝔫 ⊗𝑆 (𝐾 ⊗𝑆 𝐿) � (𝑆/𝔫 ⊗𝑆 𝐾) ⊗𝑆/𝔫 (𝑆/𝔫 ⊗𝑆 𝐿) ,

so 𝑆/𝔫 ⊗𝑆 (𝐾 ⊗𝑆 𝐿) is non-zero by 1.3.10, whence 𝐾 ⊗𝑆 𝐿 is non-zero. The equiva-
lence of conditions (i)–(iii) is now immediate. □
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14.1.19 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 a finitely generated 𝑅-module.
There is an equality,

Supp𝑅 𝑀/𝔞𝑀 = V(𝔞) ∩ Supp𝑅 𝑀 .

Proof. As Supp𝑅 𝑅/𝔞 = V(𝔞) holds, this is per 1.1.10 a special case of 14.1.18. □

14.1.20 Example. Let 𝑝 ∈ ℤ be a prime; per 14.1.2 one has Suppℤ ℤ/𝑝ℤ = {𝑝ℤ}.
Evidently, Suppℤ ℚ = Specℤ, and as ℚ is a flat ℤ-module, see 1.3.43, one has

Suppℤ (ℤ/𝑝ℤ ⊗L
ℤ ℚ) = Suppℤ (ℤ/𝑝ℤ ⊗ℤ ℚ) = Suppℤ 0 = ∅ .

Thus, the inclusion in 14.1.17 may be strict.

Let 𝔭 be a prime ideal in 𝑅. Recall from 12.1.2 and 12.2.4 that there are functors,

Hom𝑅 ( , ) : C(𝑅𝔭)op × C(𝑅𝔭) −→ C(𝑅𝔭–𝑅𝔭) and
RHom𝑅 ( , ) : D(𝑅𝔭)op ×D(𝑅𝔭) −→ D(𝑅𝔭–𝑅𝔭) ,

where the latter per 14.1.10 is induced by Hom𝑅 ( , I𝑅𝔭
( )). We now show that the

output of these functors, in fact, is complexes of symmetric 𝑅𝔭–𝑅𝔭-bimodules. Note
that the result below has the same flavor as 11.1.24/11.2.26(a) and 13.4.16(a,b).

14.1.21 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅𝔭-complexes.
(a) The object Hom𝑅 (𝑀, 𝑁) is a complex of symmetric 𝑅𝔭–𝑅𝔭-bimodules, and

there is an equality of 𝑅𝔭-complexes,

Hom𝑅 (𝑀, 𝑁) = Hom𝑅𝔭
(𝑀, 𝑁) .

In particular, one has Hom𝑅 (𝑅𝔭, 𝑁) � 𝑁 .
(b) The object RHom𝑅 (𝑀, 𝑁) is a complex of symmetric 𝑅𝔭–𝑅𝔭-bimodules and

there is an isomorphism in D(𝑅𝔭) ,

RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅𝔭
(𝑀, 𝑁) .

In particular, one has RHom𝑅 (𝑅𝔭, 𝑁) ≃ 𝑁 .

Proof. (a): It suffices to show that for 𝑟
𝑢
∈ 𝑅𝔭, 𝑚 ∈ 𝑀 , and 𝛼 ∈ Hom𝑅 (𝑀, 𝑁) there

is an equality 𝛼( 𝑟
𝑢
𝑚) = 𝑟

𝑢
𝛼(𝑚), and that follows as one has:

𝛼( 𝑟
𝑢
𝑚) = 𝑟𝛼( 1

𝑢
𝑚) = 𝑟

𝑢
𝑢𝛼( 1

𝑢
𝑚) = 𝑟

𝑢
𝛼( 𝑢

𝑢
𝑚) = 𝑟

𝑢
𝛼(𝑚) .

The isomorphism Hom𝑅 (𝑅𝔭, 𝑁) � 𝑁 now follows from the counitor 12.1.6.
(b): Let 𝑁 ≃−−→ 𝐼 be a semi-injective resolution in C(𝑅𝔭). The complex

RHom𝑅 (𝑀, 𝑁) of 𝑅𝔭–𝑅𝔭-bimodules is Hom𝑅 (𝑀, 𝐼), see 12.2.4. By part (a) this is
a complex of symmetric 𝑅𝔭–𝑅𝔭-bimodules and there is an equality Hom𝑅 (𝑀, 𝐼) =
Hom𝑅𝔭

(𝑀, 𝐼). Since the 𝑅𝔭-complex Hom𝑅𝔭
(𝑀, 𝐼) is RHom𝑅𝔭

(𝑀, 𝑁), the asser-
tion follows. The isomorphism RHom𝑅 (𝑅𝔭, 𝑁) ≃ 𝑁 now follows from the couni-
tor 12.3.4. □
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14.1.22 Lemma. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. If 𝑀 is
degreewise finitely generated and condition (a) or (b) below is satisfied, then there
is an isomorphism in C(𝑅𝔭),

Hom𝑅 (𝑀, 𝑁)𝔭 � Hom𝑅𝔭
(𝑀𝔭, 𝑁𝔭) .

(a) 𝑀 is bounded or 𝑁 is bounded.
(b) 𝑀 is bounded below and 𝑁 is bounded above.

Proof. This is per 14.1.10 a special case of 12.1.21. □

For an 𝑅-module 𝑁 and a finitely generated 𝑅-module 𝑀 one can fom 14.1.22
conclude that there is an inclusion Supp𝑅 Hom𝑅 (𝑀, 𝑁) ⊆ Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 ,
cf. 14.1.18. However, a stronger result is proved in 17.1.1.

14.1.23 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. If
𝑀 is in Df

⊐ (𝑅) and 𝑁 in D⊏ (𝑅), then there is an isomorphism in D(𝑅𝔭),

RHom𝑅 (𝑀, 𝑁)𝔭 ≃ RHom𝑅𝔭
(𝑀𝔭, 𝑁𝔭) .

In particular, for every 𝑚 ∈ ℤ there is an isomorphism of 𝑅𝔭-modules,

Ext𝑚𝑅 (𝑀, 𝑁)𝔭 � Ext𝑚𝑅𝔭
(𝑀𝔭, 𝑁𝔭) .

Proof. The first isomorphism is per 14.1.10 a special case of 12.3.33(a). Now the
second isomorphism follows from 14.1.11(a) and the definition, 7.3.23, of Ext. □

14.1.24 Corollary. Let 𝑀 and 𝑁 be 𝑅-complexes. If 𝑀 belongs to Df
⊐ (𝑅) and 𝑁 to

D⊏ (𝑅), then there is an inclusion,

Supp𝑅 RHom𝑅 (𝑀, 𝑁) ⊆ Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 .

Proof. The inclusion follows from 14.1.12 and 14.1.23. □

14.1.25 Proposition. Let 𝔞 be an ideal and 𝔭 a prime ideal in 𝑅; let 𝑀 be an
𝑅-complex. There is an isomorphism in D(𝑅𝔭),

RΓ𝔞 (𝑀)𝔭 ≃ RΓ𝔞𝔭 (𝑀𝔭) .

In particular, for every 𝑚 ∈ ℤ there is an isomorphism of 𝑅𝔭-modules,

H𝑚𝔞 (𝑀)𝔭 � H𝑚𝔞𝔭 (𝑀𝔭) .

Proof. This is per 14.1.10 a special case of 13.3.23(b). □

14.1.26 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝐿 an 𝑅-complex. If 𝐿 is semi-
free, then the 𝑅𝔭-complex 𝐿𝔭 is semi-free.

Proof. Per 14.1.10 the assertion follows from 5.1.11(a). □

14.1.27 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝑃 an 𝑅-complex. If 𝑃 is semi-
projective, then the 𝑅𝔭-complex 𝑃𝔭 is semi-projective.

Proof. Per 14.1.10 the assertion follows from 5.2.23(a). □
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14.1.28 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝐹 an 𝑅-complex.
(a) If 𝐹 is semi-flat, then the 𝑅𝔭-complex 𝐹𝔭 is semi-flat.
(b) Every semi-flat 𝑅𝔭-complex is semi-flat over 𝑅.

Proof. Per 14.1.10 the statement is a special case of 5.4.18. □

For semi-injectivity the situation is not quite so simple. Example 17.5.14 shows
that the boundedness condition is necessary in the next result.

14.1.29 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝐼 an 𝑅-complex.
(a) If 𝐼 is semi-injective and bounded above, then the 𝑅𝔭-complex 𝐼𝔭 is semi-

injective and bounded above.
(b) Every semi-injective 𝑅𝔭-complex is semi-injective over 𝑅.

Proof. It follows from C.24 that 𝐼𝔭 is a complex of injective 𝑅𝔭-modules. If 𝐼 is
bounded above, then so is 𝐼𝔭 whence it is semi-injective by 5.3.12. This proves part
(a), while (b) per 1.3.42 is a special case of 5.4.26(b). □

14.1.30 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝐼 a complex of injective
𝑅-modules. If 𝐼 is minimal, then 𝐼𝔭 is a minimal complex of injective 𝑅𝔭-modules.

Proof. It follows from C.24 that 𝐼𝔭 is a complex of injective 𝑅𝔭-modules. Thus,
to show that 𝐼𝔭 is minimal, one must per B.21(b) argue that the 𝑅𝔭-submodule
Z𝑣 (𝐼𝔭) ⊆ (𝐼𝔭)𝑣 is essential for every 𝑣 ∈ ℤ. As the localization functor ( )𝔭 is exact,
one has Z𝑣 (𝐼𝔭) = Z𝑣 (𝐼)𝔭, see 2.2.19. By assumption and B.21(b) the 𝑅-submodule
Z𝑣 (𝐼) ⊆ 𝐼𝑣 is essential for every 𝑣 ∈ ℤ, so it follows from B.12 that Z𝑣 (𝐼)𝔭 is essential
in (𝐼𝑣)𝔭 = (𝐼𝔭)𝑣. □

14.1.31 Corollary. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 a complex in D⊏ (𝑅). If
𝑀

≃−−→ 𝐼 is a minimal semi-injective resolution, then the induced morphism𝑀𝔭 → 𝐼𝔭
is a minimal semi-injective resolution in C(𝑅𝔭).

Proof. Localization preserves quasi-isomorphisms, see 6.4.32, so 𝑀 ≃−−→ 𝐼 induces
a quasi-isomorphism 𝑀𝔭 → 𝐼𝔭. The complex 𝐼 is bounded above, see B.26, so the
complex 𝐼𝔭 is semi-injective and minimal by 14.1.29(a) and 14.1.30. □

Colocalization

Let 𝑈 be a multiplicative subset of 𝑅; (derived) cobase change along the canonical
homomorphism 𝑅 → 𝑈−1𝑅 is in many places referred to as ‘(derived) colocalization’
at 𝑈. Base change along the same map is simply localization at 𝑈, and here there
is only one variety as 𝑈−1𝑅 is a flat 𝑅-module. Since we rarely consider underived
cobase change along 𝑅 → 𝑈−1𝑅 we make the following definition.

14.1.32 Definition. Let 𝑀 be an 𝑅-complex and𝑈 a multiplicative subset of 𝑅. The
𝑈−1𝑅-complex RHom𝑅 (𝑈−1𝑅, 𝑀) is called the colocalization of 𝑀 at𝑈.
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14.1.33 Proposition. Let 𝔭 be a prime ideal in 𝑅, let 𝑀 be an 𝑅-complex and 𝑋 an
𝑅𝔭-complex. There are isomorphisms in C(𝑅𝔭):

Hom𝑅 (𝑀, 𝑋) � Hom𝑅𝔭
(𝑀𝔭, 𝑋) .(a)

Hom𝑅 (𝑋, 𝑀) � Hom𝑅𝔭
(𝑋,Hom𝑅 (𝑅𝔭, 𝑀)) .(b)

There are isomorphisms in D(𝑅𝔭):

RHom𝑅 (𝑀, 𝑋) ≃ RHom𝑅𝔭
(𝑀𝔭, 𝑋) .(c)

RHom𝑅 (𝑋, 𝑀) ≃ RHom𝑅𝔭
(𝑋,RHom𝑅 (𝑅𝔭, 𝑀)) .(d)

Proof. Parts (b) and (d) are special cases of 12.1.28 and 12.3.36. Further, in view
of 14.1.10 parts (a) and (c) are special cases of 12.1.19 and 12.3.32. □

14.1.34 Proposition. Let 𝔞 be an ideal and 𝔭 a prime ideal in 𝑅; let 𝑀 be an
𝑅-complex. There is an isomorphism in D(𝑅𝔭),

RHom𝑅 (𝑅𝔭, LΛ𝔞 (𝑀)) ≃ LΛ𝔞𝔭 (RHom𝑅 (𝑅𝔭, 𝑀)) .

Proof. The assertion is immediate from 13.1.21(b). □

Remark. Let 𝑀 be an 𝑅-complex. In analogy with 14.1.12 the set
{𝔭 ∈ Spec𝑅 | H(RHom𝑅 (𝑅𝔭 , 𝑀 ) ) ≠ 0}

is in some places, see for example Sather-Wagstaff and Wicklein [222], denoted Cosupp𝑅 𝑀. See
also 15.2.1 and E 15.2.1.

14.1.35 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝐼 an 𝑅-complex. If 𝐼 is semi-
injective, then the 𝑅𝔭-complex Hom𝑅 (𝑅𝔭, 𝐼) is semi-injective.

Proof. The assertion is a special case of 5.4.26(a). □

Exercises

E 14.1.1 Determine Spec(ℤ/4ℤ) and Spec(ℤ/6ℤ) and compute dim(ℤ/4ℤ) and dim(ℤ/6ℤ) .
E 14.1.2 Let 𝔭 be a prime ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. Show that there is an

isomorphism RHom𝑅 (𝑅𝔭 , RHom𝑅 (𝑀, 𝑁 ) ) ≃ RHom𝑅𝔭
(𝑀𝔭 , RHom𝑅 (𝑅𝔭 , 𝑁 ) ) .

E 14.1.3 Let 𝑀 be an 𝑅-complex. Show that one has inf{ inf 𝑀𝔪 | 𝔪 ∈ Max𝑅 } = inf 𝑀 and
sup{sup𝑀𝔪 | 𝔪 ∈ Max𝑅 } = sup𝑀.

E 14.1.4 Let 𝔭 ⊆ 𝑅 be a prime ideal, 𝑀 a complex in D⊐ (𝑅) , and 𝑁 ∈ Df
⊐ (𝑅) . Show that if

splf 𝑅 is finite, then one has RHom𝑅 (𝑅𝔭 , 𝑀 ⊗L
𝑅
𝑁 ) ≃ RHom𝑅 (𝑅𝔭 , 𝑀 ) ⊗L

𝑅𝔭
𝑁𝔭.

E 14.1.5 Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅𝔭-complex. Show that there are isomorphisms
RΓ𝔭 (𝑀 ) ≃ RΓ𝔭𝔭 (𝑀 ) and LΛ𝔭 (𝑀 ) ≃ LΛ𝔭𝔭 (𝑀 ) in D(𝑅𝔭 ) .

E 14.1.6 Let F: M(𝑅) →M(𝑅) be a half exact functor with the property that there is an exact
sequence F(𝑅/(𝔭 + (𝑥 ) ) ) −→ F(𝑅/𝔭) 𝑥−→ F(𝑅/𝔭) for every prime ideal 𝔭 in 𝑅 and
every 𝑥 ∈ 𝑅 \ 𝔭. Show that if the set {𝔭 ∈ Spec𝑅 | F(𝑅/𝔭) ≠ 0} is non-empty and 𝔭

is a maximal element of that set, then one has F(𝑅/𝔭)𝔭 ≠ 0.

E 14.1.7 Show that fd𝑅 𝑀 = sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ Supp𝑅 𝑀 : Tor𝑅𝔭

𝑚 (𝑅𝔭/𝔭𝔭 , 𝑀𝔭 ) ≠ 0} holds
for every 𝑅-complex 𝑀. Hint: Apply E 14.1.6 with F a coproduct of Tor functors.
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14.2 Krull Dimension for Complexes

Synopsis. Krull dimension; ∼ vs. localization; ∼ of derived tensor product; module of finite length;
Artinian module; Artinian ring.

The classic support for complexes from 14.1.4 and the Krull dimension, defined
right below, are homological invariants in the strong sense that there are equalities,

Supp𝑅 𝑀 = Supp𝑅 H(𝑀) and dim𝑅 𝑀 = dim𝑅 H(𝑀) .

In particular, complexes that are isomorphic in D(𝑅) have the same classic support
and the same Krull dimension.

14.2.1 Definition. Let 𝑀 be an 𝑅-complex. The Krull dimension of 𝑀 , written
dim𝑅 𝑀 , is defined as

dim𝑅 𝑀 = sup{dim𝑅 H𝑣 (𝑀) − 𝑣 | 𝑣 ∈ ℤ} .

One says that dim𝑅 𝑀 is finite if dim𝑅 𝑀 < ∞ holds.

The convention that a complex of Krull dimension −∞ has finite Krull dimension
may appear odd, but it only happens for acyclic complexes; see 14.2.4 below.

14.2.2. Let 𝑀 be an 𝑅-complex. The next equality is immediate from 14.2.1,

dim𝑅 Σ
𝑠𝑀 = dim𝑅 𝑀 − 𝑠 for every integer 𝑠 .

Remark. The notion of Krull dimension for complexes introduced above appeared in [93], and so
did the notion of depth for complexes that is covered in the next two sections. Around the same
time, Iversen [141, 142] worked with definitions of these invariants that were superficially different,
but only in the sense that the invariants defined here depend on the homological position of the
complex, while Iversen’s versions are invariant under shift.

14.2.3 Example. Let 𝔞 be an ideal in 𝑅 generated by a sequence 𝑥𝑥𝑥. By 14.1.5 and
11.4.3(a) one has Supp𝑅 K𝑅 (𝑥𝑥𝑥) = V(𝔞) = Supp𝑅 H0 (K𝑅 (𝑥𝑥𝑥)). As H𝑣 (K𝑅 (𝑥𝑥𝑥)) is
zero for 𝑣 < 0 one has dim𝑅 K𝑅 (𝑥𝑥𝑥) = dim 𝑅/𝔞.

14.2.4 Proposition. Let 𝑀 be an 𝑅-complex; the next conditions are equivalent.
(i) H(𝑀) = 0 .
(ii) Supp𝑅 𝑀 = ∅ .
(iii) dim𝑅 𝑀 = −∞ .

Moreover, if 𝑀 is not acyclic, then the following inequalities hold,

− inf 𝑀 ⩽ dim𝑅 𝑀 ⩽ dim 𝑅 − inf 𝑀 .

Proof. For every non-zero 𝑅-module 𝐻 one has 0 ⩽ dim𝑅 𝐻 ⩽ dim 𝑅, and the
zero module has Krull dimension −∞. Together with the definition, 14.2.1, of the
Krull dimension of a complex, this explains the inequalities. The equivalence of the
three conditions follows in view of 14.1.4 and 14.2.1 as the only module with empty
classic support and/or Krull dimension −∞ is the zero module. □
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14.2.5 Proposition. Let 𝔞 be a proper ideal in 𝑅 and 𝑀 an 𝑅/𝔞-complex; one has

dim𝑅 𝑀 = dim𝑅/𝔞 𝑀 .

Proof. For every 𝑣 ∈ ℤ the set Supp𝑅 H𝑣 (𝑀) is contained in V(𝔞), which is order
isomorphic to Spec 𝑅/𝔞, so one has dim𝑅 H𝑣 (𝑀) = dim𝑅/𝔞 H𝑣 (𝑀); the desired
equality now follows from 14.2.1. □

Localization

For a module 𝑀 the first equality in the next theorem simply recovers the definition
of the Krull dimension.

14.2.6 Theorem. Let 𝑀 be an 𝑅-complex. One has

dim𝑅 𝑀 = sup{dim 𝑅/𝔭 − inf 𝑀𝔭 | 𝔭 ∈ Supp𝑅 𝑀 } .

Moreover, if dim 𝑅 is finite, then one has

dim𝑅 𝑀 = sup{dim 𝑅/𝔭 − inf 𝑀𝔭 | 𝔭 ∈ Spec 𝑅} .

Proof. Per 14.2.4 one can assume that H(𝑀) is bounded below and not zero.
“⩾”: Let 𝔭 ∈ Supp𝑅 𝑀 and set 𝑛 = inf 𝑀𝔭. Since 𝔭 is in Supp𝑅 H𝑛 (𝑀), there is

an inequality dim𝑅 H𝑛 (𝑀) − 𝑛 ⩾ dim 𝑅/𝔭 − inf 𝑀𝔭. Now invoke 14.2.1.
“⩽”: Let 𝑛 ∈ ℤ. If H𝑛 (𝑀) = 0, then the inequality

(†) dim𝑅 H𝑛 (𝑀) − 𝑛 ⩽ dim 𝑅/𝔭 − inf 𝑀𝔭

holds for every prime ideal 𝔭 in Supp𝑅 𝑀 . If H𝑛 (𝑀) ≠ 0, choose a prime ideal
𝔭 in Supp𝑅 H𝑛 (𝑀) with dim𝑅 H𝑛 (𝑀) = dim 𝑅/𝔭; for such a prime ideal one has
𝑛 ⩾ inf 𝑀𝔭 whence (†) holds. Finally recall from 14.1.4 that 𝔭 is in Supp𝑅 𝑀 .

Finally, if dim 𝑅 is finite, then dim 𝑅/𝔭 − inf 𝑀𝔭 = −∞ holds for 𝔭 ∉ Supp𝑅 𝑀;
this proves the last assertion. □

14.2.7 Proposition. Let 𝑀 be an 𝑅-complex. There is an equality,

dim𝑅 𝑀 = sup{dim𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅} ,

and for every 𝔭 ∈ Supp𝑅 𝑀 the next inequality holds,

dim𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 ⩽ dim𝑅 𝑀 .

Moreover, if dim 𝑅 is finite, then this inequality holds for every prime ideal 𝔭 in 𝑅.

Proof. Let 𝔭 be a prime ideal in 𝑅. The elements of Supp𝑅𝔭
𝑀𝔭 are the prime ideals

in 𝑅𝔭 of the form 𝔮𝔭 where 𝔮 ∈ Supp𝑅 𝑀 and 𝔮 ⊆ 𝔭, so 14.2.6 yields:

(†) dim𝑅𝔭
𝑀𝔭 = sup{dim 𝑅𝔭/𝔮𝔭 − inf 𝑀𝔮 | 𝔮 ∈ Supp𝑅 𝑀 and 𝔮 ⊆ 𝔭} .

This explains the first equality below. The penultimate equality follows from the
definition of Krull dimension for commutative Noetherian rings, and the last equality
holds by another application of 14.2.6; the remaining equalities are trivial.
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sup{dim𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅}

= sup
{

sup{dim 𝑅𝔭/𝔮𝔭 − inf 𝑀𝔮 | 𝔮 ∈ Supp𝑅 𝑀 and 𝔮 ⊆ 𝔭}
�� 𝔭 ∈ Spec 𝑅

}
= sup

{
sup{dim (𝑅/𝔮)𝔭 − inf 𝑀𝔮 | 𝔭 ∈ Spec 𝑅 and 𝔮 ⊆ 𝔭}

�� 𝔮 ∈ Supp𝑅 𝑀
}

= sup
{

sup{dim (𝑅/𝔮)𝔭 | 𝔭 ∈ Spec 𝑅 and 𝔮 ⊆ 𝔭} − inf 𝑀𝔮

�� 𝔮 ∈ Supp𝑅 𝑀
}

= sup{dim 𝑅/𝔮 − inf 𝑀𝔮 | 𝔮 ∈ Supp𝑅 𝑀 }
= dim𝑅 𝑀 .

This establishes the asserted equality. To prove the inequality, let 𝔭 be a prime ideal
Supp𝑅 𝑀 . For every 𝔮 in Supp𝑅 𝑀 with 𝔮 ⊆ 𝔭 the inequalities below follow from
the definition of Krull dimension for commutative Noetherian rings and from 14.2.6.

dim 𝑅𝔭/𝔮𝔭 − inf 𝑀𝔮 + dim 𝑅/𝔭 = dim (𝑅/𝔮)𝔭/𝔮 + dim (𝑅/𝔮)/(𝔭/𝔮) − inf 𝑀𝔮

⩽ dim 𝑅/𝔮 − inf 𝑀𝔮 ⩽ dim𝑅 𝑀 .

Combining this with (†) one gets dim𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 ⩽ dim𝑅 𝑀 . Further, if dim 𝑅

is finite, then dim𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 = −∞ holds for 𝔭 ∉ Supp𝑅 𝑀 , see 14.1.12 and

14.2.4; this proves the last assertion. □

Krull Dimension of Derived Tensor Product

Under extra assumptions, the next inequality can be strengthened, 18.3.25, or the
Krull dimension of the derived tensor product even computed exactly, 17.6.19.

14.2.8 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes that are not acyclic; one has

dim𝑅 (𝑀 ⊗L
𝑅 𝑁) ⩽ dim𝑅 𝑀 − inf 𝑁 .

Proof. The inequality holds trivially if 𝑀 or 𝑁 does not have bounded below
homology, see 14.2.4. Assuming now that both complexes belong to D⊐ (𝑅), the
assertion follows from 14.2.6, 14.1.17, 7.6.8, 14.1.15, and 14.1.11(c):

dim𝑅 𝑀 = sup{dim 𝑅/𝔭 − inf 𝑀𝔭 | 𝔭 ∈ Supp𝑅 𝑀 }
⩾ sup{dim 𝑅/𝔭 − inf 𝑀𝔭 | 𝔭 ∈ Supp𝑅 (𝑀 ⊗L

𝑅 𝑁) }
⩾ sup{dim 𝑅/𝔭 − inf (𝑀𝔭 ⊗L

𝑅𝔭
𝑁𝔭) + inf 𝑁𝔭 | 𝔭 ∈ Supp𝑅 (𝑀 ⊗L

𝑅 𝑁) }

= sup{dim 𝑅/𝔭 − inf (𝑀 ⊗L
𝑅 𝑁)𝔭 + inf 𝑁𝔭 | 𝔭 ∈ Supp𝑅 (𝑀 ⊗L

𝑅 𝑁) }
⩾ sup{dim 𝑅/𝔭 − inf (𝑀 ⊗L

𝑅 𝑁)𝔭 | 𝔭 ∈ Supp𝑅 (𝑀 ⊗L
𝑅 𝑁) } + inf 𝑁

= dim𝑅 (𝑀 ⊗L
𝑅 𝑁) + inf 𝑁 . □

Artinian Modules

Recall that an 𝑅-module has finite length if it admits a filtration with simple quotients,
in which case all such filtrations, called composition series, have the same length.
Modules of finite length are evidently finitely generated.
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14.2.9 Proposition. Let 𝑀 be a finitely generated 𝑅-module. The following condi-
tions are equivalent.

(i) 𝑀 has finite length.
(ii) Every ideal in Ass𝑅 𝑀 is maximal.
(iii) Every ideal in Supp𝑅 𝑀 is maximal.

If these conditions are satisfied, then Ass𝑅 𝑀 = Supp𝑅 𝑀 holds; in particular, the
set Supp𝑅 𝑀 is finite.

Proof. (i)⇒ (ii): Let 0 = 𝑀0 ⊆ 𝑀1 ⊆ · · · ⊆ 𝑀𝑛 = 𝑀 be a composition series. For
every 𝔭 ∈ Ass𝑅 𝑀 there is a quotient 𝑀 𝑖/𝑀 𝑖−1 isomorphic to 𝑅/𝔭, and since all
these quotients are simple, 𝔭 is maximal.

(ii)⇒ (iii): As every prime ideal in Supp𝑅 𝑀 contains an associated prime ideal
of 𝑀 , one has Ass𝑅 𝑀 = Supp𝑅 𝑀 .

(iii)⇒ (i): Let 0 = 𝑀0 ⊆ 𝑀1 ⊆ · · · ⊆ 𝑀𝑛 = 𝑀 be a filtration with quotients
𝑀 𝑖/𝑀 𝑖−1 � 𝑅/𝔭𝑖 for ideals 𝔭𝑖 ∈ Supp𝑅 𝑀 . As Supp𝑅 𝑀 consists of maximal ideals,
all these quotients are simple, whence 𝑀 has finite length. □

Recall that an 𝑅-module is Artinian if it satisfies the Descending Chain Condition
on submodules.

14.2.10 Proposition. Let 𝑀 be an Artinian 𝑅-module. The classic support of 𝑀 is
a finite set of maximal ideals and there are equalities,

Min𝑅 𝑀 = Ass𝑅 𝑀 = Supp𝑅 𝑀 .

In particular, if 𝑀 is non-zero then one has dim𝑅 𝑀 = 0.

Proof. One can assume that 𝑀 is non-zero. Let 𝔭 ∈ Supp𝑅 𝑀 and choose an
element 𝑚 ∈ 𝑀 with (0 :𝑅 𝑚) ⊆ 𝔭. The assignment 𝑟𝑚 ↦→ [𝑟]𝔭 defines a surjective
homomorphism 𝑅⟨𝑚 ⟩ → 𝑅/𝔭; in particular 𝑅/𝔭 is an Artinian 𝑅-module and
hence an Artinian ring. For 𝑥 ∉ 𝔭 the descending chain ( [𝑥]𝔭) ⊇ ([𝑥2]𝔭) ⊇ · · ·
stabilizes. As 𝑅/𝔭 is an integral domain, this implies that [𝑥]𝔭 is a unit. I.e. 𝑅/𝔭 is a
field, whence 𝔭 is maximal. In particular, every minimal prime ideal in Supp𝑅 𝑀 is
maximal, whence the asserted equalities follow. To see that the set is finite, choose
for every 𝔪 ∈ Ass𝑅 𝑀 an element 𝑥𝔪 ∈ 𝑀 with (0 :𝑅 𝑥𝔪) = 𝔪. Notice that each
module 𝑅⟨𝑥𝔪 ⟩ is simple, as it is isomorphic to 𝑅/𝔪. Let 𝑉 be a finite subset of
Ass𝑅 𝑀; one has (

0 : ∑
𝔪∈𝑉

𝑅⟨𝑥𝔪 ⟩
)
=

⋂
𝔪∈𝑉

𝔪 .

Now let 𝔫 ∈ (Ass𝑅 𝑀) \ 𝑉 . If the intersection (∑𝔪∈𝑉 𝑅⟨𝑥𝔪 ⟩) ∩ 𝑅⟨𝑥𝔫 ⟩ is not zero,
then it is all of 𝑅⟨𝑥𝔫 ⟩, which means that the maximal ideal 𝔫 = (0 : 𝑥𝔫) contains⋂

𝔪∈𝑉 𝔪 and hence it contains one of the maximal ideals 𝔪 ∈ 𝑉 , a contradiction.
Thus the family {𝑅⟨𝑥𝔪 ⟩}𝔪∈Ass𝑅 𝑀 of submodules of 𝑀 is independent by 1.1.24(a).
Since 𝑀 is Artinian it follows from 1.1.24(b) that the set Ass𝑅 𝑀 is finite. □

The description above of the classic support of Artinian modules does not char-
acterize such modules.
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14.2.11 Example. Let𝑀 be an Artinian 𝑅-module. By 14.1.7 one has Supp𝑅 𝑀 (ℕ) =
Supp𝑅 𝑀 , yet the coproduct 𝑀 (ℕ) has a countable descending chain of submodules.

14.2.12 Corollary. An 𝑅-module has finite length if and only if it is Artinian and
finitely generated.

Proof. An 𝑅-module𝑀 of finite length is finitely generated. To see that it is Artinian
notice that a strictly descending chain of submodules 𝑀0 ⊃ 𝑀1 ⊃ · · · in 𝑀 yields
a descending sequence of numbers length𝑅 𝑀0 > length𝑅 𝑀1 > · · · , which is
impossible as length𝑅 𝑀0 ⩽ length𝑅 𝑀 is finite.

Conversely, let 𝑀 be an Artinian 𝑅-module. By 14.2.10 all ideals in Supp𝑅 𝑀
are maximal, so if 𝑀 it finitely generated, then it has finite length by 14.2.9. □

14.2.13 Example. For every maximal ideal 𝔪 in 𝑅, the injective module E𝑅 (𝑅/𝔪)
is Artinian; see C.18 and 16.1.26. If 𝑅 is local, then E𝑅 (𝑅/𝔪) is finitely generated
if and only if 𝑅 is Artinian, see 18.1.4, while E𝑅 (𝑅/𝔭) for 𝔭 ≠ 𝔪 is neither Artinian
nor finitely generated, see 14.2.10, C.15(a), 16.2.27, and 16.2.29.

We record a special case of 12.4.11.

14.2.14 Proposition. Let 𝔍 be the Jacobson radical of 𝑅 and G: M(𝑅)op →M(𝑅)
a half exact and 𝑅-linear functor such that G(𝑅/𝔭) is Artinian for every prime ideal
𝔭 in 𝑅. The following conditions are equivalent.

(i) G(𝑅/𝔭) = 0 holds for every prime ideal 𝔭 in V(𝔍) .
(ii) G(𝑀) = 0 holds for every finitely generated 𝑅-module 𝑀 .

Proof. It follows from 14.2.10 and 14.1.3 that an Artinian 𝑅-module is 𝔍-torsion,
so the statement is a special case of 12.4.11. □

14.2.15 Definition. An 𝑅-complex 𝑀 is called degreewise Artinian if the 𝑅-module
𝑀𝑣 is Artinian for every 𝑣 ∈ ℤ. Similarly, 𝑀 is called degreewise of finite length if
the 𝑅-module 𝑀𝑣 is of finite length for every 𝑣 ∈ ℤ.

14.2.16 Definition. The full subcategories Dart (𝑅) and Dℓ (𝑅) of D(𝑅) are defined
by specifying their objects as follows,

Dart (𝑅) = {𝑀 ∈ D(𝑅) | H(𝑀) is degreewise Artinian}
and

Dℓ (𝑅) = {𝑀 ∈ D(𝑅) | H(𝑀) is degreewise of finite length} .

Notice that per 14.2.12 one has

Dℓ (𝑅) = Dart (𝑅) ∩Df (𝑅) .

The full subcategory Dart (𝑅) ∩D⊏ (𝑅) is denoted by Dart
⊏ (𝑅). Similarly, one defines

the subcategories Dart
⊐ (𝑅), Dart

⊏⊐ (𝑅), Dℓ
⊏ (𝑅), Dℓ

⊐ (𝑅), and Dℓ
⊏⊐ (𝑅).

14.2.17 Proposition. The categories Df (𝑅), Dart (𝑅), and Dℓ (𝑅) are triangulated
subcategories of D(𝑅) and closed under soft truncations.
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Proof. The assertions about Df (𝑅) are proved in 7.6.14, and the same argument
applies for Dart (𝑅) and Dℓ (𝑅). □

It follows from 14.2.17 and 7.6.3 the intersection of any of the categories Df (𝑅),
Dart (𝑅), and Dℓ (𝑅) with D⊏ (𝑅), D⊐ (𝑅), or D⊏⊐ (𝑅) yields a triangulated subcate-
gory of D(𝑅) which is closed under soft truncations.

14.2.18 Proposition. Let𝑈 be a multiplicative subset of 𝑅 and 𝑀 an 𝑅-complex. If
𝑀 is degreewise Artinian, then the𝑈−1𝑅-complex𝑈−1𝑀 is degreewise Artinian.

Proof. As one has (𝑈−1𝑀)𝑣 = 𝑈−1𝑀𝑣 for every 𝑣 ∈ ℤ one can assume that 𝑀 is an
𝑅-module 𝑀 . For every𝑈−1𝑅-submodule 𝑁 of𝑈−1𝑀 , set 𝑁 ′ = {𝑚 ∈ 𝑀 | 𝑚1 ∈ 𝑁 }.
Evidently, 𝑁 ′ is an 𝑅-submodule of 𝑀 and one has 𝑈−1𝑁 ′ = 𝑁 . If 𝑁1 ⊇ 𝑁2 ⊇ · · ·
is a descending chain of 𝑈−1𝑅-submodules of 𝑈−1𝑀 , then 𝑁 ′1 ⊇ 𝑁 ′2 ⊇ · · · is a
descending chain of 𝑅-submodules of 𝑀 . If 𝑀 is Artinian, then this chain becomes
stationary, and hence 𝑈−1𝑁 ′1 ⊇ 𝑈

−1𝑁 ′2 ⊇ · · · becomes stationary too. This chain
coincides with the given chain 𝑁1 ⊇ 𝑁2 ⊇ · · · . □

Artinian Rings

14.2.19 Theorem. The following conditions are equivalent.
(i) 𝑅 is Artinian.
(ii) Spec 𝑅 is a finite set of maximal ideals.
(iii) 𝑅 has Krull dimension 0 .
(iv) 𝑅 has finite length as an 𝑅-module.
(v) Every finitely generated 𝑅-module has finite length.
Moreover, if 𝑅 is Artinian with maximal ideals 𝔪1, . . . ,𝔪𝑛 and Jacobson radical

𝔍, then the following assertions hold.
(a) The Jacobson radical is the product 𝔍 = 𝔪1 · · ·𝔪𝑛 and it is nilpotent.
(b) For 𝑢 ∈ {1, . . . , 𝑛} and 𝑝 ∈ ℕ with 𝔍𝑝 = 0 there is an isomorphism of rings,

𝑅𝔪𝑢 � 𝑅/𝔪
𝑝
𝑢 ; in particular 𝑅𝔪𝑢 is an Artinian local ring.

(c) There is an isomorphism of rings, 𝑅 � 𝑅𝔪1 × · · · × 𝑅𝔪𝑛 .
(d) For every ideal 𝔞 ⊆ 𝔍 the ring 𝑅 is 𝔞-complete, i.e. 𝑅 � 𝑅𝔞 .

Proof. The implication (i)⇒ (ii) follows from 14.2.10. By the definition of Krull
dimension, condition (ii) implies (iii), which means that all prime ideals in 𝑅 are
maximal. Thus (iii) implies (v) by 14.2.9, and (iv) is a special case of (v) and implies
(i) by 14.2.12.

Now, let 𝑅 be Artinian with maximal ideals𝔪1, . . . ,𝔪𝑛 and Jacobson radical𝔍. As
the ideals 𝔪1, . . . ,𝔪𝑛 are coprime, the intersection 𝔍 =

⋂𝑛
𝑢=1 𝔪𝑢 equals the product

𝔪1 · · ·𝔪𝑛. The descending chain 𝔍 ⊇ 𝔍2 ⊇ · · · stabilizes, so one has 𝔍𝑝 = 𝔍𝑝+1

for some 𝑝; Nakayama’s lemma B.32 now yields 𝔍𝑝 = 0. This proves part (a), and
part (d) follows in view of 11.1.11. As powers of coprime ideals are coprime, the
Chinese Remainder Theorem yields 𝑅/𝔍𝑝 � 𝑅/𝔪𝑝

1 × · · · × 𝑅/𝔪
𝑝
𝑛 for every 𝑝 ∈ ℕ.
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In particular, one has 𝑅 � 𝑅/𝔪𝑝

1 × · · · × 𝑅/𝔪
𝑝
𝑛 for 𝑝 with 𝔍𝑝 = 0. Fix such a 𝑝 and

a maximal ideal 𝔪𝑢; to finish the proof it suffices to establish the isomorphism in
(b). For 𝑤 ≠ 𝑢 one has (𝑅/𝔪𝑝

𝑤)𝔪𝑢 = 0, whence 𝑅𝔪𝑢 � (𝑅/𝔪
𝑝
𝑢 )𝔪𝑢 holds. The ring

𝑅/𝔪𝑝
𝑢 is already local with maximal ideal 𝔪𝑢/𝔪𝑝

𝑢 , whence 𝑅𝔪𝑢 � 𝑅/𝔪
𝑝
𝑢 . □

Remark. It follows from 14.2.19 that a commutative Artinian ring is semi-local; see the Remark
after B.43.

14.2.20 Lemma. Let 𝑅 be an integral domain with field of fractions𝑄. If𝑄 is finitely
generated as an 𝑅-module, then 𝑅 is a field, i.e. 𝑅 = 𝑄.

Proof. Let 𝑥1, . . . , 𝑥𝑛 be elements in 𝑅 such that the fractions 1
𝑥1
, . . . , 1

𝑥𝑛
generate𝑄 as

an 𝑅-module. In particular, one has 𝑥2
1𝑥

2
2 · · · 𝑥

2
𝑛 (

∑𝑛
𝑖=1

𝑟𝑖
𝑥𝑖
) = 1 for elements 𝑟1, . . . , 𝑟𝑛

in 𝑅. It follows that each fraction 1
𝑥𝑖

belongs to 𝑅. Thus, one has 𝑅 = 𝑄. □

14.2.21 Theorem. The following conditions are equivalent.
(i) 𝑅 is Artinian.
(ii) Every indecomposable injective 𝑅-module has finite length.
(iii) Every indecomposable injective 𝑅-module is finitely generated.

Proof. The proof if cyclic. It is evident that (ii) implies (iii).
(i)⇒ (ii): Let 𝐸 be an indecomposable injective 𝑅-module, by C.6 it has the form

𝐸 � E𝑅 (𝑅/𝔪) for some maximal ideal 𝔪 in 𝑅. As 𝑅 is Artinian, there is an 𝑛 ⩾ 1
such that 𝔪𝑛 = 𝔪𝑛+1. With the notation from C.20 one now has 𝐸 = 𝐸𝑛, and this
module has finite length by C.22.

(iii)⇒ (i): To prove that 𝑅 is Artinian, it is by 14.2.19 sufficient to prove that every
prime ideal 𝔭 in 𝑅 is maximal. Set 𝐸 = E𝑅 (𝑅/𝔭), it is an indecomposable injective
𝑅-module by C.12, and hence it is finitely generated by assumption. By C.18 there
is an isomorphism of 𝑅-modules 𝐸 � E𝑅𝔭

(𝑅𝔭/𝔭𝔭), so in particular the submodule
𝑅𝔭/𝔭𝔭 of 𝐸 is finitely generated over 𝑅. That is, the field of fractions of the integral
domain 𝑅/𝔭 is finitely generated as an 𝑅-module and hence as an 𝑅/𝔭-module. Now
it follows from 14.2.20 that 𝑅/𝔭 is a field, whence the ideal 𝔭 is maximal. □

14.2.22 Corollary. Let 𝑅 be Artinian. For every finitely generated 𝑅-module 𝑀 the
injective envelope E𝑅 (𝑀) has finite length.

Proof. By C.5 the module E𝑅 (𝑀) is a direct sum of indecomposable injective
𝑅-modules, and each of these has finite length by 14.2.21. □

Exercises

E 14.2.1 Let 𝑀 be an 𝑅-complex. Show that dim𝑅 𝑀 = sup{dim𝑅𝔪
𝑀𝔪 | 𝔪 ∈ Max𝑅 } holds.

E 14.2.2 Let 𝑀 be a complex in D⊐ (𝑅) with H(𝑀 ) ≠ 0 and 𝑤 = inf 𝑀. (a) Show that if one
has dim𝑅 𝑀 = −𝑤, then dim𝑅 H𝑤 (𝑀 ) = 0 holds. (b) Show that if dim𝑅 is finite, then
one has dim𝑅 𝑀 = dim𝑅 − 𝑤 if and only if dim𝑅 H𝑤 (𝑀 ) = dim𝑅 holds.

E 14.2.3 Let 𝑀 be an 𝑅-complex. Show that if dim𝑅 is finite, then dim𝑅 𝑀 = dim𝑅 𝑀Ď𝑛 holds
for 𝑛 ≫ 0.
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E 14.2.4 Let 𝑀 and 𝑁 be 𝑅-modules. Show that one has dim𝑅 (𝑀 ⊗L
𝑅
𝑁 ) ⩾ dim𝑅 (𝑀 ⊗𝑅 𝑁 )

and dim𝑅 RHom𝑅 (𝑀, 𝑁 ) ⩾ dim𝑅 Hom𝑅 (𝑀, 𝑁 ) .
E 14.2.5 Let𝑅 be of finite Krull dimension. Show that for complexes𝑀 inD(𝑅) and𝑁 inD⊏⊐ (𝑅)

one has dim𝑅 (𝑀 ⊗L
𝑅
𝑁 ) ⩽ sup{dim𝑅 (𝑀 ⊗L

𝑅
H𝑣 (𝑁 ) ) − 𝑣 | 𝑣 ∈ ℤ}. Hint: 7.6.10.

E 14.2.6 Let 𝑀 be a complex in Df
⊏⊐ (𝑅) and 𝑁 an 𝑅-complex. Show that if pd𝑅 𝑀 is finite, then

the inequality dim𝑅 RHom𝑅 (𝑀, 𝑁 ) ⩽ dim𝑅 𝑁 + pd𝑅 𝑀 holds.
E 14.2.7 Let 𝔍 be the Jacobson radical of 𝑅. Show that one has Dart (𝑅) ⊆ D𝔍-tor (𝑅) .

14.3 Koszul Homology

Synopsis. Koszul complex; Koszul homology; 𝔞-depth; 𝔞-width.

For a sequence 𝑥𝑥𝑥 in 𝑅 and an 𝑅-module 𝑀 it is standard to refer to the homology of
the complex K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 as the ‘Koszul homology’ of 𝑀 with respect to 𝑥𝑥𝑥. While
we do not formally employ this terminology, the homology of such complexes plays
a central role in our treatment of the invariants depth and width, hence the title of
this section.

14.3.1 Lemma. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 and 𝑀 an 𝑅-complex. For
subsequences 𝑥𝑥𝑥′ = 𝑥′1, . . . , 𝑥

′
𝑚 and 𝑥𝑥𝑥′′ = 𝑥′′1 , . . .𝑥

′′
𝑚−𝑛 that partition 𝑥𝑥𝑥 one has

K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 � K𝑅 (𝑥𝑥𝑥′) ⊗𝑅 (K𝑅 (𝑥𝑥𝑥′′) ⊗𝑅 𝑀) .

Proof. The isomorphism follows in view of (11.4.1.2) and 11.4.3(b) from associa-
tivity 12.1.8 of the tensor product. □

14.3.2 Proposition. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 and 𝑀 an 𝑅-complex.
There is an isomorphism,

Hom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀) � Σ−𝑛(K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) .

Proof. A straightforward computation based on the unitor 12.1.5, tensor evalua-
tion 12.1.15(d), 11.4.7, and 2.4.14 yields:

Hom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀) � Hom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑅) ⊗𝑅 𝑀 � Σ−𝑛(K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) . □

The conditions in parts (b) and (d) of the next lemma are interpreted in 14.3.16
and 14.3.28.

14.3.3 Lemma. Let 𝑥 be an element in 𝑅 and 𝑀 an 𝑅-complex. There is an exact
sequence of 𝑅-modules,

· · · −→ H𝑣 (𝑀)
𝑥−−−→ H𝑣 (𝑀) −→ H𝑣 (K𝑅 (𝑥) ⊗𝑅 𝑀) −→ H𝑣−1 (𝑀)

𝑥−−−→ · · · ,

and the following assertions hold.
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(a) There are inequalities,

sup (𝑅/(𝑥) ⊗𝑅 H(𝑀)) ⩽ sup (K𝑅 (𝑥) ⊗𝑅 𝑀) ,
sup Hom𝑅 (𝑅/(𝑥),H(𝑀)) + 1 ⩽ sup (K𝑅 (𝑥) ⊗𝑅 𝑀) ⩽ sup𝑀 + 1 .

In particular, if 𝑥H(𝑀) = 0 holds, then sup (K𝑅 (𝑥) ⊗𝑅 𝑀) = sup𝑀+1 holds.
(b) Assume that 𝑀 is not acyclic and set 𝑠 = sup𝑀 . If 𝑠 < ∞, then one has:

• sup (K𝑅 (𝑥) ⊗𝑅 𝑀) ⩾ 𝑠 holds if one has 𝑅/(𝑥) ⊗𝑅 H𝑠 (𝑀) ≠ 0 .
• sup (K𝑅 (𝑥) ⊗𝑅 𝑀) = 𝑠 + 1 if and only if Hom𝑅 (𝑅/(𝑥),H𝑠 (𝑀)) ≠ 0 .

(c) There are inequalities,

inf (K𝑅 (𝑥) ⊗𝑅 𝑀) ⩽ inf Hom𝑅 (𝑅/(𝑥),H(𝑀)) + 1 ,
inf 𝑀 ⩽ inf (K𝑅 (𝑥) ⊗𝑅 𝑀) ⩽ inf (𝑅/(𝑥) ⊗𝑅 H(𝑀)) .

In particular, if 𝑥H(𝑀) = 0 holds, then one has inf (K𝑅 (𝑥) ⊗𝑅 𝑀) = inf 𝑀 .
(d) Assume that 𝑀 is not acyclic and set 𝑤 = inf 𝑀 . If 𝑤 > −∞, then one has

• inf (K𝑅 (𝑥) ⊗𝑅 𝑀) ⩽ 𝑤 + 1 holds if one has Hom𝑅 (𝑅/(𝑥),H𝑤(𝑀)) ≠ 0 .
• inf (K𝑅 (𝑥) ⊗𝑅 𝑀) = 𝑤 holds if and only if one has 𝑅/(𝑥) ⊗𝑅 H𝑤(𝑀) ≠ 0 .

Proof. The complex K𝑅 (𝑥) ⊗𝑅 𝑀 is by 11.4.5 isomorphic to the mapping cone of the
homothety 𝑥𝑀 , so the asserted exact sequence comes from 4.2.15. The inequalities
in (a) and (c) follow by inspection of this sequence. Indeed, non-vanishing of

Hom𝑅 (𝑅/(𝑥),H𝑣 (𝑀)) � Ker(𝑥H𝑣 (𝑀 ) )

implies H𝑣+1 (K𝑅 (𝑥) ⊗𝑅 𝑀) ≠ 0, and non-vanishing of

𝑅/(𝑥) ⊗𝑅 H𝑣 (𝑀) � Coker(𝑥H𝑣 (𝑀 ) )

implies H𝑣 (K𝑅 (𝑥) ⊗𝑅 𝑀) ≠ 0.
(b): The first assertion is immediate from the first inequality in (a), and the second

assertion follows by inspection of the exact sequence established above.
(d): The first assertion is immediate from the first inequality in (c), and the second

assertion follows by inspection of the exact sequence established above. □

14.3.4 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑦𝑦𝑦 a sequence in 𝑅, and 𝑀 an 𝑅-complex.
(a) If 𝑀 belongs to Df (𝑅), then also the complex K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀 is in Df (𝑅) .
(b) If 𝑀 belongs to Dart (𝑅), then also the complex K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀 is in Dart (𝑅) .
(c) If 𝑀 is derived 𝔞-complete, then also K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀 is derived 𝔞-complete.
(d) If 𝑀 is derived 𝔞-torsion, then also K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀 is derived 𝔞-torsion.

Proof. For a sequence 𝑦𝑦𝑦 = 𝑦 of length one, the assertions (a) and (b) are immediate
from the exact sequence in 14.3.3, and per (11.4.1.2) the general case of either
assertion now follows by induction. Part (c) follows via 14.3.2 from 13.1.31(a), and
part (d) is by commutativity 12.1.7 immediate from 13.3.28(a). □

14.3.5 Lemma. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 a sequence in 𝔞, and 𝑀 an
𝑅-complex. There are (in)equalities,

8-Mar-2024 Draft - use at own risk



14.3 Koszul Homology 669

sup𝑀 + 𝑛 ⩾ sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) ⩾ sup𝑀 and inf (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = inf 𝑀 ,

provided that one of the following conditions is satisfied.
(a) 𝑀 is derived 𝔞-complete.
(b) 𝑀 belongs to Df (𝑅) and 𝔞 is contained in the Jacobson radical of 𝑅 .

Proof. By (11.4.1.2), associativity 12.1.8, and 14.3.4(c,a) it is sufficient to establish
the (in)equalities for a sequence 𝑥𝑥𝑥 = 𝑥 in 𝔞 of length one. If 𝑀 is derived 𝔞-complete,
then 13.1.35 yields

sup𝑀 = sup (𝑅/(𝑥) ⊗𝑅 H(𝑀)) and inf 𝑀 = inf (𝑅/(𝑥) ⊗𝑅 H(𝑀)) ,

and under the assumptions in (b) the same equalities hold by Nakayama’s lemma B.32.
The asserted (in)equalities now follow from 14.3.3(a,c). □

14.3.6 Lemma. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 a sequence in 𝔞, and 𝑀 an
𝑅-complex. If 𝑀 is derived 𝔞-torsion, then there are (in)equalities,

sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = sup𝑀 + 𝑛 and inf 𝑀 + 𝑛 ⩾ inf (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) ⩾ inf 𝑀 .

Proof. By (11.4.1.2), associativity 12.1.8, and 14.3.4(d) it is sufficient to estab-
lish the (in)equalities for a sequence 𝑥𝑥𝑥 = 𝑥 in 𝔞 of length one. By 13.3.32 one
has sup𝑀 = sup Hom𝑅 (𝑅/(𝑥),H(𝑀)) and inf 𝑀 = inf Hom𝑅 (𝑅/(𝑥),H(𝑀)). The
asserted (in)equalities now follow from 14.3.3(a,c). □

The next result shows that for a finitely generated 𝑅-module 𝑀 and a sequence 𝑥𝑥𝑥
in the Jacobson radical of 𝑅 the Koszul homology H(K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) has “no holes.”

14.3.7 Theorem. Let 𝑥𝑥𝑥 be a sequence in the Jacobson radical of 𝑅 and 𝑀 a complex
in Df

⊏⊐ (𝑅) that is not acyclic. Set

𝑠 = sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) and 𝑢 = inf (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) .

If H𝑣 (𝑀) is non-zero for every integer sup𝑀 ⩾ 𝑣 ⩾ inf 𝑀 , then H𝑣 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀)
is non-zero for every integer 𝑠 ⩾ 𝑣 ⩾ 𝑢.

Proof. The equality inf 𝑀 = 𝑢 holds by 14.3.5(b). Assume that H𝑣 (𝑀) is non-zero
for all sup𝑀 ⩾ 𝑣 ⩾ 𝑢. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 and proceed by induction on 𝑛.

For 𝑛 = 1 consider the exact sequence from 14.3.3,

(♭) · · · −→ H𝑣 (𝑀)
𝑥1−−−→ H𝑣 (𝑀) −→ H𝑣 (K𝑅 (𝑥1) ⊗𝑅 𝑀) −→ H𝑣−1 (𝑀)

𝑥1−−−→ · · · .

To prove that H𝑣 (K (𝑥1) ⊗𝑅 𝑀) is non-zero for every integer 𝑠 ⩾ 𝑣 ⩾ 𝑢, it suffices
to argue that if H𝑣 (K (𝑥1) ⊗𝑅 𝑀) ≠ 0 holds for some integer 𝑣 > 𝑢, then one has
H𝑣−1 (K (𝑥1) ⊗𝑅 𝑀) ≠ 0. Thus, assume that H𝑣 (K (𝑥1) ⊗𝑅 𝑀) ≠ 0 holds. First we
notice that the module H𝑣−1 (𝑀) is non-zero. Indeed, in the case H𝑣 (𝑀) = 0 this
follows directly from the exact sequence (♭), and if H𝑣 (𝑀) ≠ 0, then H𝑣−1 (𝑀) is
non-zero by the assumption on 𝑀 as 𝑣 > 𝑢 = inf 𝑀 holds. Now H𝑣−1 (𝑀) is a non-
zero finitely generated 𝑅-module. As 𝑥1 is in the Jacobson radical of 𝑅, Nakayama’s
lemma B.32 shows that the homothety H𝑣−1 (𝑀)

𝑥1−−→ H𝑣−1 (𝑀) is not surjective,
whence the exact sequence (♭) shows that H𝑣−1 (K (𝑥1) ⊗𝑅 𝑀) ≠ 0 holds.

8-Mar-2024 Draft - use at own risk



670 14 Krull Dimension, Depth, and Width

Next let 𝑛 > 1 and set 𝑀 ′ = K (𝑥2, . . . , 𝑥𝑛) ⊗𝑅 𝑀 . As noticed above one has
inf 𝑀 ′ = 𝑢; in particular, 𝑀 ′ is not acyclic. Further, 𝑀 ′ is in Df

⊏⊐ (𝑅) by 14.3.4(a)
and 14.3.5(b). Thus, by the induction hypothesis, the module H𝑣 (𝑀 ′) is non-zero
for every integer sup𝑀 ′ ⩾ 𝑣 ⩾ 𝑢. Now the base case yields H𝑣 (K (𝑥1) ⊗𝑅 𝑀 ′) ≠ 0
for every integer sup (K (𝑥1) ⊗𝑅 𝑀 ′) ⩾ 𝑣 ⩾ 𝑢. It remains to recall the isomorphism
K (𝑥1) ⊗𝑅 𝑀 ′ � K (𝑥𝑥𝑥) ⊗𝑅 𝑀 from 14.3.1. □

14.3.8 Corollary. Let 𝑥𝑥𝑥 be a sequence in the Jacobson radical of 𝑅. The homology
module H𝑣 (K𝑅 (𝑥𝑥𝑥)) is non-zero for every integer sup K𝑅 (𝑥𝑥𝑥) ⩾ 𝑣 ⩾ 0.

Proof. In view of the unitor 12.1.5, the assertion is the special case 𝑀 = 𝑅 of
14.3.7; indeed, the infimum of the complex K𝑅 (𝑥𝑥𝑥) is 0 by 11.4.3. □

14.3.9 Lemma. Let 𝔞 be an ideal in 𝑅 generated by sequences 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 and
𝑦𝑦𝑦 = 𝑦1, . . . , 𝑦𝑚 and let 𝑀 be an 𝑅-complex. There are equalities,

sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) − 𝑛 = sup (K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀) − 𝑚 and

inf (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = inf (K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀) .

Proof. Let 𝑎𝑎𝑎 denote the concatenated sequence 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚. By symme-
try, it suffices to prove that one has inf (K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀) = inf (K𝑅 (𝑎𝑎𝑎) ⊗𝑅 𝑀) and
sup (K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀) = sup (K𝑅 (𝑎𝑎𝑎) ⊗𝑅 𝑀) − 𝑛. By 14.3.1 it is enough to prove the
equalities for 𝑛 = 1, i.e. for 𝑥𝑥𝑥 consisting of a single element 𝑥, in which case one has

K𝑅 (𝑎𝑎𝑎) ⊗𝑅 𝑀 � K𝑅 (𝑥) ⊗𝑅 (K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀) .

By 11.4.6(a) one has 𝑥H(K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀) = 0, so the desired equalities hold by the
second assertions in 14.3.3(a,c). □

Depth

In view of 14.3.9 one can make the following definition.

14.3.10 Definition. Let 𝔞 be an ideal in 𝑅 generated by a sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛.
For an 𝑅-complex 𝑀 the 𝔞-depth is defined as

𝔞-depth𝑅 𝑀 = 𝑛 − sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) .

One says that 𝔞-depth𝑅 𝑀 is finite if 𝔞-depth𝑅 𝑀 < ∞ holds.
For the 𝔞-depth of the 𝑅-module 𝑅 one uses the simplified notation 𝔞-depth 𝑅.

The convention that a complex with 𝔞-depth equal to −∞ has finite 𝔞-depth aligns
with the convetion for homological dimensions.

14.3.11. Let 𝔞 and 𝑀 be as in 14.3.10. Notice that one has

𝔞-depth𝑅 Σ𝑠𝑀 = 𝔞-depth𝑅 𝑀 − 𝑠 for every integer 𝑠 .

Moreover, one has 𝔞-depth𝑅 𝑀 = ∞ if 𝑀 is acyclic.
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14.3.12. For an 𝑅-complex𝑀 one has 0-depth𝑅 𝑀 = − sup𝑀 and 𝑅-depth𝑅 𝑀 = ∞.

14.3.13 Example. Let 𝔭 be a prime ideal in 𝑅. For every ideal 𝔞 not contained
in 𝔭 one has 𝔞-depth𝑅 E𝑅 (𝑅/𝔭) = ∞. Indeed, for 𝑥 ∈ 𝔞 \ 𝔭 it follows from C.17,
4.3.31, and 11.4.5 that the complex K𝑅 (𝑥) ⊗𝑅 E𝑅 (𝑅/𝔭) is contractible, and hence
so is K𝑅 (𝑥𝑥𝑥) ⊗𝑅 E𝑅 (𝑅/𝔭) for any sequence 𝑥𝑥𝑥 that generates 𝔞. In particular, one has
𝔞-depthℤ ℚ = ∞ for every non-zero ideal 𝔞 in ℤ, see B.15.

14.3.14 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; one has

𝔞-depth𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
= inf
𝑢∈𝑈
{𝔞-depth𝑅 𝑀𝑢} = 𝔞-depth𝑅

( ∏
𝑢∈𝑈

𝑀𝑢
)
.

Proof. Let 𝐾 be the Koszul complex on a sequence that generates 𝔞. The functor
𝐾 ⊗𝑅 commutes by 3.1.13 with coproducts; this explains the first equality in the
next display, and the second equality holds by 3.1.11. It remains to invoke the
definition of 𝔞-depth to obtain the first of the asserted equalities.

− sup
(
𝐾 ⊗𝑅

∐
𝑢∈𝑈

𝑀𝑢
)
= − sup

( ∐
𝑢∈𝑈
(𝐾 ⊗𝑅 𝑀𝑢)

)
= − sup

𝑢∈𝑈
{sup (𝐾 ⊗𝑅 𝑀𝑢)}

= inf
𝑢∈𝑈
{− sup (𝐾 ⊗𝑅 𝑀𝑢)} .

Similarly one gets the second equality: By 3.1.30 the functor 𝐾 ⊗𝑅 also commutes
with products; this explains the first equality below and the second holds by 3.1.23.

− sup
(
𝐾 ⊗𝑅

∏
𝑢∈𝑈

𝑀𝑢
)
= − sup

( ∏
𝑢∈𝑈
(𝐾 ⊗𝑅 𝑀𝑢)

)
= − sup

𝑢∈𝑈
{sup (𝐾 ⊗𝑅 𝑀𝑢)}

= inf
𝑢∈𝑈
{− sup (𝐾 ⊗𝑅 𝑀𝑢)} . □

14.3.15 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 an 𝑅-complex, and 𝐹 a faithfully
flat 𝑅-module. There is an equality,

𝔞-depth𝑅 (𝐹 ⊗𝑅 𝑀) = 𝔞-depth𝑅 𝑀 .

In particular, one has 𝔞-depth𝑅 𝐹 = 𝔞-depth 𝑅.

Proof. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence that generates 𝔞. The 1st and 4th equalities
below hold by 14.3.10, the 2nd follows from associativity 12.1.8 and commutativ-
ity 12.1.7, and the 3rd holds by 2.5.7(c).

𝔞-depth𝑅 (𝐹 ⊗𝑅 𝑀) = 𝑛 − sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 (𝐹 ⊗𝑅 𝑀))
= 𝑛 − sup (𝐹 ⊗𝑅 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀))
= 𝑛 − sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀)
= 𝔞-depth𝑅 𝑀 . □
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14.3.16 Theorem. Let 𝔞 be an ideal in 𝑅 and𝑀 an 𝑅-complex. There is an inequality

𝔞-depth𝑅 𝑀 ⩾ − sup𝑀 ,

and the following assertions hold.
(a) If 𝑀 is derived 𝔞-torsion, then one has 𝔞-depth𝑅 𝑀 = − sup𝑀 .
(b) If 𝑀 is not acyclic and belongs to D⊏ (𝑅) with 𝑠 = sup𝑀 , then the following

conditions are equivalent.
(i) 𝔞-depth𝑅 𝑀 = − sup𝑀 .
(ii) Hom𝑅 (𝑅/𝔞,H𝑠 (𝑀)) ≠ 0 i.e. (0 :H𝑠 (𝑀 ) 𝔞) ≠ 0 .
(iii) Γ𝔞 (H𝑠 (𝑀)) ≠ 0 .
(iv) 𝔞 is contained in a prime ideal 𝔭 ∈ Ass𝑅 H𝑠 (𝑀) .

Proof. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence that generates 𝔞. As K𝑅 (𝑥𝑥𝑥) is semi-free
with inf K𝑅 (𝑥𝑥𝑥) ⩾ 0, see 11.4.3(c), one gets from 14.3.2 and 7.6.7:

(⋄)
𝔞-depth𝑅 𝑀 = 𝑛 − sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀)

= − sup RHom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀)
⩾ − sup𝑀 .

(a): If 𝑀 is derived 𝔞-torsion, then 14.3.6 yields

𝔞-depth𝑅 𝑀 = 𝑛 − sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = 𝑛 − (𝑛 + sup𝑀) = − sup𝑀 .

(b): Assume now that 𝑀 belongs to D⊏ (𝑅) with H(𝑀) ≠ 0 and set 𝑠 = sup𝑀 . By
11.4.3(a) one has H0 (K𝑅 (𝑥𝑥𝑥)) � 𝑅/𝔞, so by 7.6.7 equality holds in (⋄) if and only if
Hom𝑅 (𝑅/𝔞,H𝑠 (𝑀)) is non-zero. That is, conditions (i) and (ii) are equivalent. The
equivalence of (ii) and (iii) is known from 11.2.12. If a non-zero homomorphism
𝑅/𝔞 → H𝑠 (𝑀) exists, then there is by C.1 an element 𝑚 ≠ 0 in H𝑠 (𝑀) with
𝔞 ⊆ (0 :𝑅 𝑚). The annihilator (0 :𝑅 𝑚) is contained in a prime ideal in Ass𝑅 H𝑠 (𝑀);
thus, (ii) implies (iv). For the converse notice that if 𝔞 is contained in an associated
prime ideal 𝔭 = (0 :𝑅 𝑚) of H𝑠 (𝑀), then the assignment [1]𝔞 ↦→ 𝑚 defines a
non-zero homomorphism 𝑅/𝔞 → H𝑠 (𝑀). □

For a complex 𝑀 as in part (b) above, the equality 𝔞-depth𝑅 𝑀 = − sup𝑀 holds
precisely if the critical module, Hsup𝑀 (𝑀), has 𝔞-depth zero:

14.3.17 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-module. The next conditions
are equivalent.

(i) 𝔞-depth𝑅 𝑀 = 0 .
(ii) Hom𝑅 (𝑅/𝔞, 𝑀) ≠ 0 i.e. (0 :𝑀 𝔞) ≠ 0 .
(iii) Γ𝔞 (𝑀) ≠ 0 .
(iv) 𝔞 is contained in a prime ideal 𝔭 ∈ Ass𝑅 𝑀 .

Proof. The zero module has infinite 𝔞-depth and no associated prime ideals. The
equivalence of the four conditions now follows from 14.3.16(b). □
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Remark. The 𝔞-depth of a complex is not determined by the 𝔞-depth of its homology modules,
not even for a complex with finitely generated homology modules over a local ring with maximal
ideal 𝔞; see Iyengar [143]. From this perspective the depth invariant as defined in 14.3.10 is
qualitatively different from the Krull dimension 14.2.1. However, 14.3.10 is the definition that
allows for extension to complexes of classic equalities for modules that involve the depth invariant,
such as the Auslander–Buchsbaum Formula 16.4.2.

The next result is supplemented by 17.6.8 which expresses the 𝔞𝔟- and (𝔞 ∩ 𝔟)-
depth of a complex in terms of its 𝔞- and 𝔟-depth.

14.3.18 Proposition. Let 𝔟 ⊆ 𝔞 be ideals in 𝑅 and 𝑀 an 𝑅-complex; one has

𝔟-depth𝑅 𝑀 ⩽ 𝔞-depth𝑅 𝑀 .

Proof. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence that generates 𝔞 such that the subsequence
𝑥𝑥𝑥′ = 𝑥1, . . . , 𝑥𝑚 generates 𝔟. In the next computation, the equalities hold by definition
and the inequality follows, by induction on the quantity 𝑛−𝑚, from the last inequality
in 14.3.3(a).

𝔟-depth𝑅 𝑀 = 𝑚 − sup (K𝑅 (𝑥𝑥𝑥′) ⊗𝑅 𝑀)
⩽ 𝑚 − (𝑚 − 𝑛 + sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀))
= 𝔞-depth𝑅 𝑀 . □

14.3.19 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝑀 an 𝑆-complex.
There is an equality,

𝔞-depth𝑅 𝑀 = 𝔞𝑆-depth𝑆 𝑀 .

Proof. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence that generates 𝔞. The image of 𝑥𝑥𝑥 in 𝑆

generates the ideal 𝔞𝑆. Now 12.1.18 and 11.4.18 yield

K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 � (𝑆 ⊗𝑅 K𝑅 (𝑥𝑥𝑥)) ⊗𝑆 𝑀 � K𝑆 (𝑥𝑥𝑥) ⊗𝑆 𝑀 ,

and the desired equality now follows from 14.3.10. □

The next proposition applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

14.3.20 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ a dis-
tinguished triangle in D(𝑅). With the notation 𝑑′ = 𝔞-depth𝑅 𝑀 ′, 𝑑 = 𝔞-depth𝑅 𝑀 ,
and 𝑑′′ = 𝔞-depth𝑅 𝑀 ′′ there are inequalities,

𝑑′ ⩾ min{𝑑, 𝑑′′ + 1} , 𝑑 ⩾ min{𝑑′, 𝑑′′} , and 𝑑′′ ⩾ min{𝑑′ − 1, 𝑑} .

Proof. Let 𝐾 be the Koszul complex on a sequence that generates 𝔞; it is a semi-free
𝑅-complex, see 11.4.3(c), and hence one has 𝐾 ⊗𝑅 = 𝐾 ⊗L

𝑅
. Application of this

functor to 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ yields a distinguished triangle,

𝐾 ⊗𝑅 𝑀 ′ −→ 𝐾 ⊗𝑅 𝑀 −→ 𝐾 ⊗𝑅 𝑀 ′′ −→ Σ (𝐾 ⊗𝑅 𝑀 ′) .

The inequalities now follow from the definition, 14.3.10, in view of 6.5.20. □
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Width

In view of 14.3.9 one can make the following definition.

14.3.21 Definition. Let 𝔞 be an ideal in 𝑅 generated by a sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛.
For an 𝑅-complex 𝑀 the 𝔞-width is defined as

𝔞-width𝑅 𝑀 = inf (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) .

One says that 𝔞-width𝑅 𝑀 is finite if 𝔞-width𝑅 𝑀 < ∞ holds.

The convention that a complex of 𝔞-width equal to −∞ has finite 𝔞-width aligns
with the convetion for homological dimensions.

14.3.22. Let 𝔞 and 𝑀 be as in 14.3.21. Notice that one has

𝔞-width𝑅 Σ𝑠𝑀 = 𝔞-width𝑅 𝑀 + 𝑠 for every integer 𝑠 .

Moreover, one has 𝔞-width𝑅 𝑀 = ∞ if 𝑀 is acyclic.

14.3.23. For an 𝑅-complex 𝑀 one has 0-width𝑅 𝑀 = inf 𝑀 and 𝑅-width𝑅 𝑀 = ∞.

14.3.24 Example. Let 𝔭 be a prime ideal in 𝑅. For every ideal 𝔞 not contained in 𝔭

one has 𝔞-width𝑅 E𝑅 (𝑅/𝔭) = ∞; see 14.3.13. In particular, one has 𝔞-widthℤ ℚ = ∞
for every non-zero ideal 𝔞 in ℤ, see B.15.

14.3.25 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; one has

𝔞-width𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
= inf
𝑢∈𝑈
{𝔞-width𝑅 𝑀𝑢} = 𝔞-width𝑅

( ∏
𝑢∈𝑈

𝑀𝑢
)
.

Proof. Let 𝐾 be the Koszul complex on a sequence that generates 𝔞. The functor
𝐾 ⊗𝑅 commutes by 3.1.13 with coproducts; this explains the first equality in the
next display, and the second holds by 3.1.11. It remains to invoke the definition of
𝔞-width to obtain the first of the asserted equalities.

inf
(
𝐾 ⊗𝑅

∐
𝑢∈𝑈

𝑀𝑢
)
= inf

( ∐
𝑢∈𝑈
(𝐾 ⊗𝑅 𝑀𝑢)

)
= inf
𝑢∈𝑈
{inf (𝐾 ⊗𝑅 𝑀𝑢)} .

Similarly one gets the second equality: By 3.1.30 the functor 𝐾 ⊗𝑅 also commutes
with products; this explains the first equality below and the second holds by 3.1.23.

inf
(
𝐾 ⊗𝑅

∏
𝑢∈𝑈

𝑀𝑢
)
= inf

( ∏
𝑢∈𝑈
(𝐾 ⊗𝑅 𝑀𝑢)

)
= inf
𝑢∈𝑈
{inf (𝐾 ⊗𝑅 𝑀𝑢)} . □

14.3.26 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 an 𝑅-complex, and 𝐹 a faithfully
flat 𝑅-module. There is an equality,

𝔞-width𝑅 (𝐹 ⊗𝑅 𝑀) = 𝔞-width𝑅 𝑀 .

In particular, if 𝔞 is a proper ideal, then one has 𝔞-width𝑅 𝐹 = 0.
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Proof. Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. The 1st and 4th equalities below hold
by 14.3.21, the 2nd follows from associativity 12.1.8 and commutativity 12.1.7, and
the 3rd holds by 2.5.7(c).

𝔞-depth𝑅 (𝐹 ⊗𝑅 𝑀) = inf (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 (𝐹 ⊗𝑅 𝑀))
= inf (𝐹 ⊗𝑅 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀))
= inf (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀)
= 𝔞-width𝑅 𝑀 .

If 𝔞 is a proper ideal, then 𝔞-width𝑅 𝐹 = inf K𝑅 (𝑥𝑥𝑥) = 0 holds by 11.4.3(a,c). □

14.3.27 Proposition. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥, and 𝑀 be
an 𝑅-complex. The following conditions are equivalent.

(i) 𝔞-depth𝑅 𝑀 is finite.
(ii) K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 is not acyclic.
(iii) 𝔞-width𝑅 𝑀 is finite.

Further, if 𝑀 is a finitely generated module, then conditions (i)–(iii) are equivalent to
(iv) 𝑅/𝔞 ⊗𝑅 𝑀 ≠ 0 i.e. 𝔞𝑀 ≠ 𝑀 .

Proof. The equivalence of conditions (i)–(iii) is immediate from the definitions,
14.3.10 and 14.3.21. Now let 𝑀 be a finitely generated 𝑅-module. It follows from
11.4.4(a) that (iv) implies (ii). Conversely, the Koszul complex is by 11.4.3(c) and
14.2.3 semi-free with Supp𝑅 K𝑅 (𝑥𝑥𝑥) = V(𝔞), so (ii) implies in view of 14.2.4 and
14.1.17 that V(𝔞) ∩ Supp𝑅 𝑀 is non-empty, which per 14.1.19 implies that the
quotient module 𝑀/𝔞𝑀 is non-zero. □

14.3.28 Theorem. Let 𝔞 be an ideal in 𝑅 and𝑀 an 𝑅-complex. There is an inequality

𝔞-width𝑅 𝑀 ⩾ inf 𝑀 ,

and the following assertions hold.
(a) If 𝑀 is derived 𝔞-complete, or if 𝑀 is in Df (𝑅) and 𝔞 is contained in the

Jacobson radical of 𝑅, then one has 𝔞-width𝑅 𝑀 = inf 𝑀 .
(b) If 𝑀 is not acyclic and belongs to D⊐ (𝑅) with 𝑤 = inf 𝑀 , then the following

conditions are equivalent.
(i) 𝔞-width𝑅 𝑀 = inf 𝑀 .
(ii) 𝑅/𝔞 ⊗𝑅 H𝑤(𝑀) ≠ 0 i.e. 𝔞 H𝑤(𝑀) ≠ H𝑤(𝑀) .
(iii) Λ𝔞 (H𝑤(𝑀)) ≠ 0 .
(iv) H𝔞

0 (H𝑤(𝑀)) ≠ 0 .
Moreover, if 𝑀 is in Df

⊐ (𝑅), then conditions (i)–(iv) are equivalent to
(v) 𝔞 is contained in a prime ideal 𝔭 ∈ Supp𝑅 H𝑤(𝑀) .

Proof. Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. As K𝑅 (𝑥𝑥𝑥) by 11.4.3(c) is semi-free
with inf K𝑅 (𝑥𝑥𝑥) ⩾ 0, one gets from 7.6.8:

(★) 𝔞-width𝑅 𝑀 = inf (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = inf (K𝑅 (𝑥𝑥𝑥) ⊗L
𝑅 𝑀) ⩾ inf 𝑀 .
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(a): If𝑀 is derived 𝔞-complete, or if𝑀 is inDf (𝑅) and 𝔞 is contained in the Jacobson
radical of 𝑅, then equality holds in (★) by 14.3.5.

(b): Assume now that 𝑀 belongs to D⊐ (𝑅) with H(𝑀) ≠ 0 and set 𝑤 = inf 𝑀 .
By 11.4.3(a) one has H0 (K𝑅 (𝑥𝑥𝑥)) � 𝑅/𝔞, so by 7.6.8 equality holds in (★) if and
only if 𝑅/𝔞 ⊗𝑅 H𝑤(𝑀) is non-zero. That is, conditions (i) and (ii) are equivalent; the
equivalence of conditions (ii)–(iv) is already known from 11.1.30 and 11.3.14.

Under the additional assumption that 𝑀 has degreewise finitely generated homo-
logy, conditions (ii) and (v) are equivalent by 14.1.19. □

For a complex 𝑀 as in part (b) above, the equality 𝔞-width𝑅 𝑀 = inf 𝑀 holds
precisely if the critical module, Hinf 𝑀 (𝑀), has 𝔞-width zero:

14.3.29 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-module. The following
conditions are equivalent.

(i) 𝔞-width𝑅 𝑀 = 0 .
(ii) 𝑅/𝔞 ⊗𝑅 𝑀 ≠ 0 i.e. 𝔞𝑀 ≠ 𝑀 .
(iii) Λ𝔞 (𝑀) ≠ 0 .
(iv) H𝔞

0 (𝑀) ≠ 0 .
Moreover, if 𝑀 is finitely generated, then conditions (i)–(iv) are equivalent to

(v) 𝔞 is contained in a prime ideal 𝔭 ∈ Supp𝑅 𝑀 .

Proof. The zero module has infinite 𝔞-width and empty classic support. The equi-
valence of the conditions now follows from 14.3.28(b). □

The next result is supplemented by 17.6.8 which expresses the 𝔞𝔟- and (𝔞 ∩ 𝔟)-
width of a complex in terms of its 𝔞- and 𝔟-width.

14.3.30 Proposition. Let 𝔟 ⊆ 𝔞 be ideals in 𝑅 and 𝑀 an 𝑅-complex; one has

𝔟-width𝑅 𝑀 ⩽ 𝔞-width𝑅 𝑀 .

Proof. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence that generates 𝔞 such that the subsequence
𝑥𝑥𝑥′ = 𝑥1, . . . , 𝑥𝑚 generates 𝔟. In the next computation, the equalities hold by definition
and the inequality follows, by induction on the quantity 𝑛 − 𝑚, from 14.3.3(c).

𝔟-width𝑅 𝑀 = inf (K𝑅 (𝑥𝑥𝑥′) ⊗𝑅 𝑀)
⩽ inf (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀)
= 𝔞-width𝑅 𝑀 . □

14.3.31 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝑀 an 𝑆-complex.
There is an equality,

𝔞-width𝑅 𝑀 = 𝔞𝑆-width𝑆 𝑀 .

Proof. Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. The image of 𝑥𝑥𝑥 in 𝑆 generates the ideal
𝔞𝑆. Now 12.1.18 and 11.4.18 yield

K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 � (𝑆 ⊗𝑅 K𝑅 (𝑥𝑥𝑥)) ⊗𝑆 𝑀 � K𝑆 (𝑥𝑥𝑥) ⊗𝑆 𝑀 ,

and the desired equality now follows from 14.3.21. □
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The next proposition applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

14.3.32 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ a dis-
tinguished triangle in D(𝑅). With the notation 𝑤′ = 𝔞-width𝑅 𝑀 ′, 𝑤 = 𝔞-width𝑅 𝑀 ,
and 𝑤′′ = 𝔞-width𝑅 𝑀 ′′ there are inequalities,

𝑤′ ⩾ min{𝑤, 𝑤′′ − 1} , 𝑤 ⩾ min{𝑤′, 𝑤′′} , and 𝑤′′ ⩾ min{𝑤′ + 1, 𝑤} .

Proof. Let 𝐾 be the Koszul complex on a sequence that generates 𝔞; it is a semi-free
𝑅-complex, see 11.4.3(c), and hence one has 𝐾 ⊗𝑅 = 𝐾 ⊗L

𝑅
. Application of this

functor to 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ yields a distinguished triangle,

𝐾 ⊗𝑅 𝑀 ′ −→ 𝐾 ⊗𝑅 𝑀 −→ 𝐾 ⊗𝑅 𝑀 ′′ −→ Σ (𝐾 ⊗𝑅 𝑀 ′) .

The inequalities now follow from the definition, 14.3.21, in view of 6.5.20. □

Exercises

E 14.3.1 Let 𝑦𝑦𝑦 be a sequence in 𝑅 and T a triangulated subcategory of D(𝑅) . Show that for
every object 𝑀 ∈ T one has K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀 ∈ T.

E 14.3.2 Let 𝔞 be an ideal in 𝑅 generated by a sequence 𝑥𝑥𝑥. Show that one has 𝔞-depth𝑅 K𝑅 (𝑥𝑥𝑥 ) =
− sup K𝑅 (𝑥𝑥𝑥 ) .

E 14.3.3 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that if 𝑀 has finite 𝔞-depth, then
one has 𝔞-depth𝑅 𝑀 = 𝔞-depth𝑅 𝑀Ě𝑛 for 𝑛 ≪ 0.

E 14.3.4 Let 𝑅 be an integral domain and 𝔞 ≠ 0 an ideal in 𝑅. Show that 𝔞-depth 𝑅 ⩾ 1 holds.
E 14.3.5 Let 𝔞 be an ideal in 𝑅 and𝑀 an 𝑅-complex of finite 𝔞-depth. Let 𝑥𝑥𝑥 and 𝑥𝑥𝑥′ be sequences

that generate 𝔞 and set 𝑠 = sup (K𝑅 (𝑥𝑥𝑥 ) ⊗𝑅 𝑀 ) and 𝑠′ = sup (K𝑅 (𝑥𝑥𝑥′ ) ⊗𝑅 𝑀 ) . Show
that the modules H𝑠 (K𝑅 (𝑥𝑥𝑥 ) ⊗𝑅 𝑀 ) and H𝑠′ (K𝑅 (𝑥𝑥𝑥′ ) ⊗𝑅 𝑀 ) are isomorphic.

E 14.3.6 Let 𝔞 be an ideal in 𝑅. Show that the 𝑅-complexes with 𝔞-depth greater than −∞ form
a triangulated subcategory of D(𝑅) .

E 14.3.7 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that 𝔞-depth𝑅 𝑀 = − sup𝑀 holds
under each of the following conditions: (a) One has sup𝑀 ∈ ℤ and Hsup𝑀 (𝑀 ) is
𝔞-torsion. (b) One has sup𝑀 = ∞ and H𝑣 (𝑀 ) is 𝔞-torsion for 𝑣 ≫ 0.

E 14.3.8 Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛, and 𝑀 an 𝑅-complex.
Show that if 𝑀 has finite 𝔞-depth, then one has 𝔞-depth𝑅 𝑀 + 𝔞-width𝑅 𝑀 ⩽ 𝑛.

E 14.3.9 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex with sup𝑀 = ∞. Show that if 𝑀 is
derived 𝔞-complete, or if 𝑀 is in Df (𝑅) and 𝔞 is contained in the Jacobson radical of
𝑅, then 𝔞-depth𝑅 𝑀 = −∞ holds.

E 14.3.10 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that if 𝑀 has finite 𝔞-width, then
one has 𝔞-width𝑅 𝑀 = 𝔞-width𝑅 𝑀Ď𝑛 for 𝑛 ≫ 0.

E 14.3.11 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex with inf 𝑀 = −∞. Show that if 𝑀 is
derived 𝔞-torsion, then 𝔞-width𝑅 𝑀 = −∞ holds.

E 14.3.12 Let 𝔞 be an ideal in 𝑅. Show that the 𝑅-complexes with 𝔞-width greater than −∞ form
a triangulated subcategory of D(𝑅) .

E 14.3.13 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that 𝔞-width𝑅 𝑀 = inf 𝑀 holds
under each of the following conditions: (a) One has inf 𝑀 ∈ ℤ and Hinf 𝑀 (𝑀 ) is
𝔞-complete. (b) One has inf 𝑀 = −∞ and H𝑣 (𝑀 ) is 𝔞-complete for 𝑣 ≪ 0.
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E 14.3.14 By convention, the empty sequence of elements in 𝑅 generates the zero ideal, and
the Koszul complex on the empty sequence is 𝑅, cf. 2.1.25. Show that 14.3.10 and
14.3.21 if extended to include the empty sequence would correctly define the 0-depth
and 0-width of complexes.

14.4 Depth and Width via Local Cohomology and Homology

Synopsis. Local cohomology H𝔞 vs. 𝔞-depth; local homology H𝔞 vs. 𝔞-width; finiteness of 𝔞-depth
and 𝔞-width; regular sequence; 𝔞-depth vs. maximal length of regular sequence in 𝔞.

An 𝑅-complex has the same 𝔞-depth and 𝔞-width as its derived 𝔞-completion and
derived 𝔞-torsion complexes.

14.4.1 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. One has

𝔞-depth𝑅 LΛ𝔞 (𝑀) = 𝔞-depth𝑅 𝑀 = 𝔞-depth𝑅 RΓ𝔞 (𝑀) and
𝔞-width𝑅 LΛ𝔞 (𝑀) = 𝔞-width𝑅 𝑀 = 𝔞-width𝑅 RΓ𝔞 (𝑀) .

Proof. Let 𝐾 be the Koszul complex on a sequence that generates 𝔞. As 𝐾 is derived
𝔞-torsion, see 13.3.31, there are by 13.4.20(c) isomorphisms,

𝐾 ⊗L
𝑅 LΛ𝔞 (𝑀) ≃ 𝐾 ⊗L

𝑅 𝑀 ≃ 𝐾 ⊗L
𝑅 RΓ𝔞 (𝑀) .

The equalities now follow from the definitions of 𝔞-depth and 𝔞-width. □

The next result is a “true” lemma: It is crucial for the proof of 14.4.3, from which
one can derive that the inequality in the lemma actually holds under the weaker
assumption, cf. 13.4.9, that the complex 𝐾 is derived 𝔞-torsion; see 14.4.6.

14.4.2 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝐾 and 𝑀 be 𝑅-complexes. If 𝐾 is not
acyclic, belongs to D⊏⊐ (𝑅), and 𝔞 H(𝐾) = 0 holds, then there is an inequality,

− sup RHom𝑅 (𝐾, 𝑀) ⩾ inf 𝐾 − sup RHom𝑅 (𝑅/𝔞, 𝑀) .

Proof. By 7.6.9 one has

− sup RHom𝑅 (𝐾, 𝑀) ⩾ inf{− sup RHom𝑅 (H𝑣 (𝐾), 𝑀) + 𝑣 | 𝑣 ∈ ℤ} ,

so it suffices to prove that − sup RHom𝑅 (𝐻, 𝑀) ⩾ − sup RHom𝑅 (𝑅/𝔞, 𝑀) holds for
every 𝑅-module 𝐻 with 𝔞𝐻 = 0. Such a module is an 𝑅/𝔞-module, so 12.3.36 yields

RHom𝑅 (𝐻, 𝑀) ≃ RHom𝑅/𝔞 (𝐻,RHom𝑅 (𝑅/𝔞, 𝑀)) .

Now 7.6.7 yields the asserted inequality. □

14.4.3 Theorem. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥, and 𝑀 be an
𝑅-complex. There are equalities,

𝔞-depth𝑅 𝑀 = − sup Hom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀)
= − sup RHom𝑅 (𝑅/𝔞, 𝑀)
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= − sup RΓ𝔞 (𝑀) .

In particular, one has

𝔞-depth𝑅 𝑀 = inf{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑅/𝔞, 𝑀) ≠ 0} = inf{𝑚 ∈ ℤ | H𝑚𝔞 (𝑀) ≠ 0} .

Proof. Recall from 11.4.3(c) and 11.4.6(a) that K𝑅 (𝑥𝑥𝑥) is a bounded complex with
inf K𝑅 (𝑥𝑥𝑥) ⩾ 0 and 𝔞 H(K𝑅 (𝑥𝑥𝑥)) = 0. In the next computation, the first equality is im-
mediate from 14.3.2 and 2.5.5; the second equality holds by 13.3.24 and 13.4.20(b).
The first inequality holds by 14.4.2, and the second inequality holds by 7.6.7.

𝔞-depth𝑅 𝑀 = − sup Hom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀)
⩾ − sup RHom𝑅 (𝑅/𝔞, 𝑀)
= − sup RHom𝑅 (𝑅/𝔞,RΓ𝔞 (𝑀))
⩾ − sup RΓ𝔞 (𝑀) .

Finally, it suffices to recall from 13.4.7, 14.3.16(a) and 14.4.1 that one has

− sup RΓ𝔞 (𝑀) = 𝔞-depth𝑅 RΓ𝔞 (𝑀) = 𝔞-depth𝑅 𝑀 . □

14.4.4 Corollary. Let 𝔞 and 𝔟 be ideals in 𝑅 and 𝑀 an 𝑅-complex. If
√
𝔞 =
√
𝔟

holds, then one has 𝔞-depth𝑅 𝑀 = 𝔟-depth𝑅 𝑀 .

Proof. In view of 13.3.2 the equality follows immediately from 14.4.3. □

14.4.5 Proposition. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥, and 𝑀 be
an 𝑅-complex. If 𝑑 = 𝔞-depth𝑅 𝑀 is an integer, then there are isomorphisms,

Ext𝑑𝑅 (𝑅/𝔞, 𝑀) � Hom𝑅 (𝑅/𝔞,H𝑑𝔞 (𝑀)) � Ext𝑑𝑅 (K
𝑅 (𝑥𝑥𝑥), 𝑀) .

Proof. Let 𝐾 denote the complex 𝑅/𝔞 or K𝑅 (𝑥𝑥𝑥). In the computation below, the first
isomorphism follows from the definition, 7.3.23, of Ext. As𝐾 is derived 𝔞-torsion, see
13.3.24 and 13.3.31, the second isomorphism below follows from 13.4.20(b). Note
that one has inf 𝐾 = 0 and H0 (𝐾) � 𝑅/𝔞 by 11.4.3, and further sup RΓ𝔞 (𝑀) = −𝑑
and H−𝑑 (RΓ𝔞 (𝑀)) � H𝑑𝔞 (𝑀) by 14.4.3 and 11.3.20. Hence, the third isomorphism
below follows from 7.6.7.

Ext𝑑𝑅 (𝐾, 𝑀) � H−𝑑 (RHom𝑅 (𝐾, 𝑀))
� H−𝑑 (RHom𝑅 (𝐾,RΓ𝔞 (𝑀)))
� Hom𝑅 (𝑅/𝔞,H𝑑𝔞 (𝑀)) . □

14.4.6 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes of finite
𝔞-depth. If 𝑀 is derived 𝔞-torsion or 𝑁 is derived 𝔞-complete, then one has

− sup RHom𝑅 (𝑀, 𝑁) ⩾ inf RΓ𝔞 (𝑀) + 𝔞-depth𝑅 𝑁 .

Proof. Assume first that 𝑀 is derived 𝔞-torsion so that 𝑀 ≃ RΓ𝔞 (𝑀) holds. One
can assume that 𝑀 belongs to D⊐ (𝑅), otherwise the inequality is trivial. Similarly,
the inequality holds trivially if 𝔞-depth𝑅 𝑁 = −∞, so one can per 14.4.3 assume that
RΓ𝔞 (𝑁) belongs to D⊏ (𝑅). From 13.4.20(b), 7.6.7, and 14.4.3 one now gets
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− sup RHom𝑅 (𝑀, 𝑁) = − sup RHom𝑅 (𝑀,RΓ𝔞 (𝑁))
⩾ inf 𝑀 − sup RΓ𝔞 (𝑁)
= inf RΓ𝔞 (𝑀) + 𝔞-depth𝑅 𝑁 .

Assume now that the complex 𝑁 is derived 𝔞-complete. By 13.4.20(a) there is an
equality sup RHom𝑅 (𝑀, 𝑁) = sup RHom𝑅 (RΓ𝔞 (𝑀), 𝑁), and the complex RΓ𝔞 (𝑀)
is by 13.4.7 and 14.4.1 derived 𝔞-torsion of finite 𝔞-depth. As RΓ𝔞 is idempotent,
see 13.4.1(b), the asserted equality follows from the one proved above. □

Remark. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. Under certain assumptions
there are inequalities 𝔞-depth𝑅 RHom𝑅 (𝑀, 𝑁 ) ⩾ − sup RHom𝑅 (𝑀, 𝑁 ) ⩾ inf 𝑀 − sup 𝑁 ,
see 14.3.16 and 7.6.7, and 𝔞-depth𝑅 RHom𝑅 (𝑀, 𝑁 ) ⩾ 𝔞-width𝑅 RΓ𝔞 (𝑀 ) + 𝔞-depth𝑅 𝑁 ⩾
inf RΓ𝔞 (𝑀 ) − sup 𝑁 , see E 14.4.1, 14.4.1, 14.3.28, and 14.3.16. The inequalitites in 14.4.6 and
E 14.4.3 can be seen as hybrids of these inequalities.

Width and Vanishing of Local Homology

The next lemma has a fate similar to 14.4.2: It is crucial for the proof of 14.4.8,
from which one can derive that the inequality in the lemma actually holds under the
weaker assumption, cf. 13.4.9, that the complex 𝐾 is derived 𝔞-torsion; see 14.4.11.

14.4.7 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝐾 and 𝑀 be 𝑅-complexes. If 𝐾 is not
acyclic, belongs to D⊏⊐ (𝑅), and 𝔞 H(𝐾) = 0 holds, then there is an inequality,

inf (𝐾 ⊗L
𝑅 𝑀) ⩾ inf 𝐾 + inf (𝑅/𝔞 ⊗L

𝑅 𝑀) .

Proof. By 7.6.10 one has

inf (𝐾 ⊗L
𝑅 𝑀) ⩾ inf{inf (H𝑣 (𝐾) ⊗L

𝑅 𝑀) + 𝑣 | 𝑣 ∈ ℤ} ,

so it is sufficient to prove that inf (𝐻 ⊗L
𝑅
𝑀) ⩾ inf (𝑅/𝔞 ⊗L

𝑅
𝑀) holds for every

𝑅-module 𝐻 with 𝔞𝐻 = 0. Such a module is an 𝑅/𝔞-module, so 12.3.31 yields

𝐻 ⊗L
𝑅 𝑀 ≃ 𝐻 ⊗L

𝑅/𝔞 (𝑅/𝔞 ⊗
L
𝑅 𝑀) .

Now 7.6.8 yields the asserted inequality. □

14.4.8 Theorem. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛,
and 𝑀 be an 𝑅-complex. There are equalities,

𝔞-width𝑅 𝑀 = 𝑛 + inf Hom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀)
= inf (𝑅/𝔞 ⊗L

𝑅 𝑀)
= inf LΛ𝔞 (𝑀) .

In particular, one has

𝔞-width𝑅 𝑀 = inf{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝑅/𝔞, 𝑀) ≠ 0} = inf{𝑚 ∈ ℤ | H𝔞
𝑚 (𝑀) ≠ 0} .
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Proof. The first of the asserted equalities is immediate from 14.3.2 and 2.5.5. Recall
from 11.4.3(c) and 11.4.6(a) that K𝑅 (𝑥𝑥𝑥) is a bounded complex with inf K𝑅 (𝑥𝑥𝑥) ⩾ 0
and 𝔞 H(K𝑅 (𝑥𝑥𝑥)) = 0. Thus, the first inequality below follows from 14.4.7; the
equality holds by 13.3.24 and 13.4.20(c), and the last inequality holds by 7.6.8.

𝔞-width𝑅 𝑀 ⩾ inf (𝑅/𝔞 ⊗L
𝑅 𝑀) = inf (𝑅/𝔞 ⊗L

𝑅 LΛ𝔞 (𝑀)) ⩾ inf LΛ𝔞 (𝑀) .

Finally, it suffices to recall from 13.4.2, 14.3.28(a), and 14.4.1 that one has

inf LΛ𝔞 (𝑀) = 𝔞-width𝑅 LΛ𝔞 (𝑀) = 𝔞-width𝑅 𝑀 . □

14.4.9 Corollary. Let 𝔞 and 𝔟 be ideals in 𝑅 and 𝑀 be an 𝑅-complex. If
√
𝔞 =
√
𝔟

holds, then one has 𝔞-width𝑅 𝑀 = 𝔟-width𝑅 𝑀 .

Proof. In view of 13.1.3 the equality follows immediately from 14.4.8. □

14.4.10 Proposition. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥, and 𝑀 be
an 𝑅-complex. If 𝑤 = 𝔞-width𝑅 𝑀 is an integer, then there are isomorphisms,

Tor𝑅𝑤 (𝑅/𝔞, 𝑀) � 𝑅/𝔞 ⊗𝑅 H𝔞
𝑤(𝑀) � Tor𝑅𝑤 (K𝑅 (𝑥𝑥𝑥), 𝑀) .

Proof. Let 𝐾 denote the complex 𝑅/𝔞 or K𝑅 (𝑥𝑥𝑥). In the computation below, the first
isomorphism follows from the definition, 7.4.18, of Tor. As 𝐾 is derived 𝔞-torsion,
see 13.3.24 and 13.3.31, the second isomorphism below follows from 13.4.20(c).
Note that one has inf 𝐾 = 0 and H0 (𝐾) � 𝑅/𝔞 by 11.4.3, and further inf LΛ𝔞 (𝑀) = 𝑤
and H𝑤(LΛ𝔞 (𝑀)) � H𝔞

𝑤(𝑀) by 14.4.8 and 11.3.6. Hence, the third isomorphism
below follows from 7.6.8.

Tor𝑅𝑤 (𝐾, 𝑀) � H𝑤(𝐾 ⊗L
𝑅 𝑀) � H𝑤(𝐾 ⊗L

𝑅 LΛ𝔞 (𝑀)) � 𝑅/𝔞 ⊗𝑅 H𝔞
𝑤(𝑀) . □

14.4.11 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes of finite
𝔞-width. If 𝑀 or 𝑁 is derived 𝔞-torsion, then one has

inf (𝑀 ⊗L
𝑅 𝑁) ⩾ inf RΓ𝔞 (𝑀) + 𝔞-width𝑅 𝑁 .

Proof. Assume first that 𝑀 is derived 𝔞-torsion, so that 𝑀 ≃ RΓ𝔞 (𝑀) holds. One
can assume that 𝑀 belongs to D⊐ (𝑅), otherwise the inequality is trivial. Similarly,
the inequality holds trivially if 𝔞-width𝑅 𝑁 = −∞, so one can per 14.4.8 assume that
LΛ𝔞 (𝑁) belongs to D⊐ (𝑅). From 13.4.20(c), 7.6.8, and 14.4.8 one now gets

inf (𝑀 ⊗L
𝑅 𝑁) = inf (𝑀 ⊗L

𝑅 LΛ𝔞 (𝑁))
⩾ inf 𝑀 + inf LΛ𝔞 (𝑁)
= inf RΓ𝔞 (𝑀) + 𝔞-width𝑅 𝑁 .

If𝑁 is derived 𝔞-torsion, then 13.4.20(c) yields inf (𝑀 ⊗L
𝑅
𝑁) = inf (RΓ𝔞 (𝑀) ⊗L

𝑅
𝑁),

and the complex RΓ𝔞 (𝑀) is per 13.4.7 and 14.4.1 derived 𝔞-torsion of finite 𝔞-width.
As RΓ𝔞 is idempotent, see 13.4.1(b), the asserted equality follows from the one proved
above. □
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Remark. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. Under certain assumptions there
are inequalities 𝔞-width𝑅 (𝑀 ⊗L

𝑅
𝑁 ) ⩾ inf (𝑀 ⊗L

𝑅
𝑁 ) ⩾ inf 𝑀+ inf 𝑁 , see 14.3.28 and 7.6.8, and

𝔞-width𝑅 (𝑀 ⊗L
𝑅
𝑁 ) ⩾ 𝔞-width𝑅 RΓ𝔞 (𝑀 ) + 𝔞-width𝑅 𝑁 ⩾ inf 𝑀 + inf 𝑁 , see E 14.4.2, 14.4.1,

and 14.3.28. The inequality in 14.4.11 can be seen as a hybrid of these inequalities.

Depth vs. Width

14.4.12 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. The following
conditions are equivalent.

(i) RHom𝑅 (𝑅/𝔞, 𝑀) is not acyclic.
(ii) RΓ𝔞 (𝑀) is not acyclic.
(iii) 𝔞-depth𝑅 𝑀 is finite.
(iv) 𝑅/𝔞 ⊗L

𝑅
𝑀 is not acyclic.

(v) LΛ𝔞 (𝑀) is not acyclic.
(vi) 𝔞-width𝑅 𝑀 is finite.

Proof. The equivalence of these conditions is immediate from 14.4.3 and 14.4.8 in
view of 14.3.27. □

The next result compares to 11.1.30 and 11.2.12.

14.4.13 Corollary. Let 𝔞 be an ideal in 𝑅.
(a) Let 𝐹 be a semi-flat 𝑅-complex. The complex 𝑅/𝔞 ⊗𝑅 𝐹 is acyclic if and only

if Λ𝔞 (𝐹) is acyclic.
(b) Let 𝐼 be a semi-injective 𝑅-complex. The complex Hom𝑅 (𝑅/𝔞, 𝐼) is acyclic if

and only if Γ𝔞 (𝐼) is acyclic.

Proof. Part (a) follows per 13.1.15 from the equivalence of conditions (iv) and (v)
in 14.4.12; part (b) follows from the equivalence of conditions (i) and (ii). □

14.4.14 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝐸 a faithfully injective 𝑅-module, and
𝑀 an 𝑅-complex. The following equalities hold.

𝔞-depth𝑅 𝑀 = 𝔞-width𝑅 Hom𝑅 (𝑀, 𝐸) and
𝔞-width𝑅 𝑀 = 𝔞-depth𝑅 Hom𝑅 (𝑀, 𝐸) .

Proof. Let 𝐾 be the Koszul complex on a sequence that generates 𝔞. By 2.5.7(b),
and homomorphism evaluation 12.1.16(c) one has

− sup Hom𝑅 (𝐾, 𝑀) = inf Hom𝑅 (Hom𝑅 (𝐾, 𝑀), 𝐸) = inf (𝐾 ⊗𝑅 Hom𝑅 (𝑀, 𝐸)) .

Now the first equality follows from 14.4.3 and the definition, 14.3.21, of 𝔞-width.
The second equality follows similarly from 2.5.7(b) and adjunction 12.1.10. □
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Regular Sequences

14.4.15 Proposition. Let 𝔞 be an ideal in 𝑅 and𝑀 an 𝑅-complex. For every sequence
𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 in 𝔞 one has

𝔞-depth𝑅 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = 𝔞-depth𝑅 𝑀 − 𝑛 and

𝔞-width𝑅 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = 𝔞-width𝑅 𝑀 .

Proof. Let 𝑦𝑦𝑦 = 𝑦1, . . . , 𝑦𝑚 be a sequence that generates 𝔞 and denote by 𝑎𝑎𝑎 the
concatenated sequence 𝑦1, . . . , 𝑦𝑚, 𝑥1, . . . , 𝑥𝑛. Since this sequence also generates 𝔞,
the next equalities hold by 14.3.9,

(⋄)
sup (K𝑅 (𝑎𝑎𝑎) ⊗𝑅 𝑀) = sup (K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀) + 𝑛 and
inf (K𝑅 (𝑎𝑎𝑎) ⊗𝑅 𝑀) = inf (K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀) .

By 14.3.1 one has K𝑅 (𝑎𝑎𝑎) ⊗𝑅 𝑀 � K𝑅 (𝑦𝑦𝑦) ⊗𝑅 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀), so the second equality
in (⋄) immediately yields the second of the asserted equalities. The first equality in
(⋄) explains the third equality in the computation below. The remaining equalities
hold by the definition of 𝔞-depth and 14.3.1.

𝔞-depth𝑅 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = 𝑚 − sup (K𝑅 (𝑦𝑦𝑦) ⊗𝑅 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀))
= 𝑚 − sup (K𝑅 (𝑎𝑎𝑎) ⊗𝑅 𝑀)
= 𝑚 − sup (K𝑅 (𝑦𝑦𝑦) ⊗𝑅 𝑀) − 𝑛
= 𝔞-depth𝑅 𝑀 − 𝑛 . □

14.4.16 Definition. Let 𝑀 be an 𝑅-module. An element 𝑥 ∈ 𝑅 is called 𝑀-regular,
or regular for 𝑀 , if the homothety 𝑥𝑀 is injective but not surjective. A sequence
𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 in 𝑅 is called 𝑀-regular, or regular for 𝑀 , if the element 𝑥1 is
𝑀-regular and the element 𝑥𝑖 is 𝑀/(𝑥1, . . . , 𝑥𝑖−1)𝑀-regular for every 𝑖 ∈ {2, . . . , 𝑛}.

Note that no element is regular for the zero module and 0 is regular for no module.
Remark. The notion of regular elements for modules extends to complexes [53, 54].

14.4.17 Example. An element in 𝑅 is 𝑅-regular if and only if it is neither a unit nor a
zerodivisor. Thus, if 𝑅 is an integral domain, then every non-unit 𝑥 ≠ 0 is 𝑅-regular.

14.4.18 Proposition. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 and 𝑀 an 𝑅-module.
The following conditions are equivalent.

(i) 𝑥𝑥𝑥 is 𝑀-regular.
(ii) (𝑥𝑥𝑥)𝑀 ≠ 𝑀 holds and for every 𝑖 ∈ {1, . . . , 𝑛} there is an isomorphism inD(𝑅) ,

K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀 ≃ 𝑀/(𝑥1, . . . , 𝑥𝑖)𝑀 .

(iii) One has H0 (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) ≠ 0 and for every 𝑖 ∈ {1, . . . , 𝑛} the 𝑅-complex
H(K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀) is concentrated in degree 0 .
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Furthermore, if these conditions are satisfied and 𝔞 is an ideal in 𝑅 that contains 𝑥𝑥𝑥,
then for every 𝑖 ∈ {1, . . . , 𝑛} one has

𝔞-depth𝑅 𝑀/(𝑥1, . . . , 𝑥𝑖)𝑀 = 𝔞-depth𝑅 𝑀 − 𝑖 .

Proof. Recall from 11.4.4(a) that for every 𝑖 ∈ {1, . . . , 𝑛} there is an isomorphism,

(★) H0 (K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀) � 𝑀/(𝑥1, . . . , 𝑥𝑖)𝑀 .

The equivalence of conditions (ii) and (iii) follows from these isomorphisms com-
bined with 7.3.29. To prove the equivalence of (i) and (ii) we proceed by induction
on the length, 𝑛, of the sequence 𝑥𝑥𝑥. If 𝑛 = 1, i.e. 𝑥𝑥𝑥 = 𝑥, then the complex

K𝑅 (𝑥) ⊗𝑅 𝑀 � 0 −→ 𝑀
𝑥−−−→ 𝑀 −→ 0

is concentrated in degrees 1 and 0 with H0 (K𝑅 (𝑥) ⊗𝑅 𝑀) � 𝑀/(𝑥)𝑀 , see (★). Thus,
𝑥 is 𝑀-regular if and only if one has H1 (K𝑅 (𝑥) ⊗𝑅 𝑀) = 0 and 𝑀/(𝑥)𝑀 ≠ 0, which
by 7.3.29 is tantamount to K𝑅 (𝑥) ⊗𝑅 𝑀 ≃ H0 (K𝑅 (𝑥) ⊗𝑅 𝑀) in D(𝑅).

Now let 𝑛 > 1 and denote by 𝑥𝑥𝑥′ the sequence 𝑥1, . . . , 𝑥𝑛−1; by 14.3.1 one has

(⋄) K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 � K𝑅 (𝑥𝑛) ⊗𝑅 (K𝑅 (𝑥𝑥𝑥′) ⊗𝑅 𝑀) .

If 𝑥𝑥𝑥 is 𝑀-regular, then 𝑥𝑥𝑥′ is 𝑀-regular, so by the induction hypothesis it suffices
to show that one has (𝑥𝑥𝑥)𝑀 ≠ 𝑀 and K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 ≃ 𝑀/(𝑥𝑥𝑥)𝑀 . By (⋄) and the
induction hypothesis there is an isomorphism,

K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 ≃ K𝑅 (𝑥𝑛) ⊗𝑅 𝑀/(𝑥𝑥𝑥′)𝑀 ,

in D(𝑅), so the desired conclusion follows from the base case as 𝑥𝑛 is regular for
the module 𝑀/(𝑥𝑥𝑥′)𝑀 .

Conversely, if one has (𝑥𝑥𝑥)𝑀 ≠ 𝑀 and K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀 ≃ 𝑀/(𝑥1, . . . , 𝑥𝑖)𝑀
for all 𝑖 ∈ {1.. . . , 𝑛}, then 𝑥𝑥𝑥′ is 𝑀-regular by the induction hypothesis and 𝑥𝑛 is per
(⋄) regular for 𝑀/(𝑥𝑥𝑥′)𝑀 by the base case. Thus 𝑥𝑥𝑥 is 𝑀-regular.

The last assertion follows immediately from 14.4.15. □

14.4.19 Corollary. Let 𝑥𝑥𝑥 be a sequence in 𝑅. If 𝑥𝑥𝑥 is 𝑅-regular, then the Koszul com-
plex K𝑅 (𝑥𝑥𝑥) is a semi-free replacement of 𝑅/(𝑥𝑥𝑥); in particular, pd𝑅 𝑅/(𝑥𝑥𝑥) is finite.

Proof. The assertions follow immediately from 11.4.3(c) and 14.4.18. □

Per 14.4.18 factoring out a regular element lowers the depth, but that property
does not characterize regular elements.

14.4.20 Example. Let 𝕜 be a field and set𝑄 = 𝕜 [𝑥1, 𝑥2] and 𝑅 = 𝑄/(𝑥1𝑥2). Consider
the complex 𝐾 = K𝑄 (𝑥1, 𝑥2) ⊗𝑄 𝑅 = K𝑅 (𝑥1, 𝑥2), see 11.4.18, where 𝑥1 and 𝑥2 by a
standard abuse of notation also denote the cosets in 𝑅 of the indeterminates. As𝑄 is
a unique factorization domain, it is simple to verify that H2 (𝐾) = 0 and H1 (𝐾) ≠ 0
hold, see 11.4.2. With 𝔞 = (𝑥1, 𝑥2) ⊆ 𝑄 one thus has 𝔞-depth𝑄 𝑅 = 2−sup𝐾 = 1. As
𝑥2

1 ∈ 𝑄 annihilates the element 𝑥2 of the𝑄-module 𝑅 it is not 𝑅-regular. Nevertheless,
the 𝔞-depth of 𝑀 = 𝑅/(𝑥2

1) = 𝑄/(𝑥
2
1, 𝑥1𝑥2) is zero by 14.3.17 as 𝑥1 ∈ (0 :𝑀 𝔞).
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Part (b) of the next theorem, as well as the two results that follow, deal with the
𝔞-depth of a finitely generated 𝑅-module 𝑀 . Recall from 14.3.27 that 𝔞-depth𝑅 𝑀
is finite if and only if 𝔞𝑀 ≠ 𝑀 holds.

14.4.21 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-module.
(a) If 𝑥1, . . . , 𝑥𝑛 is an 𝑀-regular sequence in 𝔞, then one has 𝑛 ⩽ 𝔞-depth𝑅 𝑀 .
(b) If 𝑀 is finitely generated and 𝑑 = 𝔞-depth𝑅 𝑀 is finite, then there exists an

𝑀-regular sequence 𝑥1, . . . , 𝑥𝑑 in 𝔞 .

Proof. Part (a) follows from 14.4.18 and 14.3.16 which yield

𝑛 = 𝔞-depth𝑅 𝑀 − 𝔞-depth𝑅 𝑀/(𝑥𝑥𝑥)𝑀 ⩽ 𝔞-depth𝑅 𝑀 .

To prove part (b) let 𝑀 be a finitely generated 𝑅-module with 𝑑 = 𝔞-depth𝑅 𝑀 finite.
It suffices in view of the last assertion in 14.4.18 to show that if 𝑑 is positive, then
there exists an𝑀-regular element in 𝔞. The assumption 𝑑 > 0 implies by 14.3.17 that
𝔞 is not contained in any of the prime ideals in Ass𝑅 𝑀 . By Prime Avoidance, one
can thus choose an element 𝑥 ∈ 𝔞 that does not belong to any of the associated prime
ideals. As the annihilator (0 :𝑅 𝑚) of every element 𝑚 ≠ 0 in 𝑀 is contained in an
associated prime ideal of 𝑀 , it follows that 𝑥𝑀 is injective. The assumption that 𝑑 is
finite ensures by 14.3.27 that one has 𝔞𝑀 ≠ 𝑀 , in particular, 𝑥𝑀 is not surjective. □

The next example shows, simultaneously, that the finite generation assumption in
part (b) of 14.4.21 is necessary and that a ring 𝑅 of Krull dimension 2 or more has
infinitely many prime ideals 𝔭 with dim 𝑅𝔭 = 1. Prime Avoidance yields a simple
direct proof of this last fact; that argument is embedded in the proof of 17.4.21.

14.4.22 Example. Let 𝑅 be of Krull dimension at least 2 and be 𝔪 a prime ideal
in 𝑅 with dim 𝑅𝔪 ⩾ 2. Set 𝑈 = {𝔭 ∈ Spec 𝑅 | dim 𝑅𝔭 ⩽ 1}. The 𝑅-module
𝑀 =

∐
𝔭∈𝑈 𝑅/𝔭 has Ass𝑅 𝑀 = 𝑈 and, therefore, 𝔪-depth𝑅 𝑀 > 0, see 14.3.17. For

𝔭 in 𝑈 with 𝔭 ⊆ 𝔪 one has 𝔪(𝑅/𝔭) = 𝔪/𝔭 ≠ 𝑅/𝔭, so 𝑅/𝔭 has finite 𝔪-depth by
14.3.27. Thus the 𝔪-depth of 𝑀 is finite by 14.3.14. Nevertheless, every element
𝑥 ∈ 𝔪 belongs by Krull’s principal ideal theorem, see also 18.4.19, to a prime ideal
𝔭 ∈ 𝑈, so 𝑥𝑀 is not injective and 𝑥 is hence not 𝑀-regular.

14.4.23 Definition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-module. An 𝑀-regular
sequence in 𝔞 is called maximal if it is not part of a longer 𝑀-regular sequence in 𝔞.

Note from the proof of the next theorem that, without the assumption that 𝑀 is
finitely generated, conditions (ii), (iii), and (iv) remain equivalent and imply (i). The
example above shows that the assumption is necessary for the equivalence of (i)–(iv).

14.4.24 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 a finitely generated 𝑅-module. If
𝔞-depth𝑅 𝑀 is finite, then the following conditions are equivalent for an 𝑀-regular
sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 in 𝔞.

(i) 𝑥𝑥𝑥 is a maximal 𝑀-regular sequence in 𝔞 .

(ii) 𝔞 is contained in a prime ideal 𝔭 ∈ Ass𝑅 (𝑀/(𝑥𝑥𝑥)𝑀) .
(iii) 𝔞-depth𝑅 (𝑀/(𝑥𝑥𝑥)𝑀) = 0 .
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(iv) 𝔞-depth𝑅 𝑀 = 𝑛.

Proof. The equivalence of conditions (ii) and (iii) is part of 14.3.17. Since 𝑥𝑥𝑥 is
𝑀-regular, the last assertion in 14.4.18 yields the equivalence of (iii) and (iv). If 𝑥𝑥𝑥
is not maximal, then it can be extended to a regular sequence of length 𝑛 + 1, so per
14.4.21(a) condition (iv) implies (i) by contraposition. Similarly (i) implies (iv): One
has 𝔞-depth𝑅 𝑀 ⩾ 𝑛 by 14.4.21(a); if equality does not hold, then the last assertion
in 14.4.18 yields depth𝑅 𝑀/(𝑥𝑥𝑥)𝑀 > 0, so there exists an 𝑀/(𝑥𝑥𝑥)𝑀-regular element
𝑦 in 𝔞 by 14.4.21(b). Now 𝑥1, . . . , 𝑥𝑛, 𝑦 is 𝑀-regular, so 𝑥𝑥𝑥 is not maximal in 𝔞. □

14.4.25 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 a finitely generated 𝑅-module with
𝑑 = 𝔞-depth𝑅 𝑀 finite.

(a) The maximal length of an 𝑀-regular sequence in 𝔞 is 𝑑 .
(b) There exists an 𝑀-regular sequence in 𝔞 of length 𝑑 .
(c) Every maximal 𝑀-regular sequence in 𝔞 has length 𝑑 .

Proof. Parts (a) and (b) constitute a restatement of 14.4.21. Part (c) is an immediate
consequence of 14.4.24. □

Remark. Let 𝔞 be an ideal in 𝑅. For a finitely generated 𝑅-module 𝑀 the classic definition of the
𝔞-depth of 𝑀 is the maximal length of an 𝑀-regular sequence in 𝔞, so 14.4.25 reconciles the more
general definition 14.3.10 with the classical one. Bruns and Herzog [46, 1.2] call the 𝔞-depth of 𝑀
the ‘grade of 𝔞’ on 𝑀; the Remark after 18.5.17 provides context to that terminology.

14.4.26 Proposition. Let 𝑥𝑥𝑥 be a sequence in 𝑅. Let 𝑆 be an 𝑅-algebra, flat as an
𝑅-module, and 𝑀 an 𝑅-module.

(a) If 𝑥𝑥𝑥 is regular for the 𝑅-module 𝑀 and 𝑆 ⊗𝑅 𝑀/(𝑥𝑥𝑥)𝑀 ≠ 0 holds, then 𝑥𝑥𝑥 is
regular for the 𝑆-module 𝑆 ⊗𝑅 𝑀 .

(b) If 𝑥𝑥𝑥 is regular for the 𝑆-module 𝑆 ⊗𝑅 𝑀 and 𝑆 is faithfully flat as an 𝑅-module,
then 𝑥𝑥𝑥 is regular for the 𝑅-module 𝑀 .

Proof. Set 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛. For every 𝑖 ∈ {1, . . . , 𝑛} there is by 11.4.18, 12.1.17, and
12.1.20(b) an isomorphism,

H(K𝑆 (𝑥1, . . . , 𝑥𝑖) ⊗𝑆 (𝑆 ⊗𝑅 𝑀)) � 𝑆 ⊗𝑅 H(K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀) .

In view of 11.4.4(a) the assertions now follow from 14.4.18. □

14.4.27 Corollary. Let 𝑀 be a finitely generated 𝑅-module, 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 an 𝑀-
regular sequence, and 𝔭 a prime ideal in Supp𝑅 𝑀 . If 𝑥𝑥𝑥 is contained in 𝔭, then the
sequence 𝑥𝑥𝑥 = 𝑥1

1 , . . . ,
𝑥𝑛
1 in 𝑅𝔭 is 𝑀𝔭-regular.

Proof. As 𝔭 ∈ V(𝑥𝑥𝑥) it follows from 14.1.18 that 𝔭 is in Supp𝑅 (𝑅/(𝑥𝑥𝑥) ⊗𝑅 𝑀), so the
module (𝑅/(𝑥𝑥𝑥) ⊗𝑅 𝑀)𝔭 is non-zero. The assertion now follows from 14.4.26(a). □

Finally we record a result that, compared to 14.4.18, simplifies the identification
of regular sequences for, among others, finitely generated modules.
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14.4.28 Proposition. Let 𝔞 ⊆ 𝑅 be an ideal, 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 a sequence in 𝔞, and
𝑀 ≠ 0 an 𝑅-module. If 𝑀 is derived 𝔞-complete or if 𝑀 is finitely generated and 𝔞

is contained in the Jacobson radical of 𝑅, then the next conditions are equivalent.
(i) 𝑥𝑥𝑥 is 𝑀-regular.
(ii) sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = 0 .
(iii) There is an isomorphism K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 ≃ 𝑀/(𝑥𝑥𝑥)𝑀 .

Proof. It is immediate from 14.4.18 that (i) implies (iii). If 𝑀 is finitely generated
and 𝔞 is contained in the Jacobson radical, then one has (𝑥𝑥𝑥)𝑀 ≠ 𝑀 by Nakayama’s
lemma B.32 and K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀 has degreewise finitely generated homology
by 14.3.4(a); if 𝑀 is derived 𝔞-complete, then one has (𝑥𝑥𝑥)𝑀 ≠ 𝑀 by 13.1.35
and the complex K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀 is derived 𝔞-complete by 14.3.4(c). Thus, (iii)
evidently implies (ii) and it remains to show that (ii) implies (i). Let 𝑖 ∈ {1, . . . , 𝑛−1}.
Now 14.3.1 and 14.3.5 yield,

sup (K𝑅 (𝑥1, . . . , 𝑥𝑖+1) ⊗𝑅 𝑀) = sup (K𝑅 (𝑥𝑖+1) ⊗𝑅 (K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀))
⩾ sup (K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀) .

Thus, the assumption sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = 0 forces that H(K𝑅 (𝑥1, . . . , 𝑥𝑖) ⊗𝑅 𝑀) is
concentrated in degree 0, which by 14.4.18 means that 𝑥𝑥𝑥 is 𝑀 regular. □

Exercises

E 14.4.1 Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. Show that if 𝑀 has finite
𝔞-width and 𝑁 has finite 𝔞-depth, then the inequality 𝔞-depth𝑅 RHom𝑅 (𝑀, 𝑁 ) ⩾
𝔞-width𝑅 𝑀 + 𝔞-depth𝑅 𝑁 holds.

E 14.4.2 Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. Show that if 𝑀 and 𝑁 have finite
𝔞-width, then one has 𝔞-width𝑅 (𝑀 ⊗L

𝑅
𝑁 ) ⩾ 𝔞-width𝑅 𝑀 + 𝔞-width𝑅 𝑁 .

E 14.4.3 Let 𝔞 be an ideal and 𝑀 and 𝑁 be 𝑅-complexes of finite 𝔞-width. Show that if 𝑀 is
derived 𝔞-torsion or 𝑁 is derived 𝔞-complete, then one has − sup RHom𝑅 (𝑀, 𝑁 ) ⩾
𝔞-width𝑅 𝑀 − sup LΛ𝔞 (𝑁 ) .

E 14.4.4 Let 𝔞 ⊆ 𝔟 be ideals in 𝑅 and 𝑀 an 𝑅-complex. Show that there are equalities
𝔟-depth𝑅 RΓ𝔞 (𝑀 ) = 𝔟-depth𝑅 𝑀 = 𝔟-depth𝑅 LΛ𝔞 (𝑀 ) and 𝔟-width𝑅 RΓ𝔞 (𝑀 ) =

𝔟-width𝑅 𝑀 = 𝔟-width𝑅 LΛ𝔞 (𝑀 ) .
E 14.4.5 Let 𝔞 be an ideal in 𝑅 and 𝑀 a finitely generated 𝑅-module with 𝑑 = 𝔞-depth𝑅 𝑀

finite. Show that if 𝑥1, . . . , 𝑥𝑛 is an 𝑀-regular sequence in 𝔞 and 𝑛 < 𝑑, then there exist
elements 𝑥𝑛+1, . . . , 𝑥𝑑 such that the concatenated sequence 𝑥1, . . . , 𝑥𝑑 is a maximal
𝑀-regular sequence in 𝔞.

E 14.4.6 Let 𝑥 ∈ 𝑅 and 𝑀 be an 𝑅-module. Show that if 𝑥 is 𝑅-regular and 𝑀-regular, then one
has pd𝑅/(𝑥) 𝑀/(𝑥 )𝑀 ⩽ pd𝑅 𝑀.

E 14.4.7 Let 𝑥 be an element in 𝑅 and 𝑀 an 𝑅-module. Show that 𝑥 is 𝑀-regular if and only if
(𝑥 )-depth𝑅 𝑀 = 1 holds.

E 14.4.8 Let 𝔞 ⊆ 𝑅 be an ideal, 𝑥𝑥𝑥 a sequence in 𝔞, and 𝑀 an 𝑅-module. Assume that 𝑀 is
derived 𝔞-complete or that 𝑀 is finitely generated and 𝔞 is contained in the Jacobson
radical of 𝑅. Show that if 𝑥𝑥𝑥 is 𝑀-regular, then every permutation of 𝑥𝑥𝑥 is 𝑀-regular.

E 14.4.9 Adding to the conventions in E 14.3.14 that the empty sequence is regular for every
non-zero module, show that 14.4.18, 14.4.21(a), and 14.4.24 remain valid for the empty
sequence.
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Chapter 15
Support Theories

The notion of support studied in this chapter agrees with the classic support from
Chap. 14 for finitely generated modules but conforms better to derived category
methods: Compare, for example, 15.1.15 to 14.1.17. In commutative algebra this
notion of support was introduced in the paper [93] from the late 1970s. In the late
1990s the dual notion of cosupport was introduced by Hovey and Strickland [137] in
the context of spectra. Its importance in commutative algebra was only recognized
later, initially through work of Benson, Iyengar, and Krause [38].

15.1 Support

Synopsis. Residue field; support; ∼ vs. classic support; Support Formula; faithfully flat module;
localization.

For a local ring 𝑅 with unique maximal ideal𝔪, the field 𝑅/𝔪 is called as the residue
field. For a prime ideal 𝔭 in 𝑅 the localization 𝑅𝔭 of 𝑅 is a local ring with unique
maximal ideal 𝔭𝔭 = 𝔭𝑅𝔭, and it is convenient to have notation for its residue field
𝑅𝔭/𝔭𝔭; notice that this is the field of fractions of the integral domain 𝑅/𝔭.

15.1.1 Definition. Let 𝔭 ∈ Spec 𝑅; the residue field of the local ring 𝑅𝔭 is denoted
κ (𝔭), i.e. κ (𝔭) = 𝑅𝔭/𝔭𝔭 � (𝑅/𝔭)𝔭, and called the residue field of 𝑅 at 𝔭. If 𝑅 is
local with unique maximal ideal 𝔪, then κ (𝔪) = 𝑅/𝔪 is simply called the residue
field of 𝑅.

15.1.2. Let 𝔞 be an ideal in 𝑅. The ideals in Spec 𝑅/𝔞 have the form 𝔭/𝔞 for prime
ideals 𝔭 in 𝑅with 𝔞 ⊆ 𝔭. For such an ideal, one has (𝑅/𝔞)𝔭/𝔞 � 𝑅𝔭/𝔞𝔭 and, therefore,

κ (𝔭/𝔞) � κ (𝔭) .

15.1.3. Let 𝑈 be a multiplicative subset of 𝑅. The ideals in Spec𝑈−1𝑅 have the
form 𝑈−1𝔭 for prime ideals 𝔭 in 𝑅 with 𝔭 ∩𝑈 = ∅. For such an ideal, one has
(𝑈−1𝑅)𝑈−1𝔭 � 𝑅𝔭 and, therefore,
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690 15 Support Theories

κ (𝑈−1𝔭) � κ (𝔭) .

15.1.4 Lemma. Let 𝔞 be an ideal and 𝔭 a prime ideal in 𝑅. There are isomorphisms,

LΛ𝔞 (κ (𝔭)) ≃ RΓ𝔞 (κ (𝔭)) ≃
{
κ (𝔭) if 𝔞 ⊆ 𝔭

0 if 𝔞 ⊈ 𝔭 .

Proof. Consider the composite ring homomorphism 𝑅 → 𝑅/𝔭 → κ (𝔭) and the
extension 𝔟 = 𝔞κ (𝔭) of the ideal 𝔞 to the field κ (𝔭). By 13.1.21(a), 13.3.23(a), and
the fact that κ (𝔭) is both projective and injective as a module over itself, one has

LΛ𝔞 (κ (𝔭)) ≃ LΛ𝔟 (κ (𝔭)) ≃ Λ𝔟 (κ (𝔭)) and RΓ𝔞 (κ (𝔭)) ≃ RΓ𝔟 (κ (𝔭)) ≃ Γ𝔟 (κ (𝔭)) .

As one has 𝔟 = 0 if 𝔞 ⊆ 𝔭 and 𝔟 = κ (𝔭) if 𝔞 ⊈ 𝔭, the assertion follows from 11.1.5
and 11.2.2. □

Support

15.1.5 Definition. Let 𝑀 be an 𝑅-complex. The support of 𝑀 is the set

supp𝑅 𝑀 = {𝔭 ∈ Spec 𝑅 | H(κ (𝔭) ⊗L
𝑅 𝑀) ≠ 0} .

Remark. In the literature, one can find the set defined in 15.1.5 referred to as the ‘small support’
since that was the term used in [93]. This terminology is inspired by 15.1.9.

15.1.6 Example. Let 𝐹 be a faithfully flat 𝑅-module. For every prime ideal 𝔭 one
has κ (𝔭) ⊗L

𝑅
𝐹 ≃ κ (𝔭) ⊗𝑅 𝐹 ≠ 0, so supp𝑅 𝐹 = Spec 𝑅. See 15.1.18 for a converse.

As is the case with the classic support, see 14.1.7, the support of a coproduct of
complexes is the union of their supports.

15.1.7 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; one has

supp𝑅
( ∐
𝑢∈𝑈

𝑀𝑢
)
=

⋃
𝑢∈𝑈

supp𝑅 𝑀𝑢 .

Proof. Homology and the functor ⊗L
𝑅

preserve coproducts by 3.1.10(d) and 7.4.5.
The asserted equality now follows straight from the definition of support. □

The support of a product
∏
𝑢∈𝑈 𝑀

𝑢 of 𝑅-modules contains by 15.1.7 the support
of each module 𝑀𝑢, but it may also include prime ideals not contained in any of the
sets supp𝑅 𝑀𝑢; see 15.1.11 and E 15.1.6.

The next proposition applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

15.1.8 Proposition. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in
D(𝑅). Any one of the sets supp𝑅 𝑀 , supp𝑅 𝑀 ′, and supp𝑅 𝑀 ′′ is contained in the
union of the two other sets.
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Proof. For every prime ideal 𝔭 in 𝑅 there is a distinguished triangle,

κ (𝔭) ⊗L
𝑅 𝑀

′ −→ κ (𝔭) ⊗L
𝑅 𝑀 −→ κ (𝔭) ⊗L

𝑅 𝑀
′′ −→ Σ (κ (𝔭) ⊗L

𝑅 𝑀
′) ,

in D(𝑅). It now follows from 6.5.20 and the definition, 15.1.5, of support that 𝔭 is
either in at least two of the three supports or not in any of them. □

Support vs. Classic Support

Next we prove that the support is a subset of the classic support. Among the prime
ideals in the classic support of a module, only the associated prime ideals are
guaranteed to show up in the support, see 17.1.9. For injective modules they are,
indeed, the only prime ideals in the support, see 15.1.14.

15.1.9 Theorem. Let 𝑀 be an 𝑅-complex. There is an inclusion,

supp𝑅 𝑀 ⊆ Supp𝑅 𝑀 ,

and equality holds if 𝑀 belongs to Df (𝑅).

Proof. The inclusion is immediate as 14.1.16(b) yields

(†) κ (𝔭) ⊗L
𝑅 𝑀 ≃ κ (𝔭) ⊗L

𝑅𝔭
𝑀𝔭 .

Assume that 𝑀 is in Df (𝑅) and let 𝔭 ∈ Supp𝑅 𝑀; the localized complex 𝑀𝔭

belongs by 12.1.20 to Df (𝑅𝔭) and is not acyclic. As the ring 𝑅𝔭 is local with
unique maximal ideal 𝔭𝔭, it follows from 14.3.28(a) and the assumption on 𝔭 that
𝔭𝔭-width𝑅𝔭

𝑀𝔭 = inf 𝑀𝔭 < ∞ holds. Now it follows from 14.4.8 that the complex
in (†) is not acyclic, so 𝔭 belongs to supp𝑅 𝑀 . □

15.1.10 Example. Let 𝔞 be an ideal in 𝑅 generated by a sequence 𝑥𝑥𝑥. One has

supp𝑅 𝑅/𝔞 = Supp𝑅 𝑅/𝔞 = V(𝔞) = Supp𝑅 K𝑅 (𝑥𝑥𝑥) = supp𝑅 K𝑅 (𝑥𝑥𝑥)

by 15.1.9 in view of 14.1.5.

15.1.11 Example. Let 𝑅 be local with unique maximal ideal 𝔪. As the maps in the
tower (11.1.2.1) are surjective, 3.5.14 and the definition, 11.1.4, of Λ𝔪 (𝑅) yields an
exact sequence,

0 −→ Λ𝔪 (𝑅) −→
∏
𝑢∈ℕ

𝑅/𝔪𝑢 −→
∏
𝑢∈ℕ

𝑅/𝔪𝑢 −→ 0 .

Now it follows from 15.1.8 that the support of the product
∏
𝑢∈ℕ 𝑅/𝔪𝑢 contains the

support of Λ𝔪 (𝑅) = 𝑅, which by 15.3.6 and 15.1.6 is all of Spec 𝑅. Thus one has
supp𝑅 (

∏
𝑢∈ℕ 𝑅/𝔪𝑢) = Spec 𝑅. On the other hand, supp𝑅 𝑅/𝔪𝑢 = V(𝔪𝑢) = {𝔪}

holds for every 𝑢 ∈ ℕ by 15.1.10.

For injective modules the support and classic support can differ widely. The
support is, in particular, not specialization closed.

8-Mar-2024 Draft - use at own risk



692 15 Support Theories

15.1.12 Proposition. Let 𝔭 be a prime ideal in 𝑅; one has

supp𝑅 E𝑅 (𝑅/𝔭) = {𝔭} and Supp𝑅 E𝑅 (𝑅/𝔭) = V(𝔭) .

Proof. The equality Supp𝑅 E𝑅 (𝑅/𝔭) = V(𝔭) holds by C.15(b). Injectivity of the
module E𝑅𝔭

(κ (𝔭)) and C.21(a) yield an isomorphism in D(𝑅𝔭),

RHom𝑅𝔭
(κ (𝔭),E𝑅𝔭

(κ (𝔭))) ≃ Hom𝑅𝔭
(κ (𝔭),E𝑅𝔭

(κ (𝔭))) � κ (𝔭) .

Thus it follows from 14.4.12, applied to the ideal 𝔭𝔭 in the ring 𝑅𝔭, that the complex
κ (𝔭) ⊗L

𝑅𝔭
E𝑅𝔭
(κ (𝔭)) is not acyclic. Now C.18 and 14.1.16(b) yield

κ (𝔭) ⊗L
𝑅𝔭

E𝑅𝔭
(κ (𝔭)) ≃ κ (𝔭) ⊗L

𝑅 E𝑅 (𝑅/𝔭)

whence𝔭 ∈ supp𝑅 E𝑅 (𝑅/𝔭). Now, let 𝔮 ∈ supp𝑅 E𝑅 (𝔭), by 15.1.9 one has 𝔮 ∈ V(𝔭),
i.e. 𝔭 ⊆ 𝔮. Associativity 12.3.14 yields κ (𝔮) ⊗L

𝑅
E𝑅 (𝑅/𝔭) ≃ (𝑅/𝔮 ⊗L

𝑅
E𝑅 (𝑅/𝔭))𝔮,

so one has H(𝑅/𝔮 ⊗L
𝑅

E𝑅 (𝑅/𝔭)) ≠ 0 and hence H(RHom𝑅 (𝑅/𝔮,E𝑅 (𝑅/𝔭))) ≠ 0 by
14.4.12. As E𝑅 (𝑅/𝔭) is injective this means that the module Hom𝑅 (𝑅/𝔮,E𝑅 (𝑅/𝔭))
is non-zero, so the inclusion 𝔮 ⊆ 𝔭 holds by C.15(c). Thus one has 𝔮 = 𝔭. □

15.1.13 Example. Per B.15 one has Eℤ (ℤ) = ℚ, so 15.1.12 yields

suppℤ ℚ = {0} and Suppℤ ℚ = Specℤ .

Further, for every prime 𝑝 one has Eℤ (ℤ/𝑝ℤ) = ℤ(𝑝∞) and hence

suppℤ ℤ(𝑝∞) = {𝑝ℤ} = Suppℤ ℤ(𝑝∞) .

To parse the next result recall Matlis’ structure theorem C.23.

15.1.14 Proposition. Let 𝐼 be an injective 𝑅-module; one has

supp𝑅 𝐼 = Ass𝑅 𝐼 = {𝔭 ∈ Spec 𝑅 | E𝑅 (𝑅/𝔭) is a direct summand of 𝐼 } .

Proof. For 𝔭 ∈ Spec 𝑅 one has supp𝑅 E𝑅 (𝑅/𝔭) = {𝔭} = Ass𝑅 E𝑅 (𝑅/𝔭) by 15.1.12
and C.15(a). By Matlis’ structure theorem C.23 an injective 𝑅-module is a coprod-
uct of such indecomposable modules, so the claim follows from 15.1.7 and the
corresponding result for associated prime ideals. □

Support Formula

15.1.15 Theorem. An 𝑅-complex 𝑀 is acyclic if and only if supp𝑅 𝑀 = ∅ holds.

Proof. If 𝑀 is acyclic, then it follows from the definition that supp𝑅 𝑀 is empty. For
the converse, assume that 𝑀 is not acyclic. Considered as a functor on the module
category, F =

∐
𝑚∈ℤ Tor𝑅𝑚 ( , 𝑀) is half exact by 7.4.29 and 3.1.6. The unitor 12.3.3

yields F(𝑅) = ∐
𝑚∈ℤ H𝑚 (𝑀), which is non-zero, so it follows from 12.4.2 that there

is a prime ideal 𝔭 in 𝑅 with F(𝑅/𝔭) ≠ 0 such that F(𝑅/𝔟) = 0 holds for every
ideal 𝔟 ⊃ 𝔭. Let 𝑟 ∈ 𝑅 \ 𝔭; the ideal 𝔭 + (𝑟) is strictly larger that 𝔭, so the complex
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𝑅/(𝔭 + (𝑟)) ⊗L
𝑅
𝑀 is acyclic. Application of ⊗L

𝑅
𝑀 to the triangle induced per

6.5.24 by the exact sequence

0 −→ 𝑅/𝔭 𝑟−−−→ 𝑅/𝔭 −→ 𝑅/(𝔭 + (𝑟)) −→ 0

shows in view of 6.5.21 that multiplication by 𝑟 on H(𝑅/𝔭 ⊗L
𝑅
𝑀) is an isomorphism.

The residue field κ (𝔭) is the field of fractions of the integral domain 𝑅/𝔭; in
particular, it is a flat 𝑅/𝔭-module, see 1.3.42. Now 12.3.31 and 7.6.11(b) yield

H(κ (𝔭) ⊗L
𝑅 𝑀) � H(κ (𝔭) ⊗𝑅/𝔭 (𝑅/𝔭 ⊗L

𝑅 𝑀)) � H(𝑅/𝔭 ⊗L
𝑅 𝑀) .

It follows that 𝔭 belongs to supp𝑅 𝑀; in particular supp𝑅 𝑀 ≠ ∅. □

The next result is known as the Support Formula.

15.1.16 Theorem. Let 𝑀 and 𝑁 be 𝑅-complexes; there is an equality,

supp𝑅 (𝑀 ⊗L
𝑅 𝑁) = supp𝑅 𝑀 ∩ supp𝑅 𝑁 .

Proof. Let 𝔭 ∈ Spec 𝑅; by 12.3.30 and 7.6.12 there are isomorphisms,

H(κ (𝔭) ⊗L
𝑅 (𝑀 ⊗L

𝑅 𝑁)) � H((κ (𝔭) ⊗L
𝑅 𝑀) ⊗L

κ (𝔭) (κ (𝔭) ⊗
L
𝑅 𝑁))

� H(κ (𝔭) ⊗L
𝑅 𝑀) ⊗κ (𝔭) H(κ (𝔭) ⊗L

𝑅 𝑁) .

The last complex is a tensor product of κ (𝔭)-vector spaces and hence non-zero if
and only if both spaces are non-zero. Now invoke the definition of support. □

15.1.17 Corollary. Let 𝑀 and 𝑁 be complexes in Df
⊐ (𝑅); there is an equality,

Supp𝑅 (𝑀 ⊗L
𝑅 𝑁) = Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 .

Proof. In view of 12.2.12, the equality follows from 15.1.9 and 15.1.16. □

15.1.18 Proposition. Let 𝐹 be a flat 𝑅-module; the next conditions are equivalent.
(i) 𝐹 is faithfully flat.
(ii) supp𝑅 𝐹 = Spec 𝑅 .
(iii) Max 𝑅 ⊆ supp𝑅 𝐹.

Proof. As noted in 15.1.6, condition (i) implies (ii). Conversely, if (ii) holds, then
the Support Formula 15.1.16 yields supp𝑅 (𝐹 ⊗𝑅 𝑀) = supp𝑅 𝑀 for every 𝑅-module
𝑀 . Hence 𝐹 ⊗𝑅 𝑀 = 0 implies 𝑀 = 0 by 15.1.15, so 𝐹 is faithfully flat. The im-
plication (ii)⇒ (iii) is trivial. We prove that (iii) implies (ii) by contraposition.
Let 𝔭 be a prime ideal in 𝑅 that does not belong to supp𝑅 𝐹, that is, the module
𝐹 ⊗𝑅 κ (𝔭) ≃ 𝐹 ⊗L

𝑅
κ (𝔭) is zero. The embedding 𝑅/𝔭 ↣ κ (𝔭) induces an exact

sequence 0 → 𝐹 ⊗𝑅 𝑅/𝔭 → 𝐹 ⊗𝑅 κ (𝔭), which yields 𝐹 ⊗𝑅 𝑅/𝔭 = 0. Let 𝔪 be a
maximal ideal in 𝑅 that contains 𝔭. The canonical homomorphism 𝑅/𝔭 ↠ 𝑅/𝔪
yields an exact sequence 𝐹 ⊗𝑅 𝑅/𝔭 → 𝐹 ⊗𝑅 𝑅/𝔪 → 0, which shows that the
module 𝐹 ⊗𝑅 𝑅/𝔪 ≃ 𝐹 ⊗L

𝑅
κ (𝔪) is zero. Thus, 𝔪 does not belong to supp𝑅 𝐹. □
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Localization

15.1.19 Lemma. Let𝑈 be a multiplicative subset of 𝑅; one has

supp𝑅𝑈−1𝑅 = {𝔭 ∈ Spec 𝑅 | 𝔭 ∩𝑈 = ∅} .

Proof. Let 𝔭 ∈ Spec 𝑅; one has𝑈−1𝑅 ⊗𝑅 𝑅/𝔭 ≠ 0 if and only if 𝔭 ∩𝑈 = ∅, and in
that case one has 𝑅𝔭 ⊗𝑅𝑈−1𝑅 � 𝑅𝔭. Flatness of 𝑅𝔭 and𝑈−1𝑅, see 1.3.42, together
with commutativity 12.1.7 and associativity 12.1.8 yields,

κ (𝔭) ⊗L
𝑅𝑈

−1𝑅 ≃ 𝑅𝔭 ⊗𝑅 (𝑈−1𝑅 ⊗𝑅 𝑅/𝔭) �
{
κ (𝔭) if 𝔭 ∩𝑈 = ∅

0 if 𝔭 ∩𝑈 ≠ ∅ . □

Here is another simple example of the support not being specialization closed.

15.1.20 Example. For every 𝔭 ∈ Spec 𝑅 one has supp𝑅 𝑅𝔭 = {𝔮 ∈ Spec 𝑅 | 𝔮 ⊆ 𝔭}.

The fact that the support is not specialization closed may make it harder to picture
than the classic support. On the upside it allows for the equality in 15.1.19 which
fails for the classic support, see E 12.4.8.

15.1.21 Proposition. Let 𝑈 be a multiplicative subset of 𝑅 and 𝑀 an 𝑅-complex.
There is an equality,

supp𝑅𝑈−1𝑀 = {𝔭 ∈ supp𝑅 𝑀 | 𝔭 ∩𝑈 = ∅} .

For every prime ideal 𝔭 with 𝔭 ∩𝑈 = ∅ there is an isomorphism in D(𝑈−1𝑅),

κ (𝑈−1𝔭) ⊗L
𝑈−1𝑅

𝑈−1𝑀 ≃ κ (𝔭) ⊗L
𝑅 𝑀 .

The assignment 𝔭↔ 𝑈−1𝔭 yields an order preserving one-to-one correspondence,

supp𝑅𝑈−1𝑀 ←→ supp𝑈−1𝑅𝑈
−1𝑀 .

In particular, a prime ideal 𝔭 in 𝑅 with 𝔭 ∩𝑈 = ∅ belongs to supp𝑅 𝑀 if and only
if𝑈−1𝔭 belongs to supp𝑈−1𝑅𝑈

−1𝑀 .

Proof. By flatness of𝑈−1𝑅 one has𝑈−1𝑀 ≃ 𝑈−1𝑅 ⊗L
𝑅
𝑀 , so 15.1.19 and the Sup-

port Formula 15.1.16 yield supp𝑅𝑈−1𝑀 = {𝔭 ∈ supp𝑅 𝑀 | 𝔭 ∩𝑈 = ∅}. It follows
from 12.3.31 and 15.1.3 that for every prime ideal 𝔭 in 𝑅 with 𝔭 ∩𝑈 = ∅ one has,

κ (𝑈−1𝔭) ⊗L
𝑈−1𝑅

𝑈−1𝑀 ≃ κ (𝑈−1𝔭) ⊗L
𝑈−1𝑅

(𝑈−1𝑅 ⊗L
𝑅 𝑀) ≃ κ (𝔭) ⊗L

𝑅 𝑀 .

The asserted one-to-one correspondence is thus a restriction of the order preserving
one-to-one correspondence between Spec𝑈−1𝑅 and {𝔭 ∈ Spec 𝑅 | 𝔭 ∩𝑈 = ∅}. □

15.1.22 Corollary. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅-complex. One has

supp𝑅 𝑀𝔭 = {𝔮 ∈ supp𝑅 𝑀 | 𝔮 ⊆ 𝔭} .

For every prime ideal 𝔮 contained in 𝔭 there is an isomorphism in D(𝑅𝔭),

κ (𝔮𝔭) ⊗L
𝑅𝔭
𝑀𝔭 ≃ κ (𝔮) ⊗L

𝑅 𝑀 .
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The assignment 𝔮↔ 𝔮𝔭 yields an order preserving one-to-one correspondence,

supp𝑅 𝑀𝔭 ←→ supp𝑅𝔭
𝑀𝔭 .

In particular, a prime ideal 𝔮 contained in 𝔭 belongs to supp𝑅 𝑀 if and only if 𝔮𝔭
belongs to supp𝑅𝔭

𝑀𝔭.

Proof. This is the special case𝑈 = 𝑅 \ 𝔭 of 15.1.21. □

15.1.23 Example. For every 𝔭 ∈ Spec 𝑅 one has supp𝑅 𝑅/𝔭 = V(𝔭) by 15.1.10 and
hence supp𝑅 κ (𝔭) = {𝔭} by 15.1.1 and 15.1.22.

15.1.24 Example. Let 𝔭 be a prime ideal in 𝑅 and 𝐹 a faithfully flat 𝑅𝔭-module.
Idempotence of localization, see 14.1.14(a), together with 15.1.18, and 15.1.22 yields

supp𝑅 𝐹 = supp𝑅 𝐹𝔭 = {𝔮 ∈ Spec 𝑅 | 𝔮 ⊆ 𝔭} .

Notice that this subsumes 15.1.20.

Recall from 15.1.9 that the support of a complex is a subset of its classic support.
The next result gives more details, see also 17.1.8.

15.1.25 Proposition. Let 𝑀 be an 𝑅-complex. Every prime ideal in Supp𝑅 𝑀 con-
tains one from supp𝑅 𝑀 . In particular, the two sets have the same minimal elements.

Proof. Let 𝔭 be a prime ideal in Supp𝑅 𝑀 . As the 𝑅-complex 𝑀𝔭 is not acyclic, see
14.1.12, there is by 15.1.15 and 15.1.22 a prime ideal 𝔮 in supp𝑅 𝑀 with 𝔮 ⊆ 𝔭. The
last assertion is now immediate in view of 15.1.9. □

Derived Torsion Complexes

15.1.26 Lemma. Let 𝔞 be an ideal and 𝔭 a prime ideal in 𝑅; let 𝑀 be an 𝑅-complex.
There is an isomorphism,

κ (𝔭) ⊗L
𝑅 RΓ𝔞 (𝑀) ≃

{
κ (𝔭) ⊗L

𝑅
𝑀 if 𝔞 ⊆ 𝔭

0 if 𝔞 ⊈ 𝔭 .

Proof. The next isomorphism follows from two applications of 13.3.19 combined
with commutativity 12.3.5,

κ (𝔭) ⊗L
𝑅 RΓ𝔞 (𝑀) ≃ RΓ𝔞 (κ (𝔭)) ⊗L

𝑅 𝑀 .

Now the assertions follow from 15.1.4. □

Given an ideal 𝔞 in 𝑅 and an 𝑅-complex 𝑀 , the next result shows that the support
of the complex RΓ𝔞 (𝑀) is contained in V(𝔞); in fact, this characterizes derived
𝔞-torsion complexes, see 15.3.23.

15.1.27 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. One has

supp𝑅 RΓ𝔞 (𝑀) = V(𝔞) ∩ supp𝑅 𝑀 = V(𝔞) ∩ supp𝑅 LΛ𝔞 (𝑀) .

In particular, supp𝑅 Č𝑅(𝑥𝑥𝑥) = V(𝔞) holds for every sequence 𝑥𝑥𝑥 that generates 𝔞.
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Proof. Per the definition of support, 15.1.5, the first equality is an immediate con-
sequence of 15.1.26. The second equality follows by 13.4.1(d) from the first equality
applied to the complex LΛ𝔞 (𝑀). In view of 13.3.18, the final assertion follows from
the first equality applied to 𝑀 = 𝑅. □

For a faithfully flat 𝑅-module 𝐹, it follows from 15.1.27, in view of 15.1.18, that
supp𝑅 RΓ𝔞 (𝐹) = V(𝔞) holds. The support of LΛ𝔞 (𝐹) ≃ Λ𝔞 (𝐹) is more elusive, but
some information about this set is provided by 15.3.5.

Exercises

E 15.1.1 Let 𝔭 be a prime ideal in 𝑅. Show that Supp𝑅 κ (𝔭) = V(𝔭) holds.
E 15.1.2 For 𝑀 ∈ D(𝑅) show that supp𝑅 𝑀 = {𝔭 ∈ Spec𝑅 | H(RHom𝑅 (𝑀, κ (𝔭) ) ) ≠ 0}.
E 15.1.3 Let 𝑀 be an 𝑅-complex, 𝔞 an ideal, and 𝔭 a prime ideal in 𝑅. Show that one has

RHom𝑅 (RΓ𝔞 (𝑀 ) , κ (𝔭) ) ≃
{

RHom𝑅 (𝑀, κ (𝔭) ) if 𝔞 ⊆ 𝔭

0 if 𝔞 ⊈ 𝔭 .

E 15.1.4 Let 𝑀 be an 𝑅-complex. Show that for every prime ideal 𝔭 in supp𝑅 𝑀 there is an
integer 𝑛 such that 𝔭 ∈ supp𝑅 𝑀Ď𝑛.

E 15.1.5 Let 𝑀 be an 𝑅-complex. Show that for every prime ideal 𝔭 in supp𝑅 𝑀 there is an
integer 𝑛 such that 𝔭 ∈ supp𝑅 𝑀Ě𝑛. Hint: E 3.3.11.

E 15.1.6 Let 𝑅 be local with unique maximal ideal 𝔪 and set 𝐸 = E𝑅 (𝑅/𝔪) . Assuming that 𝑅 is
not Artinian, show that 𝐸ℕ contains an element that is not 𝔪-torsion and conclude that
E𝑅 (𝑅/𝔭) is a direct summand of 𝐸ℕ for some 𝔭 ≠ 𝔪 and, therefore, 𝔭 ∈ supp𝑅 𝐸ℕ.

E 15.1.7 Let 𝑀, 𝑋, and 𝑁 be 𝑅-complexes with supp𝑅 𝑁 ⊆ supp𝑅 𝑀. (a) Show that if 𝑀 ⊗L
𝑅
𝑋

is acyclic, then 𝑁 ⊗L
𝑅
𝑋 is acyclic. (b) Show that if RHom𝑅 (𝑀, 𝑋) is acyclic, then

RHom𝑅 (𝑁, 𝑋) is acyclic.
E 15.1.8 Let 𝑅 be local. Show that supp𝑅 𝑀 = Supp𝑅 𝑀 holds for 𝑀 ∈ Dart (𝑅) .
E 15.1.9 Let 𝑅 be an integral domain with field of fractions𝑄. Show that one has supp𝑅 𝑄 = {0}

and Supp𝑅 𝑄 = Spec𝑅.

15.2 Cosupport

Synopsis. Cosupport; Cosupport Formula; faithfully injective module; colocalization; maximal
elements of (co)support.

The support is defined by way of the functors κ (𝔭) ⊗L
𝑅

but could per E 15.1.2 as
well be defined in terms of RHom𝑅 ( , κ (𝔭)). Here we consider the dual notion.

15.2.1 Definition. Let 𝑀 be an 𝑅-complex. The cosupport of 𝑀 is the set

cosupp𝑅 𝑀 = {𝔭 ∈ Spec 𝑅 | H(RHom𝑅 (κ (𝔭), 𝑀)) ≠ 0} .

15.2.2 Example. Let 𝐸 be a faithfully injective 𝑅-module. For every prime ideal 𝔭 in
𝑅 one has RHom𝑅 (κ (𝔭), 𝐸) ≃ Hom𝑅 (κ (𝔭), 𝐸) ≠ 0, so cosupp𝑅 𝐸 = Spec 𝑅 holds;
see 15.2.11 for a converse. In particular, 1.3.35 yields cosuppℤ ℚ/ℤ = Specℤ.
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15.2.3 Proposition. Let {𝑀𝑢}𝑢∈𝑈 be a family of 𝑅-complexes; one has

cosupp𝑅
( ∏
𝑢∈𝑈

𝑀𝑢
)
=

⋃
𝑢∈𝑈

cosupp𝑅 𝑀𝑢 .

Proof. Homology and the functor RHom𝑅 preserve products by 3.1.22(d) and 7.3.6.
The asserted equality now follows straight from the definition of cosupport. □

The cosupport of a coproduct
∐
𝑢∈𝑈 𝑀

𝑢 of 𝑅-modules contains by 15.2.3 the
cosupport of each module 𝑀𝑢, but it may also contain prime ideals not included in
any of the sets cosupp𝑅 𝑀𝑢; see 15.2.12.

The next proposition applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

15.2.4 Proposition. Let 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ be a distinguished triangle in
D(𝑅). Any one of the sets cosupp𝑅 𝑀 , cosupp𝑅 𝑀 ′, and cosupp𝑅 𝑀 ′′ is contained
in the union of the two other sets.

Proof. For every prime ideal 𝔭 in 𝑅 there is a distinguished triangle,

RHom𝑅 (κ (𝔭), 𝑀 ′) −→ RHom𝑅 (κ (𝔭), 𝑀)
−→ RHom𝑅 (κ (𝔭), 𝑀 ′′) −→ ΣRHom𝑅 (κ (𝔭), 𝑀 ′) ,

in D(𝑅). It now follows from 6.5.20 and the definition, 15.2.1, of cosupport that 𝔭
is either in at least two of the three cosupports or not in any of them. □

15.2.5 Proposition. Let 𝔭 be a prime ideal in 𝑅; one has

cosupp𝑅 E𝑅 (𝑅/𝔭) = {𝔮 ∈ Spec 𝑅 | 𝔮 ⊆ 𝔭} .

Proof. Let 𝔭 and 𝔮 be prime ideals. For every non-zero element 𝑚 ∈ κ (𝔮) one has
(0 :𝑅 𝑚) = 𝔮 and for every non-zero element 𝑛 ∈ E𝑅 (𝑅/𝔭) one has (0 :𝑅 𝑛) ⊆ 𝔭

by C.15(a). As E𝑅 (𝑅/𝔭) is an injective 𝑅-module, it now follows from C.1 that
Hom𝑅 (κ (𝔮),E𝑅 (𝑅/𝔭)) is non-zero if and only if 𝔮 is contained in 𝔭, and this proves
the asserted equality. □

15.2.6 Example. From 15.2.5 it follows that for every prime ideal 𝑝ℤ in ℤ one has
cosuppℤ Eℤ (ℤ/𝑝ℤ) = {0, 𝑝ℤ}. In particular, cosuppℤ ℚ = {0}, see B.15.

15.2.7 Proposition. Let 𝔭 be a prime ideal in 𝑅; one has

cosupp𝑅 κ (𝔭) = {𝔭} = supp𝑅 κ (𝔭) .

Proof. The equality supp𝑅 κ (𝔭) = {𝔭} was alredy noted in 15.1.23. To establish
the first equality let 𝔮 ∈ Spec 𝑅 and notice that 𝐻 = H(RHom𝑅 (κ (𝔮), κ (𝔭))) is a
κ (𝔮)-vector space and a κ (𝔭)-vector space; see 12.2.2. Thus, if 𝐻 ≠ 0 then one has
𝔮 = (0 :𝑅 𝐻) = 𝔭, so one has cosupp𝑅 κ (𝔭) ⊆ {𝔭}. On the other hand, 7.3.27 yields
H0 (RHom𝑅 (κ (𝔭), κ (𝔭))) � Hom𝑅 (κ (𝔭), κ (𝔭)) ≠ 0, so 𝔭 is in cosupp𝑅 κ (𝔭). □
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Cosupport Formula

15.2.8 Theorem. An 𝑅-complex 𝑀 is acyclic if and only if cosupp𝑅 𝑀 = ∅ holds.

Proof. If 𝑀 is acyclic, then it follows from the definition that cosupp𝑅 𝑀 is empty.
For the converse, assume that 𝑀 is not acyclic. Considered as a functor on the
module category, G =

∏
𝑚∈ℤ Ext𝑚

𝑅
( , 𝑀) is half exact by 7.3.35 and 3.1.18. The

counitor 12.3.4 yields G(𝑅) = ∏
𝑚∈ℤ H𝑚 (𝑀), which is non-zero, so it follows from

12.4.8 that there is a prime ideal 𝔭 in 𝑅 with G(𝑅/𝔭) ≠ 0 such that G(𝑅/𝔟) = 0
holds for every ideal 𝔟 ⊃ 𝔭. Consider an element 𝑟 ∈ 𝑅 \ 𝔭. The ideal 𝔭 + (𝑟) is
strictly larger that 𝔭, so the complex RHom𝑅 (𝑅/(𝔭+ (𝑟)), 𝑀) is acyclic. Application
of RHom𝑅 ( , 𝑀) to the triangle induced per 6.5.24 by the exact sequence

0 −→ 𝑅/𝔭 𝑟−−−→ 𝑅/𝔭 −→ 𝑅/(𝔭 + (𝑟)) −→ 0

shows in view of 6.5.21 that multiplication by 𝑟 on H(RHom𝑅 (𝑅/𝔭, 𝑀)) is an
isomorphism. The residue field κ (𝔭) is the field of fractions of the integral domain
𝑅/𝔭, so in the next chain, the last two isomorphism follow from 7.6.11(a,c). The first
follows from 12.3.36.

H(RHom𝑅 (κ (𝔭), 𝑀)) � H(RHom𝑅/𝔭 (κ (𝔭),RHom𝑅 (𝑅/𝔭, 𝑀)))
� H(RHom𝑅/𝔭 (κ (𝔭),H(RHom𝑅 (𝑅/𝔭, 𝑀))))
� Hom𝑅/𝔭 (κ (𝔭),H(RHom𝑅 (𝑅/𝔭, 𝑀))) .

As H(RHom𝑅 (𝑅/𝔭, 𝑀)) is non-zero and by 7.6.11(b) a complex of κ (𝔭)-vector
spaces, it follows that 𝔭 is in cosupp𝑅 𝑀 , in particular cosupp𝑅 𝑀 is non-empty. □

The next result is known as the Cosupport Formula.

15.2.9 Theorem. Let 𝑀 and 𝑁 be 𝑅-complexes; there is an equality,

cosupp𝑅 RHom𝑅 (𝑀, 𝑁) = supp𝑅 𝑀 ∩ cosupp𝑅 𝑁 .

Proof. Let 𝔭 ∈ Spec 𝑅; by 12.3.35 and 7.6.12 there are isomorphisms,

RHom𝑅 (κ (𝔭),RHom𝑅 (𝑀, 𝑁))
≃ RHomκ (𝔭) (κ (𝔭) ⊗L

𝑅 𝑀,RHom𝑅 (κ (𝔭), 𝑁))
≃ Homκ (𝔭) (H(κ (𝔭) ⊗L

𝑅 𝑀),H(RHom𝑅 (κ (𝔭), 𝑁))) .

The last complex is a Hom of κ (𝔭)-vector spaces and hence non-zero if and only if
both spaces are non-zero. Now invoke the definitions of support and cosupport. □

For an 𝑅-complex 𝑀 , a faithfully flat 𝑅-module 𝐹, and a faithfully injective
𝑅-module 𝐸 , the complexes 𝑀 and 𝐹 ⊗L

𝑅
𝑀 and RHom𝑅 (𝑀, 𝐸) are simultaneously

acyclic, see 2.5.7, 7.3.22, and 7.4.16. The next corollary runs deeper.

15.2.10 Corollary. Let 𝐹 be a faithfully flat 𝑅-module. An 𝑅-complex 𝑀 is acyclic
if and only if RHom𝑅 (𝐹, 𝑀) is acyclic.
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Proof. By 15.1.18 one has supp𝑅 𝐹 = Spec 𝑅, so the Cosupport Formula 15.2.9
gives cosupp𝑅 RHom𝑅 (𝐹, 𝑀) = cosupp𝑅 𝑀 , and 15.2.8 yields the assertion. □

The next result compares to the characterization of faithfully flat modules in
15.1.18. In fact, one can derive 15.1.18 from 15.2.11 via 1.3.48 and 15.2.9, but we
lead the exposition with support, as it is a more established notion than cosupport.

15.2.11 Proposition. Let 𝐸 be an injective 𝑅-module. The following conditions are
equivalent.

(i) 𝐸 is faithfully injective.
(ii) cosupp𝑅 𝐸 = Spec 𝑅 .
(iii) Max 𝑅 ⊆ cosupp𝑅 𝐸 .

Proof. As noted in 15.2.2, condition (i) implies (ii). Conversely, if (ii) holds, then
the Cosupport Formula 15.2.9 yields cosupp𝑅 Hom𝑅 (𝑀, 𝐸) = cosupp𝑅 𝑀 for every
𝑅-module 𝑀 . Hence Hom𝑅 (𝑀, 𝐸) = 0 implies 𝑀 = 0 by 15.2.8, so 𝐸 is faithfully
injective. The implication (ii)⇒ (iii) is trivial. We prove that (iii) implies (ii) by
contraposition. Let 𝔭 be a prime ideal in 𝑅 that does not belong to cosupp𝑅 𝐸 , i.e. the
module Hom𝑅 (κ (𝔭), 𝐸) ≃ RHom𝑅 (κ (𝔭), 𝐸) is zero. The embedding 𝑅/𝔭↣ κ (𝔭)
induces an exact sequence Hom𝑅 (κ (𝔭), 𝐸) → Hom𝑅 (𝑅/𝔭, 𝐸) → 0, which yields
Hom𝑅 (𝑅/𝔭, 𝐸) = 0. Let 𝔪 be a maximal ideal in 𝑅 that contains 𝔭. There is an
exact sequence 0→ Hom𝑅 (𝑅/𝔪, 𝐸) → Hom𝑅 (𝑅/𝔭, 𝐸), induced by the canonical
map 𝑅/𝔭 ↠ 𝑅/𝔪. It shows that the module Hom𝑅 (𝑅/𝔪, 𝐸) ≃ RHom𝑅 (κ (𝔪), 𝐸)
is zero. Thus, 𝔪 does not belong to cosupp𝑅 𝐸 . □

15.2.12 Example. Let 𝑅 be local with unique maximal ideal 𝔪. As in C.20 set
𝐸 = E𝑅 (𝑅/𝔪) and 𝐸𝑢 = (0 :𝐸 𝔪𝑢) for 𝑢 ∈ ℕ. By 3.3.34 there is an isomorphism
𝐸 � colim𝑢∈ℕ 𝐸𝑢, so by 3.3.37 there is an exact sequence,

0 −→
∐
𝑢∈ℕ

𝐸𝑢 −→
∐
𝑢∈ℕ

𝐸𝑢 −→ 𝐸 −→ 0 .

It now follows from 15.2.4 that the cosupport of the coproduct
∐
𝑢∈ℕ 𝐸

𝑢 contains
cosupp𝑅 𝐸 , which by 15.2.11 is all of Spec 𝑅. Thus cosupp𝑅 (

∐
𝑢∈ℕ 𝐸

𝑢) = Spec 𝑅.
For every 𝑢 ∈ ℕ there is by 1.1.8 an isomorphism 𝐸𝑢 � Hom𝑅 (𝑅/𝔪𝑢, 𝐸),
and this module is isomorphic to RHom𝑅 (𝑅/𝔪𝑢, 𝐸) in the derived category.
Hence the Cosupport Formula 15.2.9 yields cosupp𝑅 𝐸𝑢 = supp𝑅 𝑅/𝔪𝑢. Finally,
supp𝑅 𝑅/𝔪𝑢 = V(𝔪𝑢) = {𝔪} holds by 15.1.10.

Colocalization

15.2.13 Proposition. Let 𝑈 be a multiplicative subset of 𝑅 and 𝑀 an 𝑅-complex.
There is an equality,

cosupp𝑅 RHom𝑅 (𝑈−1𝑅, 𝑀) = {𝔭 ∈ cosupp𝑅 𝑀 | 𝔭 ∩𝑈 = ∅} .

For every prime ideal 𝔭 in 𝑅 with 𝔭 ∩𝑈 = ∅ there is an isomorphism in D(𝑈−1𝑅),

8-Mar-2024 Draft - use at own risk



700 15 Support Theories

RHom𝑈−1𝑅 (κ (𝑈−1𝔭),RHom𝑅 (𝑈−1𝑅, 𝑀)) � RHom𝑅 (κ (𝔭), 𝑀) .

The assignment 𝔭↔ 𝑈−1𝔭 yields an order preserving one-to-one correspondence,

cosupp𝑅 RHom𝑅 (𝑈−1𝑅, 𝑀) ←→ cosupp𝑈−1𝑅 RHom𝑅 (𝑈−1𝑅, 𝑀) .

In particular, a prime ideal 𝔭 in 𝑅 with 𝔭 ∩𝑈 = ∅ belongs to cosupp𝑅 𝑀 if and only
if𝑈−1𝔭 belongs to cosupp𝑈−1𝑅 RHom𝑅 (𝑈−1𝑅, 𝑀).

Proof. The equality cosupp𝑅 RHom𝑅 (𝑈−1𝑅, 𝑀) = {𝔭 ∈ cosupp𝑅 𝑀 | 𝔭 ∩𝑈 = ∅}
follows from the Cosupport Formula 15.2.9 and 15.1.19. For every prime ideal 𝔭 in
𝑅 with 𝔭 ∩𝑈 = ∅ one gets from 12.3.36 and 15.1.3 the isomorphism,

RHom𝑈−1𝑅 (κ (𝑈−1𝔭),RHom𝑅 (𝑈−1𝑅, 𝑀)) ≃ RHom𝑅 (κ (𝔭), 𝑀) .

The asserted one-to-one correspondence is thus a restriction of the order preserving
one-to-one correspondence between Spec𝑈−1𝑅 and {𝔭 ∈ Spec 𝑅 | 𝔭 ∩𝑈 = ∅}. □

15.2.14 Corollary. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅-complex. One has

cosupp𝑅 RHom𝑅 (𝑅𝔭, 𝑀) = {𝔮 ∈ cosupp𝑅 𝑀 | 𝔮 ⊆ 𝔭} .

For every prime ideal 𝔮 contained in 𝔭 there is an isomorphism in D(𝑅𝔭),

RHom𝑅𝔭
(κ (𝔮𝔭),RHom𝑅 (𝑅𝔭, 𝑀)) ≃ RHom𝑅 (κ (𝔮), 𝑀) .

The assignment 𝔮↔ 𝔮𝔭 yields an order preserving one-to-one correspondence,

cosupp𝑅 RHom𝑅 (𝑅𝔭, 𝑀) ←→ cosupp𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) .

In particular, a prime ideal 𝔮 contained in 𝔭 belongs to cosupp𝑅 𝑀 if and only if 𝔮𝔭
belongs to cosupp𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝑀).

Proof. This is the special case𝑈 = 𝑅 \ 𝔭 of 15.2.13. □

15.2.15 Example. Let 𝔭 be a prime ideal in 𝑅 and 𝐸 a faithfully injective 𝑅𝔭-module.
From 14.1.21(b), 15.2.11, and 15.2.14 one gets

cosupp𝑅 𝐸 = cosupp𝑅 RHom𝑅 (𝑅𝔭, 𝐸) = {𝔮 ∈ Spec 𝑅 | 𝔮 ⊆ 𝔭} .

Derived Complete Complexes

15.2.16 Lemma. Let 𝔞 be an ideal and 𝔭 a prime ideal in 𝑅; let 𝑀 be an 𝑅-complex.
There is an isomorphism,

RHom𝑅 (κ (𝔭), LΛ𝔞 (𝑀)) ≃
{

RHom𝑅 (κ (𝔭), 𝑀) if 𝔞 ⊆ 𝔭

0 if 𝔞 ⊈ 𝔭 .

Proof. By 13.4.12 there is an isomorphism,

RHom𝑅 (κ (𝔭), LΛ𝔞 (𝑀)) ≃ RHom𝑅 (RΓ𝔞 (κ (𝔭)), 𝑀) ,

in D(𝑅), so the assertion follows from 15.1.4. □
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Given an ideal 𝔞 in 𝑅 and an 𝑅-complex 𝑀 , the next result shows that the
cosupport of the complex LΛ𝔞 (𝑀) is contained in V(𝔞); in fact, this characterizes
derived 𝔞-complete complexes, see 15.3.19.

15.2.17 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. One has

cosupp𝑅 LΛ𝔞 (𝑀) = V(𝔞) ∩ cosupp𝑅 𝑀 = V(𝔞) ∩ cosupp𝑅 RΓ𝔞 (𝑀) .

In particular, one has cosupp𝑅 Λ𝔞 (𝑅) = V(𝔞) ∩ cosupp𝑅 𝑅, so if 𝑅 is 𝔞-complete,
then cosupp𝑅 𝑅 is contained in V(𝔞).

Proof. Per the definition of cosupport, 15.2.1, the first equality in the first display
is an immediate consequence of 15.2.16. The second equality in that display follows
by 13.4.1(c) from the first equality applied to the complex RΓ𝔞 (𝑀). Finally, one has
LΛ𝔞 (𝑅) = Λ𝔞 (𝑅) by 13.1.15, and hence the last assertion follows. □

For a faithfully injective 𝑅-module 𝐸 , it follows from 15.2.17, in view of 15.2.11,
that cosupp𝑅 LΛ𝔞 (𝐸) = V(𝔞) holds. The cosupport of RΓ𝔞 (𝐸) ≃ Γ𝔞 (𝐸) is more
elusive. Some information about this set can be obtained from Matlis’ structure
theorem C.23 and 15.2.5, but beware that the cosupport is not well-behaved on
infinite coproducts; cf. 15.2.3. Additional information is provided in 15.3.3.

Support Compared to Cosupport

15.2.18 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. The following
conditions are equivalent.

(i) V(𝔞) ∩ supp𝑅 𝑀 ≠ ∅ .
(ii) V(𝔞) ∩ cosupp𝑅 𝑀 ≠ ∅ .
(iii) 𝔞-width𝑅 𝑀 is finite.
(iv) 𝔞-depth𝑅 𝑀 is finite.

Proof. One has (iii)⇔ (iv) by 14.4.12. By 15.1.10 one has supp𝑅 𝑅/𝔞 = V(𝔞).
The Support Formula 15.1.16 yields supp𝑅 (𝑅/𝔞 ⊗L

𝑅
𝑀) = V(𝔞) ∩ supp𝑅 𝑀 , and

it follows from 15.1.15 and 14.4.12 that conditions (i) and (iii) are equivalent.
Similarly, cosupp𝑅 RHom𝑅 (𝑅/𝔞, 𝑀) = V(𝔞) ∩ cosupp𝑅 𝑀 holds by the Cosupport
Formula 15.2.9, so conditions (ii) and (iv) are equivalent by 15.2.8 and 14.4.12. □

Computing the support or cosupport of a complex can be a delicate task, and the
two sets may differ as much as allowed by the next theorem; compare 15.1.12 to
15.2.5 and see also 16.1.19. For a large class of rings, the cosupport of a complex
with degreewise finitely generated homology is a subset of the support; see 17.1.19.

15.2.19 Corollary. Let 𝑀 be an 𝑅-complex. The sets supp𝑅 𝑀 and cosupp𝑅 𝑀 have
the same maximal elements.

Proof. The equivalence of conditions (i) and (ii) in 15.2.18 shows that every element
of supp𝑅 𝑀 is contained in an element of cosupp𝑅 𝑀 and, conversely, every element
of cosupp𝑅 𝑀 is contained in an element of supp𝑅 𝑀 . The assertion now follows. □
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15.2.20 Example. For every prime 𝑝 the maximal ideal 𝑝ℤ belongs to suppℤ ℤ =

Specℤ and hence, by 15.2.19, to cosuppℤ ℤ. Further, one has Ext1𝑅 (ℚ,ℤ) ≠ 0 by
7.3.28, so also the zero ideal is in the cosupport of ℤ, i.e. cosuppℤ ℤ = Specℤ.
Notice that 15.2.19, in view of 15.1.13, also yields cosuppℤ ℤ = {0}, which was
already computed in 15.2.6.

Exercises

E 15.2.1 Let 𝑀 be an 𝑅-complex. Show that the set {𝔭 ∈ Spec𝑅 | H(RHom𝑅 (𝑅𝔭 , 𝑀 ) ) ≠ 0}
contains cosupp𝑅 𝑀 and that every prime ideal in the set contains one from cosupp𝑅 𝑀.
Conclude that the two sets have the same minimal elements.

E 15.2.2 Let 𝑀 be an 𝑅-complex. Show that for every prime ideal 𝔭 in cosupp𝑅 𝑀 there is an
integer 𝑛 such that 𝔭 ∈ cosupp𝑅 𝑀Ě𝑛.

E 15.2.3 Let 𝑀 be an 𝑅-complex. Show that for every prime ideal 𝔭 in cosupp𝑅 𝑀 there is an
integer 𝑛 such that 𝔭 ∈ cosupp𝑅 𝑀Ď𝑛. Hint: E 3.5.2.

E 15.2.4 Let 𝑀, 𝑋, and 𝑁 be 𝑅-complexes with cosupp𝑅 𝑁 ⊆ cosupp𝑅 𝑀. Show that if
RHom𝑅 (𝑋, 𝑀 ) is acyclic, then RHom𝑅 (𝑋, 𝑁 ) is acyclic.

E 15.2.5 Let 𝑀 be an 𝑅-complex. Show that if supp𝑅 𝑀 or cosupp𝑅 𝑀 is a subset of Min𝑅,
then supp𝑅 𝑀 = cosupp𝑅 𝑀 holds.

E 15.2.6 Let 𝑛 ∈ ℕ. Show that one has RHomℤ (ℚ,ℤ/𝑛ℤ) ≃ 0 ≃ ℚ ⊗L
ℤ
ℤ/𝑛ℤ and conclude that

suppℤ ℤ/𝑛ℤ = cosuppℤ ℤ/𝑛ℤ holds.
E 15.2.7 Let 𝑀 be a finitely generated ℤ-module; show that one has suppℤ 𝑀 = cosuppℤ 𝑀.

Conclude via 6.4.23 that suppℤ 𝑀 = cosuppℤ 𝑀 holds for every complex 𝑀 in Df (ℤ) .

15.3 Applications of Support and Cosupport

Synopsis. Krull’s intersection theorem; detecting isomorphisms; cosupport of derived 𝔞-complete
complex; support of derived 𝔞-torsion complex; derived annihilator.

A homomorphism of modules that induces an isomorphism upon localization outside
any prime ideal is necessarily an isomorphism, and of course the same holds for
morphisms of complexes; see 15.3.8. One can similarly recognize isomorphisms in
the derived category, and that is one of three themes explored in this section. The
other themes are: Describing the support and cosupport of derived complete and
derived torsion complexes, and extending the concept of annihilators to the derived
category setting.

15.3.1 Lemma. Let 𝔞 and 𝔟 be ideals in 𝑅 and 𝑀 an 𝑅-complex. If 𝔞 and 𝔟 are
comaximal, then one has

V(𝔟) ∩ supp𝑅 LΛ𝔞 (𝑀) = ∅ and V(𝔟) ∩ cosupp𝑅 RΓ𝔞 (𝑀) = ∅ .

Proof. By 13.1.20 one has LΛ𝔟 (LΛ𝔞 (𝑀)) ≃ LΛ𝔞+𝔟 (𝑀) = LΛ𝑅 (𝑀), and in view
of 7.2.11 this complex is acyclic by 11.1.5. Similarly one has RΓ𝔟 (RΓ𝔞 (𝑀)) ≃
RΓ𝔞+𝔟 (𝑀) = RΓ𝑅 (𝑀) by 13.3.21 and this complex is acyclic by 11.2.2. The asserted
equalities now follow from 14.4.12 and 15.2.18. □
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15.3.2 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝐸 a faithfully injective 𝑅-module; one has

V(𝔞) ⊆ cosupp𝑅 Γ𝔞 (𝐸) and V(𝔞) ∩Max 𝑅 = cosupp𝑅 Γ𝔞 (𝐸) ∩Max 𝑅 .

Proof. One has Γ𝔞 (𝐸) ≃ RΓ𝔞 (𝐸) in D(𝑅), see 13.3.18. As cosupp𝑅 𝐸 = Spec 𝑅
holds by 15.2.11, the inclusion V(𝔞) ⊆ cosupp𝑅 Γ𝔞 (𝐸) follows from 15.2.17. If
𝔪 ∈ cosupp𝑅 Γ𝔞 (𝐸) is a maximal ideal in 𝑅, then V(𝔪) ∩ cosupp𝑅 RΓ𝔞 (𝐸) = {𝔪}
holds, so it follows from 15.3.1 that 𝔞 and 𝔪 are not comaximal. As 𝔪 is maximal,
this means that 𝔪 contains 𝔞; that is, one has 𝔪 ∈ V(𝔞). □

15.3.3 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝐸 a faithfully injective 𝑅-module.
The injective 𝑅-module Γ𝔞 (𝐸) is faithfully injective if and only if 𝔞 is contained in
the Jacobson radical of 𝑅.

Proof. Recall from 13.3.4 that the 𝑅-module Γ𝔞 (𝐸) is injective. Thus 15.2.11 shows
that Γ𝔞 (𝐸) is faithfully injective if and only if Max 𝑅 ⊆ cosupp𝑅 Γ𝔞 (𝐸) holds. By
the equality in 15.3.2 this is tantamount to the inclusion Max 𝑅 ⊆ V(𝔞), which again
is equivalent to 𝔞 being contained in the Jacobson radical of 𝑅. □

15.3.4 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝐹 a faithfully flat 𝑅-module; one has

V(𝔞) ⊆ supp𝑅 Λ𝔞 (𝐹) and V(𝔞) ∩Max 𝑅 = supp𝑅 Λ𝔞 (𝐹) ∩Max 𝑅 .

Proof. One has Λ𝔞 (𝐹) ≃ LΛ𝔞 (𝐹) in D(𝑅) by 13.1.15. As supp𝑅 𝐹 = Spec 𝑅
holds, see 15.1.18, the inclusion V(𝔞) ⊆ supp𝑅 Λ𝔞 (𝐹) follows from 15.1.27. If 𝔪 ∈
supp𝑅 Λ𝔞 (𝐹) is a maximal ideal in 𝑅, then one has V(𝔪) ∩ supp𝑅 LΛ𝔞 (𝑀) = {𝔪},
so it follows from 15.3.1 that 𝔞 and 𝔪 are not comaximal. As 𝔪 is maximal, this
means that 𝔪 contains 𝔞; that is, one has 𝔪 ∈ V(𝔞). □

15.3.5 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝐹 a faithfully flat 𝑅-module. The
flat 𝑅-module Λ𝔞 (𝐹) is faithfully flat if and only if 𝔞 is contained in the Jacobson
radical of 𝑅.

Proof. Recall from 13.1.26 that the 𝑅-module Λ𝔞 (𝐹) is flat. Thus 15.1.18 shows
that Λ𝔞 (𝐹) is faithfully flat if and only if Max 𝑅 ⊆ supp𝑅 Λ𝔞 (𝐹) holds. By the
equality in 15.3.4 this is tantamount to the inclusion Max 𝑅 ⊆ V(𝔞), which again is
equivalent to 𝔞 being contained in the Jacobson radical of 𝑅. □

Krull’s Intersection Theorem

15.3.6 Corollary. Let 𝔞 be an ideal in 𝑅. The 𝑅-algebra 𝑅𝔞 is faithfully flat as an
𝑅-module if and only if 𝔞 is contained in the Jacobson radical of 𝑅.

Proof. Per 11.1.19 the assertion follows by applying 15.3.5 to 𝐹 = 𝑅. □

The next result is known as Krull’s intersection theorem.

15.3.7 Theorem. Let 𝔞 be an ideal in 𝑅 contained in the Jacobson radical and 𝑀
an 𝑅-module. If 𝑀 is finitely generated or 𝔞-complete, then one has ⋂

𝑢⩾1 𝔞
𝑢𝑀 = 0.

8-Mar-2024 Draft - use at own risk



704 15 Support Theories

Proof. As noted in 11.1.11, the equality ⋂
𝑢⩾1 𝔞

𝑢𝑀 = 0 holds if and only if 𝑀 is
𝔞-separated. Evidently, every 𝔞-complete 𝑅-module is 𝔞-separated, see 11.1.8. As
an 𝑅-module, 𝑅𝔞 is faithfully flat by 15.3.6, and hence the structure map 𝑅 → 𝑅𝔞 is
a pure monomorphism by 12.1.23; see also 5.5.15. Thus, for every 𝑅-module 𝑀 the
map 𝑀 � 𝑅 ⊗𝑅 𝑀 → 𝑅𝔞 ⊗𝑅 𝑀 is injective by 5.5.14. If 𝑀 is finitely generated, this
map is by 13.2.4 identified with the canonical one 𝜆𝔞

𝑀
: 𝑀 → Λ𝔞 (𝑀) from 11.1.4,

and hence 𝑀 is 𝔞-separated. □

Detecting Isomorphisms

Our main focus is applications of support and cosupport to detect isomorphisms in
the derived category. However, we open with the complex version of a standard test
for isomorphisms of modules.

15.3.8 Proposition. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes.
(a) 𝛼 is injective if and only if 𝛼𝔭 is injective for every 𝔭 ∈ Spec 𝑅 .
(b) 𝛼 is surjective if and only if 𝛼𝔭 is surjective for every 𝔭 ∈ Spec 𝑅 .
(c) 𝛼 is an isomorphism if and only if 𝛼𝔭 is an isomorphism for every 𝔭 ∈ Spec 𝑅 .

Proof. (a): For each integer 𝑣 and prime ideal𝔭 in 𝑅 one has (Ker𝛼𝑣)𝔭 = Ker((𝛼𝑣)𝔭),
as the localization functor ( )𝔭 is exact. This equality, combined with the fact that a
module is zero if and only if it has empty classic support, yields the assertion. The
same argument applies to the modules Coker𝛼𝑣 and yields (b). Part (c) follows from
parts (a) and (b). □

15.3.9 Proposition. Let 𝛼 : 𝑀 → 𝑁 be a morphism in D(𝑅) and 𝑋 an 𝑅-complex
with supp𝑅 𝑀 ∪ supp𝑅 𝑁 ⊆ supp𝑅 𝑋 . If 𝛼 ⊗L

𝑅
𝑋 is an isomorphism, then 𝛼 is an

isomorphism.

Proof. There is a distinguished triangle in D(𝑅),

(♭) 𝑀
𝛼−−−→ 𝑁 −→ 𝐶 −→ Σ𝑀 ,

and it suffices by 6.5.20(c) to prove that the complex 𝐶 is acyclic. Application of the
triangulated functor ⊗L

𝑅
𝑋 to (♭) yields another distinguished triangle in D(𝑅), and

since 𝛼 ⊗L
𝑅
𝑋 is an isomorphism, it follows from 6.5.20(c) that the complex 𝐶 ⊗L

𝑅
𝑋

is acyclic. Thus, 15.1.15 and the Support Formula 15.1.16 yield

∅ = supp𝑅 (𝐶 ⊗L
𝑅 𝑋) = supp𝑅 𝐶 ∩ supp𝑅 𝑋 .

From (♭) and 15.1.8 it follows that supp𝑅 𝐶 is contained in supp𝑅 𝑀 ∪ supp𝑅 𝑁 , so
it follows from the assumption on 𝑋 that supp𝑅 𝐶 is empty, i.e. 𝐶 is acyclic. □

Applied to the morphism 𝑀 → 0 the next result recovers the “in particular”
statement in 2.5.7(c).

15.3.10 Corollary. Let 𝛼 : 𝑀 → 𝑁 be a morphism in D(𝑅) and 𝐹 a faithfully flat
𝑅-module. If 𝛼 ⊗L

𝑅
𝐹 is an isomorphism, then 𝛼 is an isomorphism.
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Proof. By 15.1.18 one has supp𝑅 𝐹 = Spec 𝑅, so 15.3.9 yields the claim. □

Applied to the morphism 𝑀 → 0, the equivalence of (i) and (iv) in next result
recovers the fact that a complex with empty support is acyclic, cf. 15.1.15.

15.3.11 Corollary. Let𝛼 : 𝑀 → 𝑁 be a morphism inD(𝑅). The following conditions
are equivalent.

(i) 𝛼 is an isomorphism.
(ii) 𝛼 ⊗𝑅 𝑅𝔭 is an isomorphism for every 𝔭 ∈ supp𝑅 𝑀 ∪ supp𝑅 𝑁 .
(iii) 𝛼 ⊗L

𝑅
𝑅/𝔭 is an isomorphism for every 𝔭 ∈ supp𝑅 𝑀 ∪ supp𝑅 𝑁 .

(iv) 𝛼 ⊗L
𝑅
κ (𝔭) is an isomorphism for every 𝔭 ∈ supp𝑅 𝑀 ∪ supp𝑅 𝑁 .

Proof. Condition (i) evidently implies (ii) and (iii). Per the isomorphisms,

(𝛼 ⊗𝑅 𝑅𝔭) ⊗L
𝑅 𝑅/𝔭 ≃ 𝛼 ⊗L

𝑅 κ (𝔭) ≃ (𝛼 ⊗L
𝑅 𝑅/𝔭) ⊗L

𝑅 𝑅𝔭 ,

which hold by the definition, 15.1.1, of κ (𝔭) combined with associativity 12.3.6 and
commutativity 12.3.5, conditions (ii) and (iii) both imply (iv). To see that (iv) implies
(i), set 𝑈 = supp𝑅 𝑀 ∪ supp𝑅 𝑁 and 𝑋 =

∐
𝔭∈𝑈 κ (𝔭). By assumption 𝛼 ⊗L

𝑅
𝑋 is an

isomorphism as one has 𝛼 ⊗L
𝑅
𝑋 =

∐
𝔭∈𝑈 (𝛼 ⊗L

𝑅
κ (𝔭)) by 7.4.5. By 15.1.7 and

15.1.23 the support of 𝑋 is supp𝑅 𝑀 ∪ supp𝑅 𝑁 , so it follows from 15.3.9 that 𝛼 is
an isomorphism. □

15.3.12 Proposition. Let 𝛼 : 𝑀 → 𝑁 be a morphism in D(𝑅) and 𝑋 an 𝑅-complex
with cosupp𝑅 𝑀 ∪ cosupp𝑅 𝑁 ⊆ supp𝑅 𝑋 . If RHom𝑅 (𝑋, 𝛼) is an isomorphism, then
𝛼 is an isomorphism.

Proof. There is a distinguished triangle in D(𝑅),

(★) 𝑀
𝛼−−−→ 𝑁 −→ 𝐶 −→ Σ𝑀 ,

and it suffices by 6.5.20(c) to prove that the complex 𝐶 is acyclic. Application of the
triangulated functor RHom𝑅 (𝑋, ) to (★) yields another distinguished triangle, and
since RHom𝑅 (𝑋, 𝛼) is an isomorphism, it follows from 6.5.20(c) that the complex
RHom𝑅 (𝑋,𝐶) is acyclic. Thus, 15.2.8 and the Cosupport Formula 15.2.9 yield

∅ = cosupp𝑅 RHom𝑅 (𝑋,𝐶) = supp𝑅 𝑋 ∩ cosupp𝑅 𝐶 .

By 15.2.4 applied to (★), the set cosupp𝑅 𝐶 is contained in cosupp𝑅 𝑀 ∪ cosupp𝑅 𝑁 ,
so it follows from the assumption on 𝑋 that cosupp𝑅 𝐶 is empty, i.e.𝐶 is acyclic. □

Applied to the morphism 𝑀 → 0 the next result recovers 15.2.10.

15.3.13 Corollary. Let 𝛼 : 𝑀 → 𝑁 be a morphism in D(𝑅) and 𝐹 a faithfully flat
𝑅-module. If RHom𝑅 (𝐹, 𝛼) is an isomorphism, then 𝛼 is an isomorphism.

Proof. By 15.1.18 one has supp𝑅 𝐹 = Spec 𝑅, so 15.3.12 justifies the claim. □

Applied to the morphism 𝑀 → 0, the equivalence of (i) and (iv) in next result
recovers the fact that a complex with empty cosupport is acyclic, cf. 15.2.8.
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15.3.14 Corollary. Let𝛼 : 𝑀 → 𝑁 be a morphism inD(𝑅). The following conditions
are equivalent.

(i) 𝛼 is an isomorphism.
(ii) RHom𝑅 (𝑅𝔭, 𝛼) is an isomorphism for every 𝔭 ∈ cosupp𝑅 𝑀 ∪ cosupp𝑅 𝑁 .
(iii) RHom𝑅 (𝑅/𝔭, 𝛼) is an isomorphism for every 𝔭 ∈ cosupp𝑅 𝑀 ∪ cosupp𝑅 𝑁 .
(iv) RHom𝑅 (κ (𝔭), 𝛼) is an isomorphism for every 𝔭 ∈ cosupp𝑅 𝑀 ∪ cosupp𝑅 𝑁 .

Proof. Condition (i) evidently implies (ii) and (iii). Per the isomorphisms,

RHom𝑅 (𝑅/𝔭,RHom𝑅 (𝑅𝔭, 𝛼)) ≃ RHom𝑅 (κ (𝔭), 𝛼)
≃ RHom𝑅 (𝑅𝔭,RHom𝑅 (𝑅/𝔭, 𝛼)) ,

which hold by the definition, 15.1.1, of κ (𝔭) combined with adjunction 12.3.8
and commutativity 12.3.5, conditions (ii) and (iii) both imply (iv). To see that (iv)
implies (i), set𝑈 = cosupp𝑅 𝑀 ∪ cosupp𝑅 𝑁 and 𝑋 =

∐
𝔭∈𝑈 κ (𝔭). By 7.3.6 one has

RHom𝑅 (𝑋, 𝛼) =
∏

𝔭∈𝑈 RHom𝑅 (κ (𝔭), 𝛼), so RHom𝑅 (𝑋, 𝛼) is an isomorphism. By
15.1.7 and 15.1.23 the support of 𝑋 is cosupp𝑅 𝑀 ∪ cosupp𝑅 𝑁 , so it follows from
15.3.12 that 𝛼 is an isomorphism. □

15.3.15 Proposition. Let 𝛼 : 𝑀 → 𝑁 be a morphism in D(𝑅) and 𝑋 an 𝑅-complex
with supp𝑅 𝑀 ∪ supp𝑅 𝑁 ⊆ cosupp𝑅 𝑋 . If RHom𝑅 (𝛼, 𝑋) is an isomorphism, then
𝛼 is an isomorphism.

Proof. There is a distinguished triangle in D(𝑅),

(⋄) 𝑀
𝛼−−−→ 𝑁 −→ 𝐶 −→ Σ𝑀 ,

and it suffices by 6.5.20(c) to prove that the complex 𝐶 is acyclic. Application of the
triangulated functor RHom𝑅 ( , 𝑋) to (⋄) yields another distinguished triangle, and
since RHom𝑅 (𝛼, 𝑋) is an isomorphism, it follows from 6.5.20(c) that the complex
RHom𝑅 (𝐶, 𝑋) is acyclic. Thus, 15.2.8 and the Cosupport Formula 15.2.9 yield

∅ = cosupp𝑅 RHom𝑅 (𝐶, 𝑋) = supp𝑅 𝐶 ∩ cosupp𝑅 𝑋 .

From 15.1.8 applied to (⋄) one gets that supp𝑅 𝐶 is contained in supp𝑅 𝑀 ∪ supp𝑅 𝑁 ,
so it follows from the assumption on 𝑋 that supp𝑅 𝐶 is empty, i.e. 𝐶 is acyclic. □

Applied to the morphism 𝑀 → 0 the next result recovers the “in particular”
statement in 2.5.7(b).

15.3.16 Corollary. Let 𝛼 : 𝑀 → 𝑁 be a morphism in D(𝑅) and 𝐸 a faithfully
injective 𝑅-module. If RHom𝑅 (𝛼, 𝐸) is an isomorphism, then 𝛼 is an isomorphism.

Proof. By 15.2.11 one has cosupp𝑅 𝐸 = Spec 𝑅, so 15.3.15 justifies the claim. □

15.3.17 Corollary. Let 𝛼 : 𝑀 → 𝑁 be a morphism in D(𝑅). If RHom𝑅 (𝛼, κ (𝔭)) is
an isomorphism for every 𝔭 in supp𝑅 𝑀 ∪ supp𝑅 𝑁 , then 𝛼 is an isomorphism.

Proof. Set 𝑈 = supp𝑅 𝑀 ∪ supp𝑅 𝑁 and 𝑋 =
∏

𝔭∈𝑈 κ (𝔭); by assumption the mor-
phism RHom𝑅 (𝛼, 𝑋) is an isomorphism as RHom𝑅 (𝛼, 𝑋) =

∏
𝔭∈𝑈RHom𝑅 (𝛼, κ (𝔭))
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holds by 7.3.6. By 15.2.3 and 15.2.7 the cosupport of 𝑋 is supp𝑅 𝑀 ∪ supp𝑅 𝑁 , so
it follows from 15.3.15 that 𝛼 is an isomorphism. □

Cosupport of Derived Complete Complex

The next lemma is key to the characterization of derived 𝔞-complete complexes in
15.3.19. Once that has been proved, the lemma is a special case of 13.4.20(a).

15.3.18 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. If one has
cosupp𝑅 𝑁 ⊆ V(𝔞), then there is an isomorphism,

RHom𝑅 (𝝀𝔞𝑀 , 𝑁) : RHom𝑅 (LΛ𝔞 (𝑀), 𝑁) −→ RHom𝑅 (𝑀, 𝑁) .

Proof. By the assumption cosupp𝑅 𝑁 ⊆ V(𝔞) and the Cosupport Formula 15.2.9,
both complexes RHom𝑅 (LΛ𝔞 (𝑀), 𝑁) and RHom𝑅 (𝑀, 𝑁) have cosupport contained
in V(𝔞). Let 𝑥𝑥𝑥 be a sequence that generates 𝔞 and recall from 15.1.10 that one has
supp𝑅 K (𝑥𝑥𝑥) = V(𝔞). Thus, in order to see that RHom𝑅 (𝝀𝔞𝑀 , 𝑁) is an isomorphism it
suffices by 15.3.12 to show that RHom𝑅 (K (𝑥𝑥𝑥),RHom𝑅 (𝝀𝔞𝑀 , 𝑁)) is an isomorphism.
By adjunction 12.3.8 and commutativity 12.3.5 there is an isomorphism,

RHom𝑅 (K (𝑥𝑥𝑥),RHom𝑅 (𝝀𝔞𝑀 , 𝑁)) ≃ RHom𝑅 (K (𝑥𝑥𝑥) ⊗L
𝑅 𝝀

𝔞
𝑀 , 𝑁) ,

so it is enough to argue that K (𝑥𝑥𝑥) ⊗L
𝑅
𝝀𝔞𝑀 is an isomorphism, and in view of 13.3.31

this is merely a special case of 13.4.20(c). □

The next result adds to the description 13.4.4 of derived 𝔞-complete complexes.

15.3.19 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. The next conditions
are equivalent:

(i) 𝑀 is derived 𝔞-complete.
(ii) cosupp𝑅 𝑀 ⊆ V(𝔞) .

Proof. It follows from 15.2.17 that (i) implies (ii). For the converse, consider the
distinguished triangle in D(𝑅),

(⋄) 𝑀
𝝀𝔞
𝑀−−−→ LΛ𝔞 (𝑀) −→ 𝑍 −→ Σ𝑀 .

If one has cosupp𝑅 𝑀 ⊆ V(𝔞), then 15.3.18 and 7.3.26 yield an isomorphism,

D(𝑅) (𝝀𝔞𝑀 , 𝑀) : D(𝑅) (LΛ𝔞 (𝑀), 𝑀) −→ D(𝑅) (𝑀, 𝑀) ;

in particular, there exists a morphism 𝜚 : LΛ𝔞 (𝑀) → 𝑀 with 𝜚𝝀𝔞𝑀 = 1𝑀 . Now E.22
shows that the distinguished triangle (⋄) is split and that 𝑀 is a direct summand
of LΛ𝔞 (𝑀). By 13.4.2 the complex LΛ𝔞 (𝑀) is derived 𝔞-complete, and it follows
directly from the definition, 11.3.3, that the class of derived 𝔞-complete complexes
is closed under direct summands. Consequently, 𝑀 is derived 𝔞-complete. □

15.3.20 Proposition. Let 𝔭 be a prime ideal in 𝑅 and𝑀 an 𝑅-complex. If every prime
ideal in cosupp𝑅 𝑀 is contained in 𝔭, in particular, if cosupp𝑅 𝑀 ⊆ {𝔭} holds, then
there is an isomorphism RHom𝑅 (𝑅𝔭, 𝑀) ≃ 𝑀 in D(𝑅).
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Proof. Let 𝜑 : 𝑅 → 𝑅𝔭 be the canonical map and 𝛼 the composite morphism,

RHom𝑅 (𝑅𝔭, 𝑀)
RHom (𝜑,𝑀 )−−−−−−−−−−→ RHom𝑅 (𝑅, 𝑀)

(𝝐𝑀 )−1

−−−−−−→ 𝑀 ,

in D(𝑅). One has cosupp𝑅 RHom𝑅 (𝑅𝔭, 𝑀) ⊆ cosupp𝑅 𝑀 by the Cosupport For-
mula 15.2.9. Thus, to see that 𝛼 is an isomorphism, it suffices by 15.3.14 to show
that RHom𝑅 (𝑅𝔮, 𝛼) is an isomorphism for every 𝔮 in cosupp𝑅 𝑀; and to that end it
is enough to show that RHom𝑅 (𝑅𝔮,RHom𝑅 (𝜑, 𝑀)) is an isomorphism. For every
prime ideal 𝔮 in 𝑅, adjunction 12.3.8 and 14.1.10 yield

RHom𝑅 (𝑅𝔮,RHom𝑅 (𝜑, 𝑀)) ≃ RHom𝑅 (𝜑𝔮, 𝑀) .

If 𝔮 is in cosupp𝑅 𝑀 , then one has 𝔮 ⊆ 𝔭 by assumption, so the map 𝜑𝔮 : 𝑅𝔮 → (𝑅𝔭)𝔮
is an isomorphism and the desired conclusion follows. □

15.3.21 Corollary. Let 𝔪 be a maximal ideal in 𝑅 and 𝑀 an 𝑅-complex. If 𝑀 is
derived 𝔪-complete, then there is an isomorphism RHom𝑅 (𝑅𝔪, 𝑀) ≃ 𝑀 in D(𝑅).

Proof. If 𝑀 is derived 𝔪-complete, then cosupp𝑅 𝑀 ⊆ {𝔪} holds by 15.3.19, and
the conclusion follows from 15.3.20. □

Support of Derived Torsion Complex

The next lemma is key to the characterization of derived 𝔞-torsion complexes in
15.3.23. Once that has been proved, the lemma is a special case of 13.4.20(b).

15.3.22 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes. If one has
supp𝑅 𝑁 ⊆ V(𝔞), then there is an isomorphism,

RHom𝑅 (𝑁, 𝜸𝑀𝔞 ) : RHom𝑅 (𝑁,RΓ𝔞 (𝑀)) −→ RHom𝑅 (𝑁, 𝑀) .

Proof. By the assumption supp𝑅 𝑁 ⊆ V(𝔞) and the Cosupport Formula 15.2.9, both
complexes RHom𝑅 (𝑁,RΓ𝔞 (𝑀)) and RHom𝑅 (𝑁, 𝑀) have cosupport contained in
V(𝔞). Let 𝑥𝑥𝑥 be a sequence that generates 𝔞 and recall from 15.1.10 that one has
supp𝑅 K (𝑥𝑥𝑥) = V(𝔞). Thus, in order to see that RHom𝑅 (𝑁, 𝜸𝑀𝔞 ) is an isomorphism it
suffices by 15.3.12 to show that RHom𝑅 (K (𝑥𝑥𝑥),RHom𝑅 (𝑁, 𝜸𝑀𝔞 )) is an isomorphism.
By swap 12.3.7 there is an isomorphism,

RHom𝑅 (K (𝑥𝑥𝑥),RHom𝑅 (𝑁, 𝜸𝑀𝔞 )) ≃ RHom𝑅 (𝑁,RHom𝑅 (K (𝑥𝑥𝑥), 𝜸𝑀𝔞 )) ,

so it is enough to argue that RHom𝑅 (K (𝑥𝑥𝑥), 𝜸𝑀𝔞 ) is an isomorphism. In view of
13.3.31 this is merely a special case of 13.4.20(b). □

The next result adds to the characterization 13.4.9 of derived 𝔞-torsion complexes.

15.3.23 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex.
(a) The following conditions are equivalent.

(i) 𝑀 is derived 𝔞-torsion.
(ii) supp𝑅 𝑀 ⊆ V(𝔞) .
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(iii) Supp𝑅 𝑀 ⊆ V(𝔞) .
(b) If 𝑀 is derived 𝔞-torsion and not acyclic, then there are inequalities,

− inf 𝑀 ⩽ dim𝑅 𝑀 ⩽ dim 𝑅/𝔞 − inf 𝑀 .

Proof. The first inequality in part (b) holds by 14.2.4. If 𝑀 is derived 𝔞-torsion, then
it follows from part (a) that every homology module H𝑣 (𝑀) has Krull dimension at
most dim 𝑅/𝔞, whence the second inequality in (b) holds by 14.2.1.

(a): In view of 13.4.9 and the definition, 14.1.4, of classic support for complexes,
conditions (i) and (iii) are equivalent by 14.1.3. It follows from 15.1.9 that condition
(iii) implies (ii). It remains to argue that (ii) implies (i).

AsD(𝑅) is triangulated, the morphism 𝜸𝑀𝔞 : RΓ𝔞 (𝑀) → 𝑀 fits by axioms (TR1)
and (TR2) in E.2 into a distinguished triangle,

(⋄) 𝑍 −→ RΓ𝔞 (𝑀)
𝜸𝑀𝔞−−−→ 𝑀 −→ Σ𝑍 .

If one has supp𝑅 𝑀 ⊆ V(𝔞), then 15.3.22 and 7.3.26 yield an isomorphism,

D(𝑅) (𝑀, 𝜸𝑀𝔞 ) : D(𝑅) (𝑀,RΓ𝔞 (𝑀)) −→ D(𝑅) (𝑀, 𝑀) ;

in particular, there exists a morphism 𝜎 : 𝑀 → RΓ𝔞 (𝑀) with 𝜸𝑀𝔞 𝜎 = 1𝑀 . Now E.22
shows that the distinguished triangle (⋄) is split and that 𝑀 is a direct summand of
RΓ𝔞 (𝑀). By 13.4.7 the complex RΓ𝔞 (𝑀) is derived 𝔞-torsion, and it follows directly
from the definition, 11.3.17, that the class of derived 𝔞-torsion complexes is closed
under direct summands. Consequently, 𝑀 is derived 𝔞-torsion. □

15.3.24 Proposition. Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅-complex. If every
prime ideal in supp𝑅 𝑀 is contained in 𝔭, in particular, if supp𝑅 𝑀 ⊆ {𝔭} holds,
then there is an isomorphism 𝑀𝔭 ≃ 𝑀 in D(𝑅).

Proof. We identify 𝑀𝔭 with 𝑅𝔭 ⊗L
𝑅
𝑀 , see 14.1.10. Let 𝜑 : 𝑅 → 𝑅𝔭 be the canonical

map and 𝛼 the composite morphism,

𝑀
(𝝁𝑀 )−1

−−−−−−→ 𝑅 ⊗L
𝑅 𝑀

𝜑⊗L𝑀−−−−−→ 𝑅𝔭 ⊗L
𝑅 𝑀 ,

in D(𝑅). The Support Formula 15.1.16 yields supp𝑅 (𝑅𝔭 ⊗L
𝑅
𝑀) ⊆ supp𝑅 𝑀 . Thus,

to see that 𝛼 is an isomorphism, it suffices by 15.3.11 and commutativity 12.3.5 to
prove that 𝑅𝔮 ⊗L

𝑅
𝛼 is an isomorphism for every 𝔮 in supp𝑅 𝑀; and to that end it is

enough to verify that 𝑅𝔮 ⊗L
𝑅
(𝜑 ⊗L

𝑅
𝑀) is an isomorphism. For every prime ideal 𝔮

in 𝑅, associativity 12.3.6 and 14.1.10 yield

𝑅𝔮 ⊗L
𝑅 (𝜑 ⊗L

𝑅 𝑀) ≃ 𝜑𝔮 ⊗L
𝑅 𝑀 .

If 𝔮 is in supp𝑅 𝑀 , then one has 𝔮 ⊆ 𝔭 by assumption, so the map 𝜑𝔮 : 𝑅𝔮 → (𝑅𝔭)𝔮
is an isomorphism and the desired conclusion follows. □

15.3.25 Corollary. Let 𝔪 be a maximal ideal in 𝑅 and 𝑀 an 𝑅-complex. If 𝑀 is
derived 𝔪-torsion, then there is an isomorphism 𝑀𝔪 ≃ 𝑀 in D(𝑅).
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710 15 Support Theories

Proof. If 𝑀 is derived 𝔪-torsion, then supp𝑅 𝑀 ⊆ {𝔪} holds by 15.3.23, and the
conclusion follows from 15.3.24. □

Derived Annihilator

15.3.26 Definition. Let 𝑀 be an 𝑅-complex. The set

ann𝑅 𝑀 = {𝑥 ∈ 𝑅 | 𝑥𝑀 = 0 in D(𝑅) }

is called the derived annihilator of 𝑀 .

Remark. The derived annihilator was introduced by Apassov [6] as the ‘homotopy annihilator’.

The next result makes it explicit that the derived annihilator is an invariant on the
derived category; that is, isomorphic complexes in D(𝑅) have the same annihilator.

15.3.27 Proposition. Let 𝑀 be an 𝑅-complex. There is an equality,

ann𝑅 𝑀 = Ker H0 (𝝌𝑀𝑅 ) ,

so ann𝑅 𝑀 is an ideal in 𝑅. Further, for 𝑥 ∈ 𝑅 the next conditions are equivalent.
(i) 𝑥 ∈ ann𝑅 𝑀 .
(ii) For some/every semi-projective replacement 𝑃 of 𝑀 the homothety 𝑥𝑃 is

null-homotopic.
(iii) For some/every semi-injective replacement 𝐼 of 𝑀 the homothety 𝑥𝐼 is null-

homotopic.

Proof. By the final assertion in 6.4.8 and 6.1.6, the homothety 𝑥𝑀 is the zero
morphism in D(𝑅) if and only if the homothety 𝑥P (𝑀 ) is null-homotopic. By 2.3.10
this happens if and only if 𝑥 is in the kernel of the map

H0 (𝜒P (𝑀 )
𝑅
) : 𝑅 −→ H0 (Hom𝑅 (P(𝑀), P(𝑀))) .

Let 𝑃 be any semi-projective replacement 𝑀 and 𝐼 a semi-injective replacement. By
7.3.17 and 7.3.19 there are quasi-isomorphisms 𝜋 : 𝑃 ≃−−→ 𝑀 and 𝜄 : 𝑀 ≃−−→ 𝐼, which
induce a commutative diagram,

𝑅

𝜒𝑃
𝑅

��

𝜒𝐼
𝑅

// Hom𝑅 (𝐼, 𝐼)

≃ Hom ( 𝜄 𝜋,𝐼 )
��

Hom𝑅 (𝑃, 𝑃) ≃
Hom (𝑃, 𝜄𝜋 )

// Hom𝑅 (𝑃, 𝐼) .

The diagram shows that Ker H0 (𝜒𝑃𝑅 ) = Ker H0 (𝜒𝐼𝑅) holds. As it applies, in partic-
ular, to 𝑃 = P(𝑀) it follows that conditions (i)–(iii) are equivalent. Finally, by the
definition, 10.1.10, of the morphism 𝝌𝑀

𝑅
, the set ann𝑅 𝑀 is precisely the kernel of

H0 (𝜒I (𝑀 )
𝑅
) = H0 (𝝌𝑀𝑅 ) which, in particular, is an ideal in 𝑅. □
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15.3.28 Proposition. Let 𝑀 be an 𝑅-complex; one has

ann𝑅 𝑀 ⊆ {𝑥 ∈ 𝑅 | H(𝑥𝑀 ) = 0} = (0 :𝑅 H(𝑀)) =
⋂
𝑣∈ℤ
(0 :𝑅 H𝑣 (𝑀)) .

Proof. Homology is by 6.5.17 an 𝑅-linear functor on D(𝑅), so for 𝑥 ∈ ann𝑅 𝑀 one
has 𝑥H (𝑀 ) = H(𝑥𝑀 ) = H(0) = 0. □

15.3.29 Example. For an 𝑅-module 𝑀 and an element 𝑥 in 𝑅 one has 𝑥𝑀 = 0 in
D(𝑅) if and only if 𝑥𝑀 is the zero homomorphism, see 6.4.15, so ann𝑅 𝑀 is simply
the annihilator (0 :𝑅 𝑀).

15.3.30 Example. Let 𝑥 be an element in 𝑅 and set 𝐾 = K𝑅 (𝑥). Evidently, the
homothety 𝑥𝐾 is null-homotopic, so the ideal ann𝑅 𝐾 contains (𝑥). Per 2.2.9 one has

(0 :𝑅 H1 (𝐾)) ⊇ (𝑥) = (0 :𝑅 H0 (𝐾)) and hence (0 :𝑅 H(𝐾)) = (𝑥) .

Now 15.3.28 yields ann𝑅 𝐾 = (𝑥).

15.3.31 Example. Consider the ℤ/4ℤ-complex

𝑀 = 0 −→ ℤ/4ℤ 2−−−→ ℤ/4ℤ 2−−−→ ℤ/4ℤ −→ 0 .

Evidently one has (0 :ℤ/4ℤ H(𝑀)) = 2ℤ/4ℤ, but it is elementary to verify that the
homothety on 𝑀 induced by 2 is not null-homotopic. As 𝑀 is semi-projective, and
for that matter semi-injective, annℤ/4ℤ 𝑀 = 0 holds by 15.3.27 and 15.3.28.

The next result applies, in particular, to the functors RΓ𝔞 and LΛ𝔞 , and for every
𝑅-complex 𝑋 to the functors RHom𝑅 (𝑋, ), RHom𝑅 ( , 𝑋), 𝑋 ⊗L

𝑅
, and ⊗L

𝑅
𝑋 .

15.3.32 Proposition. Let F: D(𝑅) → D(𝑅) be an 𝑅-linear functor and 𝑀 an 𝑅-
complex; there is an inclusion,

ann𝑅 𝑀 ⊆ ann𝑅 F(𝑀) .

Proof. For 𝑥 ∈ 𝑅 one has 𝑥F(𝑀 ) = F(𝑥𝑀 ) as F is 𝑅-linear, so for 𝑥 ∈ ann𝑅 𝑀 one
has 𝑥F(𝑀 ) = F(0) = 0 in D(𝑅). □

15.3.33 Proposition. Let 𝑆 be an 𝑅-algebra, flat as an 𝑅-module, and 𝑀 a complex
in Df

⊏⊐ (𝑅). The derived annihilator ann𝑆 (𝑆 ⊗𝑅 𝑀) is the extended ideal (ann𝑅 𝑀)𝑆.

Proof. There is a commutative diagram in D(𝑆),

𝑆 ⊗𝑅 𝑅
𝑆⊗𝝌𝑀

𝑅
//

𝜇𝑆
𝑅
≃
��

𝑆 ⊗𝑅 RHom𝑅 (𝑀, 𝑀)

≃
��

𝑆
𝝌𝑆⊗𝑀
𝑆

// RHom𝑆 (𝑆 ⊗𝑅 𝑀, 𝑆 ⊗𝑅 𝑀) ,

where the right-hand vertical isomorphism comes from 12.3.33(a). Passing to ho-
mology and applying the Five Lemma 2.1.41, it yields an isomorphism,

Ker H0 (𝑆 ⊗𝑅 𝝌𝑀𝑅 ) � Ker H0 (𝝌𝑆⊗𝑀𝑆
) .
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As the functor 𝑆 ⊗𝑅 is exact, one has per 2.2.19 and 1.1.41 the isomorphisms,

Ker H0 (𝑆 ⊗𝑅 𝝌𝑀𝑅 ) � Ker(𝑆 ⊗𝑅 H0 (𝝌𝑀𝑅 )) � 𝑆 ⊗𝑅 Ker H0 (𝝌𝑀𝑅 ) .

Set 𝔞 = Ker H0 (𝝌𝑀𝑅 ). As 𝑆 is a flat 𝑅-module, the canonical map 𝑆 ⊗𝑅 𝔞 → 𝔞𝑆 is
an isomorphism, see 12.1.22. The assertion now follows from 15.3.27. □

15.3.34 Corollary. Let 𝑆 be an 𝑅-algebra, flat as an 𝑅-module, and 𝑀 a finitely
generated 𝑅-module. There is an equality,

(0 :𝑆 (𝑆 ⊗𝑅 𝑀)) = (0 :𝑅 𝑀)𝑆 .

Proof. The asserted equality follows from 15.3.29 and 15.3.33. □

Exercises

E 15.3.1 Let 𝑅 be an integral domain with field of fractions 𝑄 and 𝑀 an 𝑅-module. Show
that the next conditions are equivalent: (i) supp𝑅 𝑀 = {0}; (ii) cosupp𝑅 𝑀 = {0};
(iii) 𝑀 � 𝑄 (𝑈) for some set𝑈.

E 15.3.2 Show from the definition of the derived annihilator that if 𝑀 and 𝑁 are isomorphic
complexes in D(𝑅) then ann𝑅 𝑀 = ann𝑅 𝑁 holds.

E 15.3.3 Show from the definition of the derived annihilator of an 𝑅-complex is an ideal in 𝑅.

15.4 Homological Dimensions

Synopsis. Projective dimension; injective dimension; ∼ of derived 𝔞-torsion complex; rigidity of
Ext; flat dimension; ∼ of derived 𝔞-complete complex; rigidity of Tor; flat dimension vs. (faithfully
flat) base change.

We continue the project of rewriting results from Part II in their more facile form for
commutative Noetherian rings, now also taking into account that vanishing of Ext
and Tor functors can be tested on prime ideals, see Sect. 12.4.

Projective Dimension

Let 𝑀 be an 𝑅-complex. Recall from Sect. 8.1 that a semi-projective 𝑅-complex 𝑃
that is isomorphic to 𝑀 in D(𝑅) is called a semi-projective replacement of 𝑀 and
that the projective dimension of 𝑀 is defined as

pd𝑅 𝑀 = inf{sup 𝑃♮ | 𝑃 is a semi-projective replacement of 𝑀 } .

15.4.1 Theorem. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. The following conditions
are equivalent.

(i) pd𝑅 𝑀 ⩽ 𝑛.
(ii) − inf RHom𝑅 (𝑀, 𝑁) ⩽ 𝑛 − inf 𝑁 holds for every 𝑅-complex 𝑁 .
(iii) 𝑛 ⩾ sup𝑀 and Ext𝑛+1

𝑅
(𝑀, 𝑁) = 0 holds for every 𝑅-module 𝑁 .
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(iv) 𝑛 ⩾ sup𝑀 and Ext1𝑅 (C𝑛 (𝑃),C𝑛+1 (𝑃)) = 0 holds for some, equivalently every,
semi-projective replacement 𝑃 of 𝑀 .

(v) 𝑛 ⩾ sup𝑀 and for some, equivalently every, semi-projective replacement 𝑃
of 𝑀 , the module C𝑛 (𝑃) is projective.

(vi) 𝑛 ⩾ sup𝑀 and for every semi-projective replacement 𝑃 of 𝑀 , there is a
semi-projective resolution 𝑃Ď𝑛

≃−−→ 𝑀 .
(vii) There is a semi-projective resolution 𝑃 ≃−−→ 𝑀 with 𝑃𝑣 = 0 for all 𝑣 > 𝑛 and

for all 𝑣 < inf 𝑀 .
In particular, there are equalities,

pd𝑅 𝑀 = sup{− inf RHom𝑅 (𝑀, 𝑁) | 𝑁 is an 𝑅-module}
= sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝑀, 𝑁) ≠ 0 for some 𝑅-module 𝑁 } .

Proof. This is a restatement of 8.1.8. □

15.4.2 Theorem. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. If 𝑀 belongs to Df
⊐ (𝑅),

then the following conditions are equivalent.
(i) pd𝑅 𝑀 ⩽ 𝑛.
(ii) 𝑛 ⩾ sup𝑀 and Ext𝑛+1

𝑅
(𝑀, 𝑅/𝔭) = 0 for every prime ideal 𝔭 in 𝑅 .

(iii) There is a semi-projective resolution 𝑃
≃−−→ 𝑀 with 𝑃 degreewise finitely

generated and 𝑃𝑣 = 0 for all 𝑣 > 𝑛 and for all 𝑣 < inf 𝑀 .
In particular, there are equalities,

pd𝑅 𝑀 = sup{− inf RHom𝑅 (𝑀, 𝑅/𝔭) | 𝔭 ∈ Spec 𝑅}
= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ Spec 𝑅 : Ext𝑚𝑅 (𝑀, 𝑅/𝔭) ≠ 0} .

Proof. The functors Ext𝑚
𝑅
(𝑀, ) are half exact, see 7.3.35, so for every ideal 𝔞 in

𝑅 with Ext𝑚
𝑅
(𝑀, 𝑅/𝔞) ≠ 0 it follows from 12.4.1 that there is a prime ideal 𝔭 with

Ext𝑚
𝑅
(𝑀, 𝑅/𝔭) ≠ 0. In view of this, the claims follows from 8.1.14. □

15.4.3 Proposition. Let 𝑀 be a complex in Df
⊏⊐ (𝑅) of finite projective dimension.

The functors ⊗L
𝑅
𝑀 and RHom𝑅 (𝑀, ) restrict to endofunctors on Df (𝑅) and to

functors:

Df
⊏ (𝑅) −→ Df

⊏ (𝑅) , Df
⊐ (𝑅) −→ Df

⊐ (𝑅) , and Df
⊏⊐ (𝑅) −→ Df

⊏⊐ (𝑅) ,

and further to

Pf (𝑅) −→ Pf (𝑅) and If (𝑅) −→ If (𝑅) .

Proof. As pd𝑅 𝑀 is finite, also RHom𝑅 (𝑀, 𝑅) is a complex in Df
⊏⊐ (𝑅) of finite

projective dimension, and the functors ⊗L
𝑅
𝑀 and RHom𝑅 (RHom𝑅 (𝑀, 𝑅), ) are

naturally isomorphic, see 12.3.20. It is, therefore, sufficient to prove the assertions for
the functor F = RHom𝑅 (𝑀, ) : D(𝑅) → D(𝑅). As F is triangulated and bounded,
see 7.3.6 and A.26(c), it follows from 12.2.6 and A.29(d), applied with U = Df (𝑅),
that F restricts to a functor Df (𝑅) → Df (𝑅). Thus, F restricts by A.25 to functors
Df
⊏ (𝑅) → Df

⊏ (𝑅), Df
⊐ (𝑅) → Df

⊐ (𝑅), and Df
⊏⊐ (𝑅) → Df

⊏⊐ (𝑅). This final restriction
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in combination with 8.4.26 and 8.3.15(b) yields the restrictions of F to functors
Pf (𝑅) → Pf (𝑅) and If (𝑅) → If (𝑅). □

15.4.4 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex.
(a) If 𝑀 belongs to Df (𝑅), then one has pd𝑅 LΛ𝔞 (𝑀) ⩽ pd𝑅 𝑀 + pd𝑅 Λ𝔞 (𝑅) .
(b) There is an inequality pd𝑅 RΓ𝔞 (𝑀) ⩽ pd𝑅 𝑀 .

Proof. Part (a) is trivial if 𝑀 is acyclic; if not it follows from 13.2.5 and 8.3.15(d).
(b): Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. One can assume that 𝑀 and the Čech

complex Č𝑅(𝑥𝑥𝑥) are not acyclic, otherwise the inequality is trivial per 13.3.18. The
projective dimension of Č𝑅(𝑥𝑥𝑥) is by 11.4.26 at most 0, so the inequality follows
from 13.3.18 and 8.3.15(d). □

Restriction of Scalars

15.4.5 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑁 an 𝑆-complex. If 𝑁 is not acyclic,
then there is an inequality,

pd𝑅 𝑁 ⩽ pd𝑅 𝑆 + pd𝑆 𝑁 .

In particular, if 𝑆 is projective as an 𝑅-module, then one has pd𝑅 𝑁 ⩽ pd𝑆 𝑁 .

Proof. In view of the unitor 12.3.3, this holds by 8.3.15(d) applied with 𝑋 = 𝑆. □

15.4.6 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex; one has

pd
𝑅𝔞 RΓ𝔞 (𝑀) ⩽ pd𝑅 RΓ𝔞 (𝑀) ⩽ pd𝑅 𝑅𝔞 + pd

𝑅𝔞 RΓ𝔞 (𝑀) .

Proof. In view of 13.4.17 the first inequality is a special case of 8.1.4; the second
inequality holds by 15.4.5. □

Remark. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑅-complex. If 𝔞 is contained in the Jacobson radical
of 𝑅, then the 𝑅-algebra 𝑅𝔞 is faithfully flat as an 𝑅-module, see 15.3.6, and hence the equality
pd
𝑅𝔞 RΓ𝔞 (𝑀 ) = pd𝑅 RΓ𝔞 (𝑀 ) holds per the Remark after 15.4.19.

Injective Dimension

Let 𝑀 be an 𝑅-complex. Recall from Sect. 8.2 that a semi-injective 𝑅-complex 𝐼 that
is isomorphic to 𝑀 in D(𝑅) is called a semi-injective replacement of 𝑀 and that the
injective dimension of 𝑀 is defined as

id𝑅 𝑀 = inf{− inf 𝐼♮ | 𝐼 is a semi-injective replacement of 𝑀 } .

The injective dimension of 𝑅 as an 𝑅-module, sometimes referred to as the self-
injective dimension of 𝑅, is abbreviated id 𝑅. It is an important invariant that gets
investigated starting from Sect. 17.4.
Caveat. The notation id𝑅 is permissable as 𝑅 is commutative and hence a symmetric 𝑅–𝑅o-
bimodule, cf. the Remark before 9.4.15 but see also 8.5.30.
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15.4.7 Theorem. Let 𝑀 be an 𝑅-complex and 𝑛 an integer. The following conditions
are equivalent.

(i) id𝑅 𝑀 ⩽ 𝑛.
(ii) − inf RHom𝑅 (𝑁, 𝑀) ⩽ 𝑛 + sup 𝑁 holds for every 𝑅-complex 𝑁 .
(iii) 𝑛 ⩾ − inf 𝑀 and Ext𝑛+1

𝑅
(𝑅/𝔭, 𝑀) = 0 holds for every prime ideal 𝔭 in 𝑅 .

(iv) 𝑛 ⩾ − inf 𝑀 and one has Ext1𝑅 (Z−(𝑛+1) (𝐼),Z−𝑛 (𝐼)) = 0 for some, equivalently
every, semi-injective replacement 𝐼 of 𝑀 .

(v) 𝑛 ⩾ − inf 𝑀 and for some, equivalently every, semi-injective replacement 𝐼 of
𝑀 , the module Z−𝑛 (𝐼) is injective.

(vi) 𝑛 ⩾ − inf 𝑀 and for every semi-injective replacement 𝐼 of 𝑀 , there is a
semi-injective resolution 𝑀 ≃−−→ 𝐼Ě−𝑛 .

(vii) There is a semi-injective resolution 𝑀 ≃−−→ 𝐼 with 𝐼−𝑣 = 0 for all 𝑣 > 𝑛 and for
all 𝑣 < − sup𝑀 .

In particular, there are equalities,

id𝑅 𝑀 = sup{− inf RHom𝑅 (𝑅/𝔭, 𝑀) | 𝔭 ∈ Spec 𝑅}
= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ Spec 𝑅 : Ext𝑚𝑅 (𝑅/𝔭, 𝑀) ≠ 0} .

Proof. The functors Ext𝑚
𝑅
( , 𝑀) are half exact, see 7.3.35, so for every ideal 𝔞 in

𝑅 with Ext𝑚
𝑅
(𝑅/𝔞, 𝑀) ≠ 0 it follows from 12.4.7 that there is a prime ideal 𝔭 with

Ext𝑚
𝑅
(𝑅/𝔭, 𝑀) ≠ 0. In view of this, the claims follows from 8.2.8. □

15.4.8 Proposition. Let 𝑀 be a complex in Df
⊏⊐ (𝑅) of finite injective dimension. The

functor RHom𝑅 ( , 𝑀) restricts to a functor from Df (𝑅)op to Df (𝑅) and to functors:

Df
⊐ (𝑅)op −→ Df

⊏ (𝑅) , Df
⊏ (𝑅)op −→ Df

⊐ (𝑅) , and Df
⊏⊐ (𝑅)op −→ Df

⊏⊐ (𝑅) ,

and further to

Pf (𝑅)op −→ If (𝑅) and If (𝑅)op −→ Pf (𝑅) .

Proof. By the assumptions on𝑀 , the functor G = RHom𝑅 ( , 𝑀) : D(𝑅)op → D(𝑅)
is bounded by A.32(c). As G is triangulated, see 7.3.6, it follows from 12.2.6 and
A.34(d), applied with U = Df (𝑅), that G restricts to a functor Df (𝑅)op → Df (𝑅).
Thus, G restricts by A.31 to functors Df

⊐ (𝑅)op → Df
⊏ (𝑅), Df

⊏ (𝑅)op → Df
⊐ (𝑅),

and Df
⊏⊐ (𝑅)op → Df

⊏⊐ (𝑅). This final restriction combined with 8.3.15(b), 8.4.27, and
8.3.19 yields the restrictions to functorsPf (𝑅)op → If (𝑅) and If (𝑅)op → Pf (𝑅). □

Restriction of Scalars

15.4.9 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑁 an 𝑆-complex. If 𝑁 is not acyclic,
then there is an inequality,

id𝑅 𝑁 ⩽ fd𝑅 𝑆 + id𝑆 𝑁 .

In particular, if 𝑆 is flat as an 𝑅-module, then one has id𝑅 𝑁 ⩽ id𝑆 𝑁 .
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Proof. In view of the counitor 12.3.4, this holds by 8.3.15(a) applied with the roles
of 𝑅 and 𝑆 interchanged and 𝑋 = 𝑆. □

Given an ideal 𝔞 in 𝑅 and an 𝑅-complex 𝑀 , the object RΓ𝔞 (𝑀) is an 𝑅𝔞-complex,
see 11.3.18. The next result compares the injective dimensions of RΓ𝔞 (𝑀) over 𝑅
and 𝑅𝔞; it is complemented by 16.1.20 and 17.3.19.

15.4.10 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex; one has

id𝑅 RΓ𝔞 (𝑀) ⩽ id
𝑅𝔞 RΓ𝔞 (𝑀) .

Proof. As an 𝑅-module, 𝑅𝔞 is flat, see 13.1.27, so in view of 11.3.18 the inequality
is a special case of 15.4.9. □

Rigidity of Ext

The phenomenon that vanishing of Ext𝑚 for a single index implies vanishing for all
subsequent indices is often referred to as “rigidity of Ext”. It occurs for complexes
that satisfy the assumption in 13.4.11. In the special case of the zero ideal, the
equalities in the next result just recovers the equalities in 15.4.7.

15.4.11 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex such that the complex
RHom𝑅 (𝑅/𝔭, 𝑀) is derived 𝔞-torsion for every prime ideal 𝔭 in 𝑅. One has

id𝑅 𝑀 = sup{− inf RHom𝑅 (𝑅/𝔭, 𝑀) | 𝔭 ∈ V(𝔞) }
= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ V(𝔞) : Ext𝑚𝑅 (𝑅/𝔭, 𝑀) ≠ 0} .

Further, if for an integer 𝑛 ⩾ − inf 𝑀 one has Ext𝑛+1
𝑅
(𝑅/𝔭, 𝑀) = 0 for every prime

ideal 𝔭 in V(𝔞), then id𝑅 𝑀 ⩽ 𝑛 holds.

Proof. Let 𝑛 ⩾ − inf 𝑀 be an integer. If Ext𝑛+1
𝑅
(𝑅/𝔭, 𝑀) = 0 holds for all 𝔭 in V(𝔞),

then 13.4.11 yields Ext𝑛+1
𝑅
(𝑅/𝔭, 𝑀) = 0 for all prime ideals 𝔭 in 𝑅. The equivalence

of (i) and (iii) in 15.4.7 now yields id𝑅 𝑀 ⩽ 𝑛. This proves the last assertion.
The second equality in the display holds by 7.3.24. Let 𝑠 denote the supremum in

the asserted equality. The inequality id𝑅 𝑀 ⩾ 𝑠 holds by 15.4.7, and 13.4.11 yields
𝑠 ⩾ − inf 𝑀 . To prove that the opposite inequality, id𝑅 𝑀 ⩽ 𝑠, holds, one can now
assume that 𝑠 is an integer. As one has Ext𝑠+1

𝑅
(𝑅/𝔭, 𝑀) = 0 for every 𝔭 in V(𝔞), the

desired inequality holds by the argument above. □

The gist of the next result is that vanishing of certain Ext modules of a complex
𝑀 detects the injective dimension of the derived 𝔞-torsion complex RΓ𝔞 (𝑀). The
flat dimension of RΓ𝔞 (𝑀) is computed in 17.3.5.

15.4.12 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex such that the
inequality 𝔞-depth𝑅 𝑀 > −∞ holds. There are equalities,

id𝑅 RΓ𝔞 (𝑀) = sup{− inf RHom𝑅 (𝑅/𝔭, 𝑀) | 𝔭 ∈ V(𝔞) }
= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ V(𝔞) : Ext𝑚𝑅 (𝑅/𝔭, 𝑀) ≠ 0} .
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Further, if for an integer 𝑛 ⩾ − inf RΓ𝔞 (𝑀) one has Ext𝑛+1
𝑅
(𝑅/𝔭, 𝑀) = 0 for every

prime ideal 𝔭 in V(𝔞), then id𝑅 RΓ𝔞 (𝑀) ⩽ 𝑛 holds.

Proof. The complex RΓ𝔞 (𝑀) is by 13.4.7 derived 𝔞-torsion. Per 14.4.3 the assump-
tion 𝔞-depth𝑅 𝑀 > −∞ means that RΓ𝔞 (𝑀) belongs to D⊏ (𝑅), so 15.4.11 applies
by 13.3.28(b) to RΓ𝔞 (𝑀). It remains to recall that for 𝔭 in V(𝔞) the cyclic module
𝑅/𝔭 is 𝔞-torsion and, therefore, by 13.3.30 derived 𝔞-torsion, whence there is an
isomorphism RHom𝑅 (𝑅/𝔭,RΓ𝔞 (𝑀)) ≃ RHom𝑅 (𝑅/𝔭, 𝑀) by 13.4.20(b). □

15.4.13 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 a derived 𝔞-torsion complex in
D⊏ (𝑅). There are equalities,

id𝑅 𝑀 = sup{− inf RHom𝑅 (𝑅/𝔭, 𝑀) | 𝔭 ∈ V(𝔞) }
= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ V(𝔞) : Ext𝑚𝑅 (𝑅/𝔭, 𝑀) ≠ 0} .

Further, if for an integer 𝑛 ⩾ − inf 𝑀 one has Ext𝑛+1
𝑅
(𝑅/𝔭, 𝑀) = 0 for every prime

ideal 𝔭 in V(𝔞), then id𝑅 𝑀 ⩽ 𝑛 holds.

Proof. By assumption there is an isomorphism RΓ𝔞 (𝑀) ≃ 𝑀 in D(𝑅), and 14.3.16
yields 𝔞-depth𝑅 𝑀 ⩾ − sup𝑀 > −∞, so the result is a special case of 15.4.12. □

15.4.14 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝔞-torsion 𝑅-module. One has

id𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | ∃ 𝔭 ∈ V(𝔞) : Ext𝑚𝑅 (𝑅/𝔭, 𝑀) ≠ 0} .

Further, if for an integer 𝑛 ⩾ 0 one has Ext𝑛+1
𝑅
(𝑅/𝔭, 𝑀) = 0 for every prime ideal 𝔭

in V(𝔞), then id𝑅 𝑀 ⩽ 𝑛 holds.

Proof. In view of 13.3.30, this result is a special case of 15.4.13. □

The assumption in part (a) below is necessary; see 17.5.16. The injective dimen-
sions of RΓ𝔞 (𝑀) and LΛ𝔞 (𝑀) are computed in 15.4.12 and 17.3.20.

15.4.15 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex.
(a) If 𝔞-depth𝑅 𝑀 > −∞ holds, then one has id𝑅 RΓ𝔞 (𝑀) ⩽ id𝑅 𝑀 .
(b) There is an inequality id𝑅 LΛ𝔞 (𝑀) ⩽ id𝑅 𝑀 .

Proof. Part (a) is an immediate consequence of 15.4.12 and 15.4.7.
(b): Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. One can assume that 𝑀 and the Čech

complex Č𝑅(𝑥𝑥𝑥) are not acyclic, otherwise the inequality is trivial per 13.1.15. The
Čech complex Č𝑅(𝑥𝑥𝑥) has by 11.4.10(c) flat dimension at most 0, so the inequality
follows from 13.1.15 and 8.3.15(a). □

For an 𝑅-complex 𝑀 with 𝔞-depth𝑅 𝑀 > −∞ the next rigidity statement follows
from 15.4.12.

15.4.16 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. If for an integer
𝑛 ⩾ − inf RΓ𝔞 (𝑀) one has Ext𝑛+1

𝑅
(𝑅/𝔭, 𝑀) = 0 for every prime ideal 𝔭 in V(𝔞),

then Ext𝑚
𝑅
(𝑅/𝔭, 𝑀) = 0 holds for all integers 𝑚 > 𝑛 and all prime ideals 𝔭 in V(𝔞).
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Proof. Set 𝑖 = inf RΓ𝔞 (𝑀), let 𝐼 be a semi-injective replacement of 𝑀 , and set
𝐸 = Γ𝔞 (𝐼). Note that H𝑣 (𝐸) = 0 holds for 𝑣 < 𝑖 as one has 𝐸 ≃ RΓ𝔞 (𝑀). For every
prime ideal 𝔭 in V(𝔞) the 𝑅-module 𝑅/𝔭 is 𝔞-torsion, so by 7.3.22, 11.2.22, and the
definition of 𝐸 , one has

(⋄) RHom𝑅 (𝑅/𝔭, 𝑀) ≃ Hom𝑅 (𝑅/𝔭, 𝐼) � Hom𝑅 (𝑅/𝔭, 𝐸) .

Now, for every integer 𝑚 > −𝑖 and prime ideal 𝔭 ∈ V(𝔞) there are isomorphisms,

(★)

Ext𝑚𝑅 (𝑅/𝔭, 𝑀) � H−𝑚 (Hom𝑅 (𝑅/𝔭, 𝐸))
� H−𝑚 (Hom𝑅 (𝑅/𝔭, 𝐸ď𝑖))
� H−𝑚−𝑖 (Hom𝑅 (𝑅/𝔭, Σ−𝑖𝐸ď𝑖))
� Ext𝑚+𝑖𝑅 (𝑅/𝔭,Z𝑖 (𝐸)) .

Indeed, the 1st isomorphism holds by 7.3.23 and (⋄), the 2nd holds as 𝑚 > −𝑖, and
the 3rd follows from 2.3.16 and 2.2.15. By 13.3.4 each module 𝐸𝑣 is injective, so per
5.3.12 the complex 𝐽 = Σ−𝑖𝐸ď𝑖 is a semi-injective replacement of the module Z𝑖 (𝐸).
This explains the 4th isomorphism. As 𝑛 + 1 > −𝑖, the assumption and (★) yield

(††) 0 = Ext𝑛+1𝑅 (𝑅/𝔭, 𝑀) � Ext(𝑛+𝑖)+1
𝑅

(𝑅/𝔭,Z𝑖 (𝐸)) for all 𝔭 ∈ V(𝔞) .

The complex 𝐸 = Γ𝔞 (𝐼) is 𝔞-torsion by 11.2.18, and hence so is 𝐽 = Σ−𝑖𝐸ď𝑖 . Thus
one has RΓ𝔞 (Z𝑖 (𝐸)) ≃ Γ𝔞 (𝐽) = 𝐽 ≃ Z𝑖 (𝐸) in D(𝑅), so the module Z𝑖 (𝐸) is derived
𝔞-torsion, see 13.4.9. As one has 𝑛 + 𝑖 ⩾ 0, it now follows from 15.4.13 and (††) that
id𝑅 Z𝑖 (𝐸) ⩽ 𝑛 + 𝑖 holds. Now, for every 𝑚 > 𝑛 and 𝔭 ∈ V(𝔞) one has

Ext𝑚𝑅 (𝑅/𝔭, 𝑀) � Ext𝑚+𝑖𝑅 (𝑅/𝔭,Z𝑖 (𝐸)) = 0

where the isomorphism follows from (★) and the equality holds by 15.4.7. □

Flat Dimension

Let 𝑀 be an 𝑅-complex. Recall from Sect. 8.3 that a semi-flat 𝑅-complex 𝐹 that is
isomorphic to 𝑀 in D(𝑅) is called a semi-flat replacement of 𝑀 and that the flat
dimension of 𝑀 is defined as

fd𝑅 𝑀 = inf{sup 𝐹♮ | 𝐹 ≃ 𝑀 is a semi-flat replacement of 𝑀 } .

15.4.17 Theorem. Let𝑀 be an 𝑅-complex and 𝑛 an integer. The following conditions
are equivalent.

(i) fd𝑅 𝑀 ⩽ 𝑛.
(ii) sup (𝑁 ⊗L

𝑅
𝑀) ⩽ 𝑛 + sup 𝑁 holds for every 𝑅-complex 𝑁 .

(iii) 𝑛 ⩾ sup𝑀 and Tor𝑅
𝑛+1 (𝑅/𝔭, 𝑀) = 0 holds for every prime ideal 𝔭 in 𝑅 .

(iv) 𝑛 ⩾ sup𝑀 and Tor𝑅1 (Hom𝑅 (C𝑛+1 (𝐹), 𝐸),C𝑛 (𝐹)) = 0 holds for some, equiva-
lently every, faithfully injective 𝑅-module 𝐸 and semi-flat replacement 𝐹 of𝑀 .

(v) 𝑛 ⩾ sup𝑀 and for some, equivalently every, semi-flat replacement 𝐹 of 𝑀 the
module C𝑛 (𝐹) is flat.
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(vi) 𝑛 ⩾ sup𝑀 and for every semi-flat replacement 𝐹 of 𝑀 the complex 𝐹Ď𝑛 is a
semi-flat replacement of 𝑀 .

(vii) There exists a semi-flat replacement 𝐹 of 𝑀 with 𝐹𝑣 = 0 for all 𝑣 > 𝑛 and for
all 𝑣 < inf 𝑀 .

In particular, there are equalities

fd𝑅 𝑀 = sup{sup (𝑅/𝔭 ⊗L
𝑅 𝑀) | 𝔭 ∈ Spec 𝑅}

= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ Spec 𝑅 : Tor𝑅𝑚 (𝑅/𝔭, 𝑀) ≠ 0} .

Proof. The functors Tor𝑅𝑚 ( , 𝑀) are half exact, see 7.4.29, so for every ideal 𝔞 in
𝑅 with Tor𝑅𝑚 (𝑅/𝔞, 𝑀) ≠ 0 it follows from 12.4.1 that there is a prime ideal 𝔭 with
Tor𝑅𝑚 (𝑅/𝔭, 𝑀) ≠ 0. In view of this, the claims follows from 8.3.11. □

15.4.18 Theorem. Let 𝑀 be an 𝑅-complex. There is an inequality,

fd𝑅 𝑀 ⩽ pd𝑅 𝑀 ,

and equality holds if 𝑀 is in Df
⊐ (𝑅).

Proof. The assertions are immediate from 8.3.6 and 8.3.19. □

If 𝑅 has finite Krull dimension, then an 𝑅-complex has finite flat dimension if
and only if it has finite projective dimension; see 17.4.26.

Flat Base Change and Restriction of Scalars

The next result sharpens 8.3.8. For a result parallel to 15.4.19 about the injective
dimension of a derived cobase changed complex, see 17.3.16.

15.4.19 Theorem. Let 𝑆 be an 𝑅-algebra and 𝑀 an 𝑅-complex. There is an inequal-
ity,

fd𝑆 (𝑆 ⊗L
𝑅 𝑀) ⩽ fd𝑅 𝑀 ,

and equality holds if 𝑆 is faithfully flat as an 𝑅-module.

Proof. The inequality holds by 8.3.8. Assume that 𝑆 is faithfully flat as an 𝑅-module;
to prove the inequality fd𝑅 𝑀 ⩽ fd𝑆 (𝑆 ⊗L

𝑅
𝑀) assume that fd𝑆 (𝑆 ⊗L

𝑅
𝑀) < ∞ holds.

If the complex 𝑆 ⊗L
𝑅
𝑀 = 𝑆 ⊗𝑅 𝑀 is acyclic, then 𝑀 is acyclic, see 2.5.7(c); one

can now assume that fd𝑆 (𝑆 ⊗𝑅 𝑀) = 𝑛 holds for some 𝑛 ∈ ℤ. Let 𝐹 be a semi-flat
replacement of 𝑀; by 5.4.18(a) the 𝑆-complex 𝑆 ⊗𝑅 𝐹 is a semi-flat replacement
of 𝑆 ⊗L

𝑅
𝑀 . It follows from 8.3.11 that the 𝑆-module C𝑛 (𝑆 ⊗𝑅 𝐹) � 𝑆 ⊗𝑅 C𝑛 (𝐹),

see 2.2.19, is flat and hence also flat as an 𝑅-module by 5.4.24(b). That is, the
functor (𝑆 ⊗𝑅 C𝑛 (𝐹)) ⊗𝑅 � 𝑆 ⊗𝑅 (C𝑛 (𝐹) ⊗𝑅 ), where the isomorphism comes
from associativity 12.1.8, is exact. Since 𝑆 ⊗𝑅 is faithfully exact, see 1.3.41, it
follows from 1.1.45 that the functor C𝑛 (𝐹) ⊗𝑅 is exact, i.e. C𝑛 (𝐹) is a flat 𝑅-
module. Now 15.4.17 yields fd𝑅 𝑀 ⩽ 𝑛. □
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Remark. Let 𝑆 be an 𝑅-algebra and 𝑀 an 𝑅-module. The crux of the proof above is that if 𝑆
is faithfully flat as an 𝑅-module, then flatness of 𝑆 ⊗𝑅 𝑀 over 𝑆 implies flatness of 𝑀 over 𝑅.
Raynaud and Gruson [207] and Perry [201] show that if 𝑆 is faithfully flat as an 𝑅-module, then
projectivity of 𝑆 ⊗𝑅 𝑀 over 𝑆 implies projectivity of 𝑀 over 𝑅. It follows that the assumption on
the 𝑅-complex 𝑀 in the next result is superfluous.

15.4.20 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑀 an 𝑅-complex. There is an
inequality,

pd𝑆 (𝑆 ⊗L
𝑅 𝑀) ⩽ pd𝑅 𝑀 ,

and equality holds if 𝑆 is faithfully flat as an 𝑅-module and 𝑀 belongs to Df
⊐ (𝑅).

Proof. The inequality holds by 8.1.4. If 𝑀 is in Df
⊐ (𝑅), then the complex 𝑆 ⊗𝑅 𝑀

belongs to Df
⊐ (𝑆), see 12.2.12, so assuming that 𝑆 is faithfully flat as an 𝑅-module,

the asserted equality holds by 15.4.18 and 15.4.19. □

15.4.21 Proposition. Let 𝑆 be an 𝑅-algebra and 𝑁 an 𝑆-complex. If 𝑁 is not acyclic,
then there is an inequality,

fd𝑅 𝑁 ⩽ fd𝑅 𝑆 + fd𝑆 𝑁 .

In particular, if 𝑆 is flat as an 𝑅-module, then one has fd𝑅 𝑁 ⩽ fd𝑆 𝑁 .

Proof. In view of the unitor 12.3.3, this holds by 8.3.15(c) applied with 𝑋 = 𝑆. □

Given an ideal 𝔞 in 𝑅 and an 𝑅-complex 𝑀 , the objects LΛ𝔞 (𝑀) and RΓ𝔞 (𝑀) are
𝑅𝔞-complexes, see 11.3.4 and 11.3.18. The next results compare the flat dimensions
of LΛ𝔞 (𝑀) and RΓ𝔞 (𝑀) over 𝑅 and 𝑅𝔞; the first result is complemented by 16.1.21.

15.4.22 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex; one has

fd𝑅 LΛ𝔞 (𝑀) ⩽ fd
𝑅𝔞 LΛ𝔞 (𝑀) .

Proof. As an 𝑅-module, 𝑅𝔞 is flat, see 13.1.27, so in view of 11.3.4 the inequalities
are special cases of 15.4.21. □

15.4.23 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex; one has

fd𝑅 RΓ𝔞 (𝑀) = fd
𝑅𝔞 RΓ𝔞 (𝑀) .

Proof. Recall from 13.1.27 that 𝑅𝔞 is flat as an 𝑅-module. In view of 13.4.17 the
inequality “⩾” follows from 15.4.19, and the inequality “⩽” holds by 15.4.21. □

Rigidity of Tor

The phenomenon that vanishing of Tor𝑚 for a single index implies vanishing for all
subsequent indices is often referred to as “rigidity of Tor”. It occurs for complexes
that satisfy the assumption in 13.4.11. In the special case of the zero ideal, the
equalities in the next result just recovers the equalities in 15.4.17.
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15.4.24 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex such that the complex
𝑅/𝔭 ⊗L

𝑅
𝑀 is derived 𝔞-complete for every prime ideal 𝔭 in 𝑅. One has

fd𝑅 𝑀 = sup{sup (𝑅/𝔭 ⊗L
𝑅 𝑀) | 𝔭 ∈ V(𝔞) }

= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ V(𝔞) : Tor𝑅𝑚 (𝑅/𝔭, 𝑀) ≠ 0} .

Further, if for an integer 𝑛 ⩾ sup𝑀 one has Tor𝑅
𝑛+1 (𝑅/𝔭, 𝑀) = 0 for every prime

ideal 𝔭 in V(𝔞), then fd𝑅 𝑀 ⩽ 𝑛 holds.

Proof. Let 𝑛 ⩾ sup𝑀 be an integer. If Tor𝑅
𝑛+1 (𝑅/𝔭, 𝑀) = 0 holds for all 𝔭 in V(𝔞),

then 13.4.6 yields Tor𝑅
𝑛+1 (𝑅/𝔭, 𝑀) = 0 for all prime ideals 𝔭 in 𝑅. The equivalence

of (i) and (iii) in 15.4.17 now yields fd𝑅 𝑀 ⩽ 𝑛. This proves the last assertion.
The second equality in the display holds by 7.4.19. Let 𝑠 denote the supremum in

the asserted equality. The inequality fd𝑅 𝑀 ⩾ 𝑠 holds by 15.4.17, and 13.4.6 yields
𝑠 ⩾ sup𝑀 . To prove that the opposite inequality, fd𝑅 𝑀 ⩽ 𝑠, holds, one can now
assume that 𝑠 is an integer. As one has Tor𝑅

𝑠+1 (𝑅/𝔭, 𝑀) = 0 for every 𝔭 in V(𝔞), the
desired inequality holds by the argument above. □

The gist of the next result is that vanishing of certain Tor modules of a complex 𝑀
detects the flat dimension of the derived 𝔞-complete complex LΛ𝔞 (𝑀). The injective
dimension of LΛ𝔞 (𝑀) is computed in 17.3.20.

15.4.25 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex such that the
inequality 𝔞-width𝑅 𝑀 > −∞ holds. There are equalities,

fd𝑅 LΛ𝔞 (𝑀) = sup{sup (𝑅/𝔭 ⊗L
𝑅 𝑀) | 𝔭 ∈ V(𝔞) }

= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ V(𝔞) : Tor𝑅𝑚 (𝑅/𝔭, 𝑀) ≠ 0} .

Further, if for an integer 𝑛 ⩾ sup LΛ𝔞 (𝑀) one has Tor𝑅
𝑛+1 (𝑅/𝔭, 𝑀) = 0 for every

prime ideal 𝔭 in V(𝔞), then fd𝑅 LΛ𝔞 (𝑀) ⩽ 𝑛 holds.

Proof. The complex LΛ𝔞 (𝑀) is by 13.4.2 derived 𝔞-complete. Per 14.4.8 the as-
sumption 𝔞-width𝑅 𝑀 > −∞ means that LΛ𝔞 (𝑀) belongs to D⊐ (𝑅), so 15.4.24
applies by 13.1.31(b) to LΛ𝔞 (𝑀). It remains to recall that for 𝔭 in V(𝔞) the cyclic
module 𝑅/𝔭 is 𝔞-torsion and, therefore, by 13.3.30 derived 𝔞-torsion, whence there
is an isomorphism 𝑅/𝔭 ⊗L

𝑅
LΛ𝔞 (𝑀) ≃ 𝑅/𝔭 ⊗L

𝑅
𝑀 by 13.4.20(c). □

15.4.26 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 a derived 𝔞-complete complex in
D⊐ (𝑅). There are equalities,

fd𝑅 𝑀 = sup{sup (𝑅/𝔭 ⊗L
𝑅 𝑀) | 𝔭 ∈ V(𝔞) }

= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ V(𝔞) : Tor𝑅𝑚 (𝑅/𝔭, 𝑀) ≠ 0} .

Further, if for an integer 𝑛 ⩾ sup𝑀 one has Tor𝑅
𝑛+1 (𝑅/𝔭, 𝑀) = 0 for every prime

ideal 𝔭 in V(𝔞), then fd𝑅 𝑀 ⩽ 𝑛 holds.

Proof. By assumption there is an isomorphism LΛ𝔞 (𝑀) ≃ 𝑀 in D(𝑅), and 14.3.28
yields 𝔞-width𝑅 𝑀 ⩾ inf 𝑀 > −∞, so the result is a special case of 15.4.25. □
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15.4.27 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝔞-complete 𝑅-module. One has

fd𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | ∃ 𝔭 ∈ V(𝔞) : Tor𝑅𝑚 (𝑅/𝔭, 𝑀) ≠ 0} .

Further, if for an integer 𝑛 ⩾ 0 one has Tor𝑅
𝑛+1 (𝑅/𝔭, 𝑀) = 0 for every prime ideal 𝔭

in V(𝔞), then fd𝑅 𝑀 ⩽ 𝑛 holds.

Proof. If view of 13.1.33, this result is a special case of 15.4.26. □

The flat dimensions of LΛ𝔞 (𝑀) and RΓ𝔞 (𝑀) are computed in 15.4.25 and 17.3.5.

15.4.28 Proposition. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex.
(a) If 𝔞-width𝑅 𝑀 > −∞ holds, then one has fd𝑅 LΛ𝔞 (𝑀) ⩽ fd𝑅 𝑀 .
(b) There is an inequality fd𝑅 RΓ𝔞 (𝑀) ⩽ fd𝑅 𝑀 .

Proof. Part (a) is an immediate consequence of 15.4.25 and 15.4.17.
(b): Let 𝑥𝑥𝑥 be a sequence that generates 𝔞. One can assume that 𝑀 and the Čech

complex Č𝑅(𝑥𝑥𝑥) are not acyclic, otherwise the inequality is trivial per 13.3.18. The
Čech complex Č𝑅(𝑥𝑥𝑥) has by 11.4.10(c) flat dimension at most 0, so the inequality
follows from 13.3.18 and 8.3.15(c). □

Remark. An example by Christensen, Ferraro, and Thompson [58] shows that the assumption in
15.4.28(a) is necessary.

For an 𝑅-complex 𝑀 with 𝔞-width𝑅 𝑀 > −∞ the next rigidity statement follows
from 15.4.25.

15.4.29 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. If for an integer
𝑛 ⩾ sup LΛ𝔞 (𝑀) one has Tor𝑅

𝑛+1 (𝑅/𝔭, 𝑀) = 0 for every prime ideal 𝔭 in V(𝔞), then
Tor𝑅𝑚 (𝑅/𝔭, 𝑀) = 0 holds for all integers 𝑚 > 𝑛 and all prime ideals 𝔭 in V(𝔞).

Proof. Set 𝑠 = sup LΛ𝔞 (𝑀), let 𝑃 be a semi-projective replacement of 𝑀 , and set
𝐹 = Λ𝔞 (𝑃). Note that H𝑣 (𝐹) = 0 holds for 𝑣 > 𝑠 as one has 𝐹 ≃ LΛ𝔞 (𝑀). For every
prime ideal 𝔭 in V(𝔞) the module 𝑅/𝔭 is 𝔞-torsion, so by 7.4.9, 11.2.21, and the
definition of 𝐹, one has

(⋄) 𝑅/𝔭 ⊗L
𝑅 𝑀 ≃ 𝑅/𝔭 ⊗𝑅 𝑃 � 𝑅/𝔭 ⊗𝑅 𝐹 .

Now, for every integer𝑚 > 𝑠 and every prime ideal𝔭 in V(𝔞) there are isomorphisms,

(★)

Tor𝑅𝑚 (𝑅/𝔭, 𝑀) � H𝑚 (𝑅/𝔭 ⊗𝑅 𝐹)
� H𝑚 (𝑅/𝔭 ⊗𝑅 𝐹ě𝑠)
� H𝑚−𝑠 (𝑅/𝔭 ⊗𝑅 Σ−𝑠𝐹ě𝑠)
� Tor𝑅𝑚−𝑠 (𝑅/𝔭,C𝑠 (𝐹)) .

Indeed, the 1st isomorphism holds by 7.4.18 and (⋄), the 2nd holds as 𝑚 > 𝑠, and
the 3rd follows from 2.4.13 and 2.2.15. By 13.1.26 each module 𝐹𝑣 is flat, so per
5.4.8 the complex 𝐺 = Σ−𝑠𝐹ě𝑠 is a semi-flat replacement of the module C𝑠 (𝐹); this
explains the 4th isomorphism. As 𝑛 + 1 > 𝑠 holds, the assumption and (★) yield
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(††) 0 = Tor𝑅𝑛+1 (𝑅/𝔭, 𝑀) � Tor𝑅(𝑛−𝑠)+1 (𝑅/𝔭,C𝑠 (𝐹)) for all 𝔭 ∈ V(𝔞) .

The complex 𝐹 = Λ𝔞 (𝑃) is 𝔞-complete by 11.1.38, and hence so is 𝐺 = Σ−𝑠𝐹ě𝑠 . In
view of 13.1.15 there are now isomorphisms LΛ𝔞 (C𝑠 (𝐹)) ≃ Λ𝔞 (𝐺) = 𝐺 ≃ C𝑠 (𝐹)
in D(𝑅), whence the module C𝑠 (𝐹) is derived 𝔞-complete, see 13.4.4. As one has
𝑛 − 𝑠 ⩾ 0, it now follows from 15.4.26 and (††) that fd𝑅 C𝑠 (𝐹) ⩽ 𝑛 − 𝑠 holds. For
every 𝑚 > 𝑛 and every 𝔭 in V(𝔞) one now has

Tor𝑅𝑚 (𝑅/𝔭, 𝑀) � Tor𝑅𝑚−𝑠 (𝑅/𝔭,C𝑠 (𝐹)) = 0 ,

where the isomorphism follows from (★) and the equality holds by 15.4.17. □

Faithful Injectivity

15.4.30 Theorem. Let 𝑀 be an 𝑅-complex and 𝐸 an injective 𝑅-module. There is
an inequality,

id𝑅 Hom𝑅 (𝑀, 𝐸) ⩽ fd𝑅 𝑀 ,

and equality holds if 𝐸 is faithfully injective.

Proof. The inequailty is trivial if 𝑀 is acyclic or 𝐸 is zero; otherwise it is, in view
of 7.3.22, a special case of 8.3.15(a). If 𝐸 is faithfully injective, then equality holds
by 8.3.17 applied with 𝕜 = 𝑅 and 𝔼 = 𝐸 . □

Example 17.5.15 shows that the boundedness condition in 15.4.31 is necessary.

15.4.31 Theorem. Let 𝑀 be a complex in D⊏ (𝑅) and 𝐸 an injective 𝑅-module.
There is an inequality,

fd𝑅 Hom𝑅 (𝑀, 𝐸) ⩽ id𝑅 𝑀 ,

and equality holds if 𝐸 is faithfully injective.

Proof. The claims are trivial if 𝑀 is acyclic; otherwise invoke 8.4.27. □

Faithful Flatness

15.4.32 Theorem. Let 𝑀 be an 𝑅-complex and 𝐹 a flat 𝑅-module. There is an
inequality,

fd𝑅 (𝐹 ⊗𝑅 𝑀) ⩽ fd𝑅 𝑀 ,

and equality holds if 𝐹 is faithfully flat.

Proof. The 𝑅-module Hom𝕜 (𝐹,𝔼) is by 1.3.48 injective and faithfully injective if
𝐹 is faithfully flat. By 8.3.17, adjunction 12.1.10, and 15.4.30 one has

fd𝑅 (𝐹 ⊗𝑅 𝑀) = id𝑅 Hom𝕜 (𝐹 ⊗𝑅 𝑀,𝔼)
= id𝑅 Hom𝑅 (𝑀,Hom𝕜 (𝐹,𝔼))
⩽ fd𝑅 𝑀 ,

and equality holds if 𝐹 is faithfully flat. □
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Example 17.5.14 shows that the boundedness condition in 15.4.33 is necessary.

15.4.33 Theorem. Let 𝑀 be a complex in D⊏ (𝑅) and 𝐹 a flat 𝑅-module. There is
an inequality,

id𝑅 (𝐹 ⊗𝑅 𝑀) ⩽ id𝑅 𝑀 ,

and equality holds if 𝐹 is faithfully flat.

Proof. The claims are trivial if 𝑀 is acyclic; otherwise invoke 8.4.16(a). □

Exercises

E 15.4.1 Let 𝑆 be an 𝑅-algebra that is faithfully projective as an 𝑅-module. Show that the
equality pd𝑆 (𝑆 ⊗𝑅 𝑀 ) = pd𝑅 𝑀 holds for every 𝑅-complex 𝑀.

E 15.4.2 Let 𝑅 → 𝑆 be a surjective ring homomorphism. Show that every injective 𝑆-module
is isomorphic to Hom𝑅 (𝑆, 𝐸 ) for some injective 𝑅-module 𝐸. Hint: C.16.

E 15.4.3 Let 𝑀 be an 𝑅-complex of finite injective dimension 𝑛. Show that there is a prime
ideal 𝔭 in 𝑅 with Ext𝑛

𝑅
(E𝑅 (𝑅/𝔭) , 𝑀 ) ≠ 0.

E 15.4.4 Let 𝑀 be an 𝑅-complex of finite flat dimension 𝑛. Show that there is a prime ideal 𝔭
in 𝑅 with Tor𝑅𝑛 (E𝑅 (𝑅/𝔭) , 𝑀 ) ≠ 0.

E 15.4.5 Let 𝑆 be an 𝑅-algebra and 𝑀 ∈ D(𝑅) and 𝑁 ∈ D(𝑆) be complexes that are not
acyclic. Show that the following inequalities hold:

id𝑆 RHom𝑅 (𝑁, 𝑀 ) ⩽ fd𝑆 𝑁 + id𝑅 𝑀 .(a)
id𝑆 RHom𝑅 (𝑀, 𝑁 ) ⩽ pd𝑅 𝑀 + id𝑆 𝑁 .(b)

fd𝑆 (𝑁 ⊗L
𝑅 𝑀 ) ⩽ fd𝑆 𝑁 + fd𝑅 𝑀 .(c)

pd𝑆 (𝑁 ⊗L
𝑅 𝑀 ) ⩽ pd𝑆 𝑁 + pd𝑅 𝑀 .(d)

E 15.4.6 Let 𝑆 be an 𝑅-algebra and 𝑀 ∈ Df
⊏⊐ (𝑅) and 𝑁 ∈ D(𝑆) be complexes that are not

acyclic. Show that if pd𝑅 𝑀 is finite, then the following inequalities hold:
pd𝑆 RHom𝑅 (𝑀, 𝑁 ) ⩽ pd𝑆 𝑁 − inf 𝑀 .(a)
fd𝑆 RHom𝑅 (𝑀, 𝑁 ) ⩽ fd𝑆 𝑁 − inf 𝑀 .(b)

id𝑆 (𝑁 ⊗L
𝑅 𝑀 ) ⩽ id𝑆 𝑁 − inf 𝑀 .(c)

E 15.4.7 Let 𝑆 be an 𝑅-algebra and 𝑀 ∈ D(𝑅) and 𝑁 ∈ D(𝑆) be complexes with that are
not acyclic. Show that the following inequalities hold:

fd𝑆 RHom𝑅 (𝑁, 𝑀 ) ⩽ id𝑆 𝑁 + sup𝑀 if id𝑅 𝑀 < ∞ and 𝑁 ∈ D⊏ (𝑆) .(a)

id𝑆 (𝑁 ⊗L
𝑅 𝑀 ) ⩽ id𝑆 𝑁 − inf 𝑀 if fd𝑅 𝑀 < ∞ and 𝑁 ∈ D⊏ (𝑆) .(b)

fd𝑆 RHom𝑅 (𝑀, 𝑁 ) ⩽ fd𝑆 𝑁 − inf 𝑀 if pd𝑅 𝑀 < ∞ and 𝑁 ∈ D⊐ (𝑆) .(c)
E 15.4.8 Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅𝔭-complex. Show that fd𝑅 𝑀 = fd𝑅𝔭

𝑀 and
id𝑅 𝑀 = id𝑅𝔭

𝑀 hold.
E 15.4.9 Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 an 𝑅-complex, and 𝐸 a faithfully injective 𝑅-module.

(a): Show that id𝑅 LΛ𝔞 (Hom𝑅 (𝑀, 𝐸 ) ) = fd𝑅 RΓ𝔞 (𝑀 ) holds. (b): Provided that one
has 𝔞-depth𝑅 𝑀 > −∞, show that fd𝑅 LΛ𝔞 (Hom𝑅 (𝑀, 𝐸 ) ) = id𝑅 RΓ𝔞 (𝑀 ) holds.

E 15.4.10 Let 𝔞 ⊆ 𝑅 be an ideal, 𝑀 an 𝑅-complex, and 𝐹 a faithfully flat 𝑅-module. (a): Show
that fd𝑅 RΓ𝔞 (𝐹 ⊗𝑅 𝑀 ) = fd𝑅 RΓ𝔞 (𝑀 ) holds. (b): Provided that 𝔞-depth𝑅 𝑀 > −∞
holds, show that one has id𝑅 RΓ𝔞 (𝐹 ⊗𝑅 𝑀 ) = id𝑅 RΓ𝔞 (𝑀 ) .

E 15.4.11 Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝑁 an 𝑆-complex. Show that there is an
inequality pd𝑆 RΓ𝔞 (𝑁 ) ⩽ pd𝑆 𝑁 .
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E 15.4.12 Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝑁 an 𝑆-complex. (a) Show that there is an
inequality id𝑆 LΛ𝔞 (𝑁 ) ⩽ id𝑆 𝑁 . (b) Show that if 𝔞-width𝑅 𝑁 > −∞ holds, then one
has id𝑆 RΓ𝔞 (𝑁 ) ⩽ id𝑆 𝑁 .

E 15.4.13 Let 𝔞 ⊆ 𝑅 be an ideal, 𝑆 an 𝑅-algebra, and 𝑁 an 𝑆-complex. (a) Show that there is an
inequality fd𝑆 RΓ𝔞 (𝑁 ) ⩽ fd𝑆 𝑁 . (b) Show that if 𝔞-depth𝑅 𝑁 > −∞ holds, then one
has fd𝑆 LΛ𝔞 (𝑁 ) ⩽ fd𝑆 𝑁 .

E 15.4.14 Let𝑈 be a multiplicative subset of 𝑅; show that gldim𝑈−1𝑅 ⩽ gldim𝑅 holds.
E 15.4.15 Let𝑈 be a multiplicative subset of 𝑅; show that FPD𝑈−1𝑅 ⩽ FPD𝑅 holds.
E 15.4.16 Let𝑈 be a multiplicative subset of 𝑅; show that FFD𝑈−1𝑅 ⩽ FFD𝑅 holds.
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Chapter 16
Homological Invariants over Local Rings

In this chapter we are concerned with homological invariants of complexes over local
rings. The transition to commutative Noetherian rings allowed us in Sects. 12.1–12.3
and 15.4 to restate several results from Parts I and II in a simpler or stronger form.
There are similar gains to be reaped when one focuses on local rings, and many of
them are recorded in Sects. 16.1 and 16.2. Firstly though, we recall some terminology
and facts that are particular to the local situation; again, they may be found in [182]
or any other standard reference on commutative algebra.

To save space, we abbreviate the statement that 𝑅 is local with unique maximal
ideal 𝔪 to “(𝑅,𝔪) is local.” When we need the simple and standard notation 𝒌 for
the residue field κ (𝔪) = 𝑅/𝔪, we say that “(𝑅,𝔪, 𝒌) is local.”

A local ring (𝑅,𝔪) has finite Krull dimension, and the process of adjoining a
power series variable increases the Krull dimension by one: 𝑅⟦𝑥⟧ is a local ring
with unique maximal ideal generated by 𝔪 and 𝑥, traditionally written 𝔪 + (𝑥), see
12.1.25; further one has dim 𝑅⟦𝑥⟧ = dim 𝑅+1. In particular, for a field 𝕜 the algebra
𝕜⟦𝑥1, . . . , 𝑥𝑛⟧ of power series in 𝑛 variables with coefficients in 𝕜 is local of Krull
dimension 𝑛. Where it causes no confusion, the coset of an indeterminate 𝑥𝑖 in a
quotient ring 𝕜⟦𝑥1, . . . , 𝑥𝑛⟧/𝔞 is simply denoted 𝑥𝑖 rather than [𝑥𝑖]𝔞 .

Let (𝑅,𝔪) be local of Krull dimension 𝑑. By maximality of 𝔪 every ideal 𝔞
in 𝑅 with

√
𝔞 = 𝔪 is 𝔪-primary. Every power of 𝔪 is 𝔪-primary, and by Krull’s

intersection theorem 15.3.7 one has ⋂
𝑢⩾1 𝔪

𝑢 = 0. An 𝔪-primary ideal is generated
by no less than 𝑑 elements, this follows from the general version of Krull’s principal
ideal theorem, see also 18.4.19, and 𝑑-generated 𝔪-primary ideals do exist. Let
𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑑 be a sequence in 𝔪. If the ideal (𝑥𝑥𝑥) is 𝔪-primary, then 𝑥𝑥𝑥 is called
a parameter sequence for 𝑅, and (𝑥𝑥𝑥) is called a parameter ideal. Every 𝑅-regular
sequence, see 14.4.16, is part of a parameter sequence.

Let (𝑅,𝔪, 𝒌) be local and 𝑀 a finitely generated 𝑅-module. The rank of the
𝒌-vector space 𝒌 ⊗𝑅 𝑀 � 𝑀/𝔪𝑀 is the minimal number of generators of 𝑀; it is
the least possible cardinality of a set of generators for 𝑀 , and every minimal set of
generators for 𝑀 has this cardinality. Every element in 𝑀 \𝔪𝑀 is part of minimal
set of generators for 𝑀 .
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728 16 Homological Invariants over Local Rings

16.1 Modules and Complexes over Local Rings

Synopsis. Socle; Nakayama’s lemma, vanishing of functor on residue field; complete local ring;
injective envelope of residue field; Matlis Duality functor; Artinian module; (derived) Matlis
reflexive complex; module of finite length.

Three modules play central roles in homological studies of modules and complexes
over a local ring (𝑅,𝔪, 𝒌). They are the residue field 𝒌, its injective envelope E𝑅 (𝒌),
and the 𝔪-completion 𝑅 of 𝑅.

Socle of a Module

16.1.1 Definition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-module. The submodule
(0 :𝑀 𝔪) is called the socle of 𝑀 and is also denoted Soc𝑅 𝑀 .

16.1.2. Let (𝑅,𝔪, 𝒌) be local and𝑀 an 𝑅-module. By 1.1.8 there is an isomorphism
Soc𝑅 𝑀 � Hom𝑅 (𝒌, 𝑀). In particular, Soc𝑅 𝑀 is a 𝒌-vector space.

16.1.3 Example. Let (𝑅,𝔪, 𝒌) be local. By 16.1.2 and C.21(a) there are isomor-
phisms Soc𝑅 E𝑅 (𝒌) � Hom𝑅 (𝒌,E𝑅 (𝒌)) � 𝒌.

16.1.4 Proposition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-module. If 𝑀 is finitely
generated or Artinian, then the 𝒌-vector space Soc𝑅 𝑀 has finite rank.

Proof. If 𝑀 is finitely generated or Artinian, then so is the submodule Soc𝑅 𝑀 . The
𝑅-action on Soc𝑅 𝑀 factors through 𝒌, so it is a 𝒌-vector space of finite rank. □

Nakayama’s Lemma

In commutative algebra it is custom to also refer to the next consequene of B.32 for
finitely generated modules as Nakayama’s lemma.

16.1.5 Lemma. Let (𝑅,𝔪) be local, 𝔞 a proper ideal in 𝑅, and 𝑀 an 𝑅-module. If
𝑀 is finitely generated or 𝔞-complete, then the following conditions are equivalent.

(i) 𝑀 ≠ 0 .
(ii) 𝑅/𝔞 ⊗𝑅 𝑀 ≠ 0 i.e. 𝔞𝑀 ≠ 𝑀 .
(iii) 𝔞-width𝑅 𝑀 = 0 .

Proof. Conditions (ii) and (iii) are equivalent by 14.3.29. Every proper ideal 𝔞
in 𝑅 satisfies condition (ii) in Nakayama’s lemma B.32, so conditions (i) and (ii)
are equivalent if 𝑀 is finitely generated. If 𝑀 is 𝔞-complete, then (i) and (ii) are
equivalent by 11.1.30. □

The next lemma is dual to Nakayama’s lemma. It implies by 16.1.29 in particular
to Artinian modules and shows that a non-zero Artinian module has non-zero socle.
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16.1.6 Lemma. Let (𝑅,𝔪) be local, 𝔞 a proper ideal in 𝑅, and 𝑀 an 𝑅-module. If
𝑀 is 𝔞-torsion, then the following conditions are equivalent.

(i) 𝑀 ≠ 0 .
(ii) Hom𝑅 (𝑅/𝔞, 𝑀) ≠ 0 i.e. (0 :𝑀 𝔞) ≠ 0 .
(iii) 𝔞-depth𝑅 𝑀 = 0 .

Proof. As Γ𝔞 (𝑀) = 𝑀 by assumption, the conditions are equivalent by 14.3.17. □

Vanishing of Functors

For linear endofunctors on the category of modules over a local ring, vanishing on
finitely generated modules can be detected on the simple module.

16.1.7 Proposition. Let (𝑅,𝔪, 𝒌) be local and F: M(𝑅) →M(𝑅) a half exact and
𝑅-linear functor such that F(𝑅/𝔭) is finitely generated for every prime ideal 𝔭 in 𝑅.
If there is a finitely generated 𝑅-module 𝑀 with F(𝑀) ≠ 0, then one has F(𝒌) ≠ 0.

Proof. This is a special case of 12.4.5, as 𝔪 is the Jacobson radical of 𝑅. □

16.1.8 Proposition. Let (𝑅,𝔪, 𝒌) be local and F: M(𝑅) →M(𝑅) a half exact and
𝑅-linear functor such that F(𝑅/𝔭) is 𝔪-complete for every prime ideal 𝔭 in 𝑅.
If there is a finitely generated 𝑅-module 𝑀 with F(𝑀) ≠ 0, then one has F(𝒌) ≠ 0.

Proof. This is the special case 𝔞 = 𝔪 of 12.4.6. □

16.1.9 Proposition. Let (𝑅,𝔪, 𝒌) be local and G: M(𝑅)op →M(𝑅) a half exact
and 𝑅-linear functor such that G(𝑅/𝔭) is 𝔪-torsion for every prime ideal 𝔭 in 𝑅.
If there is a finitely generated 𝑅-module 𝑀 with G(𝑀) ≠ 0, then one has G(𝒌) ≠ 0.

Proof. This is the special case 𝔞 = 𝔪 of 12.4.11. □

Completion of a Local Ring

To parse the next statement recall from 5.5.15 the definition a of pure monomorphism.

16.1.10 Proposition. Let 𝑅 be local and 𝔞 a proper ideal in 𝑅.
(a) The 𝑅-algebra 𝑅𝔞 is a Noetherian local ring, and the structure map 𝑅 → 𝑅𝔞

is a pure monomorphism.
(b) As an 𝑅-module, 𝑅𝔞 is faithfully flat.

Proof. That 𝑅𝔞 is a Noetherian local ring was proved in 11.1.22. As 𝔞 is contained
in the maximal ideal of 𝑅, part (b) is a special case of 15.3.6, and it now follows
from 12.1.23 that the structure map 𝑅 → 𝑅𝔞 is a pure monomorphism. □

16.1.11 Definition. A local ring (𝑅,𝔪) that is 𝔪-complete is just called complete.
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16.1.12 Definition. Let (𝑅,𝔪) be local. One writes 𝑅 for the𝔪-completion of 𝑅 and
refers to it as simply the completion of 𝑅. It is by 11.1.22 a commutative Noetherian
local ring, and one denotes its maximal ideal �̂�.

16.1.13 Theorem. Let (𝑅,𝔪, 𝒌) be local. The local ring (𝑅, �̂�) is complete; it has
maximal ideal �̂� = 𝔪𝑅 and residue field 𝑅/�̂� � 𝒌. As an 𝑅-module, 𝑅 is faithfully
flat. Moreover, there is an isomorphism 𝑅/𝔪𝑢𝑅 � 𝑅/𝔪𝑢 for every 𝑢 ⩾ 1.

Proof. The last assertion is a special case of 11.1.37(a). For 𝑢 = 1 it reads 𝑅/𝔪𝑅 �
𝒌, so 𝔪𝑅 must be the unique maximal ideal �̂� of 𝑅. It now follows from 11.1.39 that
(𝑅, �̂�) is complete per 16.1.11. As an 𝑅-module, 𝑅 is faithfully flat by 16.1.10(b). □

16.1.14. Let (𝑅,𝔪) be local. Notice from 12.1.22 and 13.2.3 that the maximal ideal
�̂� = 𝔪𝑅 of 𝑅 is the 𝔪-completion of 𝔪 as an 𝑅-module.

16.1.15. Let (𝑅,𝔪, 𝒌) be local and𝑉 a 𝒌-vector space; it is by 16.1.13 an 𝑅-module,
and by 3.1.13 and 1.1.10 there is an isomorphism 𝑅 ⊗𝑅 𝑉 � 𝑉 of 𝑅-modules. Thus,
for every complex𝑊 of 𝒌-vector spaces one has 𝑅 ⊗𝑅𝑊 � 𝑊 in C(𝑅).

16.1.16 Proposition. Let (𝑅,𝔪) be local; there is an inclusion,

Df (𝑅) ⊆ D𝔪-com (𝑅) .

Proof. As (𝑅, �̂�) per 16.1.13 is complete, LΛ�̂� is the identity functor on Df (𝑅) by
13.2.7 and the unitor 12.3.3. Thus every complex in Df (𝑅) is derived �̂�-complete.
As �̂� is the extension 𝔪𝑅, still per 16.1.13, it now follows from 13.1.21(a) that every
complex in Df (𝑅) is derived 𝔪-complete as an 𝑅-complex. □

16.1.17 Theorem. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. The following condi-
tions are equivalent.

(i) 𝑀 is derived 𝔪-complete.
(ii) cosupp𝑅 𝑀 ⊆ {𝔪} .

Proof. The statement is the special case 𝔞 = 𝔪 of 15.3.19. □

The two results above determine the cosupport of every finitely generated module
over a complete local ring.

16.1.18 Corollary. Let (𝑅,𝔪) be local. For every complex 𝑀 in Df (𝑅) that is not
acyclic one has cosupp𝑅 𝑀 = {𝔪}.

Proof. The assertion follows in view of 15.2.8 from 16.1.16 and 16.1.17. □

For a complete local ring the support and cosupport differ as much as they possibly
can, see 15.2.19.

16.1.19 Example. Let (𝑅,𝔪) be local. As 𝑅 by 16.1.13 is a faithfully flat 𝑅-module,
one has supp𝑅 𝑅 = Spec 𝑅 by 15.1.18 while 16.1.18 yields cosupp𝑅 𝑅 = {𝔪}.

In particular, if 𝑅 is complete, then one has cosupp𝑅 𝑅 = {𝔪}.
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Recall from 11.3.4 and 11.3.18 that for an 𝑅-complex 𝑀 , both LΛ𝔪 (𝑀) and
RΓ𝔪 (𝑀) are 𝑅-complexes. Natural partners to the next result are 15.4.23 and 17.3.19.

16.1.20 Theorem. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. If depth𝑅 𝑀 > −∞
holds, then there is an equality,

id𝑅 RΓ𝔪 (𝑀) = id
𝑅

RΓ𝔪 (𝑀) .

Proof. Let 𝒌 be the residue field of 𝑅. Recall from 16.1.13 that the ring 𝑅 is local
with maximal ideal �̂� = 𝔪𝑅 and residue field 𝒌. As an 𝑅-complex, RΓ𝔪 (𝑀) is
derived 𝔪-torsion by 13.4.7, so it follows from 11.3.18 and 13.3.23(a) that RΓ𝔪 (𝑀)
is derived �̂�-torsion as an 𝑅-complex. Per 14.4.3 it follows from the assumption
on 𝑀 that H(RΓ𝔪 (𝑀)) is bounded above. Now 15.4.13 applies with 𝔞 = 𝔪 to
the 𝑅-complex RΓ𝔪 (𝑀), and it also applies with 𝔞 = �̂� to RΓ𝔪 (𝑀) viewed as an
𝑅-complex. That explains the first and last equalities in the computation below; the
middle equality holds by 13.4.18(b):

id𝑅 RΓ𝔪 (𝑀) = − inf RHom𝑅 (𝒌,RΓ𝔪 (𝑀))
= − inf RHom

𝑅
(𝒌,RΓ𝔪 (𝑀))

= id
𝑅

RΓ𝔪 (𝑀) . □

The theorem above is applied in the proof of 16.1.25 below; here we also record
the accompanying result for flat dimension of derived 𝔪-complete complexes.

16.1.21 Theorem. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. If width𝑅 𝑀 > −∞
holds, then there is an equality,

fd𝑅 LΛ𝔪 (𝑀) = fd
𝑅

LΛ𝔪 (𝑀) .

Proof. Let 𝒌 be the residue field of 𝑅. Recall from 16.1.13 that the ring 𝑅 is
local with maximal ideal �̂� = 𝔪𝑅 and residue field 𝒌. As an 𝑅-complex, LΛ𝔪 (𝑀) is
derived𝔪-complete by 13.4.2, so it follows from 11.3.4 and 13.1.21(a) that LΛ𝔪 (𝑀)
is derived �̂�-complete as an 𝑅-complex. Per 14.4.8 it follows from the assumption
on 𝑀 that H(LΛ𝔪 (𝑀)) is bounded below. Consequently, 15.4.26 applies with 𝔞 = 𝔪

to the 𝑅-complex LΛ𝔪 (𝑀), and it also applies with 𝔞 = �̂� to LΛ𝔪 (𝑀) viewed as an
𝑅-complex. This explains the first and last equalities in the computation below; the
middle equality holds by 13.4.18(c) and commutativity 12.3.5:

fd𝑅 LΛ𝔪 (𝑀) = sup(𝒌 ⊗L
𝑅 LΛ𝔪 (𝑀))

= sup(𝒌 ⊗L
𝑅

LΛ𝔪 (𝑀))
= fd

𝑅
LΛ𝔪 (𝑀) . □

The Matlis Duality Functor

The functor Hom𝑅 ( ,E𝑅 (𝒌)) is called the Matlis Duality functor, and for an 𝑅-
complex 𝑀 one refers to Hom𝑅 (𝑀,E𝑅 (𝒌)) as the Matlis dual of 𝑀 . For ease of
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reference, we recall some frequetly used facts about this functor in 16.1.22; there is
more than this to actual Matlis Duality, see 18.1.9.

16.1.22. Let (𝑅,𝔪, 𝒌) be local. Per 16.1.3 there is an isomorphism,

(16.1.22.1) Hom𝑅 (𝒌,E𝑅 (𝒌)) � 𝒌 .

The 𝑅-module E𝑅 (𝒌) is𝔪-torsion per C.14 and hence derived𝔪-torsion by 13.3.30.
It is proved below in 16.1.26 that E𝑅 (𝒌) is Artinian, which is stronger, see 16.1.29.

Further, E𝑅 (𝒌) is a faithfully injective 𝑅-module, see C.3; that is, the functor
Hom𝑅 ( ,E𝑅 (𝒌)) is faithfully exact. Let 𝑀 and 𝑁 be 𝑅-complexes. By 2.5.7(b) the
next equalities hold,

− sup Hom𝑅 (𝑀,E𝑅 (𝒌)) = inf 𝑀 and
− inf Hom𝑅 (𝑀,E𝑅 (𝒌)) = sup𝑀 .

(16.1.22.2)

Moreover, for every 𝑚 ∈ ℤ there is by 8.3.1 an isomorphism,

(16.1.22.3) Hom𝑅 (Tor𝑅𝑚 (𝑀, 𝑁),E𝑅 (𝒌)) � Ext𝑚𝑅 (𝑁,Hom𝑅 (𝑀,E𝑅 (𝒌))) ;

in particular, Tor𝑅𝑚 (𝑀, 𝑁) = 0 if and only if Ext𝑚
𝑅
(𝑁,Hom𝑅 (𝑀,E𝑅 (𝒌))) = 0.

Finally, recall from 13.3.6 that E𝑅 (𝒌) is an 𝑅-module.

The Injective Envelope E𝑅 (𝒌) and its Endomorphisms

To parse the next result, recall from 4.5.5 and 10.1.1 the definition of the homothety
formation map.

16.1.23 Theorem. Let (𝑅,𝔪, 𝒌) be local. Homothety formation,

𝜒
E𝑅 (𝒌 )
𝑅𝑅

: 𝑅 −→ Hom𝑅 (E𝑅 (𝒌),E𝑅 (𝒌)) ,

is an isomorphism of 𝑅-algebras, and this map agrees with homothety formation

𝜒
E𝑅 (𝒌 )
𝑅

: 𝑅 −→ Hom
𝑅
(E𝑅 (𝒌),E𝑅 (𝒌)) .

Proof. Set 𝐸 = E𝑅 (𝒌). By C.14 one has Γ𝔪 (𝐸) = 𝐸 , so 11.2.26(a) yields

Hom𝑅 (𝐸, 𝐸) = Hom
𝑅
(𝐸, 𝐸) ,

and hence the two homotopy formation maps in question are identical. Set 𝜒 = 𝜒𝐸
𝑅𝑅

.
It is known from 11.1.26 that 𝜒 is a morphism of 𝑅-algebras, so it suffices to argue
that 𝜒 is bĳective. With 𝐸𝑢 = (0 :𝐸 𝔪𝑢) as in C.20 one has, per 3.3.34,

(⋄) 𝐸 =
⋃
𝑢⩾1

𝐸𝑢 � colim
𝑢⩾1

𝐸𝑢 .

By definition, 𝜒(𝑟) (𝑒) = 𝑟𝑢𝑒 for elements 𝑟 = ( [𝑟𝑣]𝔪𝑣 )𝑣⩾1 ∈ 𝑅 and 𝑒 ∈ 𝐸𝑢 ⊆ 𝐸 .
Furthermore, for every 𝑢 ⩾ 1 there is an isomorphism 𝜒𝑢 : 𝑅/𝔪𝑢 → Hom𝑅 (𝐸𝑢, 𝐸)
given by 𝜒𝑢 ( [𝑟 ′]𝔪𝑢 ) (𝑒) = 𝑟 ′𝑒 for [𝑟 ′]𝔪𝑢 ∈ 𝑅/𝔪𝑢 and 𝑒 ∈ 𝐸𝑢, see C.21(c). It is
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straightforward to verify that {𝜒𝑢}𝑢⩾1 is an isomorphism of towers which, therefore,
induces the lower horizontal isomorphism in the following commutative diagram:

𝑅
𝜒

// Hom𝑅 (𝐸, 𝐸)

�

��

lim
𝑢⩾1

𝑅/𝔪𝑢 lim𝑢⩾1 𝜒
𝑢

�
// lim
𝑢⩾1

Hom𝑅 (𝐸𝑢, 𝐸) .

The vertical isomorphism in the diagram follows, in view of (⋄), from 3.4.29. Con-
sequently, 𝜒 is an isomorphism. □

In view 14.2.19(d) the next result generalizes 10.1.8.

16.1.24 Corollary. Let (𝑅,𝔪, 𝒌) be local and complete. Homothety formation,

𝜒
E (𝒌 )
𝑅

: 𝑅 −→ Hom𝑅 (E𝑅 (𝒌),E𝑅 (𝒌)) ,

is an isomorphism.

Proof. As one has 𝑅 = 𝑅, this is a special case of 16.1.23. □

16.1.25 Proposition. Let (𝑅,𝔪, 𝒌) be local; there are isomorphisms of 𝑅-modules,

E𝑅 (𝒌) � 𝑅 ⊗𝑅 E𝑅 (𝒌) and E𝑅 (𝒌) � E
𝑅
(𝒌) .

Proof. As one has Γ𝔪 (𝒌) = 𝒌 and Γ𝔪 (E𝑅 (𝒌)) = E𝑅 (𝒌), see 13.3.3, it follows from
11.2.23 that 𝒌 ↣ E𝑅 (𝒌) is an embedding of 𝑅-modules. The first isomorphism is a
special case of 13.3.7. Further, E𝑅 (𝒌) is by 16.1.20 injective as an 𝑅-module, and
since as 𝒌 is essential in E𝑅 (𝒌) as an 𝑅-submodule it is essential as an 𝑅-submodule.
Thus, the second isomorphism follows from B.13 and B.16. □

16.1.26 Proposition. Let (𝑅,𝔪, 𝒌) be local. The module E𝑅 (𝒌) is Artinian both as
𝑅- and 𝑅-module.

Proof. The 𝑅- and 𝑅-submodules of E𝑅 (𝒌) agree; see 13.3.6. Set 𝐸 = E𝑅 (𝒌) and
let 𝐸 ⊇ 𝑀1 ⊇ 𝑀2 ⊇ · · · be a descending chain of submodules. As 𝐸 is injective,
the chain yields a sequence of surjective homomorphisms,

Hom𝑅 (𝐸, 𝐸) −→ Hom𝑅 (𝑀1, 𝐸) −→ Hom𝑅 (𝑀2, 𝐸) −→ · · · ,

of 𝑅-modules. By 16.1.23 one has Hom𝑅 (𝐸, 𝐸) � 𝑅, so the modules Hom𝑅 (𝑀𝑢, 𝐸)
are cyclic. Thus, one has an ascending sequence of ideals 𝔞1 ⊆ 𝔞2 ⊆ · · · with
𝑅/𝔞𝑢 � Hom𝑅 (𝑀𝑢, 𝐸). As 𝑅 is Noetherian, see 16.1.10, this sequence stabilizes.
As 𝐸 is faithfully injective, see C.3, it follows that the original descending sequence
of submodules stabilizes. □
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Artinian Modules

16.1.27 Proposition. Let (𝑅,𝔪, 𝒌) be local and𝑀 an 𝑅-complex. If𝑀 is degreewise
finitely generated, then Hom𝑅 (𝑀,E𝑅 (𝒌)) is degreewise Artinian.

Proof. By 2.3.1 one has Hom𝑅 (𝑀,E𝑅 (𝒌))𝑣 = Hom𝑅 (𝑀−𝑣,E𝑅 (𝒌)) for every
𝑣 ∈ ℤ, so one can assume that 𝑀 is a finitely generated 𝑅-module. By 1.3.12 there
is a surjective homomorphism 𝑅𝑚 ↠ 𝑀 for some 𝑚 ∈ ℕ, which by the couni-
tor 1.2.2 yields an injective homomorphism Hom𝑅 (𝑀,E𝑅 (𝒌))↣ E𝑅 (𝒌)𝑚. Hence,
Hom𝑅 (𝑀,E𝑅 (𝒌)) is Artinian by 16.1.26. □

16.1.28 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. If 𝑀 is in Df (𝑅),
then Hom𝑅 (𝑀,E𝑅 (𝒌)) belongs to Dart (𝑅).

Proof. By 2.2.19 one has H(Hom𝑅 (𝑀,E𝑅 (𝒌))) � Hom𝑅 (H(𝑀),E𝑅 (𝒌)), so the
assertion follows from 16.1.27. □

16.1.29 Proposition. Let (𝑅,𝔪) be local. Every degreewise Artinian 𝑅-complex is
𝔪-torsion.

Proof. It suffices to prove the assertion for 𝑅-modules. Every Artinian 𝑅-module
𝑀 has Supp𝑅 𝑀 ⊆ {𝔪} by 14.2.10 and is hence 𝔪-torsion by 14.1.3. □

We record the following counterpart to the inclusion in 16.1.16.

16.1.30 Corollary. Let (𝑅,𝔪) be local; there is an inclusion,

Dart (𝑅) ⊆ D𝔪-tor (𝑅) .

Proof. The inclusion follows from 16.1.29 and 13.4.9. □

16.1.31 Proposition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex.
(a) The following conditions are equivalent.

(i) 𝑀 is derived 𝔪-torsion.
(ii) supp𝑅 𝑀 ⊆ {𝔪} .
(iii) Supp𝑅 𝑀 ⊆ {𝔪} .

(b) If 𝑀 is derived 𝔪-torsion, then dim𝑅 𝑀 = − inf 𝑀 holds.

Proof. The statement is the special case 𝔞 = 𝔪 of 15.3.23. □

By 16.1.30 the next result applies, in particular, to complexes in Dart (𝑅).

16.1.32 Corollary. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. If 𝑀 is derived
𝔪-torsion and not acyclic, then there are equalities,

supp𝑅 𝑀 = {𝔪} = Supp𝑅 𝑀 .

Proof. The equalities follow from 16.1.31(a), 15.1.15, and 14.2.4. □

The next equality compares to the last equality in 14.2.16 and to 16.1.30.
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16.1.33 Corollary. Let (𝑅,𝔪) be local; there is an equality,

Dℓ (𝑅) = D𝔪-tor (𝑅) ∩Df (𝑅) .

Proof. The equality follows from 13.4.9, 16.1.31, and 14.2.9. □

16.1.34 Example. Let (𝑅,𝔪) be local, 𝑥𝑥𝑥 a sequence that generates 𝔪, and 𝑀 a
complex in Df (𝑅). By 14.3.4(a) the complex K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 belongs to Df (𝑅), and
by 13.3.31 it is derived 𝔪-torsion, so it belongs to Dℓ (𝑅) by 16.1.33.

Matlis Reflexivity

16.1.35 Definition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex.
(1) If the biduality morphism in C(𝑅) from 4.5.2,

𝛿𝑀E𝑅 (𝒌 ) : 𝑀 −→ Hom𝑅 (Hom𝑅 (𝑀,E𝑅 (𝒌)),E𝑅 (𝒌)) ,

is an isomorphism, then 𝑀 is called Matlis reflexive.
(2) If the biduality morphism in D(𝑅) from 8.4.2,

𝜹𝑀E𝑅 (𝒌 ) : 𝑀 −→ Hom𝑅 (Hom𝑅 (𝑀,E𝑅 (𝒌)),E𝑅 (𝒌)) ,

is an isomorphism, then 𝑀 is called derived Matlis reflexive.

16.1.36 Lemma. Let 𝑅 be local and 𝑀 an 𝑅-complex.
(a) If 𝑀 is Matlis reflexive, then 𝑀 is derived Matlis reflexive.
(b) 𝑀 is derived Matlis reflexive if and only if H(𝑀) is Matlis reflexive.
(c) If 𝑀 is a module, then it is Matlis reflexive if and only if it is derived Matlis

reflexive.

Proof. Let 𝒌 denote the residue field of 𝑅 and set 𝐸 = E𝑅 (𝒌). As 𝐸 is an injective
𝑅-module, the biduality morphism 𝜹𝑀𝐸 is induced by 𝛿𝑀

𝐸
, see 8.4.3. This proves part

(a). Further, one has
H(𝜹𝑀𝐸 ) = H(𝛿𝑀𝐸 ) � 𝛿

H (𝑀 )
𝐸

,

where the isomorphism comes from 2.2.19. In view of 6.5.17 this proves part (b). If
𝑀 is a module, then it is isomorphic to H(𝑀), so part (c) follows from (b). □

The next proposition applies, in particular, to a short exact sequence of complexes,
see 6.5.24.

16.1.37 Proposition. Let 𝑅 be local and 𝑀 ′ → 𝑀 → 𝑀 ′′ → Σ𝑀 ′ a distinguished
triangle of 𝑅-complexes. If two of the complexes 𝑀 ′, 𝑀 , and 𝑀 ′′ are derived Matlis
reflexive, then so is the third.

Proof. Let 𝒌 be the residue field of 𝑅. The biduality morphism 𝜹E𝑅 (𝒌 ) from
16.1.35(2) is a triangulated natural transformation of triangulated endofunctors on
D(𝑅), see 12.3.9. Thus the assertion follows from E.19. □
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Remark. Notice from the proof of 16.1.37 that the full subcategory of D(𝑅) whose objects are
the derived Matlis reflexive complexes is a triangulated subcategory of D(𝑅) .

16.1.38 Proposition. Let 𝑅 be local and 0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 an exact
sequence of 𝑅-complexes. The complex 𝑀 is Matlis reflexive if and only if 𝑀 ′ and
𝑀 ′′ are Matlis reflexive.

Proof. Let 𝒌 denote the residuel field of 𝑅 and set 𝐸 = E𝑅 (𝒌). Since the functor
( )∨ = Hom𝑅 ( , 𝐸) is exact, there is a commutative diagram with exact rows,

0 // 𝑀 ′ //

𝛿𝑀
𝐸

��

𝑀 //

𝛿𝑀
𝐸

��

𝑀 ′′

𝛿𝑀
′′

𝐸

��

// 0

0 // (𝑀 ′)∨∨ // (𝑀)∨∨ // (𝑀 ′′)∨∨ // 0 .

As 𝐸 is faithfully injective, see 16.1.22, the vertical morphisms are injective by 4.5.3;
the assertion now follows from the Snake Lemma 2.1.45. □

Remark. The proposition above expresses that the class of Matlis reflexive 𝑅-complexes constitute
a Serre subcategory of C(𝑅) .

Modules of Finite Length

16.1.39 Corollary. Let 𝑅 be local. Every 𝑅-complex that is degreewise of finite
length is Matlis reflexive.

Proof. By C.21(b) the residue field 𝒌 of 𝑅 is a Matlis reflexive module. It thus follows
from 16.1.38 that every 𝑅-module of finite length is Matlis reflexive, and hence so is
every complex 𝑀 of 𝑅-modules of finite length as one has (𝛿𝑀E𝑅 (𝒌 ) )𝑣 = 𝛿

𝑀𝑣
E𝑅 (𝒌 ) . □

16.1.40 Proposition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex that is degreewise
of finite length. The canonical morphism 𝑀 → 𝑅 ⊗𝑅 𝑀 is an isomorphism; in
particular, 𝑀 is 𝔪-complete.

Proof. It follows from 14.2.12 and 16.1.29 that 𝑀 is degreewise 𝔪-torsion, so the
canonical morphism is an isomorphism by 11.2.27. It now follows from 13.2.4 that
it is 𝔪-complete. □

16.1.41 Corollary. Let (𝑅,𝔪) be local and 𝑀 a complex in Dℓ (𝑅). The canonical
morphism 𝑀 → 𝑅 ⊗𝑅 𝑀 is an isomorphism in D(𝑅); in particular, 𝑀 is derived
𝔪-complete.

Proof. To see that the canonical morphism is an isomorphism in D(𝑅), it suffices
by 6.4.18 to verify that it is a quasi-isomorphism. By 16.1.10 the functor 𝑅 ⊗𝑅
is exact, so application of H to 𝑀 → 𝑅 ⊗𝑅 𝑀 yields by 12.1.20(b) the canonical
morphism H(𝑀) → 𝑅 ⊗𝑅 H(𝑀), which is an isomorphism by 16.1.40. Further, the
complex H(𝑀) is 𝔪-complete, so 𝑀 is derived 𝔪-complete by 13.4.4. □
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16.1.42 Corollary. Let (𝑅,𝔪) be local. Every complex in Dℓ (𝑅) is derived 𝔪-
torsion and derived 𝔪-complete. That is, one has

Dℓ (𝑅) ⊆ D𝔪-com (𝑅) ∩D𝔪-tor (𝑅) .

Proof. The claim is immediate from 16.1.41 and 16.1.33. □

16.1.43 Example. Let (𝑅,𝔪, 𝒌) be local. The 𝑅-module 𝒌 (ℕ) belongs by 13.1.22
and 13.3.24 toD𝔪-com (𝑅)∩D𝔪-tor (𝑅) but evidently not toDℓ (𝑅); thus the inclusion
in 16.1.42 is strict.

16.1.44 Proposition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-module; one has

length𝑅 𝑀 = length𝑅 Hom𝑅 (𝑀,E𝑅 (𝒌)) .

Proof. Set 𝐸 = E𝑅 (𝒌). Assume first that 𝑙 = length𝑅 𝑀 is finite and proceed by
induction on 𝑙. If 𝑙 = 1, then𝑀 is simple, whence Hom𝑅 (𝑀, 𝐸) � Hom𝑅 (𝒌, 𝐸) � 𝒌
by (16.1.22.1). If 𝑙 > 1 holds, then a composition series of𝑀 yields an exact sequence
0 → 𝑀 ′ → 𝑀 → 𝒌 → 0 with length𝑅 𝑀 ′ = 𝑙 − 1. Now apply the exact functor
Hom𝑅 ( , 𝐸) to this sequence and use that length is additive on exact sequences.

Assume now that length𝑅 Hom𝑅 (𝑀, 𝐸) is finite; it follows that also the module
Hom𝑅 (Hom𝑅 (𝑀, 𝐸), 𝐸) has finite length. The biduality map 𝛿𝑀

𝐸
is injective by

4.5.3, so 𝑀 is isomorphic to a submodule of a module of finite length and hence of
finite length. □

Exercises

In the following exercises let (𝑅,𝔪, 𝒌 ) be local.

E 16.1.1 Show that for complexes 𝑀 ∈ D(𝑅) and 𝐾 ∈ D(𝒌 ) with H(𝒌 ⊗L
𝑅
𝑀 ) ≠ 0 ≠ H(𝐾 )

there are equalities:
sup (𝐾 ⊗L

𝑅 𝑀 ) = sup𝐾 + sup (𝒌 ⊗L
𝑅 𝑀 ) .(a)

inf (𝐾 ⊗L
𝑅 𝑀 ) = inf 𝐾 + inf (𝒌 ⊗L

𝑅 𝑀 ) .(b)
− sup RHom𝑅 (𝐾, 𝑀 ) = inf 𝐾 − sup RHom𝑅 (𝒌 , 𝑀 ) .(c)
− inf RHom𝑅 (𝐾, 𝑀 ) = sup𝐾 − inf RHom𝑅 (𝒌 , 𝑀 ) .(d)

− sup RHom𝑅 (𝑀, 𝐾 ) = inf (𝒌 ⊗L
𝑅 𝑀 ) − sup𝐾 .(e)

− inf RHom𝑅 (𝑀, 𝐾 ) = sup (𝒌 ⊗L
𝑅 𝑀 ) − inf 𝐾 .(f)

E 16.1.2 Show that if 𝑅 is not complete, then E𝑅 (𝒌 ) is a proper direct summand of the 𝑅-module
Hom𝑅 (𝑅, E𝑅 (𝒌 ) ) .

E 16.1.3 (a) Show that every homomorphism 𝑅 → 𝑅 of 𝑅-modules is given by multiplication
by an element 𝑟 ∈ 𝑅. (b) Show that if 𝑅 is an integral domain and not complete,
then the zero map is the only homomorphism, 𝑅 → 𝑅, of 𝑅-modules. Hint: 𝑅/𝑅 is
torsion-free.

E 16.1.4 Show that 𝑅 is complete if and only if 𝑅 is a finitely generated 𝑅-module.
E 16.1.5 Let 𝐹 be a semi-flat 𝑅-complex. Show that if 𝐹 is bounded below, then the 𝑅-complex

Λ𝔪 (𝐹 ) is semi-flat. Compare to 13.1.28.
E 16.1.6 Let 𝐼 be a semi-injective 𝑅-complex. Show that if 𝐼 is bounded above, then the 𝑅-

complex Γ𝔪 (𝐼 ) is semi-injective. Compare to 13.3.8.
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E 16.1.7 Give an example of a complex that is derived Matlis reflexive though not Matlis
reflexive.

E 16.1.8 Let 𝑅 be an integral domain, not a field and not complete. Show that Hom𝑅 (𝑅, 𝑅)
is zero and hence an injective 𝑅-module though 𝑅 is not an injective 𝑅-module;
cf. E 17.3.1.

E 16.1.9 Let 𝑀 be an 𝑅-complex and set ( )∨ = Hom𝑅 ( , E𝑅 (𝒌 ) ) . (a) Show that if 𝑀 is
degreewise finitely generated, then there is an isomorphism, 𝑀∨∨ � 𝑅 ⊗𝑅 𝑀, of
𝑅-complexes. (b) Show that if 𝑀 is in Df (𝑅) , then one has 𝑀∨∨ ≃ 𝑅 ⊗𝑅 𝑀 in
D(𝑅) .

E 16.1.10 Let F be a half exact functor from M(𝑅) or M(𝑅)op to M(𝑆) . Show that F(𝒌 ) = 0
if and only if F(𝐿) = 0 holds for every 𝑅-module 𝐿 of finite length.

E 16.1.11 Let 𝔭 and 𝔮 be prime ideals in 𝑅. (a) Show that one has Ext𝑚
𝑅
(𝑅𝔭 , 𝑅𝔮 ) = 0 for all

𝑚 > 0. (b) Show that Hom𝑅 (𝑅𝔭 , 𝑅𝔮 ) ≠ 0 holds if and only if 𝔭 contains 𝔮.

16.2 Local Theory of Depth and Width

Synopsis. Width; ∼ of derived tensor product; depth; ∼ of derived Hom; (co)support; regular
sequence; local (co)homology.

For complexes over a local ring (𝑅,𝔪) the 𝔪-width and 𝔪-depth are invariants of
particular interest.

Width

16.2.1 Definition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. For the 𝔪-width
of 𝑀 , see 14.3.21, one uses the abbreviated notation width𝑅 𝑀 and refers to it,
accordingly, as simply the width of 𝑀 .

Consistent with the definition of width in the local setting, one has:

16.2.2 Proposition. Let 𝔪 be a maximal ideal in 𝑅 and 𝑀 an 𝑅-complex; one has:

width𝑅𝔪
𝑀𝔪 = 𝔪-width𝑅 𝑀 = width𝑅𝔪

RHom𝑅 (𝑅𝔪, 𝑀) .

Proof. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 that generates 𝔪. Viewed as a sequence
in 𝑅𝔪 it generates the unique maximal ideal 𝔪𝔪 of 𝑅𝔪, so the 1st and 5th equal-
ities below hold by 16.2.1 and 14.4.8. The 2nd equality follows from 11.4.18 and
14.1.33(c), while the 3rd equality follows from swap 12.3.7. As RHom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀)
is derived 𝔪-complete by 13.1.34 and 14.3.2, the 4th equality follows from 15.3.21.

width𝑅𝔪
RHom𝑅 (𝑅𝔪, 𝑀) = 𝑛 + inf RHom𝑅𝔪

(K𝑅𝔪 (𝑥𝑥𝑥),RHom𝑅 (𝑅𝔪, 𝑀))
= 𝑛 + inf RHom𝑅 (K𝑅 (𝑥𝑥𝑥),RHom𝑅 (𝑅𝔪, 𝑀))
= 𝑛 + inf RHom𝑅 (𝑅𝔪,RHom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀))
= 𝑛 + inf RHom𝑅 (K𝑅 (𝑥𝑥𝑥), 𝑀)
= 𝔪-width𝑅 𝑀 .

8-Mar-2024 Draft - use at own risk



16.2 Local Theory of Depth and Width 739

This is the second of the asserted equalities; to prove the first one, note that 𝑅/𝔪 is
the residue field of the local ring 𝑅𝔪, cf. 15.1.1. In the next computation, the first
and last equalities hold by 14.4.8. The middle equality holds by 14.1.16(b).

width𝑅𝔪
𝑀𝔪 = inf (𝑅/𝔪 ⊗L

𝑅𝔪
𝑀𝔪)

= inf (𝑅/𝔪 ⊗L
𝑅 𝑀)

= 𝔪-depth𝑅 𝑀 . □

16.2.3 Theorem. Let (𝑅,𝔪, 𝒌) be local, 𝐾 the Koszul complex on a sequence that
generates 𝔪, and 𝑀 an 𝑅-complex. The following quantities are equal.

(i) width𝑅 𝑀 .
(ii) 𝑛 + inf Hom𝑅 (𝐾, 𝑀) .
(iii) inf (𝒌 ⊗L

𝑅
𝑀) = inf{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝒌, 𝑀) ≠ 0} .

(iv) inf LΛ𝔪 (𝑀) = inf{𝑛 ∈ ℤ | H𝔪
𝑛 (𝑀) ≠ 0} .

Further, for every proper ideal 𝔞 in 𝑅, then quantities (i)–(iv) are equal to
(v) width𝑅 LΛ𝔞 (𝑀) .
(vi) width𝑅 RΓ𝔞 (𝑀) .

Proof. For 𝔞 = 𝔪 these numbers (i)–(vi) agree by 14.4.1 and 14.4.8. Further, for
every proper ideal 𝔞 in 𝑅 the equalities

width𝑅 LΛ𝔞 (𝑀) = width𝑅 LΛ𝔪 (LΛ𝔞 (𝑀)) = width𝑅 LΛ𝔪 (𝑀) = width𝑅 𝑀

hold by 14.4.1 and 13.1.20. Similarly, 14.4.1 and 13.3.21 yield

width𝑅 RΓ𝔞 (𝑀) = width𝑅 RΓ𝔪 (RΓ𝔞 (𝑀)) = width𝑅 RΓ𝔪 (𝑀) = width𝑅 𝑀 . □

16.2.4 Corollary. Let (𝑅,𝔪) be local and𝑀 an 𝑅-complex. One has width𝑅 𝑀 < ∞
if and only if 𝔪 ∈ supp𝑅 𝑀 holds.

Proof. The assertion follows from 16.2.3 and the definition, 15.1.5, of support. □

16.2.5 Proposition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. One has

width𝑅 𝑀 ⩾ inf 𝑀 ,

and the following assertions hold.
(a) If 𝑀 is derived 𝔪-complete or in Df (𝑅), then one has width𝑅 𝑀 = inf 𝑀 .
(b) If 𝑀 is not acyclic and belongs to D⊐ (𝑅) with 𝑤 = inf 𝑀 , then the following

conditions are equivalent.
(i) width𝑅 𝑀 = inf 𝑀 .
(ii) 𝒌 ⊗𝑅 H𝑤(𝑀) ≠ 0 i.e. 𝔪 H𝑤(𝑀) ≠ H𝑤(𝑀) .
(iii) Λ𝔪 (H𝑤(𝑀)) ≠ 0 .
(iv) H𝔪

0 (H𝑤(𝑀)) ≠ 0 .

Proof. As the maximal ideal is the Jacobson radical of 𝑅, this is the special case
𝔞 = 𝔪 of 14.3.28. □
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The difference between the quantities compared in 16.2.5 may be infinite.

16.2.6 Example. Let 𝑅 be local and 𝐸 ≠ 0 an 𝑅-module of infinite width; concrete
examples of such modules are given in 16.2.29. Set 𝑀 =

∐
𝑢⩽0 Σ

𝑢𝐸 . Evidently one
has inf 𝑀 = −∞, while 14.3.22 and 14.3.25 yield width𝑅 𝑀 = ∞.

16.2.7 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-module. The following condi-
tions are equivalent.

(i) width𝑅 𝑀 = 0 .
(ii) 𝒌 ⊗𝑅 𝑀 ≠ 0 i.e. 𝔪𝑀 ≠ 𝑀 .
(iii) Λ𝔪 (𝑀) ≠ 0 .
(iv) H𝔪

0 (𝑀) ≠ 0 .

Proof. As the maximal ideal is the Jacobson radical of 𝑅, this is the special case
𝔞 = 𝔪 of 14.3.29. □

For a complex 𝑀 in D⊐ (𝑅) such that H(𝑀) ≠ 0 and the module Hinf 𝑀 (𝑀) is
𝔪-complete, width𝑅 𝑀 = inf 𝑀 holds by 16.2.5(b). Here is an unbounded analogue:

16.2.8 Proposition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. If inf 𝑀 = −∞ and
H𝑣 (𝑀) is 𝔪-complete for 𝑣 ≪ 0, then width𝑅 𝑀 = −∞ holds.

Proof. Choose an integer 𝑛 such that H𝑣 (𝑀) is𝔪-complete for all 𝑣 ⩽ 𝑛. By 7.6.6(c)
there is a distinguished triangle,

𝑀Ě𝑛+1 −→ 𝑀 −→ 𝑀Ď𝑛 −→ Σ (𝑀Ě𝑛+1) .

It follows from 2.5.24(b) and 13.4.4 that the complex 𝑀Ď𝑛 is derived 𝔪-complete, so
16.2.5(a) yields width𝑅 𝑀Ď𝑛 = inf 𝑀Ď𝑛 = −∞. It also yields width𝑅 𝑀Ě𝑛+1 ⩾ 𝑛 + 1,
so the asserted equality follows from 14.3.32. □

Remark. In 16.2.8 one can replace the maximal ideal by any ideal 𝔞 in 𝑅; see E 14.3.13.

16.2.9 Theorem. Let 𝑅 be local and𝑀 and 𝑁 be 𝑅-complexes. The complex𝑀 ⊗L
𝑅
𝑁

has finite width if and only if 𝑀 and 𝑁 have finite width, and in that case there is an
equality,

width𝑅 (𝑀 ⊗L
𝑅 𝑁) = width𝑅 𝑀 + width𝑅 𝑁 .

Proof. The first assertion follows from 16.2.4 and the Support Formula 15.1.16. Let
𝒌 be the residue field of 𝑅. Assuming that 𝑀 and 𝑁 have finite width, a computation
based on 16.2.3, 12.3.30, and 7.6.12 yields the asserted equality,

width𝑅 (𝑀 ⊗L
𝑅 𝑁) = inf (𝒌 ⊗L

𝑅 (𝑀 ⊗L
𝑅 𝑁))

= inf (𝒌 ⊗L
𝑅 𝑀) ⊗L

𝒌 (𝒌 ⊗
L
𝑅 𝑁)

= inf (𝒌 ⊗L
𝑅 𝑀) + inf (𝒌 ⊗L

𝑅 𝑁)
= width𝑅 𝑀 + width𝑅 𝑁. □

The next corollary compares to 7.6.8.
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16.2.10 Corollary. Let 𝑅 be local and 𝑀 and 𝑁 be complexes in Df
⊐ (𝑅); one has

inf (𝑀 ⊗L
𝑅 𝑁) = inf 𝑀 + inf 𝑁 .

Proof. The complex 𝑀 ⊗L
𝑅
𝑁 belongs to Df

⊐ (𝑅) by 12.2.12. The equality now
follows from 16.2.5(a) and 16.2.9. □

16.2.11 Proposition. Let 𝑅 be local, 𝔞 a proper ideal in 𝑅, and 𝑀 an 𝑅/𝔞-complex.
There is an equality,

width𝑅/𝔞 𝑀 = width𝑅 𝑀 .

Proof. Let 𝔪 be the maximal ideal of 𝑅. The quotient 𝑅/𝔞 is local with maximal
ideal 𝔪/𝔞, so the equality holds by 14.3.31. □

Depth

16.2.12 Definition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. For the 𝔪-depth
of 𝑀 , see 14.3.10, one uses the abbreviated notation depth𝑅 𝑀 and referes to it,
accordingly, as simply the depth of 𝑀 .

For the depth of the 𝑅-module 𝑅 one uses the simplified notation depth 𝑅.

Consistent with the definition of depth in the local setting, one has the equalities
below, but see also 17.6.3 and 17.6.2.

16.2.13 Proposition. Let 𝔪 be a maximal ideal in 𝑅 and 𝑀 an 𝑅-complex; one has:

depth𝑅𝔪
𝑀𝔪 = 𝔪-depth𝑅 𝑀 = depth𝑅𝔪

RHom𝑅 (𝑅𝔪, 𝑀) .

Proof. Let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 that generates 𝔪. Viewed as a sequence
in 𝑅𝔪 it generates the unique maximal ideal 𝔪𝔪 of 𝑅𝔪, so the 1st and 4th equalities
below hold by 16.2.12 and 14.3.10. The 2nd equality follows from 11.4.18 and
14.1.15. As the complex K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 is derived 𝔪-torsion by 13.3.31, the 3rd

equality holds by 15.3.25.

depth𝑅𝔪
𝑀𝔪 = 𝑛 − sup (K𝑅𝔪 (𝑥𝑥𝑥) ⊗𝑅𝔪

𝑀𝔪)
= 𝑛 − sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀)𝔪
= 𝑛 − sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀)
= 𝔪-depth𝑅 𝑀 .

This establishes the first of the asserted equalities; to prove the second one, note that
𝑅/𝔪 is the residue field of the local ring 𝑅𝔪, cf. 15.1.1. In the computation below,
the first and last equalities hold by 14.4.3. The middle equality holds by 14.1.33(d).

depth𝑅𝔪
RHom𝑅 (𝑅𝔪, 𝑀) = − sup RHom𝑅𝔪

(𝑅/𝔪,RHom𝑅 (𝑅𝔪, 𝑀))
= − sup RHom𝑅 (𝑅/𝔪, 𝑀)
= 𝔪-depth𝑅 𝑀 . □
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16.2.14 Theorem. Let (𝑅,𝔪, 𝒌) be local, 𝐾 the Koszul complex on a sequence that
generates 𝔪, and 𝑀 an 𝑅-complex. The following quantities are equal.

(i) depth𝑅 𝑀 .
(ii) − sup Hom𝑅 (𝐾, 𝑀) .
(iii) − sup RHom𝑅 (𝒌, 𝑀) = inf{𝑚 ∈ ℤ | Ext𝑚

𝑅
(𝒌, 𝑀) ≠ 0} .

(iv) − sup RΓ𝔪 (𝑀) = inf{𝑛 ∈ ℤ | H𝑛𝔪 (𝑀) ≠ 0} .
Further, for every proper ideal 𝔞 in 𝑅 the quantities (i)–(iv) are equal to

(v) depth𝑅 RΓ𝔞 (𝑀) .
(vi) depth𝑅 LΛ𝔞 (𝑀) .

Proof. For 𝔞 = 𝔪 the numbers (i)–(vi) agree by 14.4.3 and 14.4.1. Further, for every
proper ideal 𝔞 in 𝑅 the equalities

depth𝑅 RΓ𝔞 (𝑀) = depth𝑅 RΓ𝔪 (RΓ𝔞 (𝑀)) = depth𝑅 RΓ𝔪 (𝑀) = depth𝑅 𝑀

hold by 14.4.1 and 13.3.21. Similarly, 14.4.1 and 13.1.20 yield

depth𝑅 LΛ𝔞 (𝑀) = depth𝑅 LΛ𝔪 (LΛ𝔞 (𝑀)) = depth𝑅 LΛ𝔪 (𝑀) = depth𝑅 𝑀 . □

16.2.15 Corollary. Let (𝑅,𝔪) be local and𝑀 an 𝑅-complex. One has depth𝑅 𝑀<∞
if and only if 𝔪 ∈ cosupp𝑅 𝑀 .

Proof. The claim follows from 16.2.14 and the definition, 15.2.1, of cosupport. □

Part (a) below applies in particular to complexes with degreewise Artinian ho-
mology; see 16.1.30.

16.2.16 Proposition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. One has

depth𝑅 𝑀 ⩾ − sup𝑀 ,

and the following assertions hold.
(a) If 𝑀 is derived 𝔪-torsion, then one has depth𝑅 𝑀 = − sup𝑀 .
(b) If 𝑀 is not acyclic and belongs to D⊏ (𝑅) with 𝑠 = sup𝑀 , then the following

conditions are equivalent.
(i) depth𝑅 𝑀 = − sup𝑀 .
(ii) Hom𝑅 (𝒌,H𝑠 (𝑀)) ≠ 0 i.e. (0 :H𝑠 (𝑀 ) 𝔪) ≠ 0 .
(iii) Γ𝔪 (H𝑠 (𝑀)) ≠ 0 .
(iv) 𝔪 ∈ Ass𝑅 H𝑠 (𝑀) .

Proof. This is the special case 𝔞 = 𝔪 of 14.3.16 when one takes into account that
the only prime ideal that contains 𝔪 is the maximal ideal itself. □

The difference between the quantities compared in 16.2.16 may be infinite.

16.2.17 Example. Let 𝑅 be local and 𝐸 ≠ 0 an 𝑅-module of infinite depth; concrete
examples of such modules are given in 16.2.29. Set 𝑀 =

∐
𝑢⩾0 Σ

𝑢𝐸 . Evidently one
has − sup𝑀 = −∞ while 14.3.11 and 14.3.14 yield depth𝑅 𝑀 = ∞.
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Per 16.1.2 condition (ii) below says that the socle of 𝑀 is non-zero.

16.2.18 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-module. The following
conditions are equivalent.

(i) depth𝑅 𝑀 = 0 .
(ii) Hom𝑅 (𝒌, 𝑀) ≠ 0 i.e. (0 :𝑀 𝔪) ≠ 0 .
(iii) Γ𝔪 (𝑀) ≠ 0 .
(iv) 𝔪 ∈ Ass𝑅 𝑀 .

Proof. The conditions are equivalent by 14.3.17 applied with 𝔞 = 𝔪, as the only
prime ideal that contains 𝔪 is the maximal ideal itself. □

16.2.19 Example. Let 𝑄 be a field and 𝑀 ≠ 0 a 𝑄-vector space. Every element in
𝑀 is annihilated by the maximal ideal 0, so 16.2.18 yields depth𝑄 𝑀 = 0, which is
already known from 14.3.12.

For a complex 𝑀 in D⊏ (𝑅) such that H(𝑀) ≠ 0 and the module Hsup𝑀 (𝑀)
is 𝔪-torsion, the equality depth𝑅 𝑀 = − sup𝑀 holds by 16.2.16(b). Here is an
unbounded analogue:

16.2.20 Proposition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. If sup𝑀 = ∞ and
H𝑣 (𝑀) is 𝔪-torsion for 𝑣 ≫ 0, then depth𝑅 𝑀 = −∞ holds.

Proof. Choose an integer 𝑛 such that H𝑣 (𝑀) is 𝔪-torsion for all 𝑣 ⩾ 𝑛. By 7.6.6(c)
there is a distinguished triangle,

𝑀Ě𝑛 −→ 𝑀 −→ 𝑀Ď𝑛−1 −→ Σ (𝑀Ě𝑛) .

It follows from 2.5.25(b) and 13.4.9 that the complex 𝑀Ě𝑛 is derived 𝔪-torsion, so
16.2.16(a) yields depth𝑅 𝑀Ě𝑛 = − sup𝑀Ě𝑛 = −∞. It also yields depth𝑅 𝑀Ď𝑛−1 ⩾
1 − 𝑛, so the asserted equality follows from 14.3.20. □

Remark. In 16.2.20 one can replace the maximal ideal by any ideal 𝔞 in 𝑅; see E 14.3.7.

For certain complexes one can also give an upper bound on the depth. Without
conditions on the complex this bound may fail, see 16.2.29.

16.2.21 Proposition. Let 𝑅 be local and 𝑀 an 𝑅-complex. If 𝑀 is derived 𝔪-
complete or belongs to Df (𝑅), then the next inequalities hold,

dim 𝑅 − sup𝑀 ⩾ depth𝑅 𝑀 ⩾ − sup𝑀 ;

in particular, depth𝑅 𝑀 = −∞ holds if and only if one has sup𝑀 = ∞.

Proof. The second inequality holds by 16.2.16. To prove the first inequality, set
𝑑 = dim 𝑅 and let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑑 be a parameter sequence for 𝑅. With 𝔞 = (𝑥1, . . . , 𝑥𝑑)
one has 𝔪 =

√
𝔞 and, therefore, depth𝑅 𝑀 = 𝔞-depth𝑅 𝑀 by 14.4.4 and 16.2.12. The

definition, 14.3.10, of 𝔞-depth and 14.3.5 now yield 𝑑 − sup𝑀 ⩾ 𝔞-depth𝑅 𝑀 . □
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16.2.22 Proposition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex; one has

depth𝑅 𝑀 = width𝑅 Hom𝑅 (𝑀,E𝑅 (𝒌)) and
width𝑅 𝑀 = depth𝑅 Hom𝑅 (𝑀,E𝑅 (𝒌)) .

Proof. As E𝑅 (𝒌) is a faithfully injective 𝑅-module, see 16.1.22, the assertion is a
special case of 14.4.14 with 𝔞 = 𝔪. □

16.2.23 Theorem. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. The following
conditions are equivalent.

(i) RHom𝑅 (𝒌, 𝑀) is not acyclic.
(ii) RΓ𝔪 (𝑀) is not acyclic.
(iii) depth𝑅 𝑀 is finite.
(iv) 𝒌 ⊗L

𝑅
𝑀 is not acyclic.

(v) LΛ𝔪 (𝑀) is not acyclic.
(vi) width𝑅 𝑀 is finite.

Proof. This is the special case 𝔞 = 𝔪 of 14.4.12. □

16.2.24 Theorem. Let 𝑅 be local and 𝑀 and 𝑁 be 𝑅-complexes. The complex
RHom𝑅 (𝑀, 𝑁) has finite depth if and only if 𝑀 has finite width and 𝑁 has finite
depth, and in that case there is an equality,

depth𝑅 RHom𝑅 (𝑀, 𝑁) = width𝑅 𝑀 + depth𝑅 𝑁 .

Proof. The first assertion follows from 16.2.4, 16.2.15, and the Cosupport For-
mula 15.2.9. Let 𝒌 be the residue field of 𝑅. Assuming that width𝑅 𝑀 and depth𝑅 𝑁
are both finite, a straightforward computation based on 16.2.14, 12.3.35, 7.6.12, and
16.2.3 yields the asserted equality:

depth𝑅 RHom𝑅 (𝑀, 𝑁) = − sup RHom𝑅 (𝒌,RHom𝑅 (𝑀, 𝑁))
= − sup RHom𝒌 (𝒌 ⊗L

𝑅 𝑀,RHom𝑅 (𝒌, 𝑁))
= inf (𝒌 ⊗L

𝑅 𝑀) − sup RHom𝑅 (𝒌, 𝑁)
= width𝑅 𝑀 + depth𝑅 𝑁 . □

16.2.25 Corollary. Let 𝑅 be local, 𝑀 an 𝑅-complex that is derived 𝔪-complete or
belongs to Df (𝑅), and 𝑁 an 𝑅-complex. If 𝑀 is not acyclic and 𝑁 has finite depth,
then the next equality holds,

depth𝑅 RHom𝑅 (𝑀, 𝑁) = inf 𝑀 + depth𝑅 𝑁 .

Proof. The equality follows from 16.2.5(a) and 16.2.24. □

16.2.26 Proposition. Let 𝑅 be local, 𝔞 a proper ideal in 𝑅, and 𝑀 an 𝑅/𝔞-complex.
There is an equality,

depth𝑅/𝔞 𝑀 = depth𝑅 𝑀 .

Proof. Let 𝔪 be the maximal ideal of 𝑅. The quotient 𝑅/𝔞 is local with maximal
ideal 𝔪/𝔞, so the equality holds by 14.3.19. □
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Support and Cosupport vs. Width and Depth

The theorem below identifies complexes whose homological properties align with the
properties of complexes with non-zero and degreewise finitely generated homology;
compare for example 17.2.1 to 18.3.31. In statements they are usually referred to as
complexes of finite depth or complexes of finite width, but when neither of these
descriptions is natural—or one is not more natural than the other—the condition gets
expressed in terms of support or cosupport.

16.2.27 Theorem. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. The following condi-
tions are equivalent.

(i) 𝔪 ∈ supp𝑅 𝑀 .
(ii) 𝔪 ∈ cosupp𝑅 𝑀 .
(iii) width𝑅 𝑀 is finite.
(iv) depth𝑅 𝑀 is finite.

Moreover, if 𝑀 is derived 𝔪-torsion, derived 𝔪-complete, or belongs to Df (𝑅), then
conditions (i)–(iv) are equivalent to

(v) 𝑀 is not acyclic.

Proof. Conditions (i) and (iii) are equivalent by 16.2.4, while (ii) and (iv) are
equivalent by 16.2.15. Finally, conditions (iii) and (iv) are equivalent per 14.3.27.
If 𝑀 is derived 𝔪-complete or belongs to Df (𝑅), then conditions (iii) and (v) are
equivalent by 16.2.5(a). If 𝑀 is derived 𝔪-torsion, then conditions (iv) and (v) are
equivalent by 16.2.16(a). □

16.2.28 Corollary. Let (𝑅,𝔪) be local and 𝑀 and 𝑁 be complexes in one, not
necessarily the same, of the categories Df (𝑅), D𝔪-com (𝑅), or D𝔪-tor (𝑅). If 𝑀 and
𝑁 are not acyclic, then RHom𝑅 (𝑀, 𝑁) and 𝑀 ⊗L

𝑅
𝑁 are not acyclic.

Proof. By 16.2.27 the maximal ideal 𝔪 belongs to both the support and the cosup-
port of 𝑀 and 𝑁 . It now follows from 15.2.8 and the Cosupport Formula 15.2.9 that
RHom𝑅 (𝑀, 𝑁) is not acyclic, and it follows similarly from 15.1.15 and the Support
Formula 15.1.16 that 𝑀 ⊗L

𝑅
𝑁 is not acyclic. □

16.2.29 Example. Let (𝑅,𝔪, 𝒌) be local. For every prime ideal 𝔭 ≠ 𝔪 in 𝑅 one has

depth𝑅 E𝑅 (𝑅/𝔭) = ∞ = width𝑅 E𝑅 (𝑅/𝔭)

by 15.1.12, 15.2.5, and 16.2.27. For the maximal ideal itself, 16.2.22 yields

depth𝑅 E𝑅 (𝒌) = 0 and width𝑅 E𝑅 (𝒌) = depth 𝑅 .

In particular, it follows that for every prime 𝑝 one has depthℤ𝑝ℤ ℚ = ∞ = widthℤ𝑝ℤ ℚ,
depthℤ𝑝ℤ ℤ(𝑝

∞) = 0, and widthℤ𝑝ℤ ℤ(𝑝∞) = 1, see B.15 and C.19.

Regular Sequences

Recall the definition of regular sequences from 14.4.16.
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16.2.30. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-module. The elements in 𝑅 \𝔪 are units in
𝑅, so an 𝑀-regular element must belong to 𝔪. Further, if 𝑀 ≠ 0 is finitely generated
or derived 𝔪-complete, then it follows from Nakayama’s lemma 16.1.5 or 13.1.35
that an element 𝑥 ∈ 𝔪 is 𝑀-regular if and only if the homothety 𝑥𝑀 is injective.

16.2.31 Proposition. Let (𝑅,𝔪) be local, 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 a sequence in𝔪, and𝑀 ≠ 0
an 𝑅-module. If 𝑀 is derived 𝔪-complete or finitely generated, then the following
conditions are equivalent.

(i) 𝑥𝑥𝑥 is 𝑀-regular.
(ii) sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = 0 .
(iii) There is an isomorphism K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 ≃ 𝑀/(𝑥𝑥𝑥)𝑀 .

Furthermore, if these conditions are satisfied, then one has

depth𝑅 𝑀/(𝑥𝑥𝑥)𝑀 = depth𝑅 𝑀 − 𝑛 .

Proof. As 𝔪 is the Jacobson radical of 𝑅, conditions (i)–(iii) are equivalent by
14.4.28 applied with 𝔞 = 𝔪, and the asserted equality holds by 14.4.18. □

16.2.32 Theorem. Let (𝑅,𝔪) be local and 𝑀 ≠ 0 a finitely generated 𝑅-module.
For an 𝑀-regular sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 the following conditions are equivalent.

(i) 𝑥𝑥𝑥 is a maximal 𝑀-regular sequence.
(ii) 𝔪 ∈ Ass𝑅 (𝑀/(𝑥𝑥𝑥)𝑀) .
(iii) depth𝑅 (𝑀/(𝑥𝑥𝑥)𝑀) = 0 .
(iv) depth𝑅 𝑀 = 𝑛.

Proof. It follows from 16.2.30 that 𝑥𝑥𝑥 is a sequence in 𝔪. By 16.2.27 the module
𝑀 has finite depth, so the equivalence of the four conditions follows from 14.4.24
applied with 𝔞 = 𝔪. □

16.2.33 Corollary. Let 𝑅 be local and 𝑀 ≠ 0 a finitely generated 𝑅-module. The
depth, 𝑑, of 𝑀 is finite and the following assertions hold.

(a) The maximal length of an 𝑀-regular sequence is 𝑑 .
(b) There exists an 𝑀-regular sequence of length 𝑑 .
(c) Every maximal 𝑀-regular sequence has length 𝑑 .

Proof. By 16.2.27 the module 𝑀 has finite depth and the assertions follow from
14.4.25 applied with 𝔞 = 𝔪, where 𝔪 is the maximal ideal of 𝑅. □

Local (Co)homology

16.2.34 Proposition. Let (𝑅,𝔪) be local of Krull dimension 𝑑 and𝑀 an 𝑅-complex.
There are inequalities,

− inf RΓ𝔪 (𝑀) ⩽ 𝑑 − width𝑅 𝑀 i.e. H𝑛𝔪 (𝑀) = 0 for 𝑛 > 𝑑 − width𝑅 𝑀
and

sup LΛ𝔪 (𝑀) ⩽ 𝑑 − depth𝑅 𝑀 i.e. H𝔪
𝑛 (𝑀) = 0 for 𝑛 > 𝑑 − depth𝑅 𝑀 .
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Proof. Both inequalities are trivial if𝑀 is acyclic, so assume that is not the case. Let
𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑑 be a parameter sequence for 𝑅. As

√(𝑥𝑥𝑥) = 𝔪 holds, 13.4.1(d), 13.3.2,
and 13.3.18 yield RΓ𝔪 (𝑀) ≃ RΓ𝔪 (LΛ𝔪 (𝑀)) ≃ Č𝑅(𝑥𝑥𝑥) ⊗L

𝑅
LΛ𝔪 (𝑀). By 11.4.10(c)

and 11.4.17 the complex Č𝑅(𝑥𝑥𝑥) is concentrated in degrees 0, . . . ,−𝑑 and not acyclic.
The first inequality now follows from 7.6.8 and 16.2.3. Similarly, 13.4.1(c), 13.1.3,
and 13.1.15 yield LΛ𝔪 (𝑀) ≃ LΛ𝔪 (RΓ𝔪 (𝑀)) ≃ RHom𝑅 (Č𝑅(𝑥𝑥𝑥),RΓ𝔪 (𝑀)). The
second inequality now follows from 7.6.7 and 16.2.14. □

The next result shows that the Krull dimension of a local ring 𝑅 is an upper bound
for the depth of an 𝑅-module of finite depth. It is also an upper bound for the Krull
dimension of such a module, and it is shown in 17.2.1 and 18.3.31 that the Krull
dimension is trapped between the depth and the Krull dimension of the ring.

16.2.35 Corollary. Let (𝑅,𝔪) be local and 𝑀 be an 𝑅-complex. If 𝔪 ∈ supp𝑅 𝑀
holds, then there is an inequality,

depth𝑅 𝑀 + width𝑅 𝑀 ⩽ dim 𝑅 .

Proof. The assumption on 𝑀 guarantees per 16.2.27 that depth𝑅 𝑀 and width𝑅 𝑀
are finite. By 16.2.14 one now has depth𝑅 𝑀 = − sup RΓ𝔪 (𝑀) ⩽ − inf RΓ𝔪 (𝑀), so
the asserted inequality follows from 16.2.34. □

Exercises

In the following exercises let (𝑅,𝔪, 𝒌 ) be local.

E 16.2.1 Let 𝑀 and 𝑁 be 𝑅-complexes of finite width. Show that if 𝑀 is derived 𝔪-complete,
then one has

inf 𝑀 + width𝑅 𝑁 ⩾ inf (𝑀 ⊗L
𝑅 𝑁 ) ⩾ width𝑅 𝑀 + inf 𝑁 .

E 16.2.2 Let 𝑀 and 𝑁 be 𝑅-complexes with 𝔪 ∈ supp𝑅 𝑀 ∩ supp𝑅 𝑁 . (a) Show that if 𝑁 is
derived 𝔪-torsion, then one has

width𝑅 𝑀 − sup 𝑁 ⩾ − sup RHom𝑅 (𝑀, 𝑁 ) ⩾ inf 𝑀 + depth𝑅 𝑁 .
(b) Show that if 𝑀 is derived 𝔪-complete, then one has

inf 𝑀 + depth𝑅 𝑁 ⩾ − sup RHom𝑅 (𝑀, 𝑁 ) ⩾ width𝑅 𝑀 − sup 𝑁 .
E 16.2.3 Let𝑀 and 𝑁 be complexes that are not acyclic and belong to one, but not necessarily the

same, of the categories Df (𝑅) or D𝔪-com (𝑅) . Show that 𝑀 ⊗L
𝑅
𝑁 belongs to D⊐ (𝑅)

only if 𝑀 and 𝑁 belong to D⊐ (𝑅) .
E 16.2.4 Let 𝑀 and 𝑁 be complexes that are not acyclic. Show that if 𝑀 belongs to D𝔪-com (𝑅)

or Df (𝑅) and 𝑁 belongs to D𝔪-tor (𝑅) , then RHom𝑅 (𝑀, 𝑁 ) belongs to D⊏ (𝑅) only
if 𝑀 is in D⊐ (𝑅) and 𝑁 in D⊏ (𝑅) .

E 16.2.5 Let 𝑀 be a complex in Df
⊏⊐ (𝑅) . Show that 𝑀 is derived reflexive if and only if biduality

𝜹𝑀𝑅 : 𝑀 → RHom𝑅 (RHom𝑅 (𝑀, 𝑅) , 𝑅) is an isomorphism in D(𝑅) .
E 16.2.6 Let 𝑀 be an 𝑅-complex. (a) Let 𝐾 ≠ 0 be an 𝑅-module of finite length; show that

− sup RHom𝑅 (𝐾, 𝑀 ) = depth𝑅 𝑀 and inf (𝐾 ⊗L
𝑅
𝑀 ) = width𝑅 𝑀 hold. (b) Let 𝐿

be a complex in Dℓ
⊏⊐ (𝑅) with H(𝐿) ≠ 0; show that one has − sup RHom𝑅 (𝐿, 𝑀 ) =

inf 𝐿 + depth𝑅 𝑀 and inf (𝐿 ⊗L
𝑅
𝑀 ) = inf 𝐿 + width𝑅 𝑀. Hint: 7.6.9 and 7.6.10.

E 16.2.7 Let 𝑀 and 𝑁 be 𝑅-modules with Tor𝑅𝑚 (𝑀, 𝑁 ) = 0 for all 𝑚 > 0. Show that if 𝑀 is
finitely generated and non-zero, then one has width𝑅 (𝑀 ⊗𝑅 𝑁 ) = width𝑅 𝑁 .
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E 16.2.8 Let 𝑀 and 𝑁 be 𝑅-modules with Ext𝑚
𝑅
(𝑀, 𝑁 ) = 0 for all 𝑚 > 0. Show that if 𝑀 is

finitely generated and non-zero, then one has depth𝑅 Hom𝑅 (𝑀, 𝑁 ) = depth𝑅 𝑁 .
E 16.2.9 Show that a sequence 𝑥𝑥𝑥 in 𝔪 is 𝑅-regular if and only if the Koszul complex K𝑅 (𝑥𝑥𝑥 )

yields a free resolution of 𝑅/(𝑥𝑥𝑥 ) .
E 16.2.10 Let 𝑀 be an Artinian 𝑅-module. An element 𝑥 in 𝔪 is called 𝑀-coregular if the

homothety 𝑥𝑀 is surjective. A sequence 𝑥1, . . . , 𝑥𝑛 in 𝔪 is called 𝑀-coregular if 𝑥1
is 𝑀-coregular and 𝑥𝑖 is Hom𝑅 (𝑅/(𝑥1, . . . , 𝑥𝑖−1 ) , 𝑀 )-coregular for 𝑖 ∈ {2, . . . , 𝑛}.
Show that width𝑅 𝑀 is the maximal length of an 𝑀-coregular sequence in 𝔪.

16.3 Depth and Width vs. Homological Dimensions

Synopsis. Depth of derived tensor product; width of derived Hom; rigidity of Ext and Tor.

The width of a derived tensor product complex, 𝑀 ⊗L
𝑅
𝑁 , and the depth of a derived

Hom complex, RHom𝑅 (𝑀, 𝑁), can always be expressed in terms of the depth and
width of 𝑀 and 𝑁; see 16.2.9 and 16.2.24. To similarly express the depth of 𝑀 ⊗L

𝑅
𝑁

or the width of RHom𝑅 (𝑀, 𝑁) one needs assumptions on the homological dimen-
sions of 𝑀 or 𝑁 . This is the beginning of an investigation of the relations between
the homological dimensions and the invariants depth and width whose culmination
comes in formulas of—or at least inspired by—Auslander, Bridger, Buchsbaum,
Bass, and Chouinard; see 16.4.2, 16.4.11, 17.3.4, 17.3.14, 17.5.4, 17.5.7, 19.1.18,
19.4.24, 19.2.6, 19.2.4, 19.2.37, 19.3.3, and 19.3.8.

Depth of Derived Tensor Product

For complexes with degreewise finitely generated homology the next equality sim-
plifies; see 16.4.34. Part (a) compares to 14.3.15.

16.3.1 Theorem. Let (𝑅,𝔪, 𝒌) be local and 𝑀 and 𝑁 be 𝑅-complexes. The complex
𝑁 ⊗L

𝑅
𝑀 has finite depth if and only if 𝑀 and 𝑁 have finite depth, and in that case

the equalities

depth𝑅 (𝑁 ⊗L
𝑅 𝑀) = depth𝑅 𝑁 − sup (𝒌 ⊗L

𝑅 𝑀)
= depth𝑅 𝑁 + depth𝑅 𝑀 − depth 𝑅

hold, provided that one of the next conditions is satisfied:
(a) fd𝑅 𝑀 is finite and depth𝑅 𝑁 > −∞ holds.
(b) 𝑀 belongs to Df

⊏⊐ (𝑅) and pd𝑅 𝑀 is finite.

Proof. The first assertion follows from 16.2.9 and 16.2.27. Assume that 𝑀 and
𝑁 have finite depth. In the next computation, the 1st and 4th isomorphisms hold by
13.4.20(b), as 𝒌 per 13.3.24 is derived 𝔪-torsion. The 2nd isomorphism follows from
13.3.19. Notice that under the assumptions in (a), the complex RΓ𝔪 (𝑁) belongs to
D⊏ (𝑅) by 16.2.14; in this case the 3rd isomorphism is tensor evaluation 12.3.23(b).
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Under the assumptions in (b), the 3rd isomorphism is 12.3.23(c). The 5th isomorphism
holds by 12.3.31.

RHom𝑅 (𝒌, 𝑁 ⊗L
𝑅 𝑀) ≃ RHom𝑅 (𝒌,RΓ𝔪 (𝑁 ⊗L

𝑅 𝑀))
≃ RHom𝑅 (𝒌,RΓ𝔪 (𝑁) ⊗L

𝑅 𝑀)
≃ RHom𝑅 (𝒌,RΓ𝔪 (𝑁)) ⊗L

𝑅 𝑀

≃ RHom𝑅 (𝒌, 𝑁) ⊗L
𝑅 𝑀

≃ RHom𝑅 (𝒌, 𝑁) ⊗L
𝒌 (𝒌 ⊗

L
𝑅 𝑀) .

Together with 16.2.14 and 7.6.12 this isomorphism yields

depth𝑅 (𝑁 ⊗L
𝑅 𝑀) = − sup (RHom𝑅 (𝒌, 𝑁) ⊗L

𝒌 (𝒌 ⊗
L
𝑅 𝑀))

= − sup RHom𝑅 (𝒌, 𝑁) − sup (𝒌 ⊗L
𝑅 𝑀)

= depth𝑅 𝑁 − sup (𝒌 ⊗L
𝑅 𝑀) .

This proves the first equality in the statement. The 𝑅-module 𝑁 = 𝑅 has finite depth,
and in this special case one gets − sup (𝒌 ⊗L

𝑅
𝑀) = depth𝑅 𝑀 − depth 𝑅; the second

equality now follows by substituting this expression into the first equality. □

16.3.2 Corollary. Let (𝑅,𝔪) be local and 𝑀 and 𝑁 be 𝑅-complexes. If fd𝑅 𝑀 is
finite and 𝑁 ∈ D⊏ (𝑅) is derived 𝔪-torsion and not acyclic, then one has

sup (𝑁 ⊗L
𝑅 𝑀) − sup 𝑁 = depth 𝑅 − depth𝑅 𝑀 .

Proof. As 𝑁 is derived 𝔪-torsion one has depth𝑅 𝑁 = − sup 𝑁 by 16.2.16(a).
Further, the complex 𝑁 ⊗L

𝑅
𝑀 is derived 𝔪-torsion by 13.4.20(c); in particular, one

has depth𝑅 (𝑁 ⊗L
𝑅
𝑀) = − sup (𝑁 ⊗L

𝑅
𝑀) by another application of 16.2.16(a). As

𝑁 is not acyclic, it has finite depth. If 𝑀 has finite depth, then the equality follows
from 16.3.1(a). Otherwise, also 𝑁 ⊗L

𝑅
𝑀 has infinite depth, again by 16.3.1, so the

equality still holds as depth 𝑅 is finite. □

16.3.3 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. If fd𝑅 𝑀 is finite,
then one has

sup (𝒌 ⊗L
𝑅 𝑀) = depth 𝑅 − depth𝑅 𝑀 .

Proof. As 𝒌 by 13.3.24 is derived 𝔪-torsion, apply 16.3.2 with 𝑁 = 𝒌. □

For a complex 𝑀 over a local ring 𝑅 it is already clear from 15.4.17 and 16.3.3
that fd𝑅 𝑀 ⩾ depth 𝑅 − depth𝑅 𝑀 holds; this inequality is also a special case of:

16.3.4 Proposition. Let 𝑅 be local, 𝑀 an 𝑅-complex, and 𝑁 a complex in D⊏ (𝑅)
of finite depth. There is an inequality,

fd𝑅 𝑀 ⩾ depth𝑅 𝑁 − depth𝑅 (𝑁 ⊗L
𝑅 𝑀) .

Proof. By 16.3.1 the quantities depth𝑅 𝑀 and depth𝑅 (𝑁 ⊗L
𝑅
𝑀) are simultaneously

finite. Thus, assume that depth𝑅 𝑀 and fd𝑅 𝑀 are finite, otherwise the inequality is
trivial. Let 𝒌 denote the residue field of 𝑅. From 15.4.17 and 16.3.1(a) one now gets
fd𝑅 𝑀 ⩾ sup (𝒌 ⊗L

𝑅
𝑀) = depth𝑅 𝑁 − depth𝑅 (𝑁 ⊗L

𝑅
𝑀). □
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Width of Derived Hom

For complexes with degreewise finitely generated homology the next equality sim-
plifies; see 16.4.19.

16.3.5 Theorem. Let (𝑅,𝔪, 𝒌) be local and 𝑀 and 𝑁 be 𝑅-complexes. The complex
RHom𝑅 (𝑀, 𝑁) has finite width if and only if 𝑀 has finite depth and 𝑁 has finite
width, and in that case the equalities

width𝑅 RHom𝑅 (𝑀, 𝑁) = width𝑅 𝑁 − sup (𝒌 ⊗L
𝑅 𝑀)

= depth𝑅 𝑀 + width𝑅 𝑁 − depth 𝑅

hold, provided that one of the next conditions is satisfied:
(a) pd𝑅 𝑀 is finite and width𝑅 𝑁 > −∞ holds.
(b) 𝑀 belongs to Df

⊏⊐ (𝑅) and pd𝑅 𝑀 is finite.

Proof. The first assertion follows from 16.2.24 and 16.2.27. Assume that 𝑀 has
finite depth and 𝑁 has finite width. In the next computation, the 1st and 4th isomor-
phisms hold by 13.4.20(c), as 𝒌 per 13.3.24 is derived 𝔪-torsion. The 2nd isomor-
phism follows from 13.1.18. Notice that under the assumptions in (a), the complex
LΛ𝔪 (𝑁) belongs to D⊐ (𝑅) by 16.2.3; in this case the 3rd isomorphism is tensor
evaluation 12.3.23(d) combined with commutativity 12.3.5. Under the assumptions
in (b), the 3rd isomorphism follows similarly from 12.3.23(a). The 5th isomorphism
holds by 12.3.32.

𝒌 ⊗L
𝑅 RHom𝑅 (𝑀, 𝑁) ≃ 𝒌 ⊗L

𝑅 LΛ𝔪 (RHom𝑅 (𝑀, 𝑁))
≃ 𝒌 ⊗L

𝑅 RHom𝑅 (𝑀, LΛ𝔪 (𝑁))
≃ RHom𝑅 (𝑀, 𝒌 ⊗L

𝑅 LΛ𝔪 (𝑁))
≃ RHom𝑅 (𝑀, 𝒌 ⊗L

𝑅 𝑁)
≃ RHom𝒌 (𝒌 ⊗L

𝑅 𝑀, 𝒌 ⊗L
𝑅 𝑁) .

Together with 16.2.3 and 7.6.12 this isomorphism yields

width𝑅 RHom𝑅 (𝑀, 𝑁) = inf RHom𝒌 (𝒌 ⊗L
𝑅 𝑀, 𝒌 ⊗L

𝑅 𝑁)
= inf (𝒌 ⊗L

𝑅 𝑁) − sup (𝒌 ⊗L
𝑅 𝑀)

= width𝑅 𝑁 − sup (𝒌 ⊗L
𝑅 𝑀) .

This proves the first equality in the statement. The second now follows from 16.3.3,
as 𝑀 has finite flat dimension by 15.4.18. □

16.3.6 Corollary. Let (𝑅,𝔪) be local and 𝑀 and 𝑁 be 𝑅-complexes. If pd𝑅 𝑀 is
finite and 𝑁 ∈ D⊐ (𝑅) is derived 𝔪-complete and not acyclic, then one has

− inf RHom𝑅 (𝑀, 𝑁) + inf 𝑁 = depth 𝑅 − depth𝑅 𝑀 .

Proof. As 𝑁 is derived𝔪-complete one has width𝑅 𝑁 = inf 𝑁 by 16.2.5(a). Further,
the complex RHom𝑅 (𝑀, 𝑁) is derived 𝔪-complete by 13.4.20(a); in particular one
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has width𝑅 RHom𝑅 (𝑀, 𝑁) = inf RHom𝑅 (𝑀, 𝑁). As 𝑁 is not acyclic, it has finite
width. If 𝑀 has finite depth, then the equality follows from 16.3.5(a). Otherwise,
also RHom𝑅 (𝑀, 𝑁) has infinite width, again by 16.3.5, so the equality still holds as
depth 𝑅 is finite. □

Let (𝑅,𝔪, 𝒌) be local. For an 𝑅-complex 𝑀 of finite projective dimension, a
special case of 16.3.6 reads − inf RHom𝑅 (𝑀, 𝒌) = depth 𝑅 − depth𝑅 𝑀 . However,
in view of the next result, this already follows from 16.3.3.

16.3.7 Lemma. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. There is an equality,

− inf RHom𝑅 (𝑀, 𝒌) = sup (𝒌 ⊗L
𝑅 𝑀) .

Proof. The first two equalities below hold by (16.1.22.1) and adjunction 12.3.8. As
E𝑅 (𝒌) is faithfully injective, see 16.1.22, the third equality follows from 2.5.7(b).

− inf RHom𝑅 (𝑀, 𝒌) = − inf RHom𝑅 (𝑀,RHom𝑅 (𝒌,E𝑅 (𝒌)))
= − inf RHom𝑅 (𝒌 ⊗L

𝑅 𝑀,E𝑅 (𝒌))
= sup (𝒌 ⊗L

𝑅 𝑀) . □

16.3.8 Proposition. Let 𝑅 be local, 𝑀 an 𝑅-complex, and 𝑁 a complex in D⊐ (𝑅)
of finite width. There is an inequality,

pd𝑅 𝑀 ⩾ width𝑅 𝑁 − width𝑅 RHom𝑅 (𝑀, 𝑁) .

Proof. By 16.3.5 the quantities depth𝑅 𝑀 and width𝑅 RHom𝑅 (𝑁, 𝑀) are simul-
taneously finite. Thus, assume that depth𝑅 𝑀 and pd𝑅 𝑀 are finite, otherwise the
inequality is trivial. Let 𝒌 denote the residue field of 𝑅. Now 15.4.1, 16.3.7, and
16.3.5(a) yield

pd𝑅 𝑀 ⩾ − inf RHom𝑅 (𝑀, 𝒌)
= sup (𝒌 ⊗L

𝑅 𝑀)
= width𝑅 𝑁 − width𝑅 RHom𝑅 (𝑁, 𝑀) . □

For complexes with degreewise finitely generated homology the next equality
simplifies; see 16.4.33.

16.3.9 Theorem. Let (𝑅,𝔪, 𝒌) be local and 𝑀 and 𝑁 be 𝑅-complexes. The complex
RHom𝑅 (𝑁, 𝑀) has finite width if and only if 𝑀 has finite width and 𝑁 has finite
depth, and in that case the equalities

width𝑅 RHom𝑅 (𝑁, 𝑀) = depth𝑅 𝑁 + inf RHom𝑅 (𝒌, 𝑀)
= depth𝑅 𝑁 + width𝑅 𝑀 − depth 𝑅

hold, provided that one of the next conditions is satisfied:
(a) id𝑅 𝑀 is finite and depth𝑅 𝑁 > −∞ holds.
(b) 𝑀 belongs to Df

⊏⊐ (𝑅) and id𝑅 𝑀 is finite.
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Proof. The first assertion follows from 16.2.24 and 16.2.27. Assume henceforth
that 𝑁 has finite depth and that 𝑀 has finite width and finite injective dimension.

(a): In the next computation, the 1st and 5th isomorphisms hold by 13.4.20(c,b),
as 𝒌 per 13.3.24 is derived 𝔪-torsion. The 2nd and 3rd isomorphisms hold by 13.1.18
and 13.4.12. Assuming that depth𝑅 𝑁 > −∞ holds, the complex RΓ𝔪 (𝑁) belongs
to D⊏ (𝑅) by 16.2.14, so homomorphism evaluation 12.3.27(b) accounts for the 4th

isomorphism. The 6th isomorphism holds by 12.3.36.

𝒌 ⊗L
𝑅 RHom𝑅 (𝑁, 𝑀) ≃ 𝒌 ⊗L

𝑅 LΛ𝔪 (RHom𝑅 (𝑁, 𝑀))
≃ 𝒌 ⊗L

𝑅 RHom𝑅 (𝑁, LΛ𝔪 (𝑀))
≃ 𝒌 ⊗L

𝑅 RHom𝑅 (RΓ𝔪 (𝑁), 𝑀)
≃ RHom𝑅 (RHom𝑅 (𝒌,RΓ𝔪 (𝑁)), 𝑀)
≃ RHom𝑅 (RHom𝑅 (𝒌, 𝑁), 𝑀)
≃ RHom𝒌 (RHom𝑅 (𝒌, 𝑁),RHom𝑅 (𝒌, 𝑀)) .

Together with 16.2.3 and 7.6.12 this isomorphism yields

width𝑅 RHom𝑅 (𝑁, 𝑀) = inf RHom𝒌 (RHom𝑅 (𝒌, 𝑁),RHom𝑅 (𝒌, 𝑀))
= inf RHom𝑅 (𝒌, 𝑀) − sup RHom𝑅 (𝒌, 𝑁)
= depth𝑅 𝑁 + inf RHom𝑅 (𝒌, 𝑀) .

This proves the first equality in the statement. The 𝑅-module 𝑁 = 𝑅 has finite depth,
and in this special case one gets inf RHom𝑅 (𝒌, 𝑀) = width𝑅 𝑀 − depth 𝑅; the
second equality now follows by substituting this expression into the first equality.

(b): As established above, one has inf RHom𝑅 (𝒌, 𝑀) = width𝑅 𝑀 − depth 𝑅, so
it suffices to prove the equality

width𝑅 RHom𝑅 (𝑁, 𝑀) = depth𝑅 𝑁 + width𝑅 𝑀 − depth 𝑅 .

Let ( )∨ be the Matlis Duality functor and 𝐾 the Koszul complex on a sequence that
generates 𝔪. By 16.1.34 and commutativity 12.3.5 the complex 𝑀 ⊗L

𝑅
𝐾 belongs to

Dℓ (𝑅), so it is derived Matlis reflexive by 16.1.39 and 16.1.36(b). This explains the
second isomorphism in the computation below. The first isomorphism follows from
tensor evaluation 12.3.23(c), which applies as 𝐾 has finite projective dimension, see
11.4.3(c). The third isomorphism is swap 12.3.16.

(†)
RHom𝑅 (𝑁, 𝑀) ⊗L

𝑅 𝐾 ≃ RHom𝑅 (𝑁, 𝑀 ⊗L
𝑅 𝐾)

≃ RHom𝑅 (𝑁,RHom𝑅 ((𝑀 ⊗L
𝑅 𝐾)

∨
,E𝑅 (𝒌)))

≃ RHom𝑅 ((𝑀 ⊗L
𝑅 𝐾)∨, 𝑁∨) .

From (†), commutativity 12.3.5, and 14.4.15 one gets

width𝑅 RHom𝑅 (𝑁, 𝑀) = width𝑅 RHom𝑅 ((𝑀 ⊗L
𝑅 𝐾)∨, 𝑁∨) .

By 15.4.3 the complex 𝑀 ⊗L
𝑅
𝐾 has finite injective dimension. Per 2.2.19 the Matlis

Duality functor commutes with homology, so it follows from 16.1.44 that (𝑀 ⊗L
𝑅
𝐾)∨
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belongs to Dℓ
⊏⊐ (𝑅). Further it follows from 15.4.31 and 15.4.18 that (𝑀 ⊗L

𝑅
𝐾)∨ is

a complex of finite projective dimension. Now 16.3.5(b) applies, and together with
the equalities from 16.2.22 and 14.4.15 it yields

width𝑅 RHom𝑅 ((𝑀 ⊗L
𝑅 𝐾)∨, 𝑁∨)

= depth𝑅 (𝑀 ⊗L
𝑅 𝐾)∨ + width𝑅 𝑁∨ − depth 𝑅

= width𝑅 (𝑀 ⊗L
𝑅 𝐾) + depth𝑅 𝑁 − depth 𝑅

= width𝑅 𝑀 + depth𝑅 𝑁 − depth 𝑅 . □

16.3.10 Corollary. Let (𝑅,𝔪) be local and 𝑀 and 𝑁 be 𝑅-complexes. If id𝑅 𝑀 is
finite and 𝑁 ∈ D⊏ (𝑅) is derived 𝔪-torsion and not acyclic, then one has

− inf RHom𝑅 (𝑁, 𝑀) − sup 𝑁 = depth 𝑅 − width𝑅 𝑀 .

Proof. As 𝑁 is derived 𝔪-torsion one has depth𝑅 𝑁 = − sup 𝑁 by 16.2.16(a).
Further, the complex RHom𝑅 (𝑁, 𝑀) is derived 𝔪-complete by 13.4.20(b), whence
width𝑅 RHom𝑅 (𝑁, 𝑀) = inf RHom𝑅 (𝑁, 𝑀) holds by 16.2.5(a). As 𝑁 is not acyclic,
it has finite depth. If 𝑀 has finite width, then the equality follows from 16.3.9(a).
Otherwise, also RHom𝑅 (𝑁, 𝑀) has infinite width, again by 16.3.9, so the equality
still holds as depth 𝑅 is finite. □

16.3.11 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. If id𝑅 𝑀 is finite,
then one has

− inf RHom𝑅 (𝒌, 𝑀) = depth 𝑅 − width𝑅 𝑀 .

Proof. As 𝒌 by 13.3.24 is derived 𝔪-torsion, 16.3.10 applies with 𝑁 = 𝒌. □

For a complex 𝑀 over a local ring 𝑅 it is already clear from 15.4.7 and 16.3.11
that id𝑅 𝑀 ⩾ depth 𝑅 − width𝑅 𝑀 holds; this inequality is also a special case of:

16.3.12 Proposition. Let 𝑅 be local, 𝑀 an 𝑅-complex, and 𝑁 a complex in D⊏ (𝑅)
of finite depth. There is an inequality,

id𝑅 𝑀 ⩾ depth𝑅 𝑁 − width𝑅 RHom𝑅 (𝑁, 𝑀) .

Proof. By 16.3.9 the quantities width𝑅 𝑀 and width𝑅 RHom𝑅 (𝑁, 𝑀) are simulta-
neously finite. Thus, assume that width𝑅 𝑀 and id𝑅 𝑀 are finite, otherwise the in-
equality is trivial. Let 𝒌 denote the residue field of 𝑅. From 15.4.7 and 16.3.9(a) one
now gets id𝑅 𝑀 ⩾ − inf RHom𝑅 (𝒌, 𝑀) = depth𝑅 𝑁 − width𝑅 RHom𝑅 (𝑁, 𝑀). □

Rigidity of Ext

16.3.13 Theorem. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex such that the in-
equality depth𝑅 𝑀 > −∞ holds. There are equalities,

id𝑅 RΓ𝔪 (𝑀) = − inf RHom𝑅 (𝒌, 𝑀) = sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝒌, 𝑀) ≠ 0} .

Further, if Ext𝑛+1
𝑅
(𝒌, 𝑀) = 0 holds for an integer 𝑛 ⩾ − inf RΓ𝔪 (𝑀), then one has
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𝑛 ⩾ id𝑅 RΓ𝔪 (𝑀) = depth 𝑅 − width𝑅 𝑀 .

Proof. Specialization of 15.4.12 to 𝔞 = 𝔪 yields the equalities in the first display as
well as the inequality 𝑛 ⩾ id𝑅 RΓ𝔪 (𝑀) under the assumption that Ext𝑛+1

𝑅
(𝒌, 𝑀) = 0

holds for an 𝑛 ⩾ − inf RΓ𝔪 (𝑀). Further, if id𝑅 RΓ𝔪 (𝑀) is finite, then 16.3.11 yields

(†) − inf RHom𝑅 (𝒌,RΓ𝔪 (𝑀)) = depth 𝑅 − width𝑅 RΓ𝔪 (𝑀) .

As 𝒌 by 13.3.24 is derived𝔪-torsion, RHom𝑅 (𝒌,RΓ𝔪 (𝑀)) ≃ RHom𝑅 (𝒌, 𝑀) holds
by 13.4.20(b). Moreover, one has width𝑅 RΓ𝔪 (𝑀) = width𝑅 𝑀 by 16.2.3, so the
equality asserted in the second display now follows from (†) and the previously
established equality id𝑅 RΓ𝔪 (𝑀) = − inf RHom𝑅 (𝒌, 𝑀). □

16.3.14 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 a derived 𝔪-torsion complex that
belongs to D⊏ (𝑅). There are equalities,

id𝑅 𝑀 = − inf RHom𝑅 (𝒌, 𝑀) = sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝒌, 𝑀) ≠ 0} .

Further, if Ext𝑛+1
𝑅
(𝒌, 𝑀) = 0 holds for an integer 𝑛 ⩾ − inf 𝑀 , then one has

𝑛 ⩾ id𝑅 𝑀 = depth 𝑅 − width𝑅 𝑀 .

Proof. By assumption there is an isomorphism RΓ𝔪 (𝑀) ≃ 𝑀 inD(𝑅), and 16.2.16
yields depth𝑅 𝑀 ⩾ − sup𝑀 > −∞, so this is a special case of 16.3.13. □

16.3.15 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝔪-torsion 𝑅-module. One has

id𝑅 𝑀 = − inf RHom𝑅 (𝒌, 𝑀) = sup{𝑚 ∈ ℕ0 | Ext𝑚𝑅 (𝒌, 𝑀) ≠ 0} .

Further, if Ext𝑛+1
𝑅
(𝒌, 𝑀) = 0 holds for an integer 𝑛 ⩾ 0, then one has

𝑛 ⩾ id𝑅 𝑀 = depth 𝑅 − width𝑅 𝑀 .

Proof. In view of 13.3.30, this assertion is a special case of 16.3.14. □

For an 𝑅-complex 𝑀 with depth𝑅 𝑀 > −∞ the following rigidity statement is
part of 16.3.13.

16.3.16 Theorem. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. If Ext𝑛+1
𝑅
(𝒌, 𝑀) = 0

holds for an integer 𝑛 ⩾ − inf RΓ𝔪 (𝑀), then one has

𝑛 ⩾ sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝒌, 𝑀) ≠ 0} = depth 𝑅 − width𝑅 𝑀 .

Proof. Assuming that Ext𝑛+1
𝑅
(𝒌, 𝑀) = 0 holds for an integer 𝑛 ⩾ − inf RΓ𝔪 (𝑀),

specialization of 15.4.16 to 𝔞 = 𝔪 yields Ext𝑚
𝑅
(𝒌, 𝑀) = 0 for all integers 𝑚 > 𝑛.

Let 𝑋 be any 𝑅-complex and 𝐾 the Koszul complex on a sequence that generates
𝔪. Tensor evaluation 12.3.23(c) combined with commutativity 12.3.5 yields

(†) RHom𝑅 (𝑋, 𝐾 ⊗L
𝑅 𝑀) ≃ 𝐾 ⊗L

𝑅 RHom𝑅 (𝑋, 𝑀) .

This accounts for the first equality in the computation below, and the second equality
holds by the definition of width 16.2.1. The complex RHom𝑅 (𝒌, 𝑀) is derived
𝔪-complete by 13.1.23, so the last equality holds by 16.2.5(a).
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(‡)
− inf RHom𝑅 (𝒌, 𝐾 ⊗L

𝑅 𝑀) = − inf (𝐾 ⊗L
𝑅 RHom𝑅 (𝒌, 𝑀))

= −width𝑅 RHom𝑅 (𝒌, 𝑀)
= − inf RHom𝑅 (𝒌, 𝑀) .

For every prime ideal 𝔭 in 𝑅 it follows from (†), applied with 𝑋 = 𝑅/𝔭, and 13.3.31
that the complex RHom𝑅 (𝑅/𝔭, 𝐾 ⊗L

𝑅
𝑀) is derived 𝔪-torsion. Further, one has

𝑛 ⩾ − inf RΓ𝔪 (𝑀) ⩾ −width𝑅 RΓ𝔪 (𝑀) = −width𝑅 𝑀 = − inf (𝐾 ⊗L
𝑅 𝑀)

by 16.2.5, 16.2.3, and the definition of width. Thus 15.4.11 applies to the complex
𝐾 ⊗L

𝑅
𝑀 and yields id𝑅 (𝐾 ⊗L

𝑅
𝑀) ⩽ 𝑛. Now (‡) and 16.3.11 yield

− inf RHom𝑅 (𝒌, 𝑀) = depth 𝑅 − width𝑅 (𝐾 ⊗L
𝑅 𝑀) = depth 𝑅 − width𝑅 𝑀 ,

where the last equality follows from 14.4.15. □

Theorem 16.3.16 remains true with the bound on 𝑛 lowered to − inf RΓ𝔪 (𝑀) −1,
see 17.5.10; it is a technicality, but it comes in handy in the proof of 17.5.11.

16.3.17 Corollary. Let (𝑅,𝔪, 𝒌) be local and𝑀 an 𝑅-complex. If Ext𝑛+1
𝑅
(𝒌, 𝑀) = 0

holds for an integer 𝑛 ⩾ dim 𝑅 − width𝑅 𝑀 , then one has

𝑛 ⩾ sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝒌, 𝑀) ≠ 0} = depth 𝑅 − width𝑅 𝑀 .

Proof. The assertion follows in view of 16.2.34 from 16.3.16. □

Rigidity of Tor

16.3.18 Theorem. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex such that the in-
equality width𝑅 𝑀 > −∞ holds. There are equalities,

fd𝑅 LΛ𝔪 (𝑀) = sup (𝒌 ⊗L
𝑅 𝑀) = sup{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝒌, 𝑀) ≠ 0} .

Further, if Tor𝑅
𝑛+1 (𝒌, 𝑀) = 0 holds for an integer 𝑛 ⩾ sup LΛ𝔪 (𝑀), then one has

𝑛 ⩾ fd𝑅 LΛ𝔪 (𝑀) = depth 𝑅 − depth𝑅 𝑀 .

Proof. Specialization of 15.4.25 to 𝔞 = 𝔪 yields the equalities in the first display as
well as the inequality 𝑛 ⩾ fd𝑅 LΛ𝔪 (𝑀) under the assumption that Tor𝑅

𝑛+1 (𝒌, 𝑀) = 0
holds for an 𝑛 ⩾ sup LΛ𝔪 (𝑀). Further, if fd𝑅 LΛ𝔪 (𝑀) is finite, then 16.3.3 yields

(†) sup (𝒌 ⊗L
𝑅 LΛ𝔪 (𝑀)) = depth 𝑅 − depth𝑅 LΛ𝔪 (𝑀) .

As 𝒌 by 13.3.24 is derived 𝔪-torsion, 𝒌 ⊗L
𝑅

LΛ𝔪 (𝑀) ≃ 𝒌 ⊗L
𝑅
𝑀 holds by 13.4.20(c).

Moreover, one has depth𝑅 LΛ𝔪 (𝑀) = depth𝑅 𝑀 by 16.2.14, so the equality asserted
in the second display now follows from (†) and the previously established equality
fd𝑅 LΛ𝔪 (𝑀) = sup (𝒌 ⊗L

𝑅
𝑀). □

16.3.19 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 a derived 𝔪-complete complex
that belongs to D⊐ (𝑅). There are equalities,
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fd𝑅 𝑀 = sup (𝒌 ⊗L
𝑅 𝑀) = sup{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝒌, 𝑀) ≠ 0} .

Further, if Tor𝑅
𝑛+1 (𝒌, 𝑀) = 0 holds for an integer 𝑛 ⩾ sup𝑀 , then one has

𝑛 ⩾ fd𝑅 𝑀 = depth 𝑅 − depth𝑅 𝑀 .

Proof. By assumption there is an isomorphism LΛ𝔪 (𝑀) ≃ 𝑀 in D(𝑅), and 16.2.5
yields width𝑅 𝑀 ⩾ inf 𝑀 > −∞, so this is a special case of 16.3.18. □

16.3.20 Corollary. Let (𝑅,𝔪, 𝒌) be local and𝑀 an𝔪-complete 𝑅-module. One has,

fd𝑅 𝑀 = sup (𝒌 ⊗L
𝑅 𝑀) = sup{𝑚 ∈ ℕ0 | Tor𝑅𝑚 (𝒌, 𝑀) ≠ 0} .

Further, if Tor𝑅
𝑛+1 (𝒌, 𝑀) = 0 holds for an integer 𝑛 ⩾ 0, then one has

𝑛 ⩾ fd𝑅 𝑀 = depth 𝑅 − depth𝑅 𝑀 .

Proof. In view of 13.1.33, this assertion is a special case of 16.3.19. □

For an 𝑅-complex 𝑀 with width𝑅 𝑀 > −∞ the following rigidity statement is
part of 16.3.18.

16.3.21 Theorem. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. If Tor𝑅
𝑛+1 (𝒌, 𝑀) = 0

holds for an integer 𝑛 ⩾ sup LΛ𝔪 (𝑀), then one has

𝑛 ⩾ sup{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝒌, 𝑀) ≠ 0} = depth 𝑅 − depth𝑅 𝑀 .

Proof. Assuming that Tor𝑅
𝑛+1 (𝒌, 𝑀) = 0 holds for an integer 𝑛 ⩾ sup LΛ𝔪 (𝑀),

specialization of 15.4.29 to 𝔞 = 𝔪 yields of Tor𝑅𝑚 (𝒌, 𝑀) = 0 for all integers 𝑚 > 𝑛.
Let 𝑋 be any 𝑅-complex and 𝐾 the Koszul complex on a sequence that generates

𝔪. Tensor evaluation 12.3.23(a) combined with commutativity 12.3.5 yields

(†) 𝑋 ⊗L
𝑅 RHom𝑅 (𝐾, 𝑀) ≃ RHom𝑅 (𝐾, 𝑋 ⊗L

𝑅 𝑀) .

This accounts for the first equality in the computation below, and the second equality
holds by 16.2.14. The complex 𝒌 ⊗L

𝑅
𝑀 is derived 𝔪-torsion by 13.3.25, so the last

equality holds by 16.2.16(a).

(‡)
sup (𝒌 ⊗L

𝑅 RHom𝑅 (𝐾, 𝑀)) = sup RHom𝑅 (𝐾, 𝒌 ⊗L
𝑅 𝑀)

= − depth𝑅 (𝒌 ⊗L
𝑅 𝑀)

= sup (𝒌 ⊗L
𝑅 𝑀) .

For every prime ideal 𝔭 in 𝑅 it follows from (†), applied with 𝑋 = 𝑅/𝔭, and
13.1.34 combined with 14.3.2 that the complex 𝑅/𝔭 ⊗L

𝑅
RHom𝑅 (𝐾, 𝑀) is derived

𝔪-complete. Further, by 16.2.16 and 16.2.14 one has

𝑛 ⩾ sup LΛ𝔪 (𝑀) ⩾ − depth𝑅 LΛ𝔪 (𝑀) = − depth𝑅 𝑀 = sup RHom𝑅 (𝐾, 𝑀) .

Thus 15.4.24 applies to RHom𝑅 (𝐾, 𝑀) and yields fd𝑅 RHom𝑅 (𝐾, 𝑀) ⩽ 𝑛. Now
(‡) and 16.3.3 yield

sup (𝒌 ⊗L
𝑅 𝑀) = depth 𝑅 − depth𝑅 RHom𝑅 (𝐾, 𝑀) = depth 𝑅 − depth𝑅 𝑀
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where the last equality follows from 14.3.2, 14.3.11, and 14.4.15. □

Remark. For a complex 𝑀 over a local ring (𝑅,𝔪) with 𝑠 = sup LΛ𝔪 (𝑀 ) ∈ ℤ, Christensen,
Ferraro, and Thompson [58] show that Tor𝑅𝑠 (𝒌 , 𝑀 ) is non-zero, which means that 16.3.21 remeains
true with the bound on 𝑛 lowered to sup LΛ𝔪 (𝑀 ) −1; see also the comment after 16.3.16. It follows
that the next corollary holds with the improved bound 𝑛 ⩾ dim𝑅−depth𝑅 𝑀 −1, see also E 16.3.8.

16.3.22 Corollary. Let (𝑅,𝔪, 𝒌) be local and𝑀 an 𝑅-complex. If Tor𝑅
𝑛+1 (𝒌, 𝑀) = 0

holds for an integer 𝑛 ⩾ dim 𝑅 − depth𝑅 𝑀 , then one has

𝑛 ⩾ sup{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝒌, 𝑀) ≠ 0} = depth 𝑅 − depth𝑅 𝑀 .

Proof. The assertion follows in view of 16.2.34 from 16.3.21. □

Exercises

In the following exercises let (𝑅,𝔪, 𝒌 ) be local.

E 16.3.1 Let 𝐿 ∈ Dℓ
⊏⊐ (𝑅) be a complex of finite projective dimension with H(𝐿) ≠ 0. Show

that the inequality depth𝑅 𝑀 + width𝑅 𝑀 ⩽ depth𝑅 + amp 𝐿 holds for every complex
𝑀 ∈ D⊏⊐ (𝑅) with 𝔪 ∈ supp𝑅 𝑀. Hint: E 16.2.6.

E 16.3.2 Let 𝑀 ≠ 0 be a finitely generated 𝑅-module. Show that if there exists a non-zero finitely
generated 𝑅-module of finite injective dimension, then depth𝑅 𝑀 ⩽ depth𝑅 holds.

E 16.3.3 Let 𝑥𝑥𝑥 be a sequence of generators for 𝔪. Show that fd𝑅 Č𝑅 (𝑥𝑥𝑥 ) = 0 holds.
E 16.3.4 Let𝑀 be an 𝑅-complex. (a) Show that if RΓ𝔪 (𝑀 ) or LΛ𝔪 (𝑀 ) has finite flat dimension,

then sup (𝒌 ⊗L
𝑅
𝑀 ) = depth𝑅−depth𝑅 𝑀 holds. (b) Show that if RΓ𝔪 (𝑀 ) or LΛ𝔪 (𝑀 )

has finite injective dimension, then − inf RHom𝑅 (𝒌 , 𝑀 ) = depth𝑅 −width𝑅 𝑀 holds.
E 16.3.5 Let 𝑀 ≠ 0 be an 𝑅-module. Show that if 𝑀 is derived 𝔪-complete and Tor𝑅1 (𝒌 , 𝑀 ) =

0 holds, then one has depth𝑅 𝑀 = depth𝑅. (Under the weaker assumption that
width𝑅 𝑀 = 0 = Tor𝑅1 (𝒌 , 𝑀 ) holds, Iyengar and Bridgeland [44] obtain the inequality
depth𝑅 𝑀 ⩽ depth𝑅, which compares to the one in 16.2.35.)

E 16.3.6 Let 𝑀 be an 𝑅-complex and 𝑛 ∈ ℤ. Show that H𝑛𝔪 (𝑀 ) ≠ 0 implies Ext𝑛
𝑅
(𝒌 , 𝑀 ) ≠ 0.

Conclude that − inf RΓ𝔪 (𝑀 ) ⩽ − inf RHom𝑅 (𝒌 , 𝑀 ) holds and that 16.3.16 remains
true with the improved bound 𝑛 ⩾ − inf RΓ𝔪 (𝑀 ) − 1. Hint: E 11.3.2.

E 16.3.7 Show that 16.3.17 remains true with the improved bound 𝑛 ⩾ dim𝑅 − width𝑅 𝑀 − 1.
E 16.3.8 Show that 16.3.22 remains true with the improved bound 𝑛 ⩾ dim𝑅 − depth𝑅 𝑀 − 1.
E 16.3.9 Let 𝑀 and 𝑁 be non-zero finitely generated 𝑅-modules. Show that if pd𝑅 𝑀 or id𝑅 𝑁

is finite, then one has sup{𝑚 ∈ ℕ0 | Ext𝑚
𝑅
(𝑀, 𝑁 ) ≠ 0} = depth𝑅 − depth𝑅 𝑀.

16.4 Formulas of Auslander, Buchsbaum, and Bass
Synopsis. Auslander–Buchsbaum Formula; Bass Formula; Betti number; Poincaré series; minimal
semi-free resolution; Bass number; Bass series; minimal semi-injective resolution.

For finitely generated modules over a local ring, the relations from Sect. 16.3 between
homological dimensions and the invariants depth and width simplify. Unsurprisingly,
our order of presentation is reverse chronological: The case of finitely generated mod-
ules was investigated first. For example, the Auslander–Buchsbaum Formula 16.4.2
first appeared in the 1957 paper [11], while the more general formula 16.3.1 came
two decades later in [94].
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The Auslander–Buchsbaum Formula

A local ring is semi-perfect, see B.44, so the next result is essentially a special case
of 8.1.18. Here we provide a different proof that does not rely on the existence of
minimal semi-projective resolutions.

16.4.1 Theorem. Let (𝑅,𝔪, 𝒌) be local, 𝑀 a complex in Df
⊐ (𝑅), and 𝑛 an integer.

The following conditions are equivalent.
(i) pd𝑅 𝑀 ⩽ 𝑛. (iv) fd𝑅 𝑀 ⩽ 𝑛.
(ii) − inf RHom𝑅 (𝑀, 𝒌) ⩽ 𝑛. (v) sup (𝒌 ⊗L

𝑅
𝑀) ⩽ 𝑛.

(iii) 𝑛 ⩾ sup𝑀 and Ext𝑛+1
𝑅
(𝑀, 𝒌) = 0 . (vi) 𝑛 ⩾ sup𝑀 and Tor𝑅

𝑛+1 (𝒌, 𝑀) = 0 .
In particular, there are equalities,

pd𝑅 𝑀 = − inf RHom𝑅 (𝑀, 𝒌) = sup (𝒌 ⊗L
𝑅 𝑀) = fd𝑅 𝑀 .

Proof. The six conditions are evidently satisfied if 𝑀 is acyclic, so assume that
𝑀 is not acyclic and set 𝑠 = sup𝑀 . The implication (iv)⇒ (v) is immediate from
15.4.17. To see that (v) implies (vi), notice that each functor Tor𝑅𝑚 ( , 𝑀) is 𝑅-
linear and half exact; per 12.2.12 the module Tor𝑅𝑚 (𝑅/𝔭, 𝑀) is finitely generated for
every 𝔭 ∈ Spec 𝑅. Since Tor𝑅𝑠 (𝑅, 𝑀) � H𝑠 (𝑀) is non-zero, it now follows from
16.1.7 that Tor𝑅𝑠 (𝒌, 𝑀) ≠ 0 holds. Another application of 16.1.7 now shows that if
Tor𝑅

𝑛+1 (𝒌, 𝑀) = 0 holds, then one has Tor𝑅
𝑛+1 (𝑅/𝔭, 𝑀) = 0 for every prime ideal 𝔭

in 𝑅, whence (vi) implies (iv) by 15.4.17. By 15.4.18 one has pd𝑅 𝑀 = fd𝑅 𝑀; in
particular, conditions (i) and (iv) are equivalent. Let 𝑚 ∈ ℤ; by 16.1.22 the module
Tor𝑅𝑚 (𝒌, 𝑀) vanishes if and only if Ext𝑚

𝑅
(𝑀, 𝒌) vanishes. This shows that conditions

(v) and (vi) are equivalent to (ii) and (iii), respectively. □

The next result is known as the Auslander–Buchsbaum Formula.

16.4.2 Corollary. Let 𝑅 be local and 𝑀 a complex in Df
⊐ (𝑅). If 𝑀 has finite

projective dimension, then the next equality holds,

pd𝑅 𝑀 = depth 𝑅 − depth𝑅 𝑀.

Proof. The equality follows immediately from 16.4.1 and 16.3.3. □

The equality in the next result can be rewritten to match the inequality in 16.3.4,
provided that the complex 𝑁 belongs to D⊏ (𝑅), cf. 16.2.21. The special case 𝑁 = 𝑅

is then simply the Auslander–Buchsbaum Formula.

16.4.3 Theorem. Let 𝑅 be local, 𝑀 a complex in Df
⊏⊐ (𝑅), and 𝑁 an 𝑅-complex. If

𝑀 has finite projective dimension and is not acyclic, then there is an equality,

pd𝑅 𝑀 + depth𝑅 (𝑁 ⊗L
𝑅 𝑀) = depth𝑅 𝑁 .

Proof. It follows from 16.2.27 that 𝑀 is a complex of finite depth. Per 16.3.1 the
complex 𝑁 ⊗L

𝑅
𝑀 has infinite depth if and only if 𝑁 has infinite depth, in which case

the assered equality is trivial. Assuming now that 𝑁 has finite depth, the asserted
equality hold by 16.3.1(b) in view of 16.4.1. □
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The equality in the next result can be rewritten to match the inequality in 16.3.8,
provided that the complex 𝑁 belongs toD⊐ (𝑅), cf. 16.2.5(a). The special case 𝑁 = 𝑅

then recovers one of the equalities in 12.3.20.

16.4.4 Theorem. Let 𝑅 be local, 𝑀 a complex in Df
⊏⊐ (𝑅), and 𝑁 an 𝑅-complex. If

𝑀 has finite projective dimension and is not acyclic, then there is an equality,

pd𝑅 𝑀 + width𝑅 RHom𝑅 (𝑀, 𝑁) = width𝑅 𝑁 .

Proof. It follows from 16.2.27 that 𝑀 is a complex of finite depth. Per 16.3.5 the
complex RHom𝑅 (𝑀, 𝑁) has infinite width if and only if 𝑁 has infinite width, in
which case the asserted equality is trivial. Assuming now that 𝑁 has finite width,
the asserted equality holds, in view of 16.4.1, by 16.3.5(b). □

The Bass Formula

Bass’ 1963 paper [32] on Gorenstein rings remains one of the most cited papers in
commutative algebra. The next lemma is the first result proved in [32] and funda-
mental to the rest of the paper.

16.4.5 Lemma. Let (𝑅,𝔪, 𝒌) be local, 𝔭 a prime ideal in 𝑅, and 𝑀 a complex in
Df
⊏ (𝑅). For every integer 𝑚 one has

Ext𝑚𝑅𝔭
(κ (𝔭), 𝑀𝔭) ≠ 0 =⇒ Ext𝑚+dim𝑅/𝔭

𝑅
(𝒌, 𝑀) ≠ 0 .

In particular, there are inequalities,

− sup RHom𝑅𝔭
(κ (𝔭), 𝑀𝔭) + dim 𝑅/𝔭 ⩾ − sup RHom𝑅 (𝒌, 𝑀) .(a)

− inf RHom𝑅𝔭
(κ (𝔭), 𝑀𝔭) + dim 𝑅/𝔭 ⩽ − inf RHom𝑅 (𝒌, 𝑀) .(b)

Proof. Set 𝑑 = dim 𝑅/𝔭 and proceed by induction on 𝑑. If 𝑑 = 0 holds, then one
has 𝔭 = 𝔪 and the claim is trivial.
𝑑 = 1: By 14.1.23 there is an isomorphism Ext𝑚

𝑅𝔭
(κ (𝔭), 𝑀𝔭) � Ext𝑚

𝑅
(𝑅/𝔭, 𝑀)𝔭,

so by assumption one has Ext𝑚
𝑅
(𝑅/𝔭, 𝑀) ≠ 0. Choose an element 𝑥 ∈ 𝔪 \ 𝔭. From

the exact sequence

0 −→ 𝑅/𝔭 𝑥−−−→ 𝑅/𝔭 −→ 𝑅/(𝔭 + (𝑥)) −→ 0

one gets per 7.3.35 and 12.2.6 an exact sequence of finitely generated 𝑅-modules,

Ext𝑚𝑅 (𝑅/𝔭, 𝑀)
𝑥−−−→ Ext𝑚𝑅 (𝑅/𝔭, 𝑀) −→ Ext𝑚+1𝑅 (𝑅/(𝔭 + (𝑥)), 𝑀) ,

so Nakayama’s lemma 16.1.5 yields Ext𝑚+1
𝑅
(𝑅/(𝔭 + (𝑥)), 𝑀) ≠ 0. As 𝑑 = 1, the

classic support of the 𝑅-module 𝑅/(𝔭 + (𝑥)) is {𝔪}, whence it follows from 12.4.7
that also Ext𝑚+1

𝑅
(𝒌, 𝑀) is non-zero.

𝑑 > 1: Choose a chain of prime ideals 𝔭 = 𝔭0 ⊂ 𝔭1 ⊂ · · · ⊂ 𝔭𝑑 = 𝔪. Set
𝑅′ = 𝑅𝔭1 , it is a local ring with maximal ideal 𝔭′ = 𝔭1𝑅

′, and set 𝑀 ′ = 𝑀𝔭1 ; recall
from 14.1.11 that 𝑀 ′ belongs to Df

⊏ (𝑅′). Denote by 𝔮 the prime ideal 𝔭𝑅′ in 𝑅′.
The module
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Ext𝑚
𝑅′𝔮
(κ (𝔮), 𝑀 ′𝔮) � Ext𝑚𝑅𝔭

(κ (𝔭), 𝑀𝔭) ,

see 15.1.3, is by assumption non-zero, and one has dim 𝑅′/𝔮 = 1, so the induction
base yields Ext𝑚+1

𝑅𝔭1
(κ (𝔭1), 𝑀𝔭1 ) = Ext𝑚+1

𝑅′ (𝑅′/𝔭′, 𝑀 ′) ≠ 0. As one has dim 𝑅/𝔭1 =

𝑑 − 1, it follows by the induction hypothesis that Ext𝑚+𝑑
𝑅
(𝒌, 𝑀) is non-zero. □

The next inequality also holds for a derived 𝔪-complete complex over a local ring
(𝑅,𝔪), see 18.3.26, but as illustrated by 16.4.7 it does not hold without assumptions
on the complex.

16.4.6 Proposition. Let 𝑅 be local, 𝔭 a prime ideal in 𝑅, and 𝑀 an 𝑅-complex. If
𝑀 is in Df (𝑅), then there is an inequality,

depth𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 ⩾ depth𝑅 𝑀 .

Proof. If H(𝑀) is not bounded above, then the inequality is trivial as 16.2.21 yields
depth𝑅 𝑀 = −∞. Assuming now that 𝑀 belongs to Df

⊏ (𝑅), the inequality follows
immediately from 16.2.14 and 16.4.5(a). □

16.4.7 Example. Let (𝑅,𝔪) be local and 𝔭 ≠ 𝔪 a prime ideal in 𝑅. The 𝑅𝔭-module
E𝑅 (𝑅/𝔭)𝔭 = E𝑅𝔭

(κ (𝔭)), see C.18, has depth 0, while it follows from 16.2.29 that
the 𝑅-module E𝑅 (𝑅/𝔭) has depth∞.

16.4.8 Theorem. Let (𝑅,𝔪, 𝒌) be local and 𝑀 a complex in Df
⊏ (𝑅); one has

id𝑅 𝑀 = − inf RHom𝑅 (𝒌, 𝑀) .

Proof. Let 𝑚 ∈ ℤ and notice that if Ext𝑚
𝑅
(𝑅/𝔞, 𝑀) is non-zero for some ideal 𝔞 in

𝑅, then one has Ext𝑚
𝑅
(𝑅/𝔭, 𝑀)𝔭 ≠ 0 for a prime ideal 𝔭 by 12.4.9. That is, one has

Ext𝑚
𝑅𝔭
(κ (𝔭), 𝑀𝔭) ≠ 0, by 14.1.23, so 16.4.5 yields Ext𝑛

𝑅
(𝒌, 𝑀) ≠ 0 for some 𝑛 ⩾ 𝑚.

Thus one has

sup{− inf RHom𝑅 (𝑅/𝔞, 𝑀) | 𝔞 is an ideal in 𝑅} ⩽ − inf RHom𝑅 (𝒌, 𝑀)

and the opposite inequality is trivial. Now invoke 15.4.7. □

16.4.9 Corollary. Let 𝑅 be local, 𝔭 a prime ideal in 𝑅, and 𝑀 a complex in Df
⊏ (𝑅).

There is an inequality,

id𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 ⩽ id𝑅 𝑀 .

Proof. By 14.1.11 the complex 𝑀𝔭 belongs to Df
⊏ (𝑅𝔭), so the inequality follows

immediately from 16.4.8 and 16.4.5(b). □

16.4.10 Corollary. Let 𝑅 be local and𝑀 a complex inDf
⊏ (𝑅); there is an inequality,

dim𝑅 𝑀 ⩽ id𝑅 𝑀 .

Proof. Let 𝔭 be a prime idel in 𝑅. By 8.2.3 and 16.4.9 one has

dim 𝑅/𝔭 − inf 𝑀𝔭 ⩽ dim 𝑅/𝔭 + id𝑅𝔭
𝑀𝔭 ⩽ id𝑅 𝑀 ;

now invoke 14.2.6. □
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The next result, and the subsequent special case which first appeared in Bass’
seminal paper [32], is known as the Bass Formula. The boundedness condition on
the complex is superfluous, see 9.2.12 and 19.2.38.

16.4.11 Corollary. Let 𝑅 be local and 𝑀 a complex in Df
⊏⊐ (𝑅). If 𝑀 has finite

injective dimension, then the next equality holds,

id𝑅 𝑀 = depth 𝑅 − inf 𝑀 .

Proof. By 16.2.5(a) one has width𝑅 𝑀 = inf 𝑀 , so the equality is immediate from
16.4.8 and 16.3.11. □

16.4.12 Corollary. Let 𝑅 be local and 𝑀 ≠ 0 a finitely generated 𝑅-module. If 𝑀
has finite injective dimension, then the next equality holds,

id𝑅 𝑀 = depth 𝑅 .

Proof. This is a special case of 16.4.11 as a non-zero module has infimum 0. □

The equality in the next result can be rewritten to match the inequality in 16.3.12,
provided that the complex 𝑁 belongs to D⊏ (𝑅), cf. 16.2.21. The special case 𝑁 = 𝑅

is then simply the Bass Formula.

16.4.13 Theorem. Let 𝑅 be local, 𝑀 a complex in Df
⊏⊐ (𝑅), and 𝑁 and 𝑅-complex.

If 𝑀 has finite injective dimension and is not acyclic, then there is an equality,

id𝑅 𝑀 + width𝑅 RHom𝑅 (𝑁, 𝑀) = depth𝑅 𝑁 .

Proof. It follows from 16.2.27 that 𝑀 is a complex of finite width. Per 16.3.9 the
complex RHom𝑅 (𝑁, 𝑀) has infinite width if and only if 𝑁 has infinite depth, in
which case the asserted equality is trivial. Assuming now that 𝑁 has finite depth, the
asserted equality holds, in view of 16.4.8, by 16.3.9(b). □

Betti Numbers and Poincaré Series

Let (𝑅,𝔪, 𝒌) be local and 𝑀 a complex in Df
⊐ (𝑅). It follows from 12.2.12 and

12.2.6 that the complexes 𝒌 ⊗L
𝑅
𝑀 and RHom𝑅 (𝑀, 𝒌) belong to Df

⊐ (𝒌) and Df
⊏ (𝒌),

respectively. In particular, the homology modules Tor𝑅𝑚 (𝒌, 𝑀) and Ext𝑚
𝑅
(𝑀, 𝒌) are

𝒌-vector spaces of finite rank for all 𝑚 ∈ ℤ and vanish for 𝑚 ≪ 0. In particular,
the Betti numbers defined below do indeed belong to ℕ0. The Betti numbers are
interpreted in 16.4.25.

16.4.14 Definition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 a complex in Df
⊐ (𝑅). For 𝑚 ∈ ℤ

the 𝑚th Betti number of 𝑀 is defined by

β𝑅𝑚 (𝑀) = rank𝒌 Tor𝑅𝑚 (𝒌, 𝑀) .

The Poincaré series of 𝑀 is the generating function

P𝑅𝑀 (𝑡) =
∑︁
𝑚∈ℤ

β𝑅𝑚 (𝑀)𝑡𝑚.
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It is standard to use the abbreviated notation P𝑅 (𝑡) for P𝑅𝒌 (𝑡).

Notice from the comments before the definition that the Poincaré series of a
complex in Df

⊐ (𝑅) is a Laurent series with coefficients in ℕ0.

16.4.15. For a Laurent series in 𝑡 with coefficients in 𝕜, i.e. an expression of the
form L(𝑡) = ∑

𝑚∈ℤ 𝑎𝑚𝑡
𝑚 with 𝑎𝑚 ∈ 𝕜 and 𝑎𝑚 = 0 for 𝑚 ≪ 0, the order and degree

are defined as for polynomials and power series:

ord L(𝑡) = inf{𝑚 ∈ ℤ | 𝑎𝑚 ≠ 0} and deg L(𝑡) = sup{𝑚 ∈ ℤ | 𝑎𝑚 ≠ 0} ,

with the usual convention that zero series has order∞ and degree −∞. The Laurent
series with coefficients in 𝕜 form a ring, 𝕜(|𝑡 |), and if 𝕜 is an integral domain, then
so is 𝕜(|𝑡 |). For series L(𝑡) and S(𝑡) in ℤ(|𝑡 |) one, evidently, has

ord(L(𝑡)S(𝑡)) = ord L(𝑡) + ord S(𝑡) ;

assuming that both series have non-negative coefficients, one also has

deg (L(𝑡)S(𝑡)) = deg L(𝑡) + deg S(𝑡) .

Remark. Growth patterns in Betti numbers, indcluding rationality of Poincaré series, is a research
topic of lasting interest in commutative algebra. See for example Avramov’s surveys [15, 17, 18]
for an introduction.

16.4.16 Proposition. Let 𝑅 be local and 𝑀 a complex in Df
⊐ (𝑅). The degree and

order of the Poincaré series P𝑅𝑀 (𝑡) satisfy the next equalities.

deg P𝑅𝑀 (𝑡) = sup{𝑚 ∈ ℤ | β𝑅𝑚 (𝑀) ≠ 0} = pd𝑅 𝑀 = fd𝑅 𝑀 and

ord P𝑅𝑀 (𝑡) = inf{𝑚 ∈ ℤ | β𝑅𝑚 (𝑀) ≠ 0} = inf 𝑀 .

Assume that 𝑀 is not acyclic and set 𝑤 = inf 𝑀 . The number β𝑅𝑤 (𝑀) records the
minimal number of generators of the module H𝑤(𝑀).

Proof. The equalities hold by 16.4.1 and 16.2.5(a). The last assertion follows as
7.6.8 yields β𝑅𝑤 (𝑀) = rank𝒌 (𝒌 ⊗𝑅 H𝑤(𝑀)). □

The equality of projective dimensions in the next result compares to 8.3.15(d).

16.4.17 Proposition. Let 𝑅 be local and 𝑀 and 𝑁 be complexes in Df
⊐ (𝑅). There

is an equality of Laurent series,

P𝑅
𝑀⊗L

𝑅
𝑁
(𝑡) = P𝑅𝑀 (𝑡) P𝑅𝑁 (𝑡) ;

in particular, one has

pd𝑅 (𝑀 ⊗L
𝑅 𝑁) = pd𝑅 𝑀 + pd𝑅 𝑁 .

Proof. Recall from 12.2.12 that the complex 𝑀 ⊗L
𝑅
𝑁 belongs to Df

⊐ (𝑅); in partic-
ular, 16.4.14 applies. Let 𝒌 be the residue field of 𝑅. By 12.3.30 and 7.6.12 there are
isomorphisms in D(𝒌),

𝒌 ⊗L
𝑅 (𝑀 ⊗L

𝑅 𝑁) ≃ (𝒌 ⊗L
𝑅 𝑀) ⊗L

𝒌 (𝒌 ⊗
L
𝑅 𝑁) ≃ H(𝒌 ⊗L

𝑅 𝑀) ⊗𝒌 H(𝒌 ⊗L
𝑅 𝑁) .
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For every 𝑚 ∈ ℤ the definition, 2.1.14, of the graded tensor product yields

β𝑅𝑚 (𝑀 ⊗L
𝑅 𝑁) = rank𝒌 (H(𝒌 ⊗L

𝑅 𝑀) ⊗𝒌 H(𝒌 ⊗L
𝑅 𝑁))𝑚

=
∑
𝑖∈ℤ

rank𝒌 H𝑖 (𝒌 ⊗L
𝑅 𝑀) · rank𝒌 H𝑚−𝑖 (𝒌 ⊗L

𝑅 𝑁)

=
∑

𝑖+ 𝑗=𝑚
β𝑅𝑖 (𝑀)β𝑅𝑗 (𝑁) ,

and this is the degree 𝑚 coefficient of the product series P𝑅𝑀 (𝑡) P𝑅𝑁 (𝑡).
The Poincaré series have non-negative coefficients, so the equality of projective

dimensions follows from 16.4.16, as per 16.4.15 one has

deg P𝑅𝑀⊗𝑅𝑁 (𝑡) = deg (P𝑅𝑀 (𝑡) P𝑅𝑁 (𝑡)) = deg P𝑅𝑀 (𝑡) + deg P𝑅𝑁 (𝑡) . □

16.4.18 Corollary. Let 𝑅 be local and 𝑀 and 𝑁 be finitely generated 𝑅-modules. If
Tor𝑅𝑚 (𝑀, 𝑁) = 0 holds for all 𝑚 > 0, then one has pd𝑅 (𝑀 ⊗𝑅 𝑁) = pd𝑅 𝑀 +pd𝑅 𝑁 .

Proof. By 7.4.22 one has 𝑀 ⊗𝑅 𝑁 ≃ 𝑀 ⊗L
𝑅
𝑁 in D(𝑅); now apply 16.4.17. □

Remark. E 16.4.11 illustrates how 16.4.18 may fail if the ring is not local.

The equalities in the next result compare to 8.4.26 and 16.3.5.

16.4.19 Proposition. Let 𝑅 be local, 𝑀 a complex in Df
⊏⊐ (𝑅), and 𝑁 a complex in

Df
⊐ (𝑅). If 𝑀 has finite projective dimension, there is an equality of Laurent series,

P𝑅RHom𝑅 (𝑀,𝑁 ) (𝑡) = P𝑅𝑀 (𝑡−1) P𝑅𝑁 (𝑡) ;

in particular, one has

pd𝑅 RHom𝑅 (𝑀, 𝑁) = pd𝑅 𝑁 − inf 𝑀 and
− inf RHom𝑅 (𝑀, 𝑁) = pd𝑅 𝑀 − inf 𝑁 .

Proof. As pd𝑅 𝑀 is finite, the complex RHom𝑅 (𝑀, 𝑁) belongs toDf
⊐ (𝑅) by 15.4.3;

in particular, 16.4.14 applies. Let 𝒌 be the residue field of 𝑅. In the next chain, the first
isomorphism follows from commutativity 12.3.5 and tensor evaluation 12.3.23(a),
the second holds by 12.3.32, and the third follows from 7.6.12.

𝒌 ⊗L
𝑅 RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (𝑀, 𝒌 ⊗L

𝑅 𝑁)
≃ RHom𝒌 (𝒌 ⊗L

𝑅 𝑀, 𝒌 ⊗L
𝑅 𝑁)

≃ Hom𝒌 (H(𝒌 ⊗L
𝑅 𝑀),H(𝒌 ⊗L

𝑅 𝑁)) .

For every 𝑚 ∈ ℤ the definition, 2.1.4, of the graded Hom yields

β𝑅𝑚 (RHom𝑅 (𝑀, 𝑁)) = rank𝒌 (Hom𝒌 (H(𝒌 ⊗L
𝑅 𝑀),H(𝒌 ⊗L

𝑅 𝑁)))𝑚
=

∑
𝑖∈ℤ

rank𝒌 H−𝑖 (𝒌 ⊗L
𝑅 𝑀) · rank𝒌 H𝑚−𝑖 (𝒌 ⊗L

𝑅 𝑁)

=
∑

𝑖+ 𝑗=𝑚
β𝑅−𝑖 (𝑀)β𝑅𝑗 (𝑁) ,

which is the degree 𝑚 coefficient in the product series P𝑅𝑀 (𝑡−1) P𝑅𝑁 (𝑡).
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The Poincaré series have non-negative coefficients, so the last two statements
follow from 16.4.16, as per 16.4.15 one has

deg P𝑅RHom𝑅 (𝑀,𝑁 ) (𝑡) = deg P𝑅𝑀 (𝑡−1) + deg P𝑅𝑁 (𝑡) = − ord P𝑅𝑀 (𝑡) + deg P𝑅𝑁 (𝑡)

and

ord P𝑅RHom𝑅 (𝑀,𝑁 ) (𝑡) = ord P𝑅𝑀 (𝑡−1) + ord P𝑅𝑁 (𝑡) = − deg P𝑅𝑀 (𝑡) + ord P𝑅𝑁 (𝑡) . □

In an important special case, equality holds in 8.3.15(d).

16.4.20 Theorem. Let (𝑅,𝔪) and (𝑆,𝔐) be local rings such that 𝑆 is an 𝑅-algebra
and flat as an 𝑅-module. Let 𝑀 be a complex in Df

⊐ (𝑅). If 𝔪𝑆 ⊆ 𝔐 holds, then
there is an equality of Laurent series,

P𝑆𝑆⊗𝑅𝑀 (𝑡) = P𝑅𝑀 (𝑡) ;

in particular, one has
pd𝑆 (𝑆 ⊗𝑅 𝑀) = pd𝑅 𝑀 .

Proof. Let 𝒌 and 𝑲 be the residue fields of 𝑅 and 𝑆. It follows from the assumption
𝔪𝑆 ⊆ 𝔐 that 𝑲 is a 𝒌-vector space. Thus the unitor 12.3.3 together with flatness
of 𝑆 over 𝑅 accounts for the first isomorphism in the computation below. Commu-
tativity 12.3.5 combined with 12.3.31 yields the second isomorphism, and the last
isomorphism follows from associativity 12.3.6 and 7.6.12.

𝑲 ⊗L
𝑆 (𝑆 ⊗𝑅 𝑀) ≃ (𝒌 ⊗

L
𝒌 𝑲) ⊗

L
𝑆 (𝑆 ⊗

L
𝑅 𝑀)

≃ (𝑲 ⊗L
𝒌 𝒌) ⊗L

𝑅 𝑀

≃ 𝑲 ⊗𝒌 H(𝒌 ⊗L
𝑅 𝑀) .

Recall from 12.1.20(b,c) that the complex 𝑆 ⊗𝑅 𝑀 belongs to Df
⊐ (𝑆); in particular,

16.4.14 applies. For 𝑚 ∈ ℤ one gets from the isomorphisms above

β𝑆𝑚 (𝑆 ⊗𝑅 𝑀) = rank𝑲 (𝑲 ⊗𝒌 H(𝒌 ⊗L
𝑅 𝑀))𝑚 = rank𝒌 H𝑚 (𝒌 ⊗L

𝑅 𝑀) = β𝑅𝑚 (𝑀) .

This shows the equality of Poincaré series, and the equality of projective dimensions
follows from 16.4.16. □

The assumptions on the 𝑅-algebra 𝑆 in 16.4.20 actually imply that 𝑆 is faithfully
flat as an 𝑅-module.

16.4.21 Proposition. Let (𝑅,𝔪) and (𝑆,𝔐) be local rings such that 𝑆 is an 𝑅-
algebra and 𝔪𝑆 ⊆ 𝔐 holds. If 𝑆 is flat as an 𝑅-module, then it is faithfully flat.

Proof. If 𝑆 is flat as an 𝑅-module, then one has 𝑅/𝔪 ⊗L
𝑅
𝑆 ≃ 𝑅/𝔪 ⊗𝑅 𝑆 � 𝑆/𝔪𝑆,

see 1.1.10, which is non-zero by the assumption 𝔪𝑆 ⊆ 𝔐. Thus 𝔪 is in supp𝑅 𝑆,
see 15.1.5, and it follows from 15.1.18 that 𝑆 is a faithfully flat 𝑅-module. □
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Minimal Semi-Free Resolutions

While minimal semi-injective resolutions exist for complexes over any ring, minimal
semi-projective resolutions are harder to come by. They exist by B.51 and B.60 for
complexes over Artinian rings, and they exist for some complexes over commutative
Noetherian local rings, as captured by the next restatement of facts from Appn. B.

16.4.22 Theorem. Let (𝑅,𝔪) be local.
(a) A complex 𝑃 of finitely generated projective 𝑅-modules is minimal if and only

if 𝜕𝑃 (𝑃) ⊆ 𝔪𝑃 holds.
(b) Every bounded below complex of finitely generated projective 𝑅-modules is

semi-free. In particular, every finitely generated projective 𝑅-module is free.
(c) Every complex in 𝑀 in Df

⊐ (𝑅) has a minimal semi-free resolution 𝐿 ≃−−→ 𝑀

with 𝐿 degreewise finitely generated and 𝐿𝑣 = 0 for all 𝑣 < inf 𝑀 .

Proof. Part (b) follows from B.47 and 5.1.3. Being local, 𝑅 is semi-perfect, see B.44,
so by B.46 every degreewise finitely generated graded 𝑅-module is semi-perfect. Part
(a) now follows from B.55(b). Part (c) holds by B.58 and B.63. □

Remark. The study of free resolutions is both a classic and current research topic in commutative
algebra. Over the years, surveys have been compiled by Avramov [16, 17, 18], Herzog [121],
Northcott [194], and Peeva and McCullough [183], to name a few.

16.4.23 Example. Let (𝑅,𝔪) be local and 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 a sequence in 𝔪. The
Koszul complex K𝑅 (𝑥𝑥𝑥) is minimal by 11.4.3(c,d) and 16.4.22(a). If 𝑥𝑥𝑥 is 𝑅-regular,
then K𝑅 (𝑥𝑥𝑥) is a semi-free replacement of 𝑅/(𝑥𝑥𝑥), see 14.4.19, so the canonical map
K𝑅 (𝑥𝑥𝑥) → 𝑅/(𝑥𝑥𝑥) is a minimal free resolution, and pd𝑅 𝑅/(𝑥𝑥𝑥) = 𝑛 holds by 8.1.16.

16.4.24 Proposition. Let 𝑅 be local and 𝑀 a finitely generated 𝑅-module. If a
seqeuence 𝑥𝑥𝑥 in 𝑅 is 𝑅- and 𝑀-regular, then pd𝑅 𝑀 = pd𝑅/(𝑥𝑥𝑥 ) 𝑀/(𝑥𝑥𝑥)𝑀 holds.

Proof. The Koszul complex K𝑅 (𝑥𝑥𝑥) is by 16.4.23 a semi-free replacement of 𝑅/(𝑥𝑥𝑥),
and 𝑀-regularity of 𝑥𝑥𝑥 yields per 16.2.31 isomorphisms,

𝑀/(𝑥𝑥𝑥)𝑀 ≃ K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀 ≃ 𝑅/(𝑥𝑥𝑥) ⊗L
𝑅 𝑀 .

With 𝒌 denoting the common residue field of 𝑅 and 𝑅/(𝑥𝑥𝑥), the isomorphisms above
conspire with 12.3.31 to yield 𝒌 ⊗L

𝑅/(𝑥𝑥𝑥 ) 𝑀/(𝑥𝑥𝑥)𝑀 ≃ 𝒌 ⊗L
𝑅
𝑀 . Now invoke 16.4.1. □

The Betti numbers of a complex record the ranks of the free modules in a minimal
semi-free resolution.

16.4.25 Proposition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 a complex in Df
⊐ (𝑅) with

minimal semi-free resolution 𝐿
≃−−→ 𝑀 . The complexes 𝒌 ⊗𝑅 𝐿 and Hom𝑅 (𝐿, 𝒌)

have zero differentials, and for every 𝑚 ∈ ℤ there are equalities,

β𝑅𝑚 (𝑀) = rank𝑅 𝐿𝑚 = rank𝒌 Ext𝑚𝑅 (𝑀, 𝒌) .
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Proof. One has 𝜕𝐿 (𝐿) ⊆ 𝔪𝐿 by 16.4.22(a), so it follows immediately from the
definition, 2.4.1, of the differential on a tensor product complex that 𝒌 ⊗𝑅 𝐿 has zero
differential. Therefore, one has

(†) Tor𝑅𝑚 (𝒌, 𝑀) = H𝑚 (𝒌 ⊗L
𝑅 𝑀) = H𝑚 (𝒌 ⊗𝑅 𝐿) = (𝒌 ⊗𝑅 𝐿)𝑚 = 𝒌 ⊗𝑅 𝐿𝑚 .

It is similarly immediate from the definition, 2.3.1, of the differential on a Hom
complex that Hom𝑅 (𝐿, 𝒌) has zero differential, whence one has

(‡)

Ext𝑚𝑅 (𝑀, 𝒌) = H−𝑚 (RHom𝑅 (𝑀, 𝒌))
= H−𝑚 (Hom𝑅 (𝐿, 𝒌))
= Hom𝑅 (𝐿, 𝒌)−𝑚
= Hom𝑅 (𝐿𝑚, 𝒌) .

Combining (†) and (‡) with rank𝒌 (𝒌 ⊗𝑅 𝐿𝑚) = rank𝑅 𝐿𝑚 = rank𝒌 Hom𝑅 (𝐿𝑚, 𝒌)
and the definition, 16.4.14, of Betti numbers one gets the asserted equalities. □

It is fairly elementary to observe that there are “no holes” in the sequence of Betti
numbers of a finitely generated module.

16.4.26 Corollary. Let 𝑅 be local and 𝑀 a complex in Df
⊐ (𝑅). One has β𝑅𝑚 (𝑀) ≠ 0

for every integer 𝑚 in the range pd𝑅 𝑀 ⩾ 𝑚 ⩾ sup𝑀 .

Proof. The statement is void if 𝑀 is acyclic or H(𝑀) is not bounded above, so
assume that 𝑠 = sup𝑀 is an integer. Let 𝐿 ≃−−→ 𝑀 be a minimal semi-free resolution,
see 16.4.22(c). As the module H𝑠 (𝐿) � H𝑠 (𝑀) is a subquotient of 𝐿𝑠 , one has
β𝑅𝑠 (𝑀) = rank𝑅 𝐿𝑠 ≠ 0 per 16.4.25. For 𝑚 > sup𝑀 it follows from 16.4.25 that
β𝑅𝑚 (𝑀) = 0 implies 𝐿𝑚 = 0, which by 8.1.16 implies 𝑚 > pd𝑅 𝑀 . □

For use in Chap. 18 we record an auxiliary result on Poincaré series.

16.4.27 Lemma. Let 𝑅 be local, 𝑀 a complex in Df
⊐ (𝑅), and 𝑛 an integer. One has

P𝑅𝑀 (𝑡) = 𝑡𝑛 if and only there is an isomorphism 𝑀 ≃ Σ𝑛𝑅 in D(𝑅).
Proof. The “if” part is trivial as one has 𝒌 ⊗L

𝑅
Σ𝑛𝑅 ≃ Σ𝑛𝒌 by 12.2.8 and the

unitor 12.3.3. For the converse, 16.4.16 and 8.1.3 yield inf 𝑀 = 𝑛 = pd𝑅 𝑀 ⩾ sup𝑀 ,
whence H(𝑀) is concentrated in degree 𝑛. Consider the finitely generated 𝑅-module
𝐻 = H𝑛 (𝑀). By 7.3.29 there is an isomorphism 𝑀 ≃ Σ𝑛𝐻 in D(𝑅), so it suffices
to show that 𝐻 is isomorphic to 𝑅. By 8.1.3 one has pd𝑅 𝐻 = pd𝑅 𝑀 − 𝑛 = 0, so 𝐻
is projective by 8.1.19 and hence free by 16.4.22(b). The isomorphism 𝐻 ≃ Σ−𝑛𝑀
yields β𝑅0 (𝐻) = β𝑅𝑛 (𝑀) = 1, which per 16.4.16 means that 𝐻 is free of rank 1. □

Bass Numbers and Bass Series

Let (𝑅,𝔪, 𝒌) be local and 𝑀 a complex in Df
⊏ (𝑅). It follows from 12.3.34 that the

complex RHom𝑅 (𝒌, 𝑀) belongs to Df
⊏ (𝒌). In particular, the homology modules

Ext𝑚
𝑅
(𝒌, 𝑀) are 𝒌-vector spaces of finite rank for all 𝑚 ∈ ℤ and vanish for 𝑚 ≪ 0.

In particular, the Bass numbers defined below do indeed belong to ℕ0. The Bass
numbers are interpreted in 16.4.37.
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16.4.28 Definition. Let (𝑅,𝔪, 𝒌) be local and 𝑀 a complex in Df
⊏ (𝑅). For 𝑚 ∈ ℤ

the 𝑚th Bass number of 𝑀 is defined by

μ𝑚𝑅 (𝑀) = rank𝒌 Ext𝑚𝑅 (𝒌, 𝑀) .

The Bass series of 𝑀 is the generating function

I𝑀𝑅 (𝑡) =
∑︁
𝑚∈ℤ

μ𝑚𝑅 (𝑀)𝑡𝑚 .

It is standard to use the abbreviated notation I𝑅 (𝑡) for I𝑅𝑅 (𝑡).

Notice from the comments before the definition that the Bass series of a complex
in Df

⊏ (𝑅) is a Laurent series, see 16.4.15, with coefficients in ℕ0.

16.4.29. Let 𝑅 be local and 𝑀 a complex in Df
⊏ (𝑅). Notice that for 𝔭 ∈ Spec 𝑅 and

𝑚 ∈ ℤ it follows from 16.4.5 that μ𝑚
𝑅𝔭
(𝑀𝔭) ≠ 0 implies μ𝑚+dim𝑅/𝔭

𝑅
(𝑀) ≠ 0.

16.4.30 Proposition. Let 𝑅 be local and 𝑀 a complex in Df
⊏ (𝑅). The degree and

order of the Bass series I𝑀𝑅 (𝑡) satisfy the next equalities,

deg I𝑀𝑅 (𝑡) = sup{𝑚 ∈ ℤ | μ𝑚𝑅 (𝑀) ≠ 0} = id𝑅 𝑀 and

ord I𝑀𝑅 (𝑡) = inf{𝑚 ∈ ℤ | μ𝑚𝑅 (𝑀) ≠ 0} = depth𝑅 𝑀 .

Proof. The equalities hold by 16.4.8 and 16.2.14. □

Remark. Growth patterns in Bass numbers, indcluding rationality of Bass series, is a research
topic in commutative algebra. See for example [68] or Avramov [19] for an introduction.

The equality of homological dimensions in the next result compares to 8.3.15(b).

16.4.31 Proposition. Let 𝑅 be local, 𝑀 a complex in Df
⊐ (𝑅), and 𝑁 a complex in

Df
⊏ (𝑅). There is an equality of Laurent series,

IRHom𝑅 (𝑀,𝑁 )
𝑅

(𝑡) = P𝑅𝑀 (𝑡) I𝑁𝑅 (𝑡) ;

in particular, one has

id𝑅 RHom𝑅 (𝑀, 𝑁) = pd𝑅 𝑀 + id𝑅 𝑁 .

Proof. Recall from 12.2.6 that the complex RHom𝑅 (𝑀, 𝑁) belongs to Df
⊏ (𝑅); in

particular 16.4.28 applies. Let 𝒌 be the residue field of 𝑅. By 12.3.35 and 7.6.12
there are isomorphisms,

RHom𝑅 (𝒌,RHom𝑅 (𝑀, 𝑁)) ≃ RHom𝒌 (𝒌 ⊗L
𝑅 𝑀,RHom𝑅 (𝒌, 𝑁))

≃ Hom𝒌 (H(𝒌 ⊗L
𝑅 𝑀),H(RHom𝑅 (𝒌, 𝑁))) ,

in D(𝒌). For every 𝑚 ∈ ℤ the definition, 2.1.4, of the graded Hom yields

μ𝑚𝑅 (RHom𝑅 (𝑀, 𝑁)) = rank𝒌 (Hom𝒌 (H(𝒌 ⊗L
𝑅 𝑀),H(RHom𝑅 (𝒌, 𝑁)))−𝑚

=
∑
𝑖∈ℤ

rank𝒌 H𝑖 (𝒌 ⊗L
𝑅 𝑀) · rank𝒌 H𝑖−𝑚 (RHom𝑅 (𝒌, 𝑁))

8-Mar-2024 Draft - use at own risk



768 16 Homological Invariants over Local Rings

=
∑

𝑖+ 𝑗=𝑚
β𝑅𝑖 (𝑀)μ

𝑗

𝑅
(𝑁) ,

and this is the degree 𝑚 coefficient of the product series P𝑅𝑀 (𝑡) I𝑁𝑅 (𝑡).
The Poincaré and Bass series have non-negative coefficients, so the equality of

homological dimensions follows from 16.4.16 and 16.4.30, as per 16.4.15 one has

deg IRHom𝑅 (𝑀,𝑁 )
𝑅

(𝑡) = deg (P𝑅𝑀 (𝑡) I𝑁𝑅 (𝑡)) = deg P𝑅𝑀 (𝑡) + deg I𝑁𝑅 (𝑡) . □

16.4.32 Corollary. Let 𝑅 be local and 𝑀 and 𝑁 be finitely generated 𝑅-modules. If
Ext𝑚

𝑅
(𝑀, 𝑁) = 0 for all 𝑚 > 0, then one has id𝑅 Hom𝑅 (𝑀, 𝑁) = pd𝑅 𝑀 + id𝑅 𝑁 .

Proof. By 7.3.30 one has Hom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (𝑀, 𝑁); now apply 16.4.31. □

The equalities in the next result compare to 8.4.27 and 16.3.9.

16.4.33 Proposition. Let 𝑅 be local, 𝑀 a complex in Df
⊏ (𝑅), and 𝑁 a complex in

Df
⊏⊐ (𝑅). If 𝑁 has finite injective dimension, then there is an equality of Laurent series,

P𝑅RHom𝑅 (𝑀,𝑁 ) (𝑡) = I𝑀𝑅 (𝑡) I𝑁𝑅 (𝑡
−1) ;

in particular, one has

pd𝑅 RHom𝑅 (𝑀, 𝑁) = id𝑅 𝑀 − depth𝑅 𝑁 and
− inf RHom𝑅 (𝑀, 𝑁) = id𝑅 𝑁 − depth𝑅 𝑀 .

Proof. As id𝑅 𝑁 is finite, the complex RHom𝑅 (𝑀, 𝑁) belongs to Df
⊐ (𝑅) by 15.4.8;

in particular, 16.4.14 applies. Let 𝒌 be the residue field of 𝑅. In the next chain of
isomorphisms, the first is homomorphism evaluation 12.3.27(b), the second holds
by 12.3.36, and the third follows from 7.6.12.

𝒌 ⊗L
𝑅 RHom𝑅 (𝑀, 𝑁) ≃ RHom𝑅 (RHom𝑅 (𝒌, 𝑀), 𝑁)

≃ RHom𝒌 (RHom𝑅 (𝒌, 𝑀),RHom𝑅 (𝒌, 𝑁))
≃ Hom𝒌 (H(RHom𝑅 (𝒌, 𝑀)),H(RHom𝑅 (𝒌, 𝑁))) .

For every 𝑚 ∈ ℤ the definition, 2.1.14, of the graded tensor product yields

β𝑅𝑚 (RHom𝑅 (𝑀, 𝑁))
= rank𝒌 (Hom𝒌 (H(RHom𝑅 (𝒌, 𝑀)),H(RHom𝑅 (𝒌, 𝑁))))𝑚
=

∑
𝑖∈ℤ

rank𝒌 H−𝑖 (RHom𝑅 (𝒌, 𝑀)) · rank𝒌 H𝑚−𝑖 (RHom𝑅 (𝒌, 𝑁))

=
∑

𝑖+ 𝑗=𝑚
μ𝑖𝑅 (𝑀)μ

− 𝑗
𝑅
(𝑁) ,

which is the degree 𝑚 coefficient of the product series I𝑀𝑅 (𝑡) I𝑁𝑅 (𝑡−1).
The Poincaré and Bass series have non-negative coefficients, so the last two

statements follow from 16.4.16 and 16.4.30, as per 16.4.15 one has

deg P𝑅RHom𝑅 (𝑀,𝑁 ) (𝑡) = deg I𝑀𝑅 (𝑡) + deg I𝑁𝑅 (𝑡
−1) = deg I𝑀𝑅 (𝑡) − ord I𝑁𝑅 (𝑡)

and
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ord P𝑅RHom𝑅 (𝑀,𝑁 ) (𝑡) = ord I𝑀𝑅 (𝑡) + ord I𝑁𝑅 (𝑡
−1) = ord I𝑀𝑅 (𝑡) − deg I𝑁𝑅 (𝑡) . □

The equalities in the next result compare to 8.4.16 and 16.3.1.

16.4.34 Proposition. Let 𝑅 be local, 𝑀 a complex in Df
⊏ (𝑅), and 𝑁 a complex in

Df
⊏⊐ (𝑅). If 𝑁 has finite projective dimension, there is an equality of Laurent series,

I𝑀⊗
L
𝑅
𝑁

𝑅
(𝑡) = I𝑀𝑅 (𝑡) P𝑅𝑁 (𝑡−1) ;

in particular, one has

id𝑅 (𝑀 ⊗L
𝑅 𝑁) = id𝑅 𝑀 − inf 𝑁 and

depth𝑅 (𝑀 ⊗L
𝑅 𝑁) = depth𝑅 𝑀 − pd𝑅 𝑁 .

Proof. As pd𝑅 𝑁 is finite, the complex 𝑀 ⊗L
𝑅
𝑁 belongs to Df

⊏ (𝑅) by 15.4.3; in
particular, 16.4.28 applies. Let 𝒌 be the residue field of 𝑅. In the next chain of
isomorphisms in D(𝒌), the first is tensor evaluation 12.3.23(c), the second holds by
12.3.31, and the third isomorphism comes from 7.6.12.

RHom𝑅 (𝒌, 𝑀 ⊗L
𝑅 𝑁) ≃ RHom𝑅 (𝒌, 𝑀) ⊗L

𝑅 𝑁

≃ RHom𝑅 (𝒌, 𝑀) ⊗L
𝒌 (𝒌 ⊗

L
𝑅 𝑁)

≃ H(RHom𝑅 (𝒌, 𝑀)) ⊗𝒌 H(𝒌 ⊗L
𝑅 𝑁) .

For every 𝑚 ∈ ℤ the definition, 2.1.4, of the graded Hom yields

μ𝑚𝑅 (𝑀 ⊗L
𝑅 𝑁) = rank𝒌 (H(RHom𝑅 (𝒌, 𝑀)) ⊗𝒌 H(𝒌 ⊗L

𝑅 𝑁))−𝑚
=

∑
𝑖∈ℤ

rank𝒌 H−𝑖 (RHom𝑅 (𝒌, 𝑀)) · rank𝒌 H𝑖−𝑚 (𝒌 ⊗L
𝑅 𝑁)

=
∑

𝑖+ 𝑗=𝑚
μ𝑖𝑅 (𝑀)β𝑅− 𝑗 (𝑁) ,

which is the degree 𝑚 coefficient of the product series I𝑀𝑅 (𝑡) P𝑅𝑁 (𝑡−1).
The Poincaré and Bass series have non-negative coefficients, so the last two

statements follow from 16.4.16 and 16.4.30, as per 16.4.15 one has

deg I𝑀⊗
L
𝑅
𝑁

𝑅
(𝑡) = deg I𝑀𝑅 (𝑡) + deg P𝑅𝑁 (𝑡−1) = deg I𝑀𝑅 (𝑡) − ord P𝑅𝑁 (𝑡)

and

ord I𝑀⊗
L
𝑅
𝑁

𝑅
(𝑡) = ord I𝑀𝑅 (𝑡) + ord P𝑅𝑁 (𝑡−1) = ord I𝑀𝑅 (𝑡) − deg P𝑅𝑁 (𝑡) . □

16.4.35 Theorem. Let (𝑅,𝔪) and (𝑆,𝔐) be local rings such that 𝑆 is an 𝑅-algebra
and flat as an 𝑅-module. Let 𝑀 be a complex in Df

⊏ (𝑅). If 𝔪𝑆 ⊆ 𝔐 holds, then
there is an equality of Laurent series,

I𝑆⊗𝑅𝑀
𝑆

(𝑡) = I
𝑆/𝔪𝑆 (𝑡) I

𝑀
𝑅 (𝑡) ;

in particular, one has

id𝑆 (𝑆 ⊗𝑅 𝑀) = id 𝑆/𝔪𝑆 + id𝑅 𝑀 and
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770 16 Homological Invariants over Local Rings

depth𝑅 (𝑆 ⊗𝑅 𝑀) = depth 𝑆/𝔪𝑆 + depth𝑅 𝑀 .

Proof. Let 𝒌 and 𝑲 be the residue fields of 𝑅 and 𝑆. It follows from the assumption
𝔪𝑆 ⊆ 𝔐 that 𝑲 is the residue field of the local ring 𝑆/𝔪𝑆; thus 12.3.36 accounts
for the first isomorphism in the computation below. The second isomorphism holds
by 1.1.10, and the last isomorphism follows by flatness of 𝑆 over 𝑅 from 12.3.32.

(†)
RHom𝑆 (𝑲, 𝑆 ⊗𝑅 𝑀) ≃ RHom𝑆/𝔪𝑆 (𝑲,RHom𝑆 (𝑆/𝔪𝑆, 𝑆 ⊗𝑅 𝑀))

≃ RHom𝑆/𝔪𝑆 (𝑲,RHom𝑆 (𝑆 ⊗𝑅 𝒌, 𝑆 ⊗𝑅 𝑀))
≃ RHom𝑆/𝔪𝑆 (𝑲,RHom𝑅 (𝒌, 𝑆 ⊗𝑅 𝑀)) .

By flatness of 𝑆 as an 𝑅-module, the first isomorphism in the next computation is
tensor evaluation 12.3.22(b) combined with commutativity 12.3.5, while the second
isomorphism follows from 12.1.18.

(‡) RHom𝑅 (𝒌, 𝑆 ⊗𝑅 𝑀) ≃ RHom𝑅 (𝒌, 𝑀) ⊗𝑅 𝑆 ≃ RHom𝑅 (𝒌, 𝑀) ⊗𝒌 𝑆/𝔪𝑆 .

By 12.2.7 the complex RHom𝑅 (𝒌, 𝑀) has bounded above homology, so as a 𝒌-
complex it has finite flat dimension by 7.6.11(c). Combining (†) and (‡) with com-
mutativity 12.3.5, tensor evaluation 12.3.22(b), and 7.6.12 one now gets

(♭)
RHom𝑆 (𝑲, 𝑆 ⊗𝑅 𝑀) ≃ RHom𝑆/𝔪𝑆 (𝑲, 𝑆/𝔪𝑆 ⊗L

𝒌 RHom𝑅 (𝒌, 𝑀))
≃ RHom𝑆/𝔪𝑆 (𝑲, 𝑆/𝔪𝑆) ⊗L

𝒌 RHom𝑅 (𝒌, 𝑀)
≃ H(RHom𝑆/𝔪𝑆 (𝑲, 𝑆/𝔪𝑆)) ⊗𝒌 H(RHom𝑅 (𝒌, 𝑀)) .

Recall from 12.1.20(b,c) that the complex 𝑆 ⊗𝑅 𝑀 belongs to Df
⊏ (𝑆); in particular,

16.4.28 applies. The residue field 𝑲 is a 𝒌-vector space, so for 𝑚 ∈ ℤ one gets from
(♭) and the definition, 2.1.14, of the graded tensor product

μ𝑚𝑆 (𝑆 ⊗𝑅 𝑀)
= rank𝑲 (H(RHom𝑆/𝔪𝑆 (𝑲, 𝑆/𝔪𝑆)) ⊗𝒌 H(RHom𝑅 (𝒌, 𝑀)))−𝑚
=

∑
𝑖∈ℤ

rank𝑲 H−𝑖 (RHom𝑆/𝔪𝑆 (𝑲, 𝑆/𝔪𝑆)) · rank𝒌 H𝑖−𝑚 (RHom𝑅 (𝒌, 𝑀))

=
∑

𝑖+ 𝑗=𝑚
μ𝑖
𝑆/𝔪𝑆 (𝑆/𝔪𝑆)μ

𝑗

𝑅
(𝑀) ,

which is the degree 𝑚 coefficient of the product series I
𝑆/𝔪𝑆 (𝑡) I

𝑀
𝑅 (𝑡).

The Bass series have non-negative coefficients, so the last two statements follow
from 16.4.30, as per 16.4.15 one has

deg I𝑆⊗𝑅𝑀
𝑆

(𝑡) = deg I
𝑆/𝔪𝑆 (𝑡) + deg I𝑀𝑅 (𝑡)

and
ord I𝑆⊗𝑅𝑀

𝑆
(𝑡) = ord I

𝑆/𝔪𝑆 (𝑡) + ord I𝑀𝑅 (𝑡) . □

Remark. The equality of Bass series in 16.4.35 was proved by Foxby and Thorup [99]. It was
subsequently generalized by Avramov, Foxby, and Lescot [26] and further by Avramov and Foxby
[23] in their investigation of local ring homomorphisms of finite (Gorenstein) flat dimension.
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16.4 Formulas of Auslander, Buchsbaum, and Bass 771

Minimal Semi-Injective Resolutions

The Bass numbers of a complex count the number of copies of E𝑅 (𝒌) in a minimal
semi-injective resolution.

16.4.36 Proposition. Let (𝑅,𝔪, 𝒌) be local and 𝐼 a semi-injective 𝑅-complex. If 𝐼
is minimal, then there is an isomorphism Hom𝑅 (𝒌, Γ𝔪 (𝐼)) � Hom𝑅 (𝒌, 𝐼) and both
complexes have zero differential.

Proof. The complex Hom𝑅 (𝒌, 𝐼) has zero differential by 8.2.16 and the isomor-
phism Hom𝑅 (𝒌, Γ𝔪 (𝐼)) � Hom𝑅 (𝒌, 𝐼) follows from 11.2.22 as 𝒌 is 𝔪-torsion. □

16.4.37 Theorem. Let 𝑀 be a complex in Df
⊏ (𝑅) with minimal semi-injective

resolution 𝑀 ≃−−→ 𝐼. For every 𝑚 ∈ ℤ there is an isomorphism,

𝐼−𝑚 �
∐

𝔭∈Spec𝑅
E𝑅 (𝑅/𝔭)μ

𝑚
𝑅𝔭
(𝑀𝔭 )

.

Proof. Let 𝔭 be a prime ideal in 𝑅. By 14.1.11 the complex 𝑀𝔭 belongs to Df
⊏ (𝑅𝔭).

The induced morphism 𝑀𝔭 → 𝐼𝔭 is by 14.1.31 a minimal semi-injective resolution,
and the complex Hom𝑅𝔭

(κ (𝔭), 𝐼𝔭) has zero differential by 16.4.36. Now one has

Hom𝑅𝔭
(κ (𝔭), (𝐼−𝑚)𝔭) = Hom𝑅𝔭

(κ (𝔭), 𝐼𝔭)−𝑚
= H−𝑚 (Hom𝑅𝔭

(κ (𝔭), 𝐼𝔭))
= Ext𝑚𝑅𝔭

(κ (𝔭), 𝑀𝔭) .

In particular, one has rankκ (𝔭) Hom𝑅𝔭
(κ (𝔭), (𝐼−𝑚)𝔭) = μ𝑚

𝑅𝔭
(𝑀𝔭), see 16.4.28, so

the asserted ismorphism follows from C.23. □

16.4.38 Corollary. Let (𝑅,𝔪, 𝒌) be local, 𝑀 a complex in Df
⊏ (𝑅), and 𝑀 ≃−−→ 𝐼 a

minimal semi-injective resolution. For every 𝑚 ∈ ℤ one has

Γ𝔪 (𝐼)−𝑚 � E𝑅 (𝒌)μ
𝑚
𝑅
(𝑀 ) .

Proof. The equality follows immediately from 16.4.37 and 13.3.4. □

Exercises

In exercises E 16.4.3–16.4.10 let (𝑅,𝔪, 𝒌 ) be local.

E 16.4.1 Let 𝔭 ⊆ 𝔮 be prime ideals in 𝑅 and 𝑀 a complex in Df (𝑅) . Show that there is an
inequality, depth𝑅𝔭

𝑀𝔭 + dim 𝑅𝔮/𝔭𝔮 ⩾ depth𝑅𝔮
𝑀𝔮 .

E 16.4.2 Let 𝔭 ⊆ 𝔮 be prime ideals in 𝑅 and 𝑀 a complex in Df
⊏ (𝑅) . Show that there is an

inequality, id𝑅𝔭
𝑀𝔭 + dim 𝑅𝔮/𝔭𝔮 ⩽ id𝑅𝔮

𝑀𝔮 .
E 16.4.3 Let 𝑀 be a finitely generated 𝑅-module and 𝑥 an 𝑀-regular element. Show that the

equality pd𝑅 𝑀/𝑥𝑀 = pd𝑅 𝑀 + 1 holds.
E 16.4.4 Let 𝑀 be a complex in Df

⊏ (𝑅) with H(𝑀 ) ≠ 0. Set 𝑠 = sup𝑀 and show that for
prime ideals 𝔭 in Ass𝑅 H𝑠 (𝑀 ) there are inequalities

depth𝑅 𝑀 ⩽ dim𝑅/𝔭 − sup𝑀𝔭 ⩽ dim𝑅/𝔭 − inf 𝑀𝔭 ⩽ dim𝑅 𝑀 .
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772 16 Homological Invariants over Local Rings

E 16.4.5 Let 𝑀 be a complex in Df
⊏ (𝑅) with H(𝑀 ) ≠ 0. Set 𝑠 = sup𝑀 and show that one

has depth𝑅 𝑀 ⩽ dim𝑅 H𝑠 (𝑀 ) − 𝑠.
E 16.4.6 Let 𝑀 be a complex in Df

⊐ (𝑅) and 𝑠 ∈ ℤ. Show that P𝑅
Σ𝑠𝑀
(𝑡 ) = 𝑡𝑠 P𝑅

𝑀
(𝑡 ) holds.

E 16.4.7 Let 𝑀 be a complex in Df
⊏ (𝑅) and 𝑠 ∈ ℤ. Show that IΣ𝑠𝑀

𝑅
(𝑡 ) = 𝑡−𝑠 I𝑀

𝑅
(𝑡 ) holds.

E 16.4.8 Let 𝑀 be a complex in Df
⊐ (𝑅) . Show that if 𝑀 has finite projective dimension, then

the equality β𝑅𝑚 (RHom𝑅 (𝑀, 𝑅) ) = β𝑅−𝑚 (𝑀 ) holds for every 𝑚 ∈ ℤ.
E 16.4.9 Show that there is an equality P𝑅𝒌 (𝑡 ) = I𝒌

𝑅
(𝑡 ) .

E 16.4.10 Let 𝑀 ∈ Df
⊏⊐ (𝑅) be a complex of finite projective dimension. Show that pd𝑅 𝑀 =

sup{𝑚 ∈ ℤ | Ext𝑚
𝑅
(𝑀, 𝑁 ) ≠ 0} holds for every finitely generated 𝑅-module 𝑁 ≠ 0.

E 16.4.11 Show that Torℤ𝑚 (ℤ/2ℤ,ℤ/3ℤ) = 0 holds for all 𝑚 ∈ ℤ and conclude that 16.4.18
does not hold for ℤ-modules.
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Chapter 17
Going Local

Many questions in commutative algebra can be resolved locally, i.e. by localizing
outside a prime and arguing in the resulting local ring. Kunz [165, 166, IV] calls
it the “local-global principle in commutative algebra.” This technique was already
applied in the proofs of 14.1.18 and 15.1.9, and it is the recurring theme in this
chapter.

17.1 Support and Cosupport

Synopsis. Associated prime ideal; vanishing of Hom and tensor product; support; minimal semi-
injective resolution; cosupport; guaranteed isomorphisms.

The first goal of this section is to strengthen the Hom Vanishing Lemma C.1 in the
commutative Noetherian setting (17.1.3). To this end, the key is to understand the
associated prime ideals of a Hom.

Vanishing of Hom and Tensor Product

17.1.1 Lemma. Let 𝑀 and 𝑁 be 𝑅-modules. If 𝑀 is finitely generated, then one has

Ass𝑅 Hom𝑅 (𝑀, 𝑁) = Supp𝑅 𝑀 ∩ Ass𝑅 𝑁 .

Proof. A prime ideal 𝔭 is associated to Hom𝑅 (𝑀, 𝑁) if and only if the maximal
ideal 𝔭𝔭 is associated to the 𝑅𝔭-module Hom𝑅 (𝑀, 𝑁)𝔭. By 14.1.22 and 16.2.18 this
means precisely that Hom𝑅𝔭

(κ (𝔭),Hom𝑅𝔭
(𝑀𝔭, 𝑁𝔭)) is non-zero, and 12.1.27 yields

Hom𝑅𝔭
(κ (𝔭),Hom𝑅𝔭

(𝑀𝔭, 𝑁𝔭)) � Homκ (𝔭) (κ (𝔭) ⊗𝑅𝔭
𝑀𝔭,Hom𝑅𝔭

(κ (𝔭), 𝑁𝔭)) .

A Hom of vector spaces is non-zero if and only if both spaces are non-zero. As 𝑀𝔭 is
finitely generated over 𝑅𝔭, see 14.1.11(c), it follows from Nakayama’s lemma 16.1.5
that κ (𝔭) ⊗𝑅𝔭

𝑀𝔭 is non-zero if and only if 𝑀𝔭 ≠ 0. The assertion now follows from
another application of 16.2.18. □
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17.1.2 Proposition. Let 𝑀 and 𝑁 be 𝑅-modules with 𝑀 finitely generated. The next
conditions are equivalent.

(i) Hom𝑅 (𝑀, 𝑁) ≠ 0 .
(ii) (0 :𝑅 𝑀) is contained in a prime ideal 𝔭 ∈ Ass𝑅 𝑁 .

Further, if 𝑁 is finitely generated, then conditions (i) and (ii) are equivalent to
(iii) (0 :𝑅 𝑀) ⊆

⋃
𝔭∈Ass𝑅 𝑁 𝔭 .

Proof. By 14.1.1 one has Supp𝑅 𝑀 = V(0 :𝑅 𝑀), so the equivalence of conditions
(i) and (ii) follows from 17.1.1. If 𝑁 is finitely generated, then the set Ass𝑅 𝑁 is
finite, and the equivalence of (ii) and (iii) follows from Prime Avoidance. □

17.1.3 Corollary. Let 𝑀 and 𝑁 be 𝑅-modules. A necessary condition for the module
Hom𝑅 (𝑀, 𝑁) to be non-zero is the existence of elements𝑚 in 𝑀 and 𝑛 ≠ 0 in 𝑁 with

(0 :𝑅 𝑚) ⊆ (0 :𝑅 𝑛) .

If 𝑀 is finitely generated or 𝑁 is injective, then this condition is also sufficient.

Proof. The necessity of the conditions was proved in C.1 and so was the sufficiency
under the assumption that 𝑁 is injective. Assume now that 𝑀 is finitely generated
and let 𝑚 and 𝑛 ≠ 0 be elements with (0 :𝑅 𝑚) ⊆ (0 :𝑅 𝑛). Evidently, one has
(0 :𝑅 𝑀) ⊆ (0 :𝑅 𝑚), and the annihilator (0 :𝑅 𝑛) is contained in some 𝔭 ∈ Ass𝑅 𝑁 .
Thus 17.1.2 implies that Hom𝑅 (𝑀, 𝑁) is non-zero. □

17.1.4 Corollary. Let 𝑀 be a finitely generated 𝑅-module and 𝑁 ≠ 0 an 𝑅-module.
If (0 :𝑅 𝑀) ⊆ (0 :𝑅 𝑁) holds, then the module 𝑀 ⊗𝑅 𝑁 is non-zero.

Proof. Let 𝔭 be an associated prime ideal of the non-zero module Hom𝑅 (𝑁, 𝑁).
Evidently one has (0 :𝑅 𝑁) ⊆ (0 :𝑅 Hom𝑅 (𝑁, 𝑁)), so by assumption (0 :𝑅 𝑀) is
contained in 𝔭. Now 17.1.2 implies that Hom𝑅 (𝑀,Hom𝑅 (𝑁, 𝑁)) is non-zero. As
one has Hom𝑅 (𝑀,Hom𝑅 (𝑁, 𝑁)) � Hom𝑅 (𝑀 ⊗𝑅 𝑁, 𝑁) by adjunction 12.1.10 and
commutativity 12.1.7, it follows that 𝑀 ⊗𝑅 𝑁 is non-zero. □

The next result compares to Nakayama’s lemma B.32.

17.1.5 Proposition. Let 𝔍 be the Jacobson radical of 𝑅. For an ideal 𝔞 in 𝑅 the
following conditions are equivalent.

(i) There is an inclusion 𝔞 ⊆ 𝔍 .

(ii) For each Artinian 𝑅-module𝑀 one has (0 :𝑀 𝔞) ≠ 0, i.e. Hom𝑅 (𝑅/𝔞, 𝑀) ≠ 0 .
(iii) For each simple 𝑅-module 𝑀 one has (0 :𝑀 𝔞) ≠ 0, i.e. Hom𝑅 (𝑅/𝔞, 𝑀) ≠ 0 .

Proof. First assume that 𝔞 is contained in 𝔍 and let 𝑀 be an Artinian 𝑅-module.
By 14.2.10 one has Ass𝑅 𝑀 ⊆ V(𝔍), in particular, Ass𝑅 𝑀 ⊆ V(𝔞) holds, whence
17.1.1 yields Ass𝑅 Hom𝑅 (𝑅/𝔞, 𝑀) = Ass𝑅 𝑀 . As only the zero module has no
associated prime ideals, it follows that condition (i) implies (ii).

A simple module is Artinian, so (ii) implies (iii). To prove that condition (iii)
implies (i), let 𝔪 be a maximal ideal in 𝑅; the 𝑅-module 𝑅/𝔪 is simple. By 17.1.1
one has Ass𝑅 Hom𝑅 (𝑅/𝔞, 𝑅/𝔪) = V(𝔞) ∩ {𝔪}. Now, if (iii) holds, then the module
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Hom𝑅 (𝑅/𝔞, 𝑅/𝔪) is non-zero and, therefore, the set V(𝔞) ∩ {𝔪} is non-empty. This
means that 𝔞 is contained in 𝔪, and it follows that (i) holds. □

Support

17.1.6 Proposition. Let 𝑀 be an 𝑅-complex; there are equalities,

supp𝑅 𝑀 = {𝔭 ∈ Spec 𝑅 | width𝑅𝔭
𝑀𝔭 < ∞}

= {𝔭 ∈ Spec 𝑅 | depth𝑅𝔭
𝑀𝔭 < ∞} .

Proof. By 15.1.22 a prime ideal 𝔭 in 𝑅 belongs to supp𝑅 𝑀 if and only if the
maximal ideal 𝔭𝔭 of the local ring 𝑅𝔭 belongs to supp𝑅𝔭

𝑀𝔭. The asserted equalities
now follow from 16.2.27. □

17.1.7 Corollary. Let 𝑀 be an 𝑅-complex; there are equalities,

supp𝑅 𝑀 = {𝔭 ∈ Spec 𝑅 | H(κ (𝔭) ⊗L
𝑅 𝑀𝔭) ≠ 0}

= {𝔭 ∈ Spec 𝑅 | H(RHom𝑅 (κ (𝔭), 𝑀𝔭)) ≠ 0} .

Proof. The first equality follows by 16.2.23 and 14.1.14(b) from the first equality
in 17.1.6. Similarly, the second equality follows from the second equality in 17.1.6
by 16.2.23 and 14.1.21(b). □

17.1.8 Proposition. Let 𝑀 be a complex in D⊏ (𝑅). If 𝑀 is not acyclic, then one has

Ass𝑅 Hsup𝑀 (𝑀) ⊆ supp𝑅 𝑀 .

Proof. Set 𝑠 = sup𝑀 . For a prime ideal 𝔭 in Ass𝑅 H𝑠 (𝑀) the maximal ideal 𝔭𝔭 of
the local ring 𝑅𝔭 is associated to H𝑠 (𝑀𝔭), so one has depth𝑅𝔭

𝑀𝔭 = −𝑠 by 16.2.16(b),
whence 𝔭 belongs to supp𝑅 𝑀 by 17.1.6. □

17.1.9 Corollary. Let 𝑀 be an 𝑅-module; there are inclusions,

Ass𝑅 𝑀 ⊆ supp𝑅 𝑀 ⊆ Supp𝑅 𝑀 .

Proof. The second inclusion is known from 15.1.9. The first inclusion is trivial for
𝑀 = 0, and for 𝑀 ≠ 0 it follows from 17.1.8. □

17.1.10 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. The equality

supp𝑅 RHom𝑅 (𝑀, 𝑁) = supp𝑅 𝑀 ∩ supp𝑅 𝑁

holds if one of the following conditions is satisfied.
(a) 𝑀 is in Df

⊏⊐ (𝑅) and pd𝑅 𝑀 is finite.
(b) 𝑀 is in Df

⊐ (𝑅) and 𝑁 in D⊏ (𝑅) .
(c) 𝑀 is in Df (𝑅) and 𝑁 is in D⊏⊐ (𝑅) with id𝑅 𝑁 finite.
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Proof. Let 𝔭 be a prime ideal in 𝑅. Consider the tensor evaluation morphism,

𝜽𝑀𝑁𝑅𝔭 : RHom𝑅 (𝑀, 𝑁) ⊗L
𝑅 𝑅𝔭 −→ RHom𝑅 (𝑀, 𝑁 ⊗L

𝑅 𝑅𝔭) ,

inD(𝑅). Under the assumptions in (a), (b), and (c) it is an isomorphism by 12.3.23(a),
12.3.23(b), and 12.3.24(b), respectively. This accounts for the first isomorphism in
the computation below; the subsequent isomorphisms follow 12.3.35 and 7.6.12.

RHom𝑅 (κ (𝔭),RHom𝑅 (𝑀, 𝑁)𝔭)
≃ RHom𝑅 (κ (𝔭),RHom𝑅 (𝑀, 𝑁𝔭))
≃ RHomκ (𝔭) (κ (𝔭) ⊗L

𝑅 𝑀,RHom𝑅 (κ (𝔭), 𝑁𝔭))
≃ Homκ (𝔭) (H(κ (𝔭) ⊗L

𝑅 𝑀),H(RHom𝑅 (κ (𝔭), 𝑁𝔭))) .

The last complex is a Hom of κ (𝔭)-vector spaces and hence non-zero if and only
if both spaces are non-zero. The asserted equality now follows from the definition,
15.1.5, of support and 17.1.7. □

17.1.11 Theorem. Let 𝑀 be an 𝑅-complex; there are equalities,

supp𝑅 𝑀 = {𝔭 ∈ Spec 𝑅 | H(RΓ𝔭𝔭 (𝑀𝔭)) ≠ 0}
= {𝔭 ∈ Spec 𝑅 | RΓ𝔭 (𝑀)𝔭 ≠ 0} .

Proof. The first equality follows from 17.1.6 and 16.2.23:

𝔭 ∈ supp𝑅 𝑀 ⇐⇒ depth𝑅𝔭
𝑀𝔭 < ∞ ⇐⇒ H(RΓ𝔭𝔭 (𝑀𝔭)) ≠ 0 .

The second equality now follows from 14.1.25. □

Recall from C.12 and Matlis’ structure theorem C.23 that the indecomposable
injective 𝑅-modules are precisely the injective envelopes E𝑅 (𝑅/𝔭), and that every
injective 𝑅-module decomposes as a coproduct of indecomposables.

17.1.12 Lemma. Let 𝐼 be a complex of injective 𝑅-modules. One has

supp𝑅 𝐼 ⊆
⋃
𝑣∈ℤ

supp𝑅 𝐼𝑣 ,

and equality holds if the 𝑅𝔭-complex 𝐼𝔭 is minimal and semi-injective for every prime
ideal 𝔭 in 𝑅.

Proof. Let 𝔭 ∈ supp𝑅 𝐼; by 17.1.11 the complex RΓ𝔭𝔭 (𝐼𝔭) is not acyclic. Further, as
𝐼𝔭 by C.24 is a complex of injective 𝑅𝔭-modules, 13.3.18 yields RΓ𝔭𝔭 (𝐼𝔭) ≃ Γ𝔭𝔭 (𝐼𝔭).
In particular,Γ𝔭𝔭 (𝐼𝔭) is not the zero complex, whence E𝑅𝔭

(κ (𝔭)) is a direct summand
of (𝐼𝑣)𝔭 for some 𝑣 ∈ ℤ, see 13.3.5, and it follows that E𝑅 (𝑅/𝔭) is a direct summand
of 𝐼𝑣. Thus, 𝔭 belongs to supp𝑅 𝐼𝑣 by 15.1.14.

Now let 𝔭 be a prime ideal in 𝑅 and assume that 𝐼𝔭 is minimal and semi-injective.
If 𝔭 is not in supp𝑅 𝐼, then the complex RHom𝑅𝔭

(κ (𝔭), 𝐼𝔭) is acyclic, see 17.1.6
and 16.2.23. As 𝐼𝔭 is semi-injective over 𝑅𝔭, this means that Hom𝑅𝔭

(κ (𝔭), 𝐼𝔭) is
acyclic. By 16.4.36 this complex has zero differential, so it is the zero complex. Per
(16.1.22.1) it follows that E𝑅𝔭

(κ (𝔭)) is not a direct summand of any of the injective
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𝑅𝔭-modules (𝐼𝑣)𝔭, so by 15.1.14 the maximal ideal 𝔭𝔭 is not in supp𝑅𝔭
(𝐼𝑣)𝔭 for any

module 𝐼𝑣, whence 𝔭 is not in any of the sets supp𝑅 𝐼𝑣, cf. 15.1.22. □

Remark. Chen and Iyengar [50] show that equality holds in 17.1.12 if and only if 𝐼𝔭 is minimal
and K-injective for every prime ideal 𝔭, and they provide an example where that fails to be the case.

The next result says that one can read the support of a module off its minimal
injective resolution.

17.1.13 Theorem. Let 𝑀 be a complex inD⊏ (𝑅) and 𝐼 a semi-injective replacement
of 𝑀 . If 𝐼 is minimal, then one has

supp𝑅 𝑀 =
⋃
𝑣∈ℤ

supp𝑅 𝐼𝑣 .

Proof. By 7.3.19 and B.26 the complex 𝐼 is bounded above. It thus follows from
14.1.31 that the 𝑅𝔭-complex 𝐼𝔭 is minimal and semi-injective for every prime ideal
𝔭 in 𝑅. As one has supp𝑅 𝑀 = supp𝑅 𝐼 the claim follows from 17.1.12. □

Remark. Also the cosupport of a module can be read off a certain associated complex; see
Nakamura and Thompson [189, 243].

Cosupport

The next three characterizations of cosupport compare, in that order, to the charac-
terizations of support in 17.1.6, 17.1.7, and 17.1.11.

17.1.14 Proposition. Let 𝑀 be an 𝑅-complex; there are equalities,

cosupp𝑅 𝑀 = {𝔭 ∈ Spec 𝑅 | depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) < ∞}

= {𝔭 ∈ Spec 𝑅 | width𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) < ∞} .

Proof. By 15.2.14 a prime ideal 𝔭 in 𝑅 belongs to cosupp𝑅 𝑀 if and only if the
maximal ideal𝔭𝔭 of 𝑅𝔭 belongs to cosupp𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝑀). The asserted equalities
now follow from 16.2.27. □

17.1.15 Corollary. Let 𝑀 be an 𝑅-complex; there are equalities,

cosupp𝑅 𝑀 = {𝔭 ∈ Spec 𝑅 | H(RHom𝑅 (κ (𝔭),RHom𝑅 (𝑅𝔭, 𝑀))) ≠ 0}
= {𝔭 ∈ Spec 𝑅 | H(κ (𝔭) ⊗L

𝑅 RHom𝑅 (𝑅𝔭, 𝑀)) ≠ 0} .

Proof. The first equality follows by 16.2.23 and 14.1.21(b) from the first equality in
17.1.14. Similarly, the second equality follows from the second equality in 17.1.14
by 16.2.23 and 14.1.14(b). □

17.1.16 Theorem. Let 𝑀 be an 𝑅-complex; there are equalities,

cosupp𝑅 𝑀 = {𝔭 ∈ Spec 𝑅 | H(LΛ𝔭𝔭 (RHom𝑅 (𝑅𝔭, 𝑀))) ≠ 0}
= {𝔭 ∈ Spec 𝑅 | H(RHom𝑅 (𝑅𝔭, LΛ𝔭 (𝑀))) ≠ 0} .
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Proof. The first equality follows from 17.1.14 and 16.2.23:

𝔭 ∈ cosupp𝑅 𝑀 ⇐⇒ width𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) < ∞

⇐⇒ H(LΛ𝔭𝔭 (RHom𝑅 (𝑅𝔭, 𝑀))) ≠ 0 .

The second equality now follows from 14.1.34. □

17.1.17 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. The equality

cosupp𝑅 (𝑁 ⊗L
𝑅 𝑀) = cosupp𝑅 𝑁 ∩ supp𝑅 𝑀

holds if
(a) 𝑀 is in Df

⊏⊐ (𝑅) and pd𝑅 𝑀 is finite.
The equality also holds if every flat 𝑅-module has finite projective dimension and
one of the next conditions is satisfied.

(b) 𝑀 is in Df
⊐ (𝑅) and 𝑁 in D⊐ (𝑅) .

(c) 𝑀 is in Df (𝑅) and 𝑁 is in D⊏⊐ (𝑅) with fd𝑅 𝑁 finite.

Proof. Let 𝔭 be a prime ideal in 𝑅; by 1.3.42 the 𝑅-module 𝑅𝔭 is flat. Consider the
tensor evaluation morphism in D(𝑅),

𝜽𝑅𝔭𝑁𝑀 : RHom𝑅 (𝑅𝔭, 𝑁) ⊗L
𝑅 𝑀 −→ RHom𝑅 (𝑅𝔭, 𝑁 ⊗L

𝑅 𝑀) .

Under the assumptions in (a) it is an isomorphism by 12.3.23(c). Assuming that
every flat 𝑅-module has finite projective dimension, it follows from 12.3.23(d) and
12.3.24(a) that 𝜽𝑅𝔭𝑁𝑀 is an isomorphism under the assumptions in (b) and (c).
This accounts for the first isomorphism in the computation below; the subsequent
isomorphisms follow from 12.3.30, and 7.6.12.

κ (𝔭) ⊗L
𝑅 RHom𝑅 (𝑅𝔭, 𝑁 ⊗L

𝑅 𝑀)
≃ κ (𝔭) ⊗L

𝑅 (RHom𝑅 (𝑅𝔭, 𝑁) ⊗L
𝑅 𝑀)

≃ (κ (𝔭) ⊗L
𝑅 RHom𝑅 (𝑅𝔭, 𝑁)) ⊗L

κ (𝔭) (κ (𝔭) ⊗
L
𝑅 𝑀)

≃ H(κ (𝔭) ⊗L
𝑅 RHom𝑅 (𝑅𝔭, 𝑁)) ⊗κ (𝔭) H(κ (𝔭) ⊗L

𝑅 𝑀) .

The last complex is a tensor product of κ (𝔭)-vector spaces and hence non-zero if
and only if both spaces are non-zero. The asserted equality now follows from 17.1.15
and the definition, 15.1.5, of support. □

17.1.18 Example. Let 𝔞 be an ideal in 𝑅 generated by a sequence 𝑥𝑥𝑥. One has

cosupp𝑅 K𝑅 (𝑥𝑥𝑥) = V(𝔞) ∩ cosupp𝑅 𝑅

by 17.1.17(a) in view of the unitor 12.3.3, 11.4.3(c), and 15.1.10.

By 17.4.26 the next result applies, in particular, if 𝑅 has finite Krull dimension.

17.1.19 Corollary. Assume that every flat 𝑅-module has finite projective dimension
and let 𝑀 be a complex in Df (𝑅). One has

cosupp𝑅 𝑀 = cosupp𝑅 𝑅 ∩ supp𝑅 𝑀 ⊆ supp𝑅 𝑀 .
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Proof. Apply 17.1.17(c) with 𝑁 = 𝑅 and invoke the unitor 12.3.3. □

For a ring 𝑅 with full cosupport, i.e. cosupp𝑅 𝑅 = Spec 𝑅, and finite FPD 𝑅 it
follows from 8.5.18 and 17.1.19 that the equality cosupp𝑅 𝑀 = supp𝑅 𝑀 holds for
every complex 𝑀 in Df (𝑅). The ring of integers is an example of such a ring, see
17.1.20 below, as it has finite global dimension, cf. 8.5.2. Thompson [244] has more
examples of rings with full cosupport; the case of the integers goes back to Benson,
Iyengar, and Krause [38]. See 16.1.19 for examples of otherwise well-behaved rings
with cosupp𝑅 𝑅 ≠ Spec 𝑅.

17.1.20 Example. Let 𝑝 ∈ ℤ be prime; one has supp𝑅 RHomℤ (ℤ/𝑝ℤ,ℤ) = {𝑝ℤ}
by 17.1.10 and 15.1.10, so 𝑝ℤ ∈ cosuppℤ ℤ by 15.1.15. Also H(RHomℤ (ℚ,ℤ)) is
non-zero, see 7.3.28, so 0 belongs to cosuppℤ ℤ. Thus cosuppℤ ℤ = Specℤ holds.

Remark. Per the Remark after 9.3.30, the assumption in 17.1.19 about projective dimension
of flat 𝑅-modules is equivalent to requiring the invariant splf 𝑅 to be finite. In fact, one has
splf 𝑅 = sup{pd𝑅 𝑅𝔭 | 𝔭 ∈ Spec𝑅 }, see for example Nakamura and Thompson [189], while all
that is used in the proof of 17.1.19 is that pd𝑅 𝑅𝔭 is finite for every 𝔭 ∈ Spec𝑅.

Guaranteed Isomorphisms

17.1.21 Lemma. Let 𝛼 : 𝑀 → 𝑁 be a morphism of 𝑅-complexes and assume that
𝑀 and 𝑁 are both degreewise finitely generated or both degreewise Artinian. If the
next two conditions are satisfied, then 𝛼 is an isomorphism.

(1) The graded 𝑅-modules 𝑀♮ and 𝑁 ♮ are isomorphic.
(2) 𝛼 : 𝑀♮ → 𝑁 ♮ has a left inverse or a right inverse in Mgr (𝑅) .

Proof. It follows from the assumptions on 𝑀 and 𝑁 , combined with 14.1.11 and
14.2.18, that for every prime ideal 𝔭 in 𝑅 the 𝑅𝔭-complexes 𝑀𝔭 and 𝑁𝔭 are both
degreewise finitely generated or both degreewise Artinian. Condition (1) implies
that the graded 𝑅𝔭-modules 𝑀♮

𝔭 and 𝑁 ♮𝔭 are isomorphic and condition (2) implies
that the localized map 𝛼𝔭 : 𝑀♮

𝔭 → 𝑁
♮
𝔭 has a left inverse or a right inverse in Mgr (𝑅𝔭).

Since 𝛼 is an isomorphism in C(𝑅) if and only if 𝛼𝔭 is an isomorphism in C(𝑅𝔭)
for every 𝔭 ∈ Spec 𝑅, see 15.3.8, one can assume that 𝑅 is local; as usual we let 𝒌
denote the residue field of 𝑅.

First assume that 𝛼 : 𝑀♮ → 𝑁 ♮ has a left inverse. If 𝑀 and 𝑁 are degreewise
finitely generated, then so is 𝐶 = Coker𝛼 and the degreewise split exact sequence

(♭) 0 −→ 𝑀
𝛼−−−→ 𝑁 −→ 𝐶 −→ 0

induces for each 𝑣 ∈ ℤ a split exact sequence of 𝒌-vector spaces,

0 −→ 𝒌 ⊗𝑅 𝑀𝑣
𝒌⊗𝛼𝑣−−−−−→ 𝒌 ⊗𝑅 𝑁𝑣 −→ 𝒌 ⊗𝑅 𝐶𝑣 −→ 0 ,

which have finite rank by 12.1.20(a). By condition (1), the modules 𝑀𝑣 and 𝑁𝑣 are
isomorphic, whence 𝒌 ⊗𝑅 𝑀𝑣 and 𝒌 ⊗𝑅 𝑁𝑣 have the same rank. Since 𝒌 ⊗𝑅 𝛼𝑣 is
injective, it must be an isomorphism. It follows that one has 𝒌 ⊗𝑅 𝐶𝑣 = 0 and hence
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𝐶𝑣 = 0 by Nakayama’s lemma 16.1.5. This proves 𝐶 = 0 and, consequently, 𝛼 is an
isomorphism. If 𝑀 and 𝑁 are degreewise Artinian, then so is the complex 𝐶 and the
degreewise split exact sequence (♭) induces for each 𝑣 ∈ ℤ a split exact sequence of
𝒌-vector spaces,

0 −→ Hom𝑅 (𝒌, 𝑀𝑣)
Hom (𝒌 ,𝛼𝑣 )−−−−−−−−−→ Hom𝑅 (𝒌, 𝑁𝑣) −→ Hom𝑅 (𝒌, 𝐶𝑣) −→ 0 ,

which have finite rank by 16.1.4. By condition (1), the modules𝑀𝑣 and𝑁𝑣 are isomor-
phic, so Hom𝑅 (𝒌, 𝑀𝑣) and Hom𝑅 (𝒌, 𝑁𝑣) have the same rank. Since Hom𝑅 (𝒌, 𝛼𝑣)
is injective, it must be an isomorphism. It follows that one has Hom𝑅 (𝒌, 𝐶𝑣) = 0 and
hence 𝐶𝑣 = 0 by 16.1.6. This proves 𝐶 = 0 and, consequently, 𝛼 is an isomorphism.

The case where𝛼 : 𝑀♮ → 𝑁 ♮ has a right inverse is dealt with by a similar argument
applied to the split exact sequence 0 −−→ Ker𝛼 −−→ 𝑀

𝛼−−→ 𝑁 −−→ 0. □

17.1.22 Proposition. Let 𝑀 and 𝑋 be 𝑅-complexes such that 𝑀 and RHom𝑅 (𝑀, 𝑋)
both belong to Df (𝑅) or both belong to Dart (𝑅). If there is an isomorphism in D(𝑅),

𝑀 ≃ RHom𝑅 (RHom𝑅 (𝑀, 𝑋), 𝑋) ,

then the biduality morphism from 8.4.2,

𝜹𝑀𝑋 : 𝑀 −→ RHom𝑅 (RHom𝑅 (𝑀, 𝑋), 𝑋) ,

is an isomorphism as well.

Proof. We consider the case where 𝑀 and RHom𝑅 (𝑀, 𝑋) belong to Df (𝑅); the
same arguments apply, mutatis mutandis, if the complexes belong to Dart (𝑅).

Let ( )† denote the functor RHom𝑅 ( , 𝑋). By assumption, the 𝑅-complex 𝑀

satisfies the following conditions:
(1) There is an isomorphism 𝑀 ≃ 𝑀†† in D(𝑅) .
(2) The complexes 𝑀 and 𝑀† belong to Df (𝑅) .

The zigzag identities related to the adjunction 10.1.22 yield the equality,

(𝜹𝑀𝑋 )† ◦ 𝜹𝑀
†

𝑋 = 1𝑀
†
.

As homology is a functor on D(𝑅), see 6.5.17, this equality implies that one has

H((𝜹𝑀𝑋 )†) ◦ H(𝜹𝑀†𝑋 ) = 1H (𝑀† ) ,

so H(𝜹𝑀†𝑋 ) : H(𝑀†) → H(𝑀†††) has a left inverse. Condition (1) implies that H(𝑀†)
and H(𝑀†††) are isomorphic, and (2) implies that H(𝑀†) is degreewise finitely
generated. Thus it follows from 17.1.21 that H(𝜹𝑀†𝑋 ) is an isomorphism in C(𝑅),
whence 𝜹𝑀

†
𝑋 is an isomorphism in D(𝑅) by 6.5.17.

Notice that conditions (1) and (2) are satisfied with𝑀 replaced by the complex𝑀†,
so 𝜹𝑀

††
𝑋 is an isomorphism in D(𝑅) by the argument above. By assumption there is

an isomorphism 𝜑 : 𝑀 → 𝑀†† in D(𝑅). As biduality 𝜹−𝑋 is a natural transformation,
there is a commutative diagram in D(𝑅),
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𝑀
𝜑

≃
//

𝜹𝑀𝑋
��

𝑀††

𝜹𝑀
††

𝑋
≃
��

𝑀††
𝜑††

≃
// 𝑀†††† .

Since 𝜑, 𝜑††, and 𝜹𝑀
††

𝑋 are isomorphisms, so is 𝜹𝑀𝑋 . □

17.1.23 Corollary. Let 𝑋 be a complex in Df (𝑅). If there is an isomorphism,

𝑅 ≃ RHom𝑅 (𝑋, 𝑋) ,

in D(𝑅), then the homothety formation morphism,

𝝌𝑋𝑅 : 𝑅 −→ RHom𝑅 (𝑋, 𝑋) ,

from 10.1.10 is an isomorphism as well.

Proof. There is a commutative diagram,

𝑅
𝝌𝑋
𝑅

//

𝜹𝑅𝑋
��

RHom𝑅 (𝑋, 𝑋)

RHom𝑅 (RHom𝑅 (𝑅, 𝑋), 𝑋) ,

RHom𝑅 (𝝐𝑋𝑅 ,𝑋)
≃

??

where 𝝐𝑋
𝑅

is the counitor 12.3.4. Thus, to prove that 𝝌𝑋
𝑅

is an isomorphism it suffices to
argue that 𝜹𝑅𝑋 is an isomorphism. An isomorphism from 𝑅 to RHom𝑅 (𝑋, 𝑋) inD(𝑅)
can be composed with the inverse of RHom𝑅 (𝝐𝑋𝑅, 𝑋) to yield an isomorphism 𝑅 ≃
RHom𝑅 (RHom𝑅 (𝑅, 𝑋), 𝑋). By assumption, the complex RHom𝑅 (𝑅, 𝑋) ≃ 𝑋 is in
Df (𝑅), and hence 17.1.22 applied with 𝑀 = 𝑅 shows that 𝜹𝑅𝑋 is an isomorphism. □

Exercises

E 17.1.1 Let 𝑀 be a complex in D⊐ (𝑅) with H(𝑀 ) ≠ 0 and set 𝑤 = inf 𝑀. Show that
supp𝑅 𝑀 contains the set {𝔭 ∈ Spec𝑅 | 𝔭H𝑤 (𝑀 )𝔭 ≠ H𝑤 (𝑀 )𝔭 }.

E 17.1.2 Let 𝑀 be an 𝑅-module. Show that one has dim𝑅 𝑀 = sup{dim𝑅/𝔭 | 𝔭 ∈ supp𝑅 𝑀 }.
E 17.1.3 Let 𝑀 be an 𝑅-complex. Show that there are equalities,

supp𝑅 𝑀 = {𝔭 ∈ Spec𝑅 | H(RΓ𝔭 (𝑀𝔭 ) ) ≠ 0}
= {𝔭 ∈ Spec𝑅 | H(LΛ𝔭 (𝑀𝔭 ) ) ≠ 0} .

E 17.1.4 Let 𝑀 be an 𝑅-complex. Show that there are equalities,
cosupp𝑅 𝑀 = {𝔭 ∈ Spec𝑅 | H(LΛ𝔭 (RHom𝑅 (𝑅𝔭 , 𝑀 ) ) ) ≠ 0}

= {𝔭 ∈ Spec𝑅 | H(RΓ𝔭 (RHom𝑅 (𝑅𝔭 , 𝑀 ) ) ) ≠ 0} .
E 17.1.5 Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅-complex. (a) Show that 𝔭 is in supp𝑅 𝑀 if

and only if it belongs to cosupp𝑅 𝑀𝔭. (b) Show that 𝔭 is in cosupp𝑅 𝑀 if and only if
it belongs to supp𝑅 RHom𝑅 (𝑅𝔭 , 𝑀 ) .

E 17.1.6 Let 𝛼 : 𝑀 → 𝑁 be a morphism in D⊐ (𝑅) and 𝑋 a complex in Df
⊐ (𝑅) with

cosupp𝑅 𝑀 ∪ cosupp𝑅 𝑁 ⊆ supp𝑅 𝑋. Show that if 𝛼 ⊗L
𝑅
𝑋 is an isomorphism, then

𝛼 is an isomorphism.
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E 17.1.7 Let 𝛼 : 𝑀 → 𝑁 be a morphism in Df
⊐ (𝑅) and 𝑋 a complex in D⊐ (𝑅) with

supp𝑅 𝑀 ∪ supp𝑅 𝑁 ⊆ cosupp𝑅 𝑋. Show that if 𝑋 ⊗L
𝑅
𝛼 is an isomorphism, then

𝛼 is an isomorphism.
E 17.1.8 Let 𝛼 : 𝑀 → 𝑁 be a morphism in D⊏ (𝑅) and 𝑋 a complex in Df

⊐ (𝑅) with
supp𝑅 𝑀 ∪ supp𝑅 𝑁 ⊆ supp𝑅 𝑋. Show that if RHom𝑅 (𝑋, 𝛼) is an isomorphism,
then 𝛼 is an isomorphism.

E 17.1.9 Let 𝛼 : 𝑀 → 𝑁 be a morphism in Df
⊐ (𝑅) and 𝑋 a complex in D⊏ (𝑅) with

supp𝑅 𝑀 ∪ supp𝑅 𝑁 ⊆ supp𝑅 𝑋. Show that if RHom𝑅 (𝛼, 𝑋) is an isomorphism,
then 𝛼 is an isomorphism.

E 17.1.10 Let 𝑅 be local and 𝑀 a complex in Df
⊏⊐ (𝑅) . Show that 𝑀 is derived reflexive if and

only if there is an isomorphism 𝑀 ≃ RHom𝑅 (RHom𝑅 (𝑀, 𝑅) , 𝑅) in D(𝑅) .

17.2 The Cohen–Macaulay Property

Synopsis. Krull dimenson vs. depth; Cohen–Macaulay defect; Cohen–Macaulay complex; equi(co)-
dimensional ring; catenary ring; Cohen–Macaulay (local) ring.

For a local ring the depth is per 16.2.32 an algebraic invariant while the Krull
dimension is geometric in nature. Local rings for which these invariants agree are of
special interest because their prime ideal spectra are particularly well structured. For
example, they exhibit a phenomenon known as ‘unmixedness’ (E 17.2.8). This was
proved for power series algebras by Cohen [70], and Macaulay [176] had already
thirty years earlier shown that polynomial algebras have the property.

The theory of these Cohen–Macaulay rings and the more general notion of
Cohen–Macaulay modules is extremely rich and aspects of it is already consoli-
dated in several monographs: “Cohen–Macaulay rings” [46] by Bruns and Herzog,
“Maximal Cohen-Macaulay modules and Tate cohomology” [47] by Buchweitz,
“Cohen–Macaulay representations” by Leuschke and Wiegand [171], and “Cohen–
Macaulay modules over Cohen-Macaulay rings” by Yoshino [261].

Krull Dimenson vs. Depth

The first inequality below holds for all complexes of finite depth, see 18.3.31.

17.2.1 Theorem. Let 𝑅 be local and 𝑀 a complex in Df (𝑅) that is not acyclic.
There is an inequality,

depth𝑅 𝑀 ⩽ dim𝑅 𝑀 .

Moreover, if 𝑀 belongs to Df
⊏ (𝑅) with 𝑠 = sup𝑀 , then one has

depth𝑅 𝑀 ⩽ dim𝑅 H𝑠 (𝑀) − 𝑠 ⩽ dim𝑅 𝑀 .

Proof. If H(𝑀) is not bounded above, then the inequality depth𝑅 𝑀 ⩽ dim𝑅 𝑀 is
trivial as 16.2.21 yields depth𝑅 𝑀 = −∞. Assuming now that 𝑀 belongs to Df

⊏ (𝑅),
set 𝑠 = sup𝑀 and choose 𝔭 ∈ Min𝑅 H𝑠 (𝑀) with dim 𝑅/𝔭 = dim𝑅 H𝑠 (𝑀). It follows
that the maximal ideal of 𝑅𝔭 is associated to H𝑠 (𝑀𝔭), so depth𝑅𝔭

𝑀𝔭 = −𝑠 holds by
16.2.16(b). Now 16.4.6 and 14.2.1 yield
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depth𝑅 𝑀 ⩽ depth𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 = dim𝑅 H𝑠 (𝑀) − 𝑠 ⩽ dim𝑅 𝑀 . □

Cohen–Macaulay Complexes

For a complex 𝑀 in Df (𝑅) the difference dim𝑅 𝑀 − depth𝑅 𝑀 is well-defined, see
14.2.4 and 16.2.27.

17.2.2 Definition. Let 𝑅 be local and 𝑀 a complex in Df (𝑅). The Cohen–Macaulay
defect of 𝑀 , written cmd𝑅 𝑀 , is the difference

cmd𝑅 𝑀 = dim𝑅 𝑀 − depth𝑅 𝑀 .

The simpler notation cmd 𝑅 deotes the Cohen–Macaulay defect of the 𝑅-module 𝑅.

17.2.3. Let 𝑅 be local and 𝑀 a complex in Df (𝑅). By 14.2.2 and 14.3.11 one has

cmd𝑅 Σ𝑠𝑀 = cmd𝑅 𝑀 for every integer 𝑠 .

Moreover, it follows from 17.2.1 that one has cmd𝑅 𝑀 ⩾ 0 if 𝑀 is not acyclic, while
cmd𝑅 𝑀 = −∞ holds if 𝑀 is acyclic.

17.2.4 Lemma. Let 𝑅 be local and 𝑀 a complex in Df (𝑅). If cmd𝑅 𝑀 is finite, then
H(𝑀) is bounded.

Proof. The homology of an acyclic complex is trivially bounded, so assume that
H(𝑀) is non-zero. One thus has inf 𝑀 < ∞ and sup𝑀 > −∞. The assumption
cmd𝑅 𝑀 < ∞ yields dim𝑅 𝑀 < ∞ and depth𝑅 𝑀 > −∞ and hence one gets the
inequalities inf 𝑀 > −∞ from 14.2.4 and sup𝑀 < ∞ from 16.2.21. □

17.2.5 Definition. Let 𝑅 be local and 𝑀 a complex i Df (𝑅). If cmd𝑅 𝑀 ⩽ 0 holds,
then 𝑀 is called Cohen–Macaulay.

17.2.6 Example. Let 𝑅 be local. It follows from 14.2.10 and 16.2.18 that every
Artinian 𝑅-module 𝑀 ≠ 0 has dim𝑅 𝑀 = 0 = depth𝑅 𝑀 . In particular, every
𝑅-module 𝑀 of finite length is Cohen–Macaulay, see 14.2.12.

17.2.7 Proposition. Let 𝑅 be local and 𝑀 a complex in Df (𝑅). If 𝑀 is not acyclic,
then 𝑀 is Cohen–Macaulay if and only if 𝑀 is in Df

⊏⊐ (𝑅) and cmd𝑅 𝑀 = 0 holds.

Proof. The assertion follows immediately from 17.2.4 and 17.2.3. □

17.2.8 Proposition. Let 𝑅 be local, 𝔭 a prime ideal in 𝑅, and 𝑀 an 𝑅-complex. If
𝑀 is in Df (𝑅), then there is an inequality

cmd𝑅𝔭
𝑀𝔭 ⩽ cmd𝑅 𝑀 ;

in particular, if𝑀 is Cohen–Macaulay, then the 𝑅𝔭-complex𝑀𝔭 is Cohen–Macaulay.
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Proof. Let 𝔭 be a prime ideal in 𝑅, by 14.1.11 the complex 𝑀𝔭 belongs to Df (𝑅𝔭).
From 14.2.7 and 16.4.6 one gets

cmd𝑅𝔭
𝑀𝔭 = dim𝑅𝔭

𝑀𝔭 − depth𝑅𝔭
𝑀𝔭

⩽ (dim𝑅 𝑀 − dim 𝑅/𝔭) − (depth𝑅 𝑀 − dim 𝑅/𝔭)
= cmd𝑅 𝑀 .

The last claim follows from the definition, 17.2.5, of a Cohen-Macaulay complex. □

A Cohen–Macaulay module has no embedded prime ideals.

17.2.9 Corollary. Let 𝑅 be local and 𝑀 a finitely generated 𝑅-module. If 𝑀 is
Cohen–Macaulay, then one has

Ass𝑅 𝑀 = Min𝑅 𝑀 .

Proof. Every prime ideal in Min𝑅 𝑀 is associated to 𝑀 . To prove the converse,
let 𝔭 be a prime ideal in Ass𝑅 𝑀 . The maximal ideal 𝔭𝔭 of the local ring 𝑅𝔭 is
associated to 𝑀𝔭, so one has depth𝑅𝔭

𝑀𝔭 = 0 by 16.2.18. As 𝑀 is Cohen–Macaulay,
17.2.8 yields dim𝑅𝔭

𝑀𝔭 = 0, so 𝔭𝔭 is minimal in Supp𝑅𝔭
𝑀𝔭 and 𝔭 hence minimal

in Supp𝑅 𝑀 . □

For a Cohen–Macaulay complex, the support and classic support agree by 15.1.9,
and for prime ideals in that set the inequalities in 14.2.7 and 16.4.6 are equalities.

17.2.10 Proposition. Let 𝑅 be local and 𝑀 a Cohen–Macaulay 𝑅-complex. For
every 𝔭 ∈ supp𝑅 𝑀 the following equalities hold.

depth𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 = depth𝑅 𝑀 = dim𝑅 𝑀 = dim𝑅𝔭

𝑀𝔭 + dim 𝑅/𝔭 .

Proof. By 17.2.7 the complex 𝑀 belongs to Df
⊏⊐ (𝑅). Let 𝔭 ∈ supp𝑅 𝑀; by 16.4.6,

17.2.1, and 14.2.7 there are inequalities,

depth𝑅 𝑀 ⩽ depth𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭

⩽ dim𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭

⩽ dim𝑅 𝑀 ,

and the assumption depth𝑅 𝑀 = dim𝑅 𝑀 implies that equalities hold. □

17.2.11 Corollary. Let 𝑅 be local and 𝑀 a Cohen–Macaulay 𝑅-complex. For prime
ideals 𝔭 ⊆ 𝔮 in supp𝑅 𝑀 the next equality holds,

dim 𝑅𝔮/𝔭𝔮 = dim 𝑅/𝔭 − dim 𝑅/𝔮 .

Proof. By 17.2.8 the 𝑅𝔮-complex 𝑀𝔮 is Cohen–Macaulay, and the first equality in
the computation below follows from 17.2.10 applied to this complex. The second
equality also follows from 17.2.10, but now applied to the 𝑅-complex 𝑀 .

dim 𝑅𝔮/𝔭𝔮 = dim𝑅𝔮
𝑀𝔮 − dim𝑅𝔭

𝑀𝔭

= (dim𝑅 𝑀 − dim 𝑅/𝔮) − (dim𝑅 𝑀 − dim 𝑅/𝔭)
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= dim 𝑅/𝔭 − dim 𝑅/𝔮 . □

Remark. In the literature one can find the statement in 17.2.11 formulated along the lines of “a
Cohen–Macaulay complex has catenary support”. We do not use that terminology, but the next
definition could easily be generalized to sustain it.

Chain Conditions

The notions introduced below could be defined for subsets of Spec 𝑅, but we only
use them for the spectrum itself.

17.2.12 Definition. If dim 𝑅/𝔭 = dim 𝑅/𝔭′ holds for all minimal prime ideals 𝔭 and
𝔭′ in 𝑅, then 𝑅 is called equidimensional, and if dim 𝑅𝔪 = dim 𝑅𝔪′ holds for all
maximal ideals 𝔪 and 𝔪′ in 𝑅, then 𝑅 is called equicodimensional.

If given any two prime ideals 𝔭 ⊂ 𝔮 in 𝑅, all saturated chains

𝔭 = 𝔭0 ⊂ · · · ⊂ 𝔭𝑛 = 𝔮

in Spec 𝑅 have the same length, then 𝑅 is called catenary.

17.2.13. The following observations follow immediately from the definitions.
(a) 𝑅 is equidimensional if and only if the equality dim 𝑅 = dim 𝑅/𝔭 holds for

every minimal prime ideal 𝔭 in 𝑅 .
(b) 𝑅 is equicodimensional if and only if 𝑅 has finite Krull dimension and the

equality dim 𝑅 = dim 𝑅𝔪 holds for every maximal ideal 𝔪 in 𝑅 .
(c) If 𝑅 is catenary and 𝔭 = 𝔭0 ⊂ · · · ⊂ 𝔭𝑛 = 𝔮 is a saturated chain in Spec 𝑅,

then 𝑛 = dim 𝑅𝔮/𝔭𝔮 holds.

Caveat. If all maximal chains of prime ideals in 𝑅 have the same length, then 𝑅 called biequidi-
mensional, such a ring is evidently equidimensional, equicodimensional, and catenary. Contrary to
a claim made in [111, 0.§14] the converse is not true. Heinrich [117] constructs a counterexample
and shows that 𝑅 is biequidimensional if it is equicodimensional and 𝑅𝔪 is equidimensional and
catenary for every maximal ideal 𝔪 in 𝑅.

In the next result, the assumption that 𝑅 is local is crucial; see 17.2.35.

17.2.14 Proposition. Let 𝑅 be an equidimensional catenary local ring. For every
prime ideal 𝔭 in 𝑅 the next equality holds,

dim 𝑅𝔭 + dim 𝑅/𝔭 = dim 𝑅 .

Proof. Fix a prime ideal 𝔭 in 𝑅. Choose a saturated chain 𝔭0 ⊂ · · · ⊂ 𝔭𝑛 = 𝔭 in
Spec 𝑅 with 𝑛 = dim 𝑅𝔭, and note that 𝔭0 must be a minimal prime ideal in 𝑅. Let
𝔪 be the maximal ideal of 𝑅 and choose a saturated chain 𝔭 = 𝔮0 ⊂ · · · ⊂ 𝔮𝑚 = 𝔪

in Spec 𝑅 with 𝑚 = dim 𝑅/𝔭. Now 𝔭0 ⊂ · · · ⊂ 𝔭𝑛 = 𝔭 = 𝔮0 ⊂ · · · ⊂ 𝔮𝑚 = 𝔪 is a
saturated chain in Spec 𝑅 of length 𝑛 + 𝑚, and as 𝑅 is catenary one has dim 𝑅/𝔭0 =

𝑛 + 𝑚 by 17.2.13(c). As 𝑅 is also equidimensional, dim 𝑅/𝔭0 = dim 𝑅 holds by
17.2.13(a). Consequently, one has dim 𝑅 = dim 𝑅𝔭 + dim 𝑅/𝔭, as asserted. □

Remark. For a local integral domain 𝑅 the equality in 17.2.14 holds for every prime ideal if and
only if 𝑅 is catenary. This was proved by Ratliff [206]; the proof is included in [182, §31].
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Cohen–Macaulay Local Rings

17.2.15 Definition. A local ring 𝑅 is called Cohen–Macaulay if per 17.2.5 it is
Cohen–Macaulay as an 𝑅-module.

For ease of reference we record:

17.2.16 Proposition. Let 𝑅 be local. There is an inequality,

depth 𝑅 ⩽ dim 𝑅 ,

and equality holds, i.e. one has cmd 𝑅 = 0, if and only if 𝑅 is Cohen–Macaulay.

Proof. The inequality is a special case of 17.2.1, and the last assertion is per 17.2.2
and 17.2.5 a restatement of 17.2.15. □

17.2.17 Example. An Artinian local ring is Cohen–Macaulay by 14.2.19 and 17.2.6.

17.2.18 Example. Let 𝕜 be a field. In the local ring 𝑅 = 𝕜⟦𝑥1, . . . , 𝑥𝑛⟧ the indetermi-
nates form a regular sequence, so the depth of 𝑅 is per 16.2.33(a) at least 𝑛 = dim 𝑅,
whence 𝑅 is Cohen–Macaulay.

17.2.19 Proposition. Let (𝑅,𝔪) be local. The following conditions are equivalent.
(i) 𝑅 is Cohen–Macaulay.
(ii) H𝑛𝔪 (𝑅) = 0 holds for all 𝑛 < dim 𝑅 .

(iii) H𝑛𝔪 (𝑅) = 0 holds for all 𝑛 ≠ dim 𝑅 .

Proof. Being local, 𝑅 has finite Krull dimension, and 16.2.34 yields H𝑛𝔪 (𝑅) = 0 for
𝑛 > dim 𝑅. The equivalence of the three conditions now follows immediately from
16.2.14 and 17.2.16. □

17.2.20 Proposition. Let 𝑅 be a Cohen–Macaulay local ring. For every prime ideal
𝔭 in 𝑅 the next equalities hold,

depth 𝑅𝔭 + dim 𝑅/𝔭 = depth 𝑅 = dim 𝑅 = dim 𝑅𝔭 + dim 𝑅/𝔭 .

Proof. The equalities hold by 17.2.16 and by 17.2.10 applied to the 𝑅-module
𝑅. □

A local ring is trivially equicodimensional; a Cohen–Macaulay local ring also
has the other properties from 17.2.12.

17.2.21 Theorem. A Cohen–Macaulay local ring is equidimensional and catenary.

Proof. Let 𝑅 be local and Cohen–Macaulay. For every prime ideal𝔭 in 𝑅 the equality
dim 𝑅 = dim 𝑅𝔭 + dim 𝑅/𝔭 holds by 17.2.20. In particular, dim 𝑅 = dim 𝑅/𝔭 holds
for every minimal prime ideal, so 𝑅 is equidimensional. To prove catenarity, fix prime
ideals 𝔭 ⊂ 𝔮 and consider a saturated chain 𝔭 = 𝔭0 ⊂ · · · ⊂ 𝔭𝑛 = 𝔮 in Spec 𝑅. That
the chain is saturated means that for each 𝑖 ∈ {1, . . . , 𝑛} one has dim 𝑅𝔭𝑖/(𝔭𝑖−1)𝔭𝑖 = 1;
at the same time, 17.2.11 yields dim 𝑅𝔭𝑖/(𝔭𝑖−1)𝔭𝑖 = dim 𝑅/𝔭𝑖−1 − dim 𝑅/𝔭𝑖 , thus:
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𝑛 =
𝑛∑
𝑖=1
(dim 𝑅/𝔭𝑖−1 − dim 𝑅/𝔭𝑖) = dim 𝑅/𝔭 − dim 𝑅/𝔮 .

That is, all saturated chains from 𝔭 to 𝔮 has the same length, i.e. 𝑅 is catenary. □

An example of an equidimensional catenary local ring that is not Cohen–Macaulay
is provided in 18.5.29. A quotient of a catenary ring is evidently catenary, but a
quotient of an equidimensional ring, even a quotient of a Cohen–Macaulay local
ring, need not be equidimensional.

17.2.22 Example. Let 𝕜 be a field. The local ring 𝕜⟦𝑥, 𝑦, 𝑧⟧ is Cohen–Macaulay
and hence catenary, see 17.2.18 and 17.2.21. It follows that the quotient ring 𝑅 =

𝕜⟦𝑥, 𝑦, 𝑧⟧/(𝑥𝑦, 𝑥𝑧) is catenary as well. Both 𝔭 = (𝑥) and 𝔮 = (𝑦, 𝑧) are minimal
prime ideals in 𝑅, so the isomorphisms 𝑅/𝔭 � 𝕜⟦𝑦, 𝑧⟧ and 𝑅/𝔮 � 𝕜⟦𝑥⟧ show that
𝑅 is not equidimensional.

For a finitely generated module 𝑀 ≠ 0 over a Cohen–Macaulay local ring 𝑅 the
next result yields depth𝑅 𝑀 ⩽ depth 𝑅. The example that follows shows that this
inequality may fail if 𝑅 is not Cohen–Macaulay.

17.2.23 Proposition. Let 𝑅 be a Cohen–Macaulay local ring and 𝑀 a complex in
Df (𝑅). If 𝑀 is not acyclic, then the next inequalities hold,

depth 𝑅 − inf 𝑀 ⩾ depth𝑅 𝑀 ⩾ − sup𝑀 .

Proof. The equality below holds holds as 𝑅 is Cohen–Macaulay, see 17.2.16. The
first inequality holds, in view of 16.2.27, by 16.2.35 and 16.2.5(a); the second
inequality comes from 16.2.16,

depth 𝑅 − inf 𝑀 = dim 𝑅 − inf 𝑀 ⩾ depth𝑅 𝑀 ⩾ − sup𝑀 . □

17.2.24 Example. Let 𝕜 be a field, set 𝑅 = 𝕜⟦𝑥, 𝑦⟧/(𝑥2, 𝑥𝑦), and 𝑀 = 𝑅/(𝑥) �
𝕜⟦𝑦⟧. As (0 :𝑅 𝑥) = (𝑥, 𝑦) holds—that is, the maximal ideal of 𝑅 is an associated
prime ideal—one has depth 𝑅 = 0 by 16.2.18. On the other hand, 𝑦 is evidently an
𝑀-regular element, so depth𝑅 𝑀 is positive by 16.2.33(a).

Note from 17.2.8 and 17.2.15 that if 𝑅 is a Cohen–Macaulay local ring, then so is
𝑅𝔭 for all 𝔭 ∈ Spec 𝑅. This justifies the next extension of 17.2.15 to non-local rings.

Cohen–Macaulay Rings

17.2.25 Definition. If the local ring 𝑅𝔭 is a Cohen–Macaulay for every prime ideal
𝔭 in 𝑅, then 𝑅 is called Cohen–Macaulay.

17.2.26 Example. An Artinian ring is Cohen–Macaulay by 14.2.19(b) and 17.2.17.

The ring ℤ is an example of a Cohen–Macaulay ring of positive Krull dimension:
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17.2.27 Example. Let 𝑅 be an integral domain of Krull dimension 1. The field of
fractions 𝑅(0) is an Artinian local ring and hence Cohen–Macaulay. For a non-zero
prime ideal 𝔭 in 𝑅 the local ring 𝑅𝔭 is an integral domain of Krull dimension 1. By
14.4.17 and 14.4.21(a) the depth of 𝑅𝔭 is at least 1, so 𝑅𝔭 is Cohen–Macaulay by
17.2.16. Thus 𝑅 is Cohen–Macaulay. This applies, in particular, to 𝑅 = ℤ and for a
field 𝕜 to 𝑅 = 𝕜 [𝑥].

A product of Cohen–Macaulay local rings is Cohen–Macaulay, so such a ring
need neither be equidimensional nor equicodimensional, but the third property from
17.2.12 does carry over from the local setting. For a less trivial example of a Cohen–
Macaulay ring that is not equicodimensional see 17.2.35.

17.2.28 Theorem. A Cohen–Macaulay ring is catenary.

Proof. Let 𝑅 be Cohen–Macaulay and 𝔭 ⊂ 𝔮 be prime ideals in 𝑅. Every chain
of prime ideals 𝔭 ⊂ · · · ⊂ 𝔮 in 𝑅 corresponds to a chain of prime ideals in the
Cohen–Macaulay local ring 𝑅𝔮; as 𝑅𝔮 is catenary by 17.2.21, all saturated chains
𝔭 ⊂ · · · ⊂ 𝔮 in 𝑅 have the same length. □

Extensions of Cohen–Macaulay Rings

We recall, say from [182, §15], a result from dimension theory.

Going Down Theorem. Let 𝑆 be an 𝑅-algebra and 𝔓 a prime ideal in 𝑆. With
𝔭 = 𝔓 ∩ 𝑅 there is an inequality,

dim 𝑆𝔓 ⩽ dim 𝑆𝔓/𝔭𝑆𝔓 + dim 𝑅𝔭 ,

and equality holds if 𝑆 is flat as an 𝑅-module.

Of importance in the proof of the next theorem is the following corollary.

17.2.29 Corollary. Let (𝑅,𝔪) and (𝑆,𝔐) be local rings such that 𝑆 is an 𝑅-algebra
and flat as an 𝑅-module. If 𝔪𝑆 ⊆ 𝔐 holds, then there is an equality,

dim 𝑆 = dim 𝑆/𝔪𝑆 + dim 𝑅 .

Proof. Apply the Going Down Theorem to 𝔓 = 𝔐 and notice that there are
containments 𝔭 = 𝔐 ∩ 𝑅 ⊇ 𝔪𝑆 ∩ 𝑅 ⊇ 𝔪 and, therefore, 𝔭 = 𝔪. □

17.2.30 Theorem. Let (𝑅,𝔪) and (𝑆,𝔐) be local rings such that 𝑆 is an 𝑅-algebra
and flat as an 𝑅-module. If 𝔪𝑆 ⊆ 𝔐 holds, then there is an equality,

cmd 𝑆 = cmd 𝑆/𝔪𝑆 + cmd 𝑅 .

In particular, the following conditions are equivalent.
(i) 𝑆 is Cohen–Macaulay.
(ii) 𝑅 and 𝑆/𝔪𝑆 are Cohen–Macaulay.
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Proof. Applying 16.4.35 with 𝑀 = 𝑅 one gets depth 𝑆 = depth 𝑆/𝔪𝑆 + depth 𝑅,
which combined with the equality of Krull dimensions from 17.2.29 yields the
asserted equality of Cohen–Macaulay defects, see 17.2.2. The asserted equivalence
now holds by 17.2.16. □

17.2.31 Lemma. Let (𝑅,𝔪) be local and 𝑥 ∈ 𝔪 an 𝑅-regular element. The ring
𝑅/(𝑥) is Cohen–Macaulay if and only if 𝑅 is Cohen–Macaulay.

Proof. One has depth 𝑅/(𝑥) = depth𝑅 𝑅/(𝑥) = depth 𝑅− 1 by 16.2.26 and 16.2.31.
As 𝑥 is part of a parameter sequence, one has dim 𝑅/(𝑥) = dim 𝑅 − 1. The assertion
now follows from 17.2.16. □

17.2.32 Proposition. Let 𝑥𝑥𝑥 be an 𝑅-regular sequence. If 𝑅 is Cohen–Macaulay,
then the ring 𝑅/(𝑥𝑥𝑥) is Cohen–Macaulay; the converse holds if 𝑥𝑥𝑥 is contained in the
Jacobson radical of 𝑅.

Proof. By induction it suffices to handle the case 𝑥𝑥𝑥 = 𝑥 of a sequence of length one.
Assume first that 𝑅 is Cohen–Macaulay. A prime ideal in 𝑅/(𝑥) has the form 𝔭/(𝑥),
where 𝔭 is a prime ideal in 𝑅 that contains 𝑥. It follows from 14.4.27 that 𝑥1 is an 𝑅𝔭-
regular element, so by 17.2.31 the ring 𝑅𝔭/( 𝑥1 ) � (𝑅/(𝑥))𝔭/(𝑥 ) is Cohen–Macaulay.
Thus, 𝑅/(𝑥) is Cohen–Macaulay. Assume now that 𝑥 is contained in the Jacobson
radical of 𝑅 and that 𝑅/(𝑥) is Cohen–Macaulay. Every prime ideal 𝔭 is contained in
a maximal ideal 𝔪, and 17.2.8 yields cmd 𝑅𝔭 ⩽ cmd 𝑅𝔪, so it suffices to verify that
𝑅𝔪 is Cohen–Macaulay for every maximal ideal 𝔪 in 𝑅. As 𝑥 belongs to every such
ideal and (𝑅/(𝑥))𝔪/(𝑥 ) � 𝑅𝔪/( 𝑥1 ) is Cohen–Macaulay, it follows from 17.2.31 that
𝑅𝔪 is Cohen–Macaulay, since 𝑥

1 by 14.4.27 is an 𝑅𝔪-regular element. □

17.2.33 Proposition. The following conditions are equivalent.
(i) 𝑅 is Cohen–Macaulay.
(ii) The polynomial algebra 𝑅[𝑥1, . . . , 𝑥𝑛] is Cohen–Macaulay.
(iii) The power series algebra 𝑅⟦𝑥1, . . . , 𝑥𝑛⟧ is Cohen–Macaulay.

Proof. By recursion, it suffices to handle the case 𝑛 = 1; set 𝑥 = 𝑥1.
(i)⇔ (iii): The indeterminate 𝑥 is an 𝑅⟦𝑥⟧-regular element and it belongs by

12.1.25 to the Jacobson radical of 𝑅⟦𝑥⟧. Now invoke 17.2.32.
(ii)⇒ (i): As above the indeterminate 𝑥 is 𝑅[𝑥]-regular, so 𝑅[𝑥] being Cohen–

Macaulay implies by 17.2.32 that 𝑅 is is Cohen–Macaulay.
(i)⇒ (ii): Let 𝔓 be a prime ideal in 𝑅[𝑥]; with 𝔭 = 𝔓 ∩ 𝑅 one has 𝑅[𝑥]𝔓 �

(𝑅𝔭 [𝑥])𝔔 where the prime ideal 𝔔 is the contraction 𝔓𝔓 ∩ 𝑅𝔭 [𝑥]. The 𝑅𝔭-algebra
(𝑅𝔭 [𝑥])𝔔 is flat as an 𝑅𝔭-module by 12.1.24, 1.3.42, and 5.4.24(b). To see that
the local ring 𝑅[𝑥]𝔓 � (𝑅𝔭 [𝑥])𝔔 is Cohen–Macaulay it suffices, since 𝑅𝔭 is
Cohen–Macaulay, to verify that the quotient ring (𝑅𝔭 [𝑥])𝔔/𝔭𝔭 (𝑅𝔭 [𝑥])𝔔 is Cohen–
Macaulay, see 17.2.30. This quotient ring is a localization of the polynomial algebra
κ (𝔭) [𝑥] and hence Cohen–Macaulay by 17.2.27. Thus 𝑅[𝑥]𝔓 and, therefore, 𝑅[𝑥]
is Cohen–Macaulay. □

17.2.34 Example. Let 𝕜 be a field; it has Krull dimension 0, so it is Cohen–Macaulay
and by 17.2.33 so are the 𝕜-algebras 𝕜 [𝑥1, . . . , 𝑥𝑛] and 𝕜⟦𝑥1, . . . , 𝑥𝑛⟧.
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The next example shows that the local assumption in 17.2.20 and, therefore, also
in 17.2.14, is crucial.

17.2.35 Example. Let 𝕜 be a field and consider the algebra 𝑅 = 𝕜⟦𝑥⟧[𝑦]. It follows
from 17.2.33 and 17.2.34 that 𝑅 is Cohen–Macaulay and hence catenary, see 17.2.28.
Further, 𝑅 is an integral domain and hence trivially equidimensional. The quotient
ring 𝑅/(𝑥𝑦−1) is the field of fractions of 𝕜⟦𝑥⟧ so𝔪 = (𝑥𝑦−1) is a maximal ideal. As
𝔪 is principal, Krull’s principal ideal theorem, see also 18.4.19, yields dim 𝑅𝔪 = 1,
so 𝑅 is not equicodimensional and one has dim 𝑅 = 2 > 1+ 0 = dim 𝑅𝔪 + dim 𝑅/𝔪.

Exercises

E 17.2.1 Let (𝑅,𝔪) be local and 𝑀 a derived 𝔪-torsion 𝑅-complex. Show that the equality
amp𝑀 = dim𝑅 𝑀 − depth𝑅 𝑀 holds.

E 17.2.2 Let 𝑅 be Cohen–Macaulay of Krull dimension 𝑑. Show that fd𝑅 H𝑑𝔪 (𝑅) = 𝑑 holds.
(See E 18.5.3 for a stronger statement.)

E 17.2.3 Show that 𝑅 is Cohen–Macaulay if and only if the local ring 𝑅𝔪 is Cohen–Macaulay for
every maximal ideal 𝔪 in 𝑅.

E 17.2.4 Show that the product ring 𝑅 × 𝑆 is Cohen–Macaulay if and only if 𝑅 and 𝑆 are
Cohen–Macaulay.

E 17.2.5 Let 𝑅 and 𝑀 be as in 17.2.24. (a) Theorem 16.2.14 yields Hom𝑅 (𝕜, 𝑅) ≠ 0; find a
non-zero homomorphism 𝕜 → 𝑅. (b) Show that depth𝑅 𝑀 = 1 holds.

E 17.2.6 Let (𝑅,𝔪) and (𝑆,𝔐) be local rings such that 𝑆 is an𝑅-algebra and flat as an𝑅-module.
Show that if 𝔪𝑆 ⊆ 𝔐 holds, then there is an equality id 𝑆 = id 𝑆/𝔪𝑆 + id𝑅.

E 17.2.7 Let (𝑅,𝔪) be a Cohen–Macaulay local ring and 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 a sequence in 𝔪. Show
that 𝑥𝑥𝑥 is 𝑅-regular if and only if dim𝑅/(𝑥𝑥𝑥 ) = dim𝑅 − 𝑛 holds. Hint: 17.2.9.

E 17.2.8 Let 𝑅 be a Cohen–Macaulay ring and 𝔞 an ideal in 𝑅 generated by a sequence 𝑥1, . . . , 𝑥𝑛.
Assume that dim𝑅𝔭 = 𝑛 holds for every prime ideal 𝔭 in Min𝑅 𝑅/𝔞. (a) For 𝔮 in
Ass𝑅 𝑅/𝔞 show that 𝑥1

1 , . . . ,
𝑥𝑛
1 is an 𝑅𝔮-regular sequence. (b) Show that the only

associated prime ideals of the ring 𝑅/𝔞 are its minimal prime ideals.

17.3 Homological Dimensions

Synopsis. Flat dimension; ∼ vs. localization, ∼ of derived 𝔞-torsion complex; Chouinard Formula
for ∼; injective dimension; ∼ vs. colocalization; ∼ vs. derived cobase change; ∼ vs. localization; ∼
of derived 𝔞-complete complex; projective dimension.

The injective and flat dimensions of an 𝑅-complex can by 15.4.7 and 15.4.17 be
detected by vanishing of Ext and Tor with coefficients in integral domains 𝑅/𝔭.
When combined with the techniques of localization and colocalization, this yields
additional ways to compute these dimensions. The projective dimension, on the other
hand, is less amenable to these techniques; a simple example, 17.3.25, illustrates why.
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Flat Dimension

The flat dimension of a complex can be detected by vanishing of Tor with coefficients
in residue fields. This has a certain advantage: Via 16.3.3 one can express the degree
where vanishing starts in terms of the depth invariant, and that provides for 17.3.4.

17.3.1 Theorem. Let 𝑀 be an 𝑅-complex; there are equalities,

fd𝑅 𝑀 = sup{sup (κ (𝔭) ⊗L
𝑅 𝑀) | 𝔭 ∈ supp𝑅 𝑀 }

= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ Spec 𝑅 : Tor𝑅𝑚 (κ (𝔭), 𝑀) ≠ 0} .

Proof. The second equality is immediate from 7.4.19 and the definition of support,
15.1.5. To see that the first equality holds, notice that the inequality “⩾” is evident
from 15.4.17. To prove the opposite inequality, assume that there is an integer 𝑛
such that 𝑛 ⩾ sup (κ (𝔭) ⊗L

𝑅
𝑀) holds for all 𝔭 ∈ supp𝑅 𝑀 , and assume towards

a contradiction that there exists an ideal 𝔞 in 𝑅 with sup (𝑅/𝔞 ⊗L
𝑅
𝑀) ⩾ 𝑛 + 1,

cf. 15.4.17. Considered as a functor on the module category,

F =
∐

𝑣⩾𝑛+1
H𝑣 ( ⊗L

𝑅 𝑀) =
∐

𝑣⩾𝑛+1
Tor𝑅𝑣 ( , 𝑀) ,

is half exact by 7.4.29 and 3.1.6. It follows from 12.4.2 that there is a prime ideal
𝔮 in 𝑅 with F(𝑅/𝔮) ≠ 0 and F(𝑅/𝔟) = 0 for every ideal 𝔟 ⊃ 𝔮. To achieve a
contradiction, it suffices to show that F(𝑅/𝔮) vanishes, which per 2.5.25(b) means
that the 𝑅/𝔮-complex (𝑅/𝔮 ⊗L

𝑅
𝑀)Ě𝑛+1 is acyclic. By 15.1.15 this is tantamount to

supp𝑅/𝔮 (𝑅/𝔮 ⊗L
𝑅
𝑀)Ě𝑛+1 being empty.

Set 𝑋 = 𝑅/𝔮 ⊗L
𝑅
𝑀; by 7.6.6(c) there is a distingiushed triangle in D(𝑅/𝔮),

(⋄) 𝑋Ě𝑛+1 −→ 𝑋 −→ 𝑋Ď𝑛 −→ Σ𝑋Ě𝑛+1 .

Recall that one has Spec 𝑅/𝔮 = {𝔭/𝔮 | 𝔭 ∈ Spec 𝑅 with 𝔮 ⊆ 𝔭} and let 𝔭 ∈ Spec 𝑅
be a prime ideal that contains 𝔮. The definition of 𝑋 combined with 12.3.31 and the
isomorphism κ (𝔭/𝔮) � κ (𝔭) from 15.1.2 yields

sup (κ (𝔭/𝔮) ⊗L
𝑅/𝔮 𝑋) = sup (κ (𝔭) ⊗L

𝑅 𝑀) ⩽ 𝑛 .

Applying κ (𝔭/𝔮) ⊗L
𝑅/𝔮 to (⋄) and invoking 6.5.19 and 7.6.8 yields an isomorphism,

(H(κ (𝔭/𝔮) ⊗L
𝑅/𝔮 𝑋Ď𝑛))ě𝑛+2 � ΣH(κ (𝔭/𝔮) ⊗L

𝑅/𝔮 𝑋Ě𝑛+1) .

The goal is now to prove that the right-hand complex is zero, which we accomplish
by showing that the 𝑅/𝔮-complex 𝑋Ď𝑛 has flat dimension at most 𝑛, cf. 15.4.17.

Let 𝔟 be an ideal in 𝑅 that contains 𝔮. For 𝔟 = 𝔮 one evidently has

(★) sup ((𝑅/𝔮)/(𝔟/𝔮) ⊗L
𝑅/𝔮 𝑋Ď𝑛) = sup (𝑅/𝔮 ⊗L

𝑅/𝔮 𝑋Ď𝑛) = sup 𝑋Ď𝑛 ⩽ 𝑛 .

For 𝔮 ⊂ 𝔟, the definition of 𝑋 together with 12.3.31, the isomorphism (𝑅/𝔮)/(𝔟/𝔮) �
𝑅/𝔟, and the assumption on 𝔮 yields

(††) sup ((𝑅/𝔮)/(𝔟/𝔮) ⊗L
𝑅/𝔮 𝑋) = sup (𝑅/𝔟 ⊗L

𝑅 𝑀) ⩽ 𝑛 .
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In particular, one has Tor𝑅/𝔮
𝑛+1 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋) = 0. Associated to (⋄) there is by

7.4.29 an exact sequence,

Tor𝑅/𝔮
𝑛+1 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋) −→ Tor𝑅/𝔮

𝑛+1 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋Ď𝑛)

−→ Tor𝑅/𝔮𝑛 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋Ě𝑛+1) ,

which yields

(‡‡) Tor𝑅/𝔮
𝑛+1 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋Ď𝑛) = 0 ,

as Tor𝑅/𝔮𝑛 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋Ě𝑛+1) = 0 holds by 7.6.8. Per 15.4.17 the desired inequality
fd𝑅/𝔮 𝑋Ď𝑛 ⩽ 𝑛 now follows from (★) and (‡‡). □

Remark. The equalities in 17.3.1 appeared already in Avramov and Foxby’s 1991 paper [21]
as did the companion result for injective dimension, 17.3.11, for complexes with bounded above
homology. This boundedness condition was removed in a 2017 paper [64] by Christensen and
Iyengar, which also removed assumptions on the ring from earlier versions of 17.3.15.

The flat dimension of a complex can be detected locally; in particular, it does not
grow under localization.

17.3.2 Corollary. Let 𝑀 be an 𝑅-complex; there are equalities,

fd𝑅 𝑀 = sup{fd𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅}

= sup{fd𝑅𝔭
𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } .

Proof. For prime ideals 𝔮 ⊆ 𝔭 in 𝑅, the complexes κ (𝔮𝔭) ⊗L
𝑅𝔭
𝑀𝔭 and κ (𝔮) ⊗L

𝑅
𝑀

are isomorphic in D(𝑅𝔭) by 15.1.22. Now apply 17.3.1. □

17.3.3 Corollary. Let 𝔭 be a prime ideal in 𝑅 and 𝑁 an 𝑅𝔭-complex; one has

fd𝑅𝔭
𝑁 = fd𝑅 𝑁 .

Proof. The inequality “⩽” holds by 17.3.2, per idempotence of localization, see
14.1.14(a). The opposite inequality holds by 15.4.21, since 𝑅𝔭 per 1.3.42 is flat as
an 𝑅-module. □

The next result is reminiscent of the Auslander–Buchsbaum Formula 16.4.2 and
originally due to Chouinard [51].

17.3.4 Corollary. Let 𝑀 be an 𝑅-complex. If fd𝑅 𝑀 is finite, then one has

fd𝑅 𝑀 = sup{depth 𝑅𝔭 − depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅}

= sup{depth 𝑅𝔭 − depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } .

Proof. For every prime ideal 𝔭 in 𝑅 the 𝑅𝔭-complex 𝑀𝔭 has finite flat dimension,
see for example 17.3.2. By 14.1.16(b) and 16.3.3 one now has

sup (κ (𝔭) ⊗L
𝑅 𝑀) = sup (κ (𝔭) ⊗L

𝑅𝔭
𝑀𝔭) = depth 𝑅𝔭 − depth𝑅𝔭

𝑀𝔭 ,

and by 17.1.6 this quantity is −∞ if 𝔭 is not in supp𝑅 𝑀 . Now apply 17.3.1. □
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Derived Torsion Complexes

The next theorem computes, in particular, the flat dimension of a derived 𝔞-torsion
complex, which by 15.4.23 is the same over 𝑅 and 𝑅𝔞 . The injective dimension
of such a complex over 𝑅 is computed in 15.4.12 and compared to the injective
dimension over 𝑅𝔞 in 15.4.10 and 16.1.20.

17.3.5 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex; there is an equality,

fd𝑅 RΓ𝔞 (𝑀) = sup{sup (κ (𝔭) ⊗L
𝑅 𝑀) | 𝔭 ∈ V(𝔞) ∩ supp𝑅 𝑀 }

= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ V(𝔞) : Tor𝑅𝑚 (κ (𝔭), 𝑀) ≠ 0} .

Proof. By 15.1.27 one has supp𝑅 RΓ𝔞 (𝑀) = V(𝔞) ∩ supp𝑅 𝑀 . In view of 15.1.26
the asserted equalities hold by 17.3.1 applied to the 𝑅-complex RΓ𝔞 (𝑀). □

17.3.6 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝔞-torsion 𝑅-module. One has

fd𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | ∃ 𝔭 ∈ V(𝔞) : Tor𝑅𝑚 (κ (𝔭), 𝑀) ≠ 0} .

Proof. By 13.3.30 the module 𝑀 is derived 𝔞-torsion, so 17.3.5 applies. □

The next corollary computes, in particular, the flat dimension of a derived 𝔪-
torsion complex.

17.3.7 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex; there are equalities,

fd𝑅 RΓ𝔪 (𝑀) = sup (𝒌 ⊗L
𝑅 𝑀) = sup{𝑚 ∈ ℤ | Tor𝑅𝑚 (𝒌, 𝑀) ≠ 0} .

Proof. This is the special case 𝔞 = 𝔪 of 17.3.5. □

17.3.8 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝔪-torsion 𝑅-module. One has

fd𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | Tor𝑅𝑚 (𝒌, 𝑀) ≠ 0} .

Proof. This is the special case 𝔞 = 𝔪 of 17.3.6. □

17.3.9 Proposition. Let (𝑅,𝔪) be local and 𝑀 a complex in Df
⊐ (𝑅). One has:

fd
𝑅

RΓ𝔪 (𝑀) = fd𝑅 RΓ𝔪 (𝑀) = pd𝑅 𝑀 .

Proof. The first equality holds by 15.4.23. Since fd𝑅 RΓ𝔪 (𝑀) and pd𝑅 𝑀 are both
equal to sup (𝒌 ⊗L

𝑅
𝑀), see 17.3.7 and 16.4.1, the second equality follows. □

The next example supplements 11.4.26.

17.3.10 Example. Let (𝑅,𝔪) be local and 𝑥𝑥𝑥 a sequence that generates𝔪. By 13.3.18
one has RΓ𝔪 (𝑅) ≃ Č𝑅(𝑥𝑥𝑥) in D(𝑅), so 17.3.9 yields the first equality below,

fd𝑅 Č𝑅(𝑥𝑥𝑥) = 0 = pd𝑅 Č𝑅(𝑥𝑥𝑥) .

The second equality holds as fd𝑅 Č𝑅(𝑥𝑥𝑥) ⩽ pd𝑅 Č𝑅(𝑥𝑥𝑥) ⩽ 0, see 15.4.18 and 11.4.26.
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Injective Dimension

The injective dimension of a complex is detected by vanishing of Ext with coefficients
in residue fields. Via 16.3.11 one can express the degree where vanishing starts in
terms of depth and width, which leads to 17.3.14.

17.3.11 Theorem. Let 𝑀 be an 𝑅-complex; there are equalities,

id𝑅 𝑀 = sup{− inf RHom𝑅 (κ (𝔭), 𝑀) | 𝔭 ∈ cosupp𝑅 𝑀 }
= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ Spec 𝑅 : Ext𝑚𝑅 (κ (𝔭), 𝑀) ≠ 0} .

Proof. The second equality follows immediately from 7.3.24 and the definition of
cosupport, 15.2.1. To see that the first equality holds, notice that the inequality “⩾” is
evident from 15.4.7. To prove the opposite inequality, assume that there is an integer
𝑛 such that 𝑛 ⩾ − inf RHom𝑅 (κ (𝔭), 𝑀) holds for all 𝔭 ∈ cosupp𝑅 𝑀 , and assume
towards a contradiction that there is an ideal 𝔞 in 𝑅 with − inf RHom𝑅 (𝑅/𝔞, 𝑀) ⩾
𝑛 + 1, cf. 15.4.7. Considered as a functor on the module category,

G =
∏

𝑣⩾𝑛+1
H−𝑣 (RHom𝑅 ( , 𝑀)) =

∏
𝑣⩾𝑛+1

Ext𝑣𝑅 ( , 𝑀) ,

is half exact by 7.3.35 and 3.1.18. It follows from 12.4.8 that there is a prime ideal
𝔮 in 𝑅 with G(𝑅/𝔮) ≠ 0 and G(𝑅/𝔟) = 0 for every ideal 𝔟 ⊃ 𝔮. To achieve a con-
tradiction, it suffices to show that G(𝑅/𝔮) vanishes, which per 2.5.24(b) means that
the 𝑅/𝔮-complex RHom𝑅 (𝑅/𝔮, 𝑀)Ď−(𝑛+1) is acyclic. By 15.2.8 this is tantamount
to cosupp𝑅/𝔮 RHom𝑅 (𝑅/𝔮, 𝑀)Ď−(𝑛+1) being empty.

Set 𝑋 = RHom𝑅 (𝑅/𝔮, 𝑀); by 7.6.6(c) there is a distinguished triangle inD(𝑅/𝔮),

(⋄) 𝑋Ě−𝑛 −→ 𝑋 −→ 𝑋Ď−(𝑛+1) −→ Σ𝑋Ě−𝑛 .

Recall that one has Spec 𝑅/𝔮 = {𝔭/𝔮 | 𝔭 ∈ Spec 𝑅 with 𝔮 ⊆ 𝔭} and let 𝔭 ∈ Spec 𝑅
be a prime ideal that contains 𝔮. The definition of 𝑋 combined with 12.3.36 and the
isomorphism κ (𝔭/𝔮) � κ (𝔭) of 𝑅/𝔮-modules from 15.1.2 yields

− inf RHom𝑅/𝔮 (κ (𝔭/𝔮), 𝑋) = − inf RHom𝑅 (κ (𝔭), 𝑀) ⩽ 𝑛 .

Applying the functor RHom𝑅/𝔮 (κ (𝔭/𝔮), ) to (⋄) and invoking 6.5.19, 7.6.7, and
2.2.15 one gets isomorphisms,

Σ−1H(RHom𝑅/𝔮 (κ (𝔭/𝔮), 𝑋Ď−(𝑛+1) )) � (H(RHom𝑅/𝔮 (κ (𝔭/𝔮), 𝑋Ě−𝑛)))ď−(𝑛+2) .

The goal is to prove that the left-hand complex is zero, which we accomplish by
showing that the 𝑅/𝔮-complex 𝑋Ě−𝑛 has injective dimension at most 𝑛.

Let 𝔟 be an ideal in 𝑅 that contains 𝔮. For 𝔟 = 𝔮 one evidently has

(♭)
− inf RHom𝑅/𝔮 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋Ě−𝑛) = − inf RHom𝑅/𝔮 (𝑅/𝔮, 𝑋Ě−𝑛)

= − inf 𝑋Ě−𝑛

⩽ 𝑛 .

For 𝔮 ⊂ 𝔟 the definition of 𝑋 together with 12.3.36, the isomorphism (𝑅/𝔮)/(𝔟/𝔮) �
𝑅/𝔟, and the assumption on 𝔮 yields

8-Mar-2024 Draft - use at own risk



17.3 Homological Dimensions 795

(†) − inf RHom𝑅/𝔮 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋) = − inf RHom𝑅 (𝑅/𝔟, 𝑀) ⩽ 𝑛 .

In particular, one has Ext𝑛+1
𝑅/𝔮 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋) = 0. Associated to (⋄) there is by

7.3.35 an exact sequence,

Ext𝑛
𝑅/𝔮 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋Ď−(𝑛+1) ) −→ Ext𝑛+1

𝑅/𝔮 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋Ě−𝑛)

−→ Ext𝑛+1
𝑅/𝔮 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋) ,

which yields

(‡) Ext𝑛+1
𝑅/𝔮 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋Ě−𝑛) = 0 ,

as Ext𝑛
𝑅/𝔮 ((𝑅/𝔮)/(𝔟/𝔮), 𝑋Ď−(𝑛+1) ) = 0 holds by 7.6.7. Per 15.4.7 the desired in-

equality id𝑅/𝔮 𝑋Ě−𝑛 ⩽ 𝑛 now follows from (♭) and (‡). □

Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅-complex. It is an elementary fact,
see 14.1.16(b), that Tor𝑅𝑣 (κ (𝔭), 𝑀) can be computed locally as Tor𝑅𝔭

𝑣 (κ (𝔭), 𝑀𝔭)
and, essentially, that is why it follows straight from 17.3.1 that flat dimension can
be detected locally, as recorded in 17.3.2. One cannot in the same fashion com-
pute Ext𝑣

𝑅
(κ (𝔭), 𝑀) locally; for example one has Ext1ℤ (ℚ,ℤ) ≠ 0 by 7.3.28 but

Ext1
ℚ
(ℚ,ℚ) = 0 as ℚ is a field and hence of global dimension 0, see 8.5.2. As a

consequence, the injective dimension can not in general be detected locally the way
flat dimension can; see 17.5.14 but also 17.3.18. Per 14.1.33(d) the next result is the
conceptual companion to 17.3.2. It shows that the injective dimension of a complex
can be detected colocally; in particular, it does not grow under colocalization.

17.3.12 Corollary. Let 𝑀 be an 𝑅-complex; there are equalities,

id𝑅 𝑀 = sup{id𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) | 𝔭 ∈ Spec 𝑅}

= sup{id𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) | 𝔭 ∈ cosupp𝑅 𝑀 } .

Proof. For prime ideals 𝔮 ⊆ 𝔭 the complexes RHom𝑅𝔭
(κ (𝔮𝔭),RHom𝑅 (𝑅𝔭, 𝑀))

and RHom𝑅 (κ (𝔮), 𝑀) are isomorphic in D(𝑅𝔭) by 15.2.14. Now apply 17.3.11. □

17.3.13 Corollary. Let 𝔭 be a prime ideal in 𝑅 and 𝑁 an 𝑅𝔭-complex; one has

id𝑅𝔭
𝑁 = id𝑅 𝑁 .

Proof. The inequality “⩽” holds by 17.3.12 and the last assertion in 14.1.21(b); the
opposite inequality holds by 15.4.9, as 𝑅𝔭 per 1.3.42 is flat as an 𝑅-module. □

The next corollary is conceptually dual to the Chouinard Formula for flat di-
mension 17.3.4, but the formula for injective dimension found in [51] involves
localizations, not colocalizations; it is proved in 17.5.7.

17.3.14 Corollary. Let 𝑀 be an 𝑅-complex. If id𝑅 𝑀 is finite, then one has

id𝑅 𝑀 = sup{depth 𝑅𝔭 − width𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) | 𝔭 ∈ Spec 𝑅}

= sup{depth 𝑅𝔭 − width𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) | 𝔭 ∈ cosupp𝑅 𝑀 } .
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Proof. For every prime ideal 𝔭 in 𝑅 the 𝑅𝔭-complex RHom𝑅 (𝑅𝔭, 𝑀) has finite
injective dimension, see e.g. 17.3.12. By 14.1.33(d) and 16.3.11 one now has

− inf RHom𝑅 (κ (𝔭), 𝑀) = − inf RHom𝑅𝔭
(κ (𝔭),RHom𝑅 (𝑅𝔭, 𝑀))

= depth 𝑅𝔭 − width𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) ,

and by 17.1.14 this quantity is −∞ if 𝔭 is not in cosupp𝑅 𝑀 . Now apply 17.3.11. □

17.3.15 Theorem. Let 𝐹 be a flat 𝑅-module and 𝑀 an 𝑅-complex. One has

id𝑅 RHom𝑅 (𝐹, 𝑀) ⩽ id𝑅 𝑀 ,

and equality holds if 𝐹 is faithfully flat.

Proof. The inequality holds by 8.3.15(a). Assume now that 𝐹 is faithfully flat and
let 𝔭 be a prime ideal in 𝑅. By adjunction 12.3.8 one has

RHom𝑅 (κ (𝔭),RHom𝑅 (𝐹, 𝑀)) ≃ RHom𝑅 (𝐹 ⊗L
𝑅 κ (𝔭), 𝑀) .

The module 𝐹 ⊗𝑅 κ (𝔭) ≃ 𝐹 ⊗L
𝑅
κ (𝔭) is a non-zero κ (𝔭)-vector space, see 15.1.6,

so one has 𝐹 ⊗𝑅 κ (𝔭) � κ (𝔭) (𝑈) for some set𝑈 ≠ ∅. By 12.2.2 and 3.1.23 one has
inf RHom𝑅 (κ (𝔭) (𝑈) , 𝑀) = inf RHom𝑅 (κ (𝔭), 𝑀), so the asserted equality follows
from 17.3.11. □

17.3.16 Theorem. Let 𝑆 be an 𝑅-algebra and 𝑀 an 𝑅-complex. One has

id𝑆 RHom𝑅 (𝑆, 𝑀) ⩽ id𝑅 𝑀 ,

and equality holds if 𝑆 is faithfully flat as an 𝑅-module.

Proof. The inequality is a special case of 8.2.4. Assuming that 𝑆 is faithfully flat as
an 𝑅-module, the (in)equalities id𝑅 𝑀 = id𝑅 RHom𝑅 (𝑆, 𝑀) ⩽ id𝑆 RHom𝑅 (𝑆, 𝑀)
hold by 17.3.15 and 15.4.9. □

Injective Dimension vs. Localization

17.3.17 Proposition. Let 𝑀 be an 𝑅-complex. If 𝑀 is in D⊏ (𝑅), then one has

id𝑅 𝑀 = sup{− inf RHom𝑅𝔭
(κ (𝔭), 𝑀𝔭) | 𝔭 ∈ supp𝑅 𝑀 }

= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ Spec 𝑅 : Ext𝑚𝑅𝔭
(κ (𝔭), 𝑀𝔭) ≠ 0} .

Proof. The second equality follows from 17.1.6, 16.2.23, and 7.3.24. To prove the
first equality, note that “⩾” holds by 15.4.7, as one has

− inf RHom𝑅𝔭
(κ (𝔭), 𝑀𝔭) = − inf RHom𝑅 (𝑅/𝔭, 𝑀)𝔭 ⩽ − inf RHom𝑅 (𝑅/𝔭, 𝑀)

by 14.1.23 and 14.1.11(c). For the converse inequality, let 𝔞 be an ideal in 𝑅 and
𝑚 an integer with Ext𝑚

𝑅
(𝑅/𝔞, 𝑀) ≠ 0. The functor Ext𝑚

𝑅
( , 𝑀) is half exact and

𝑅-linear, see 12.2.5, so by 12.4.9 there is a prime ideal 𝔭 with Ext𝑚
𝑅
(𝑅/𝔭, 𝑀)𝔭 ≠ 0,

and there is an isomorphism Ext𝑚
𝑅
(𝑅/𝔭, 𝑀)𝔭 � Ext𝑚

𝑅𝔭
(κ (𝔭), 𝑀𝔭) by 14.1.23. In

view of 15.4.7 this proves the opposite inequality. □
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The injective dimension of a complex with appropriately bounded homology can
be measured locally; in particular, it does not grow under localization. The bound-
edness condition is necessary, see 17.5.14 which also shows that the boundedness
condition in 17.3.17 is needed.

17.3.18 Corollary. Let 𝑀 be an 𝑅-complex. If 𝑀 is in D⊏ (𝑅), then one has

id𝑅 𝑀 = sup{id𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅}

= sup{id𝑅𝔭
𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } .

Proof. By 5.3.26 the complex 𝑀 has a bounded above semi-injective replacement.
Thus, for every prime ideal 𝔭 in 𝑅 one has id𝑅 𝑀 ⩾ id𝑅𝔭

𝑀𝔭 by 15.4.7 and 14.1.29(a).
Further, id𝑅𝔭

𝑀𝔭 ⩾ − inf RHom𝑅𝔭
(κ (𝔭), 𝑀𝔭) holds by another application of 15.4.7.

Now invoke 17.3.17. □

Derived Complete Complexes

For an ideal 𝔞 in 𝑅 and an 𝑅-complex 𝑀 , the object LΛ𝔞 (𝑀) is an 𝑅𝔞-complex, see
11.3.4. The next result is dual to 15.4.23.

17.3.19 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex; one has

id𝑅 LΛ𝔞 (𝑀) = id
𝑅𝔞 LΛ𝔞 (𝑀) .

Proof. Recall from 13.1.27 that 𝑅𝔞 is flat as an 𝑅-module. In view of 13.4.17 the
inequality “⩾” follows from 17.3.16, and the inequality “⩽” holds by 15.4.9. □

The next theorem computes, in particular, the injective dimension of a derived
𝔞-complete complex, which by theorem above is the same over 𝑅 and 𝑅𝔞 . The flat
dimension of such a complex over 𝑅 is computed in 15.4.25 and compared to the
flat dimension over 𝑅𝔞 in 15.4.22 and 16.1.21.

17.3.20 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex; there is an equality,

id𝑅 LΛ𝔞 (𝑀) = sup{− inf RHom𝑅 (κ (𝔭), 𝑀) | 𝔭 ∈ V(𝔞) ∩ cosupp𝑅 𝑀 }
= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ V(𝔞) : Ext𝑚𝑅 (κ (𝔭), 𝑀) ≠ 0} .

Proof. By 15.2.17 one has cosupp𝑅 LΛ𝔞 (𝑀) = V(𝔞) ∩ cosupp𝑅 𝑀 . Per 15.2.16 the
asserted equalities hold by 17.3.11 applied to the 𝑅-complex LΛ𝔞 (𝑀). □

17.3.21 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝔞-complete 𝑅-module. One has

id𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | ∃ 𝔭 ∈ V(𝔞) : Ext𝑚𝑅 (κ (𝔭), 𝑀) ≠ 0} .

Proof. By 13.1.33 the module 𝑀 is derived 𝔞-complete, so 17.3.20 applies. □

The next corollary computes, in particular, the injective dimension of a derived
𝔪-complete complex.
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17.3.22 Corollary. Let (𝑅,𝔪, 𝒌) be local and𝑀 an 𝑅-complex; there are equalities,

id𝑅 LΛ𝔪 (𝑀) = − inf RHom𝑅 (𝒌, 𝑀) = sup{𝑚 ∈ ℤ | Ext𝑚𝑅 (𝒌, 𝑀) ≠ 0} .

Proof. This is the special case 𝔞 = 𝔪 of 17.3.20. □

17.3.23 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an𝔪-complete 𝑅-module. One has

id𝑅 𝑀 = sup{𝑚 ∈ ℕ0 | Ext𝑚𝑅 (𝒌, 𝑀) ≠ 0} .

Proof. This is the special case 𝔞 = 𝔪 of 17.3.21. □

17.3.24 Proposition. Let 𝑅 be local and 𝑀 a complex in Df
⊏ (𝑅). One has:

id
𝑅
(𝑅 ⊗𝑅 𝑀) = id𝑅 (𝑅 ⊗𝑅 𝑀) = id𝑅 𝑀 .

Proof. Let 𝔪 be the maximal ideal and 𝒌 the residue field of 𝑅. By 13.2.7 one has
𝑅 ⊗𝑅 𝑀 ≃ LΛ𝔪 (𝑀) in D(𝑅), so the first equality holds by 17.3.19. The quantities
id𝑅 (𝑅 ⊗𝑅 𝑀) and id𝑅 𝑀 are both equal to − inf RHom𝑅 (𝒌, 𝑀) by 17.3.22 and
16.4.8, and hence the second equality follows. □

Projective Dimension

By 17.3.2 the flat dimension of a complex can be computed locally; in particular
it can not grow under localization. The projective dimension can not grow under
localization either, see 8.1.4, but the next example shows that it may not be possible
to compute it locally, not even for modules over a ring of global dimension 1.

17.3.25 Example. Let ℙ denote the set of prime numbers. Let 𝑀 be the submodule
ℤ⟨ 1

𝑝
| 𝑝 ∈ ℙ⟩ of the ℤ-module ℚ. For every 𝑝 ∈ ℙ the module 𝑀𝑝ℤ = ℤ𝑝ℤ⟨ 1

𝑝
⟩

is a free ℤ𝑝ℤ-module, and one has 𝑀0 = ℚ = ℤ0, so 𝑀𝔭 is a free ℤ𝔭-module for
every 𝔭 ∈ Specℤ = {0} ∪ { 𝑝ℤ | 𝑝 ∈ ℙ}, but 𝑀 is not a free ℤ-module and hence
not projective, see 1.3.21.

For finitely generated modules the flat and projective dimensions agree, whence
the latter can also be computed locally.

17.3.26 Corollary. Let 𝑀 be an 𝑅-complex. If 𝑀 is in Df
⊐ (𝑅), then one has

pd𝑅 𝑀 = sup{pd𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅}

= sup{pd𝑅𝔭
𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } .

Proof. In view of 14.1.11 the equality follows from 15.4.18 and 17.3.2. □

Finiteness of a homological dimension locally at every prime does not per se
guarantee global finiteness, but for the projective dimension of finitely generated
modules it does. This is a theorem due to Bass and Murthy [33].

17.3.27 Theorem. Let𝑀 be a complex inDf
⊏⊐ (𝑅); the next conditions are equivalent.

(i) pd𝑅 𝑀 is finite.
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(ii) pd𝑅𝔭
𝑀𝔭 is finite for every 𝔭 ∈ Spec 𝑅 .

(iii) pd𝑅𝔭
𝑀𝔭 is finite for every 𝔭 ∈ supp𝑅 𝑀 .

Proof. The projective dimension of an acyclic complex is −∞, so conditions (ii)
and (iii) are equivalent by 14.1.12 and 15.1.9. Further, (i) implies (ii) by 17.3.26;
we proceed to prove the converse. Assume without loss of generality that 𝑀 is not
acyclic, and let 𝑃 be a degreewise finitely generated semi-projective replacement of
𝑀 , see 5.2.16. For every integer 𝑛 set

𝔞𝑛 = (0 :𝑅 Ext1𝑅 (C𝑛 (𝑃),C𝑛+1 (𝑃))) ;

by 12.2.6 these Ext modules are finitely generated, so 14.1.1 yields

Supp𝑅 Ext1𝑅 (C𝑛 (𝑃),C𝑛+1 (𝑃)) = V(𝔞𝑛) .

For every prime ideal 𝔭 in 𝑅 the complex 𝑃𝔭 is a semi-projective replacement of
𝑀𝔭, see 14.1.27, and one has Ext1𝑅 (C𝑛 (𝑃),C𝑛+1 (𝑃))𝔭 � Ext1𝑅𝔭

(C𝑛 (𝑃𝔭),C𝑛+1 (𝑃𝔭))
by 14.1.23 and 2.2.19. By assumption 𝑠 = sup𝑀 is an integer. For 𝑛 ⩾ 𝑠 it follows
from 14.1.11(c) and 15.4.1 that one has 𝔭 ∈ V(𝔞𝑛) if and only if pd𝑅𝔭

𝑀𝔭 > 𝑛 holds.
Subsequently, these classic support sets form a descending chain,

(★) V(𝔞𝑠) ⊇ V(𝔞𝑠+1) ⊇ · · · ⊇ V(𝔞𝑛) ⊇ V(𝔞𝑛+1) ⊇ · · · ,

and ⋂
𝑛⩾𝑠 V(𝔞𝑛) = ∅ holds by the assumption that pd𝑅𝔭

𝑀𝔭 is finite for every 𝔭. For
𝑛 ⩾ 𝑠 set 𝔯𝑛 =

⋂
𝔭∈V(𝔞𝑛 ) 𝔭. The ascending chain 𝔯𝑠 ⊆ 𝔯𝑠+1 ⊆ · · · ⊆ 𝔯𝑛 ⊆ 𝔯𝑛+1 ⊆ · · ·

of ideals becomes stationary; that is, there exists an𝑚 with 𝔯𝑚 =
⋃
𝑛⩾𝑠 𝔯𝑛. As 𝔯𝑛 is the

radical of 𝔞𝑛 one has V(𝔞𝑛) = V(𝔯𝑛), so also the sequence (★) becomes stationary
at 𝑚. That is, one has V(𝔞𝑚) = ∅ and, therefore, Ext1𝑅 (C𝑚 (𝑃),C𝑚+1 (𝑃)) = 0 and
pd𝑅 𝑀 ⩽ 𝑚 by 15.4.1. □

Remark. As a topological space, Spec𝑅 is compact, i.e. if the intersection of a family {𝑉𝑢 }𝑢∈𝑈
of closed subsets is empty, then already the intersection of a finite subfamily is empty. Eisenbud
[78] and Matsumura [182] both leave this as an exercise; it is essentially solved in the proof above.

The boundedness condition in 17.3.27 is necessary.

17.3.28 Example. Consider the graded ℤ-module 𝑀 with

𝑀𝑣 =

{
ℤ/𝑣ℤ if 𝑣 is a prime

0 if 𝑣 is not a prime .

As there are infinitely many primes one has sup𝑀 = ∞ and, therefore, pdℤ 𝑀 = ∞
per 8.1.3. Nevertheless, for every prime 𝑝 the complex𝑀𝑝ℤ is concentrated in degree
𝑝, see 14.1.2, and hence pdℤ𝑝ℤ 𝑀𝑝ℤ ⩽ 𝑝 + 1 holds by 8.5.2 as ℤ𝑝ℤ is a principal
ideal domain.

17.3.29 Proposition. Let 𝑀 be an 𝑅-complex. If 𝑀 is in Df
⊐ (𝑅), then one has

pd𝑅 𝑀 = sup{− inf RHom𝑅 (𝑀, κ (𝔭)) | 𝔭 ∈ supp𝑅 𝑀 }
= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ Spec 𝑅 : Ext𝑚𝑅 (𝑀, κ (𝔭)) ≠ 0} .
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Proof. Let 𝔭 be a prime ideal in 𝑅. In the next computation the first equality holds
by 14.1.16(b), the second and third equalities follow from 16.4.1 and 14.1.33(c).

sup (κ (𝔭) ⊗L
𝑅 𝑀) = sup (κ (𝔭) ⊗L

𝑅𝔭
𝑀𝔭)

= − inf RHom𝑅𝔭
(𝑀𝔭, κ (𝔭))

= − inf RHom𝑅 (𝑀, κ (𝔭)) .

As pd𝑅 𝑀 = fd𝑅 𝑀 holds by 15.4.18, the asserted equalities follow from 17.3.1. □

Exercises

E 17.3.1 Let 𝑆 be an 𝑅-algebra and 𝐼 an 𝑅-module. Show that if 𝑆 is faithfully flat as an 𝑅-module,
Hom𝑅 (𝑆, 𝐼 ) is an injective 𝑆-module, and Ext𝑚

𝑅
(𝑆, 𝐼 ) = 0 holds for all 𝑚 > 0, then 𝐼

is an injective 𝑅-module. See also E 16.1.8.
E 17.3.2 Let 𝑆 be an 𝑅-algebra, 𝐹 a flat 𝑆-module, and 𝑀 an 𝑅-complex. Show that there is an

inequality id𝑆 RHom𝑅 (𝐹, 𝑀 ) ⩽ id𝑅 𝑀 and equality holds if 𝐹 is faithfully flat over 𝑅.
E 17.3.3 Let (𝑅,𝔪) be local and 𝑀 a derived 𝔪-torsion complex of finite flat dimension. Show

that there is an equality fd𝑅 𝑀 = depth𝑅 + sup𝑀 holds.
E 17.3.4 Let 𝑀 be an 𝑅-complex. Show that there are equalities,

id𝑅 𝑀 = sup{− inf RHom𝑅 (𝑅/𝔭, 𝑀 )𝔭 | 𝔭 ∈ Spec𝑅 }
= sup{− inf (RHom𝑅 (𝑅/𝔭, 𝑀 ) ⊗L

𝑅/𝔭 κ (𝔭) ) | 𝔭 ∈ Spec𝑅 } .
Derive from these equalities 17.3.17 for 𝑀 in to D⊏ (𝑅) .

E 17.3.5 Let (𝑅,𝔪) be local and 𝑀 a complex derived 𝔪-complete complex of finite injective
dimension. Show that there is an equality id𝑅 𝑀 = depth𝑅 − inf 𝑀 holds.

E 17.3.6 Derive the Bass Formula 16.4.11 from the Chouinard Formula 17.3.4.
E 17.3.7 Show that one has FFD𝑅 = sup{FFD𝑅𝔭 | 𝔭 ∈ Spec𝑅 }.
E 17.3.8 Show that one has FFD𝑅 = sup{depth 𝑅𝔭 | 𝔭 ∈ Spec𝑅 }.

17.4 Finitistic Dimensions and Gorenstein Rings

Synopsis. Gorenstein (local) ring; Bass series; finitistic injective/flat/projective dimension; ∼ vs.
depth; ∼ vs. Krull dimension.

Recall from 8.5.16 that the finitistic dimensions capture the suprema of homological
dimensions of modules of finite homological dimension. Recall also from Sect. 15.4
that id 𝑅 is the notation for the injective dimension of 𝑅 as an 𝑅-module.

17.4.1 Theorem. There are (in)equalities,

FID 𝑅 = FFD 𝑅 ⩽ FPD 𝑅 ⩽ id 𝑅 ⩽ gldim 𝑅 ,

and if one of the quantities id 𝑅 or gldim 𝑅 is finite, then equality holds everywhere
to the left of it.

Proof. The (in)equalities hold by 8.5.28, and the statements about equalities follow
from 8.5.21 and 8.5.27. □
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In this section we compare the invariants in 17.4.1 to depth and Krull dimension.
We start with the injective dimension of the ring. Many of the results included here
were proved in a few papers by Auslander and Buchsbaum [11, 12] and Bass [30].

Gorenstein Rings

17.4.2 Definition. A local ring 𝑅 is called Gorenstein if it is Iwanaga–Gorenstein
per 8.5.29; that is, if id 𝑅 is finite.

Remark. Over a local ring 𝑅 one can define that a complex 𝑀 in Df (𝑅) is Gorenstein if the
equality id𝑅 𝑀 = depth𝑅 𝑀 holds; in this way 𝑅 is Gorenstein if it is Gorenstein as an 𝑅-module,
cf. the Bass Formula 16.4.12. Such an approach would be analogous to 17.2.5/17.2.15.

The existence of Gorenstein modules over Cohen–Macaulay local rings was addressed in [90]
and by Reiten [209] and Sharp [228]. When they exist, they are direct sums of copies of a dualizing
module for 𝑅; see also the Remark after 18.2.2 and E 18.2.8.

17.4.3 Example. Let 𝑛 ∈ ℕ. If 𝑝 is a prime, then the Artinian local ring ℤ/𝑝𝑛ℤ
is self-injective, see 8.2.10, and hence Gorenstein. Similarly, if 𝕜 is a field, then the
Artinian local ring 𝕜 [𝑥]/(𝑥𝑛) is Gorenstein.

17.4.4 Proposition. Let 𝑅 be local. If 𝑅 is Gorenstein, then 𝑅 is Cohen–Macaulay
and id 𝑅 = dim 𝑅 holds.

Proof. By 16.4.10 and the Bass Formula 16.4.12 one has dim 𝑅 ⩽ id 𝑅 = depth 𝑅.
The assertions now follow from 17.2.16. □

17.4.5 Corollary. A Gorenstein local ring is equidimensional and catenary.

Proof. The assertions are immediate from 17.4.4 and 17.2.21. □

Notice from 16.4.9 or 17.3.18 that if 𝑅 is a Gorenstein local ring, then so is 𝑅𝔭
for every prime ideal 𝔭 in 𝑅. This justifies the next definition, which extends 17.4.2
and applies to non-local rings.

17.4.6 Definition. If the local ring 𝑅𝔭 is Gorenstein for every prime ideal 𝔭 in 𝑅,
then 𝑅 is called Gorenstein.

17.4.7 Proposition. A Gorenstein ring is Cohen–Macaulay and hence catenary.

Proof. The assertions follow from 17.4.6, 17.4.4, 17.2.25, and 17.2.28. □

17.4.8 Example. If id 𝑅 is finite, then it is immediate from 17.3.18 that 𝑅 is Goren-
stein. By 8.2.10 the ring ℤ/𝑛ℤ is, therefore, Gorenstein for every 𝑛 > 1.

17.4.9 Proposition. If 𝑅 is Gorenstein, then the equality id 𝑅 = dim 𝑅 holds.

Proof. Per 17.3.18 and 14.2.7 the assertion follows from the local case 17.4.4. □

While rings of finite self-injective dimension are Gorenstein, see 17.3.18, a Goren-
stein ring may have infinite self-injective dimension, see 20.2.21.
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17.4.10 Theorem. If 𝑅 is Gorenstein, then there are (in)equalities,

FID 𝑅 = FFD 𝑅 = FPD 𝑅 = id 𝑅 = dim 𝑅 ⩽ gldim 𝑅 ;

equality holds if gldim 𝑅 is finite.

Proof. Assuming first that dim 𝑅 is finite, the (in)equalities hold by 17.4.9 and
17.4.1; by another application of 17.4.1 equality holds if gldim 𝑅 is finite. Assume
now that 𝑅 has infinite Krull dimension. For every prime ideal 𝔭 in 𝑅, one has
dim 𝑅𝔭 = id 𝑅𝔭 = id𝑅 𝑅𝔭 ⩽ FID 𝑅 by 17.4.9, 17.3.13, and 8.5.16. Thus, one has
FID 𝑅 = ∞ and it follows from 17.4.1 that all six quantities are infinite. □

Bass Series of a Gorenstein Local Ring

The following characterization of Gorenstein local rings is complemented by 18.3.14
and 18.4.23.

17.4.11 Proposition. Let 𝑅 be local. The following conditions are equivalent.
(i) 𝑅 is Gorenstein.
(ii) The Bass series I𝑅 (𝑡) is a monomial.
(iii) One has I𝑅 (𝑡) = 𝑡dim𝑅.

Proof. If 𝑅 is Gorenstein, then 17.4.4 and 17.2.16 yield depth 𝑅 = dim 𝑅 = id 𝑅,
so one has I𝑅 (𝑡) = 𝑡dim𝑅 by 16.4.30. In particular, I𝑅 (𝑡) is a monomial, and that
implies by another application of 16.4.30 that id 𝑅 is finite, so 𝑅 is Gorenstein. □

The minimal injective resolution of a Gorenstein ring was first computed by Bass
in the seminal paper [32].

17.4.12 Example. Let 𝑅 be Gorenstein and 𝑅 ≃−−→ 𝐼 a minimal injective resolution,
see B.26. Given a prime ideal 𝔭 in 𝑅, the local ring 𝑅𝔭 has Bass series I𝑅𝔭

(𝑡) = 𝑡dim𝑅𝔭

by 17.4.11. Thus one has μ
dim𝑅𝔭

𝑅𝔭
(𝑅𝔭) = 1 and μ𝑣

𝑅𝔭
(𝑅𝔭) = 0 for 𝑣 ≠ dim 𝑅𝔭. Now it

follows from 16.4.37 that the modules in the complex 𝐼 have the form

𝐼−𝑣 =
∐

dim𝑅𝔭 = 𝑣

E𝑅 (𝑅/𝔭) .

17.4.13 Theorem. Let (𝑅,𝔪) and (𝑆,𝔐) be local rings such that 𝑆 is an 𝑅-algebra
and flat as an 𝑅-module. If 𝔪𝑆 ⊆ 𝔐 holds, then there is an equality of Laurent series,

I𝑆 (𝑡) = I
𝑆/𝔪𝑆 (𝑡) I𝑅 (𝑡) .

In particular, the following conditions are equivalent.
(i) 𝑆 is Gorenstein.
(ii) 𝑅 and 𝑆/𝔪𝑆 are Gorenstein.

Proof. The equality of Laurent series is the special case 𝑀 = 𝑅 of 16.4.35. Since
Bass series have non-negative coefficients, it follows that I

𝑆
(𝑡) is a monomial if and

only if I
𝑆/𝔪𝑆 (𝑡) and I𝑅 (𝑡) are monomials, see 16.4.15. The asserted equivalence now

holds by 17.4.11. □
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Extensions of Gorenstein Rings

Gorenstein rings are special Cohen–Macaulay rings, and just like power series and
polynomial extensions of Cohen–Macaulay rings are Cohen–Macualay, see 17.2.33,
one can similarly generate Gorenstein rings from Gorenstein rings. We record these
results right away and resume the study of finitistic dimensions in 17.4.18.

17.4.14 Lemma. Let (𝑅,𝔪) be local and 𝑥 ∈ 𝔪 an 𝑅-regular element. The ring
𝑅/(𝑥) is Gorenstein if and only if 𝑅 is Gorenstein.

Proof. Let 𝒌 be the common residue field of 𝑅 and 𝑅/(𝑥). In D(𝑅/(𝑥)) one has
𝑅/(𝑥) ⊗L

𝑅
𝒌 ≃ K𝑅 (𝑥) ⊗𝑅 𝒌 ≃ Σ𝒌 ⊕ 𝒌 by 16.4.23 and 16.4.25. This explains the first

isomorphism in the computation below. The second isomorphism holds by 12.3.32,
and the remaining isomorphisms come from 16.4.23, the unitor 12.3.3, and tensor
evaluation 12.3.23(c).

RHom𝑅/(𝑥 ) (Σ𝒌 ⊕ 𝒌, 𝑅/(𝑥)) ≃ RHom𝑅/(𝑥 ) (𝑅/(𝑥) ⊗L
𝑅 𝒌, 𝑅/(𝑥))

≃ RHom𝑅 (𝒌, 𝑅/(𝑥))
≃ RHom𝑅 (𝒌,K𝑅 (𝑥))
≃ RHom𝑅 (𝒌, 𝑅) ⊗L

𝑅 K𝑅 (𝑥) .

As the functor RHom is additive and the complex RHom𝑅 (𝒌, 𝑅) by 12.3.34 belongs
to Df (𝑅), it follows from 14.3.5(b) that − inf RHom𝑅 (𝒌, 𝑅) is finite if and only if
− inf RHom𝑅/(𝑥 ) (𝒌, 𝑅/(𝑥)) is finite. Now invoke 16.4.8 and 17.4.2. □

17.4.15 Proposition. Let 𝑥𝑥𝑥 be an 𝑅-regular sequence. If 𝑅 is Gorenstein, then the
ring 𝑅/(𝑥𝑥𝑥) is Gorenstein; the converse holds if 𝑥𝑥𝑥 is in the Jacobson radical of 𝑅.

Proof. By induction it suffices to handle the case 𝑥𝑥𝑥 = 𝑥 of a sequence of length one.
Assume first that 𝑅 is Gorenstein. A prime ideal in 𝑅/(𝑥) has the form 𝔭/(𝑥), where
𝔭 is a prime ideal in 𝑅 that contains 𝑥. It follows from 14.4.27 that 𝑥1 is an 𝑅𝔭-regular
element, so by 17.4.14 the ring 𝑅𝔭/( 𝑥1 ) � (𝑅/(𝑥))𝔭/(𝑥 ) is Gorenstein. Thus, 𝑅/(𝑥)
is Gorenstein. Assume now that 𝑥 is contained in the Jacobson radical of 𝑅 and that
𝑅/(𝑥) is Gorenstein. Every prime ideal 𝔭 is contained in a maximal ideal 𝔪, and
17.3.18 yields id 𝑅𝔭 ⩽ id 𝑅𝔪, so it suffices to verify that 𝑅𝔪 is Gorenstein for every
maximal ideal𝔪 in 𝑅. As 𝑥 belongs to every such ideal and (𝑅/(𝑥))𝔪/(𝑥 ) � 𝑅𝔪/( 𝑥1 )
is Gorenstein, it follows from 17.4.14 that 𝑅𝔪 is Gorenstein, since 𝑥

1 by 14.4.27 is
an 𝑅𝔪-regular element. □

17.4.16 Proposition. The following conditions are equivalent.
(i) 𝑅 is Gorenstein.
(ii) The polynomial algebra 𝑅[𝑥1, . . . , 𝑥𝑛] is Gorenstein.
(iii) The power series algebra 𝑅⟦𝑥1, . . . , 𝑥𝑛⟧ is Gorenstein.

Proof. By recursion, it suffices to handle the case 𝑛 = 1; set 𝑥 = 𝑥1.
(i)⇔ (iii): The indeterminate 𝑥 is an 𝑅⟦𝑥⟧-regular element and it belongs by

12.1.25 to the Jacobson radical of 𝑅⟦𝑥⟧. Now invoke 17.4.15.
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(ii)⇒ (i): As above the indeterminate 𝑥 is 𝑅[𝑥]-regular, so 𝑅[𝑥] being Gorenstein
implies by 17.4.15 that 𝑅 is Gorenstein.

(i)⇒ (ii): Let 𝔓 be a prime ideal in 𝑅[𝑥]; with 𝔭 = 𝔓 ∩ 𝑅 one has 𝑅[𝑥]𝔓 �
(𝑅𝔭 [𝑥])𝔔 where the prime ideal 𝔔 is the contraction 𝔓𝔓 ∩ 𝑅𝔭 [𝑥]. Notice that the
𝑅𝔭-algebra (𝑅𝔭 [𝑥])𝔔 is flat as an 𝑅𝔭-module by 12.1.24, 1.3.42, and 5.4.24(b). To
see that the local ring 𝑅[𝑥]𝔓 � (𝑅𝔭 [𝑥])𝔔 is Gorenstein it suffices, since 𝑅𝔭 is
Gorenstein, to verify that the quotient ring (𝑅𝔭 [𝑥])𝔔/𝔭𝔭 (𝑅𝔭 [𝑥])𝔔 is Gorenstein, see
17.4.13. This quotient ring is a localization of the polynomial algebra 𝑄 = κ (𝔭) [𝑥],
which is a principal ideal domain and hence of global dimension 1, see 8.5.2. Thus,
for every prime ideal 𝔮 in 𝑄 one has id𝑄𝔮 ⩽ id𝑄 ⩽ 1 by 17.3.18 and 8.5.3, so
(𝑅𝔭 [𝑥])𝔔/𝔭𝔭 (𝑅𝔭 [𝑥])𝔔 is Gorenstein. This shows that 𝑅[𝑥]𝔓 is Gorenstein, whence
𝑅[𝑥] is Gorenstein. □

17.4.17 Example. Let 𝕜 be a field. Per 1.3.28 every 𝕜-module is injective, so 𝕜 is
Gorenstein and by 17.4.16 so are the 𝕜-algebras 𝕜 [𝑥1, . . . , 𝑥𝑛] and 𝕜⟦𝑥1, . . . , 𝑥𝑛⟧.

Finitistic Injective Dimension and Finitistic Flat Dimension

17.4.18 Proposition. There are equalities,

FID 𝑅 = sup{FID 𝑅𝔭 | 𝔭 ∈ Spec 𝑅} and FFD 𝑅 = sup{FFD 𝑅𝔭 | 𝔭 ∈ Spec 𝑅} .

Proof. Since the finitistic injective dimenson and finitistic flat dimension agree, see
17.4.1, it suffices to prove the second equality. Let 𝔭 be a prime ideal in 𝑅, for every
𝑅𝔭-module 𝑁 one has fd𝑅𝔭

𝑁 = fd𝑅 𝑁 by 17.3.3; this proves the inequality “⩾”.
For an 𝑅-module 𝑀 of finite flat dimension, 17.3.2 yields a prime ideal 𝔭 in 𝑅 with
fd𝑅𝔭

𝑀𝔭 = fd𝑅 𝑀; this proves the opposite inequality. □

Remark. Example 17.3.25 shows that the argument above does not readily apply to show that the
finitistic projective dimension can be computed locally. It actually can be computed locally, simply
because it agrees with the Krull dimension, as discussed before 17.4.25.

17.4.19 Theorem. There are equalities,

FID 𝑅 = FFD 𝑅 = sup{depth 𝑅𝔭 | 𝔭 ∈ Spec 𝑅} .

Proof. The first equality is known from 17.4.1. For every 𝑅-module 𝑀 and every
prime ideal 𝔭 in 𝑅 one has depth𝑅𝔭

𝑀𝔭 ⩾ 0 by 16.2.16. For an 𝑅-module 𝑀 of finite
flat dimension, 17.3.4 yields

fd𝑅 𝑀 = sup{depth 𝑅𝔭 − depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅}

⩽ sup{depth 𝑅𝔭 | 𝔭 ∈ Spec 𝑅} .

To prove the opposite inequality, fix a prime ideal 𝔭 in 𝑅 and set 𝑑 = depth 𝑅𝔭.
Choose a maximal 𝑅𝔭-regular sequence 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑑 in 𝔭𝔭, see 16.2.33(b), and
consider the finitely generated 𝑅𝔭-module 𝑀 = 𝑅𝔭/(𝑥𝑥𝑥). It now follows from 17.3.3,
15.4.18, and 16.4.23 that one has fd𝑅 𝑀 = fd𝑅𝔭

𝑀 = pd𝑅𝔭
𝑀 = depth 𝑅𝔭. □

8-Mar-2024 Draft - use at own risk



17.4 Finitistic Dimensions and Gorenstein Rings 805

17.4.20 Corollary. If 𝑅 is Cohen–Macaulay, then there are (in)equalities,

FID 𝑅 = FFD 𝑅 = dim 𝑅 ⩽ FPD 𝑅 ⩽ id 𝑅 ⩽ gldim 𝑅 ;

if one of the quantities id 𝑅 or gldim 𝑅 is finite, then equality holds everywhere to
the left of it.

Proof. For every prime ideal 𝔭 in 𝑅 one has depth 𝑅𝔭 = dim 𝑅𝔭, so 17.4.19 yields
FFD 𝑅 = dim 𝑅. Given this equality, the assertion is a restatement of 17.4.1. □

The next result, as well as the proof we give here, is due to Bass [30].

17.4.21 Lemma. For every integer 𝑑 with 2 ⩽ 𝑑 ⩽ dim 𝑅 there exist prime ideals
𝔭 ⊂ 𝔪 in 𝑅, a sequence 𝑥1, . . . , 𝑥𝑑−1 in 𝔭, and an element 𝑠 ∈ 𝔪 \ 𝔭, such that the
induced sequence 𝑥1

1 , . . . ,
𝑥𝑑−1

1 is 𝑅𝔭- and {𝑠𝑛 | 𝑛 ⩾ 0}−1𝑅-regular.

Proof. We proceed by induction on 𝑑. For 𝑑 = 2 let 𝔔 be a prime ideal in 𝑅 with
dim 𝑅𝔔 = 1 and dim 𝑅/𝔔 ⩾ 1 and let 𝔓 a minimal prime ideal contained in 𝔔. Let
ℑ be the intersection of all the associated prime ideals 𝔮 of 𝑅 with dim 𝑅𝔮 ⩾ 1. As
ℑ ∩𝔔 is an intersection of finitely many prime ideals not contained in 𝔓, one can
choose an element 𝑡 ∈ (ℑ ∩𝔔) \𝔓. Let 𝔪 be a maximal ideal in 𝑅 that contains
𝔔; by the choices of 𝔔 and 𝔓 one has dim 𝑅𝔪 ⩾ 2. Krull’s principal ideal theorem,
see also 18.4.19, applied to the elements of the maximal ideal 𝔪/𝔓 of the integral
domain 𝑅/𝔓, implies that every element in 𝔪 \ 𝔓 is contained in a prime ideal 𝔭
with 𝔓 ⊂ 𝔭 ⊂ 𝔪, so it follows from Prime Avoidance there are infinitely many such
prime ideals in 𝑅. Choose a prime ideal 𝔭 with 𝔓 ⊂ 𝔭 ⊂ 𝔪 that does not contain 𝑡;
this is possible as 𝑡 ∉ 𝔓 and 𝑅/(𝑡) has only finitely many minimal prime ideals. One
has dim 𝑅𝔭 ⩾ 1, but 𝔭 is not one of the associated prime ideals 𝔮 described above,
for they all contain 𝑡. It follows that the maximal ideal 𝔭𝔭 is not in Ass 𝑅𝔭, so 𝑅𝔭 is
by 16.2.18 a local ring of positive depth. Now 16.2.33(b) yields the existence of an
element 𝑥 ∈ 𝔭 such that 𝑥1 is 𝑅𝔭-regular.

Let 𝔄 be the intersection of all the prime ideals 𝔯 in Ass 𝑅 that contain 𝑥. No such
prime can be contained in 𝔭, as that would make 𝑥

1 a zero divisor in 𝑅𝔭. Thus 𝔄 is
not contained in 𝔭. Now, choose an element 𝑢 ∈ 𝔄 \ 𝔭 and set 𝑠 = 𝑡𝑢; the choices of
𝑡 and 𝑢 yield 𝑠 ∈ 𝔪 \ 𝔭. Set 𝑆 = {𝑠𝑛 | 𝑛 ⩾ 0}−1𝑅. As 𝑥 is in 𝔭 and 𝑠 is not, 𝑥1 is not a
unit in 𝑆; it is also not a zerodivisor as 𝔯𝑆 = 𝑆 holds for every prime ideal 𝔯 ∈ Ass 𝑅
that contains 𝑥. Thus 𝑥

1 is an 𝑆-regular element, see 14.4.17.
Now let 𝑑 ⩾ 3 and choose a prime ideal𝔔 with dim 𝑅𝔔 = 𝑑−1 and dim 𝑅/𝔔 ⩾ 1.

By the induction hypothesis applied to 𝑅𝔔 there is, in particular, a prime ideal𝔓 ⊂ 𝔔

and a sequence 𝑥1, . . . , 𝑥𝑑−2 in 𝔓 that induces an 𝑅𝔓-regular sequence. Notice that
dim 𝑅𝔓 = 𝑑 − 2 holds: The inequality “⩽” is clear from the choices of 𝔔 and
𝔓; the existence of an 𝑅𝔓-regular sequence of length 𝑑 − 2 yields the opposite
inequalty, see 16.2.33(a) and 17.2.16. For every 𝑖 ∈ {1, . . . , 𝑑 − 2} let 𝔄𝑖 be the
intersection of the prime ideals 𝔯 in V(𝑥1, . . . , 𝑥𝑖−1) such that 𝔯/(𝑥1, . . . , 𝑥𝑖−1) belongs
to Ass 𝑅/(𝑥1, . . . , 𝑥𝑖−1) and contains 𝑥𝑖 . If such an ideal 𝔄𝑖 were contained in 𝔓,
then one of the associated prime ideals 𝔯 described above would be contained in 𝔓.
It follows that the element 𝑥𝑖

1 ∈ 𝑅𝔓 whould be contained in an associated prime
ideal of 𝑅𝔓/( 𝑥1

1 , . . . ,
𝑥𝑖−1

1 ), so multiplication by 𝑥𝑖
1 on 𝑅𝔓/( 𝑥1

1 , . . . ,
𝑥𝑖−1

1 ) would not
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be injective, which contradicts the 𝑅𝔓-regularity of the sequence 𝑥1
1 , . . . ,

𝑥𝑑−2
1 . Thus,

none of the ideals 𝔄𝑖 is contained in 𝔓. Let let ℑ be the intersection of all prime
ideals 𝔮 in V(𝑥1, . . . , 𝑥𝑑−2) such that 𝔮/(𝑥1, . . . , 𝑥𝑑−2) belongs to Ass 𝑅/(𝑥1, . . . , 𝑥𝑑−2)
and dim 𝑅𝔮 ⩾ 𝑑 − 1 holds. As one has dim 𝑅𝔓 = 𝑑 − 2 < dim 𝑅𝔮, no such prime
ideal 𝔮 is contained in 𝔓, and it follows that ℑ is not contained in 𝔓. Now the ideal
(⋂𝑑−2

𝑖=1 𝔄𝑖) ∩ ℑ ∩𝔔 is an intersection of finitely many prime ideals none of which
are contained in 𝔓, so one can choose an element 𝑡 ∈ ((⋂𝑑−2

𝑖=1 𝔄𝑖) ∩ℑ∩𝔔) \𝔓. The
choices of 𝔔 and 𝔓 yield dim 𝑅/𝔓 ⩾ 2. Let 𝔪 be a maximal ideal that contains 𝔔.
As argued in the base case, one can now choose a prime ideal 𝔭 with 𝔓 ⊂ 𝔭 ⊂ 𝔪

such that 𝔭 does not contain 𝑡. One has dim 𝑅𝔭 ⩾ dim 𝑅𝔓 + 1 = 𝑑 − 1, but 𝔭 is
not one of the associated prime ideals 𝔮 described above, for they all contain 𝑡. It
follows that the maximal ideal 𝔭𝔭 is not an associated prime ideal of the 𝑅𝔭-module
(𝑅/(𝑥1, . . . , 𝑥𝑑−2))𝔭 � 𝑅𝔭/( 𝑥1

1 , . . . ,
𝑥𝑑−2

1 ). By 16.2.18 and 16.2.33(b) there is thus an
element 𝑥𝑑−1 in 𝔭 such that 𝑥𝑑−1

1 is regular for 𝑅𝔭/( 𝑥1
1 , . . . ,

𝑥𝑑−2
1 ). To see that the

sequence 𝑥1
1 , . . . ,

𝑥𝑑−1
1 is 𝑅𝔭-regular, notice that 𝑡1 is a unit in 𝑅𝔭. For 𝑖 ⩽ 𝑑 − 2 it thus

follows from the choice of 𝑡 that for every prime ideal 𝔯 in V(𝑥1, . . . , 𝑥𝑖−1) such that
𝔯/(𝑥1, . . . , 𝑥𝑖−1) belongs to Ass 𝑅/(𝑥1, . . . , 𝑥𝑖−1) and contains 𝑥𝑖 one has 𝔯𝑅𝔭 = 𝑅𝔭,
whence 𝑥𝑖

1 is regular for 𝑅𝔭/( 𝑥1
1 , . . . ,

𝑥𝑖−1
1 ).

Let 𝔄𝑑−1 be the intersection of all prime ideals 𝔯 in V(𝑥1, . . . , 𝑥𝑑−2) such that
𝔯/(𝑥1, . . . , 𝑥𝑑−2) belongs to Ass 𝑅/(𝑥1, . . . , 𝑥𝑑−2) and contains 𝑥𝑑−1. As argued above,
no such ideal 𝔯 can be contained in 𝔭, whence 𝔄𝑑−1 is not contained in 𝔭. Choose
an element 𝑢 ∈ 𝔄𝑣−1 \ 𝔭 and set 𝑠 = 𝑡𝑢; it is an element in 𝔪 \ 𝔭. In the ring
𝑆 = {𝑠𝑛 | 𝑛 ⩾ 0}−1𝑅, the elements 𝑥1

1 , . . . ,
𝑥𝑑−1

1 belong to the prime ideal 𝔭𝑆 ≠ 𝑆, so
to see that they form a regular sequence it suffices to verify that multiplication by 𝑥𝑖

1
on 𝑆/( 𝑥1

1 , . . . ,
𝑥𝑖−1

1 ) is injective. For 𝑖 ⩽ 𝑑 − 2 the choice of 𝑡 ensures that 𝑠 belongs
to 𝔄𝑖 and hence to every prime ideal 𝔯 in Ass 𝑅/(𝑥1, . . . , 𝑥𝑖−1) that contains 𝑥𝑖 . For
every such ideal one now has 𝔯𝑆 = 𝑆, so 𝑥𝑖

1 does not belong to any prime ideal in
Ass 𝑆/( 𝑥1

1 , . . . ,
𝑥𝑖−𝑖

1 ), which means that multiplication by 𝑥𝑖
1 on 𝑆/( 𝑥1

1 , . . . ,
𝑥𝑖−1

1 ) is
injective as desired. The choice of 𝑢 similarly ensures that multiplication by 𝑥𝑑−1

1 on
𝑆/( 𝑥1

1 , . . . ,
𝑥𝑑−2

1 ) is injective. Thus, the sequence 𝑥1
1 , . . . ,

𝑥𝑑−1
1 is 𝑆-regular. □

The next result was first proved by Auslander and Buchsbaum [12]. It predates
the lemma above by Bass but 17.4.21 facilitates a short proof.

17.4.22 Proposition. For every integer 𝑑 with 1 ⩽ 𝑑 ⩽ dim 𝑅 there exists a prime
ideal 𝔭 in 𝑅 such that depth 𝑅𝔭 = 𝑑 − 1 = dim 𝑅𝔭 holds.

Proof. For 𝑑 = 1 every minimal prime ideal in 𝑅 has the desired property. Now let
𝑑 ⩾ 2 and𝔪 be a prime ideal in 𝑅with dim 𝑅𝔪 = 𝑑. It follows from 17.4.21 applied to
𝑅𝔪 that there is a prime ideal 𝔭 ⊂ 𝔪 such that 𝑅𝔭 admits a regular sequence of length
𝑑−1. By 16.2.33(a) and 17.2.16 one now has 𝑑−1 ⩽ depth 𝑅𝔭 ⩽ dim 𝑅𝔭 ⩽ 𝑑−1. □

17.4.23 Theorem. Let 𝑅 be local; there are equalities,

FID 𝑅 = FFD 𝑅 =

{
dim 𝑅 if 𝑅 is Cohen–Macaulay

dim 𝑅 − 1 if 𝑅 is not Cohen–Macaulay .
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Proof. The first equality holds by 17.4.1. Set 𝑑 = dim 𝑅 and let 𝔪 be the unique
maximal ideal of 𝑅. If 𝑅 is Cohen–Macaulay, then one has FFD 𝑅 = 𝑑 by 17.4.20.

If 𝑅 is not Cohen–Macaulay then, in particular, 𝑑 > 0 holds by 17.2.16. If 𝑑 = 1,
then depth 𝑅 = 0 holds as 𝑅 is not Cohen–Macaulay, and for a prime ideal 𝔭 ≠ 𝔪 one
has depth 𝑅𝔭 ⩽ dim 𝑅𝔭 = 0 by 17.2.16. Thus FFD 𝑅 = 0 = 𝑑 − 1 holds by 17.4.19.
Now, assume that 𝑑 is at least 2. As 𝑅 is not Cohen–Macaulay, one has depth 𝑅 < 𝑑
and for every prime ideal 𝔭 ≠ 𝔪 one has depth 𝑅𝔭 ⩽ dim 𝑅𝔭 < 𝑑 by 17.2.16. By
17.4.22 there is a prime ideal 𝔭 in 𝑅 with depth 𝑅𝔭 = 𝑑 − 1, whence 17.4.19 yields
FFD 𝑅 = 𝑑 − 1. □

17.4.24 Corollary. There are inequalities,

dim 𝑅 − 1 ⩽ FID 𝑅 = FFD 𝑅 ⩽ dim 𝑅 .

Proof. The equality FID 𝑅 = FFD 𝑅 is known from 17.4.1. For every prime ideal 𝔭
in 𝑅 one has dim 𝑅𝔭 − 1 ⩽ FFD 𝑅𝔭 ⩽ dim 𝑅𝔭 by 17.4.23. Now apply 17.4.18. □

Finitistic Projective Dimension

It is a fact that the equality FPD 𝑅 = dim 𝑅 holds. The inequality “⩾”, see 17.4.28,
is due to Bass [30] and proofs of the opposite inequality have been given by Gruson
and Raynaud [207] and by Thompson and Nakamura [189]. Their proofs rely on
methods that are beyond the scope of this text, but 8.5.25 combined with 17.4.24
yields FPD 𝑅 ⩽ dim 𝑅+1. In 18.2.42 we establish the equality FPD 𝑅 = dim 𝑅 in the
special case of a local ring with a dualizing complex. For our exposition, however, it
sufficies to know that the two quantities are simultaneously finite:

17.4.25 Proposition. If one of the quantities FID 𝑅, FFD 𝑅, FPD 𝑅, or dim 𝑅 is
finite, then they are all finite.

Proof. The quantities FID 𝑅, FFD 𝑅, and dim 𝑅 are simultaneously finite by 17.4.24,
while FFD 𝑅 and FPD 𝑅 are simultaneously finite by 8.5.26. □

17.4.26 Corollary. If 𝑅 has finite Krull dimension, then an 𝑅-complex has finite flat
dimension if and only if it has finite projective dimension.

Proof. The assertion is immediate from 17.4.25 and 8.5.20. □

17.4.27 Lemma. Assume that 𝔭 ⊂ 𝔮 are prime ideals in 𝑅. Let 𝑠 ∈ 𝔮 \ 𝔭 and set
𝑆 = {𝑠𝑛 | 𝑛 ⩾ 0}−1𝑅. There are equalities,

pd𝑅 𝑆 = 1 = pd𝑅/𝔭 (𝑅/𝔭 ⊗𝑅 𝑆) .

Further, there is an 𝑅/𝔭-module 𝑋 with Ext1𝑅 (𝑆, 𝑋) � Ext1
𝑅/𝔭 (𝑅/𝔭 ⊗𝑅 𝑆, 𝑋) ≠ 0.

Proof. As an 𝑅-module, 𝑆 is flat by 1.3.42. From 15.4.20 applied to the ring
homomorphism 𝑅 → 𝑅/𝔭 one gets pd𝑅/𝔭 (𝑅/𝔭 ⊗𝑅 𝑆) = pd𝑅/𝔭 (𝑅/𝔭 ⊗L

𝑅
𝑆) ⩽ pd𝑅 𝑆.

The ring homomorphism 𝑅[𝑥] → 𝑆 that evaluates a polynomial at 1
𝑠

is surjective
with kernel (𝑠𝑥 − 1), so there is an exact sequence of 𝑅-modules,

8-Mar-2024 Draft - use at own risk



808 17 Going Local

(★) 0 −→ 𝑅[𝑥] 𝑠𝑥−1−−−−→ 𝑅[𝑥] −→ 𝑆 −→ 0 .

As an 𝑅-module, 𝑅[𝑥] is free, see 12.1.24, so one has pd𝑅 𝑆 ⩽ 1. It remains to show
that the 𝑅/𝔭-module 𝑅/𝔭 ⊗𝑅 𝑆 is not projective. As 𝑆 is flat over 𝑅, 15.4.17 yields
Tor𝑅1 (𝑅/𝔭, 𝑆) = 0, so the exact sequence from 7.4.29 induced by (★) reads in part

(⋄) 0 −→ (𝑅/𝔭) [𝑥] 𝜕−−−→ (𝑅/𝔭) [𝑥] −→ 𝑅/𝔭 ⊗𝑅 𝑆 −→ 0 ,

see 7.4.21. Here 𝜕 is multiplication by [𝑠]𝔭𝑥 − [1]𝔭. Assume towards a contradiction
that the 𝑅/𝔭-module 𝑅/𝔭 ⊗𝑅 𝑆 is projective. By 1.3.17 the exact sequence (⋄) is split.
Set 𝐹 = (𝑅/𝔭) [𝑥] and let 𝜚 be an endomorphism of 𝐹 with 𝜚𝜕 = 1𝐹 , see 2.1.47. In
terms of the basis {𝑥𝑖 | 𝑖 ⩾ 0} for 𝐹 one has 𝜚(𝑥0) = 𝑎0𝑥

0 + · · · + 𝑎𝑚𝑥𝑚 for some
𝑚 ∈ ℕ0 and 𝑎0, . . . , 𝑎𝑚 ∈ 𝑅/𝔭. Further,

𝑥𝑖 = 𝜚𝜕 (𝑥𝑖) = 𝜚( [𝑠]𝔭𝑥𝑖+1 − 𝑥𝑖) = [𝑠]𝔭𝜚(𝑥𝑖+1) − 𝜚(𝑥𝑖)

holds for all 𝑖 ⩾ 0, which yields a telescoping sum,
𝑚+1∑
𝑖=0
[𝑠]𝑖𝔭𝑥𝑖 =

𝑚+1∑
𝑖=0

(
[𝑠]𝑖+1𝔭 𝜚(𝑥𝑖+1) − [𝑠]𝑖𝔭𝜚(𝑥𝑖)

)
= [𝑠]𝑚+2𝔭 𝜚(𝑥𝑚+2) − 𝜚(𝑥0) .

In the free 𝑅/𝔭-module 𝐹 one now has

(♭) [𝑠]𝑚+2𝔭 𝜚(𝑥𝑚+2) = [𝑠]𝑚+1𝔭 𝑥𝑚+1 + (𝑎𝑚 + [𝑠]𝑚𝔭 )𝑥𝑚 + · · · + (𝑎0 + [1]𝔭)𝑥0 .

It follows that [𝑠]𝑚+2𝔭 divides the coefficients of 𝑥0, . . . , 𝑥𝑚+1 in (♭); in particular,
[𝑠]𝑚+2𝔭 divides [𝑠]𝑚+1𝔭 , which as 𝑅/𝔭 is a domain and [𝑠]𝔭 is non-zero implies that
[𝑠]𝔭 is a unit. But this is absurd as [𝑠]𝔭 belongs to the proper ideal 𝔮/𝔭 in 𝑅/𝔭.

Now it follows from 15.4.1 that Ext1
𝑅/𝔭 (𝑅/𝔭 ⊗𝑅 𝑆, 𝑋) ≠ 0 holds for some 𝑅/𝔭-

module 𝑋 . In the derived category there are isomorphisms,

RHom𝑅/𝔭 (𝑅/𝔭 ⊗𝑅 𝑆, 𝑋) ≃ RHom𝑅/𝔭 (𝑅/𝔭 ⊗L
𝑅 𝑆, 𝑋) ≃ RHom𝑅 (𝑆, 𝑋) ,

by flatness of 𝑆 over 𝑅 and 12.3.32. By the definition, 7.3.23, of Ext one thus has
Ext1

𝑅/𝔭 (𝑅/𝔭 ⊗𝑅 𝑆, 𝑋) � Ext1𝑅 (𝑆, 𝑋). □

For a Cohen–Macaulay ring it is already known from 17.4.20 that the Krull
dimension is a lower bound for the finitistic projective dimension. A result of Bass
shows that it is so without assumptions on the ring:

17.4.28 Proposition. For every integer 𝑑 with 0 ⩽ 𝑑 ⩽ dim 𝑅 there exists an
𝑅-module of projective dimension 𝑑. In particular, one has FPD 𝑅 ⩾ dim 𝑅.

Proof. For 𝑑 = 0 the 𝑅-module 𝑅 has the desired property. For 𝑑 = 1 apply 17.4.27.
For 𝑑 ⩾ 2 there exist by 17.4.21 prime ideals 𝔭 ⊂ 𝔪 in 𝑅, a sequence 𝑥1, . . . , 𝑥𝑑−1

in 𝔭, and an element 𝑠 ∈ 𝔪 \ 𝔭, such that the induced sequence 𝑥1
1 , . . . ,

𝑥𝑑−1
1 in the

ring 𝑆 = {𝑠𝑛 | 𝑛 ⩾ 0}−1𝑅 is 𝑆-regular. For 𝑖 ∈ {1, . . . , 𝑑} set 𝑆𝑖 = 𝑆/( 𝑥1
1 , . . . ,

𝑥𝑖−1
1 );

per 14.4.19 and 11.4.3(c) one has pd𝑆 𝑆𝑖 ⩽ 𝑖 − 1, and then 15.4.5 and 17.4.27 yield
pd𝑅 𝑆𝑖 ⩽ pd𝑅 𝑆 + pd𝑆 𝑆𝑖 ⩽ 𝑖. Let 𝑋 be an 𝑅/𝔭-module as in 17.4.27. Each exact
sequence 0 −−→ 𝑆𝑖

𝑥𝑖−−→ 𝑆𝑖 −−→ 𝑆𝑖+1 −−→ 0 induces by 7.3.35 an exact sequence,
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(★) Ext𝑖𝑅 (𝑆𝑖 , 𝑋)
𝑥𝑖−−−→ Ext𝑖𝑅 (𝑆𝑖 , 𝑋) −→ Ext𝑖+1𝑅 (𝑆𝑖+1, 𝑋) −→ Ext𝑖+1𝑅 (𝑆𝑖 , 𝑋) .

As Ext𝑖
𝑅
(𝑆𝑖 , 𝑋) is an 𝑅/𝔭-module, see 12.2.2, and 𝑥𝑖 belongs to 𝔭, the left-hand map

in (★) is zero. Further, per 15.4.1 the inequality pd𝑅 𝑆𝑖 ⩽ 𝑖 yields Ext𝑖+1
𝑅
(𝑆𝑖 , 𝑋) = 0,

so there are isomorphisms Ext𝑖
𝑅
(𝑆𝑖 , 𝑋) � Ext𝑖+1

𝑅
(𝑆𝑖+1, 𝑋). Chaining these together

one gets Ext𝑑
𝑅
(𝑆𝑑 , 𝑋) � Ext1𝑅 (𝑆1, 𝑋), and since 𝑆1 is 𝑆, one gets Ext𝑑

𝑅
(𝑆𝑑 , 𝑋) ≠ 0

from 17.4.27 and, therefore, pd𝑅 𝑆𝑑 = 𝑑 by 15.4.1. □

Remark. The polynomial ring 𝑅 = ℝ[𝑥, 𝑦, 𝑧 ] is Gorenstein, see 17.4.17, of Krull dimension 3.
The field of fractions, 𝑄 = 𝑅(0) , is a flat 𝑅-module, so it follows from 17.4.10 and 8.5.20 that
pd𝑅 𝑄 ⩽ FPD𝑅 = 3 holds. Osofsky [197] shows that if one assumes the Continuum Hypothesis,
then pd𝑅 𝑄 = 2 holds, and otherwise one has pd𝑅 𝑄 = 3.

Exercises

E 17.4.1 Show that 𝑅 is Gorenstein if and only if the local ring 𝑅𝔪 is Gorenstein for every
maximal ideal 𝔪 in 𝑅.

E 17.4.2 Let 𝑅 be a local ring that is not Cohen–Macaulay, show that FPD𝑅 = dim𝑅 holds.
E 17.4.3 Show that the product ring 𝑅 × 𝑆 is Gorenstein if and only if 𝑅 and 𝑆 are Gorenstein.
E 17.4.4 Let 𝐼 be a bounded below complex of injective 𝑅-modules. Show that if 𝐼 is acyclic,

then it is contractible.
E 17.4.5 Let 𝐹 be a bounded above complex of flat 𝑅-modules. Show that if 𝐹 is acyclic, then it

is pure acyclic.

17.5 Rigidity of Tor and Ext

Synopsis. Flat dimension vs. colocalization; rigidity of Tor; Chouinard Formula for injective
dimension; rigidity of Ext; a menagerie of examples.

For a complex 𝑀 in Df
⊏⊐ (𝑅) the flat dimension is the difference depth 𝑅 − depth𝑅 𝑀 ,

provided that it is finite; that is the Auslander–Buchsbaum Formula 16.4.2. By the
Chouinard Formula 17.3.4, the flat dimension of any 𝑅-complex can similarly, if
finite, be computed via such differences of depths measured locally at every prime
ideal. By the Bass Formula 16.4.11 the injective dimension of a complex 𝑀 in
Df
⊏⊐ (𝑅) is the difference depth 𝑅 − width𝑅 𝑀 , provided that it is finite, and the

injective dimension of any 𝑅-complex 𝑀 can, if finite, similarly be computed via
such difference measured locally at every prime ideal; see 17.5.7. Both results were
proved by Chouinard in [51], but here they appear in seperate sections. The reason
that while the formula for flat dimension, 17.3.4, is an immediate consequence
of 17.3.1, it takes more work to derive the formula for injective dimension from
17.3.11. On the other hand, the immediate consequence of 17.3.11 that matches
17.3.4 is 17.3.14, which deals with colocalizations instead of localizations, and that
result has a counterpart for flat dimension, see 17.5.4. Similarly, the fact that the
injective dimension of an appropriately bounded complex can be detected locally,
see 17.3.17, finds its counterpart in 17.5.2.
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17.5.1 Lemma. Assume that every flat 𝑅-module has finite projective dimension.
Let 𝔭 a prime ideal in 𝑅 and 𝑀 a complex in D⊐ (𝑅). There is an isomorphism,

κ (𝔭) ⊗L
𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝑀) ≃ RHom𝑅/𝔭 (κ (𝔭), 𝑅/𝔭 ⊗L
𝑅 𝑀) .

Proof. In the computation below, the 1st isomorphism holds by commutativ-
ity 12.3.5 and 15.1.1, while the 2nd holds by 14.1.16(b). By assumption the flat
𝑅-module 𝑅𝔭, see 1.3.42, has finite projective dimension, so, the 3rd isomorphism
holds by tensor evaluation 12.3.23(d) and commutativity 12.3.5. The 4th isomor-
phism follows from 12.3.32 and and 15.1.1.

κ (𝔭) ⊗L
𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝑀) ≃ RHom𝑅 (𝑅𝔭, 𝑀) ⊗L
𝑅𝔭
(𝑅/𝔭)𝔭

≃ RHom𝑅 (𝑅𝔭, 𝑀) ⊗L
𝑅 𝑅/𝔭

≃ RHom𝑅 (𝑅𝔭, 𝑅/𝔭 ⊗L
𝑅 𝑀)

≃ RHom𝑅/𝔭 (κ (𝔭), 𝑅/𝔭 ⊗L
𝑅 𝑀) . □

Flat Dimension vs. Colocalization

By 17.4.26 the next result applies, in particular, if 𝑅 has finite Krull dimension.

17.5.2 Proposition. Assume that every flat 𝑅-module has finite projective dimension
and let 𝑀 be a complex in D⊐ (𝑅). There are equalities,

fd𝑅 𝑀 = sup{sup (κ (𝔭) ⊗L
𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝑀)) | 𝔭 ∈ cosupp𝑅 𝑀 }
= sup{𝑚 ∈ ℤ | ∃ 𝔭 ∈ Spec 𝑅 : Tor𝑅𝔭

𝑚 (κ (𝔭),RHom𝑅 (𝑅𝔭, 𝑀)) ≠ 0} .

Proof. The second equality follows from 17.1.14, 16.2.23, and 7.4.19. To prove the
first equality, let 𝑠 denote the first supremum in the display. For every prime ideal 𝔭
in 𝑅 one gets from 17.5.1, 7.6.7, and 15.4.17 (in)equalities,

sup (κ (𝔭) ⊗L
𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝑀)) = sup RHom𝑅/𝔭 (κ (𝔭), 𝑅/𝔭 ⊗L
𝑅 𝑀)

⩽ sup (𝑅/𝔭 ⊗L
𝑅 𝑀)

⩽ fd𝑅 𝑀 ,

and hence one has fd𝑅 𝑀 ⩾ 𝑠. To prove that equality holds, it suffices to argue that
for every integer 𝑛 with 𝑛 ⩽ fd𝑅 𝑀 there exists a prime ideal 𝔭 in 𝑅 that satisfies
𝑛 ⩽ sup (κ (𝔭) ⊗L

𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀)), which by 17.5.1 is tantamount to

(★) 𝑛 ⩽ sup RHom𝑅/𝔭 (κ (𝔭), 𝑅/𝔭 ⊗L
𝑅 𝑀) .

Let 𝑛 ⩽ fd𝑅 𝑀 be given. Each Tor𝑅𝑣 ( , 𝑀) is a half exact endofunctor on M(𝑅)
by 7.4.29, and by 3.1.6 so is F =

∐
𝑣⩾𝑛 Tor𝑅𝑣 ( , 𝑀). As 𝑛 ⩽ fd𝑅 𝑀 holds, the “in

particular” statement in 8.3.11 yields an ideal 𝔞 in 𝑅 with F(𝑅/𝔞) ≠ 0. Now 12.4.2
yields a prime ideal 𝔭 in 𝑅 with F(𝑅/𝔭) ≠ 0 such that F(𝑅/𝔟) = 0 holds for every
ideal 𝔟 ⊃ 𝔭. We argue that this prime ideal satisfies the inequality in (★). Consider
for each element 𝑥 ∈ 𝑅 \ 𝔭 the exact sequence,
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0 −→ 𝑅/𝔭 𝑥−−−→ 𝑅/𝔭 −→ 𝑅/(𝔭 + (𝑥)) −→ 0 .

As one has F(𝑅/(𝔭 + (𝑥))) = 0, it follows that Tor𝑅𝑣 (𝑅/(𝔭 + (𝑥)), 𝑀) = 0 holds for
every 𝑣 ⩾ 𝑛. As the functor ⊗L

𝑅
𝑀 is triangulated and 𝑅-linear, see 12.2.8, one gets

for each 𝑣 ⩾ 𝑛 an exact sequence,

0 −→ Tor𝑅𝑣 (𝑅/𝔭, 𝑀)
𝑥−−−→ Tor𝑅𝑣 (𝑅/𝔭, 𝑀) −→ 0 ,

see 7.4.29; i.e. multiplication by 𝑥 is an automorphism of Tor𝑅𝑣 (𝑅/𝔭, 𝑀) for 𝑣 ⩾ 𝑛.
For the 𝑅/𝔭-complex 𝑋 = (𝑅/𝔭 ⊗L

𝑅
𝑀)Ě𝑛 one has

H(𝑋) = ∏
𝑣⩾𝑛

Σ𝑣Tor𝑅𝑣 (𝑅/𝔭, 𝑀) ,

see 2.5.25(b) and 7.4.18, so the homothety 𝑥H (𝑋) is an isomorphism. Now 7.6.11(b,c)
shows that H(𝑋) is a κ (𝔭)-complex and, as an 𝑅/𝔭-complex, H(𝑋) is a semi-injective
replacement of 𝑋 . Thus, in view of 12.2.2 there is an isomorphism,

(⋄) RHom𝑅/𝔭 (κ (𝔭), 𝑋) ≃
∏
𝑣⩾𝑛

Σ𝑣Hom𝑅/𝔭 (κ (𝔭),Tor𝑅𝑣 (𝑅/𝔭, 𝑀)) .

As one has F(𝑅/𝔭) ≠ 0, the κ (𝔭)-vector space Tor𝑅𝑣 (𝑅/𝔭, 𝑀) is non-zero for some
𝑣 ⩾ 𝑛, and hence Hom𝑅/𝔭 (κ (𝔭),Tor𝑅𝑣 (𝑅/𝔭, 𝑀)) ≠ 0 holds. It now follows from (⋄)
that there is an inequality,

(♭) 𝑛 ⩽ sup RHom𝑅/𝔭 (κ (𝔭), 𝑋) .

By 7.6.6(c) there is a distinguished triangle in D(𝑅/𝔭),

(†) 𝑋 −→ 𝑅/𝔭 ⊗L
𝑅 𝑀 −→ (𝑅/𝔭 ⊗L

𝑅 𝑀)Ď𝑛−1 −→ Σ𝑋 .

Note that 7.6.7 yields an inequality,

(‡) sup RHom𝑅/𝔭 (κ (𝔭), (𝑅/𝔭 ⊗L
𝑅 𝑀)Ď𝑛−1) ⩽ 𝑛 − 1 .

Application of the triangulated functor RHom𝑅/𝔭 (κ (𝔭), ) to (†) yields another
distinguished triangle, to which 6.5.20, in view of (‡), applies to yield the second
inequality in the computation below. The first inequality comes from (♭).

𝑛 ⩽ sup RHom𝑅/𝔭 (κ (𝔭), 𝑋) ⩽ max{sup RHom𝑅/𝔭 (κ (𝔭), 𝑅/𝔭 ⊗L
𝑅 𝑀), 𝑛 − 2} .

It follows that (★) holds. □

Remark. Christensen, Ferraro, and Thompson [58] provide an example to show that the bounded-
ness condition in 17.5.2 is necessary. They prove 17.5.2 via a rigidity result that applies to 𝑅 and
𝑀 as in that statement: If for an integer 𝑛 ⩾ sup𝑀 one has Tor𝑅𝔭

𝑛+1 (κ (𝔭) , RHom𝑅 (𝑅𝔭 , 𝑀 ) ) = 0
for every prime ideal 𝔭 in 𝑅, then fd𝑅 𝑀 ⩽ 𝑛 holds. This result is a conceptual dual to 17.5.12.

It is known from 17.3.2 that the flat dimension of a complex can be detected locally.
Under a boundedness condition it can also be detected colocally; in particular, it does
not grow under colocalization.

17.5.3 Corollary. Assume that every flat 𝑅-module has finite projective dimension
and let 𝑀 be a complex in D⊐ (𝑅). There are equalities,
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fd𝑅 𝑀 = sup{fd𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) | 𝔭 ∈ Spec 𝑅}

= sup{fd𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) | 𝔭 ∈ cosupp𝑅 𝑀 } .

Proof. Fix a prime ideal 𝔭 in 𝑅. The prime ideals in 𝑅𝔭 have the form 𝔮𝔭 where 𝔮 is
a prime ideal in 𝑅 with 𝔮 ⊆ 𝔭. Notice that for every such prime ideal, 12.3.36 yields

RHom𝑅𝔭
((𝑅𝔭)𝔮𝔭 ,RHom𝑅 (𝑅𝔭, 𝑀)) ≃ RHom𝑅 (𝑅𝔮, 𝑀) ,

which combined with 15.1.3 yields

κ (𝔮𝔭) ⊗L
(𝑅𝔭 )𝔮𝔭

RHom𝑅𝔭
((𝑅𝔭)𝔮𝔭 ,RHom𝑅 (𝑅𝔭, 𝑀))

≃ κ (𝔮) ⊗L
𝑅𝔮

RHom𝑅 (𝑅𝔮, 𝑀) .

By assumption the flat 𝑅-module 𝑅𝔭, see 1.3.42, has finite projective dimension, so
it follows from 15.4.1 that RHom𝑅 (𝑅𝔭, 𝑀) belongs to D⊐ (𝑅𝔭). Now 17.5.2 applies
to yield fd𝑅 𝑀 ⩾ fd𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝑀). Further,

fd𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) ⩾ sup (κ (𝔭) ⊗L

𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀))

holds by 15.4.17. Now invoke 17.5.2. □

By 17.4.26 the next result applies, in particular, if 𝑅 has finite Krull dimension.
It is reminiscent of the Chouinard Formula 17.3.4; comparing the two formulas one
should keep in mind that the numbers depth𝑅𝔭

𝑀𝔭 and depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) do

not immediately compare, see 17.5.5.

17.5.4 Theorem. Assume that every flat 𝑅-module has finite projective dimension
and let 𝑀 be an 𝑅-complex. If fd𝑅 𝑀 is finite, then there are equalities,

fd𝑅 𝑀 = sup{depth 𝑅𝔭 − depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) | 𝔭 ∈ Spec 𝑅}

= sup{depth 𝑅𝔭 − depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) | 𝔭 ∈ cosupp𝑅 𝑀 } .

Proof. The equalities hold trivially if𝑀 is acyclic, so we may assume that 𝑛 = fd𝑅 𝑀
is an integer. Let 𝐹 be a semi-flat replacement of 𝑀 with 𝐹𝑣 = 0 for all 𝑣 > 𝑛. To
prove the asserted equalities it suffices to show that the inequality

(★) 𝑛 ⩾ depth 𝑅𝔭 − depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝐹)

holds for every prime ideal 𝔭 in 𝑅 with equality for some 𝔭 ∈ cosupp𝑅 𝐹.
For every 𝑢 ⩽ 𝑛 there is an exact sequence of complexes of flat 𝑅-modules,

(⋄) 0 −→ 𝐹ď𝑢−1 −→ 𝐹 −→ 𝐹ě𝑢 −→ 0 .

The complex 𝐹ě𝑢 is semi-flat by 5.4.8, so 𝐹ď𝑢−1 is semi-flat by 5.4.12. Now the
definition of flat dimension, 8.3.3, and 8.3.12 yield

(♭) fd𝑅 𝐹ď𝑢−1 ⩽ 𝑢 − 1 and fd𝑅 𝐹ě𝑢 = 𝑛 .

The complex 𝐹ě𝑢 is bounded, and for every prime ideal 𝔭 in 𝑅 the 𝑅𝔭-complex
RHom𝑅 (𝑅𝔭, 𝐹ě𝑢) has finite flat dimension, see 17.5.3, so 16.3.3 yields
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sup (κ (𝔭) ⊗L
𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝐹ě𝑢)) = depth 𝑅𝔭 − depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝐹ě𝑢) .

Per 17.5.2 one, therefore, has

(†) 𝑛 = sup{depth 𝑅𝔭 − depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝐹ě𝑢) | 𝔭 ∈ Spec 𝑅} .

By 17.1.14 the inequality (★) is trivial for 𝔭 ∉ cosupp𝑅 𝐹, so let 𝔭 be in cosupp𝑅 𝐹
and set 𝑢 = − depth𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝐹). By 16.2.16, 7.6.7, and 8.3.4 one has

𝑢 ⩽ sup RHom𝑅 (𝑅𝔭, 𝐹) ⩽ sup 𝐹 ⩽ 𝑛 .

Further, 16.2.16 and 7.6.7 also yield depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝐹ď𝑢−1) ⩾ −𝑢 + 1, so

14.3.20 applied to (⋄) after colocalization, see 14.1.32, yields

depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝐹) = depth𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝐹ě𝑢) ,

whence (★) holds by (†).
Choose by (†) a prime ideal 𝔭 with 𝑛 = depth 𝑅𝔭 − depth𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝐹ě𝑛−1).
It was proved above that the inequality (★) holds for every prime ideal and every
complex of finite flat dimension. Applied to the complex 𝐹ď𝑛−2 it yields the second
inequality in the next display, where the first inequality comes from (♭),

𝑛 − 2 ⩾ fd𝑅 𝐹ď𝑛−2 ⩾ depth 𝑅𝔭 − depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝐹ď𝑛−2) .

By the choice of 𝔭 one now has

depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝐹ď𝑛−2) − 2 ⩾ depth𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝐹ě𝑛−1) .

Now 14.3.20 applied to (⋄), with 𝑢 = 𝑛 − 1 and colocalized at 𝑅 \ 𝔭, yields

depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝐹) = depth𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝐹ě𝑛−1) .

and, therefore, 𝑛 = depth 𝑅𝔭 − depth𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝐹) as desired. Finally, it now

follows from 17.1.14 that 𝔭 belongs to cosupp𝑅 𝐹. □

17.5.5 Example. Let 𝑅 be a domain and 𝔞-complete for some ideal 𝔞 ≠ (0). By
15.2.17 the ideal (0) is not in cosupp𝑅 𝑅, so the 𝑅(0) -complex RHom𝑅 (𝑅(0) , 𝑅) is
acyclic and hence of infinite width and depth. On the other hand, 𝑅(0) is a field so
one has width𝑅(0) 𝑅(0) = 0 = depth𝑅(0) 𝑅(0) .

Flat Dimension via Rigidity of Tor

For a complex 𝑀 , vanishing of Tor𝑅𝑚 (κ (𝔭), 𝑀) for every prime ideal 𝔭 and a single
sufficiently large index 𝑚 guarantees that 𝑀 has finite flat dimension. This follows
from the rigidity property of Tor recorded in 16.3.22.

17.5.6 Theorem. Assume that 𝑅 has finite Krull dimension and let 𝑀 be an 𝑅-
complex. If for an integer 𝑛 ⩾ dim 𝑅+ sup𝑀 one has Tor𝑅

𝑛+1 (κ (𝔭), 𝑀) = 0 for every
prime ideal 𝔭 in 𝑅, then fd𝑅 𝑀 ⩽ 𝑛 holds.
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Proof. Fix a prime ideal 𝔭 in 𝑅. By 14.1.11(c) and 16.2.16 there are inequalities,

𝑛 ⩾ dim 𝑅 + sup𝑀 ⩾ dim 𝑅𝔭 + sup𝑀𝔭 ⩾ dim 𝑅𝔭 − depth𝑅𝔭
𝑀𝔭 .

By 14.1.16(b) and the definition of Tor there is for every integer 𝑚 an isomorphism
Tor𝑅𝑚 (κ (𝔭), 𝑀) � Tor𝑅𝔭

𝑚 (κ (𝔭), 𝑀𝔭). Thus vanishing of Tor𝑅
𝑛+1 (κ (𝔭), 𝑀) implies by

16.3.22 that Tor𝑅𝑚 (κ (𝔭), 𝑀) = 0 holds for all 𝑚 > 𝑛. Now invoke 17.3.1. □

Remark. Theorem 17.5.6 remains valid with the improved bound 𝑛 ⩾ dim𝑅 + sup𝑀 − 1; see
E 17.5.1. Christensen, Iyengar, and Marley [66] show that this bound is optimal.

The Chouinard Formula for Injective Dimension

The next result is reminiscent of the Bass Formula 16.4.11 and originally due to
Chouinard [51]. Comparing it to 17.3.14 one should bear in mind that the numbers
width𝑅𝔭

𝑀𝔭 and width𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) do not readily compare, see 17.5.8.

17.5.7 Theorem. Let 𝑀 be an 𝑅-complex. If id𝑅 𝑀 is finite, then one has

id𝑅 𝑀 = sup{depth 𝑅𝔭 − width𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅}

= sup{depth 𝑅𝔭 − width𝑅𝔭
𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } .

Proof. The equalities hold trivially if𝑀 is acyclic, so we may assume that 𝑛 = id𝑅 𝑀
is an integer. Let 𝐼 be a semi-injective replacement of 𝑀 with 𝐼−𝑣 = 0 for all 𝑣 > 𝑛.
To prove the asserted equalities it suffices to show that the inequality

(†) id𝑅 𝐼 ⩾ depth 𝑅𝔭 − width𝑅𝔭
𝐼𝔭

holds for every prime ideal 𝔭 in 𝑅 with equality for some 𝔭 ∈ supp𝑅 𝐼.
For every 𝑢 ⩽ 𝑛 there is an exact sequence of complexes of injective 𝑅-modules

(‡) 0 −→ 𝐼ď−𝑢 −→ 𝐼 −→ 𝐼ě−𝑢+1 −→ 0 .

The complex 𝐼ď−𝑢 is semi-injective by 5.3.12, so 𝐼ě−𝑢+1 is semi-injective by 5.3.20.
Now the definition of injective dimension, 8.2.2, and 8.2.9 yield

(♭) id𝑅 𝐼ě−𝑢+1 ⩽ 𝑢 − 1 and id𝑅 𝐼ď−𝑢 = 𝑛 .

The complex 𝐼ď−𝑢 is bounded, and for every 𝔭 ∈ Spec 𝑅 the 𝑅𝔭-complex (𝐼ď−𝑢)𝔭
has finite injective dimension, see 17.3.18, so 16.3.11 yields

− inf RHom𝑅𝔭
(κ (𝔭), (𝐼ď−𝑢)𝔭) = depth 𝑅𝔭 − width𝑅𝔭

(𝐼ď−𝑢)𝔭 .

Per 17.3.17 one, therefore, has

(⋄) 𝑛 = sup{depth 𝑅𝔭 − width𝑅𝔭
(𝐼ď−𝑢)𝔭 | 𝔭 ∈ Spec 𝑅} .

By 17.1.6 the inequality (†) is trivial for 𝔭 ∉ supp𝑅 𝐼, so let 𝔭 be in supp𝑅 𝐼 and set
𝑢 = −width𝑅𝔭

𝐼𝔭. By 16.2.5, 14.1.11(c), and 8.2.3 one has𝑢 ⩽ − inf 𝐼𝔭 ⩽ − inf 𝐼 ⩽ 𝑛.
Further, 16.2.5 and 14.1.11(c) also yields

width𝑅𝔭
(𝐼ě−𝑢+1)𝔭 ⩾ −𝑢 + 1 ,
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so 14.3.32 applied to (‡) after localization gives width𝑅𝔭
𝐼𝔭 = width𝑅𝔭

(𝐼ď−𝑢)𝔭,
whence (†) holds by (⋄).

Choose by (⋄) a prime ideal 𝔭 with 𝑛 = depth 𝑅𝔭 − width𝑅𝔭
(𝐼ď−𝑛+1)𝔭. It was

proved above that the inequality (†) holds for every prime ideal and every complex
of finite injective dimension. Applied to the complex 𝐼ě−𝑛+2 it yields the second
inequality in the next display, where the first inequality comes from (♭),

𝑛 − 2 ⩾ id𝑅 𝐼ě−𝑛+2 ⩾ depth 𝑅𝔭 − width𝑅𝔭
(𝐼ě−𝑛+2)𝔭 .

By the choice of 𝔭 one now has

width𝑅𝔭
(𝐼ě−𝑛+2)𝔭 − 2 ⩾ width𝑅𝔭

(𝐼ď−𝑛+1)𝔭 .

Now 14.3.32 applied to (‡), with 𝑢 = 𝑛−1 and localized at 𝑅 \𝔭, yields width𝑅𝔭
𝐼𝔭 =

width𝑅𝔭
(𝐼ď−𝑛+1)𝔭 and, therefore, 𝑛 = depth 𝑅𝔭 − width𝑅𝔭

𝐼𝔭 as desired. Finally, it
now follows from 17.1.6 that 𝔭 belongs to supp𝑅 𝐼. □

17.5.8 Example. Let (𝑅,𝔪, 𝒌) be local of positive Krull dimension. For every
prime ideal 𝔭 ≠ 𝔪 in 𝑅 the 𝑅𝔭-module E𝑅 (𝒌)𝔭 is zero by 15.1.12 and hence of
infinite depth and width. On the other hand, both depth𝑅𝔭

RHom𝑅 (𝑅𝔭,E𝑅 (𝒌)) and
width𝑅𝔭

RHom𝑅 (𝑅𝔭,E𝑅 (𝒌)) are finite by 17.1.14, as cosupp𝑅 E𝑅 (𝒌) = Spec 𝑅
holds by 15.2.2.

Injective Dimension via Rigidity of Ext

The final theorem of this section, 17.5.11 below, is dual to 17.5.6, but the proof is
more involved. It takes two auxiliary results, the second of which is only required
because the best upper bound on FPD 𝑅 established in this text is dim 𝑅 + 1, while
it is known from work of Gruson and Raynaud [207] that FPD 𝑅 = dim 𝑅 holds.

By 17.4.26 the next result applies, in particular, if 𝑅 has finite Krull dimension.

17.5.9 Proposition. Assume that every flat 𝑅-module has finite projective dimension.
Let 𝔭 be a prime ideal in 𝑅 and 𝑀 an 𝑅-complex. If 𝑀 is not acyclic, then there is
an inequality,

−width𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) ⩽ FPD 𝑅/𝔭 − inf 𝑀 .

Proof. One can assume that𝑀 belongs toD⊐ (𝑅), otherwise the inequality is trivial.
In the computation below, the first equality holds by 16.2.3, and the second comes
from 17.5.1. The first two inequalities hold by 15.4.1 and 7.6.8. As κ (𝔭) is a flat
𝑅/𝔭-module, see 15.1.1 and 1.3.42, the last inequality holds by 8.5.18.

−width𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀) = − inf (κ (𝔭) ⊗L

𝑅𝔭
RHom𝑅 (𝑅𝔭, 𝑀))

= − inf RHom𝑅/𝔭 (κ (𝔭), 𝑅/𝔭 ⊗L
𝑅 𝑀)

⩽ pd𝑅/𝔭 κ (𝔭) − inf (𝑅/𝔭 ⊗L
𝑅 𝑀)

⩽ pd𝑅/𝔭 κ (𝔭) − inf 𝑀
⩽ FPD 𝑅/𝔭 − inf 𝑀 . □
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17.5.10 Lemma. Let (𝑅,𝔪, 𝒌) be local and 𝑀 an 𝑅-complex. If Ext𝑛+1
𝑅
(𝒌, 𝑀) = 0

holds for an integer 𝑛 ⩾ dim 𝑅 − width𝑅 𝑀 − 1, then one has Ext𝑚
𝑅
(𝒌, 𝑀) = 0 for

all 𝑚 > 𝑛.

Proof. Set 𝑢 = − inf RΓ𝔪 (𝑀) and recall from 16.2.34 that dim 𝑅 − width𝑅 𝑀 ⩾ 𝑢
holds. By assumption one has 𝑛 ⩾ 𝑢 − 1. If the complex RΓ𝔪 (𝑀) is acyclic, i.e.
𝑢 = −∞, then by 16.2.23 so is RHom𝑅 (𝒌, 𝑀), and the claim is trivial. One can now
asume that 𝑢 is an integer, and by 16.3.16 it suffices to consider the case 𝑛 = 𝑢 − 1.

To settle that case it suffics to argue that Ext𝑢
𝑅
(𝒌, 𝑀) is non-zero. To this end

let 𝐼 be a minimal semi-injective replacement of 𝑀 . One has RΓ𝔪 (𝑀) = Γ𝔪 (𝐼)
so it follows from 13.3.4 that E𝑅 (𝒌) is a summand of 𝐼−𝑢. By 16.4.36 the com-
plex Hom𝑅 (𝒌, 𝐼), which is RHom𝑅 (𝒌, 𝑀), has zero differential, so Ext𝑢

𝑅
(𝒌, 𝑀) =

H−𝑢 (Hom𝑅 (𝒌, 𝐼)) = Hom𝑅 (𝒌, 𝐼−𝑢) is non-zero by (16.1.22.1). □

17.5.11 Theorem. Assume that 𝑅 has finite Krull dimension and let 𝑀 be an 𝑅-
complex. If for an integer 𝑛 ⩾ dim 𝑅− inf 𝑀 one has Ext𝑛+1

𝑅
(κ (𝔭), 𝑀) = 0 for every

prime ideal 𝔭 in 𝑅, then id𝑅 𝑀 ⩽ 𝑛 holds.

Proof. Fix a prime ideal 𝔭 in 𝑅. By 8.5.25 and 17.4.24 there are inequalities
FPD 𝑅/𝔭 ⩽ FFD 𝑅/𝔭 + 1 ⩽ dim 𝑅/𝔭 + 1, which explains the third inequality in
the computation below. The first inequality holds by assumption, and the second is
standard. The last inequality follows from 17.5.9.

𝑛 ⩾ dim 𝑅 − inf 𝑀
⩾ dim 𝑅𝔭 + dim 𝑅/𝔭 − inf 𝑀
⩾ dim 𝑅𝔭 + FPD 𝑅/𝔭 − inf 𝑀 − 1
⩾ dim 𝑅𝔭 − width𝑅𝔭

RHom𝑅 (𝑅𝔭, 𝑀) − 1 .

By the definition, 7.3.23, of Ext and 14.1.33(d) there is for every integer 𝑚 an
isomorphism Ext𝑚

𝑅
(κ (𝔭), 𝑀) � Ext𝑚

𝑅𝔭
(κ (𝔭),RHom𝑅 (𝑅𝔭, 𝑀)). Thus it follows from

16.3.17 that vanishing of Ext𝑛+1
𝑅
(κ (𝔭), 𝑀) implies that Ext𝑚

𝑅
(κ (𝔭), 𝑀) = 0 holds

for all 𝑚 > 𝑛. Now invoke 17.3.11. □

Remark. The bound on 𝑛 in 17.5.11 is not optimal. Indeed, as mentioned before 17.5.9, the
inequality FPD𝑅/𝔭 ⩽ dim𝑅/𝔭+1 used in the proof could be replaced with the equality FPD𝑅/𝔭 =

dim𝑅/𝔭 to improve the bound to 𝑛 ⩾ dim𝑅− inf 𝑀−1. That is the bound obtained by Christensen,
Ferraro, and Thompson [58], who also proove that this bound is optimal. Per the Remark after 17.5.6
it matches the optimal bound in the corresponding statement for flat dimension. 17.5.6.

Under a boundedness assumption, the bound on 𝑛 in 17.5.11 can be further
improved.

17.5.12 Proposition. Let 𝑀 be a complex in D⊏ (𝑅). If for an integer 𝑛 ⩾ − inf 𝑀
one has Ext𝑛+1

𝑅𝔭
(κ (𝔭), 𝑀𝔭) = 0 for all 𝔭 ∈ Spec 𝑅 then id𝑅 𝑀 ⩽ 𝑛 holds.

Proof. By 15.4.7 it is sufficient to show that Ext𝑛+1
𝑅
(𝑅/𝔭, 𝑀) = 0 holds for all

𝔭 ∈ Spec 𝑅. Assume towards a contradiction that there is a prime ideal 𝔮 in 𝑅

with Ext𝑛+1
𝑅
(𝑅/𝔮, 𝑀) ≠ 0. By 12.4.9 there exists a prime ideal 𝔭 ∈ V(𝔮) with

Ext𝑛+1
𝑅
(𝑅/𝔭, 𝑀)𝔭 ≠ 0 and 14.1.23 yields Ext𝑛+1

𝑅𝔭
(κ (𝔭), 𝑀𝔭) ≠ 0; a contradiction. □
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Remark. A longer but perhaps more conceptual proof of 17.5.12, based on minimal semi-injective
resolutions, can be found in Christensen, Iyengar, and Marley [66]. Of course the statement remains
true with the lower bound 𝑛 ⩾ − inf 𝑀 − 1 but we find that too much of a red herring to pursue.

A Menagerie of Examples

If 𝑥 is a non-zerodivisor in a ring𝑄, then (0 :𝑅 𝑥) = (𝑥) holds in the ring 𝑅 = 𝑄/(𝑥2).
In this situation the next construction, which generalizes E 5.2.5, applies.

17.5.13 Construction. Assume that 𝑥 ∈ 𝑅 is an element with (0 :𝑅 𝑥) = (𝑥) and
set 𝑆 = 𝑅/(𝑥). The complex 𝐿 = · · · −−→ 𝑅

𝑥−−→ 𝑅
𝑥−−→ 𝑅 −−→ 0, concentrated in

non-negative degrees, is a semi-projective replacement of 𝑆 in D(𝑅) with Z𝑣 (𝐿) �
𝑆 = C𝑣 (𝐿) for all 𝑣 > 0. The complex

𝑃 =
∐
𝑢<0

Σ𝑢𝐿

is semi-projective by 5.2.18. Since the truncated complex 𝑃ě1 is semi-projective by
5.2.8, an application of 5.2.17 to the exact sequence 0 → 𝑃ď0 → 𝑃 → 𝑃ě1 → 0
shows that 𝑃ď0 is semi-projective. Now 3.1.10(d) yields

H𝑣 (𝑃ď0) �
∐
𝑢<0

H𝑣 ((Σ𝑢𝐿)ď0) �
{ ∐

𝑢<0 Z−𝑢 (𝐿) � 𝑆 (ℕ) for 𝑣 = 0
H𝑣 (Σ𝑣𝐿) = H0 (𝐿) � 𝑆 for 𝑣 < 0 .

In particular, one has pd𝑅 𝑃ď0 = 0 as H0 (𝑃ď0) ≠ 0, see 8.1.3.

For every flat 𝑅-module 𝐹 and semi-injective 𝑅-complex 𝐼 the complex 𝐹 ⊗𝑅 𝐼
consists by 8.4.17 of injective 𝑅-modules. If 𝐼 is bounded above, then so is 𝐹 ⊗𝑅 𝐼
whence it is semi-injective by 5.3.12. The next example shows that if 𝐼 is not bounded
above, then the complex 𝐹 ⊗𝑅 𝐼 may not be semi-injective, not even in the special
case 𝐹 = 𝑅𝔭 for a prime ideal 𝔭 in 𝑅. The example also shows that the boundedness
conditions in 14.1.29, 15.4.33, 17.3.17, and 17.3.18 are necessary.

17.5.14 Example. Let (𝑅,𝔪, 𝒌) be local, assume that there is an element 𝑥 ∈ 𝑅
with (0 :𝑅 𝑥) = (𝑥), and set 𝑆 = 𝑅/(𝑥). Let 𝐿 and 𝑃 be as in 17.5.13 and set

𝐼 = Hom𝑅 (𝐿,E𝑅 (𝒌)) and 𝐽 = Hom𝑅 (𝑃ď0,E𝑅 (𝒌)) ;

they are by 5.3.17 semi-injective 𝑅-complexes. One has Hom𝑅 (𝑆,E𝑅 (𝒌)) � E𝑆 (𝒌)
by C.16, so 𝐼 is per 2.2.19 a semi-injective replacement in D(𝑅) of E𝑆 (𝒌) and
one has

H𝑣 (𝐽) �
{

Hom𝑅 (H0 (𝑃ď0),E𝑅 (𝒌)) � E𝑆 (𝒌)ℕ for 𝑣 = 0
Hom𝑅 (H−𝑣 (𝑃ď0),E𝑅 (𝒌)) � E𝑆 (𝒌) for 𝑣 > 0 .

As 𝐽 is concentrated in non-negative degrees with H0 (𝐽) ≠ 0, one has id𝑅 𝐽 = 0, see
8.2.3. Now assume that 𝑅 has a prime ideal 𝔭 ≠ 𝔪. For 𝑣 > 0 one has

H𝑣 (𝐽𝔭) � H𝑣 (𝐽)𝔭 � E𝑆 (𝒌)𝔭 = 0
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by 14.1.11(a) and 15.1.12, so 𝐽𝔭 is isomorphic to (E𝑆 (𝒌)ℕ)𝔭 in D(𝑅𝔭); see 7.3.29.
This explains the 2nd isomorphism in the computation below. The 1st, 3rd, and 4th

isomorphisms hold by 14.1.21(b), 14.1.23, and 7.3.6, and the 5th comes from 12.2.2.

RHom𝑅 (κ (𝔭), 𝐽𝔭) ≃ RHom𝑅𝔭
(κ (𝔭), 𝐽𝔭)

≃ RHom𝑅𝔭
(κ (𝔭), (E𝑆 (𝒌)ℕ)𝔭)

≃ RHom𝑅 (𝑅/𝔭,E𝑆 (𝒌)ℕ)𝔭
≃ (RHom𝑅 (𝑅/𝔭,E𝑆 (𝒌))ℕ)𝔭
≃ (Hom𝑅 (𝑅/𝔭, 𝐼)ℕ)𝔭 .

In the integral domain 𝑅/𝔭 one has [𝑥]𝔭 = 0, as 𝑥2 = 0 in 𝑅, so the complex
Hom𝑅 (𝑅/𝔭, 𝐼) has zero differential. For 𝑚 > 0 one now has

Ext𝑚𝑅 (κ (𝔭), 𝐽𝔭) � (Hom𝑅 (𝑅/𝔭, 𝐼−𝑚)ℕ)𝔭 � (Hom𝑅 (𝑅/𝔭,E𝑅 (𝒌))ℕ)𝔭 .

By C.16 there is an isomorphism of 𝑅/𝔭-modules,

(Hom𝑅 (𝑅/𝔭,E𝑅 (𝒌))ℕ)𝔭 � (E𝑅/𝔭 (𝒌)ℕ) (0) ,

so by 14.1.8 the module Ext𝑚
𝑅
(κ (𝔭), 𝐽𝔭) is non-zero for every 𝑚 > 0. In particular,

one has id𝑅𝔭
𝐽𝔭 = id𝑅 𝐽𝔭 = ∞ by 17.3.13 and 17.3.11. Now, 𝐽𝔭 is by C.24 a complex

of injective 𝑅𝔭-modules; since it is below it is, in particular, not semi-injective.
To conclude: Let (𝑅,𝔪) be local with a prime ideal𝔭 ≠ 𝔪, i.e. not Artinian, and an

element 𝑥 with (0 :𝑅 𝑥) = (𝑥); a concrete example of such a ring is 𝑅 = 𝕜⟦𝑥, 𝑦⟧/(𝑥2)
where 𝕜 is local for example a field. The 𝑅-complex 𝐽 is concentrated in non-negative
degrees and semi-injective with id𝑅 𝐽 = 0. The 𝑅𝔭-complex 𝐽𝔭 is not semi-injective,
and one has id𝑅𝔭

𝐽𝔭 = id𝑅 𝐽𝔭 = ∞. More so, Ext𝑚
𝑅𝔭
(κ (𝔭), 𝐽𝔭) � Ext𝑚

𝑅
(κ (𝔭), 𝐽𝔭) ≠ 0

holds for all 𝑚 > 0; the isomorphism comes from 14.1.33(c).

For every injective 𝑅-module 𝐸 and semi-injective 𝑅-complex 𝐼 the complex
Hom𝑅 (𝐼, 𝐸) consists of flat 𝑅-modules, see 8.4.28. If the complex 𝐼 is bounded
above, then Hom𝑅 (𝐼, 𝐸) is bounded below whence it is semi-flat by 5.4.8. The next
example shows that if 𝐼 is not bounded above, then Hom𝑅 (𝐼, 𝐸) may not be semi-flat.
The example also shows that the boundedness condition in 15.4.31 is necessary.

17.5.15 Example. Let (𝑅,𝔪) be local with a prime ideal 𝔭 ≠ 𝔪 and an element 𝑥
with (0 :𝑅 𝑥) = (𝑥); a concrete example of such a ring is 𝑅 = 𝕜⟦𝑥, 𝑦⟧/(𝑥2) where
𝕜 is local for example a field. Let 𝐽 be the semi-injective 𝑅-complex with id𝑅 𝐽 = 0
from 17.5.14 and consider the 𝑅𝔭-complex

𝐹 = Hom𝑅 (𝐽,E𝑅 (𝑅/𝔭)) � Hom𝑅𝔭
(𝐽𝔭,E𝑅𝔭

(κ (𝔭))) ,

where the isomorphism holds by C.18 and 14.1.33(a). The complex 𝐽𝔭 has homology
concentrated in degree 0, see 17.5.14, so homomorphism evaluation 12.3.27(b), and
injectivity of E𝑅𝔭

(κ (𝔭)) yield an isomorphism,

κ (𝔭) ⊗L
𝑅𝔭

Hom𝑅𝔭
(𝐽𝔭,E𝑅𝔭

(κ (𝔭))) ≃ Hom𝑅𝔭
(RHom𝑅𝔭

(κ (𝔭), 𝐽𝔭),E𝑅𝔭
(κ (𝔭))) ,
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in D(𝑅𝔭). From 14.1.14(b), the isomorphism above, 2.2.19, 17.5.14, and faithful
injectivity of E𝑅𝔭

(κ (𝔭)) one gets

Tor𝑅𝑚 (κ (𝔭), 𝐹) � Tor𝑅𝔭

𝑚 (κ (𝔭), 𝐹) � Hom𝑅𝔭
(Ext𝑚𝑅𝔭

(κ (𝔭), 𝐽𝔭),E𝑅𝔭
(κ (𝔭))) ≠ 0

for all𝑚 > 0. It follows from 17.3.1 that the 𝑅-complex 𝐹 has infinite flat dimension,
and by 8.4.28 it is a complex of flat 𝑅-modules. As 𝐹 is bounded above it is, in
particular, not semi-flat.

Let 𝔞 be an ideal in 𝑅 and 𝐼 a semi-injective 𝑅-complex. By 13.3.4 the complex
Γ𝔞 (𝐼) consists of injective 𝑅-modules, so if 𝐼 is bounded above, then Γ𝔞 (𝐼) is semi-
injective, see 13.3.8. The next example shows that this boundedness condition is
necessary; it also shows that the assumption in 15.4.15(a) is needed.

17.5.16 Example. Let 𝕜 be a field and consider the local ring 𝑅 = 𝕜⟦𝑥, 𝑦⟧/(𝑥2); it
has only two prime ideals: 𝔭 = (𝑥) and 𝔪 = (𝑥, 𝑦). Notice that (0 :𝑅 𝑥) = (𝑥) holds
and let 𝐽 be as in 17.5.14. Each module 𝐽𝑣 is by Matlis’ structure theorem C.23 a
coproduct of copies of E𝑅 (𝑅/𝔭) and E𝑅 (𝑅/𝔪). It thus follows from 13.3.4 and C.24
that the cokernel of the embedding of Γ𝔪 (𝐽) into 𝐽 is 𝐽𝔭; that is, there is an exact
sequence of 𝑅-complexes,

0 −→ Γ𝔪 (𝐽) −→ 𝐽 −→ 𝐽𝔭 −→ 0 .

By 17.5.14 the 𝑅-complex 𝐽𝔭 has infinite injective dimension while id𝑅 𝐽 = 0, so by
8.2.9 also the complex Γ𝔪 (𝐽) = RΓ𝔪 (𝐽) has infinite injective dimension. By 13.3.4
the complex Γ𝔪 (𝐽) consists of injective 𝑅-modules; as it is bounded below it is, in
particular, not semi-injective.

It now follows from 15.4.15(a) that one has depth𝑅 𝐽 = −∞, but that can also be
verified directly: Recall the definitions of the complexes 𝐿, 𝑃, and 𝐽 from 17.5.13 and
17.5.14. As 𝑥 belongs to 𝔪, the complex 𝑅/𝔪 ⊗𝑅 𝐿 and, therefore, also 𝑅/𝔪 ⊗𝑅 𝑃
has zero differential, see 3.1.13. Adjunction 12.1.10 yields

Hom𝑅 (𝑅/𝔪, 𝐽) � Hom𝑅 (𝑅/𝔪 ⊗𝑅 𝑃ě0,E𝑅 (𝑅/𝔪)) ,

so also Hom𝑅 (𝑅/𝔪, 𝐽) has zero differential. As E𝑅 (𝑅/𝔪) is a direct summand of
𝐽𝑣 for every 𝑣 ⩾ 0, one has in view of 16.2.14 and (16.1.22.1) the equalities

depth𝑅 𝐽 = − sup RHom𝑅 (𝑅/𝔪, 𝐽) = − sup Hom𝑅 (𝑅/𝔪, 𝐽) = − sup 𝐽 = −∞ .

Remark. For every projective 𝑅-module 𝑃 and semi-flat 𝑅-complex𝐹 the complex Hom𝑅 (𝑃, 𝐹 )
consists by 8.4.15 of flat 𝑅-modules. If 𝐹 is bounded below, then so is Hom𝑅 (𝑃, 𝐹 ) whence it is
semi-flat by 5.4.8. An example by Christensen, Ferraro, and Thompson [58] shows that if 𝐹 is not
bounded below, then the complex Hom𝑅 (𝑃, 𝐹 ) may not be semi-flat.

Exercises

E 17.5.1 Show that 17.5.6 remains valid with the bound 𝑛 ⩾ dim𝑅 + sup𝑀 − 1. Hint: E 16.3.8.
E 17.5.2 Derive the Auslander–Buchsbaum Formula 16.4.2 from the Chouinard Formula 17.5.7.
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E 17.5.3 Let 𝑀 be an 𝑅-module and 𝜄 : 𝑀 → 𝐼 an embedding into an injective 𝑅-module. Show
that 𝐼 is the injective envelope of 𝑀 if and only if Hom𝑅𝔭

(κ (𝔭) , 𝜄𝔭 ) is an isomorphism
for every 𝔭 ∈ Spec𝑅.

E 17.5.4 Let 𝑀 be an 𝑅-complex. Show that there are equalities,
fd𝑅 𝑀 = sup{sup RHom𝑅 (𝑅𝔭 , 𝑅/𝔭 ⊗L

𝑅 𝑀 ) | 𝔭 ∈ Spec𝑅 }
= sup{sup RHom𝑅/𝔭 (κ (𝔭) , 𝑅/𝔭 ⊗L

𝑅 𝑀 ) | 𝔭 ∈ Spec𝑅 } .
Derive from these equalities 17.5.2 for 𝑀 in D⊐ (𝑅) .

17.6 Depth and Krull Dimension

Synopsis. Depth; associated prime ideals of local cohomology module; 𝔞-depth; 𝔞-width; supre-
mum; infimum; Krull dimension, prime ideals vs. faithfully flat ring extensions.

In the generality stated here, the first major result of this section, 17.6.3, was proved
by Foxby and Iyengar [98]. It has the useful consequence, 17.6.4, that one can replace
the classic support of a complex by its support in the supremum formula in 14.1.13.
For the infimum one only gets a result of comparable utility for complexes over a
ring of finite Krull dimension; see 17.6.11.

Depth and Localization

17.6.1 Lemma. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. For every prime ideal
𝔭 in V(𝔞) there are inequalities,

𝔞-depth𝑅 𝑀 ⩽ 𝔞𝔭-depth𝑅𝔭
𝑀𝔭 ⩽ depth𝑅𝔭

𝑀𝔭 .

Proof. Let 𝔭 be a prime ideal that contains 𝔞. As depth𝑅𝔭
𝑀𝔭 by 16.2.12 is

𝔭𝔭-depth𝑅𝔭
𝑀𝔭, the second of the asserted inequalities holds by 14.3.18. The first

inequality follows from 14.4.3, 14.1.11, and 14.1.25:

𝔞-depth𝑅 𝑀 = − sup RΓ𝔞 (𝑀)
⩽ − sup RΓ𝔞 (𝑀)𝔭
= − sup RΓ𝔞𝔭 (𝑀𝔭)
= 𝔞𝔭-depth𝑅𝔭

𝑀𝔭 . □

17.6.2 Example. Let 𝕜 be a field and consider the ring 𝑅 = 𝕜⟦𝑥, 𝑦, 𝑧⟧/(𝑥𝑧, 𝑦𝑧, 𝑧2)
and the prime ideal 𝔭 = (𝑦, 𝑧) in 𝑅. As (0 :𝑅 𝔭) contains 𝑧 one has 𝔭-depth 𝑅 = 0
by 14.3.17. The local ring 𝑅𝔭 is isomorphic to the ring of power series in 𝑦 with
coefficients in the field of fractions of 𝕜⟦𝑥⟧, which is the ring of Laurent series in 𝑥;
that is, 𝑅𝔭 � 𝕜(|𝑥 |)⟦𝑦⟧. In particular, 𝑅𝔭 is a domain and not a field, so it has positive
depth, see 14.4.17 and 14.4.21(a). Thus one has 𝔭-depth 𝑅 < depth 𝑅𝔭. In fact, the
depth of 𝑅𝔭 is 1 as, evidently, 𝑦 is a maximal 𝑅-regular sequence.

The prime ideals that attain the infimum below are identified in 17.6.7. The “in
particular” statement compares to 14.1.13.
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17.6.3 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. There are equalities,

𝔞-depth𝑅 𝑀 = inf{depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ V(𝔞) }

= inf{depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ V(𝔞) ∩ supp𝑅 𝑀 } .

In particular, one has

− sup𝑀 = inf{depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅} = inf{depth𝑅𝔭

𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } .

Proof. Per 14.3.12 the equalities in the second display are the special case 𝔞 = 0
of the equalities in the first display. In the first display, the two infima are equal
by 17.1.6. From 17.6.1 one gets 𝔞-depth𝑅 𝑀 ⩽ inf{depth𝑅𝔭

𝑀𝔭 | 𝔭 ∈ V(𝔞) }, and
to prove the opposite inequality one can assume that 𝔞-depth𝑅 𝑀 < ∞ holds. Let
𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑛 be a sequence that generates 𝔞 and set 𝐾 = K𝑅 (𝑥𝑥𝑥). For every prime
ideal 𝔭 in V(𝔞) the fractions 𝑥1

1 , . . . ,
𝑥𝑛
1 form a sequence in 𝔭𝔭, and 𝐾𝔭 is the Koszul

complex on this sequence, see 11.4.18. Now 14.4.15 and 14.1.15 yield

(⋄) depth𝑅𝔭
𝑀𝔭 = 𝑛 + depth𝑅𝔭

(𝐾𝔭 ⊗𝑅𝔭
𝑀𝔭) = 𝑛 + depth𝑅𝔭

(𝐾 ⊗𝑅 𝑀)𝔭 .

Notice from 14.1.5 and 14.1.17 that Supp𝑅 (𝐾 ⊗𝑅 𝑀) is contained in V(𝔞). As-
sume first that H(𝐾 ⊗𝑅 𝑀) is bounded above, i.e. 𝔞-depth𝑅 𝑀 > −∞, and set
𝑠 = sup (𝐾 ⊗𝑅 𝑀). The goal is to prove the existence of a prime ideal 𝔭 in V(𝔞) with
𝔞-depth𝑅 𝑀 = depth𝑅𝔭

𝑀𝔭. As just noticed, one has Supp𝑅 H𝑠 (𝐾 ⊗𝑅 𝑀) ⊆ V(𝔞),
so let 𝔭 be a prime ideal in Ass𝑅 H𝑠 (𝐾 ⊗𝑅 𝑀). Now one has sup (𝐾 ⊗𝑅 𝑀)𝔭 = 𝑠,
and the maximal ideal 𝔭𝔭 of 𝑅𝔭 belongs to Ass𝑅𝔭

H𝑠 ((𝐾 ⊗𝑅 𝑀)𝔭), whence (⋄) reads,

depth𝑅𝔭
𝑀𝔭 = 𝑛 − sup (𝐾 ⊗𝑅 𝑀)𝔭 = 𝑛 − sup (𝐾 ⊗𝑅 𝑀) = 𝔞-depth𝑅 𝑀 ,

by 16.2.16(b) and 14.3.10.
Assume now that 𝔞-depth𝑅 𝑀 = −∞ holds; this implies sup𝑀 = ∞ by 16.2.16.

The goal is to show that for every integer 𝑣 > 0 there is a prime ideal 𝔭 in V(𝔞)
with depth𝑅𝔭

𝑀𝔭 ⩽ −𝑣. First we reduce to the case where H(𝑀) is annihilated by 𝔞:
By 14.4.15 one has 𝔞-depth𝑅 (𝐾 ⊗𝑅 𝑀) = 𝔞-depth𝑅 𝑀 − 𝑛 = −∞, and (⋄) can be
rewritten as depth𝑅𝔭

(𝐾 ⊗𝑅 𝑀)𝔭 = depth𝑅𝔭
𝑀𝔭−𝑛, so one can replace𝑀 by𝐾 ⊗𝑅 𝑀 ,

i.e. one can assume that H(𝑀) is annihilated by 𝔞, see 11.4.6(a). For 𝑣 ∈ ℤ set

𝑈𝑣 = {𝔮 ∈ V(𝔞) | 𝑣 ⩽ sup𝑀𝔮 < ∞}

and notice that these sets form a descending chain: · · · ⊇ 𝑈𝑣 ⊇ 𝑈𝑣+1 ⊇ · · · . Assume
first that each set 𝑈𝑣 is non-empty. Given 𝑣 ∈ ℤ choose a prime ideal 𝔮 in 𝑈𝑣. Set
𝑢 = sup𝑀𝔮 and let 𝔭 be an associated prime ideal of the 𝑅-module H𝑢 (𝑀𝔮). By
16.2.16(b) one now has depth𝑅𝔭

𝑀𝔭 = depth𝑅𝔭
(𝑀𝔮)𝔭 = − sup𝑀𝔮 = −𝑢 ⩽ −𝑣 as

desired. Assume now that 𝑈𝑤 is empty for some integer 𝑤 and hence 𝑈𝑣 = ∅ for all
𝑣 ⩾ 𝑤. Since Supp𝑅 𝑀 is contained in V(𝔞), see 14.1.3, one now has⋃

𝑣⩾𝑤 Supp𝑅 H𝑣 (𝑀) = {𝔮 ∈ V(𝔞) | sup𝑀𝔮 = ∞} ;

this set is non-empty as sup𝑀 = ∞ holds. Let 𝔭 be a minimal element of the set; it
follows that Supp𝑅𝔭

H𝑣 (𝑀𝔭) ⊆ {𝔭𝔭} holds for all 𝑣 ⩾ 𝑤. Per 14.1.3 the 𝑅𝔭-modules
H𝑣 (𝑀𝔭) for 𝑣 ⩾ 𝑤 are now 𝔭𝔭-torsion, so depth𝑅𝔭

𝑀𝔭 = −∞ holds by 16.2.20. □
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17.6.4 Proposition. Let 𝑀 be an 𝑅-complex; one has

sup𝑀 = sup{sup𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } .

Proof. By 17.6.3, 16.2.16, and 14.1.13 one has

sup𝑀 = − inf{depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 }

= sup{− depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 }

⩽ sup{sup𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 }
⩽ sup{sup𝑀𝔭 | 𝔭 ∈ Spec 𝑅}
= sup𝑀 . □

For a prime ideal the next inequality is stronger than the inequality in 16.4.6, as
illustrated by the example above. The inequality also holds for a derived 𝔪-complete
complex over a local ring (𝑅,𝔪), see 18.3.27.

17.6.5 Corollary. Let 𝑅 be local, 𝔞 a proper ideal in 𝑅, and 𝑀 an 𝑅-complex. If 𝑀
is in Df (𝑅), then there is an inequality,

𝔞-depth𝑅 𝑀 + dim 𝑅/𝔞 ⩾ depth𝑅 𝑀 .

Proof. One can assume that 𝔞-depth𝑅 𝑀 is finite; in particular, 𝑀 is not acyclic,
see 14.3.11. Notice next from 16.2.21 that the inequality is trivial if H(𝑀) is not
bounded above, so one can further assume that 𝑀 belongs to D⊏ (𝑅). Now it follows
from 14.3.16 that 𝔞-depth𝑅 𝑀 is an integer. By 17.6.3 there is a prime ideal 𝔭 ∈ V(𝔞)
with 𝔞-depth𝑅 𝑀 = depth𝑅𝔭

𝑀𝔭, so via 16.4.6 one gets,

𝔞-depth𝑅 𝑀 + dim 𝑅/𝔞 ⩾ depth𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 ⩾ depth𝑅 𝑀 . □

17.6.6 Proposition. Let 𝔞 be an ideal in 𝑅, generated by a sequence 𝑥𝑥𝑥, and 𝑀 be
an 𝑅-complex. If 𝑑 = 𝔞-depth𝑅 𝑀 is an integer, then there are equalities,

Ass𝑅 H𝑑𝔞 (𝑀) = Ass𝑅 Ext𝑑𝑅 (𝑅/𝔞, 𝑀) = Ass𝑅 Ext𝑑𝑅 (K
𝑅 (𝑥𝑥𝑥), 𝑀) .

Furthermore, this set is contained in V(𝔞).

Proof. The module H𝑑𝔞 (𝑀) is 𝔞-torsion by 11.3.24, so its classic support, and
thereby Ass𝑅 H𝑑𝔞 (𝑀), is contained in the set V(𝔞) by 14.1.3. This explains the
second equality below. The first equality holds by 17.1.1 and 15.1.10.

Ass𝑅 Hom𝑅 (𝑅/𝔞,H𝑑𝔞 (𝑀)) = V(𝔞) ∩ Ass𝑅 H𝑑𝔞 (𝑀) = Ass𝑅 H𝑑𝔞 (𝑀) .

The assertion now follows from 14.4.5. □

Remark. Understanding the associated prime ideals of local cohomology modules has been a
problem of sustained interest in commutative algebra. We do not treat the problem within this text,
but we notice that for an ideal 𝔞 in 𝑅 and a complex 𝑀 in Df (𝑅) of 𝔞-depth 𝑑, it follows from
17.6.6 that the local cohomology module H𝑑𝔞 (𝑀 ) has only finitely many associated prime ideals.
Indeed, with 𝑥𝑥𝑥 a sequence that generates 𝔞, the module Ext𝑑

𝑅
(K𝑅 (𝑥𝑥𝑥 ) , 𝑀 ) is finitely generated by

15.4.3. In [138] Huneke asked if every local cohomology module H𝑚𝔞 (𝑀 ) of a finitely generated
𝑅-module 𝑀 has only finitely many associated prime ideals; a negative answer was provided by
Singh [237].
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17.6.7 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. If 𝑑 = 𝔞-depth𝑅 𝑀
is an integer, then one has

{𝔭 ∈ V(𝔞) | depth𝑅𝔭
𝑀𝔭 = 𝑑 } = Ass𝑅 H𝑑𝔞 (𝑀) .

Proof. It is known from 17.6.6 that the set Ass𝑅 H𝑑𝔞 (𝑀) is contained in V(𝔞). For
every prime ideal 𝔭 in V(𝔞), the (in)equalities below hold by 14.4.3, 14.1.11(c),
14.1.25, 16.2.16, and 16.2.14:

(⋄)

𝑑 = − sup RΓ𝔞 (𝑀)
⩽ − sup RΓ𝔞 (𝑀)𝔭
= − sup RΓ𝔞𝔭 (𝑀𝔭)
⩽ depth𝑅𝔭

RΓ𝔞𝔭 (𝑀𝔭)
= depth𝑅𝔭

𝑀𝔭 .

If depth𝑅𝔭
𝑀𝔭 = 𝑑 holds then, in particular, the second inequality in (⋄) is an

equality, so 16.2.16(b) yields that the maximal ideal 𝔭𝔭 of 𝑅𝔭 is associated to the 𝑅𝔭-
module H−𝑑 (RΓ𝔞𝔭 (𝑀𝔭)) � H−𝑑 (RΓ𝔞 (𝑀))𝔭; whence𝔭 is associated to the 𝑅-module
H−𝑑 (RΓ𝔞 (𝑀)) = H𝑑𝔞 (𝑀). Conversely, if 𝔭 is associated to this module, then the first
inequality in (⋄) is an equality, so sup RΓ𝔞𝔭 (𝑀𝔭) = −𝑑 holds, and by 16.2.16(b) also
the second inequality is an equality as 𝔭𝔭 is associated to H−𝑑 (RΓ𝔞𝔭 (𝑀𝔭)). □

17.6.8 Theorem. Let 𝔞 and 𝔟 be ideals in 𝑅 and 𝑀 an 𝑅-complex. The following
equalities hold.

𝔞𝔟-depth𝑅 𝑀 = (𝔞 ∩ 𝔟)-depth𝑅 𝑀 = min{𝔞-depth𝑅 𝑀, 𝔟-depth𝑅 𝑀 } .(a)
𝔞𝔟-width𝑅 𝑀 = (𝔞 ∩ 𝔟)-width𝑅 𝑀 = min{𝔞-width𝑅 𝑀, 𝔟-width𝑅 𝑀 } .(b)

Proof. (a): One has V(𝔞𝔟) = V(𝔞 ∩ 𝔟), so the first equality follows immediately
from 17.6.3. As V(𝔞 ∩ 𝔟) = V(𝔞) ∪V(𝔟) holds, further applications of 17.6.3 yield

(𝔞 ∩ 𝔟)-depth𝑅 𝑀
= inf{depth𝑅𝔭

𝑀𝔭 | 𝔭 ∈ V(𝔞) ∪ V(𝔟) }
= min{inf{depth𝑅𝔭

𝑀𝔭 | 𝔭 ∈ V(𝔞) }, inf{depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ V(𝔟) }}

= min{𝔞-depth𝑅 𝑀, 𝔟-depth𝑅 𝑀 } .

(b): Let 𝐸 be a faithfully injective 𝑅-module and invoke 14.4.14 and part (a). □

Width and Localization

In contrast to the last assertion in 17.6.3, the next example shows that one can
not determine the infimum of a complex from the width of its localizations. For a
complex over a ring of finite Krull dimension one can, however, infer from a uniform
lower bound of the width of its localizations that the complex has bounded below
homology, see 17.6.10.
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17.6.9 Example. Let (𝑅,𝔪) be local of depth 𝑑 > 0 and 𝑥𝑥𝑥 be a sequence that
generates 𝔪. By 15.1.27 one has supp𝑅 Č𝑅(𝑥𝑥𝑥) = {𝔪}. From 13.3.18, 16.2.3, 16.2.5,
and 16.2.14 one gets

width𝑅 Č𝑅(𝑥𝑥𝑥) = width𝑅 RΓ𝔪 (𝑅) = width𝑅 𝑅 = 0 and sup Č𝑅(𝑥𝑥𝑥) = −𝑑 .

In particular, one has inf Č𝑅(𝑥𝑥𝑥) ⩽ −𝑑 < 0; in fact, inf Č𝑅(𝑥𝑥𝑥) = − dim 𝑅 by 18.3.23.

The example above shows that the inequality in the next lemma can be an equality.

17.6.10 Lemma. Assume that 𝑅 has finite Krull dimension and let 𝑀 be an 𝑅-
complex. There are (in)equalities,

inf 𝑀 + dim 𝑅 ⩾ inf{width𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 | 𝔭 ∈ Spec 𝑅}

= inf{width𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 | 𝔭 ∈ supp𝑅 𝑀 } .

Proof. The equality holds by 17.1.6. To prove the inequality, one can assume that
𝑀 is not acyclic, otherwise it is trivial. One can similarly, see 15.1.15, assume that
𝑤 = inf{width𝑅𝔭

𝑀𝔭 + dim 𝑅/𝔭 | 𝔭 ∈ Spec 𝑅} is an integer. For every prime ideal 𝔭
in 𝑅 one now has

(⋄) H𝑣 (𝑅/𝔭 ⊗L
𝑅 𝑀)𝔭 = H𝑣 (κ (𝔭) ⊗L

𝑅 𝑀) = 0 for 𝑣 < 𝑤 − dim 𝑅/𝔭 ,

by 14.1.15, 14.1.16(b), and 16.2.1. We proceed to argue that the inequality

(♭) inf (𝐾 ⊗L
𝑅 𝑀) ⩾ 𝑤 − dim𝑅 𝐾

holds for every finitely generated 𝑅-module 𝐾 . The asserted inequality is, in view of
the unitor 12.3.3, the special case 𝐾 = 𝑅.

If dim𝑅 𝐾 = 0 holds, then every element 𝔭 in Supp𝑅 𝐾 is a maximal ideal, whence
κ (𝔭) = 𝑅/𝔭 and dim 𝑅/𝔭 = 0 hold. For 𝑣 < 𝑤 one now gets H𝑣 (𝐾 ⊗L

𝑅
𝑀) = 0

from (⋄) and 12.4.1 applied to the functor H𝑣 ( ⊗L
𝑅
𝑀), that is, (♭) holds. Now let

𝑑 > 0 and assume that (♭) holds for all finitely generated 𝑅-modules 𝐾 of Krull
dimension less than 𝑑. To prove that (♭) holds if dim𝑅 𝐾 = 𝑑, it suffices by 12.4.1
to show that for every prime ideal 𝔭 in Supp𝑅 𝐾 one has H𝑣 (𝑅/𝔭 ⊗L

𝑅
𝑀) = 0 for

𝑣 < 𝑤 − 𝑑. For such a prime ideal 𝔭 one has dim 𝑅/𝔭 ⩽ 𝑑. For every element
𝑥 ∈ 𝑅 \ 𝔭 multiplication by 𝑥 on 𝑅/𝔭 is injective, so there is an exact sequence
0 −−→ 𝑅/𝔭 𝑥−−→ 𝑅/𝔭 −−→ 𝑅/(𝔭 + (𝑥)) −−→ 0 and per 6.5.24 and 12.2.8 an induced
distinguished triangle,

𝑅/𝔭 ⊗L
𝑅 𝑀

𝑥−−−→ 𝑅/𝔭 ⊗L
𝑅 𝑀 −→ 𝑅/(𝔭 + (𝑥)) ⊗L

𝑅 𝑀 −→ Σ (𝑅/𝔭 ⊗L
𝑅 𝑀) .

Since dim 𝑅/(𝔭+ (𝑥)) < 𝑑 holds, it follows from the induction hypothesis and 6.5.21
that for 𝑣 ⩽ 𝑤 − 𝑑 multiplication by 𝑥 on the module H𝑣 (𝑅/𝔭 ⊗L

𝑅
𝑀) is injective,

even an isomorphism. Thus the canonical map H𝑣 (𝑅/𝔭 ⊗L
𝑅
𝑀) → H𝑣 (𝑅/𝔭 ⊗L

𝑅
𝑀)𝔭

is injective. Per (⋄) one has H𝑣 (𝑅/𝔭 ⊗L
𝑅
𝑀)𝔭 = 0, so H𝑣 (𝑅/𝔭 ⊗L

𝑅
𝑀) = 0 holds for

𝑣 < 𝑤 − 𝑑 as desired. □
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17.6 Depth and Krull Dimension 825

If 𝑅 is an integral domain of finite Krull dimension and 𝑀 the injective hull of 𝑅,
which by 1.3.33 is the field of fractions of 𝑅, then it follows from 15.1.12 that both
inequalities in the next result are equalities.

17.6.11 Proposition. Assume that 𝑅 has finite Krull dimension and let 𝑀 be an
𝑅-complex. There are inequalities,

inf{inf 𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } ⩾ inf 𝑀
⩾ inf{inf 𝑀𝔭 + dim 𝑅/𝔭 | 𝔭 ∈ supp𝑅 𝑀 } − dim 𝑅 .

In particular, 𝑀 is in D⊐ (𝑅) if and only if inf{inf 𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } > −∞ holds.

Proof. The left-hand inequality follows from 14.1.13. The right-hand inequality
comes from 17.6.10 and the inequality in 16.2.5. If 𝑀 is acyclic, then inf 𝑀𝔭 = ∞
holds for every prime ideal 𝔭. The “in particular” statement is immediate from the
displayed inequalities. □

Supremum and Depth

The remaining results in this section are of a technical nature; they find applications
in Chap. 18.

17.6.12 Lemma. For complexes 𝐾 ∈ Df
⊐ (𝑅) and 𝑀 ∈ D⊏ (𝑅) there are equalities,

− sup RHom𝑅 (𝐾, 𝑀) = inf{depth𝑅𝔭
𝑀𝔭 + inf 𝐾𝔭 | 𝔭 ∈ supp𝑅 𝑀 ∩ supp𝑅 𝐾 }

= inf{depth𝑅𝔭
𝑀𝔭 + inf 𝐾𝔭 | 𝔭 ∈ Spec 𝑅} .

Proof. By 17.1.10(b) one has supp𝑅 RHom𝑅 (𝐾, 𝑀) = supp𝑅 𝐾 ∩ supp𝑅 𝑀 , and
for every prime ideal 𝔭 in this set, 14.1.23 yields the first equality in the next display.
The second equality follows, in view of 17.1.6 from 16.2.25.

depth𝑅𝔭
RHom𝑅 (𝐾, 𝑀)𝔭 = depth𝑅𝔭

RHom𝑅𝔭
(𝐾𝔭, 𝑀𝔭) = inf 𝐾𝔭 + depth𝑅𝔭

𝑀𝔭 .

The first of the asserted equalities now holds by 17.6.3, and the second follows as
one by 15.1.9, 14.1.12, and 17.1.6 has inf 𝐾𝔭 = ∞ or depth𝑅𝔭

𝑀𝔭 = ∞ for prime
ideals 𝔭 ∉ supp𝑅 𝐾 ∩ supp𝑅 𝑀 . □

17.6.13 Proposition. Let 𝐾 be a finitely generated 𝑅-module and 𝑀 a complex in
D⊏ (𝑅). There are equalities,

− sup RHom𝑅 (𝐾, 𝑀) = inf{depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Supp𝑅 𝐾 }

= inf{depth𝑅𝔭
𝑀𝔭 | 𝔭 ∈ V(0 :𝑅 𝐾) }

= − sup RHom𝑅 (𝑅/(0 :𝑅 𝐾), 𝑀) .

Proof. Recall from 15.1.9 that supp𝑅 𝐾 = Supp𝑅 𝐾 holds. The first equality now
follows from 17.6.12 as one has inf 𝐾𝔭 = 0 for 𝔭 ∈ Supp𝑅 𝐾 . The second equality
holds by 14.1.1, and the final equality follows from another application of 17.6.12,
as one has V(0 :𝑅 𝐾) = Supp𝑅 (𝑅/(0 :𝑅 𝐾)). □
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17.6.14 Proposition. Let 𝐾 be a complex in Df
⊐ (𝑅) and 𝑀 a complex in D⊏ (𝑅).

There is an equality,

− sup RHom𝑅 (𝐾, 𝑀) = inf{− sup RHom𝑅 (H𝑣 (𝐾), 𝑀) + 𝑣 | 𝑣 ∈ ℤ} .

Proof. Denote by 𝑠 the quantity on the left-hand side of the asserted equality and
by 𝑡 the quantity on the right-hand side. To prove the inequality 𝑠 ⩾ 𝑡 it suffices by
17.6.12 to show that depth𝑅𝔭

𝑀𝔭 + inf 𝐾𝔭 ⩾ 𝑡 holds for all 𝔭 ∈ supp𝑅 𝑀 ∩ supp𝑅 𝐾 .
Given such a prime ideal 𝔭 set 𝑤 = inf 𝐾𝔭, it follows from 15.1.9 and 14.1.12 that 𝑤 is
an integer. Since 𝔭 is in Supp𝑅 H𝑤(𝐾) one gets from 17.6.13 the desired inequality,

depth𝑅𝔭
𝑀𝔭 + inf 𝐾𝔭 ⩾ − sup RHom𝑅 (H𝑤(𝐾), 𝑀) + 𝑤 ⩾ 𝑡 .

For the opposite inequality, 𝑡 ⩾ 𝑠, it suffices to show that for every 𝑣 ∈ ℤ with
H(RHom𝑅 (H𝑣 (𝐾), 𝑀)) ≠ 0 one has − sup RHom𝑅 (H𝑣 (𝐾), 𝑀) + 𝑣 ⩾ 𝑠. Given
such a 𝑣, notice from 7.6.7 that − sup RHom𝑅 (H𝑣 (𝐾), 𝑀) is an integer, whence
17.6.13 yields a prime ideal 𝔭 in Supp𝑅 H𝑣 (𝐾) with − sup RHom𝑅 (H𝑣 (𝐾), 𝑀) =
depth𝑅𝔭

𝑀𝔭. Now 17.6.12 yields

− sup RHom𝑅 (H𝑣 (𝐾), 𝑀) + 𝑣 ⩾ depth𝑅𝔭
𝑀𝔭 + inf 𝐾𝔭 ⩾ 𝑠 . □

The next inequality also holds, see 18.3.24, under the asumption that 𝑀 is derived
𝔪-torsion or 𝑁 is derived𝔪-complete where, of course,𝔪 denotes the maximal ideal
of the local ring 𝑅.

17.6.15 Proposition. Let 𝑅 be local and 𝑀 and 𝑁 be complexes in Df (𝑅) that are
not acyclic. There is an inequality,

− sup RHom𝑅 (𝑀, 𝑁) ⩾ depth𝑅 𝑁 − dim𝑅 𝑀 .

Proof. First notice that if H(𝑀) is not bounded below, then one has dim𝑅 𝑀 = ∞ by
14.2.4, and if H(𝑁) is not bounded above, then one has depth𝑅 𝑁 = −∞ by 16.2.21;
in either case the inequality his trivial. Assume now that 𝑀 belongs to Df

⊐ (𝑅) and
𝑁 to Df

⊏ (𝑅). The first equality in the chain below comes from 17.6.12 and the last
of them holds by 14.2.6. The inequality follows from 16.4.6.

− sup RHom𝑅 (𝑀, 𝑁) = inf{depth𝑅𝔭
𝑁𝔭 + inf 𝑀𝔭 | 𝔭 ∈ Spec 𝑅}

⩾ inf{depth𝑅 𝑁 − dim 𝑅/𝔭 + inf 𝑀𝔭 | 𝔭 ∈ Spec 𝑅}
= depth𝑅 𝑁 − sup{dim 𝑅/𝔭 − inf 𝑀𝔭 | 𝔭 ∈ Spec 𝑅}
= depth𝑅 𝑁 − dim𝑅 𝑀 . □

Infimum and Krull Dimension

17.6.16 Proposition. Let 𝐾 be a finitely generated 𝑅-module and 𝑀 a complex in
D⊐ (𝑅). There is an equality,

inf (𝐾 ⊗L
𝑅 𝑀) = inf (𝑅/(0 :𝑅 𝐾) ⊗L

𝑅 𝑀) .
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Proof. Let 𝐸 be a faithfully injective 𝑅-module. In the computation below, the 1st

and 5th equalities hold by 2.5.7(b), while the 2nd and 4th both come from commuta-
tivity 12.3.5 and adjunction 12.3.18, and the 3rd holds by 17.6.13.

inf (𝐾 ⊗L
𝑅 𝑀) = − sup RHom𝑅 (𝐾 ⊗L

𝑅 𝑀, 𝐸)
= − sup RHom𝑅 (𝐾,RHom𝑅 (𝑀, 𝐸))
= − sup RHom𝑅 (𝑅/(0 :𝑅 𝐾),RHom𝑅 (𝑀, 𝐸))
= − sup RHom𝑅 (𝑅/(0 :𝑅 𝐾) ⊗L

𝑅 𝑀, 𝐸)
= inf (𝑅/(0 :𝑅 𝐾) ⊗L

𝑅 𝑀) . □

17.6.17 Proposition. Let 𝐾 be a complex in Df
⊐ (𝑅) and 𝑀 a complex in D⊐ (𝑅).

There is an equality,

inf (𝐾 ⊗L
𝑅 𝑀) = inf{inf (H𝑣 (𝐾) ⊗L

𝑅 𝑀) + 𝑣 | 𝑣 ∈ ℤ} .

Proof. Let 𝐸 be a faithfully injective 𝑅-module. In the next computation, the 1th

and 5th equalities hold by 2.5.7(b), the 2nd and 4th equalities both follow from
commutativity 12.3.5 and adjunction 12.3.18, and the 3rd holds by 17.6.14.

inf (𝐾 ⊗L
𝑅 𝑀) = − sup RHom𝑅 (𝐾 ⊗L

𝑅 𝑀, 𝐸)
= − sup RHom𝑅 (𝐾,RHom𝑅 (𝑀, 𝐸))
= inf{− sup RHom𝑅 (H𝑣 (𝐾),RHom𝑅 (𝑀, 𝐸)) + 𝑣 | 𝑣 ∈ ℤ}
= inf{− sup RHom𝑅 (H𝑣 (𝐾) ⊗L

𝑅 𝑀, 𝐸) + 𝑣 | 𝑣 ∈ ℤ}
= inf{inf (H𝑣 (𝐾) ⊗L

𝑅 𝑀) + 𝑣 | 𝑣 ∈ ℤ} . □

17.6.18 Proposition. Let 𝐾 be a finitely generated 𝑅-module and 𝑀 a complex in
D⊐ (𝑅). There is an equality,

dim𝑅 (𝐾 ⊗L
𝑅 𝑀) = dim𝑅 (𝑅/(0 :𝑅 𝐾) ⊗L

𝑅 𝑀) .

Proof. For every prime ideal 𝔭 in 𝑅 there are isomorphisms,

(†) (𝑅/(0 :𝑅 𝐾))𝔭 � 𝑅𝔭/(0 :𝑅 𝐾)𝔭 � 𝑅𝔭/(0 :𝑅𝔭
𝐾𝔭) ,

see 15.3.34. Thus it follows from 14.2.7 and 14.1.15 that it suffices to show the
asserted equality under the assumption that 𝑅 is local.

For every prime ideal 𝔭 in 𝑅 one has

inf (𝐾 ⊗L
𝑅 𝑀)𝔭 = inf (𝐾𝔭 ⊗L

𝑅𝔭
𝑀𝔭)

= inf (𝑅𝔭/(0 :𝑅𝔭
𝐾𝔭) ⊗L

𝑅𝔭
𝑀𝔭)

= inf (𝑅/(0 :𝑅 𝐾) ⊗L
𝑅 𝑀)𝔭

by 14.1.15, 17.6.16, and (†). This explains the second equality in the computation
below; the first and last equalities hold by 14.2.6 as dim 𝑅 is finite.

dim𝑅 (𝐾 ⊗L
𝑅 𝑀) = sup{dim 𝑅/𝔭 − inf (𝐾 ⊗L

𝑅 𝑀)𝔭 | 𝔭 ∈ Spec 𝑅}
= sup{dim 𝑅/𝔭 − inf (𝑅/(0 :𝑅 𝐾) ⊗L

𝑅 𝑀)𝔭 | 𝔭 ∈ Spec 𝑅}
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= dim𝑅 (𝑅/(0 :𝑅 𝐾) ⊗L
𝑅 𝑀) . □

17.6.19 Proposition. Let 𝐾 be a complex in Df
⊐ (𝑅) and 𝑀 a complex in D⊐ (𝑅).

There is an equality,

dim𝑅 (𝐾 ⊗L
𝑅 𝑀) = sup{dim𝑅 (H𝑣 (𝐾) ⊗L

𝑅 𝑀) − 𝑣 | 𝑣 ∈ ℤ} .

Proof. It follows from 14.2.7, 14.1.15, and 14.1.11(a) that it suffices to show the
asserted equality under the assumption that 𝑅 is local.

Let 𝔭 be a prime ideal in 𝑅. From 14.1.15, 17.6.17, and 14.1.11 one gets

inf (𝐾 ⊗L
𝑅 𝑀)𝔭 = inf (𝐾𝔭 ⊗L

𝑅𝔭
𝑀𝔭)

= inf{inf (H𝑣 (𝐾𝔭) ⊗L
𝑅𝔭
𝑀𝔭) + 𝑣 | 𝑣 ∈ ℤ}

= inf{inf (H𝑣 (𝐾) ⊗L
𝑅 𝑀)𝔭 + 𝑣 | 𝑣 ∈ ℤ} .

This explains the second equality in the next computation; the first and last equalities
hold by 14.2.6 as 𝑅 has finite Krull dimension.

dim𝑅 (𝐾 ⊗L
𝑅 𝑀)

= sup{dim 𝑅/𝔭 − inf (𝐾 ⊗L
𝑅 𝑀)𝔭 | 𝔭 ∈ Spec 𝑅}

= sup{dim 𝑅/𝔭 − inf{inf (H𝑣 (𝐾) ⊗L
𝑅 𝑀)𝔭 + 𝑣 | 𝑣 ∈ ℤ} | 𝔭 ∈ Spec 𝑅}

= sup{dim 𝑅/𝔭 + sup{− inf (H𝑣 (𝐾) ⊗L
𝑅 𝑀)𝔭 − 𝑣 | 𝑣 ∈ ℤ} | 𝔭 ∈ Spec 𝑅}

= sup{dim 𝑅/𝔭 − inf (H𝑣 (𝐾) ⊗L
𝑅 𝑀)𝔭 − 𝑣 | 𝔭 ∈ Spec 𝑅, 𝑣 ∈ ℤ}

= sup{dim𝑅 (H𝑣 (𝐾) ⊗L
𝑅 𝑀) − 𝑣 | 𝑣 ∈ ℤ} . □

17.6.20 Proposition. Let 𝑀 and 𝑁 be finitely generated 𝑅-modules. One has,

dim𝑅 (𝑀 ⊗L
𝑅 𝑀) = dim𝑅 (𝑀 ⊗𝑅 𝑀) .

Proof. As 𝑀 and 𝑁 are finitely generated modules, 14.1.18 yields

Supp𝑅 (𝑁 ⊗𝑅 𝑀) = Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 = Supp𝑅 (𝑁 ⊗L
𝑅 𝑀) ,

and for prime ideals in this set one has inf (𝑁 ⊗L
𝑅
𝑀)𝔭 = inf (𝑁𝔭 ⊗L

𝑅𝔭
𝑀𝔭) = 0 by

14.1.15 and 16.2.10. Now 14.2.6 yields

dim𝑅 (𝑁 ⊗L
𝑅 𝑀) = sup{dim 𝑅/𝔭 | 𝔭 ∈ Supp𝑅 (𝑁 ⊗𝑅 𝑀) } = dim𝑅 (𝑁 ⊗𝑅 𝑀) . □

Ring Extensions and Prime Ideals

We close this section with a result that only finds applications later, from Chap. 19.

17.6.21 Theorem. Let 𝔭 be a prime ideal in 𝑅 and 𝑆 an 𝑅 algebra that is faithfully
flat as an 𝑅-module. There exists a prime ideal 𝔮 in 𝑆 with 𝔮 ∩ 𝑅 = 𝔭, and for every
such prime ideal the ring 𝑆𝔮 is an 𝑅𝔭-algebra with the following properties.

(a) The maximal ideals 𝔭𝔭 and 𝔮𝔮 of the local rings 𝑅𝔭 and 𝑆𝔮 satisfy 𝔭𝔭𝑆𝔮 ⊆ 𝔮𝔮 .
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(b) 𝑆𝔮 is faithfully flat as an 𝑅𝔭-module.
(c) For every 𝑅-complex 𝑀 there is an isomorphism in C(𝑆𝔮),

𝑆𝔮 ⊗𝑅𝔭
𝑀𝔭 � (𝑆 ⊗𝑅 𝑀)𝔮 .

Moreover, one can choose 𝔮 with 𝔮 ∩ 𝑅 = 𝔭 such that the following assertions hold.
(d) For every 𝑆𝔮-complex 𝑋 there are equalities,

depth𝑆𝔮 𝑋 = depth𝑅𝔭
𝑋 and width𝑆𝔮 𝑋 = width𝑅𝔭

𝑋 .

(e) For every 𝑅𝔭-complex 𝑁 there are equalities,

depth𝑆𝔮 (𝑆𝔮 ⊗𝑅𝔭
𝑁) = depth𝑅𝔭

𝑁 and width𝑆𝔮 (𝑆𝔮 ⊗𝑅𝔭
𝑁) = width𝑅𝔭

𝑁 .

(f) For every 𝑅-complex 𝑀 there are equalities,

depth𝑆𝔮 (𝑆 ⊗𝑅 𝑀)𝔮 = depth𝑅𝔭
𝑀𝔭 and width𝑆𝔮 (𝑆 ⊗𝑅 𝑀)𝔮 = width𝑅𝔭

𝑀𝔭 .

In particular, depth 𝑅𝔭 = depth 𝑆𝔮 holds.

Proof. Set 𝑇 = κ (𝔭) ⊗𝑅 𝑆. In the commutative diagram of ring homomorphisms,

𝑅

��

// 𝑆

��

κ (𝔭) // 𝑇 ,

the upper horizontal homomorphism is the structure map. As 𝑆 is faithfully flat
as an 𝑅-module, the ring 𝑇 is non-zero, so there exists a prime ideal 𝔯 in 𝑇 . The
prime 𝔮 = 𝔯 ∩ 𝑆 in 𝑆 satisfies 𝔮 ∩ 𝑅 = 𝔭; indeed, as κ (𝔭) is a field, the commutative
diagram above shows that one has

𝔮 ∩ 𝑅 = (𝔯 ∩ 𝑆) ∩ 𝑅 = (𝔯 ∩ κ (𝔭)) ∩ 𝑅 = (0) ∩ 𝑅 = 𝔭 .

Now, let 𝔮 be any prime ideal in 𝑆 with 𝔮 ∩ 𝑅 = 𝔭; it follows that the structure map
𝑅 → 𝑆 maps 𝑅 \ 𝔭 to 𝑆 \ 𝔮, so 𝑆𝔮 is an 𝑅𝔭-algebra with the induced structure map.

(a): There is a commutative diagram of ring homomorphisms,

𝑅

��

// 𝑆

��

𝑅𝔭 // 𝑆𝔮 ,

which explains the second equality below. The first and last equalities are trivial, and
the inclusion holds as one has 𝔭𝑆 = (𝔮 ∩ 𝑅)𝑆 ⊆ 𝔮.

𝔭𝔭𝑆𝔮 = (𝔭𝑅𝔭)𝑆𝔮 = (𝔭𝑆)𝑆𝔮 ⊆ 𝔮𝑆𝔮 = 𝔮𝔮 .

(c): For an 𝑅-complex 𝑀 one gets from two applications of 2.1.50 and two
applications of 12.1.18 the following isomorphisms in C(𝑆𝔮),

𝑆𝔮 ⊗𝑅𝔭
𝑀𝔭 � 𝑆𝔮 ⊗𝑅𝔭

(𝑅𝔭 ⊗𝑅 𝑀) � 𝑆𝔮 ⊗𝑅 𝑀 � 𝑆𝔮 ⊗𝑆 (𝑆 ⊗𝑅 𝑀) � (𝑆 ⊗𝑅 𝑀)𝔮 .
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(b): The isomorphism from part (c) and idempotence of localization imply that
on the category of 𝑅𝔭-modules, the functor 𝑆𝔮 ⊗𝑅𝔭

is naturally isomorphic to
(𝑆 ⊗𝑅 )𝔮. This functor is exact as the tensor product functor 𝑆 ⊗𝑅 is exact, by
flatness of 𝑆 over 𝑅, and the localization functor ( )𝔮 is exact, see 2.1.50. Hence 𝑆𝔮
is flat as an 𝑅𝔭-module. The assertion now follows from part (a) and 16.4.21.

It remains to prove the “moreover” statement. First choose any prime ideal 𝔯 in
𝑆 with 𝔯 ∩ 𝑅 = 𝔭. Note that every prime ideal 𝔮 in 𝑆 with 𝔭𝑆 ⊆ 𝔮 ⊆ 𝔯 satisfies
𝔮 ∩ 𝑅 = 𝔭. Now choose such a prime ideal 𝔮 such that 𝔮/𝔭𝑆 is a minimal prime ideal
in 𝑆/𝔭𝑆. The prime ideals in 𝑆𝔮 are in order preserving one-to-one correspondence
with prime ideals in 𝑆 contained in 𝔮, so in the ring 𝑆𝔮, the only prime ideal that
contains (𝔭𝑆)𝔮 is the unique maximal ideal 𝔮𝔮. It follows that in the ring 𝑆𝔮, the
radical of the ideal (𝔭𝑆)𝔮 is 𝔮𝔮. As one has 𝔭𝔭𝑆𝔮 = (𝔭𝑆)𝑆𝔮 = (𝔭𝑆)𝔮, see the proof of
part (a), the radical of 𝔭𝔭𝑆𝔮 is 𝔮𝔮.

(d): As argued above, one has
√(𝔭𝔭𝑆𝔮) = 𝔮𝔮 in 𝑆𝔮. For an 𝑆𝔮-complex 𝑋 , the

equalities below hold by 16.2.12, 14.4.4 and 14.3.19.

depth𝑆𝔮 𝑋 = 𝔮𝔮-depth𝑆𝔮 𝑋 = 𝔭𝔭𝑆𝔮-depth𝑆𝔮 𝑋 = 𝔭𝔭-depth𝑅𝔭
𝑋 = depth𝑅𝔭

𝑋 .

Similarly, 16.2.1, 14.4.9, and 14.3.31 yield:

width𝑆𝔮 𝑋 = 𝔮𝔮-width𝑆𝔮 𝑋 = 𝔭𝔭𝑆𝔮-width𝑆𝔮 𝑋 = 𝔭𝔭-width𝑅𝔭
𝑋 = width𝑅𝔭

𝑋 .

(e): For an 𝑅𝔭-complex 𝑁 one has

depth𝑆𝔮 (𝑆𝔮 ⊗𝑅𝔭
𝑁) = depth𝑅𝔭

(𝑆𝔮 ⊗𝑅𝔭
𝑁) = depth𝑅𝔭

𝑁 ,

where the first equality holds by part (d) and the second by 16.2.12 and 14.3.15 as 𝑆𝔮
per (b) is a faithfully flat 𝑅𝔭-module. Similarly, part (d), 16.2.1, and 14.3.26 yield:

width𝑆𝔮 (𝑆𝔮 ⊗𝑅𝔭
𝑁) = width𝑅𝔭

(𝑆𝔮 ⊗𝑅𝔭
𝑁) = width𝑅𝔭

𝑁 .

(f): The asserted equalites follow from the equalities in part (e) applied to 𝑁 = 𝑀𝔭,
combined with the isomorphism in part (c). The final assertion follows from the
unitor 12.1.5 and the first equality applied to 𝑀 = 𝑅. □

Exercises

E 17.6.1 Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that for every prime ideal 𝔭 in V(𝔞)
there are inequalities 𝔞-width𝑅 𝑀 ⩽ 𝔞𝔭-width𝑅𝔭

𝑀𝔭 ⩽ width𝑅𝔭
𝑀𝔭.

E 17.6.2 Let (𝑅,𝔪, 𝒌 ) be local. Show that for every prime ideal 𝔭 in 𝑅 one has
width𝑅𝔭

RHom𝑅 (𝑅𝔭 , E𝑅 (𝒌 ) ) = depth𝑅𝔭 ,

and conclude that inf{width𝑅𝔭
RHom𝑅 (𝑅𝔭 , E𝑅 (𝒌 ) ) | 𝔭 ∈ cosupp𝑅 E𝑅 (𝒌 ) } = 0 holds.

E 17.6.3 Let 𝑅 be an equidimensional catenary local ring and 𝑀 an 𝑅-complex. Show that there
are inequalities,

inf{ inf 𝑀𝔭 | 𝔭 ∈ supp𝑅 𝑀 } ⩾ inf 𝑀 ⩾ inf{ inf 𝑀𝔭 − dim𝑅𝔭 | 𝔭 ∈ supp𝑅 𝑀 } .
E 17.6.4 Let 𝐾 ∈ D⊏ (𝑅) and 𝑀 be a complex in Df

⊏⊐ (𝑅) with pd𝑅 𝑀 finite. Show that
sup (𝐾 ⊗L

𝑅 𝑀 ) = sup{pd𝑅𝔭
𝑀𝔭 − depth𝑅𝔭

𝐾𝔭 | 𝔭 ∈ Spec𝑅 }
holds. Conclude that if (𝑅,𝔪) is local and 𝐾 and 𝑀 finitely generated 𝑅-modules with
pd𝑅 𝑀 < ∞ and Supp𝑅 𝐾 ∩ Supp𝑅 𝑀 = {𝔪}, then one has
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17.6 Depth and Krull Dimension 831

sup{𝑚 ∈ ℕ0 | Tor𝑅𝑚 (𝐾, 𝑀 ) ≠ 0} = pd𝑅 𝑀 − depth𝑅 𝐾 .
E 17.6.5 Let 𝔭 be a prime ideal in 𝑅 and 𝑆 an 𝑅 algebra. Show that there exists a prime ideal 𝔮

in 𝑆 with 𝔮 ∩ 𝑅 = 𝔭 if and only if κ (𝔭) ⊗𝑅 𝑆 ≠ 0 holds
E 17.6.6 Let𝑀 and 𝑁 be complexes inDf

⊐ (𝑅) . Show that there is an equality dim𝑅 (𝑀 ⊗L
𝑅
𝑁 ) =

sup{dim𝑅 (H𝑣 (𝑀 ) ⊗𝑅 H𝑤 (𝑁 ) ) − 𝑣 − 𝑤 | 𝑣, 𝑤 ∈ ℤ}.
E 17.6.7 Let 𝑆 be an 𝑅-algebra that is faithfully flat as an 𝑅-module. (a) Show that for prime

ideals 𝔭 ⊂ 𝔭′ in 𝑅 there exist prime ideals 𝔮 ⊂ 𝔮′ in 𝑆 with 𝔮 ∩ 𝑅 = 𝔭 and 𝔮′ ∩ 𝑅 = 𝔭′.
(b) Show that the inequality dim𝑅 ⩽ dim 𝑆 holds.
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Chapter 18
Dualities and Cohen–Macaulay Rings

According to Hochster [127], Cohen–Macaulay rings are where “life is really worth
living”, and as a matter of fact classic results that come up in the last sections of
this chapter say that finite length modules of finite projective dimension (18.4.16)
and finitely generated modules of finite injective dimension (18.5.8) are only found
over Cohen–Macaulay rings. The main results of the first two sections are the Matlis
Duality Theorem 18.1.9 and the Grothendieck Duality Theorem 18.2.3. These two
duality theories coincide for Artinian local rings (18.1.6) and come together in the
Local Duality Theorem 18.3.18.

18.1 Matlis Duality

Synopsis. Minimal injective resolution of Artinian module; Artinian local ring; module of finite
length; (derived) Matlis reflexive complex; Matlis Duality.

Matlis Duality is a duality of categories of complexes over a complete local ring. Up
to terminology and generalizations from modules to complexes the result is there in
Matlis first publication [180].

Recall from 1.1.21 that a direct sum of modules by convention is finite.

18.1.1 Lemma. Let (𝑅,𝔪, 𝒌) be local, 𝑀 an 𝑅-module, and 𝑀 ≃−−→ 𝐼 a minimal
injective resolution. If 𝑀 is Artinian, then each module 𝐼𝑣 is a direct sum of copies
of E𝑅 (𝒌).

Proof. The assertion is trivial for the zero module, so assume that 𝑀 is non-zero.
By 16.1.32 one has supp𝑅 𝑀 = {𝔪}, so in view of Matlis’ structure theorem C.23
it follows from 17.1.13 and 15.1.14 that every module 𝐼𝑣 is a coproduct of copies of
E𝑅 (𝒌). By 8.2.16 the complex Hom𝑅 (𝒌, 𝐼) has zero differential, so one has

Hom𝑅 (𝒌, 𝑀) � Ext0𝑅 (𝒌, 𝑀) = H0 (Hom𝑅 (𝒌, 𝐼)) = Hom𝑅 (𝒌, 𝐼0) .

As 𝑀 is Artinian, Hom𝑅 (𝒌, 𝑀) � Soc𝑅 𝑀 is by 16.1.4 a 𝒌-vector space of finite
rank, say 𝑚. Thus, as Hom𝑅 (𝒌, ) is additive it follows per (16.1.22.1) that one has
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834 18 Dualities and Cohen–Macaulay Rings

𝐼0 � E𝑅 (𝒌)𝑚. Let 𝑛 > 0 be an integer and assume that 𝐼−𝑣 is a direct sum of copies
of E𝑅 (𝒌) for all 𝑣 < 𝑛. In particular, 𝐼−𝑛+1 is Artinian, see 16.1.26, and hence so is
B−𝑛 (𝐼) = Z−𝑛 (𝐼). As Σ𝑛𝐼ď−𝑛 yields an injective resolution of Z−𝑛 (𝐼) one has, as
above, Hom𝑅 (𝒌,Z−𝑛 (𝐼)) � Hom𝑅 (𝒌, 𝐼−𝑛), and it follows that 𝐼−𝑛 is a direct sum
of copies of E𝑅 (𝒌). □

18.1.2 Proposition. Let (𝑅,𝔪, 𝒌) be local. An 𝑅-module is Artinian if and only if
it can be embedded in E𝑅 (𝒌)𝑚 for some 𝑚 ∈ ℕ.

Proof. The “if” part follows from 16.1.26. In view of 5.3.33 the “only if” part
follows from B.26 and 18.1.1. □

Local cohomology modules are rarely finitely generated—see also the Remark
after 17.6.7—but they may be Artinian.

18.1.3 Proposition. Let (𝑅,𝔪) be local and 𝑀 a complex in Df
⊏ (𝑅). The complex

RΓ𝔪 (𝑀) belongs to Dart (𝑅); that is, H𝑛𝔪 (𝑀) is Artinian for every 𝑛 ∈ ℤ.

Proof. Let 𝐼 be a minimal semi-injective replacement of 𝑀; one has RΓ𝔪 (𝑀) =
Γ𝔪 (𝐼). As Bass numbers are integers, 16.4.38 shows that each module Γ𝔪 (𝐼)𝑣 is
a direct sum of copies of E𝑅 (𝒌), where 𝒌 is the residue field of 𝑅. As E𝑅 (𝒌) by
16.1.26 is Artinian, the complex Γ𝔪 (𝐼) is degreewise Artinian and hence so is the
subquotient complex H(Γ𝔪 (𝐼)) of local cohomology modules. □

Artinian Local Rings

18.1.4 Theorem. Let (𝑅,𝔪, 𝒌) be local. The next conditions are equivalent.
(i) 𝑅 is Artinian.
(ii) E𝑅 (𝒌) is finitely generated.
(iii) 𝔪 is nilpotent.
(iv) Every Artinian 𝑅-module has finite length.
(v) Every finitely generated 𝑅-module has finite length.

Proof. The equivalence of (i) and (v) is part of 14.2.19. We argue the following
implications (i)⇒ (iii)⇒ (ii)⇒ (iv)⇒ (i).

If 𝑅 is Artinian, then 𝔪 is nilpotent by 14.2.19(a). If 𝔪 is nilpotent, then it follows
from C.22(a) that E𝑅 (𝒌) has finite length, in particular it is finitely generated. By
18.1.2 every Artinian 𝑅-module is a submodule of a direct sum of E𝑅 (𝒌)𝑚 for
some 𝑚 ∈ ℕ, so if E𝑅 (𝒌) is finitely generated, then so is every Artinian 𝑅-module,
whence every Artinian module has finite length by 14.2.12. Finally, if every Artinian
𝑅-module has finite length, then E𝑅 (𝒌) has finite length by 16.1.26. It follows from
16.1.44 and 16.1.23 that length𝑅 𝑅 is finite. As 𝑅 is a submodule of 𝑅, see 16.1.13
and 12.1.23, also 𝑅 has finite length and, therefore, 𝑅 is Artinian by 14.2.19. □

18.1.5 Corollary. Let (𝑅,𝔪) be Artinian and local; one has

Dart (𝑅) = Dℓ (𝑅) = Df (𝑅) .

8-Mar-2024 Draft - use at own risk



18.1 Matlis Duality 835

Moreover, every 𝑅-complex is derived 𝔪-complete and derived 𝔪-torsion.

Proof. One has Dart (𝑅) = Dℓ (𝑅) = Df (𝑅) by 18.1.4. By 18.1.4 the maximal ideal
𝔪 is nilpotent, so the last assertion follows as Λ𝔪 and Γ𝔪, and hence the derived
functors LΛ𝔪 and RΓ𝔪, are the identity functors; see 11.1.5, 11.2.2, and 7.2.11. □

Matlis Duality

In the special case of an Artinian local ring (𝑅,𝔪, 𝒌) one has Df (𝑅) = Dℓ (𝑅) by
18.1.5, and the injective envelope E𝑅 (𝒌) is by 10.1.8 a dualizing complex for 𝑅, so
in that case the next theorem is simply a restatement of the Grothendieck Duality
Theorem 10.1.23. In fact, the equivalence in the next theorem is, over every local
ring with a dualizing complex, the restriction of Grothendieck Duality to complexes
with homology degreewise of finite length, see 18.2.38(b).

18.1.6 Theorem. Let (𝑅,𝔪, 𝒌) be local. Every complex in Dℓ (𝑅) is derived Matlis
reflexive. There is an adjoint equivalence of 𝑅-linear triangulated categories,

Dℓ (𝑅)
Hom𝑅 ( ,E𝑅 (𝒌 ) )op

//
Dℓ (𝑅)op .

Hom𝑅 ( ,E𝑅 (𝒌 ) )
oo

It restricts to adjoint equivalences of triangulated subcategories:

Dℓ
⊏ (𝑅) −−→←−− Dℓ

⊐ (𝑅)op , Dℓ
⊐ (𝑅) −−→←−− Dℓ

⊏ (𝑅)op , and Dℓ
⊏⊐ (𝑅) −−→←−− Dℓ

⊏⊐ (𝑅)op ,

and further to
I(𝑅) ∩Dℓ (𝑅) −−→←−− (P(𝑅) ∩Dℓ (𝑅))op .

Proof. The first assertion is immediate from 16.1.36(b) and 16.1.39. Since E𝑅 (𝒌)
is an injective 𝑅-module, it follows from 10.1.22 that the functors

Hom𝑅 ( ,E𝑅 (𝒌))op : D(𝑅) −−→←−− D(𝑅)op : Hom𝑅 ( ,E𝑅 (𝒌))

are adjoint, and they are 𝑅-linear and triangulated by 7.3.6. By 2.2.19 the functor
Hom𝑅 ( ,E𝑅 (𝒌)) commutes with homology, so by 16.1.44 it restricts to a functor
Dℓ (𝑅)op → Dℓ (𝑅), and Hom𝑅 ( ,E𝑅 (𝒌))op restricts to a functor in the opposite
direction. By 10.1.22 biduality is the unit as well as the counit of the adjunction,
and as already established it is an isomorphism for every complex in Dℓ (𝑅), so
these restrictions yield an adjoint equivalence. The asserted restrictions to bounded
subcategories follow from (16.1.22.2), 15.4.30, 15.4.31, and 15.4.18. □

18.1.7 Proposition. Let 𝑅 be local and complete. Every degreewise finitely generated
𝑅-complex is Matlis reflexive.

Proof. Let 𝒌 denote the residue field of 𝑅 and set 𝐸 = E𝑅 (𝒌). Let𝑀 be a degreewise
finitely generated 𝑅-complex. Biduality 𝛿𝑀

𝐸
fits in a commutative diagram,
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𝑀 //
𝛿𝑀
𝐸

// Hom𝑅 (Hom𝑅 (𝑀, 𝐸), 𝐸)

𝑀 ⊗𝑅 𝑅

𝜇𝑀
𝑅
𝜐𝑀𝑅 �

OO

�

𝑀⊗𝜒𝐸
𝑅
// 𝑀 ⊗𝑅 Hom𝑅 (𝐸, 𝐸) ,

𝜂𝐸𝐸𝑀�

OO

where the lower horizontal isomorphism comes from 16.1.24, and homomorphism
evaluation 𝜂𝐸𝐸𝑀 is an isomorphism by 12.1.16(3,b). □

18.1.8 Proposition. Let 𝑅 be local and complete. Every degreewise Artinian 𝑅-
complex is Matlis reflexive.

Proof. Let 𝒌 denote the residue field of 𝑅 and set 𝐸 = E𝑅 (𝒌). As one has (𝛿𝑀
𝐸
)𝑣 =

𝛿
𝑀𝑣
𝐸

for all 𝑣 ∈ ℤ, one can assume that 𝑀 is an Artinian 𝑅-module. Let 𝑀 ≃−−→ 𝐼

be a minimal injective resolution. Exactness of the Matlis Duality functor ( )∨ =

Hom𝑅 ( , 𝐸) yields the following commutative diagram with exact rows,

0 // 𝑀 //

𝛿𝑀
𝐸

��

𝐼0 //

𝛿
𝐼0
𝐸

��

𝐼−1

𝛿
𝐼−1
𝐸

��

0 // 𝑀∨∨ // (𝐼0)∨∨ // (𝐼−1)∨∨ .

To prove that 𝛿𝑀
𝐸

is an isomorphism, it suffices by the Five Lemma 1.1.2 to show
that the biduality maps 𝛿𝐼0

𝐸
and 𝛿𝐼−1

𝐸
are isomorphisms. By 18.1.1 the modules 𝐼0 and

𝐼−1 are direct sums af copies of 𝐸 , so by additivity of Hom it is enough to show that
𝛿𝐸
𝐸

is an isomorphism. To finish the proof, consider the commutative diagram,

𝐸
𝜖 𝐸
𝑅

�

''

𝛿𝐸
𝐸

ww

Hom𝑅 (Hom𝑅 (𝐸, 𝐸), 𝐸)
Hom (𝜒𝐸

𝑅
,𝐸 )

�
// Hom𝑅 (𝑅, 𝐸) ,

where the lower horizontal isomorphism comes from 16.1.24. □

We close the section with the actual Matlis Duality Theorem.

18.1.9 Theorem. Let (𝑅,𝔪, 𝒌) be local and complete. Every complex that belongs
to Df (𝑅) or Dart (𝑅) is derived Matlis reflexive. Moreover, there is an adjoint equi-
valence of 𝑅-linear triangulated categories,

Df (𝑅)
Hom𝑅 ( ,E𝑅 (𝒌 ) )op

//
Dart (𝑅)op .

Hom𝑅 ( ,E𝑅 (𝒌 ) )
oo

It restricts to adjoint equivalences of triangulated subcategories:

Df
⊏ (𝑅) −−→←−− Dart

⊐ (𝑅)op , Df
⊐ (𝑅) −−→←−− Dart

⊏ (𝑅)op , and Df
⊏⊐ (𝑅) −−→←−− Dart

⊏⊐ (𝑅)op .

Proof. Complexes in Df (𝑅) are derived Matlis reflexive by 16.1.36(b) and 18.1.7.
Similarly, complexes inDart (𝑅) are derived Matlis reflexive by 16.1.36(b) and 18.1.8.
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Since E𝑅 (𝒌) is an injective 𝑅-module, it follows from 10.1.22 that the functors

Hom𝑅 ( ,E𝑅 (𝒌))op : D(𝑅) −−→←−− D(𝑅)op : Hom𝑅 ( ,E𝑅 (𝒌))

are adjoint, and they are 𝑅-linear and triangulated by 7.3.6. Let 𝑀 be an 𝑅-complex.
By exactness of the functor ( )∨ = Hom𝑅 ( ,E𝑅 (𝒌)) one has H(𝑀∨) � H(𝑀)∨, see
2.2.19. To see that it restricts to a functor Dart (𝑅)op → Df (𝑅), and that the opposite
functor Hom𝑅 ( ,E𝑅 (𝒌))op restricts to a functor in the opposite direction, one can
assume that 𝑀 is a module. It remains to prove that 𝑀∨ is Artinian if 𝑀 is finitely
generated and that 𝑀∨ is finitely generated if 𝑀 is Artinian.

If 𝑀 is finitely generated, then 𝑀∨ is Artinian by 16.1.27. Let 𝑀 be Artinian; by
18.1.2 there is an embedding 𝑀 ↣ E𝑅 (𝒌)𝑚 for some 𝑚 ∈ ℕ. Applying ( )∨ yields
a surjective homomorphism (E𝑅 (𝒌)𝑚)∨ ↠ 𝑀∨, and the module (E𝑅 (𝒌)𝑚)∨ is, by
16.1.24 isomorphic to 𝑅𝑚. Thus, 𝑀∨ is finitely generated.

This establishes the asserted adjunction. By 10.1.22 biduality is the unit as well
as the counit of the adjunction, and as already established it is an isomorphism for
complexes in Df (𝑅) and Dart (𝑅), so these restrictions yield an adjoint equivalence.
The asserted restrictions to bounded subcategories follow from (16.1.22.2). □

Remark. Enochs [85] shows that over a complete local ring a module is Matlis reflexive if and only
if it has a finitely generated submodule such that the quotient is Artinian. See also Belshoff [35].

As in the case of 18.1.6, the equivalence in 18.1.9 restricts to equivalences of subcategories of
P(𝑅) and I(𝑅) , see E 18.1.2.

Exercises

In the following exercises let (𝑅,𝔪, 𝒌 ) be local.

E 18.1.1 Let 𝑀 be an 𝑅-module and 𝑍 ⊆ 𝑀 an essential submodule. Show that the canonical
map Hom𝑅 (𝒌 , 𝑍 ) → Hom𝑅 (𝒌 , 𝑀 ) is an isomorphism.

E 18.1.2 Show that if 𝑅 is complete, there are two pairs of adjoint equivalences of triangulated
subcategories: If (𝑅) ⇄ (P(𝑅) ∩Dart (𝑅) )op and Pf (𝑅) ⇄ (I(𝑅) ∩Dart (𝑅) )op .

18.2 Grothendieck Duality

Synopsis. Existence of dualizing complex; Gorenstein ring; spectrum of ring with dualizing com-
plex; normalized dualizing complex; uniqueness of ∼ for local ring; minimal semi-injective reso-
lution of dualizing complex; projective dimension of flat module; finitistic dimensions.

The Grothendieck Duality Theorem was already established in Chap. 10. The main
purpose of this section is to derive properties of dualizing complexes in the com-
mutative setting and record their consequences for the Grothendieck Duality functor
and for the rings that admit such complexes.
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Dualizing Complexes

The notion of a dualizing complex is defined in 10.1.6. We start by restating some
key results from Chap. 10 in the commutative case.

18.2.1 Proposition. Let 𝐷 be an 𝑅-complex; it is dualizing for 𝑅 if and only if it
meets the following conditions.

(1) 𝐷 belongs to Df
⊏⊐ (𝑅) .

(2) id𝑅 𝐷 is finite.
(3) There is an isomorphism RHom𝑅 (𝐷, 𝐷) ≃ 𝑅 in D(𝑅) .

Proof. This follows from 10.1.12 with 𝑅 = 𝕜 = 𝑆 combined with 17.1.23. □

18.2.2 Example. Let 𝑅 be Artinian with Jacobson radical 𝔍 =
⋂𝑛
𝑢=1 𝔪𝑢 where

𝔪1, . . . ,𝔪𝑛 are the finitely many maximal ideals of 𝑅, see 14.2.19. The direct sum of
indecomposable injective 𝑅-modules 𝐷 =

⊕𝑛
𝑢=1 E𝑅 (𝑅/𝔪𝑢) is the injective envelope

of the module ⊕𝑛
𝑢=1 𝑅/𝔪𝑢, which by the Chinese Remainder Theorem is isomorphic

to 𝑅/𝔍. By 14.2.22 the module 𝐷 is finitely generated. By 14.2.19(c), 10.1.8, C.18,
14.1.21(a), and C.15(c) there are isomorphisms of rings,

𝑅 �
𝑛�
𝑢=1

𝑅𝔪𝑢

�
𝑛�
𝑢=1

Hom𝑅𝔪𝑢
(E𝑅𝔪𝑢

(κ (𝔪𝑢)),E𝑅𝔪𝑢
(κ (𝔪𝑢)))

�
𝑛�
𝑢=1

Hom𝑅 (E𝑅 (𝑅/𝔪𝑢),E𝑅 (𝑅/𝔪𝑢))

� Hom𝑅 (𝐷, 𝐷) .

It now follows from 18.2.1 that 𝐷 is a dualizing for 𝑅.

An 𝑅-module 𝐷 that satisfies the conditions in 18.2.1 is, of course, called a
dualizing module for 𝑅. By 18.2.28 the existence of such a module implies that 𝑅 is
Cohen–Macaulay, and by 18.2.2 every Artinian ring has a dualizing module.
Remark. It is not uncommon to see a dualizing module for a Cohen–Macaulay local ring referred
to as a canonical module. By definition, a canonical module for a local ring (𝑅,𝔪, 𝒌 ) of Krull
dimension 𝑑 is a finitely generated 𝑅-module 𝐾 with Hom𝑅 (H𝑑𝔪 (𝑅) , E𝑅 (𝒌 ) ) � 𝑅 ⊗𝑅 𝐾 . It is a
simple conseqeunce of Local Duality 18.3.18 that a dualizing module for a Cohen–Macaulay local
ring is a canonical module; see E 18.3.3. In Herzog and Kunz’s monograph [122, Vort. 6] it is
shown that a canonical module for a Cohen–Macaulay local rings is dualizing; see also E 18.2.4.

18.2.3 Theorem. Let 𝐷 be a dualizing complex for 𝑅. For every complex 𝑀 in
Df (𝑅) biduality

𝜹𝑀𝐷 : 𝑀 −→ RHom𝑅 (RHom𝑅 (𝑀, 𝐷), 𝐷)

is an isomorphism in D(𝑅). Moreover, there is an adjoint equivalence of 𝑅-linear
triangulated categories,
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Df (𝑅)
RHom𝑅 ( ,𝐷)op

//
Df (𝑅)op .

RHom𝑅 ( ,𝐷)
oo

It restricts to adjoint equivalences of triangulated subcategories:

Df
⊏ (𝑅) −−→←−− Df

⊐ (𝑅)op , Df
⊐ (𝑅) −−→←−− Df

⊏ (𝑅)op , and Df
⊏⊐ (𝑅) −−→←−− Df

⊏⊐ (𝑅)op ,

and further to
If (𝑅) −−→←−− Pf (𝑅)op .

Proof. This follows from 10.1.19 and 10.1.23 with 𝑅 = 𝕜 = 𝑆. □

By specialization of 10.2.10 to the setup 𝑅 = 𝕜 = 𝑆, an 𝑅-complex𝑈 is invertible
for 𝑅 if it meets the following conditions.

(1) 𝑈 belongs to Df
⊏⊐ (𝑅) .

(2) pd𝑅𝑈 is finite.
(3) Homothety formation, 𝝌𝑈

𝑅
: 𝑅 → RHom𝑅 (𝑈,𝑈), is an isomorphism inD(𝑅) .

18.2.4 Theorem. Let 𝐷 be a dualizing complex for 𝑅. There is a one-to-one corre-
spondence of isomorphism classes in D(𝑅),

{invertible complexes for 𝑅} ←→ {dualizing complexes for 𝑅} .

For every invertible complex 𝑈 for 𝑅 and every dualizing complex 𝐷′ for 𝑅 the
correspondence is given by

𝑈 ↦−→ 𝐷 ⊗L
𝑅𝑈 and RHom𝑅 (𝐷, 𝐷′) ↦−→

𝐷′ .

Proof. Apply 10.3.17 to the setup 𝑅 = 𝕜 = 𝑆. □

Existence of Dualizing Complexes

18.2.5 Theorem. The following conditions are equivalent.
(i) 𝑅 is Gorenstein of finite Krull dimension.
(ii) 𝑅 is Iwanaga–Gorenstein.
(iii) 𝑅 is a dualizing complex for 𝑅 .

Proof. If 𝑅 is Gorenstein of finite Krull dimension, then it follows from 17.4.9 that
𝑅 is Iwanaga–Gorenstein, whence 𝑅 is a dualizing complex for 𝑅 by 10.1.14 applied
with 𝕜 = 𝑅. Thus (i) implies (ii) which implies (iii). To see that (iii) implies (i),
notice that if 𝑅 is a dualizing complex for 𝑅, then id 𝑅 is finite by 18.2.1. For every
prime ideal 𝔭 in 𝑅 one has id 𝑅𝔭 ⩽ id 𝑅 < ∞ by 17.3.18, so 𝑅𝔭 is Gorenstein. Thus,
𝑅 is Gorenstein and 17.4.9 yields dim 𝑅 = id 𝑅, so 𝑅 has finite Krull dimension. □

18.2.6 Theorem. Let 𝑆 be an 𝑅-algebra and 𝐷 a dualizing complex for 𝑅. If 𝑆 is
finitely generated as an 𝑅-module, then RHom𝑅 (𝑆, 𝐷) is a dualizing complex for 𝑆.

Proof. This is a special case of 10.1.15. □
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18.2.7 Corollary. If 𝑅 is a homomorphic image of a Gorenstein ring of finite Krull
dimension, then 𝑅 has a dualizing complex.

Proof. A surjective ring homomorphism 𝑄 → 𝑅 makes 𝑅 a 𝑄-algebra, finitely
generated as a 𝑄-module. Thus, if 𝑄 is Gorenstein of finite Krull dimension, then
the complex RHom𝑄 (𝑅,𝑄) is a dualizing complex for 𝑅 by 18.2.5 and 18.2.6. □

Remark. It was conjectured by Sharp [229] and proved by Kawasaki [157] that every commutative
Noetherian with a dualizing complex is a homomorphic image of a Gorenstein ring of finite Krull
dimension. The case of Cohen–Macaulay rings was dealt with earlier in [90] and by Reiten [210].

18.2.8 Proposition. Let 𝐷 be a dualizing complex for 𝑅. For every prime ideal 𝔭 in
𝑅 the complex 𝐷𝔭 is dualizing for 𝑅𝔭. Further, there are equalities,

supp𝑅 𝐷 = Supp𝑅 𝐷 = Spec 𝑅 and cosupp𝑅 𝐷 = cosupp𝑅 𝑅 .

Proof. The localized complex 𝐷𝔭 belongs to Df
⊏⊐ (𝑅𝔭), see 14.1.11, and id𝑅𝔭

𝐷𝔭 is
finite by 17.3.18. By 14.1.23 one has RHom𝑅𝔭

(𝐷𝔭, 𝐷𝔭) ≃ RHom𝑅 (𝐷, 𝐷)𝔭 ≃ 𝑅𝔭,
whence 𝐷𝔭 is dualizing for 𝑅𝔭 by 18.2.1. In particular, 𝐷𝔭 is not acyclic, so Supp𝑅 𝐷
is all of Spec 𝑅. The equality supp𝑅 𝐷 = Supp𝑅 𝐷 holds by 15.1.9, and then the
Cosupport Formula 15.2.9 yields cosupp𝑅 𝑅 = cosupp𝑅 𝐷. □

A classic application of 18.2.7 is to combine it with Cohen’s structure theorem [70]
which says, in particular, that every complete local ring is a quotient of a Gorenstein
local ring. Next we give a different argument for the existence of dualizing complexes
for complete local rings; we learned it from Simon and Schenzel [224, 10.2].

Dualizing Complexes for Local Rings

18.2.9 Theorem. Let (𝑅,𝔪, 𝒌) be local. There is an isomorphism in D(𝑅),

Hom𝑅 (RΓ𝔪 (𝑅),E𝑅 (𝒌)) ≃ LΛ𝔪 (E𝑅 (𝒌)) ,

and this complex is dualizing for 𝑅.

Proof. Recall from 16.1.25 that E𝑅 (𝒌) is an 𝑅-module and isomorphic to E
𝑅
(𝒌).

By 13.1.15 and 13.3.18 there are isomorphisms in D(𝑅),

(†) LΛ𝔪 (E𝑅 (𝒌)) ≃ Hom𝑅 (Č𝑅(𝑥𝑥𝑥),E𝑅 (𝒌)) ≃ Hom𝑅 (RΓ𝔪 (𝑅),E𝑅 (𝒌)) .

We proceed to show that LΛ𝔪 (E𝑅 (𝒌)) is dualizing for 𝑅. By 13.1.21(a) one has

LΛ𝔪 (E𝑅 (𝒌)) ≃ LΛ𝔪𝑅 (E
𝑅
(𝒌))

in D(𝑅), and 𝔪𝑅 is by 16.1.13 the maximal ideal of 𝑅. Thus one can without loss
of generality assume that 𝑅 is complete. Let 𝑥𝑥𝑥 be a sequence that generates 𝔪. The
complex LΛ𝔪 (E𝑅 (𝒌)) has finite injective dimension by 15.4.15(b). To see that it
belongs to Df

⊏⊐ (𝑅), recall first from 18.1.3 that RΓ𝔪 (𝑅) belongs to Dart
⊏⊐ (𝑅). As the

functor RΓ𝔪 is bounded, see 13.3.18, it follows from (†) and Matlis Duality 18.1.9
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that LΛ𝔪 (E𝑅 (𝒌)) belongs to Df
⊏⊐ (𝑅). In the next chain of isomorphisms, the 1st is

the adjunction from 13.4.12, the 2nd follows from 13.4.1(d), the 3rd holds as E𝑅 (𝒌)
is injective and derived 𝔪-torsion, see 16.1.22, and the 4th is 16.1.24.

RHom𝑅 (LΛ𝔪 (E𝑅 (𝒌)), LΛ𝔪 (E𝑅 (𝒌))) ≃ RHom𝑅 (RΓ𝔪 (LΛ𝔪 (E𝑅 (𝒌))),E𝑅 (𝒌))
≃ RHom𝑅 (RΓ𝔪 (E𝑅 (𝒌)),E𝑅 (𝒌))
≃ Hom𝑅 (E𝑅 (𝒌),E𝑅 (𝒌))
� 𝑅 .

It now follows from 18.2.1 that the complex LΛ𝔪 (E𝑅 (𝒌)) is dualizing for 𝑅. □

Dualizing complexes for local rings have a simple characterization.

18.2.10 Theorem. Let 𝑅 be local and 𝐷 a complex in Df
⊏ (𝑅). The Bass series I𝐷𝑅 (𝑡)

is a monomial if and only if 𝐷 is dualizing for 𝑅.

Proof. If 𝐷 is dualizing for 𝑅, then one has 𝑅 ≃ RHom𝑅 (𝐷, 𝐷) in D(𝑅) and 𝐷
has finite injective dimension, so by 16.4.33 there are equalities of Laurent series,

1 = P𝑅𝑅 (𝑡) = P𝑅RHom𝑅 (𝐷,𝐷) (𝑡) = I𝐷𝑅 (𝑡) I𝐷𝑅 (𝑡−1) .

The Bass series has non-negative coefficients, so per 16.4.15 one has

0 = ord(I𝐷𝑅 (𝑡) I𝐷𝑅 (𝑡−1)) = ord I𝐷𝑅 (𝑡) + ord I𝐷𝑅 (𝑡−1) = ord I𝐷𝑅 (𝑡) − deg I𝐷𝑅 (𝑡) ,

so I𝐷𝑅 (𝑡) = 𝑐𝑡𝑛 holds for some 𝑐 ∈ ℕ and 𝑛 ∈ ℤ. Now one has 1 = (𝑐𝑡𝑛) (𝑐𝑡−𝑛) = 𝑐2,
so the coefficient 𝑐 is 1, and I𝐷𝑅 (𝑡) is a monomial. For the converse assume that
I𝐷𝑅 (𝑡) = 𝑡𝑛 holds for some 𝑛 ∈ ℤ. It follows from 16.4.30 that 𝐷 has finite injective
dimension, 𝑛; in particular 𝐷 belongs per 8.2.3 to Df

⊏⊐ (𝑅). Further, 16.4.33 yields
P𝑅RHom𝑅 (𝐷,𝐷) (𝑡) = I𝐷𝑅 (𝑡) I𝐷𝑅 (𝑡−1) = 𝑡𝑛𝑡−𝑛 = 1. Thus there is by 16.4.27 an iso-
morphism RHom𝑅 (𝐷, 𝐷) ≃ 𝑅 in D(𝑅), so 𝐷 is dualizing for 𝑅 by 17.1.23. □

18.2.11 Corollary. Let 𝑅 be local and 𝐷 a dualizing complex for 𝑅. For every prime
ideal 𝔭 in 𝑅 there are equalities,

id𝑅 𝐷 = depth𝑅 𝐷 = depth𝑅𝔭
𝐷𝔭 + dim 𝑅/𝔭 ,

and 𝐷 is Cohen–Macaulay.

Proof. By 18.2.10 the Bass series I𝐷𝑅 (𝑡) is a monomial, so 16.4.30 and 16.4.10 yield

(†) depth𝑅 𝐷 = id𝑅 𝐷 ⩾ dim𝑅 𝐷 .

The opposite inequality holds by 17.2.1, so 𝐷 is Cohen–Macaulay, see 17.2.5. By
18.2.8 one has supp𝑅 𝐷 = Spec 𝑅, so the asserted equalities hold by the equality in
(†) and 17.2.10. □

Remark. Let 𝔭 be a prime ideal in 𝑅 and𝐷 a dualizing complex for 𝑅. By 18.2.17 the ring 𝑅, and
hence also 𝑅/𝔭, has finite Krull dimension, so there exists a maximal ideal 𝔮 ⊇ 𝔭 with dim 𝑅𝔮/𝔭𝔮 =

dim𝑅/𝔭. Now 17.3.18, E 16.4.2, and 18.2.11 yield id𝑅 𝐷 ⩾ id𝑅𝔮
𝐷𝔮 ⩾ depth𝑅𝔭

𝐷𝔭 + dim𝑅/𝔭.
This is a version of 18.2.11 for non-local rings. The inequality id𝑅 𝐷 ⩾ depth𝑅𝔭

𝐷𝔭 + dim𝑅/𝔭
may be strict. Indeed, let 𝑅 and 𝔪 be as in 17.2.35. By 17.4.16 and 17.4.17 the ring 𝑅 is Gorenstein
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ring, so one has id𝑅 = dim𝑅 = 2 by 17.4.9, and 𝐷 = 𝑅 is a dualizing complex for 𝑅 by 18.2.5.
As 𝑅𝔪 is Gorenstein and hence Cohen–Macaulay, see 17.4.4, one has depth 𝑅𝔪 = dim 𝑅𝔪 = 1.
Finally, dim𝑅/𝔪 = 0 holds as 𝔪 is a maximal ideal.

18.2.12 Corollary. Let 𝑅 be local and 𝐷 a complex in Df
⊏ (𝑅). There is an equality

of Bass series,
I𝑅⊗𝑅𝐷
𝑅

(𝑡) = I𝐷𝑅 (𝑡) .

In particular, 𝐷 is dualizing for 𝑅 if and only if 𝑅 ⊗𝑅 𝐷 is dualizing for 𝑅.

Proof. Let 𝔪 and 𝒌 be the maximal ideal and residue field of 𝑅. By 16.1.13 one has
𝑅/𝔪𝑅 � 𝒌 and 𝑅 is a flat 𝑅-module. Thus one has I𝒌 (𝑡) = 1 and the equality of Bass
series follows from 16.4.35. The last assertion is now immediate from 18.2.10. □

18.2.13 Corollary. Let 𝑅 be local and 𝐷 a complex inDf
⊏ (𝑅). Set 𝑆 = 𝑅⟦𝑥1, . . . , 𝑥𝑛⟧

and 𝐸 = 𝑆 ⊗𝑅 𝐷. There is an equality of Bass series,

I𝐸𝑆 (𝑡) = 𝑡𝑛 I𝐷𝑅 (𝑡) .

In particular, 𝐷 is dualizing for 𝑅 if and only if 𝐸 is dualizing for 𝑆.

Proof. Let 𝔪 and 𝒌 be the maximal ideal and residue field of 𝑅. The ring 𝑆 is
local with maximal ideal 𝔪 + (𝑥1, . . . , 𝑥𝑛), and 𝑆 is flat as an 𝑅-module, see 12.1.24.
The quotient ring 𝑆/𝔪𝑆 � 𝒌⟦𝑥1, . . . , 𝑥𝑛⟧ is Gorenstein by 17.4.17 and has Krull
dimension 𝑛, so the equality of Bass series follows from 16.4.35 and 17.4.11. The
last assertion is now immediate from 18.2.10. □

In view of 18.2.5 the next result subsumes the equivalence of conditions (i) and
(ii) in 17.4.13. It also subsumes the “in particular” statements in 18.2.12 and 18.2.13.

18.2.14 Theorem. Let (𝑅,𝔪) and (𝑆,𝔐) be local rings such that 𝑆 is an 𝑅-algebra,
flat as an 𝑅-module, and let𝐷 be an 𝑅-complex. If 𝔪𝑆 ⊆ 𝔐 holds, then the following
conditions are equivalent.

(i) 𝑆 ⊗𝑅 𝐷 is dualizing for 𝑆.
(ii) 𝐷 is dualizing for 𝑅 and the ring 𝑆/𝔪𝑆 is Gorenstein.

Further, when these conditions are satisfied one has I𝑆⊗𝑅𝐷
𝑆

(𝑡) = 𝑡 (dim 𝑆/𝔪𝑆) I𝐷𝑅 (𝑡).

Proof. If 𝑆 ⊗𝑅 𝐷 is dualizing for 𝑆, then it follows from 18.2.1 and 12.1.20(a) that
𝐷 is a complex in Df

⊏⊐ (𝑅). By 16.4.35 there is an equality of Laurent series,

(†) I𝑆⊗𝑅𝐷
𝑆

(𝑡) = I
𝑆/𝔪𝑆 (𝑡) I

𝐷
𝑅 (𝑡) .

As Bass series have non-negative coefficients and I𝑆⊗𝑅𝐷
𝑆

(𝑡) by 18.2.10 is a monomial,
it follows that I

𝑆/𝔪𝑆 (𝑡) and I𝐷𝑅 (𝑡) are monomials, see 16.4.15. Thus 𝐷 is dualizing for
𝑅, and by 17.4.11 the local ring 𝑆/𝔪𝑆 is Gorenstein with I

𝑆/𝔪𝑆 (𝑡) = 𝑡
(dim 𝑆/𝔪𝑆) . Con-

versely, if 𝐷 is dualizing for 𝑅, then 𝑆 ⊗𝑅 𝐷 is a complex in Df
⊏⊐ (𝑆) by 12.1.20(b,c)

and (†) holds by 16.4.35. If, further, 𝑆/𝔪𝑆 is Gorenstein, then I
𝑆/𝔪𝑆 (𝑡) is a monomial

by 17.4.11 and it follows from 18.2.10 and (†) that 𝑆 ⊗𝑅 𝐷 is dualizing for 𝑆. □
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18.2.15 Lemma. Let 𝑅 be local, 𝐷 a dualizing complex for 𝑅, and 𝑀 a complex in
Df
⊐ (𝑅). There is an equality,

sup RHom𝑅 (𝑀, 𝐷) = dim𝑅 𝑀 − depth𝑅 𝐷 .

In particular, one has sup𝐷 = dim 𝑅 − depth𝑅 𝐷.

Proof. By 18.2.8 one has supp𝑅 𝐷 = Spec 𝑅, so the equalities in the chain below
hold by 17.6.12, 18.2.11, and 14.2.6.

sup RHom𝑅 (𝑀, 𝐷) = − inf{depth𝑅𝔭
𝐷𝔭 + inf 𝑀𝔭 | 𝔭 ∈ Spec 𝑅}

= − inf{depth𝑅 𝐷 − dim 𝑅/𝔭 + inf 𝑀𝔭 | 𝔭 ∈ Spec 𝑅}
= sup{dim 𝑅/𝔭 − inf 𝑀𝔭 | 𝔭 ∈ Spec 𝑅} − depth𝑅 𝐷
= dim𝑅 𝑀 − depth𝑅 𝐷 .

Set 𝑀 = 𝑅 and apply the counitor 12.3.4 to get sup𝐷 = dim 𝑅 − depth𝑅 𝐷. □

18.2.16 Proposition. Let 𝑅 be local and 𝐷 a dualizing complex for 𝑅. For every
prime ideal 𝔭 in 𝑅 there is an equality,

depth𝑅 𝐷 + sup𝐷𝔭 = dim 𝑅𝔭 + dim 𝑅/𝔭 ,

and one has
dim𝑅 Hsup𝐷 (𝐷) = dim 𝑅 = id𝑅 𝐷 + sup𝐷 .

Moreover, one has Supp𝑅 Hsup𝐷 (𝐷) = Spec 𝑅 if and only if 𝑅 is equidimensional.

Proof. For a prime ideal 𝔭 in 𝑅 the complex 𝐷𝔭 is dualizing for 𝑅𝔭 by 18.2.8. Now
18.2.15 and 18.2.11 yield the following equalities,

depth𝑅 𝐷 + sup𝐷𝔭 = dim 𝑅𝔭 − depth𝑅𝔭
𝐷𝔭 + depth𝑅 𝐷 = dim 𝑅𝔭 + dim 𝑅/𝔭 .

Applied to the maximal ideal of 𝑅 and to a minimal prime ideal 𝔮, this equality reads

(†) depth𝑅 𝐷 + sup𝐷 = dim 𝑅 and depth𝑅 𝐷 + sup𝐷𝔮 = dim 𝑅/𝔮 ,

respectively. Thus dim 𝑅 = dim 𝑅/𝔮 holds if and only if one has sup𝐷 = sup𝐷𝔮,
which by 14.1.11(a,c) is tantamount to 𝔮 ∈ Supp𝑅 Hsup𝐷 (𝐷). It is thus immediate
that 𝑅 is equidimensional, see 17.2.12, if and only if every minimal prime ideal in
𝑅 belongs to Supp𝑅 Hsup𝐷 (𝐷). As the classic support is specialization closed, this
is equivalent to the equality Supp𝑅 Hsup𝐷 (𝐷) = Spec 𝑅.

Let 𝔮 be a minimal prime ideal with dim 𝑅 = dim 𝑅/𝔮; as argued above one has
𝔮 ∈ Supp𝑅 Hsup𝐷 (𝐷) and hence dim𝑅 Hsup𝐷 (𝐷) = dim 𝑅 holds. Further, the first
equality in (†) combined with 18.2.11 yields id𝑅 𝐷 + sup𝐷 = dim 𝑅. □

Prime Ideal Spectrum of a Ring with a Dualizing Complex

18.2.17 Theorem. If 𝑅 has a dualizing complex, then 𝑅 is catenary and of finite
Krull dimension.
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Proof. Let 𝐷 be a dualizing complex for 𝑅. Let 𝔭 ∈ Spec 𝑅 and choose a prime
ideal 𝔮 ⊆ 𝔭 with dim 𝑅𝔭 = dim 𝑅𝔭/𝔮𝔭. The complex 𝐷𝔭 is by 18.2.8 dualizing for
the local ring 𝑅𝔭, so the equalities in the next computation follow from 18.2.11 and
the choice of 𝔮, while the inequality holds by 16.2.16 and 14.1.11(c).

id𝑅𝔭
𝐷𝔭 = depth𝑅𝔭

𝐷𝔭 = depth𝑅𝔮
𝐷𝔮 + dim 𝑅𝔭 ⩾ dim 𝑅𝔭 − sup𝐷 .

From 17.3.18 one now gets

id𝑅 𝐷 = sup{id𝑅𝔭
𝐷𝔭 | 𝔭 ∈ Spec 𝑅}

⩾ sup{dim 𝑅𝔭 − sup𝐷 | 𝔭 ∈ Spec 𝑅}
= dim 𝑅 − sup𝐷 .

As id𝑅 𝐷 and sup𝐷 by assumption are finite, it follows that dim 𝑅 is finite.
To prove that 𝑅 is catenary, fix prime ideals 𝔭 ⊆ 𝔮 in 𝑅 and consider a saturated

chain 𝔭 = 𝔭0 ⊂ · · · ⊂ 𝔭𝑛 = 𝔮 in Spec 𝑅, i.e. dim 𝑅𝔭𝑖/(𝔭𝑖−1)𝔭𝑖 = 1 holds for every
𝑖 ∈ {1, . . . , 𝑛}. By 18.2.8 and 18.2.11 the 𝑅𝔮-complex 𝐷𝔮 is Cohen–Macaulay with
Supp𝑅𝔮

𝐷𝔮 = Spec 𝑅𝔮. For prime ideals 𝔭′ contained in 𝔮 set 𝑓 (𝔭′) = dim 𝑅𝔮/𝔭′𝔮; by
17.2.11 the equality dim 𝑅𝔭𝑖/(𝔭𝑖−1)𝔭𝑖 = 𝑓 (𝔭𝑖−1) − 𝑓 (𝔭𝑖) holds for all 𝑖 ∈ {1, . . . , 𝑛},
so one has 𝑛 =

∑𝑛
𝑖=1 ( 𝑓 (𝔭𝑖−1) − 𝑓 (𝔭𝑖)) = 𝑓 (𝔭) − 𝑓 (𝔮). Thus, all saturated chains

from 𝔭 to 𝔮 has the same length, i.e. 𝑅 is catenary. □

18.2.18 Corollary. A complete local ring is catenary.

Proof. The assertion follows immediately from 18.2.9 and 18.2.17. □

18.2.19 Corollary. If 𝑅 has a dualizing complex, then an 𝑅-complex has finite flat
dimension if and only if it has finite projective dimension.

Proof. The assertion follows from 18.2.17 and 17.4.26. □

Grothendieck Duality preserves support and cosupport of complexes in Df (𝑅);
recall from 15.1.9 that the support agrees with the classic support for such complexes.
Foxby–Sharp Equivalence has similar properties, see 19.1.3.

18.2.20 Theorem. Let 𝐷 be a dualizing complex for 𝑅 and 𝑀 a complex in Df (𝑅).
There are equalities,

supp𝑅 𝑀 = supp𝑅 RHom𝑅 (𝑀, 𝐷) and
cosupp𝑅 𝑀 = cosupp𝑅 RHom𝑅 (𝑀, 𝐷) .

Moreover, for every prime ideal 𝔭 in 𝑅 there is an isomorphism,

RHom𝑅 (𝑀, 𝐷)𝔭 ≃ RHom𝑅𝔭
(𝑀𝔭, 𝐷𝔭) .

Proof. The first equality follows from 17.1.10(c) and 18.2.8. Per 18.2.19 every flat
𝑅-module has finite projective dimension, so 17.1.19 conspires with 18.2.8 to yield

cosupp𝑅 𝑀 = cosupp𝑅 𝑅 ∩ supp𝑅 𝑀 = cosupp𝑅 𝐷 ∩ supp𝑅 𝑀 .

Now the second equality follows from the Cosupport Formula 15.2.9. The asserted
isomorphism is a special case of 12.3.33(b). □
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Normalized Dualizing Complexes

Recall from 18.2.17 that a ring with a dualizing complex has finite Krull dimension.

18.2.21 Definition. A dualizing complex 𝐷 for 𝑅 is called normalized if the equality
sup𝐷 = dim 𝑅 holds.

Remark. For a local ring the definition above agrees with the standard definition used in the
literature, see the commentary before 18.2.24. It is also the definition used by Avramov and Foxby
in [23], but in [20, 22] the same authors work with a different definition, one that deems the dualizing
module of a Cohen–Macaulay local ring a normalized dualizing complex.

18.2.22 Example. An Artinian ring 𝑅 has Krull dimension 0, see 14.2.19, so the
module 𝐷 from 18.2.2 is a normalized dualizing complex for 𝑅.

Every ring that has a dualizing complex has a normalized one.

18.2.23 Lemma. Let 𝐷 be a dualizing complex for 𝑅. The complex Σdim𝑅−sup𝐷𝐷
is a normalized dualizing complex for 𝑅.

Proof. As dim 𝑅 is finite by 18.2.17, the claim follows from 2.5.5 and 10.1.3. □

The third condition in the next theorem, which translates to RHom𝑅 (𝒌, 𝐷) ≃ 𝒌,
is in the literature—from Hartshorne [114, Chap. V] to The Stacks Project [14,
Chap. 47]—the prevailing definition of a normalized dualizing complex over a local
ring, but see also the Remark after 18.2.21 right above.

18.2.24 Theorem. Let 𝑅 be local and 𝐷 a dualizing complex for 𝑅. The following
conditions are equivalent.

(i) sup𝐷 = dim 𝑅, i.e. 𝐷 is normalized.
(ii) inf 𝐷 = depth 𝑅 .
(iii) I𝐷𝑅 (𝑡) = 1 .
(iv) id𝑅 𝐷 = 0 .
(v) depth𝑅 𝐷 = 0 .

Proof. Conditions (iii)–(v) are equivalent by 18.2.10 and 16.4.30. Conditions (iv)
and (ii) are equivalent by the Bass Formula 16.4.11. The equivalence of conditions
(i) and (v) follows from the equality sup𝐷 = dim 𝑅 − depth𝑅 𝐷, see 18.2.15. □

18.2.25 Corollary. Let 𝑅 be local, 𝔭 a prime ideal in 𝑅, and 𝐷 a normalized
dualizing complex for 𝑅. There is an equality,

dim 𝑅𝔭 − sup𝐷𝔭 = − dim 𝑅/𝔭 ,

and Σ− dim𝑅/𝔭𝐷𝔭 is a normalized dualizing complex for 𝑅𝔭.

Proof. By 18.2.24 one has depth𝑅 𝐷 = 0, so 18.2.16 yields the equality sup𝐷𝔭 =

dim 𝑅𝔭 + dim 𝑅/𝔭. The complex 𝐷𝔭 is dualizing for 𝑅𝔭 by 18.2.8, so by 18.2.23 the
shifted complex Σ− dim𝑅/𝔭𝐷𝔭 is a normalized dualizing complex for 𝑅𝔭. □

The assumption in 18.2.25 that 𝑅 is local is necessary.
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18.2.26 Example. Let 𝕜 be a field and set 𝑅 = 𝕜⟦𝑥⟧[𝑦]. It follows from 17.4.16
and 17.4.17 that 𝑅 is Gorenstein. As dim 𝑅 = 2 holds, 𝐷 = Σ2𝑅 is by 18.2.5 and
18.2.23 a normalized dualizing complex for 𝑅. The ideal 𝔪 = (𝑥𝑦 − 1) is maximal
with dim 𝑅𝔪 = 1, see 17.2.35, so the dualizing complex Σ− dim𝑅/𝔪𝐷𝔪 = Σ2𝑅𝔪 for
𝑅𝔪 is not normalized.

A dualizing complex for a local rings is unique up to shift and isomorphism in
the derived category.

18.2.27 Theorem. Let 𝑅 be local and 𝐷 a normalized dualizing complex for 𝑅. For
an 𝑅-complex 𝐶 the following conditions are equivalent.

(i) 𝐶 is dualizing for 𝑅 .
(ii) There is an isomorphism 𝐶 ≃ Σ𝑠𝐷 in D(𝑅) for some integer 𝑠 .
(iii) There is an isomorphism Σdepth𝑅 𝐶𝐶 ≃ 𝐷 in D(𝑅) .

Proof. Condition (iii) evidently implies (ii), which by 10.1.3 implies (i). It remains
to argue that (i) implies (iii). Set 𝑑 = depth𝑅 𝐶. By 18.2.10 and 16.4.30 one has
I𝐶
𝑅
(𝑡) = 𝑡𝑑 while I𝐷𝑅 (𝑡) = 1 holds by 18.2.24. As id𝑅 𝐶 is finite, 16.4.33 yields

P𝑅RHom𝑅 (𝐷,𝐶 ) (𝑡) = I𝐷𝑅 (𝑡) I𝐶𝑅 (𝑡
−1) = I𝐶𝑅 (𝑡

−1) = 𝑡−𝑑 .

By 16.4.27 there is thus an isomorphism RHom𝑅 (𝐷,𝐶) ≃ Σ−𝑑𝑅 in D(𝑅). Com-
bined with Grothendieck Duality 18.2.3, the counitor 12.3.4, and the fact from 12.2.2
that RHom is triangulated this yields

𝐷 ≃ RHom𝑅 (RHom𝑅 (𝐷,𝐶), 𝐶) ≃ RHom𝑅 (Σ−𝑑𝑅,𝐶) ≃ Σ𝑑𝐶 . □

18.2.28 Corollary. Let 𝑅 be local and 𝐷 a dualizing complex for 𝑅; one has

amp𝐷 = cmd 𝑅 .

Proof. By 18.2.24 the amplitude of a normalized dualizing complex is dim 𝑅 −
depth 𝑅 = cmd 𝑅, so the claim is immediate from 18.2.27. □

18.2.29 Proposition. Let (𝑅,𝔪, 𝒌) be local. The dualizing complex for 𝑅 from
18.2.9, Hom𝑅 (RΓ𝔪 (𝑅),E𝑅 (𝒌)) ≃ LΛ𝔪 (E𝑅 (𝒌)), is normalized, and if 𝐷 is a nor-
malized dualizing complex for 𝑅, then 𝑅 ⊗𝑅 𝐷 is isomorphic to this complex inD(𝑅).

Proof. As the extended ideal 𝔪𝑅 is the maximal ideal of the local ring 𝑅, see
16.1.13, the first equality in the computation below holds by 16.2.12 and 14.3.19.
The remaining equalities hold by 16.2.14 and 16.2.29.

depth
𝑅

LΛ𝔪 (E𝑅 (𝒌)) = depth𝑅 LΛ𝔪 (E𝑅 (𝒌)) = depth𝑅 E𝑅 (𝒌) = 0 .

Thus the dualizing complex LΛ𝔪 (E𝑅 (𝒌)) for 𝑅 is normalized by 18.2.24.
If 𝐷 is a normalized dualizing complex for 𝑅, then 𝑅 ⊗𝑅 𝐷 is a normalized

dualizing for 𝑅 by 18.2.12 and 18.2.24; now invoke 18.2.27. □
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Grothendieck Duality and Homological Invariants

18.2.30 Proposition. Let 𝑅 be local, 𝐷 a normalized dualizing complex for 𝑅, and
𝑀 an 𝑅-complex. There are equalities,

depth𝑅 𝑀 = width𝑅 RHom𝑅 (𝑀, 𝐷) and width𝑅 𝑀 = depth𝑅 RHom𝑅 (𝑀, 𝐷) .

Proof. By 16.2.5(a) and 18.2.24 one has width𝑅 𝐷 = inf 𝐷 = depth 𝑅, so the first
equality follows from 16.3.9(b). By 18.2.24 one has depth𝑅 𝐷 = 0, so the second
equality is a special case of 16.2.24. □

As the amplitude of a complex is invariant under shifts it follows in view of
18.2.27 that the equalities in 18.2.31(c) hold for any dualizing complex, normalized
or not. A special case of this observation is recorded in 18.2.28.

18.2.31 Theorem. Let 𝑅 be local, 𝐷 a normalized dualizing complex for 𝑅, and 𝑀
a complex in Df (𝑅). The following equalities hold.

dim𝑅 𝑀 = sup RHom𝑅 (𝑀, 𝐷) and sup𝑀 = dim𝑅 RHom𝑅 (𝑀, 𝐷) .(a)
depth𝑅 𝑀 = inf RHom𝑅 (𝑀, 𝐷) and inf 𝑀 = depth𝑅 RHom𝑅 (𝑀, 𝐷) .(b)
cmd𝑅 𝑀 = amp RHom𝑅 (𝑀, 𝐷) and amp𝑀 = cmd𝑅 RHom𝑅 (𝑀, 𝐷) .(c)

Proof. The equalities in part (c) follow from the equalities in (a) and (b).
(a): If 𝑀 is acyclic, then the first equality holds as both sides equal −∞, so one

can assume that 𝑀 is not acyclic. Assume first that inf 𝑀 = −∞ holds. By 14.2.4
one has dim𝑅 𝑀 = ∞; to see that sup RHom𝑅 (𝑀, 𝐷) = ∞ holds, recall from 18.2.3
that there is an isomorphism,

(†) 𝑀 ≃ RHom𝑅 (RHom𝑅 (𝑀, 𝐷), 𝐷) ,

and that the Grothendieck Duality functor, RHom𝑅 ( , 𝐷), maps Df
⊏ (𝑅) to Df

⊐ (𝑅).
Henceforth one can assume that 𝑀 belongs to Df

⊐ (𝑅). The first equality follows
from 18.2.15, as depth𝑅 𝐷 = 0 holds by 18.2.24. The second equality follows by the
isomorphism (†) from the one already proved.

(b): These equalities are special cases of those in 18.2.30, as 16.2.5(a) and 18.2.3
yield inf 𝑀 = width𝑅 𝑀 and inf RHom𝑅 (𝑀, 𝐷) = width𝑅 RHom𝑅 (𝑀, 𝐷). □

18.2.32 Theorem. Let 𝑅 be local and 𝐷 a normalized dualizing complex for 𝑅.
(a) For every complex 𝑀 in Df

⊐ (𝑅) there is an equality of Laurent series,

IRHom𝑅 (𝑀,𝐷)
𝑅

(𝑡) = P𝑅𝑀 (𝑡) .

In particular, one has id𝑅 RHom𝑅 (𝑀, 𝐷) = pd𝑅 𝑀 .
(b) For every complex 𝑀 in Df

⊏ (𝑅) there is an equality of Laurent series,

P𝑅RHom𝑅 (𝑀,𝐷) (𝑡) = I𝑀𝑅 (𝑡) .

In particular, one has pd𝑅 RHom𝑅 (𝑀, 𝐷) = id𝑅 𝑀 .
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Proof. By 18.2.24 one has I𝐷𝑅 (𝑡) = 1 and depth𝑅 𝐷 = 0 = id𝑅 𝐷. Thus part (a) is a
special case of 16.4.31, and (b) is a special case of 16.4.33. □

18.2.33 Corollary. Let 𝑅 be local and 𝐷 a normalized dualizing complex for 𝑅.
There is an equality of Laurant series,

I𝑅 (𝑡) = P𝑅𝐷 (𝑡) .

Proof. The equality in 18.2.32(b) and the counitor 12.3.4 yield the assertion. □

Minimal Semi-Injective Resolution of a Dualizing Complex

18.2.34 Example. Let 𝑅 be a Gorenstein ring of finite Krull dimension 𝑑 and
𝔞 a proper ideal in 𝑅. Set 𝑆 = 𝑅/𝔞; it follows from 18.2.5 and 18.2.6 that the
complex 𝐷 = RHom𝑅 (𝑆, 𝑅) is dualizing for 𝑆. Let 𝑅 ≃−−→ 𝐼 be a minimal injective
resolution; it follows from 17.4.12, 3.1.33, and C.16 that the modules in the complex
𝐷 = Hom𝑅 (𝑆, 𝐼) have the form

𝐷−𝑣 =
∐

dim𝑅𝔭 = 𝑣
𝔭∈Spec𝑅

Hom𝑅 (𝑆,E𝑅 (𝑅/𝔭)) =
∐

dim𝑅𝔭 = 𝑣

𝔭∈V(𝔞)

E𝑆 (𝑅/𝔭) .

Notice that 𝐷−𝑣 = 0 holds for 𝑣 < min𝔭∈V(𝔞) {dim 𝑅𝔭} and 𝑣 > max𝔭∈V(𝔞) {dim 𝑅𝔭}.
Assume now that 𝑅 is local and recall from 17.4.4 and 17.2.20 that one has

𝑑 = dim 𝑅𝔭 + dim 𝑅/𝔭 for every 𝔭 in Spec 𝑅. Thus dim 𝑅𝔭 ⩾ 𝑑 − dim 𝑆 holds for all
𝔭 in V(𝔞), so in this case 𝐷 is concentrated in degrees −𝑑 + dim 𝑆, . . . ,−𝑑.

Recall from B.26 that every complex has a minimal semi-injective resolution
which is unique up to isomorphism. For a dualizing complex this resolution can be
described explicitly.

18.2.35 Theorem. Let 𝐷 be a dualizing complex for 𝑅. For every prime ideal 𝔭 in
𝑅 there are equalities,

dim 𝑅𝔭 − sup𝐷𝔭 = id𝑅𝔭
𝐷𝔭 = depth𝑅𝔭

𝐷𝔭 = depth 𝑅𝔭 − inf 𝐷𝔭 .

Moreover, if 𝐷 is normalized and 𝐷 ≃−−→ 𝐼 is a minimal semi-injective resolution,
then for every 𝑣 ∈ ℤ one has

𝐼−𝑣 �
∐

id𝑅𝔭 𝐷𝔭 = 𝑣

E𝑅 (𝑅/𝔭) ,

and 𝐼 is concentrated in degrees dim 𝑅, .. . ,− id𝑅 𝐷.

Proof. Let 𝔭 be a prime ideal in 𝑅; by 18.2.8 the complex 𝐷𝔭 is dualizing for the
local ring 𝑅𝔭, so the first and second equalities hold by 18.2.16 and 18.2.11; the last
equality holds by the Bass Formula 16.4.11.

Now assume that 𝐷 is normalized and let 𝐷 ≃−−→ 𝐼 be a minimal semi-injective
resolution. Fix a prime ideal 𝔭 in 𝑅 and set 𝑑 = id𝑅𝔭

𝐷𝔭. As 𝑑 = dim 𝑅𝔭 − sup𝐷𝔭

holds, it follows from 18.2.23 and 14.1.31 that the complex Σ𝑑𝐷𝔭 is a normalized
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dualizing complex for the local ring 𝑅𝔭 with minimal semi-injective resolution
Σ𝑑𝐷𝔭

≃−−→ Σ𝑑 𝐼𝔭. By 18.2.24 the Bass series of Σ𝑑𝐷𝔭 is 1, so by 7.3.31 one has

μ𝑣𝑅𝔭
(𝐷𝔭) = μ𝑣−𝑑𝑅𝔭

(Σ𝑑𝐷𝔭) =
{

1 for 𝑑 = 𝑣

0 for 𝑑 ≠ 𝑣 .

Now invoke 16.4.37 to get the asserted expression for the module 𝐼−𝑣. As the complex
𝐼 is minimal, the last assertion follows from B.26 and 8.2.15. □

18.2.36 Corollary. Let 𝑅 be local and 𝐷 a normalized dualizing complex for 𝑅. If
𝐷
≃−−→ 𝐼 is a minimal semi-injective resolution, then one has

𝐼−𝑣 �
∐

dim𝑅/𝔭 = −𝑣
E𝑅 (𝑅/𝔭)

for every 𝑣 ∈ ℤ. In particular, 𝐼 is concentrated in degrees dim 𝑅, .. . , 0.

Proof. Let 𝔭 be a prime ideal in 𝑅. It follows from 18.2.35 and 18.2.25 that the
equality id𝑅𝔭

𝐷𝔭 = − dim 𝑅/𝔭 holds, and the asserted expression for 𝐼−𝑣 follows, also
from 18.2.35. Evidently, the complex 𝐼 is concentrated in the asserted degrees. □

18.2.37 Corollary. Let (𝑅,𝔪, 𝒌) be local and 𝐷 a normalized dualizing complex
for 𝑅. There is an isomorphism in D(𝑅),

RΓ𝔪 (𝐷) ≃ E𝑅 (𝒌) .

Proof. Let 𝐷 ≃−−→ 𝐼 be a minimal semi-injective resolution, see B.26. By 18.2.36
and 13.3.4 one has RΓ𝔪 (𝐷) = Γ𝔪 (𝐼) � E𝑅 (𝑅/𝔪) = E𝑅 (𝒌). □

18.2.38 Proposition. Let (𝑅,𝔪, 𝒌) be local and 𝐷 a normalized dualizing complex
for 𝑅. There are natural isomorphisms in D(𝑅):

(a) RHom𝑅 (𝐷,𝑌 ) ≃ RHom𝑅 (E𝑅 (𝒌), 𝑌 ) if 𝑌 is a derived𝔪-complete 𝑅-complex.
(b) RHom𝑅 (𝑋, 𝐷) ≃ RHom𝑅 (𝑋,E𝑅 (𝒌)) if 𝑋 is a derived 𝔪-torsion 𝑅-complex.
(c) 𝑋 ⊗L

𝑅
𝐷 ≃ 𝑋 ⊗L

𝑅
E𝑅 (𝒌) if 𝑋 is a derived 𝔪-torsion 𝑅-complex.

Proof. By 18.2.37 and 13.3.3 one has RΓ𝔪 (𝐷) ≃ E𝑅 (𝒌) ≃ RΓ𝔪 (E𝑅 (𝒌)) in D(𝑅),
so the assertions follow immediately from 13.4.21. □

18.2.39 Example. Let (𝑅,𝔪, 𝒌) be local and 𝐷 a normalized dualizing complex for
𝑅. From 18.2.38(b) applied to 𝑋 = E𝑅 (𝒌) and 16.1.23 one gets the isomorphism

RHom𝑅 (E𝑅 (𝒌), 𝐷) ≃ 𝑅 .

18.2.40 Corollary. Let 𝑅 be local and 𝐷 a normalized dualizing complex for 𝑅.
Grothendieck Duality 18.2.3 restricts to an adjoint equivalence of 𝕜-linear triangu-
lated categories Dℓ (𝑅) ⇆ Dℓ (𝑅)op which coincides with Matlis Duality 18.1.6.

Proof. Let 𝔪 be the maximal ideal of 𝑅 and recall, for example from 16.1.33, that
Dℓ (𝑅) is a subcategory of both Df (𝑅) and D𝔪-tor (𝑅). Now invoke 18.2.38(b). □
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Finitistic Dimensions

In the local case, the next result refines the statement in 18.2.19. It implies the
equality FPD 𝑅 = dim 𝑅, see 18.2.42, and as such it is a special case of 8.5.19.

18.2.41 Theorem. Let 𝑅 be local,𝐷 a dualizing complex for 𝑅, and𝑀 an 𝑅-complex.
If 𝑀 has finite flat dimension, then there is an inequality,

pd𝑅 𝑀 ⩽ dim 𝑅 + sup𝑀 .

Proof. Let 𝑀 be an 𝑅-complex of finite flat dimension. By 10.3.1(a) there is an
isomorphism 𝑀 ≃ RHom𝑅 (𝐷, 𝐷 ⊗L

𝑅
𝑀) in D(𝑅). This explains the first equality

in the computation below. By 15.4.17 the complex 𝐷 ⊗L
𝑅
𝑀 belongs to D⊏ (𝑅) and

the remaining two equalities hold by 17.6.12. By 18.2.8 one has Supp𝑅 𝐷 = Spec 𝑅,
so inf 𝐷𝔭 ⩽ sup𝐷𝔭 ⩽ sup𝐷 holds per 14.1.11(c) for every prime ideal 𝔭, which
explains the inequality below.

sup𝑀 = sup RHom𝑅 (𝐷, 𝐷 ⊗L
𝑅 𝑀)

= − inf{depth𝑅𝔭
(𝐷 ⊗L

𝑅 𝑀)𝔭 + inf 𝐷𝔭 | 𝔭 ∈ Spec 𝑅}

⩾ − inf{depth𝑅𝔭
(𝐷 ⊗L

𝑅 𝑀)𝔭 | 𝔭 ∈ Spec 𝑅} − sup𝐷

= sup (𝐷 ⊗L
𝑅 𝑀) − sup𝐷 .

The computation above combined with 18.2.16 yields

id𝑅 𝐷 + sup (𝐷 ⊗L
𝑅 𝑀) ⩽ id𝑅 𝐷 + sup𝐷 + sup𝑀 = dim 𝑅 + sup𝑀 .

Now invoke 10.3.12 to get the desired inequality. □

The central inequality, sup (𝐷 ⊗L
𝑅
𝑀) ⩽ sup𝑀 + sup𝐷, in the proof above is

part of a family of inequalities that control suprema and infima of complexes in the
Auslander and Bass categories; see 19.1.5.

18.2.42 Corollary. Let 𝑅 be local. If 𝑅 has a dualizing complex, then there are
(in)equalities,

FID 𝑅 = FFD 𝑅 ⩽ FPD 𝑅 = dim 𝑅 ⩽ id 𝑅 ⩽ gldim 𝑅 ;

if one of the quantities id 𝑅 or gldim 𝑅 is finite, then equality holds everywhere to
the left of it.

Proof. From 15.4.18 and 18.2.41 one gets FPD 𝑅 ⩽ dim 𝑅, and 17.4.28 shows that
equality holds. Given this equality, the assertion is a restatement of 17.4.1. □

Exercises

In exercises E 18.2.1–18.2.10 let 𝑅 be local.

E 18.2.1 Let 𝑅 be Artinian and assume that it contains the residue field 𝒌 as a subring. Show
that there is an isomorphism Hom𝒌 (𝑅, 𝒌 ) � E𝑅 (𝒌 ) of 𝑅-modules.
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E 18.2.2 Assume that 𝑅 is a homomorphic image of a Gorenstein local ring 𝑄. Prove that 𝑅 is
Gorenstein if and only if RHom𝑄 (𝑅, 𝑄) ≃ Σ𝑠𝑅 holds for some integer 𝑠.

E 18.2.3 Let (𝑅,𝔪, 𝒌 ) be a Cohen–Macaulay local ring of Krull dimension 𝑑 and 𝐷 a finitely
generated 𝑅-module. Show that 𝐷 is dualizing for 𝑅 if and only if one has

Ext𝑚𝑅 (𝒌 , 𝐷) �
{

0 for 𝑚 ≠ 𝑑

𝒌 for 𝑚 = 𝑑 .

E 18.2.4 Let 𝑅 be Cohen–Macaulay and 𝐾 a finitely generated 𝑅-module. Show that 𝐾 is a
canonical module for 𝑅 if and only if it is a dualizing module for 𝑅.

E 18.2.5 Let 𝑀 be a complex in Df
⊏⊐ (𝑅) of finite projective dimension. Show that one has

amp RHom𝑅 (𝑀, 𝑅) ⩽ cmd𝑅 𝑀 and that equality holds if 𝑅 is Cohen–Macaulay.
E 18.2.6 Let 𝔞 be an ideal in 𝑅 and 𝐷 a normalized dualizing complex for 𝑅. Show that

RHom𝑅 (𝑅/𝔞, 𝐷) is a normalized dualizing complex for 𝑅/𝔞.
E 18.2.7 Let 𝑀 be an 𝑅-complex and 𝐷 a normalized dualizing complex for 𝑅. Show that one

has depth𝑅 𝑀 = width𝑅 RHom𝑅 (𝑀, 𝐷) and width𝑅 𝑀 = depth𝑅 RHom𝑅 (𝑀, 𝐷) .
E 18.2.8 Let 𝑀 be a complex in Df

⊏⊐ (𝑅) with id𝑅 𝑀 = depth𝑅 𝑀. (a) Show that 𝑀 is Cohen–
Macaulay. (b) Show that if 𝐷 is a dualizing complex for 𝑅, then 𝑀 is up to a shift
isomorphic in D(𝑅) to a direct sum of copies of 𝐷.

E 18.2.9 Let 𝐷 be a dualizing complex for 𝑅. Show that the equality dim𝑅 𝐷 = dim𝑅 − inf𝐷
holds if and only if 𝑅 is Cohen–Macaulay.

E 18.2.10 Let𝑅 be Cohen–Macaulay of Krull dimension 𝑑 and𝐷 a normalized dualizing complex
for 𝑅. (a) Show that the module 𝐾 = H𝑑 (𝐷) is dualizing for 𝑅. (b) Show that an 𝑅-
module 𝑀 is Cohen–Macaulay of Krull dimension 𝑛 if and only if Ext𝑚

𝑅
(𝑀, 𝐾 ) = 0

holds for𝑚 ≠ 𝑑 − 𝑛, in which case the module Ext𝑑−𝑛
𝑅
(𝑀, 𝐾 ) is Cohen–Macaulay of

Krull dimension 𝑛. (c) Show that for a Cohen–Macaulay 𝑅-module of Krull dimension
𝑛 there is an isomorphism 𝑀 � Ext𝑑−𝑛

𝑅
(Ext𝑑−𝑛

𝑅
(𝑀, 𝐾 ) , 𝐾 ) .

E 18.2.11 Let 𝔞 be an ideal in 𝑅 and assume that 𝐷 is a normalized dualizing complex for 𝑅;
describe the modules of the complex RΓ𝔞 (𝐷) .

E 18.2.12 Show that if 𝑅 has a dualizing complex, then every complex in Df
⊏ (𝑅) is isomorphic

in D(𝑅) to a bounded above complex of finitely generated 𝑅-modules.
add exercises about A and B closed under products and colimits

18.3 Local Duality

Synopsis. Homological invariants under completion; Gorenstein ring; Local Duality Theorem;
local cohomology vs. Krull dimension; Krull dimension vs. depth; non-zero Bass numbers.

Dualizing complexes are a powerful tool in homological computations, which makes
it important to understand how a problem may be transplanted to a setting where
this tool is available. The gist of 18.3.2–18.3.13 below is that questions about the
homological nature of finitely generated modules over a local ring can be resolved
over the completion of the ring, which by 18.2.9 has a dualizing complex.

Passing to the Completion

Let (𝑅,𝔪, 𝒌) be local and recall from 16.1.13 that the completion 𝑅 is a local ring
with maximal ideal �̂� = 𝔪𝑅 and residue field 𝒌. The isomorphism 𝒌 � 𝑅 ⊗𝑅 𝒌
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implies that basic homological invariants remain unchanged under base change from
𝑅 to 𝑅, a process often referred to as “passing to the completion.”

We open with a simpler consequence:

18.3.1 Proposition. Let 𝑅 be local and 𝑀 an 𝑅-complex; there are equalities,

width𝑅 𝑀 = width
𝑅
𝑀 and depth𝑅 𝑀 = depth

𝑅
𝑀 .

Proof. As 𝔪𝑅 is the maximal ideal of 𝑅 the equalities are, in view of 16.2.12 and
16.2.1, special cases 14.3.19 and 14.3.31. □

18.3.2 Proposition. Let 𝑅 be local and 𝑀 an 𝑅-complex. There are equalities,

inf 𝑀 = inf (𝑅 ⊗𝑅 𝑀) ,
sup𝑀 = sup (𝑅 ⊗𝑅 𝑀) , and

amp𝑀 = amp(𝑅 ⊗𝑅 𝑀) .

Moreover, the following assertions hold.
(a) 𝑀 belongs to Cf (𝑅) if and only if 𝑅 ⊗𝑅 𝑀 belongs to Cf (𝑅) .
(b) There is an isomorphism H(𝑅 ⊗𝑅 𝑀) � 𝑅 ⊗𝑅 H(𝑀) .
(c) 𝑀 belongs to Df (𝑅) if and only if 𝑅 ⊗𝑅 𝑀 belongs to Df (𝑅) .

Proof. As an 𝑅-module the completion 𝑅 is faithfully flat, see 16.1.13, so the
equalities follow straight from 2.5.7(c). The last assertions hold by 12.1.20. □

18.3.3 Lemma. Let (𝑅,𝔪, 𝒌) be local and𝑀 an 𝑅-complex. There are isomorphisms
in D(𝒌),

𝒌 ⊗L
𝑅 𝑀 ≃ 𝒌 ⊗L

𝑅
(𝑅 ⊗𝑅 𝑀) and RHom𝑅 (𝒌, 𝑀) ≃ RHom

𝑅
(𝒌,RHom𝑅 (𝑅, 𝑀)) .

In particular, there are for all 𝑚 ∈ ℤ isomorphisms of 𝒌-vector spaces,

Tor𝑅𝑚 (𝒌, 𝑀) � Tor𝑅𝑚 (𝒌, 𝑅 ⊗𝑅 𝑀) and Ext𝑚𝑅 (𝒌, 𝑀) � Ext𝑚
𝑅
(𝒌,RHom𝑅 (𝑅, 𝑀)) .

Proof. The isomorphisms in D(𝒌) hold by 12.3.31 and 12.3.36. The isomorphisms
of 𝒌-vector spaces now follow from the definitions of Tor and Ext. □

18.3.4 Proposition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. There is an isomor-
phism in D(𝑅),

LΛ𝔪 (𝑀) ≃ LΛ𝔪𝑅 (RHom𝑅 (𝑅, 𝑀)) .
In particular, there are for all 𝑛 ∈ ℤ isomorphisms of local homology modules,

H𝔪
𝑛 (𝑀) � H𝔪𝑅

𝑛 (RHom𝑅 (𝑅, 𝑀)) .

Proof. By 13.4.17 and 13.1.21(b) there are isomorphisms in D(𝑅),

LΛ𝔪 (𝑀) ≃ RHom𝑅 (𝑅, LΛ𝔪 (𝑀)) ≃ LΛ𝔪𝑅 (RHom𝑅 (𝑅, 𝑀)) .

The isomorphisms of local homology modules hold by the definition, 11.3.6. □
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18.3.5 Proposition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. There is an isomor-
phism in D(𝑅),

RΓ𝔪 (𝑀) ≃ RΓ
𝔪𝑅
(𝑅 ⊗𝑅 𝑀) .

In particular, there are for all 𝑛 ∈ ℤ isomorphisms of local cohomology modules,

H𝑛𝔪 (𝑀) � H𝑛
𝔪𝑅
(𝑅 ⊗𝑅 𝑀) .

Proof. By 13.4.17 and 13.3.23(b) there are isomorphisms in D(𝑅),

RΓ𝔪 (𝑀) ≃ 𝑅 ⊗𝑅 RΓ𝔪 (𝑀) ≃ RΓ
𝔪𝑅
(𝑅 ⊗𝑅 𝑀) .

The isomorphisms of local cohomology modules hold by the definition, 11.3.20. □

18.3.6 Theorem. Let 𝑅 be local and 𝑀 an 𝑅-complex. There are equalities,

depth
𝑅
(𝑅 ⊗𝑅 𝑀) = depth𝑅 𝑀 = depth

𝑅
RHom𝑅 (𝑅, 𝑀)

and
width

𝑅
(𝑅 ⊗𝑅 𝑀) = width𝑅 𝑀 = width

𝑅
RHom𝑅 (𝑅, 𝑀) .

Proof. The equalities of depths follow via 16.2.14 from 18.3.5 and 18.3.3. Similarly,
the equalities of widths follow via 16.2.3 from 18.3.3 and 18.3.4. □

For finitely generated modules, local homology and Bass numbers are also in-
variant under passage to the completion.

18.3.7 Proposition. Let (𝑅,𝔪) be local and 𝑀 a complex in Df (𝑅). There is an
isomorphism in D(𝑅),

LΛ𝔪 (𝑀) ≃ LΛ𝔪𝑅 (𝑅 ⊗𝑅 𝑀) .

In particular, there are for all 𝑛 ∈ ℤ isomorphisms of local homology modules,

H𝔪
𝑛 (𝑀) � H𝔪𝑅

𝑛 (𝑅 ⊗𝑅 𝑀) .

Proof. The complex 𝑅 ⊗𝑅 𝑀 belongs to Df (𝑅), see 18.3.2(c), so the first isomor-
phism in the display below holds by 13.2.5. The second isomorphism follows from
12.1.18 as 𝑅 = Λ𝔪 (𝑅) is 𝔪𝑅-complete, see 11.1.39. The last isomorphism comes
from 13.2.7.

LΛ𝔪𝑅 (𝑅 ⊗𝑅 𝑀) ≃ Λ𝔪𝑅 (𝑅) ⊗
𝑅
(𝑅 ⊗𝑅 𝑀) ≃ 𝑅 ⊗𝑅 𝑀 ≃ LΛ𝔪 (𝑀) .

The isomorphisms of local homology modules now hold by the definition, 11.3.6. □

18.3.8 Lemma. Let (𝑅,𝔪, 𝒌) be local and 𝑀 a complex in Df (𝑅). There is an
isomorphism in D(𝒌),

RHom𝑅 (𝒌, 𝑀) ≃ RHom
𝑅
(𝒌, 𝑅 ⊗𝑅 𝑀) .

In particular, there are for all 𝑚 ∈ ℤ isomorphisms of 𝒌-vector spaces,

Ext𝑚𝑅 (𝒌, 𝑀) � Ext𝑚
𝑅
(𝒌, 𝑅 ⊗𝑅 𝑀) .
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Proof. In the computation below, the first isomorphism comes from 13.4.18(b), the
second isomorphism holds in view of 11.1.19 by 13.2.5, and the last isomorphism
holds by 13.4.20(b) as 𝒌 by 13.3.24 is derived 𝔪-torsion.

RHom
𝑅
(𝒌, 𝑅 ⊗𝑅 𝑀) ≃ RHom𝑅 (𝒌, 𝑅 ⊗𝑅 𝑀)

≃ RHom𝑅 (𝒌, LΛ𝔪 (𝑀))
≃ RHom𝑅 (𝒌, 𝑀) .

The isomorphisms of 𝒌-vector spaces now follow from the definition of Ext. □

18.3.9 Proposition. Let 𝑅 be local and 𝑀 a complex in Df
⊐ (𝑅). There is an equality,

P𝑅𝑀 (𝑡) = P𝑅
𝑅⊗𝑅𝑀

(𝑡) ,

of Laurent series. In particular, one has pd𝑅 𝑀 = pd
𝑅
(𝑅 ⊗𝑅 𝑀).

Proof. Per 18.3.3 the equalities are immediate from 16.4.14 and 16.4.16. □

The last assertion in the next result is known from 17.3.24.

18.3.10 Proposition. Let 𝑅 be local and𝑀 a complex inDf
⊏ (𝑅). There is an equality,

I𝑀𝑅 (𝑡) = I𝑅⊗𝑅𝑀
𝑅

(𝑡) ,

of Laurent series. In particular, one has id𝑅 𝑀 = id
𝑅
(𝑅 ⊗𝑅 𝑀).

Proof. Per 18.3.8 the equalities are immediate from 16.4.28 and 16.4.30. □

18.3.11 Theorem. Let 𝑅 be local and 𝑀 a complex in Df (𝑅); there are equalities,

dim𝑅 𝑀 = dim
𝑅
(𝑅 ⊗𝑅 𝑀) and cmd𝑅 𝑀 = cmd

𝑅
(𝑅 ⊗𝑅 𝑀) .

Proof. It suffices to prove the first equality; the second then follows in view
of 18.3.6 and 17.2.2. By 14.2.1 and the isomorphism H(𝑅 ⊗𝑅 𝑀) � 𝑅 ⊗𝑅 H(𝑀),
see 18.3.2(b), one can assume that 𝑀 is a finitely generated 𝑅-module. The equality
is trivial for the zero module, so now let 𝑀 ≠ 0, set 𝔞 = (0 :𝑅 𝑀), and recall
from 14.1.1 that dim𝑅 𝑀 = dim 𝑅/𝔞 holds. In view of 15.3.34 one similarly has
dim

𝑅
(𝑅 ⊗𝑅 𝑀) = dim 𝑅/𝔞𝑅. The ring 𝑅/𝔞 is local with maximal ideal 𝔪/𝔞 and

the quotient 𝑅/𝔞𝑅 � 𝑅/𝔞 ⊗𝑅 𝑅 is flat as an 𝑅/𝔞-module, see 1.1.10 and 5.4.24(a).
To see that the extension (𝔪/𝔞) (𝑅/𝔞𝑅) is the maximal ideal of the local ring 𝑅/𝔞𝑅
notice that there is a commutative diagram of ring homomorphisms,

𝑅

����

// 𝑅

����

𝑅/𝔞 // 𝑅/𝔞𝑅 .

Thus (𝔪/𝔞) (𝑅/𝔞𝑅) is the image in 𝑅/𝔞𝑅 of the maximal ideal𝔪𝑅 of 𝑅, see 16.1.13,
so it is indeed the maximal ideal of 𝑅/𝔞𝑅. Now the desired equality follows, as
17.2.29 yields dim 𝑅/𝔞𝑅 = dim 𝑅/𝔞. □
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18.3.12 Corollary. Let 𝑅 be local. There are equailities,

depth 𝑅 = depth 𝑅 and dim 𝑅 = dim 𝑅 .

Thus, 𝑅 is a Cohen–Macaulay ring if and only if 𝑅 is a Cohen–Macaulay ring.

Proof. The equalities hold by 18.3.6 and 18.3.11, and the last assertion is then
immediate from 17.2.16. □

Gorenstein Rings

18.3.13 Corollary. Let 𝑅 be local. There is an equality,

id 𝑅 = id 𝑅 ,

so 𝑅 is a Gorenstein ring if and only if 𝑅 is a Gorenstein ring.

Proof. The equality is an immediate consequence of 18.3.10, and the last assertion
is then immediate form 17.4.2. □

The proof of the next result uses the technique of passing to the completion. It
is the standard textbook characterization of Gorenstein local rings. In part (ii) the
a priori assumption that 𝑅 is Cohen–Macaulay is actually superfluous, see 18.4.23.
This was conjectured by Vasconcelos [246, 2.Appn.] and proved by Roberts [214].

18.3.14 Theorem. Let 𝑅 be local of Krull dimension 𝑑. The following conditions
are equivalent.

(i) 𝑅 is Gorenstein.
(ii) 𝑅 is Cohen–Macaulay with μ𝑑

𝑅
(𝑅) = 1 .

(iii) Σ𝑑𝑅 is a normalized dualizing complex for 𝑅 .
(iv) One has I𝑅 (𝑡) = 𝑡𝑑 .

Proof. Conditions (i) and (iv) are equivalent by 17.4.11. As 𝑅 has finite Krull
dimension, conditions (i) and (iii) are equivalent by 18.2.5 and 18.2.23.

(iii)⇒ (ii): It follows from 18.2.11 and 17.2.3 that 𝑅 is Cohen–Macaulay. By
18.2.33 and 16.4.27 one has I𝑅 (𝑡) = P𝑅Σ𝑑𝑅 (𝑡) = 𝑡𝑑 , whence μ𝑑

𝑅
(𝑅) = 1 holds.

(ii)⇒ (i): By 18.3.12 the complete local ring 𝑅 is Cohen–Macaulay of Krull
dimension 𝑑 = dim 𝑅. Per 18.2.29 let 𝐷 be a normalized dualizing complex for 𝑅.
By 18.2.28 the complex H(𝐷) is concentrated in degree 𝑑. Set 𝐾 = H𝑑 (𝐷); by
7.3.29 there is an isomorphism 𝐷 ≃ Σ𝑑𝐾 in D(𝑅), so 𝐾 is per 10.1.3 a dualizing
complex for 𝑅. In particular, one has 𝑅 ≃ RHom

𝑅
(𝐾, 𝐾) in D(𝑅), so by 7.3.27

there is an isomorphism of 𝑅-modules, 𝑅 � Hom
𝑅
(𝐾, 𝐾). By 18.3.10 and 18.2.33

one has I𝑅 (𝑡) = I
𝑅
(𝑡) = P𝑅𝐷 (𝑡). In particular one gets via 7.4.24 and the definition,

16.4.14, of Betti numbers,

1 = μ𝑑𝑅 (𝑅) = β𝑅𝑑 (𝐷) = β𝑅0 (𝐾) .
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It follows that 𝐾 is cyclic. Thus there is an isomorphism 𝐾 � 𝑅/(0 :
𝑅
𝐾), and the

isomorphism 𝑅 � Hom
𝑅
(𝐾, 𝐾) forces (0 :

𝑅
𝐾) = 0, see 1.1.8. Thus 𝑅 = 𝐾 is a

dualizing complex for 𝑅, which by 18.2.5 means that 𝑅 is Gorenstein, and then 𝑅 is
Gorenstein by 18.3.13. □

The characterization of Cohen–Macaulay rings in terms of vanishing of local
cohomology 17.2.19 can be refined to a characterization of Gorenstein rings.

18.3.15 Proposition. Let (𝑅,𝔪, 𝒌) be local of Krull dimension 𝑑. The following
conditions are equivalent.

(i) 𝑅 is Gorenstein.
(ii) 𝑅 is Cohen–Macaulay and one has H𝑑𝔪 (𝑅) � E𝑅 (𝒌) .
(iii) H𝑛𝔪 (𝑅) = 0 holds for 𝑛 ≠ 𝑑 and one has H𝑑𝔪 (𝑅) � E𝑅 (𝒌) .

Proof. Conditions (ii) and (iii) are equivalent by 17.2.19.
(i)⇒ (iii): Recall from 18.3.14 that Σ𝑑𝑅 is a normalized dualizing complex for

𝑅. From 11.3.20 and 18.2.37 one now gets,

H𝑛𝔪 (𝑅) = H−𝑛 (RΓ𝔪 (𝑅)) � H𝑑−𝑛 (RΓ𝔪 (Σ𝑑𝑅)) �
{

0 for 𝑛 ≠ 𝑑
E𝑅 (𝒌) for 𝑛 = 𝑑 .

(ii)⇒ (i): As H𝑛𝔪 (𝑅) = 0 holds for 𝑛 ≠ 𝑑 by 17.2.19 there is by 13.3.18 and 7.3.29
an isomorphism RΓ𝔪 (𝑅) ≃ Σ−𝑑E𝑅 (𝒌) in D(𝑅). The complex LΛ𝔪 (Σ−𝑑E𝑅 (𝒌)) is
by 18.2.9 a dualizing complex for 𝑅, and there are isomorphisms in D(𝑅),

LΛ𝔪 (Σ−𝑑E𝑅 (𝒌)) ≃ LΛ𝔪 (RΓ𝔪 (𝑅)) ≃ LΛ𝔪 (𝑅) ≃ 𝑅 ,

by 13.4.1(c) and 13.2.7. Thus, 𝑅 is a dualizing complex for 𝑅, whence 𝑅 is Gorenstein
by 18.2.5 and 18.3.13. □

18.3.16 Theorem. Let (𝑅,𝔪, 𝒌) be local. The following conditions are equivalent.
(i) 𝑅 is Gorenstein.
(ii) fd𝑅 Hom𝑅 (RΓ𝔪 (𝑅),E𝑅 (𝒌)) is finite.
(iii) There is an isomorphism, Hom𝑅 (RΓ𝔪 (𝑅),E𝑅 (𝒌)) ≃ Σdim𝑅𝑅, in D(𝑅) .

Proof. Set 𝐷 = Hom𝑅 (RΓ𝔪 (𝑅),E𝑅 (𝒌)) and recall from 18.2.9 that it is a normal-
ized dualizing complex for 𝑅. Further, recall from 17.2.29 that dim 𝑅 = dim 𝑅 holds
and denote this quantity by 𝑑.

(i)⇒ (iii): If 𝑅 is Gorenstein, then by 18.3.13 so is 𝑅, whence 𝐷 ≃ Σ𝑑𝑅 holds
by 18.3.14 and 18.2.27.

(iii)⇒ (ii): This implication is evident as 𝑅 is flat as an 𝑅-module, see 16.1.13.
(ii)⇒ (i): Notice that 18.2.32(b), 15.4.18, and 16.1.21 yield

id 𝑅 = pd
𝑅
𝐷 = fd

𝑅
𝐷 = fd𝑅 Hom𝑅 (RΓ𝔪 (𝑅),E𝑅 (𝒌)) .

It follows that 𝑅 is Gorenstein, whence 𝑅 is Gorenstein by 18.3.13. □
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Local Duality

18.3.17 Theorem. Let 𝔞 ⊆ 𝑅 be an ideal, 𝐷 a dualizing complex for 𝑅, and 𝑀 a
complex in Df (𝑅). There is an isomorphism in D(𝑅),

RΓ𝔞 (𝑀) ≃ RHom𝑅 (RHom𝑅 (𝑀, 𝐷),RΓ𝔞 (𝐷)) .

Proof. By Grothendieck Duality 18.2.3 the complex RHom𝑅 (𝑀, 𝐷) belongs to
Df (𝑅), and there is an isomorphism 𝑀 ≃ RHom𝑅 (RHom𝑅 (𝑀, 𝐷), 𝐷) in D(𝑅).
The asserted isomorphism now follows from 13.3.20(c). □

The following special case is known as the Local Duality Theorem.

18.3.18 Theorem. Let (𝑅,𝔪, 𝒌) be local, 𝐷 a normalized dualizing complex for 𝑅,
and 𝑀 a complex in Df (𝑅). There is an isomorphism in D(𝑅),

RΓ𝔪 (𝑀) ≃ Hom𝑅 (RHom𝑅 (𝑀, 𝐷),E𝑅 (𝒌)) ;

in particular, for every 𝑛 ∈ ℤ there is an isomorphism of 𝑅-modules,

H𝑛𝔪 (𝑀) � Hom𝑅 (Ext−𝑛𝑅 (𝑀, 𝐷),E𝑅 (𝒌)) .

Proof. In view of 18.2.37 the isomorphism in D(𝑅) is a special case of 18.3.17.
The isomorphisms of modules follows from 2.2.19 and the definitions of Ext and
local cohomology, see 7.3.23 and 11.3.20. □

18.3.19 Example. Let (𝑅,𝔪, 𝒌) be local, 𝑥𝑥𝑥 a sequence that generates 𝔪, and 𝐷 a
normalized dualizing complex for 𝑅. By Local Duality 18.3.18, the counitor 12.3.4,
and 13.3.18 there are isomorphisms in D(𝑅),

Hom𝑅 (𝐷,E𝑅 (𝒌)) ≃ RΓ𝔪 (𝑅) ≃ Č𝑅(𝑥𝑥𝑥) .

Remark. As it is stated above in the language of the derived category, the Local Duality Theorem
first appeared in Hartshorne’s notes [114, V.§6] from Grothendieck’s 1963/64 seminar at Harvard.
However, Grothendieck had presented the Cohen–Macaulay case already in 1961, and that proof
was written up by Hartshorne in [115], which appeared later. Without the language of the derived
category, one has to settle for the “in particular” statement in 18.3.18 about isomorphisms of
cohomology modules, and 𝐷 has to be a dualizing module which introduces a correction factor in
the cohomological degree. That is how the theorem appears in [115, §6]; see also E 18.3.3.

The next results are dual to 18.3.17 and 18.3.18.

18.3.20 Theorem. Let (𝑅,𝔪, 𝒌) be local, 𝔞 an ideal in 𝑅, and 𝑀 a derived Matlis
reflexive 𝑅-complex. There is an isomorphism in D(𝑅),

LΛ𝔞 (𝑀) ≃ RHom𝑅 (Hom𝑅 (𝑀,E𝑅 (𝒌)), LΛ𝔞 (E𝑅 (𝒌))) .

Proof. By assumption one has 𝑀 ≃ RHom𝑅 (Hom𝑅 (𝑀,E𝑅 (𝒌)),E𝑅 (𝒌)) in D(𝑅),
see 16.1.35. Now apply LΛ𝔞 and invoke 13.1.18. □

18.3.21 Corollary. Let (𝑅,𝔪, 𝒌) be local, 𝐷 a normalized dualizing complex for
𝑅, and 𝑀 a derived Matlis reflexive 𝑅-complex. There is an isomorphism in D(𝑅),

LΛ𝔪 (𝑀) ≃ RHom𝑅 (Hom𝑅 (𝑀,E𝑅 (𝒌)), 𝐷) .
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Proof. Recall from 18.2.29 that LΛ𝔪 (E𝑅 (𝒌)) is a normalized dualizing complex for
𝑅, and hence it is by 18.2.27 and 18.2.21 isomorphic in D(𝑅) to the given complex
𝐷. Thus, the statement is a special case of 18.3.20. □

Krull Dimension and Vanishing of Local Cohomology

18.3.22 Theorem. Let 𝑅 be local, 𝔞 an ideal in 𝑅, and 𝑀 an 𝑅-complex. One has

dim𝑅 𝑀 ⩾ − inf RΓ𝔞 (𝑀) = sup{𝑚 ∈ ℤ | H𝑚𝔞 (𝑀) ≠ 0} ,

and equality holds if 𝔞 is the maximal ideal of 𝑅 and 𝑀 belongs to Df (𝑅).

Proof. The asserted equality holds by the definition, 11.3.20, of local cohomology.
If 𝑀 is acyclic, then the inequality is trivial and, in fact, equality holds as both sides
equal −∞, so assume now that 𝑀 is not acyclic.

First we prove that the (in)equality holds for 𝑀 ∈ Df (𝑅). Let 𝔪 be the maximal
ideal of 𝑅 and per 18.2.29 let 𝐷 be a normalized dualizing complex for 𝑅. By 18.3.2
the base changed complex 𝑅 ⊗𝑅 𝑀 belongs to Df (𝑅), and the first two equalities
in the computation below hold by 18.3.11 and 18.2.31(a). As 𝐷 belongs to Df

⊏⊐ (𝑅),
14.3.16, 15.4.15, and 18.2.24 yield

id
𝑅

RΓ𝔞𝑅 (𝐷) ⩽ id
𝑅
𝐷 = 0 .

The inequality below thus follows from 15.4.7, and equality holds for 𝔞 = 𝔪 by
16.1.13, (16.1.22.2) and the isomorphism RΓ

𝔪𝑅
(𝐷) ≃ E

𝑅
(𝒌) from 18.2.37. The

last three equalities hold by 18.3.17, 13.3.23(b), and 18.3.2.

(♭)

dim𝑅 𝑀 = dim
𝑅
(𝑅 ⊗𝑅 𝑀)

= sup RHom
𝑅
(𝑅 ⊗𝑅 𝑀, 𝐷)

⩾ − inf RHom
𝑅
(RHom

𝑅
(𝑅 ⊗𝑅 𝑀, 𝐷),RΓ𝔞𝑅 (𝐷))

= − inf RΓ𝔞𝑅 (𝑅 ⊗𝑅 𝑀)
= − inf (𝑅 ⊗𝑅 RΓ𝔞 (𝑀))
= − inf RΓ𝔞 (𝑀) .

It remains to prove that the asserted inequality holds for every 𝑅-complex 𝑀 . Con-
sider first the special case of a module. Let𝑈 be the filtered set of finitely generated
submodules of 𝑀 ordered under inclusion. By 3.3.5 one has 𝑀 � colim𝑀′∈𝑈 𝑀 ′,
and for every 𝑚 ∈ ℤ there are by 13.3.22 isomorphisms,

H𝑚𝔞 (𝑀) � H𝔞
𝑚

(
colim
𝑀′∈𝑈

𝑀 ′
)
� colim

𝑀′∈𝑈
H𝑚𝔞 (𝑀 ′) .

For every finitely generated submodule 𝑀 ′ of 𝑀 one has Supp𝑅 𝑀 ′ ⊆ Supp𝑅 𝑀
and, therefore, dim𝑅 𝑀

′ ⩽ dim𝑅 𝑀 . Now it follows from (♭) that H𝑚𝔞 (𝑀 ′) = 0 holds
for 𝑚 > dim𝑅 𝑀 , so one has H𝑚𝔞 (𝑀) = 0 for 𝑚 > dim𝑅 𝑀 as asserted.

Next we reduce the general case to the case of a complex with bounded homology.
The asserted inequality is trivial if H(𝑀) is not bounded below, see 14.2.4, so one
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can assume that 𝑀 belongs to D⊐ (𝑅). For every 𝑛 ∈ ℤ one gets from 7.6.6(c) and
11.3.15 a distinguished triangle,

RΓ𝔞 (𝑀Ě𝑛+1) −→ RΓ𝔞 (𝑀) −→ RΓ𝔞 (𝑀Ď𝑛) −→ ΣRΓ𝔞 (𝑀Ě𝑛+1) .

The asserted inequality is trivial if the complex RΓ𝔞 (𝑀) is acyclic, so assume that
it is not acyclic. The functor RΓ𝔞 is by 13.3.18 bounded, so for 𝑛 ≫ 0 one has
inf RΓ𝔞 (𝑀Ě𝑛+1) ≫ 0 and, therefore, inf RΓ𝔞 (𝑀) = inf RΓ𝔞 (𝑀Ď𝑛), see A.23 and
6.5.20. Further, notice from 14.2.1 that

dim𝑅 𝑀 = dim𝑅 𝑀Ď𝑛

holds for 𝑛 ≫ 0. One can thus assume that 𝑀 belongs to D⊏⊐ (𝑅).
Now let 𝑀 be a complex in D⊏⊐ (𝑅) and 𝑥𝑥𝑥 a sequence that generates 𝔞. The

module case handled above justifies the last inequality in the next computation; the
first inequality comes from 7.6.10, and the equalities hold by 13.3.18 and 14.2.1.

− inf RΓ𝔞 (𝑀) = − inf (Č𝑅(𝑥𝑥𝑥) ⊗L
𝑅 𝑀)

⩽ − inf{inf (Č𝑅(𝑥𝑥𝑥) ⊗L
𝑅 H𝑣 (𝑀)) + 𝑣 | 𝑣 ∈ ℤ}

= sup{− inf RΓ𝔞 (H𝑣 (𝑀)) − 𝑣 | 𝑣 ∈ ℤ}
⩽ sup{dim𝑅 H𝑣 (𝑀) − 𝑣 | 𝑣 ∈ ℤ}
= dim𝑅 𝑀 . □

18.3.23 Corollary. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. There is an inequality,

dim𝑅 𝑀 ⩾ dim𝑅 RΓ𝔪 (𝑀) ,

and equality holds if 𝑀 belongs to Df (𝑅).

Proof. One has dim𝑅 𝑀 ⩾ − inf RΓ𝔪 (𝑀) = dim𝑅 RΓ𝔪 (𝑀) by 18.3.22, 13.4.7, and
16.1.31(b), and equality holds if 𝑀 belongs to Df (𝑅). □

The next inequality is an important special case of 18.3.29; it also holds for
complexes in Df (𝑅), see 17.6.15.

18.3.24 Corollary. Let (𝑅,𝔪) be local and 𝑀 and 𝑁 be 𝑅-complexes of finite depth.
If 𝑀 is derived 𝔪-torsion or 𝑁 is derived 𝔪-complete, then the next inequality holds,

− sup RHom𝑅 (𝑀, 𝑁) ⩾ depth𝑅 𝑁 − dim𝑅 𝑀 .

Proof. The inequality − sup RHom𝑅 (𝑀, 𝑁) ⩾ depth𝑅 𝑁 + inf RΓ𝔪 (𝑀) holds by
14.4.6 applied with 𝔞 = 𝔪, and it remains to invoke 18.3.22. □

The inequality in the next result is an important special case of 18.3.30. The result
also compares to 14.2.8.

18.3.25 Corollary. Let (𝑅,𝔪) be local and 𝑀 and 𝑁 be 𝑅-complexes of finite width.
If 𝑀 or 𝑁 is derived 𝔪-torsion, then the next inequality holds,

dim𝑅 (𝑀 ⊗L
𝑅 𝑁) ⩽ dim𝑅 𝑀 − width𝑅 𝑁 .
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Proof. The complex 𝑀 ⊗L
𝑅
𝑁 is by 13.4.20(c) derived 𝔪-torsion, so 16.1.31(b)

yields dim𝑅 (𝑀 ⊗L
𝑅
𝑁) = − inf (𝑀 ⊗L

𝑅
𝑁). From 14.4.11 applied with 𝔞 = 𝔪 one gets

− inf (𝑀 ⊗L
𝑅
𝑁) ⩽ − inf RΓ𝔪 (𝑀)−width𝑅 𝑀 , and it remains to invoke 18.3.22. □

The inequality in the next theorem also holds for complexes in Df (𝑅), see 16.4.6.

18.3.26 Theorem. Let (𝑅,𝔪) be local, 𝔭 a prime ideal in 𝑅, and 𝑀 an 𝑅-complex.
If 𝑀 is derived 𝔪-complete, then the next inequality holds,

depth𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔭 ⩾ depth𝑅 𝑀 .

Proof. If 𝑀 is acylic, then the inequality is trivial as both sides equal ∞. Thus,
assume that 𝑀 derived 𝔪-complete and not acyclic. It follows from 16.2.27 that 𝑀
and 𝑅/𝔭 have finite depth. In the next computation the inequalities hold by 17.6.3
and 18.3.24 while the equality holds by 14.4.3.

depth𝑅𝔭
𝑀𝔭 ⩾ 𝔭-depth𝑅 𝑀

= − sup RHom𝑅 (𝑅/𝔭, 𝑀)
⩾ depth𝑅 𝑀 − dim 𝑅/𝔭 . □

The next inequality also holds for complexes in Df (𝑅), see 17.6.5. Notice from
17.6.3 that, for a prime ideal, it is stronger than the inequality in 18.3.26.

18.3.27 Corollary. Let (𝑅,𝔪) be local, 𝔞 a proper ideal in 𝑅, and 𝑀 an 𝑅-complex.
If 𝑀 is derived 𝔪-complete, then the next inequality holds,

𝔞-depth𝑅 𝑀 + dim 𝑅/𝔞 ⩾ depth𝑅 𝑀 .

Proof. For every prime ideal 𝔭 in V(𝔞) one has

depth𝑅𝔭
𝑀𝔭 + dim 𝑅/𝔞 ⩾ depth𝑅𝔭

𝑀𝔭 + dim 𝑅/𝔭 ⩾ depth𝑅 𝑀

by 18.3.26, so the asserted inequality follows from 17.6.3. □

Grothendieck’s Vanishing Theorem

The next result is known as Grothendieck’s vanishing theorem for local cohomology.
Recall from 18.3.22 that equality holds if 𝔞 is the maximal ideal of a local ring and
the complex has degreewise finitely generated homology.

18.3.28 Theorem. Let 𝔞 be an ideal in 𝑅 and 𝑀 an 𝑅-complex; one has

dim𝑅 𝑀 ⩾ − inf RΓ𝔞 (𝑀) = sup{𝑚 ∈ ℤ | H𝑚𝔞 (𝑀) ≠ 0} ,

Proof. The equality holds by the definition, 11.3.20, of local cohomology. Let 𝔭
be a prime ideal in 𝑅, and consider the ideal 𝔞𝔭 in 𝑅𝔭. The inequality dim𝑅𝔭

𝑀𝔭 ⩾
− inf RΓ𝔞𝔭 (𝑀𝔭) holds by 18.3.22, and this justifies the inequality below; the equalities
hold by 14.2.7, 14.1.25, and 14.1.13.

dim𝑅 𝑀 = sup{dim𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅}
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⩾ sup{− inf RΓ𝔞𝔭 (𝑀𝔭) | 𝔭 ∈ Spec 𝑅}
= − inf{inf RΓ𝔞 (𝑀)𝔭 | 𝔭 ∈ Spec 𝑅}
= − inf RΓ𝔞 (𝑀) . □

18.3.29 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes of finite
𝔞-depth. If 𝑀 is derived 𝔞-torsion or 𝑁 is derived 𝔞-complete, then one has

− sup RHom𝑅 (𝑀, 𝑁) ⩾ 𝔞-depth𝑅 𝑁 − dim𝑅 𝑀 .

Proof. The inequality follows from 14.4.6 and 18.3.28. □

18.3.30 Corollary. Let 𝔞 be an ideal in 𝑅 and 𝑀 and 𝑁 be 𝑅-complexes of finite
𝔞-width. If 𝑀 or 𝑁 is derived 𝔞-torsion, then the next inequality holds,

inf (𝑀 ⊗L
𝑅 𝑁) ⩾ 𝔞-width𝑅 𝑁 − dim𝑅 𝑀 .

Proof. The inequality follows from 14.4.11 and 18.3.28. □

Cohen–Macaulay Defect

For complexes of finite depth over a local ring 𝑅, the dimension and depth compare
as they do for complexes in Df (𝑅), cf. 17.2.1.

18.3.31 Theorem. Let 𝑅 be local and 𝑀 an 𝑅-complex. If depth𝑅 𝑀 is finite, then
there is an inequality,

depth𝑅 𝑀 ⩽ dim𝑅 𝑀 .

Proof. Let 𝔪 be the maximal ideal of 𝑅. The assumption that depth𝑅 𝑀 is finite
ensures per 16.2.23 that the complex RΓ𝔪 (𝑀) is not acyclic, which justifies the
first inequality in the next display. The equality comes from 16.2.14, and the second
inequality holds by 18.3.22.

depth𝑅 𝑀 = − sup RΓ𝔪 (𝑀) ⩽ − inf RΓ𝔪 (𝑀) ⩽ dim𝑅 𝑀 . □

For a finitely generated module 𝑀 ≠ 0 over a local ring 𝑅, and more generally a
non-acyclic complex in Df (𝑅), the depth is guaranteed to be finite, see 16.2.27. This
is why the inequality depth𝑅 𝑀 ⩽ dim𝑅 𝑀 holds without further assumptions, see
17.2.1. On the other hand, the inequality fails for every 𝑅-module of infinite depth,
such as E𝑅 (𝑅/𝔭) for a non-maximal prime ideal in 𝑅, see 16.2.29.

The special cases 𝑁 = 𝑅 and 𝑁 ∈ Df
⊏⊐ (𝑅) of the following result are improved in

18.4.13 and 18.5.3.

18.3.32 Corollary. Let (𝑅,𝔪) be local, 𝑀 an 𝑅-complex, and 𝑁 a complex in
D⊏ (𝑅). If one has 𝔪 ∈ supp𝑅 𝑀 ∩ supp𝑅 𝑁 , then the next inequality holds.

fd𝑅 𝑀 ⩾ depth𝑅 𝑁 − dim𝑅 (𝑀 ⊗L
𝑅 𝑁) .

Proof. The assumption 𝔪 ∈ supp𝑅 𝑀 ∩ supp𝑅 𝑁 ensures by 16.2.27 and the Sup-
port Formula 15.1.16 that 18.3.31 applies to the complex 𝑀 ⊗L

𝑅
𝑁 . Now combine it

with 16.3.4 to get the asserted inequality. □
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In view of 18.3.31 it is natural to extend the use of the invariant, cmd𝑅, intro-
duced for complexes in Df (𝑅) in 17.2.2. Per 16.2.27 the definition below essentially
subsumes 17.2.2, but the latter also applies to acyclic complexes, and it remains the
case that a complex has Cohen–Macaulay defect −∞ if and only if it is acyclic. We
stress that the term ‘Cohen–Macaulay’ remains reserved for complexes in Df (𝑅).

18.3.33 Definition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex. If depth𝑅 𝑀 is finite,
equivalently, 𝔪 ∈ supp𝑅 𝑀 , see 16.2.27, then the Cohen–Macaulay defect of 𝑀 is

cmd𝑅 𝑀 = dim𝑅 𝑀 − depth𝑅 𝑀 .

18.3.34 Proposition. Let 𝑅 be local, 𝔞 a proper ideal in 𝑅, and 𝑀 an 𝑅/𝔞-complex
of finite depth. There is an equality,

cmd𝑅/𝔞 𝑀 = cmd𝑅 𝑀 .

Proof. The equality follows from 14.2.5 and 16.2.26. □

18.3.35 Example. Let 𝑅 be local and 𝑀 ≠ 0 an Artinian 𝑅-module. By 14.2.10 and
16.2.18 one has dim𝑅 𝑀 = 0 = depth𝑅 𝑀 and hence cmd𝑅 𝑀 = 0.

The equality cmd𝑅 𝑀 = 0 notwithstanding, the module 𝑀 in 18.3.35 is only
Cohen–Macaulay if it is finitely generated, i.e. of finite length, cf. 17.2.6.

No Holes in the Sequence of Bass Numbers

To parse the next statement recall the inequality dim𝑅 𝑀 ⩽ id𝑅 𝑀 from 16.4.10.

18.3.36 Proposition. Let 𝑅 be local and 𝑀 a complex in Df
⊏ (𝑅). For every integer

𝑚 in the range dim𝑅 𝑀 ⩽ 𝑚 ⩽ id𝑅 𝑀 , one has μ𝑚
𝑅
(𝑀) ≠ 0.

Proof. By 16.4.28 and 18.3.10 one has μ𝑚
𝑅
(𝑀) = μ𝑚

𝑅
(𝑅 ⊗𝑅 𝑀), so in view of

18.3.11 one can assume that 𝑅 is complete. Per 18.2.29 let 𝐷 be a normalized dua-
lizing complex for 𝑅. By Grothendieck Duality 18.2.3 the complex RHom𝑅 (𝑀, 𝐷)
belongs to Df

⊐ (𝑅) and 18.2.32(b) yields μ𝑚
𝑅
(𝑀) = β𝑅𝑚 (RHom𝑅 (𝑀, 𝐷)) for every

𝑚 ∈ ℤ. The assertion now follows from 16.4.26 as one has pd𝑅 RHom𝑅 (𝑀, 𝐷) =
id𝑅 𝑀 and sup RHom𝑅 (𝑀, 𝐷) = dim𝑅 𝑀 by 18.2.32(b) and 18.2.31(a). □

The upper bound on 𝑚 in 18.3.36 is optimal by 16.4.30, and the next example
shows that the lower bound is optimal too. For modules one can do better, see 18.3.38.

18.3.37 Example. Let (𝑅,𝔪, 𝒌) be local and artinian. By 18.1.4 the complex

𝑀 = E𝑅 (𝒌) ⊕ Σ−2 E𝑅 (𝒌)

is in Df
⊏⊐ (𝑅), and 16.1.31 yields dim𝑅 𝑀 = 2. As 𝑀 is semi-injective and minimal,

see 5.3.12 and B.20, one has μ0
𝑅
(𝑀) = 1 = μ2

𝑅
(𝑀) but μ1

𝑅
(𝑀) = 0, see 16.4.38.
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The next theorem is due to Roberts [213]. As the title of the paper suggests, it was
an early application of dualizing complexes to answer a question in local algebra.
Recall from 16.4.30 that Bass numbers vanish outside the depth–id range.

18.3.38 Theorem. Let 𝑅 be local and 𝑀 a finitely generated 𝑅-module. For every
integer 𝑚 in the range depth𝑅 𝑀 ⩽ 𝑚 ⩽ id𝑅 𝑀 , one has μ𝑚

𝑅
(𝑀) ≠ 0.

Proof. By 16.4.28 and 18.3.10 one has μ𝑚
𝑅
(𝑀) = μ𝑚

𝑅
(𝑅 ⊗𝑅 𝑀), so in view of

18.3.6 one can assume that 𝑅 is complete. Per 18.2.29 let 𝐷 be a normalized
dualizing complex for 𝑅. Let 𝔪 be the maximal ideal of 𝑅. Let 𝐼 be a minimal
injective resolution of 𝑀 and set 𝐸 = Γ𝔪 (𝐼). By the definition of RΓ𝔪 and by Local
Duality 18.3.18 one has

(♭) 𝐸 = RΓ𝔪 (𝑀) ≃ Hom𝑅 (RHom𝑅 (𝑀, 𝐷),E𝑅 (𝒌)) .

Now 𝐹 = Hom𝑅 (𝐸,E𝑅 (𝒌)) is by 16.4.38 and 16.1.24 a complex of finitely generated
free 𝑅-modules with rank𝑅 𝐹𝑚 = μ𝑚

𝑅
(𝑀). By Grothendieck Duality 18.2.3 the

complex RHom𝑅 (𝑀, 𝐷) belongs to Df
⊏⊐ (𝑅), so Matlis Duality 18.1.9 and (♭) yield

𝐹 ≃ RHom𝑅 (𝑀, 𝐷) .

Assume towards a contradiction that μ𝑚
𝑅
(𝑀) = 0 holds for some integer 𝑚 between

depth𝑅 𝑀 and id𝑅 𝑀 . By 16.4.30 and 18.3.36 on has

depth𝑅 𝑀 < 𝑚 < dim𝑅 𝑀 .

As 𝐹𝑚 = 0 holds, the complex 𝐹 decomposes as a direct sum of 𝐹′ = 𝐹ě𝑚+1
and 𝐹′′ = 𝐹ď𝑚−1. To see that neither complex is acyclic, notice that 18.2.31(a)
yields sup 𝐹 = dim𝑅 𝑀 > 𝑚 which forces H(𝐹′) ≠ 0; similarly 18.2.31(b) gives
inf 𝐹 = depth𝑅 𝑀 < 𝑚, whence H(𝐹′′) ≠ 0. Grothendieck Duality 18.2.3 yields

𝑀 ≃ RHom𝑅 (𝐹, 𝐷) ≃ RHom𝑅 (𝐹′, 𝐷) ⊕ RHom𝑅 (𝐹′′, 𝐷) .

It follows that 𝑀 is a direct sum of the non-zero modules 𝑀 ′ = H(RHom𝑅 (𝐹′, 𝐷))
and 𝑀 ′′ = H(RHom𝑅 (𝐹′′, 𝐷)). Notice that 𝐹′′ is a bounded complex of free 𝑅-
modules, in particular it is semi-projective by 5.2.8. By 7.3.29, 18.2.31(b), 8.1.2,
18.2.32(a), and the Bass Formula 16.4.12 one now has

depth𝑅 𝑀 ′ = inf 𝐹′ > 𝑚 > pd𝑅 𝐹′′ = id𝑅 𝑀 ′′ = depth 𝑅 .

The complex RHom𝑅 (𝑀 ′, 𝑀 ′′) belongs by 12.2.6 to Df (𝑅) and it is not acyclic, see
16.2.28. Now 7.6.7, 16.2.5(a), and 16.3.9(a) yield a contradiction,

0 ⩾ sup RHom𝑅 (𝑀 ′, 𝑀 ′′)
⩾ inf RHom𝑅 (𝑀 ′, 𝑀 ′′)
= width𝑅 RHom𝑅 (𝑀 ′, 𝑀 ′′)
= depth𝑅 𝑀 ′ − depth 𝑅 . □
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Exercises

In the following exercises let (𝑅,𝔪, 𝒌 ) be local.

E 18.3.1 Let 𝑅 be Gorenstein of Krull dimension 𝑑 and 𝑀 a complex in Df (𝑅) . Show that there
are isomorphisms H𝑛𝔪 (𝑀 ) � Hom𝑅 (Ext𝑑−𝑛

𝑅
(𝑀, 𝑅) , E𝑅 (𝒌 ) ) for all 𝑛 ∈ ℤ.

E 18.3.2 Let𝐷 be a normalized dualizing complex for 𝑅, and 𝑀 a complex in Df (𝑅) . Show that
𝑅 ⊗𝑅 Ext𝑛

𝑅
(𝑀, 𝐷) � Hom𝑅 (H−𝑛𝔪 (𝑀 ) , E𝑅 (𝒌 ) ) holds for all 𝑛 ∈ ℤ.

E 18.3.3 Let 𝑅 be Cohen–Macaulay, 𝐷 a dualizing module for 𝑅, and 𝑀 a complex in Df (𝑅) .
Show that with 𝑑 = dim𝑅 one has H𝑛𝔪 (𝑀 ) � Hom𝑅 (Ext𝑑−𝑛

𝑅
(𝑀, 𝐷) , E𝑅 (𝒌 ) ) and

Hom𝑅 (H𝑛𝔪 (𝑀 ) , E𝑅 (𝒌 ) ) � 𝑅 ⊗𝑅 Ext𝑑−𝑛
𝑅
(𝑀, 𝐷) for all 𝑛 ∈ ℤ. Conclude that there is

an isomorphism Hom𝑅 (H𝑑𝔪 (𝑅) , E𝑅 (𝒌 ) ) � 𝑅 ⊗𝑅 𝐷.
E 18.3.4 Let 𝑅 be complete, 𝐷 a normalized dualizing complex for 𝑅, and 𝑀 a complex in

Df (𝑅) . Show that 𝑀 ≃ RHom𝑅 (Hom𝑅 (𝑀, E𝑅 (𝒌 ) ) , 𝐷) holds in D(𝑅) .
E 18.3.5 Let 𝔞 be a proper ideal in 𝑅 and 𝑀 an 𝑅-complex. Show that there is an inequality

depth𝑅 𝑀 ⩽ 𝔞-depth𝑅 LΛ𝔪 (𝑀 ) + dim𝑅/𝔞.
E 18.3.6 Let 𝑀 be a derived 𝔪-complete 𝑅-complex. Show that the inequality cmd𝑅𝔭

𝑀𝔭 ⩽
cmd𝑅 𝑀 holds for every prime ideal 𝔭 in supp𝑅 𝑀.

E 18.3.7 Let 𝑅 be Cohen–Macaulay and 𝑀 an 𝑅-complex of finite depth. Show that the inequal-
ities depth𝑅 − inf 𝑀 ⩾ depth𝑅 𝑀 ⩾ − sup𝑀 hold.

18.4 Maximal Depth Modules and the New Intersection Theorem

Synopsis. Module of maximal depth; maximal Cohen–Macaulay module; big Cohen–Macaulay
module; Krull dimension vs. homological dimensions; Cohen–Macaulay ring; Krull’s principal
ideal theorem; (Improved) New Intersection Theorem.

We have in 16.4.2, 16.4.11, 17.3.4, and 17.5.7, to name a few results, established
close connections between homological dimensions of complexes over local rings
and the invariants depth and width. This should not be too surprising: Vanishing of
homology characterizes homological dimensions, and the way they are introduced
in this text, both depth and width are defined in terms of vanishing of homology. For
finitely generated modules, the depth is by 16.2.33 even an algebraic invariant, while
the width by 16.2.7 is trivial. The Krull dimension, on the other hand, is geometric
in nature—not algebraic, not even for finitely generated modules—and comparing it
to homological dimensions is significantly more difficult.

For a finitely generated module over a local ring, the Krull dimension is per
16.4.10 and 17.2.1 trapped between the depth and the injective dimension. However,
18.5.8 shows that finitely generated modules of finite injective dimension only exist
over Cohen–Macaulay rings, so beyond that setting, this is not an interesting com-
parison of a homological dimension to the Krull dimension. The development of
such comparisons, as covered in this section and the next, has largely been inspired
by a paper by Peskine and Szpiro [202]; see also 18.5.13, 18.5.23, and 18.5.30.
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Modules of Maximal Depth

The Cohen–Macaulay defect of a module measures the difference between the Krull
dimension and the depth, and modules for which these invariants agree and coincide
with the Krull dimension of the ring play a central role in comparisons of homological
dimensions to the Krull dimension.

18.4.1 Definition. Let 𝑅 be local and 𝑀 an 𝑅-module. If depth𝑅 𝑀 = dim 𝑅 holds,
then 𝑀 is called an 𝑅-module of maximal depth.

For a local ring 𝑅 and an 𝑅-module 𝑀 of finite depth, one has depth𝑅 𝑀 ⩽ dim 𝑅

by 16.2.35 or 18.3.31; this motivates the definition above.

18.4.2 Proposition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-module of maximal depth. The
maximal ideal 𝔪 belongs to supp𝑅 𝑀 and one has width𝑅 𝑀 = 0 = cmd𝑅 𝑀 .

Proof. It follows from 16.2.27 that 𝔪 belongs to supp𝑅 𝑀 , and 16.2.35 yields
width𝑅 𝑀 = 0. Further, one has dim 𝑅 ⩾ dim𝑅 𝑀 ⩾ depth𝑅 𝑀 = dim 𝑅 by 14.2.4
and 18.3.31, so cmd𝑅 𝑀 = 0 holds by 18.3.33. □

By 18.4.2 a finitely generated module of maximal depth is Cohen–Macaulay.

18.4.3 Definition. Let 𝑅 be local. A finitely generated 𝑅-module of maximal depth
is called maximal Cohen–Macaulay.

The existence of maximal Cohen–Macaulay modules is a wide open question—
in [128] Hochster reflects the state of affairs and the level of expectations circa
2020—but over Cohen–Macaulay rings examples are easily available.

18.4.4 Example. Let 𝑅 be a Cohen–Macaulay local ring. Every non-zero finitely
generated free 𝑅-module is by 14.3.14 a maximal Cohen–Macaulay module. If 𝐷 is a
dualizing complex for 𝑅, then H(𝐷) is by 18.2.28 concentrated in one degree, 𝑠, and
the module H𝑠 (𝐷) is maximal Cohen–Macaulay by 7.3.29, 18.2.11, and 18.2.16.

Also 1-dimensional rings have conspicuous maximal Cohen–Macaulay modules.

18.4.5 Example. Let (𝑅,𝔪) be a local ring of Krull dimension 1. For every minimal
prime ideal 𝔭 in 𝑅 the quotient 𝑅/𝔭 is a maximal Cohen–Macualy 𝑅-module: Every
element in 𝔪 \ 𝔭 is 𝑅/𝔭-regular, see 14.4.17, so depth𝑅 𝑅/𝔭 is positive by 16.2.33
and hence equal to 1 as one has depth𝑅 𝑅/𝔭 ⩽ dim𝑅 𝑅/𝔭 ⩽ dim 𝑅 = 1, see 17.2.1.

18.4.6 Theorem. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-module. If 𝑀 is of maximal depth,
then the homology of LΛ𝔪 (𝑀) is concentrated in degree 0 and H𝔪

0 (𝑀) is a derived
𝔪-complete 𝑅-module of maximal depth and an 𝑅-module of maximal depth.

Proof. Assume that 𝑀 is of maximal depth and notice first that 16.2.3 and 18.4.2
yield inf LΛ𝔪 (𝑀) = width𝑅 𝑀 = 0. By 16.2.34 and the assumption on 𝑀 one has
sup LΛ𝔪 (𝑀) ⩽ dim 𝑅−depth𝑅 𝑀 = 0. Thus, LΛ𝔪 (𝑀) has homology concentrated in
degree 0, and inD(𝑅) it is per 7.3.29 isomorphic to the homology module in degree 0,
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866 18 Dualities and Cohen–Macaulay Rings

i.e. the local homology module H𝔪
0 (𝑀). By 16.2.14 and the assumption on𝑀 one has

depth𝑅 LΛ𝔪 (𝑀) = depth𝑅 𝑀 = dim 𝑅. This shows that 𝐻 = H𝔪
0 (𝑀) is an 𝑅-module

of maximal depth. It follows from 13.4.2 that 𝐻 ≃ LΛ𝔪 (𝑀) is derived 𝔪-complete.
Further, 𝐻 is an 𝑅-module, see 11.3.4, and 18.3.1 yields depth

𝑅
𝐻 = depth𝑅 𝐻,

so to see that it is an 𝑅-module of maximal depth it suffices to recall the equality
dim 𝑅 = dim 𝑅 from 18.3.12. □

18.4.7 Example. If (𝑅,𝔪) is Cohen–Macaulay, then 𝑅 is by 16.1.12, 13.2.5, and
18.4.6 a derived 𝔪-complete 𝑅-module of maximal depth.

18.4.8 Proposition. Let 𝑅 be local, 𝑥𝑥𝑥 a parameter sequence for 𝑅, and 𝑀 an
𝑅-module. If 𝑥𝑥𝑥 is 𝑀-regular, then 𝑀 is a module of maximal depth.

Proof. Let 𝔪 be the maximal ideal of 𝑅. As 𝑥𝑥𝑥 is 𝑀-regular one has (𝑥𝑥𝑥)𝑀 ≠ 𝑀 , so
14.3.29 and 14.4.9 yield 0 = (𝑥𝑥𝑥)-width𝑅 𝑀 = width𝑅 𝑀 , cf. 16.2.1. Now 𝔪 belongs
to supp𝑅 𝑀 by 16.2.27, so 16.2.35 yields the last inequality in the next display. The
equality holds by 16.2.12 and 14.4.4, and the first inequality follows from 14.4.21(a)
as a parameter sequence has dim 𝑅 elements,

dim 𝑅 ⩽ (𝑥𝑥𝑥)-depth𝑅 𝑀 = depth𝑅 𝑀 ⩽ dim 𝑅 . □

Let 𝑅 be local, 𝑥𝑥𝑥 a parameter sequence for 𝑅, and 𝑀 an 𝑅-module. If 𝑀 is finitely
generated and 𝑥𝑥𝑥 is 𝑀-regular, then 𝑀 is maximal Cohen–Macaulay by 18.4.3 and
18.4.8. If𝑀 is not finitely generated and 𝑥𝑥𝑥 is𝑀-regular, then𝑀 is called a big Cohen–
Macaulay module for 𝑥𝑥𝑥. An 𝑅-module that is a big Cohen–Macaulay module for an
unspecified parameter sequence is simply called big Cohen–Macaulay.

It is a deep fact that big Cohen–Macaulay modules exist over every local ring;
the only proof known at this time uses the theory of perfectoid spaces developed
by Scholze [225]. As a prelude to the discussion below, we recall that a local ring
(𝑅,𝔪, 𝒌) is called equicharacteristic if 𝑅 and 𝒌 have the same characteristic; it
follows that the common characteristic is 0 or a prime 𝑝. If the characteristics of
𝑅 and 𝒌 differ, then the ring is said to be of mixed characteristic; in this case, the
characteristic of 𝒌 is a prime 𝑝 while the characteritic of 𝑅 itself is 0 or a power of 𝑝.

Hochster [123] proved the existence of big Cohen–Macaulay modules in equichar-
acteristic 𝑝 > 0 as early as 1973, and in equicharacteristic 0 the following year [126,
§§4–5], but in mixed characteristic the matter was only settled in 2018 by André [4].
The theorem below, which in André’s survey [5] is Theorem 3.2.1, goes further: One
can even get an algebra that, as a module, is big Cohen–Macaulay. For some local
rings, the existence of such algebras was proved in the early 1990s by Hochster and
Huneke [129, 130].

André’s Theorem. Let 𝑅 be local. There exists an 𝑅-algebra 𝑆 such that 𝑆 is a big
Cohen–Macaulay 𝑅-module.

18.4.9 Corollary. Let (𝑅,𝔪) be local. There exists a derived 𝔪-complete 𝑅-module
of maximal depth which is also an 𝑅-module of maximal depth.

Proof. The assertion follows from the André’s Theorem, 18.4.8, and 18.4.6. □
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Remark. In [96], modules of maximal depth are called ‘Hochster modules’ with a nod to the author
of [123, 126] who proved the existence such modules, even of big Cohen–Macaulay modules, over
equicharacteristic local rings. Here we opt for the more descriptive name, because these modules
are exactly the modules that qualify as ‘complexes of maximal depth’ in the sense of Iyengar, Ma,
Schwede, and Walker [144].

As is apparent in the proof of 18.4.25, it can be advantageous to work with a derived𝔪-complete
module of maximal depth rather than just any module of maximal depth. As discussed in the Remark
after 13.1.17, a derived 𝔪-complete module need not be 𝔪-complete, so it is worth noting that
André’s theorem does imply the existence of 𝔪-complete modules of maximal depth. Indeed, the
derived 𝔪-completion of the big Cohen–Macaulay 𝑅-algebra 𝑆 can by 13.1.15 be computed as
Λ𝔪 (𝑆) and is hence 𝔪-complete, see 11.1.38, and in particular derived 𝔪-complete by 13.1.33.

18.4.10 Theorem. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-module of maximal depth. If 𝑀
is derived 𝔪-complete, then for every prime ideal 𝔭 in supp𝑅 𝑀 the module 𝑀𝔭 is
an 𝑅𝔭-module of maximal depth and dim 𝑅 = dim 𝑅𝔭 + dim 𝑅/𝔭 holds.

Proof. For 𝔭 ∈ supp𝑅 𝑀 it follows from 15.1.22 that the maximal ideal 𝔭𝔭 of the
local ring 𝑅𝔭 belongs to supp𝑅𝔭

𝑀𝔭, whence the first inequality below holds by
16.2.35. The second inequality is standard, cf. 14.2.7.

depth𝑅𝔭
𝑀𝔭 ⩽ dim 𝑅𝔭 ⩽ dim 𝑅 − dim 𝑅/𝔭 .

As 𝑀 is of maximal depth and derived 𝔪-complete, 18.3.26 yields

dim 𝑅 − dim 𝑅/𝔭 = depth𝑅 𝑀 − dim 𝑅/𝔭 ⩽ depth𝑅𝔭
𝑀𝔭 .

The asserted equality, dim 𝑅 = dim 𝑅𝔭 +dim 𝑅/𝔭, follows from comparison of these
two displays, and so does the equality depth𝑅𝔭

𝑀𝔭 = dim 𝑅𝔭, whence 𝑀𝔭 is an
𝑅𝔭-module of maximal depth. □

18.4.11 Proposition. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-module of maximal depth. If
𝑀 is finitely generated or derived 𝔪-complete, then every parameter sequence for 𝑅
is 𝑀-regular.

Proof. Set 𝑑 = dim 𝑅 and let 𝑥𝑥𝑥 = 𝑥1, . . . , 𝑥𝑑 be a parameter sequence for 𝑅. As√(𝑥𝑥𝑥) = 𝔪 holds, 14.4.4 and 16.2.12 yield depth𝑅 𝑀 = (𝑥𝑥𝑥)-depth𝑅 𝑀 . That is, one
has 𝑑 = 𝑑 − sup (K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) by 14.3.10, whence 𝑥𝑥𝑥 is 𝑀-regular by 16.2.31. □

Remark. Let (𝑅,𝔪) be local. An 𝑅-module that is a big Cohen–Macaulay module for every
parameter sequence for 𝑅 is called a balanced big Cohen–Macaulay module. Bruns and Herzog
[46, 8.5] show that the 𝔪-completion of any big Cohen–Macaulay module is a balanced big
Cohen–Macaulay module; such modules are by 13.1.33 and 18.4.8 examples of derived𝔪-complete
modules of maximal depth. Finally, a derived 𝔪-complete module of maximal depth that is not
finitely generated is per 18.4.11 a balanced big Cohen–Macaulay module, and that connects these
two rather obvious hierarcies:

{modules of maximal depth} {derived 𝔪-complete modules of maximal depth}

⊆ ⊆

{big Cohen–Macaulay modules} {𝔪-complete modules of maximal depth}

⊆ ⊆

{balanced big Cohen–Macaulay modules} {𝔪-complete big Cohen–Macaulay modules} .

For a balanced big Cohen–Macaulay module 𝑀 the equality in 18.4.10 was proved by Sharp [230],
who called the set supp𝑅 𝑀 the ‘supersupport’ of 𝑀.
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Krull Dimension vs. Homological Dimensions

18.4.12 Theorem. Let (𝑅,𝔪) be local and 𝑀 an 𝑅-complex of finite flat dimension.
If one has 𝔪 ∈ supp𝑅 𝑀 , then the following inequality holds:

cmd𝑅 𝑀 ⩾ cmd 𝑅 .

Proof. Per 18.4.9 let 𝐻 be an 𝑅-module of maximal depth. It follows from 16.2.27
and the Support Formula 15.1.16 that the complex 𝑀 ⊗L

𝑅
𝐻 has finite depth. Now

18.3.31 yields the second inequality in the computation below. The first inequality
holds by 14.2.8, and the equality comes from 16.3.1(a).

dim𝑅 𝑀 ⩾ dim𝑅 (𝑀 ⊗L
𝑅 𝐻)

⩾ depth𝑅 (𝑀 ⊗L
𝑅 𝐻)

= depth𝑅 𝑀 + depth𝑅 𝐻 − depth 𝑅 .

Per 18.3.33 the desired inequality now follows as depth𝑅 𝐻 = dim 𝑅 holds. □

The next corollary compares to the special case 𝑁 = 𝑅 of 16.3.4.

18.4.13 Corollary. Let (𝑅,𝔪) be local and 𝑀 be an 𝑅-complex. If 𝔪 ∈ supp𝑅 𝑀
holds, then there is an inequality,

fd𝑅 𝑀 ⩾ dim 𝑅 − dim𝑅 𝑀 .

Proof. One can assume that fd𝑅 𝑀 is finite, otherwise the inequality is trivial. By
16.3.4 one now has fd𝑅 𝑀 ⩾ depth 𝑅 − depth𝑅 𝑀 , and 18.4.12 can be rewritten
depth 𝑅 − depth𝑅 𝑀 ⩾ dim 𝑅 − dim𝑅 𝑀 . □

It is immediate from the next corollary and 13.1.33 that only a Cohen–Macaulay
ring can accomodate an 𝔪-torsion module of finite flat dimension.

18.4.14 Corollary. Let (𝑅,𝔪) be local and 𝑀 a derived 𝔪-torsion complex of finite
flat dimension. If 𝑀 is not acyclic, then the following inequality holds:

amp𝑀 ⩾ cmd 𝑅 .

Proof. As 𝑀 is not acyclic, 𝔪 belongs to supp𝑅 𝑀 by 16.2.27. By 16.1.31(b) and
16.2.16(a) one has dim𝑅 𝑀 = − inf 𝑀 and depth𝑅 𝑀 = − sup𝑀 and, therefore,
cmd𝑅 𝑀 = amp𝑀 . Now apply 18.4.12. □

Finite Homology

18.4.15 Corollary. Let 𝑅 be local and 𝑀 a complex in Df (𝑅) of finite projective
dimension. If 𝑀 is not acyclic, then the following inequality holds:

cmd𝑅 𝑀 ⩾ cmd 𝑅 .

Proof. The assumption H(𝑀) ≠ 0 implies by 16.2.27 that the maximal ideal of 𝑅
is in supp𝑅 𝑀 , so the inequality follows from 15.4.18 and 18.4.12. □
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It is immediate from 18.4.15 that only a Cohen–Macaulay ring can accomodate
a non-acyclic Cohen–Macaulay complex of finite projective dimension. A common
specialization of this result and 18.4.14 is:

18.4.16 Corollary. Let 𝑅 be local. If there exists a non-zero 𝑅-module of finite length
and finite projective dimension, then 𝑅 is Cohen–Macaulay.

Proof. A module of finite length is Cohen–Macaulay, see 17.2.6, so the assertion
follows from 18.4.15. □

Every Cohen–Macaulay local ring admits a module of finite length and finite
projective dimension.

18.4.17 Example. Let (𝑅,𝔪) be a Cohen–Macaulay local ring and 𝑥𝑥𝑥 a maximal 𝑅-
regular sequence. As 𝑥𝑥𝑥, in particular, is a parameter sequence, Supp𝑅 𝑅/(𝑥𝑥𝑥) = {𝔪}
holds, so 𝑅/(𝑥𝑥𝑥) has finite length, see 14.2.9, and pd𝑅 𝑅/(𝑥𝑥𝑥) is finite by 16.4.23.

Remark. See E 16.3.1 for a direct proof of 18.4.16 that highlights the importance of existence of
modules of maximal depth.

By 14.2.4 the inequality below is trivial unless H(𝑀) is bounded below; it
compares to the Auslander–Buchsbaum Formula 16.4.2.

18.4.18 Corollary. Let 𝑅 be local and 𝑀 a complex in Df (𝑅). If 𝑀 is not acyclic,
then the following inequality holds:

pd𝑅 𝑀 ⩾ dim 𝑅 − dim𝑅 𝑀 .

Proof. The assumption H(𝑀) ≠ 0 implies by 16.2.27 that the maximal ideal of 𝑅
is in supp𝑅 𝑀 , so the inequality follows from 15.4.18 and 18.4.13. □

The general version of Krull’s principal ideal theorem—some call it Krull’s
height theorem—is a special case of 18.4.18. The geometric interpretation of Krull’s
principal ideal theorem is that intersecting an irreducible variety by a hypersurface
drops the dimension by at most 1. This is part of the explanation why results like
18.4.18 that compare projective dimension to Krull dimension are broadly referred
to as “Intersection Theorems.” More on this topic in 18.5.13.

18.4.19 Corollary. Let 𝑥1, . . . , 𝑥𝑛 be a sequence in 𝑅 and 𝔭 a prime ideal in the set
Min𝑅 𝑅/(𝑥1, . . . , 𝑥𝑛). The inequality dim 𝑅𝔭 ⩽ 𝑛 holds.

Proof. Let 𝑥𝑥𝑥 denote the sequence 𝑥1
1 , . . . ,

𝑥𝑛
1 in 𝑅𝔭 and set 𝐾 = K𝑅𝔭 (𝑥𝑥𝑥). The inequal-

ity pd𝑅𝔭
𝐾 ⩽ 𝑛 holds by 11.4.3(c), and 14.2.3 yields dim𝑅𝔭

𝐾 = dim 𝑅𝔭/(𝑥𝑥𝑥) = 0.
Now the asserted inequality follows from 18.4.18. □

The New Intersection Theorem

The special case of the next theorem where the homology complex H(𝐹) is de-
greewise of finite length is the statement commonly known as the New Intersection
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Theorem. It was proved in positive equicharateristic by Peskine and Szpiro [203]
and in full generality by Roberts [215, 216]. The theorem stated here was proved, in
the equicharacteristic case, in [92]. The history of this result and its extended family
is briefly outlined after 18.5.14.

18.4.20 Theorem. Let 𝑅 be local and

𝐹 = 0 −→ 𝐹𝑛 −→ · · · −→ 𝐹0 −→ 0

a complex of finitely generated free 𝑅-modules. If dim𝑅 H𝑣 (𝐹) ⩽ 𝑣 holds for all
𝑣 ∈ ℤ and 𝐹 is not acyclic, then the inequality 𝑛 ⩾ dim 𝑅 holds.

Proof. The complex 𝐹 is semi-projective by 5.2.8, so 𝑛 ⩾ pd𝑅 𝐹 holds by 8.1.2.
As dim𝑅 H𝑣 (𝐹) ⩽ 𝑣 holds for all 𝑣 on has dim𝑅 𝐹 ⩽ 0 by 14.2.1, so the asserted
inequality follows from 18.4.18. □

18.4.21 Example. Let 𝑅 be local and 𝑀 ≠ 0 be an 𝑅-module of finite length.
The New Intersection Theorem 18.4.20 yields pd𝑅 𝑀 ⩾ dim 𝑅. Combined with the
Auslander–Buchsbaum Formula 16.4.2 this recovers 18.4.16.

Remark. Theorem 18.4.20 remains valid if 𝐹 is a complex of flat modules with 𝔪 in supp𝑅 𝐹; in
the proof one just replaces the reference to 18.4.18 with a reference to 18.4.13. See also E 18.4.6.

18.4.22 Lemma. Let 𝑅 be local and

𝐹 = 0 −→ 𝐹𝑛+1 −→ 𝐹𝑛 −→ · · · −→ 𝐹0 −→ 0

an 𝑅-complex. If 𝐹 is acyclic and the modules 𝐹𝑖 for 𝑖 ∈ {0, . . . , 𝑛} are finitely gen-
erated free 𝑅-modules, then 𝐹𝑛+1 is a free 𝑅-module of rank ∑𝑛

𝑖=0 (−1)𝑛−𝑖 rank𝑅 𝐹𝑖 .

Proof. Let 𝒌 be the residue field of 𝑅. Recall from 1.3.18 and 16.4.22(b) that a
finitely generated 𝑅-module is free if and only if it is projective; for such a module,
𝐹, one has rank𝑅 𝐹 = rank𝒌 (𝒌 ⊗𝑅 𝐹). Proceed by induction on 𝑛. For 𝑛 = 0 the
assertion is trivial. For 𝑛 = 1 the exact sequence 0 → 𝐹2 → 𝐹1 → 𝐹0 → 0 is split
by 1.3.17. From the ensuing isomorphism, 𝐹1 � 𝐹2 ⊕ 𝐹0, it follows per 1.3.24 that
𝐹2 is free. The induced isomorphism of 𝒌-vector spaces yields the desired equality,
rank𝑅 𝐹2 = rank𝑅 𝐹1 − rank𝑅 𝐹0. For 𝑛 > 1 one gets two acyclic complexes,

0 −→ Z𝑛−1 (𝐹) −→ 𝐹𝑛−1 −→ · · · −→ 𝐹0 −→ 0 and(♭)
0 −→ 𝐹𝑛+1 −→ 𝐹𝑛 −→ Z𝑛−1 (𝐹) −→ 0 .(⋄)

It follows from the induction hypothesis applied to (♭) that Z𝑛−1 (𝐹) is free of rank∑𝑛−1
𝑖=0 (−1)𝑛−1−𝑖 rank𝑅 𝐹𝑖 . As in the case 𝑛 = 1, it now follows from (⋄) that 𝐹𝑛+1 is

free with rank𝑅 𝐹𝑛+1 = rank𝑅 𝐹𝑛 − rank𝑅 Z𝑛−1 (𝐹) =
∑𝑛
𝑖=0 (−1)𝑛−𝑖 rank𝑅 𝐹𝑖 . □

Roberts’ original proof [214] of the next theorem does not rely on the New
Intersection Theorem; the argument given here comes from [92].

18.4.23 Theorem. Let 𝑅 be local. If μdim𝑅
𝑅
(𝑅) = 1 holds, then 𝑅 is Gorenstein.
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Proof. It follows from 18.3.12, 18.3.13, and 18.3.10 that one can assume that 𝑅
is complete. Set 𝑑 = dim 𝑅 and 𝑝 = depth 𝑅. Per 18.2.29 let 𝐷 be a normalized
dualizing complex for 𝑅 and recall from 18.2.24 that H𝑣 (𝐷) = 0 holds for 𝑣 > 𝑑

and for 𝑣 < 𝑝. Let 𝐹 ≃−−→ 𝐷 be a minimal semi-free resolution; in particular, one has
𝐹𝑣 = 0 for 𝑣 < 𝑝, see 16.4.22(c). As 𝐷 is a Cohen–Macaulay complex, see 18.2.11,
one has dim𝑅 𝐹 = dim𝑅 𝐷 = 0 by 18.2.24. In particular, it follows from 14.2.1 that
dim𝑅 H𝑣 (𝐹) ⩽ 𝑣 holds for all 𝑣 ∈ ℤ, and 18.2.16 yields dim𝑅 H𝑑 (𝐹) = 𝑑.

For 𝑛 ⩾ 𝑝 consider the complex,

𝐹 (𝑛) = 0 −→ Z𝑛 (𝐹) −→ 𝐹𝑛 −→ · · · −→ 𝐹𝑝 −→ 0 .

For prime ideals 𝔭 with dim 𝑅/𝔭 ⩾ 𝑛 the complex (𝐹 (𝑛) )𝔭 is acyclic: Indeed, one has
H𝑛+1 (𝐹 (𝑛) ) = 0 = H𝑛 (𝐹 (𝑛) ) by construction, and for 𝑣 < 𝑛 the module H𝑣 (𝐹 (𝑛) ) =
H𝑣 (𝐹) has Krull dimension less than 𝑛, whence one has H𝑣 (𝐹𝔭) = H𝑣 (𝐹)𝔭 = 0.
By 18.2.33 and 16.4.25 one has rank𝑅 𝐹𝑣 = μ𝑣

𝑅
(𝑅), so it follows from 18.4.22 that

Z𝑛 (𝐹)𝔭 is a free 𝑅𝔭-module of rank 𝑟𝑛 =
∑𝑛
𝑣=𝑝 (−1)𝑛−𝑣μ𝑣

𝑅
(𝑅).

We proceed to argue that 𝑟𝑛 is positive for 𝑛 ∈ {𝑑, . . . , 𝑝}. Notice, towards a
contradiction, that 𝑟𝑛 = 0 implies Z𝑛 (𝐹)𝔭 = 0 for all prime ideals with dim 𝑅/𝔭 ⩾ 𝑛
and, therefore, dim𝑅 Z𝑛 (𝐹) < 𝑛. For 𝑛 = 𝑑 this is absurd as the quotient module
H𝑑 (𝐹) has Krull dimension 𝑑. Now let 𝑛 < 𝑑. One has H𝑛 (𝐹ď𝑛) = Z𝑛 (𝐹) and for
𝑣 < 𝑛 one has H𝑣 (𝐹ď𝑛) = H𝑣 (𝐹), so the New Intersection Theorem 18.4.20 applies
to the truncated complex 𝐹ď𝑛, which has non-zero homology in degree 𝑝. As 𝑛 < 𝑑
this yields a contradiction.

Finally, if 𝑑 > 𝑝 holds, then one now has μ𝑑
𝑅
(𝑅) > μ𝑑

𝑅
(𝑅) − 𝑟𝑑−1 = 𝑟𝑑 > 0, so

μ𝑑
𝑅
(𝑅) is at least 2. This forces 𝑑 = 𝑝, and then 𝑅 is Gorenstein by 18.3.14. □

The Improved New Intersection Theorem

For an equicharacteristic local ring (𝑅,𝔪) the important special case 𝔞 = 𝔪 of the
next theorem, 18.4.25, was proved by Evans and Griffith [89]. As finitely generated
𝔪-torsion modules per 16.1.33 have finite length, 18.4.25 implies the classic version
of the New Intersection Theorem where H(𝐹) is assumed to be degreewise of finite
length, and it is, therefore, known as the Improved New Intersection Theorem.

The following lemma also appeared in [89].

18.4.24 Lemma. Let (𝑅,𝔪) be local, 𝔞 ⊆ 𝑅 an ideal, 𝑀 ≠ 0 a finitely generated
𝑅-module, and 𝐻 an 𝑅-module with 𝔪𝐻 ≠ 𝐻. If an element in 𝑀 \𝔪𝑀 is 𝔞-torsion,
then one has Γ𝔞 (𝑀 ⊗𝑅 𝐻) ≠ 0.

Proof. Let 𝑚 be an element in 𝑀 \ 𝔪𝑀 . The canonical map 𝜋 : 𝑅 ↠ 𝒌 factors
through 𝑀 as the map 𝜑 : 𝑅 → 𝑀 given by 𝑟 ↦→ 𝑟𝑚 followed by the projection onto
the rank 1 subspace of 𝒌 ⊗𝑅 𝑀 generated by 1 ⊗ 𝑚. By assumption 𝒌 ⊗𝑅 𝐻 is non-
zero. As the induced map 𝜋 ⊗𝑅 𝐻 is surjective, it follows that 𝜑 ⊗𝑅 𝐻 is non-zero. If
𝑚 is 𝔞-torsion, then the image of 𝜑 ⊗𝑅 𝐻 in 𝑀 ⊗𝑅 𝐻 is 𝔞-torsion. □

18.4.25 Theorem. Let (𝑅,𝔪) be local, 𝔞 and ideal in 𝑅, and
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𝐹 = 0 −→ 𝐹𝑛 −→ · · · −→ 𝐹0 −→ 0

a complex of finitely generated free 𝑅-modules. If H𝑣 (𝐹) is 𝔞-torsion for all 𝑣 > 0
and an element in H0 (𝐹) \𝔪 H0 (𝐹) is 𝔞-torsion, then 𝑛 ⩾ dim 𝑅 − dim 𝑅/𝔞 holds.

Proof. Per 18.4.9 let 𝐻 be a derived 𝔪-complete 𝑅-module of maximal depth. The
complex 𝐹 is semi-free by 5.1.3, and the assumption on H0 (𝐹) implies that 𝐹 is not
acyclic. It now follows from 16.2.27 that 𝔪 belongs to supp𝑅 𝐹 and supp𝑅 𝐻 and
hence to supp𝑅 (𝐹 ⊗𝑅 𝐻) by the Support Formula 15.1.16; in particular 𝐹 ⊗𝑅 𝐻 is not
acyclic, see 15.1.15. Set 𝑠 = sup (𝐹 ⊗𝑅 𝐻); as the complex 𝐹 ⊗𝑅 𝐻 is concentrated
in non-negative degrees, one has 𝑠 ⩾ 0.

Let𝔭 be a prime ideal in Ass𝑅 H𝑠 (𝐹 ⊗𝑅 𝐻); it follows from 17.1.8 that𝔭 belongs to
supp𝑅 (𝐹 ⊗𝑅 𝐻) and hence by the Support Formula 15.1.16 to supp𝑅 𝐹 and supp𝑅 𝐻.
The maximal ideal 𝔭𝔭 of the local ring 𝑅𝔭 is associated to H𝑠 ((𝐹 ⊗𝑅 𝐻)𝔭), so one has
𝑠 = − depth𝑅𝔭

(𝐹 ⊗𝑅 𝐻)𝔭 = − depth𝑅𝔭
(𝐹𝔭 ⊗𝑅𝔭

𝐻𝔭) by 16.2.16(b) and 14.1.15, which
explains the second equality in the computation below. The first equality holds by
16.4.3, and the inequality holds by 18.3.26, as 𝐻 is a derived 𝔪-complete 𝑅-module
of maximal depth.

(⋄)
pd𝑅𝔭

𝐹𝔭 = depth𝑅𝔭
𝐻𝔭 − depth𝑅𝔭

(𝐹𝔭 ⊗𝑅𝔭
𝐻𝔭)

= depth𝑅𝔭
𝐻𝔭 + 𝑠

⩾ dim 𝑅 − dim 𝑅/𝔭 + 𝑠 .

First consider the case 𝑠 > 0. It suffices to argue that 𝔭 contains 𝔞, as that yields
the final inequality in the following chain,

𝑛 ⩾ pd𝑅 𝐹 ⩾ pd𝑅𝔭
𝐹𝔭 > dim 𝑅 − dim 𝑅/𝔭 ⩾ dim 𝑅 − dim 𝑅/𝔞 ,

where the first inequality holds by 8.1.2, the second holds by 17.3.26, and the third
follows from (⋄). To see that 𝔭 contains 𝔞, assume towards a contradiction that 𝔭 does
not contain 𝔞. As 𝔭 is in supp𝑅 𝐹 the complex H(𝐹𝔭) is non-zero by 15.1.9, but the
modules H𝑣 (𝐹) for 𝑣 > 0 are 𝔞-torsion, so one has H𝑣 (𝐹𝔭) = H𝑣 (𝐹)𝔭 = 0 for 𝑣 > 0.
It follows that 𝐹𝔭 is isomorphic to H0 (𝐹)𝔭 ≠ 0 in D(𝑅𝔭), see 7.3.29. Combining
this with the Auslander–Buchsbaum Formula 16.4.2 and 16.2.16 one gets,

(★) depth 𝑅𝔭 = depth𝑅𝔭
𝐹𝔭 + pd𝑅𝔭

𝐹𝔭 ⩾ − sup 𝐹𝔭 + pd𝑅𝔭
𝐹𝔭 = pd𝑅𝔭

𝐹𝔭 .

At the same time, (⋄) and 14.2.7 yield

(††) pd𝑅𝔭
𝐹𝔭 > dim 𝑅 − dim 𝑅/𝔭 ⩾ dim 𝑅𝔭 .

Combining (★) and (††) one gets depth 𝑅𝔭 > dim 𝑅𝔭, which contradicts 17.2.16.
Now assume that 𝑠 = 0 holds. By 7.6.8 one has H0 (𝐹 ⊗𝑅 𝐻) � H0 (𝐹) ⊗𝑅 𝐻.

Since an element in H0 (𝐹) \𝔪 H0 (𝐹) is 𝔞-torsion and𝔪𝐻 ≠ 𝐻 by 18.4.2 and 16.2.7,
it follows from 18.4.24 that Γ𝔞 (H0 (𝐹 ⊗𝑅 𝐻)) is non-zero, so 𝔞-depth𝑅 (𝐹 ⊗𝑅 𝐻) = 0
holds by 14.3.16(b). This together with the fact that 𝐻 is of maximal depth explains
the final equality in the next computation, and the first equality holds by 16.4.3.
To justify the inequality, notice that the complex 𝐹 ⊗𝑅 𝐻 by 13.1.31(b) is derived
𝔪-complete and invoke 18.3.27, which applies as 𝔞 is a proper ideal in 𝑅.

8-Mar-2024 Draft - use at own risk



18.5 Intersection Theorems and Iversen’s Amplitude Inequality 873

pd𝑅 𝐹 = depth𝑅 𝐻 − depth𝑅 (𝐹 ⊗𝑅 𝐻)
⩾ depth𝑅 𝐻 − 𝔞-depth𝑅 (𝐹 ⊗𝑅 𝐻) − dim 𝑅/𝔞
= dim 𝑅 − dim 𝑅/𝔞 .

Finally, 𝑛 ⩾ pd𝑅 𝐹 holds by 8.1.2. □

Exercises

In the following exercises let (𝑅,𝔪, 𝒌 ) be local.

E 18.4.1 Let 𝑀 be a finitely generated 𝑅-module. Show that the following conditions are equiv-
alent: (i) 𝑀 is maximal Cohen–Macaulay. (ii) μ𝑛

𝑅
(𝑀 ) = 0 holds for all 𝑛 < dim𝑅.

(iii) H𝑛𝔪 (𝑀 ) = 0 holds for 𝑛 ≠ dim𝑅.
E 18.4.2 Let 𝑅 be Cohen–Macaulay and 𝑀 a finitely generated 𝑅-module. Show that 𝑀 is

maximal Cohen–Macaulay if and only if Ext𝑚
𝑅
(𝑀, 𝑁 ) = 0 holds for all 𝑚 > 0 and all

finitely generated 𝑅-modules 𝑁 of finite injective dimension.
E 18.4.3 Let 𝑀 an 𝑅-module of maximal depth. Show that Hom𝑅 (Hom𝑅 (𝑀, E𝑅 (𝒌 ) ) , E𝑅 (𝒌 ) )

is an 𝑅-module and an 𝑅-module of maximal depth.
E 18.4.4 Let 𝐹 = 0 → 𝐹𝑛 → · · · → 𝐹0 → 0 a complex of finitely generated free 𝑅-modules.

Show that if 𝐹 is not acyclic and for some integer 𝑑 the inequality dim𝑅 H𝑣 (𝐹 ) ⩽ 𝑣 + 𝑑
holds for all 𝑣 ∈ ℤ, then the inequality 𝑛 ⩾ dim𝑅 − 𝑑 holds.

E 18.4.5 Let 𝐹 = 0 → 𝐹𝑛 → · · · → 𝐹0 → 0 a complex of finitely generated free 𝑅-modules.
Show that if 𝐹𝔭 is acyclic for every prime ideal 𝔭 with dim𝑅/𝔭 ⩾ dim𝑅 − 𝑛, then 𝐹 is
acyclic.

E 18.4.6 Let 0 → 𝐹𝑛 → · · · → 𝐹0 → 0 be a complex of flat 𝑅-modules. Show that if H(𝐹 ) is
non-zero and 𝔪-torsion, then 𝑛 ⩾ dim𝑅 holds.

18.5 Intersection Theorems and Iversen’s Amplitude Inequality

Synopsis. Intersection theorems; amplitude nequalities; Cohen–Macaulay ring; Auslander’s zero-
divisor theorem; classic Intersection Theorem; Acyclicity Lemma; grade; codimension.

Results that compare Krull dimension to projective dimension get referred to as
“intersection theorems” for reasons laid out in 18.5.13. How the New Intersection
Theorem qualifies as an intersection theorem is explained in 18.4.21.

Intersection Theorems

The next inequality compares to 16.3.1.

18.5.1 Proposition. Let (𝑅,𝔪) be local, 𝑀 a complex in D⊏⊐ (𝑅) of finite flat
dimension, and 𝑁 a complex in Df (𝑅). If 𝔪 ∈ supp𝑅 𝑀 holds, then one has

dim𝑅 (𝑁 ⊗L
𝑅 𝑀) ⩾ dim𝑅 𝑁 + depth𝑅 𝑀 − depth 𝑅 .
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Proof. Notice that the inequality is trivial if 𝑁 is acyclic and assume henceforth that
𝑁 is not acyclic. First, we consider the case of a cyclic 𝑅-module, i.e. 𝑁 � 𝑅/𝔞 for
some proper ideal 𝔞 in 𝑅. Now, 𝑅/𝔞 ⊗L

𝑅
𝑀 is an 𝑅/𝔞-complex of finite flat dimension

and finite depth, see 15.4.19, 16.2.27, the Support Formula 15.1.16, and 16.2.26.
Now 18.4.12 conspires with 18.3.34 to yield

cmd𝑅 (𝑅/𝔞 ⊗L
𝑅 𝑀) = cmd𝑅/𝔞 (𝑅/𝔞 ⊗L

𝑅 𝑀) ⩾ cmd 𝑅/𝔞 = cmd𝑅 𝑅/𝔞 .

This inequality can be rewritten as follows:

(★)
dim𝑅 (𝑅/𝔞 ⊗L

𝑅 𝑀) ⩾ dim𝑅 𝑅/𝔞 − depth𝑅 𝑅/𝔞 + depth𝑅 (𝑅/𝔞 ⊗L
𝑅 𝑀)

= dim𝑅 𝑅/𝔞 + depth𝑅 𝑀 − depth 𝑅 ,

where the equality follows from 16.3.1(a).
Assume now that 𝑁 is a finitely generated 𝑅-module and set 𝔞 = (0 :𝑅 𝑁). In

the next computation, the inequality comes from (★) while the equalities hold by
17.6.18 and 14.1.1.

(⋄)
dim𝑅 (𝑁 ⊗L

𝑅 𝑀) = dim𝑅 (𝑅/𝔞 ⊗L
𝑅 𝑀)

⩾ dim𝑅 𝑅/𝔞 + depth𝑅 𝑀 − depth 𝑅
= dim𝑅 𝑁 + depth𝑅 𝑀 − depth 𝑅 .

Next assume that 𝑁 belongs to Df
⊐ (𝑅). From 17.6.19, (⋄), and 14.2.1 one gets

dim𝑅 (𝑁 ⊗L
𝑅 𝑀) = sup{dim𝑅 (H𝑣 (𝑁) ⊗L

𝑅 𝑀) − 𝑣 | 𝑣 ∈ ℤ}
⩾ sup{dim𝑅 H𝑣 (𝑁) − 𝑣 | 𝑣 ∈ ℤ} + depth𝑅 𝑀 − depth 𝑅
= dim𝑅 𝑁 + depth𝑅 𝑀 − depth 𝑅 .

It remains to deal with the case inf 𝑁 = −∞. By 16.2.27, 16.2.5, and 16.2.9 one has

−∞ = inf 𝑁 + width𝑅 𝑀 = width𝑅 (𝑁 ⊗L
𝑅 𝑀) ⩾ inf (𝑁 ⊗L

𝑅 𝑀) .

Now 14.2.4 yields dim𝑅 (𝑁 ⊗L
𝑅
𝑀) = ∞, so the asserted inequality is trivial. □

18.5.2 Theorem. Let (𝑅,𝔪) be local,𝑀 a complex inD⊏⊐ (𝑅) of finite flat dimension,
and 𝑁 a complex in Df

⊏ (𝑅). If one has 𝔪 ∈ supp𝑅 𝑀 , then the next inequality holds.

cmd𝑅 (𝑁 ⊗L
𝑅 𝑀) ⩾ cmd𝑅 𝑁 .

Proof. The asserted inequality is trivial if 𝑁 is acyclic. Assuming that 𝑁 is not
acyclic, 𝔪 belongs to supp𝑅 (𝑁 ⊗L

𝑅
𝑀) by 16.2.27 and the Support Formula 15.1.16.

Thus, cmd𝑅 (𝑁 ⊗L
𝑅
𝑀) is defined, see 18.3.33, and the asserted inequality follows

from 18.5.1 and 16.3.1(a), as depth𝑅 𝑁 > −∞ holds by 16.2.16. □

The next result compares to 16.3.4.

18.5.3 Theorem. Let (𝑅,𝔪) be local, 𝑀 a complex in D⊐ (𝑅), and 𝑁 a complex in
Df (𝑅). If one has 𝔪 ∈ supp𝑅 𝑀 and 𝑁 is not acyclic, then the next inequality holds.

fd𝑅 𝑀 + dim𝑅 (𝑁 ⊗L
𝑅 𝑀) ⩾ dim𝑅 𝑁 .
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Proof. The inequality is trivial if fd𝑅 𝑀 = ∞ holds, so assume that is not the case.
Now 𝑀 belongs to D⊏⊐ (𝑅), and the inequality follows from 16.3.4, applied with
𝑁 = 𝑅, and 18.5.1. □

Finite Homology

18.5.4 Theorem. Let 𝑅 be local and 𝑀 and 𝑁 be complexes in Df (𝑅). If 𝑀 is not
acyclic and has finite projective dimension, then the next inequality holds.

cmd𝑅 (𝑁 ⊗L
𝑅 𝑀) ⩾ cmd𝑅 𝑁 .

Proof. The inequality is trivial if 𝑁 is acyclic, so assume that is not the case. It
now follows from 16.2.27 and the Support Formula 15.1.16 that the complexes 𝑁
and 𝑁 ⊗L

𝑅
𝑀 have finite depth; in particular cmd𝑅 (𝑁 ⊗L

𝑅
𝑀) is defined, see 18.3.33.

From 16.2.5 and 16.2.9 one gets,

inf 𝑁 + inf 𝑀 = width𝑅 (𝑁 ⊗L
𝑅 𝑀) ⩾ inf (𝑁 ⊗L

𝑅 𝑀) .

Per 14.2.4 one, therefore, has dim𝑅 (𝑁 ⊗L
𝑅
𝑀) ⩾ − inf 𝑁 − inf 𝑀 , so the asserted

inequality holds trivially if inf 𝑀 = −∞. The assumption that pd𝑅 𝑀 is finite already
means that H(𝑀) is bounded above, see 8.1.3, so one can assume that 𝑀 belongs
to Df

⊏⊐ (𝑅). Next, recall from 16.2.21 that sup 𝑁 = ∞ implies depth𝑅 𝑁 = −∞, and
then depth𝑅 (𝑁 ⊗L

𝑅
𝑀) = −∞ holds by 16.3.1(b). Thus, the asserted inequality holds

trivially if sup 𝑁 = ∞. Now one can assume that 𝑁 is in Df
⊏ (𝑅). Since 𝑀 is not

acyclic it follows from 16.2.27 that the maximal ideal of 𝑅 is in supp𝑅 𝑀 , so the
asserted inequality follows from 15.4.18 and 18.5.2. □

The inequality below compares to the equality in 16.4.3. For 𝑀 in Df
⊏⊐ (𝑅) it is a

special case of 18.5.3.

18.5.5 Corollary. Let 𝑅 be local and 𝑀 and 𝑁 be complexes in Df
⊏ (𝑅). If 𝑀 and

𝑁 are not acyclic, then the next inequality holds.

pd𝑅 𝑀 + dim𝑅 (𝑁 ⊗L
𝑅 𝑀) ⩾ dim𝑅 𝑁 .

Proof. The inequality is trivial if pd𝑅 𝑀 = ∞ holds, so assume that is not the case.
It follows from 16.2.27 and 16.2.21 that depth𝑅 𝑀 and depth𝑅 𝑁 are integers, so via
16.3.1(a) one can rewrite the inequality from 18.5.4 as

dim𝑅 (𝑁 ⊗L
𝑅 𝑀) ⩾ cmd𝑅 𝑁 + depth𝑅 (𝑁 ⊗L

𝑅 𝑀) = dim𝑅 𝑁 + depth𝑅 𝑀 − depth 𝑅 .

The Auslander–Buchsbaum Formula 16.4.2 now yields the asserted inequality. □

18.5.6 Corollary. Let 𝑅 be local and 𝑀 and 𝑁 be finitely generated 𝑅-modules. If
𝑀 and 𝑁 are non-zero, then the next inequality holds

pd𝑅 𝑀 + dim𝑅 (𝑁 ⊗𝑅 𝑀) ⩾ dim𝑅 𝑁 .

Proof. Per 17.6.20 the asserted inequality follows immediately from 18.5.5. □
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Amplitude Inequalities

18.5.7 Theorem. Let 𝑅 be local and 𝑀 a complex in Df (𝑅) of finite injective
dimension. If 𝑀 is not acyclic, then the following inequality holds.

amp𝑀 ⩾ cmd 𝑅 .

Proof. The inequality is trivial in the case sup𝑀 = ∞ holds, so one can per
8.2.3 assume that 𝑀 belongs to Df

⊏⊐ (𝑅). It follows from 18.3.2 and 18.3.10 that
𝑅 ⊗𝑅 𝑀 is a complex in Df

⊏⊐ (𝑅) of finite injective dimension. Per 18.2.29, let 𝐷 be a
normalized dualizing complex for 𝑅. By Grothendieck Duality 18.2.3 the complex
RHom

𝑅
(𝑅 ⊗𝑅 𝑀, 𝐷) belongs to Df

⊏⊐ (𝑅), and it has finite projective dimension and
is not acyclic. Now 18.4.15 applies and conspires with 18.2.31 and 18.3.12 to yield

amp𝑀 = amp(𝑅 ⊗𝑅 𝑀) = cmd
𝑅

RHom
𝑅
(𝑅 ⊗𝑅 𝑀, 𝐷) ⩾ cmd 𝑅 = cmd 𝑅 . □

In the seminal paper [32] Bass found it “concievable” that the next result would
hold. It was first proved, in positive equicharacteristic, by Peskine and Szpiro [202]
who also showed that existence of a cyclic module of finite injective dimension
warrants the stronger conclusion that the ring is Gorenstein. This is left as an exercise
since a stronger result is proved in 19.5.8.

18.5.8 Corollary. Let 𝑅 be local. If there exists a non-zero finitely generated 𝑅-
module of finite injective dimension, then 𝑅 is Cohen–Macaulay.

Proof. Let 𝑀 ≠ 0 be a finitely generated 𝑅-module of finite injective dimension.
By 18.5.7 one has 0 ⩾ cmd 𝑅, so 𝑅 is per 17.2.16 Cohen–Macaulay. □

Existence of a finitely generated module of finite injective dimension implies the
existence of a finite length module of finite injective dimension.

18.5.9 Example. Let (𝑅,𝔪, 𝒌) be a Cohen–Macaulay local ring and 𝑥𝑥𝑥 a maximal
𝑅-regular sequence. The module Hom𝑅 (𝑅/(𝑥𝑥𝑥),E𝑅 (𝒌)) has finite length and finite
injective dimension, see 18.4.17 and 18.1.6.

Under the extra assumption that the homology of the complex 𝑁 is bounded, the
next theorem was proved by Iversen [141], and it is often referred to as Iversen’s am-
plitude inequality. The boundedness condition was lifted by Foxby and Iyengar [98].
In the special case where the complex 𝑀 is a Koszul complex, the (in)equalities are
known from 14.3.5.

18.5.10 Theorem. Let 𝑅 be local, 𝑁 a complex in Df (𝑅), and 𝑀 a complex in
Df
⊏⊐ (𝑅) of finite projective dimension. If 𝑀 is not acyclic, then one has

sup (𝑁 ⊗L
𝑅 𝑀) ⩾ sup 𝑁 + inf 𝑀 and inf (𝑁 ⊗L

𝑅 𝑀) = inf 𝑁 + inf 𝑀 ;

in particular, one has
amp(𝑁 ⊗L

𝑅 𝑀) ⩾ amp 𝑁 .
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Proof. The (in)equalities are trivial if 𝑁 is acyclic, so assume that is not the case. By
16.2.27 the complexes 𝑁 and 𝑀 are of finite width. The complex 𝑁 ⊗L

𝑅
𝑀 belongs

by 15.4.3 to Df (𝑅), so the equality of infima follows from 16.2.5(a) and 16.2.9.
The inequality of suprema is now equivalent to the inequality of amplitudes, so it

suffices to prove the latter. From 18.3.2 and 12.3.30 one gets

amp(𝑁 ⊗L
𝑅 𝑀) = amp((𝑅 ⊗𝑅 𝑁) ⊗L

𝑅
(𝑅 ⊗𝑅 𝑀)) and amp 𝑁 = amp(𝑅 ⊗𝑅 𝑁) .

The complexes 𝑅 ⊗𝑅 𝑁 and 𝑅 ⊗𝑅 𝑀 belong to Df (𝑅) by 18.3.2(c), and 18.3.9 yields
pd
𝑅
(𝑅 ⊗𝑅 𝑀) = pd𝑅 𝑀 < ∞. Thus, one can assume that 𝑅 is complete. Per 18.2.29

let 𝐷 be a normalized dualizing complex for 𝑅. The following isomorphisms follow
from 12.3.20, homomorphism evaluation 12.3.27(a), and commutativity 12.3.5.

RHom𝑅 (𝑁 ⊗L
𝑅 𝑀, 𝐷) ≃ RHom𝑅 (RHom𝑅 (RHom𝑅 (𝑀, 𝑅), 𝑁), 𝐷)

≃ RHom𝑅 (𝑀, 𝑅) ⊗L
𝑅 RHom𝑅 (𝑁, 𝐷)

≃ RHom𝑅 (𝑁, 𝐷) ⊗L
𝑅 RHom𝑅 (𝑀, 𝑅) .

This isomorphism in D(𝑅) explains the second equality in the next computation; the
remaining equalities hold by 18.2.31(c). The inequality is from 18.5.4, as the complex
RHom𝑅 (𝑀, 𝑅) per 12.3.20 is not acyclic and has finite projective dimension.

amp(𝑁 ⊗L
𝑅 𝑀) = cmd𝑅 RHom𝑅 (𝑁 ⊗L

𝑅 𝑀, 𝐷)
= cmd𝑅 (RHom𝑅 (𝑁, 𝐷) ⊗L

𝑅 RHom𝑅 (𝑀, 𝑅))
⩾ cmd𝑅 RHom𝑅 (𝑁, 𝐷)
= amp 𝑁 . □

Before it was proved—first in positive equicharacteristic by Peskine and Szpiro
[202]—the next result was known as Auslander’s zerodivisor conjecture.

18.5.11 Corollary. Let (𝑅,𝔪) be local, 𝑥𝑥𝑥 a sequence in𝔪, and𝑀 a finitely generated
𝑅-module. If 𝑀 has finite projective dimension and 𝑥𝑥𝑥 is 𝑀-regular, then 𝑥𝑥𝑥 is 𝑅-
regular.

Proof. One has amp(K𝑅 (𝑥𝑥𝑥) ⊗𝑅 𝑀) = 0 by 16.2.31. Iversen’s amplitude inequality
18.5.10 now yields amp K𝑅 (𝑥𝑥𝑥) = 0, which by 16.2.31 means that 𝑥𝑥𝑥 is 𝑅-regular. □

The Classic Intersection Theorem of Peskine and Szpiro

Notice from 14.1.18 and 14.2.9 that the assumptions on 𝑀 and 𝑁 in the next result
imply that 𝑀 ⊗𝑅 𝑁 is a module of finite length.

18.5.12 Theorem. Let (𝑅,𝔪) be local and𝑀 and 𝑁 be finitely generated 𝑅-modules.
If one has Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 = {𝔪}, and 𝑀 has finite projective dimension, then
the next inequality holds.

dim𝑅 𝑁 ⩽ pd𝑅 𝑀 .

8-Mar-2024 Draft - use at own risk



878 18 Dualities and Cohen–Macaulay Rings

Proof. In view of 14.1.18, the assumption Supp𝑅 𝑁 ∩ Supp𝑅 𝑀 = {𝔪} implies
dim𝑅 (𝑁 ⊗𝑅 𝑀) = 0, so the inequality is a special case of 18.5.6. □

18.5.13 An Intersection Conjecture. For subspaces𝑈 and𝑊 of a finite dimensional
vector space 𝑉 , the dimension of their intersection, 𝑈 ∩𝑊 , is at least the sum of
their dimensions minus the dimension of 𝑉 . In particular, if the intersection is
the zero subspace, i.e. a single point, then the dimensions of 𝑈 and 𝑊 add up to
at most the dimension of 𝑉 . The same is true for affine algebraic varieties, see
the Remark after 20.1.26. This fact, proved by Serre [227, III.D.5], inspired the
conjecture that for modules 𝑀 and 𝑁 as in the Intersection Theorem 18.5.12 one has
dim𝑅 𝑁 + dim𝑅 𝑀 ⩽ dim 𝑅 or, equivalently,

(18.5.13.1) dim𝑅 𝑁 ⩽ dim 𝑅 − dim𝑅 𝑀 .

Notice that this inequality by 18.4.18 is stonger than the one in 18.5.12. A special
case of the conjecture was proved by Serre, see 20.1.27.

While (18.5.13.1) is stronger than the inequality in 18.5.12, the conjecture that it
holds for 𝑅, 𝑀 , and 𝑁 as in 18.5.12 has not acquired a lasting name to reflect that
fact—possibly because there is an even stronger conjecture around, see 18.5.23.

The next example shows that the assumption of finite projective dimension is
necessary in the conjecture discussed above.

18.5.14 Example. Let 𝕜 be a field and set 𝑅 = 𝕜⟦𝑥, 𝑦⟧/(𝑥𝑦). The 𝑅-complex,

· · · 𝑦−−−→ 𝑅
𝑥−−−→ 𝑅

𝑦−−−→ 𝑅
𝑥−−−→ · · · ,

is evidently acyclic, and by 16.4.22(a) it is minimal. It follows from 8.1.16 that the
cokernels 𝑀 = 𝑅/(𝑥) and 𝑁 = 𝑅/(𝑦) of the differential on the complex are modues
of infinite projective dimension. Evidently, the intersection Supp𝑅 𝑁 ∩ Supp𝑅 𝑀
contains only the maximal ideal (𝑥, 𝑦) of 𝑅, and the isomorphisms 𝑀 � 𝕜⟦𝑦⟧ and
𝑁 � 𝕜⟦𝑥⟧ yield dim𝑅 𝑀 = 1 = dim𝑅 𝑁 . However, one also has dim 𝑅 = 1.

18.5.15 More Conjectures. In a landmark paper [202] from 1973, Peskine and
Szpiro considered the conjecture discussed in 18.5.13 above together with six other
conjectures. They established connections among these conjectures and proved three
of them in positive equicharacteristic; all three are now established facts in any
characteristic, see 18.5.8, 18.5.11, and 18.5.12. One of the six conjectures, known
as Auslander’s rigidity conjecture, was disproved by Heitman [119] in 1993. The
remaining two conjectures, as well as the one stated in 18.5.13, remain open and are
discussed in 18.5.23 and 18.5.30.

Remark. In [202] the Intersection Theorem 18.5.12 is proved first and in turn shown to imply 18.5.8
and 18.5.11; this is all in positive equicharacteristic. Work of Hochster [124, 125] established the
Intersection Theorem in equicharacteristic zero. Peskine and Szpiro’s paper [202] was submitted
before Hochster proved the existence of big Cohen–Macaulay modules, so the original proof of
18.5.12 is very different from the one presented here: key ingredients are the Frobenius functor
and the Acyclicity Lemma, see 18.5.16. The relevance of big Cohen–Macaulay modules to the
Intersection Theorem was established in [124].
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The New Intersection Theorem 18.4.20 was proved in positive equicharacteristic by Peskine and
Szpiro [203] and, independently, by Roberts [213]. Hochster [125] proved that the New Intersection
Theorem holds in the presence of big Cohen–Macaulay modules, which made it a theorem in
equicharacteristic zero. Finally, Roberts [215, 216] proved the theorem in full generality in 1987.
The New Intersection Theorem implies the Intersection Theorem 18.5.12, see for example [92], so
18.5.8, 18.5.11, and 18.5.12 have been known to hold for all local rings since 1987.

The quest for big Cohen–Macaulay modules led to the formulation of further conjectures–the
Direct Summand Conjecture and the Monomial Conjecture—which would follow from the existence
of big Cohen–Macaulay modules. Together with the conjectures from [202], the Monomial and
Direct Summand Conjectures were referred to as the Homological Conjectures; their statements,
though, are not homological in nature, so we do not treat them bere, but due to André’s [4, 5] work
they are now theorems.

The Acyclicity Lemma

The next result is a variation on the Acyclicity Lemma of Peskine and Szpiro [202].
It is an integral part of their proof of the Intersection Theorem 18.5.12 in positive
equicharacteristic, which merits including it in this text, though it won’t be referenced.

18.5.16 Lemma. Let 𝑅 be local and

𝑀 = 0 −→ 𝑀𝑛 −→ · · · −→ 𝑀0 −→ 0

an 𝑅-complex. If the conditions
(1) depth𝑅 𝑀𝑣 > 𝑣 and
(2) depth𝑅 H𝑣 (𝑀) = 0 or H𝑣 (𝑀) = 0

are satisfied for every 𝑣 ∈ {0, . . . , 𝑛}, then 𝑀 is acyclic.

Proof. Notice first that if 𝑛 = 0, then one has 𝑀0 = H0 (𝑀), so (1) and (2) yield
𝑀0 = 0, i.e. 𝑀 is the zero complex. Notice also that siince 𝑀𝑣 has positive depth,
14.3.20 applied to the exact sequence 0 → Z𝑣 (𝑀) → 𝑀𝑣 → B𝑣−1 (𝑀) → 0 yields
depth𝑅 Z𝑣 (𝑀) ⩾ 1 for every 𝑣 in {0, . . . , 𝑛}. Assume towards a contradiction that 𝑀
is not acyclic and set 𝑢 = sup𝑀 . As H𝑛 (𝑀) = Z𝑛 (𝑀) has positive depth, (2) yields
𝑢 < 𝑛. Thus one has B𝑛−1 (𝑀) � 𝑀𝑛 and, therefore, depth𝑅 B𝑛−1 (𝑀) > 𝑛 by (1).
Now, if 𝑢 < 𝑛 − 1 holds, then the acyclic complex,

0 −→ 𝑀𝑛 −→ · · · −→ 𝑀𝑢+1 −→ B𝑢 (𝑀) −→ 0 ,

breaks into exact sequences 0 → 𝐵𝑣+1 → 𝑀𝑣+1 → 𝐵𝑣 → 0 for 𝑛 − 1 ⩾ 𝑣 ⩾ 𝑢,
and repeated applications of 14.3.20 yield depth𝑅 B𝑢 (𝑀) > 𝑢 + 1. Now consider
the exact sequence 0→ B𝑢 (𝑀) → Z𝑢 (𝑀) → H𝑢 (𝑀) → 0. From 14.3.20 one gets
depth𝑅 H𝑢 (𝑀) ⩾ 1 which per (2) means H𝑢 (𝑀) = 0; a contradiction. □

Remark. Peskine and Szpiro’s original Lemme d’Acyclicité from [202] deals with a slightly
different notion of acyclicity that one can still come across in commutative algebra: An 𝑅-complex
𝑀 concentrated in non-negative degrees is deemed to be ‘acyclic’ if H𝑣 (𝑀 ) = 0 holds for 𝑣 > 0,
i.e. allowing for non-zero homology in degree 0. If 𝑀 is a complex of free 𝑅-modules, then
acyclicity in this sense simply means that the complex is a free resolution of H0 (𝑀 ) , and that is
the typical use of this terminology. The original result is easily derived from 18.5.16; see E 18.5.9.
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Codimension and Grade

The next definition compares to the expression for Krull dimension in 14.2.6.

18.5.17 Definition. Let 𝑀 be an 𝑅-complex. The grade of 𝑀 , written grade𝑅 𝑀 ,
and the codimension of 𝑀 , written codim𝑅 𝑀 , are defined as

grade𝑅 𝑀 = inf{depth 𝑅𝔭 + inf 𝑀𝔭 | 𝔭 ∈ Supp𝑅 𝑀 } and
codim𝑅 𝑀 = inf{dim 𝑅𝔭 + inf 𝑀𝔭 | 𝔭 ∈ Supp𝑅 𝑀 } ,

with the convention inf ∅ = ∞.

18.5.18. Let 𝑀 be an 𝑅-complex. From 2.5.5 one gets

grade𝑅 Σ𝑠𝑀 = grade𝑅 𝑀 + 𝑠 and
codim𝑅 Σ

𝑠𝑀 = codim𝑅 𝑀 + 𝑠

for every integer 𝑠. Moreover, if 𝑀 is not acyclic then grade𝑅 𝑀 and codim𝑅 𝑀 are
finite while grade𝑅 𝑀 = ∞ = codim𝑅 𝑀 holds if 𝑀 is acyclic.

Remark. We do not use this terminology, but for an ideal 𝔞 in 𝑅 it is standard to refer to the
invariant inf{dim𝑅𝔭 | 𝔭 ∈ V(𝔞) } as the height of 𝔞. For a finitely generated 𝑅-module 𝑀 one
has Supp𝑅 𝑀 = V(0 :𝑅 𝑀 ) by 14.1.1, so the codimension of 𝑀 as defined above is the height of
the annihilator ideal 𝔞 = (0 :𝑅 𝑀 ) . This is the classical definition of the codimension of a finitely
generated module. By 17.6.3 one has grade𝑅 𝑀 = 𝔞-depth 𝑅, so the grade of 𝑀 is by 14.4.25
the maximal length of an 𝑅-regular sequence in the annihilator ideal 𝔞 = (0 :𝑅 𝑀 ) . This is the
classical definition of the grade of a finitely generated 𝑅-module.

Bruns and Herzog [46, 9.1] work with a notion of codimension for bounded complexes of
finitely generated free modules, which differs from the one defined above. Christensen and Iyengar
[65] show that the codimension, in the sense of [46], of a bounded complex 𝐹 of finitely generated
free 𝑅-modules can be recast in terms of the Krull dimension of the complex Hom𝑅 (𝐹, 𝑅) .

18.5.19 Proposition. Let 𝑀 be an 𝑅-complex. There are equalities,

grade𝑅 𝑀 = inf{grade𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅} and

codim𝑅 𝑀 = inf{codim𝑅𝔭
𝑀𝔭 | 𝔭 ∈ Spec 𝑅} .

Proof. For prime ideals 𝔮 ⊆ 𝔭 in 𝑅 one has (𝑅𝔭)𝔮𝔭 � 𝑅𝔮 and (𝑀𝔭)𝔮𝔭 � 𝑀𝔮, so in
view of 14.1.11(b) the equalities hold by 18.5.17, as grade𝑅𝔭

𝑀𝔭 = ∞ = codim𝑅𝔭
𝑀𝔭

holds for all prime ideals 𝔭 in Spec 𝑅 \ Supp𝑅 𝑀 . □

18.5.20 Proposition. Let 𝑀 be an 𝑅-complex; the following inequalities hold:

inf 𝑀 ⩽ grade𝑅 𝑀 ⩽ codim𝑅 𝑀 .

Moreover, if dim 𝑅 is finite, then one has

codim𝑅 𝑀 ⩽ dim 𝑅 − dim𝑅 𝑀 .

Proof. If 𝑀 is acyclic, then Supp𝑅 𝑀 is the empty set, see 14.2.4, so by convention
all the quantities compared in the two displays∞. Assume now that 𝑀 is not acyclic.
For every prime ideal 𝔭 in Supp𝑅 𝑀 , which is a nonempty set, one has
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inf 𝑀 ⩽ inf 𝑀𝔭 ⩽ depth 𝑅𝔭 + inf 𝑀𝔭 ⩽ dim 𝑅𝔭 + inf 𝑀𝔭

by 14.1.11(c) and 17.2.16. Per 18.5.17 this justifies the inequalities in the first display.
Assume that dim 𝑅 is finite and note that for every prime ideal 𝔭 in 𝑅 one has

dim 𝑅𝔭 + inf 𝑀𝔭 ⩽ dim 𝑅 − (dim 𝑅/𝔭 − inf 𝑀𝔭) .

The inequality in the second display now follows from 18.5.17 and 14.2.6. □

18.5.21 Theorem. Let 𝑅 be local and 𝑀 an 𝑅-complex. The next inequalities hold.

depth 𝑅 − dim𝑅 𝑀 ⩽ grade𝑅 𝑀 ⩽ codim𝑅 𝑀 ⩽ dim 𝑅 − dim𝑅 𝑀 .

Proof. The second and third inequalities hold by 18.5.20. For every prime ideal 𝔭
in 𝑅 the next inequality holds by 16.4.6,

depth 𝑅 − (dim 𝑅/𝔭 − inf 𝑀𝔭) ⩽ depth 𝑅𝔭 + inf 𝑀𝔭 .

In view of 14.2.6 and 18.5.17 this explains the first inequality. □

Remark. In texts dealing with modules over a Cohen–Macaulay local ring 𝑅 it is not uncommon
to see the codimension and/or grade of an 𝑅-module 𝑀 defined as the difference dim𝑅− dim𝑅 𝑀;
per 18.5.21 and 17.2.16 this is still the same invariant.

For a complex 𝑀 in Df
⊐ (𝑅) the lemma above, together with 12.3.20, yields

grade𝑅 𝑀 ⩽ pd𝑅 𝑀 , but one can do better:

18.5.22 Proposition. Let 𝑀 be an 𝑅-complex. If 𝑀 is not acyclic, then one has

grade𝑅 𝑀 ⩽ codim𝑅 𝑀 ⩽ fd𝑅 𝑀 ⩽ pd𝑅 𝑀 .

Proof. The first and third inequalities are know to hold from 18.5.20 and 15.4.18, so
it suffices to show that codim𝑅 𝑀 ⩽ fd𝑅 𝑀 holds. Let 𝔭 be minimal in Supp𝑅 𝑀; by
15.1.9 and 15.1.15 one has Supp𝑅𝔭

𝑀𝔭 = {𝔭𝔭} = supp𝑅𝔭
𝑀𝔭. Now 18.5.17, 14.2.6,

and 18.4.13 combine to yield

codim𝑅𝔭
𝑀𝔭 = dim 𝑅𝔭 + inf 𝑀𝔭 = dim 𝑅𝔭 − dim𝑅𝔭

𝑀𝔭 ⩽ fd𝑅𝔭
𝑀𝔭 .

Finally, recall the inequalities codim𝑅 𝑀 ⩽ codim𝑅𝔭
𝑀𝔭 and fd𝑅𝔭

𝑀𝔭 ⩽ fd𝑅 𝑀 from
18.5.19 and 17.3.2. □

18.5.23 The Strong Intersection Conjecture. Three of the conjectures considered
by Peskine and Szpiro in [202] remain open, cf. 18.5.15. The strongest of the three
asserts that for finitely generated modules 𝑀 and 𝑁 over a local ring (𝑅,𝔪) such
that 𝑀 has finite projective dimension and Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 = {𝔪} holds—that
is, for 𝑅, 𝑀 , and 𝑁 exactly as in the Intersection Theorem 18.5.12—one has

(18.5.23.1) dim𝑅 𝑁 ⩽ grade𝑅 𝑀 .

In view of 18.5.20, this inequality implies the inequality dim𝑅 𝑁 ⩽ dim 𝑅−dim𝑅 𝑀

from 18.5.13, which as discussed there is stronger than the inequality in the Intersec-
tion Theorem; the conjecture is hence known as the Strong Intersection Conjecture.
It is known to hold in an important special case, see 20.1.27.
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18.5.24 Proposition. Let 𝑀 be a complex in Df
⊏⊐ (𝑅) of finite projective dimension.

If 𝑀 is not acyclic, then the next inequality holds:

grade𝑅 𝑀 ⩽ codim𝑅 𝑀 ⩽ grade𝑅 𝑀 + amp𝑀 .

Proof. The left-hand inequality is known from 18.5.22. For every prime ideal 𝔭
in 𝑅, the (in)equalities below hold by 18.5.22, 17.3.26, the Auslander–Buchsbaum
Formula 16.4.2, 16.2.16, and 14.1.11(c).

codim𝑅𝔭
𝑀𝔭 ⩽ pd𝑅𝔭

𝑀𝔭

= depth 𝑅𝔭 − depth𝑅𝔭
𝑀𝔭

⩽ depth 𝑅𝔭 + sup𝑀𝔭

= depth 𝑅𝔭 + inf 𝑀𝔭 + amp𝑀𝔭

⩽ depth 𝑅𝔭 + inf 𝑀𝔭 + amp𝑀 .

The right-hand inequality now follows from 18.5.17 and 18.5.19. □

18.5.25 Corollary. Let𝑀 be a finitely generated 𝑅-module. If𝑀 has finite projective
dimension, then grade𝑅 𝑀 = codim𝑅 𝑀 holds.

Proof. For 𝑀 ≠ 0 the equality holds by 18.5.24; for 𝑀 = 0 it holds by 18.5.18. □

18.5.26 Lemma. Assume that 𝑅 has finite Krull dimension and let 𝑀 be an 𝑅-
complex. If dim 𝑅𝔭 + dim 𝑅/𝔭 = dim 𝑅 holds for all 𝔭 ∈ Supp𝑅 𝑀 , then one has

codim𝑅 𝑀 = dim 𝑅 − dim𝑅 𝑀 .

Proof. For every prime ideal 𝔭 in Supp𝑅 𝑀 , the assumption yields

dim 𝑅𝔭 + inf 𝑀𝔭 = dim 𝑅 − (dim 𝑅/𝔭 − inf 𝑀𝔭) .

Now the asserted equality follows from 18.5.17 and 14.2.6. □

18.5.27 Theorem. Let 𝑅 be local and 𝑀 a complex in Df
⊏⊐ (𝑅) of finite projective

dimension. If 𝑅 is equidimensional and catenary, then the next inequalities hold.

dim 𝑅 − dim𝑅 𝑀 − amp𝑀 ⩽ grade𝑅 𝑀 ⩽ dim 𝑅 − dim𝑅 𝑀 .

Proof. The inequalities are trivial if 𝑀 is acyclic, as the quantities compared are
∞; see 2.5.4, 14.2.4, and 18.5.17. Assume now that 𝑀 is not acyclic. The right-hand
inequality holds by 18.5.21. By 18.5.24 one has codim𝑅 𝑀 − amp𝑀 ⩽ grade𝑅 𝑀 .
As 𝑅 is equidimensional and catenary, the equality dim 𝑅𝔭 +dim 𝑅/𝔭 = dim 𝑅 holds
for all 𝔭 ∈ Spec 𝑅, see 17.2.14, so the left-hand inequality holds by 18.5.26. □

18.5.28 Corollary. Let 𝑅 be local and 𝑀 a finitely generated 𝑅-module of finite
projective dimension. If 𝑅 is equidimensional and catenary, then there is an equality,

grade𝑅 𝑀 = dim 𝑅 − dim𝑅 𝑀 .

Proof. For 𝑀 = 0 the equality holds by convention; see 14.2.4 and 18.5.20. For
𝑀 ≠ 0 the equality is a special case of 18.5.27. □

8-Mar-2024 Draft - use at own risk



18.5 Intersection Theorems and Iversen’s Amplitude Inequality 883

Cohen–Macaulay local rings are equidimensional and catenary, see 17.2.21, but
18.5.28 has per 18.5.21 nothing new to say about their modules. This calls for an
example of an equidimensional catenary local ring that is not Cohen–Macaulay.

18.5.29 Example. The local ring 𝕜⟦𝑥, 𝑦⟧ is Cohen–Macaulay and hence catenary,
see 17.2.18 and 17.2.21. The quotient ring 𝑅 = 𝕜⟦𝑥, 𝑦⟧/(𝑥2, 𝑥𝑦) has exactly two
prime ideals: (𝑥) ⊂ (𝑥, 𝑦), so it is trivially both catenary and equidimensional. The
Krull dimension of 𝑅 is evidently 1, but the depth is 0 by 16.2.18 as (0 :𝑅 𝑥) = (𝑥, 𝑦),
so 𝑅 is not Cohen–Macaulay.

18.5.30 The Codimension Conjecture. The Codimension Conjecture, which Pesk-
ine and Szpiro [202] ascribe to Auslander, says that for a finitely generated module
𝑀 of finite projective dimension over a local ring (𝑅,𝔪) the equality

(18.5.30.1) grade𝑅 𝑀 = dim 𝑅 − dim𝑅 𝑀

holds without the assumption, imposed in 18.5.28, that 𝑅 is equidimensional and
catenary. It is the last conjecture from [202] to be discussed here, but as implied in
18.5.23 it is weaker than the Strong Intersection Conjecture. Indeed, assume that 𝑀
is non-zero and let 𝑥𝑥𝑥 be a sequence in 𝔪 whose image in the local ring 𝑅/(0 :𝑅 𝑀) is
a parameter sequence. Thus Supp𝑅 𝑀 ∩ Supp𝑅 𝑅/(𝑥𝑥𝑥) = V((𝑥𝑥𝑥) + (0 :𝑅 𝑀)) = {𝔪}
holds. The length of 𝑥𝑥𝑥 is dim𝑅 𝑀 , see 14.1.1, so dim 𝑅 − dim𝑅 𝑀 ⩽ dim 𝑅/(𝑥𝑥𝑥) holds.
This inequality together with (18.5.23.1) yields dim 𝑅 − dim𝑅 𝑀 ⩽ grade𝑅 𝑀 , and
the opposite inequality is known from 18.5.21.

Thus, the Strong Intersection Conjecture implies both the Codimension Conjec-
ture and the conjecture discussed in 18.5.13. On the other hand, assuming these two
conjectures, also the Stong Intersection Conjecture holds: Indeed, (18.5.13.1) and
(18.5.30.1) string together to yield dim𝑅 𝑁 ⩽ dim 𝑅 − dim𝑅 𝑀 = grade𝑅 𝑀 .

Summing up, for finitely generated modules 𝑀 and 𝑁 over a local ring 𝑅 such
that 𝑀 has finite projective dimension and Supp𝑅 𝑀 ∩ Supp𝑅 𝑁 = {𝔪} holds, there
are by 18.5.21 and 18.4.18 inequalities,

grade𝑅 𝑀 ⩽ dim 𝑅 − dim𝑅 𝑀 ⩽ pd𝑅 𝑀 .

By the Intersection Theorem 18.5.12 the right-hand quantity, pd𝑅 𝑀 , dominates
dim𝑅 𝑁 . The middle quantity is conjectured to dominate dim𝑅 𝑁 , see (18.5.13.1),
and that conjecture has been verified in a special case, see 20.1.27. Even the left-hand
quantity, grade𝑅 𝑀 , is conjectured to dominate dim𝑅 𝑁 , see (18.5.23.1); that is the
Strong Intersection Conjecture. Assuming the Codimension Conjecture, which has
been verified for equidimensional catenary rings, see 18.5.28, the Strong Intersection
Conjecture, see 18.5.23, is equivalent to the conjecture discussed in 18.5.13.

From 18.4.18 one can derive another special case of the Codimension Conjecture.

18.5.31 Example. Let 𝑅 be local and𝑀 a finitely generated 𝑅-module. If the equality
grade𝑅 𝑀 = pd𝑅 𝑀 holds, cf. 18.5.22, then 18.5.21 and 18.4.18 yield

grade𝑅 𝑀 = dim 𝑅 − dim𝑅 𝑀 .

Notice that the assumption on 𝑀 implies that it has finite projective dimension.
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An module that satisfies the assumption in 18.5.31 is called perfect.

Exercises

In the following exercises let (𝑅,𝔪, 𝒌 ) be local.

E 18.5.1 Let 𝑁 be a complex in Df (𝑅) and 𝑀 a complex in Df
⊏⊐ (𝑅) of finite injective dimen-

sion. Show that if 𝑀 is not acyclic, then one has amp RHom𝑅 (𝑁, 𝑀 ) ⩾ cmd𝑅 𝑁 .
E 18.5.2 Let 𝑀 ≠ 0 be a finitely generated 𝑅-module of finite injective dimension. Show that

μ
depth𝑅
𝑅

(𝑅) divides β𝑅0 (𝑀 ) and conclude that 𝑅 is Gorenstein if 𝑀 is cyclic.
E 18.5.3 Let (𝑅,𝔪) be a local ring and 𝑑 ⩾ 0 an integer. Show that 𝑅 is Cohen–Macaulay of

Krull dimension 𝑑 if and only if fd𝑅 H𝑑𝔪 (𝑅) = 𝑑 holds.
E 18.5.4 Let 𝑀 be an 𝑅-complex. Prove the equalities

grade𝑅 𝑀 = inf{grade𝑅 H𝑣 (𝑀 ) + 𝑣 | 𝑣 ∈ ℤ} and
codim𝑅 𝑀 = inf{codim𝑅 H𝑣 (𝑀 ) + 𝑣 | 𝑣 ∈ ℤ} .

Conclude that for a complex 𝑀 in D⊐ (𝑅) with H(𝑀 ) ≠ 0 and 𝑤 = inf 𝑀 one has
(a) 𝑤 = grade𝑅 𝑀 if and only if grade𝑅 H𝑤 (𝑀 ) = 0 and (b) 𝑤 = codim𝑅 𝑀 if and
only if codim𝑅 H𝑤 (𝑀 ) = 0 .

E 18.5.5 Let 𝑀 be a complex in Df
⊐ (𝑅) . Show that grade𝑅 𝑀 = − sup RHom𝑅 (𝑀, 𝑅) holds.

E 18.5.6 Let 𝑀 be a complex in Df
⊐ (𝑅) with H(𝑀 ) ≠ 0. Set 𝑔 = grade𝑅 𝑀 and show that 𝔪

is associated to Ext𝑔
𝑅
(𝑀, 𝑅) if and only if 𝑔 = depth𝑅 + inf 𝑀 holds.

E 18.5.7 Let 𝑀 be a complex in Df
⊏⊐ (𝑅) of finite projective dimension. Show that if 𝑀 is not

acyclic, then one has dim𝑅 + inf 𝑀 ⩽ dim𝑅 RHom𝑅 (𝑀, 𝑅) ⩽ dim𝑅 + sup𝑀.
E 18.5.8 Let 𝑀 ≠ 0 be a finitely generated 𝑅-module of finite projective dimension. Show that

one has dim𝑅 = dim𝑅 RHom𝑅 (𝑀, 𝑅) = sup{dim𝑅 Ext𝑚
𝑅
(𝑀, 𝑅) + 𝑚 | 𝑚 ∈ ℤ}.

Conclude that with 𝑝 = pd𝑅 𝑀 one has
dim𝑅 − dim𝑅 𝑀 ⩽ pd𝑅 𝑀 ⩽ dim𝑅 − dim𝑅 Ext𝑝

𝑅
(𝑀, 𝑅) .

E 18.5.9 Let 𝑀 be an 𝑅-complex concentrated in degrees 𝑛, ... , 0. Show that H𝑣 (𝑀 ) = 0 holds
for 𝑣 > 0 if the next two conditions are satisfied. (1) depth𝑅 𝑀𝑣 ⩾ 𝑣 holds for 𝑣 > 0
and (2) depth𝑅 H𝑣 (𝑀 ) = 0 or H𝑣 (𝑀 ) = 0 holds for 𝑣 > 0.
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Appendix A
Acyclicity and Boundedness

Synopsis. Acyclicity of Hom complex; acyclicity of tensor product complex; bounded functor.

We collect here some technical results about acyclicity of Hom and tensor product
complexes (A.4–A.12), and about bounded functors on categories of complexes
(A.13–A.22) and on derived categories (A.23–A.34). Loosely speaking, the common
theme of these results is that they allow one to bootstrap statements about complexes
from statements about modules.

Acyclicity of Hom Complexes

Condition (2) in the next lemma is trivially satisfied if 𝑀 is bounded below.

A.1 Lemma. Let 𝑀 be an acyclic 𝑅-complex and 𝑁 an 𝑅-module. The complex
Hom𝑅 (𝑀, 𝑁) is acyclic if the following conditions are satisfied.

(1) Ext𝑚
𝑅
(𝑀𝑣, 𝑁) = 0 for every 𝑣 ∈ ℤ and all 𝑚 > 0 .

(2) Ext𝑚
𝑅
(C𝑣 (𝑀), 𝑁) = 0 for every 𝑣 ≪ 0 and all 𝑚 > 0 .

Proof. As 𝑀 is acyclic, the sequence 0 → C𝑣+1 (𝑀) → 𝑀𝑣 → C𝑣 (𝑀) → 0 is
exact for every 𝑣 ∈ ℤ, and by 7.3.35 and 7.3.27 it is enough to argue that one has
Ext𝑚

𝑅
(C𝑣 (𝑀), 𝑁) = 0 for every 𝑣 ∈ ℤ and all 𝑚 > 0. In view of (2) one can procede

by induction on 𝑣. Fix 𝑣 ∈ ℤ and assume that Ext𝑚
𝑅
(C𝑣 (𝑀), 𝑁) = 0 holds for all

𝑚 > 0. As Ext𝑚
𝑅
(𝑀𝑣, 𝑁) = 0 holds for all𝑚 > 0 by (1), another application of 7.3.35

yields Ext𝑚
𝑅
(C𝑣+1 (𝑀), 𝑁) = 0 for all 𝑚 > 0. □

The prototypical application of the next result is to an acyclic complex 𝑀 and a
complex 𝑁 of injective modules; see for example 5.3.12.

A.2 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes such that 𝑀 or 𝑁 is bounded
above. If the complex Hom𝑅 (𝑀, 𝑁𝑣) is acyclic for every 𝑣 ∈ ℤ, then Hom𝑅 (𝑀, 𝑁)
is acyclic.
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Proof. The assumptions and conclusion are invariant under shift, see 2.2.15 and
2.3.14, so it suffices to show that H0 (Hom𝑅 (𝑀, 𝑁)) = 0 holds. That is, it suffices
to show that every morphism 𝛼 : 𝑀 → 𝑁 is null-homotopic; see 2.3.10. Given a
morphism 𝛼, the goal is to construct a degree 1 homomorphism 𝜎 : 𝑀 → 𝑁 with

(★) 𝛼𝑣 = 𝜕𝑁𝑣+1𝜎𝑣 + 𝜎𝑣−1𝜕
𝑀
𝑣

for every 𝑣 ∈ ℤ. As 𝑀 or 𝑁 is bounded above, 𝛼𝑣 = 0 holds for 𝑣 ≫ 0. Thus, one
can choose 𝜎𝑣 = 0 for 𝑣 ≫ 0. Now, proceed by descending induction. Given that (★)
holds for 𝑣, it follows that 𝛼𝑣−1−𝜕𝑁𝑣 𝜎𝑣−1 is a cycle in the complex Hom𝑅 (𝑀, 𝑁𝑣−1);
indeed, one has

(𝛼𝑣−1 − 𝜕𝑁𝑣 𝜎𝑣−1)𝜕𝑀𝑣 = 𝜕𝑁𝑣 (𝛼𝑣 − 𝜎𝑣−1𝜕
𝑀
𝑣 ) = 𝜕𝑁𝑣 (𝜕𝑁𝑣+1𝜎𝑣) = 0 .

As the complex Hom𝑅 (𝑀, 𝑁𝑣−1) is acyclic, 𝛼𝑣−1 − 𝜕𝑁𝑣 𝜎𝑣−1 is a boundary. I.e. there
exists an element 𝜎𝑣−2 in Hom𝑅 (𝑀𝑣−2, 𝑁𝑣−1) with 𝜎𝑣−2𝜕

𝑀
𝑣−1 = 𝛼𝑣−1 − 𝜕𝑁𝑣 𝜎𝑣−1. □

Condition (2) in the next proposition is trivially satisfied if the complex 𝑁 is
bounded above; that special case is already covered by A.2.

A.3 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. The complex Hom𝑅 (𝑀, 𝑁) is
acyclic if the following conditions are satisfied.

(1) Hom𝑅 (𝑀, 𝑁𝑣) is acyclic for every 𝑣 ∈ ℤ .
(2) Hom𝑅 (𝑀,Z𝑣 (𝑁)) is acyclic for every 𝑣 ≫ 0 .

Proof. Condition (1) implies by A.2 that the complex Hom𝑅 (𝑀, 𝑁ď𝑛) is acyclic for
every 𝑛 ∈ ℤ. By 2.3.12 and 2.5.6, an application of Hom𝑅 (𝑀, ) to the degreewise
split exact sequence 0 → 𝑁ď𝑛 → 𝑁 → 𝑁ě𝑛+1 → 0 shows that it suffices to prove
that Hom𝑅 (𝑀, 𝑁ě𝑤) is acyclic for some 𝑤 ∈ ℤ. Thus, one can assume that 𝑁 is
bounded below and Hom𝑅 (𝑀,Z𝑣 (𝑁)) is acyclic for every 𝑣 ∈ ℤ.

The assumptions and conclusion are invariant under shift, see 2.2.15 and 2.3.14,
so it suffices to show that H0 (Hom𝑅 (𝑀, 𝑁)) = 0 holds. That is, it suffices to show
that every morphism 𝛼 : 𝑀 → 𝑁 is null-homotopic, see 2.3.10. Let a morphism 𝛼

be given; the goal is to construct a degree 1 homomorphism 𝜎 : 𝑀 → 𝑁 such that
𝛼𝑣 = 𝜕𝑁

𝑣+1𝜎𝑣 + 𝜎𝑣−1𝜕
𝑀
𝑣 holds for all 𝑣 ∈ ℤ. As 𝑁 is bounded below, one can take

𝜎𝑣 = 0 for 𝑣 ≪ 0 and proceed by induction. Fix 𝑛 and assume that the desired
homomorphisms 𝜎𝑣 have been constructed for 𝑣 ⩽ 𝑛 − 2; assume further that a
homomorphism 𝜚𝑛−1 : 𝑀𝑛−1 → 𝑁𝑛 with 𝛼𝑛−1 = 𝜕𝑁𝑛 𝜚𝑛−1 + 𝜎𝑛−2𝜕

𝑀
𝑛−1 has been

constructed. This map may not have all the properties required of 𝜎𝑛−1, but in the
induction step it is modified to yield the desired 𝜎𝑛−1. For 𝑣 ≪ 0 one takes 𝜚𝑣 = 0.
The next diagram captures the data from the induction hypothesis.

· · · // 𝑀𝑛+1 //

𝛼𝑛+1
��

𝑀𝑛 //

𝛼𝑛

��

𝑀𝑛−1 //

𝛼𝑛−1

��
𝜚𝑛−1

||

𝑀𝑛−2 //

𝛼𝑛−2

��
𝜎𝑛−2

{{

𝑀𝑛−3 //

𝛼𝑛−3

��
𝜎𝑛−3

{{

· · ·

· · · // 𝑁𝑛+1 // 𝑁𝑛 // 𝑁𝑛−1 // 𝑁𝑛−2 // 𝑁𝑛−3 // · · ·

In the induction step one constructs homomorphisms
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(♭) 𝜚𝑛 : 𝑀𝑛 −→ 𝑁𝑛+1 and 𝜗𝑛−1 : 𝑀𝑛−1 −→ 𝑁𝑛

such that 𝜚𝑛 and 𝜎𝑛−1 = 𝜚𝑛−1 + 𝜗𝑛−1 satisfy

(⋄) 𝛼𝑛 = 𝜕𝑁𝑛+1𝜚𝑛 + 𝜎𝑛−1𝜕
𝑀
𝑛 and 𝛼𝑛−1 = 𝜕𝑁𝑛 𝜎𝑛−1 + 𝜎𝑛−2𝜕

𝑀
𝑛−1 .

The computation

𝜕𝑁𝑛 (𝛼𝑛 − 𝜚𝑛−1𝜕
𝑀
𝑛 ) = (𝛼𝑛−1 − 𝜕𝑁𝑛 𝜚𝑛−1)𝜕𝑀𝑛 = (𝜎𝑛−2𝜕

𝑀
𝑛−1)𝜕

𝑀
𝑛 = 0

shows that 𝛼𝑛 − 𝜚𝑛−1𝜕
𝑀
𝑛 is a homomorphism from 𝑀𝑛 to Z𝑛 (𝑁). The diagram,

𝑀𝑛+3
𝜕𝑀
𝑛+3

//

��

𝑀𝑛+2
𝜕𝑀
𝑛+2

//

𝛼𝑛+1𝜕𝑀𝑛+2
��

𝑀𝑛+1
𝜕𝑀
𝑛+1

//

𝛼𝑛+1

��

𝑀𝑛
𝜕𝑀𝑛

//

𝛼𝑛− 𝜚𝑛−1𝜕
𝑀
𝑛

��

𝑀𝑛−1

��

0 // Z𝑛+1 (𝑁) // 𝑁𝑛+1
𝜕𝑁
𝑛+1

// Z𝑛 (𝑁) // 0 ,

is commutative. Denoting the bottom row by 𝑁 ′, the vertical maps in the diagram
form a morphism of complexes 𝛼′ : 𝑀 → 𝑁 ′. By the assumptions and A.2 the
complex Hom𝑅 (𝑀, 𝑁 ′) is acyclic, so 𝛼′ is null-homotopic. In particular, there exist
homomorphisms 𝜚𝑛 and 𝜗𝑛−1 as in (♭) with

𝛼𝑛 − 𝜚𝑛−1𝜕
𝑀
𝑛 = 𝜕𝑁𝑛+1𝜚𝑛 + 𝜗𝑛−1𝜕

𝑀
𝑛 and 𝜕𝑁𝑛 𝜗𝑛−1 = 0 .

It is now straightforward to verify that the identities in (⋄) hold. □

Remark. The proof of A.2 is a folklore argument. The proof of A.3 is a second distillation
by Christensen and Thompson [69] of an argument used by Neeman [192] and first distilled by
Emmanouil [83].

Condition (2) in the next lemma is trivially satisfied if 𝑁 is bounded above.

A.4 Lemma. Let 𝑀 be an 𝑅-module and 𝑁 an acyclic 𝑅-complex. The complex
Hom𝑅 (𝑀, 𝑁) is acyclic if the following conditions are satisfied.

(1) Ext𝑚
𝑅
(𝑀, 𝑁𝑣) = 0 for every 𝑣 ∈ ℤ and all 𝑚 > 0 .

(2) Ext𝑚
𝑅
(𝑀,Z𝑣 (𝑁)) = 0 for every 𝑣 ≫ 0 and all 𝑚 > 0 .

Proof. As 𝑁 is acyclic, the sequence 0 → Z𝑣 (𝑁) → 𝑁𝑣 → Z𝑣−1 (𝑁) → 0 is
exact for every 𝑣 ∈ ℤ, and by 7.3.35 and 7.3.27 it is enough to show that one has
Ext𝑚

𝑅
(𝑀,Z𝑣 (𝑁)) = 0 for every 𝑣 ∈ ℤ and all 𝑚 > 0. In view of (2) one can procede

by descending induction on 𝑣. Fix 𝑣 ∈ ℤ and assume that Ext𝑚
𝑅
(𝑀,Z𝑣 (𝑁)) = 0 holds

for all 𝑚 > 0. As Ext𝑚
𝑅
(𝑀, 𝑁𝑣) = 0 holds for all 𝑚 > 0 by (1), another application

of 7.3.35 yields Ext𝑚
𝑅
(𝑀,Z𝑣−1 (𝑁)) = 0 for all 𝑚 > 0. □

A standard application of the next result is to an acyclic complex 𝑁 and a complex
𝑀 of projective 𝑅-modules; see for example 5.2.8.

A.5 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes such that 𝑀 or 𝑁 is bounded
below. If the complex Hom𝑅 (𝑀𝑣, 𝑁) is acyclic for every 𝑣 ∈ ℤ, then Hom𝑅 (𝑀, 𝑁)
is acyclic.
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Proof. The assumptions and conclusion are invariant under shift, see 2.2.15 and
2.3.16, so it suffices to show that H0 (Hom𝑅 (𝑀, 𝑁)) = 0 holds. That is, it suffices
to show that every morphism 𝛼 : 𝑀 → 𝑁 is null-homotopic, see 2.3.10. Given a
morphism 𝛼, the goal is to construct a degree 1 homomorphism 𝜎 : 𝑀 → 𝑁 with

(★) 𝛼𝑣 = 𝜕𝑁𝑣+1𝜎𝑣 + 𝜎𝑣−1𝜕
𝑀
𝑣

for every 𝑣 ∈ ℤ. As 𝑀 or 𝑁 is bounded below, 𝛼𝑣 = 0 holds for 𝑣 ≪ 0. Thus, one
can choose 𝜎𝑣 = 0 for 𝑣 ≪ 0. Now, proceed by induction. Given that (★) holds for 𝑣,
it follows that 𝛼𝑣+1 − 𝜎𝑣𝜕𝑀𝑣+1 is a cycle in the complex Hom𝑅 (𝑀𝑣+1, 𝑁); indeed, one
has

𝜕𝑁𝑣+1 (𝛼𝑣+1 − 𝜎𝑣𝜕
𝑀
𝑣+1) = (𝛼𝑣 − 𝜕

𝑁
𝑣+1𝜎𝑣)𝜕

𝑀
𝑣+1 = (𝜎𝑣−1𝜕

𝑀
𝑣 )𝜕𝑀𝑣+1 = 0 .

As the complex Hom𝑅 (𝑀𝑣+1, 𝑁) is acyclic, 𝛼𝑣+1 −𝜎𝑣𝜕𝑀𝑣+1 is a boundary. Thus, there
exists an element 𝜎𝑣+1 in Hom𝑅 (𝑀𝑣+1, 𝑁𝑣+2) with 𝜕𝑁

𝑣+2𝜎𝑣+1 = 𝛼𝑣+1 − 𝜎𝑣𝜕𝑀𝑣+1. □

Condition (2) in the next proposition is trivially satisfied if the complex 𝑀 is
bounded below; that special case is already covered by A.5.

A.6 Proposition. Let 𝑀 and 𝑁 be 𝑅-complexes. The complex Hom𝑅 (𝑀, 𝑁) is
acyclic if the following conditions are satisfied.

(1) Hom𝑅 (𝑀𝑣, 𝑁) is acyclic for every 𝑣 ∈ ℤ .
(2) Hom𝑅 (C𝑣 (𝑀), 𝑁) is acyclic for every 𝑣 ≪ 0 .

Proof. Condition (1) implies by A.5 that the complex Hom𝑅 (𝑀ě𝑛, 𝑁) is acyclic for
every 𝑛 ∈ ℤ. By 2.3.13 and 2.5.6, an application of Hom𝑅 ( , 𝑁) to the degreewise
split exact sequence 0→ 𝑀ď𝑛−1 → 𝑀 → 𝑀ě𝑛 → 0 shows that it suffices to prove
that Hom𝑅 (𝑀ď𝑢, 𝑁) is acyclic for some 𝑢 ∈ ℤ. Thus, one can assume that 𝑀 is
bounded above and Hom𝑅 (C𝑣 (𝑀), 𝑁) is acyclic for all 𝑣 ∈ ℤ.

The assumptions and conclusion are invariant under shift, see 2.2.15 and 2.3.16,
so it suffices to show that H0 (Hom𝑅 (𝑀, 𝑁)) = 0 holds. That is, it suffices to show
that every morphism 𝛼 : 𝑀 → 𝑁 is null-homotopic, see 2.3.10. Let a morphism 𝛼

be given; the goal is to construct a degree 1 homomorphism 𝜎 : 𝑀 → 𝑁 such that
𝛼𝑣 = 𝜕𝑁

𝑣+1𝜎𝑣 + 𝜎𝑣−1𝜕
𝑀
𝑣 holds for all 𝑣 ∈ ℤ. As 𝑀𝑣 = 0 holds for 𝑣 ≫ 0, one can

take 𝜎𝑣 = 0 for 𝑣 ≫ 0 and proceed by descending induction. Fix 𝑛 and assume
that the desired homomorphisms 𝜎𝑣 have been constructed for 𝑣 ⩾ 𝑛 + 1; assume
further that a homomorphism 𝜚𝑛 : 𝑀𝑛 → 𝑁𝑛+1 with 𝛼𝑛+1 = 𝜕𝑁

𝑛+2𝜎𝑛+1 + 𝜚𝑛𝜕
𝑀
𝑛+1 has

been constructed. This map may not have all the properties required of 𝜎𝑛, but in
the induction step it is modified to yield the desired 𝜎𝑛. For 𝑣 ≫ 0 one takes 𝜚𝑣 = 0.
The next diagram captures the data from the induction hypothesis.

· · · // 𝑀𝑛+3 //

𝛼𝑛+3
��

𝑀𝑛+2 //

𝛼𝑛+2
��

𝜎𝑛+2
{{

𝑀𝑛+1 //

𝛼𝑛+1
��

𝜎𝑛+1
{{

𝑀𝑛 //

𝛼𝑛

��
𝜚𝑛

||

𝑀𝑛−1 //

𝛼𝑛−1

��

· · ·

· · · // 𝑁𝑛+3 // 𝑁𝑛+2 // 𝑁𝑛+1 // 𝑁𝑛 // 𝑁𝑛−1 // · · ·

In the induction step one constructs homomorphisms

(★) 𝜗𝑛 : 𝑀𝑛 −→ 𝑁𝑛+1 and 𝜚𝑛−1 : 𝑀𝑛−1 −→ 𝑁𝑛
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such that 𝜎𝑛 = 𝜚𝑛 + 𝜗𝑛 and 𝜚𝑛−1 satisfy

(⋄) 𝛼𝑛+1 = 𝜕𝑁𝑛+2𝜎𝑛+1 + 𝜎𝑛𝜕
𝑀
𝑛+1 and 𝛼𝑛 = 𝜕𝑁𝑛+1𝜎𝑛 + 𝜚𝑛−1𝜕

𝑀
𝑛 .

The computation

(𝛼𝑛 − 𝜕𝑁𝑛+1𝜚𝑛)𝜕
𝑀
𝑛+1 = 𝜕𝑁𝑛+1 (𝛼𝑛+1 − 𝜚𝑛𝜕

𝑀
𝑛+1) = 𝜕𝑁𝑛+1 (𝜕

𝑁
𝑛+2𝜎𝑛+1) = 0

shows that the homomorphism 𝛼𝑛 − 𝜕𝑁𝑛+1𝜚𝑛 : 𝑀𝑛 → 𝑁𝑛 factors through the cokernel
C𝑛 (𝑀). Similarly, 𝜕𝑁

𝑛−1𝛼𝑛−1 factors through C𝑛−1 (𝑀) as one has (𝜕𝑁
𝑛−1𝛼𝑛−1)𝜕𝑀𝑛 =

𝜕𝑁
𝑛−1 (𝜕

𝑁
𝑛 𝛼𝑛) = 0. That is, with 𝜋𝑣 denoting the quotient map 𝑀𝑣 ↠ C𝑣 (𝑀) there

are morphisms

(♭) �̃�𝑛 : C𝑛 (𝑀) −→ 𝑁𝑛 with �̃�𝑛𝜋𝑛 = 𝛼𝑛 − 𝜕𝑁𝑛+1𝜚𝑛
and

(†) �̃�𝑛−2 : C𝑛−1 (𝑀) −→ 𝑁𝑛−2 with �̃�𝑛−2𝜋𝑛−1 = 𝜕𝑁𝑛−1𝛼𝑛−1 .

Let 𝜕 : C𝑛 (𝑀) → 𝑀𝑛−1 be the map induced by the differential, i.e. 𝜕𝜋𝑛 = 𝜕𝑀𝑛 . As
𝛼 is a morphism of complexes, (♭) yields (𝜕𝑁𝑛 �̃�𝑛 − 𝛼𝑛−1𝜕)𝜋𝑛 = 0, and since 𝜋 is
surjective this together with (†) shows that the following diagram is commutative,

0

��

// C𝑛 (𝑀)
𝜕
//

𝛼𝑛

��

𝑀𝑛−1
𝜋𝑛−1

//

𝛼𝑛−1

��

C𝑛−1 (𝑀) //

𝛼𝑛−2
��

0

��

𝑁𝑛+1
𝜕𝑁
𝑛+1

// 𝑁𝑛
𝜕𝑁𝑛

// 𝑁𝑛−1
𝜕𝑁
𝑛−1

// 𝑁𝑛−2
𝜕𝑁
𝑛−2

// 𝑁𝑛−3 .

Denoting the top row by 𝑀 , the vertical maps in the diagram form a morphism of
complexes �̃� : 𝑀 → 𝑁 . By the assumptions and A.5 the complex Hom𝑅 (𝑀, 𝑁)
is acyclic, so �̃� is null-homotopic. In particular, there exist homomorphisms
𝜗 : C𝑛 (𝑀) → 𝑁𝑛+1 and 𝜚𝑛−1 : 𝑀𝑛−1 → 𝑁𝑛 with �̃�𝑛 = 𝜕𝑁𝑛+1𝜗 + 𝜚𝑛−1𝜕 and, thus,

𝛼𝑛 − 𝜕𝑁𝑛+1𝜚𝑛 = 𝜕𝑁𝑛+1𝜗𝜋𝑛 + 𝜚𝑛−1𝜕
𝑀
𝑛

by (♭). With 𝜗𝑛 = 𝜗𝜋𝑛 one has 𝜗𝑛𝜕𝑀𝑛+1 = 0, and it is now straightforward to verify
that the identities in (⋄) hold. □

Acyclicity of Tensor Product Complexes

Condition (2) in the next lemma is trivially satisfied if 𝑀 is bounded below.

A.7 Lemma. Let 𝑀 be an acyclic 𝑅o-complex and 𝑁 an 𝑅-module. The complex
𝑀 ⊗𝑅 𝑁 is acyclic if the following conditions are satisfied.

(1) Tor𝑅𝑚 (𝑀𝑣, 𝑁) = 0 for every 𝑣 ∈ ℤ and all 𝑚 > 0 .
(2) Tor𝑅𝑚 (C𝑣 (𝑀), 𝑁) = 0 for every 𝑣 ≪ 0 and all 𝑚 > 0 .

8-Mar-2024 Draft - use at own risk



994 Appendix A

Proof. As 𝑀 is acyclic, the sequence 0 → C𝑣+1 (𝑀) → 𝑀𝑣 → C𝑣 (𝑀) → 0 is
exact for every 𝑣 ∈ ℤ, and by 7.4.29 and 7.4.21 it is enough to show that one has
Tor𝑅1 (C𝑣 (𝑀), 𝑁) = 0. Part (2) yields the base case for a proof by induction on 𝑣 that
Tor𝑅𝑚 (C𝑣 (𝑀), 𝑁) = 0 holds for all 𝑣 ∈ ℤ and all 𝑚 > 0. Fix 𝑣 ∈ ℤ and assume that
Tor𝑅𝑚 (C𝑣 (𝑀), 𝑁) = 0 holds for all 𝑚 > 0. As Tor𝑅𝑚 (𝑀𝑣, 𝑁) = 0 holds for all 𝑚 > 0
by (1), another application of 7.4.29 yields Tor𝑅𝑚 (C𝑣+1 (𝑀), 𝑁) = 0 for all𝑚 > 0. □

A.8 Lemma. Let 𝑀 be an 𝑅o-module and 𝑁 an acyclic 𝑅-complex. The complex
𝑀 ⊗𝑅 𝑁 is acyclic if the following conditions are satisfied.

(1) Tor𝑅𝑚 (𝑀, 𝑁𝑣) = 0 for every 𝑣 ∈ ℤ and all 𝑚 > 0 .
(2) Tor𝑅𝑚 (𝑀,C𝑣 (𝑁)) = 0 for every 𝑣 ≪ 0 and all 𝑚 > 0 .

Proof. By commutativity 4.4.4 there is an isomorphism 𝑀 ⊗𝑅 𝑁 � 𝑁 ⊗𝑅o 𝑀 , and
the right-hand complex is acyclic by A.7 and 7.4.23. □

A standard application of the next result is to an acyclic complex𝑀 and a complex
𝑁 of flat 𝑅-modules; see for example 5.4.8.

A.9 Proposition. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex, such that 𝑀 is
bounded above or 𝑁 is bounded below. If the complex 𝑀 ⊗𝑅 𝑁𝑣 is acyclic for every
𝑣 ∈ ℤ, then 𝑀 ⊗𝑅 𝑁 is acyclic.

Proof. By adjunction 4.4.12 there is an isomorphism of 𝕜-complexes

Hom𝕜 (𝑀 ⊗𝑅 𝑁,𝔼) � Hom𝑅 (𝑁,Hom𝕜 (𝑀,𝔼)) .

Recall from 2.5.7(b) that Hom𝕜 (𝑀,𝔼) is bounded below if 𝑀 is bounded above.
As 𝔼 is a faithfully injective 𝕜-module, the assumptions imply that the complex
Hom𝑅 (𝑁𝑣,Hom𝕜 (𝑀,𝔼)) is acyclic for every 𝑣 ∈ ℤ, so Hom𝑅 (𝑁,Hom𝕜 (𝑀,𝔼)) is
acyclic by A.5 and hence 𝑀 ⊗𝑅 𝑁 is acyclic. □

A.10 Proposition. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex, such that 𝑀 is
bounded below or 𝑁 is bounded above. If the complex 𝑀𝑣 ⊗𝑅 𝑁 is acyclic for every
𝑣 ∈ ℤ, then 𝑀 ⊗𝑅 𝑁 is acyclic.

Proof. By commutativity 4.4.4 there is an isomorphism 𝑀 ⊗𝑅 𝑁 � 𝑁 ⊗𝑅o 𝑀 , and
the right-hand complex is acyclic by A.9. □

A.11 Proposition. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. The complex
𝑀 ⊗𝑅 𝑁 is acyclic if the next conditions are satisfied.

(1) 𝑀 ⊗𝑅 𝑁𝑣 is acyclic for every 𝑣 ∈ ℤ .
(2) 𝑀 ⊗𝑅 C𝑣 (𝑁) is acyclic for every 𝑣 ≪ 0 .

Proof. This follows from A.6 by way of adjunction as in the proof of A.9. □

A.12 Proposition. Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex. The complex
𝑀 ⊗𝑅 𝑁 is acyclic if the next conditions are satisfied.

(1) 𝑀𝑣 ⊗𝑅 𝑁 is acyclic for every 𝑣 ∈ ℤ .
(2) C𝑣 (𝑀) ⊗𝑅 𝑁 is acyclic for every 𝑣 ≪ 0 .
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Proof. By commutativity 4.4.4 there is an isomorphism 𝑀 ⊗𝑅 𝑁 � 𝑁 ⊗𝑅o 𝑀 , and
the right-hand complex is acyclic by A.11. □

Bounded Functors

A bounded functor F: C(𝑅) → C(𝑆) is one where the shape of F(𝑀) depends on the
shape of 𝑀 in a controlled manner.

A.13 Definition. Let F: C(𝑅) → C(𝑆) be a functor.
The functor F is called bounded above if for every 𝑛 ∈ ℤ there is a 𝑢 ∈ ℤ such

that sup (F(𝑀))♮ ⩽ 𝑛 holds for every 𝑅-complex 𝑀 with sup𝑀♮ ⩽ 𝑢.
The functor F is called bounded below if for every 𝑛 ∈ ℤ there is a 𝑤 ∈ ℤ such

that inf (F(𝑀))♮ ⩾ 𝑛 holds for every 𝑅-complex 𝑀 with inf 𝑀♮ ⩾ 𝑤.
The functor F is called bounded if it is bounded below and bounded above.

Remark. Other terms for bounded above, bounded below, and bounded are ‘way-out right’, ‘way-
out left’, and ‘way-out in both directions’; see Hartshorne [114, I.§7]. In [174] Lipman uses the
boundedness terminology but with “above” and “below” interchanged as he uses cohomological
grading. His definitions assume that there are uniform bounds on the differences 𝑛 − 𝑢 and 𝑤 − 𝑛
in the definition above, but for functors that commute with shift this is automatic; see E A.14.

A.14 Example. A functor C(𝑅) → C(𝑆) that is extended from an additive functor
on 𝑅-modules, as described in 2.1.48, is per construction bounded.

A.15 Proposition. Let 𝑀 be an 𝑅-complex.
(a) If 𝑀 is bounded below, then the functor Hom𝑅 (𝑀, ) is bounded above.
(b) If 𝑀 is bounded above, then the functor Hom𝑅 (𝑀, ) is bounded below.
(c) If 𝑀 is bounded, then Hom𝑅 (𝑀, ) is bounded.

Proof. Part (a) is immediate from 2.5.12(a), and part (b) follows from an argument
similar to the proof of loc. cit. Part (c) follows from (a) and (b). □

A.16 Proposition. Let 𝑀 be an 𝑅-complex.
(a) If 𝑀 is bounded below, then the functor ⊗𝑅 𝑀 is bounded below.
(b) If 𝑀 is bounded above, then the functor ⊗𝑅 𝑀 is bounded above.
(c) If 𝑀 is bounded, then ⊗𝑅 𝑀 is bounded.

Proof. Part (a) is immediate from 2.5.18(a), and part (b) follows from an argument
similar to the proof of loc. cit. Part (c) follows from (a) and (b). □

A class U of 𝑅-complexes that satisfies the assumptions in the next lemma is, for
example, the class of all complexes of projective 𝑅-modules.

A.17 Lemma. Let E, F: C(𝑅) → C(𝑆) be ♮- and Σ-functors and 𝜏 : E→ F a Σ-
transformation. Let U be a class of 𝑅-complexes that is closed under shifts and
hard truncations. If 𝜏𝑀 is a quasi-isomorphism for every module 𝑀 in U, then the
following assertions hold.
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(a) The morphism 𝜏𝑀 is a quasi-isomorphism for every bounded complex𝑀 inU .
(b) If E and F are bounded below, then 𝜏𝑀 is a quasi-isomorphism for every

bounded below complex 𝑀 in U .

(c) If E and F are bounded above, then 𝜏𝑀 is a quasi-isomorphism for every
bounded above complex 𝑀 in U .

(d) If E and F are bounded, then 𝜏𝑀 is a quasi-isomorphism for every 𝑀 in U .

Proof. (a): After a shift, 𝑀 is concentrated in degrees 𝑢, 𝑢 − 1, . . . , 0. If 𝑀 is a
module, i.e. 𝑢 = 0, then 𝜏𝑀 is a quasi-isomorphism. Let 𝑢 > 0 and assume that 𝜏
is a quasi-isomorphism when evaluated at a complex in U concentrated 𝑢 degrees.
Consider the degreewise split exact sequence 0 → 𝑀ď𝑢−1 → 𝑀 → Σ𝑢𝑀𝑢 → 0;
cf. 2.5.22. All three complexes in the sequence belong to U, and together with
𝜏 it induces by 2.1.54 an obvious commutative diagram in which the morphisms
𝜏𝑀ď𝑢−1 and 𝜏Σ𝑢𝑀𝑢 � Σ𝑢𝜏𝑀 are quasi-isomorphisms by assumption. It follows from
4.2.5 that the third map, 𝜏𝑀 , is a quasi-isomorphism. Thus the assertion follows
by induction.

(b): To prove that 𝜏𝑀 is a quasi-isomorphism we fix an integer 𝑛 and show that
H𝑛 (𝜏𝑀 ) is an isomorphism. Choose 𝑤 ∈ ℤ such that one has inf (E(𝑋))♮ ⩾ 𝑛 + 2
and inf (F(𝑋))♮ ⩾ 𝑛 + 2 for all complexes 𝑋 with inf 𝑋 ♮ ⩾ 𝑤. All three complexes
in the degreewise split exact sequence 0→ 𝑀ď𝑤−1 → 𝑀 → 𝑀ě𝑤 → 0 from 2.5.22
belong to U, and it induces by 2.1.54 and 2.2.21 a commutative diagram,

H𝑛+1 (E(𝑀ě𝑤)) // H𝑛 (E(𝑀ď𝑤−1)) �
//

H𝑛 (𝜏𝑀ď𝑤−1 )�

��

H𝑛 (E(𝑀)) //

H𝑛 (𝜏𝑀 )
��

H𝑛 (E(𝑀ě𝑤))

H𝑛+1 (F(𝑀ě𝑤)) // H𝑛 (F(𝑀ď𝑤−1)) �
// H𝑛 (F(𝑀)) // H𝑛 (F(𝑀ě𝑤))

where the horizontal isomorphisms are forced by the vanishing of E(𝑀ě𝑤)𝑣 and
F(𝑀ě𝑤)𝑣 for 𝑣 ⩽ 𝑛 + 1. As 𝑀ď𝑤−1 is a bounded complex in U, it follows from part
(a) that 𝜏𝑀ď𝑤−1 is a quasi-isomorphism, which explains the vertical isomorphism in
the diagram. By commutativity of the diagram, H𝑛 (𝜏𝑀 ) is an isomorphism.

(c): An argument similar to the proof of part (b) applies.
(d): The degreewise split exact sequence 0 → 𝑀ď0 → 𝑀 → 𝑀ě1 → 0 in U

and the natural transformation 𝜏 induce by 2.1.54 an obvious commutative diagram.
It follows from parts (b) and (c) that the morphisms 𝜏𝑀ě1 and 𝜏𝑀ď0 are quasi-
isomorphisms, and 4.2.5 then implies that 𝜏𝑀 is a quasi-isomorphism. □

A.18 Definition. Let G: C(𝑅)op → C(𝑆) be a functor.
The functor G is called bounded above if for every 𝑛 ∈ ℤ there is a 𝑤 ∈ ℤ such

that sup (G(𝑀))♮ ⩽ 𝑛 holds for every 𝑅-complex 𝑀 with inf 𝑀♮ ⩾ 𝑤.
The functor G is called bounded below if for every 𝑛 ∈ ℤ there is a 𝑢 ∈ ℤ such

that inf (G(𝑀))♮ ⩾ 𝑛 holds for every 𝑅-complex 𝑀 with sup𝑀♮ ⩽ 𝑢.
The functor G is called bounded if it is bounded below and bounded above.

A.19 Example. A functor C(𝑅)op → C(𝑆) that is extended from an additive functor
on 𝑅-modules, as described in 2.1.48, is per construction bounded.
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A.20 Proposition. Let 𝑁 be an 𝑅-complex.
(a) If 𝑁 is bounded above, then Hom𝑅 ( , 𝑁) is bounded above.
(b) If 𝑁 is bounded below, then Hom𝑅 ( , 𝑁) is bounded below.
(c) If 𝑁 is bounded, then Hom𝑅 ( , 𝑁) is bounded.

Proof. Part (a) is immediate from 2.5.12(a), and part (b) follows from an argument
similar to the proof of loc. cit. Part (c) follows from (a) and (b). □

A.21. A functor C(𝑅) → C(𝑆)op is called bounded above/below if and only if the
opposite functor C(𝑅)op → C(𝑆) is bounded below/above according to A.18. For
such functors A.20 holds with “bounded below” and “bounded above” interchanged.

A.22 Lemma. Let G, J : C(𝑅)op → C(𝑆) be ♮- and Σ-functors and 𝜏 : G→ J a Σ-
transformation. Let U be a class of 𝑅-complexes that is closed under shifts and
hard truncations. If 𝜏𝑀 is a quasi-isomorphism for every module 𝑀 in U, then the
following assertions hold.

(a) The morphism 𝜏𝑀 is a quasi-isomorphism for every bounded complex𝑀 inU .
(b) If G and J are bounded below, then 𝜏𝑀 is a quasi-isomorphism for every

bounded above complex 𝑀 in U .

(c) If G and J are bounded above, then 𝜏𝑀 is a quasi-isomorphism for every
bounded below complex 𝑀 in U .

(d) If G and J are bounded, then 𝜏𝑀 is a quasi-isomorphism for every 𝑀 in U .

Proof. The claims follow from arguments parallel to those in the proof of A.17. □

Bounded Functors on the Derived Category

A bounded functor F: D(𝑅) → D(𝑆) is one where the shape of the homology of
F(𝑀) depends on the shape of the homology of 𝑀 in a controlled manner.

A.23 Definition. Let F: D(𝑅) → D(𝑆) be a functor.
The functor F is called bounded above if for every 𝑛 ∈ ℤ there is a 𝑢 ∈ ℤ such

that sup F(𝑀) ⩽ 𝑛 holds for every 𝑅-complex 𝑀 with sup𝑀 ⩽ 𝑢.
The functor F is called bounded below if for every 𝑛 ∈ ℤ there is a 𝑤 ∈ ℤ such

that inf F(𝑀) ⩾ 𝑛 holds for every 𝑅-complex 𝑀 with inf 𝑀 ⩾ 𝑤.
The functor F is called bounded if it is bounded below and bounded above.

A.24 Example. Let F: M(𝑅) →M(𝑆) be additive functor. The left derived functor
LF is bounded below and the right derived functor RF is bounded above; see 7.2.15.

A.25 Proposition. Let F: D(𝑅) → D(𝑆) be a triangulated functor.
(a) If F is bounded above, then it restricts to a functor D⊏ (𝑅) → D⊏ (𝑆) .
(b) If F is bounded below, then it restricts to a functor D⊐ (𝑅) → D⊐ (𝑆) .
(c) If F is bounded, then it restricts to a functor D⊏⊐ (𝑅) → D⊏⊐ (𝑆) .
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Proof. (a): By assumption there is a 𝑢 ∈ ℤ such that sup F(𝑀) ⩽ 0 holds for all
complexes 𝑀 with sup𝑀 ⩽ 𝑢. Let 𝑋 be a complex in D⊏ (𝑅) with H(𝑋) ≠ 0 and
set 𝑠 = sup 𝑋 . As F is triangulated one has F(𝑋) ≃ Σ𝑠−𝑢F(Σ−𝑠+𝑢𝑋) in D(𝑆) and,
therefore, sup F(𝑋) = 𝑠 − 𝑢 + sup F(Σ−𝑠+𝑢𝑋) ⩽ 𝑠 − 𝑢.

(b): There is a 𝑤 ∈ ℤ such that inf F(𝑀) ⩾ 0 holds for all complexes 𝑀 with
inf 𝑀 ⩾ 𝑤. Let 𝑋 ∈ D⊐ (𝑅) with H(𝑋) ≠ 0 and set 𝑖 = inf 𝑋 . As F is triangulated
one has F(𝑋) ≃ Σ𝑖−𝑤F(Σ−𝑖+𝑤𝑋) in D(𝑆) and, therefore, inf F(𝑋) ⩾ 𝑖 − 𝑤.

(c): Combine parts (a) and (b). □

A.26 Proposition. Let 𝑀 be an 𝑅-complex.
(a) If 𝑀 is in D⊐ (𝑅), then the functor RHom𝑅 (𝑀, ) is bounded above.
(b) If 𝑀 has finite projective dimension, then RHom𝑅 (𝑀, ) is bounded below.
(c) If𝑀 inD⊏⊐ (𝑅) has finite projective dimension, then RHom𝑅 (𝑀, ) is bounded.

Proof. Parts (a) and (b) follow from 7.6.7 and 8.1.8, and they imply (c). □

A.27 Proposition. Let 𝑀 be an 𝑅-complex.
(a) If 𝑀 is in D⊐ (𝑅), then the functor ⊗L

𝑅
𝑀 is bounded below.

(b) If 𝑀 has finite flat dimension, then ⊗L
𝑅
𝑀 is bounded above.

(c) If 𝑀 is in D⊏⊐ (𝑅) and has has finite flat dimension, then ⊗L
𝑅
𝑀 is bounded.

Proof. Parts (a) and (b) follow from 7.6.8 and 8.3.11, and they imply (c). □

If 𝑅 is Noetherian, then the class U = Df (𝑅) satisfies the assumptions in the next
lemmas; cf. 7.6.3.

A.28 Lemma. Let E, F: D(𝑅) → D(𝑆) be triangulated functors and 𝜏 : E→ F a
triangulated natural transformation. Let U be a class of 𝑅-complexes that is closed
under shifts and soft truncations. If 𝜏𝑀 is an isomorphism for every module 𝑀 in
U, then the following assertions hold.

(a) The morphism 𝜏𝑀 is an isomorphism for every complex 𝑀 in U ∩D⊏⊐ (𝑅) .
(b) If E and F are bounded below, then 𝜏𝑀 is an isomorphism for every complex

𝑀 in U ∩D⊐ (𝑅) .
(c) If E and F are bounded above, then 𝜏𝑀 is an isomorphism for every complex

𝑀 in U ∩D⊏ (𝑅) .
(d) If E and F are bounded, then 𝜏𝑀 is an isomorphism for every 𝑀 in U .

Proof. (a): Because of the isomorphism 𝑀 ≃ 𝑀Ď sup𝑀 , see 4.2.4, it suffices to
show that 𝜏𝑀Ď𝑛 is an isomorphism for every 𝑛 ∈ ℤ. For 𝑛 ≪ 0 one has 𝑀Ď𝑛 ≃ 0
in D(𝑅), and hence 𝜏𝑀Ď𝑛 is an isomorphism. Now proceed by induction on 𝑛. The
complex 𝑀Ď𝑛−1 belongs to U; assume that 𝜏𝑀Ď𝑛−1 is an isomorphism and consider
the distinguished triangle from 7.6.6(a),

(⋄) Σ𝑛H𝑛 (𝑀) −→ 𝑀Ď𝑛 −→ 𝑀Ď𝑛−1 −→ Σ (Σ𝑛H𝑛 (𝑀)) .

One has Σ𝑛H𝑛 (𝑀) ≃ (𝑀Ě𝑛)Ď𝑛, in particular the module H𝑛 (𝑀) belongs to U,
so the morphism 𝜏Σ

𝑛H𝑛 (𝑀 ) � Σ𝑛𝜏H𝑛 (𝑀 ) is an isomorphism by assumption. Now
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it follows from 6.5.19, applied to the commutative diagram induced by the natural
transformation 𝜏 and (⋄), that 𝜏𝑀Ď𝑛 is an isomorphism.

(b): The morphism 𝜏𝑀 is an isomorphism in D(𝑆) if and only if H𝑛 (𝜏𝑀 ) is an
isomorphism for all 𝑛 ∈ ℤ; cf. 6.5.17. Fix an integer 𝑛; choose 𝑤 ∈ ℤ such that one
has inf E(𝑋) ⩾ 𝑛 + 1 and inf F(𝑋) ⩾ 𝑛 + 1 for all complexes 𝑋 with inf 𝑋 ⩾ 𝑤.
Together with 𝜏, the distinguished triangle from 7.6.6(c),

𝑀Ě𝑤 −→ 𝑀 −→ 𝑀Ď𝑤−1 −→ Σ (𝑀Ě𝑤) ,

induces by 6.5.19 the following commutative diagram in D(𝑆),

H𝑛 (E(𝑀Ě𝑤)) // H𝑛 (E(𝑀)) �
//

H𝑛 (𝜏𝑀 )
��

H𝑛 (E(𝑀Ď𝑤−1)) //

H𝑛 (𝜏 (𝑀Ď𝑤−1 ) )�

��

H𝑛−1 (E(𝑀Ě𝑤))

H𝑛 (F(𝑀Ě𝑤)) // H𝑛 (F(𝑀)) �
// H𝑛 (F(𝑀Ď𝑤−1)) // H𝑛−1 (F(𝑀Ě𝑤)) .

The horizontal isomorphisms are forced by the vanishing of H𝑣 (E(𝑀Ě𝑤)) and
H𝑣 (F(𝑀Ě𝑤)) for all 𝑣 ⩽ 𝑛. The complex 𝑀Ď𝑤−1 is in U ∩D⊏⊐ (𝑅), so 𝜏 (𝑀Ď𝑤−1 )

is an isomorphism by part (a), and it follows that H𝑛 (𝜏𝑀 ) is an isomorphism.
(c): An argument similar to the proof of part (b) applies.
(d): By parts (b) and (c) the morphisms 𝜏𝑀Ě1 and 𝜏𝑀Ď0 are isomorphisms. Now

it follows from 6.5.19, applied to the commutative diagram induced by 𝜏 and the
triangle 𝑀Ě1 → 𝑀 → 𝑀Ď0 → Σ (𝑀Ě1), that also 𝜏𝑀 is an isomorphism. □

A.29 Lemma. Let F: D(𝑅) → D(𝑆) be a triangulated functor and U a class of
𝑅-complexes that is closed under shifts and soft truncations. If 𝑆 is left Noetherian
and F(𝑀) belongs to Df (𝑆) for every module 𝑀 in U, then the next assertions hold.

(a) The complex F(𝑀) belongs to Df (𝑆) for every complex 𝑀 in U ∩D⊏⊐ (𝑅) .
(b) If F is bounded below, then F(𝑀) belongs toDf (𝑆) for every𝑀 inU ∩D⊐ (𝑅) .
(c) If F is bounded above, then F(𝑀) belongs toDf (𝑆) for every𝑀 inU ∩D⊏ (𝑅) .
(d) If F is bounded, then F(𝑀) belongs to Df (𝑆) for every 𝑀 in U .

Proof. The assertions follow from arguments similar to those in the proof of A.28;
see also the proof of A.34. □

A.30 Definition. Let G: D(𝑅)op → D(𝑆) be a functor.
The functor G is called bounded above if for every 𝑛 ∈ ℤ there is a 𝑤 ∈ ℤ such

that sup G(𝑀) ⩽ 𝑛 holds for every 𝑅-complex 𝑀 with inf 𝑀 ⩾ 𝑤.
The functor G is called bounded below if for every 𝑛 ∈ ℤ there is a 𝑢 ∈ ℤ such

that inf G(𝑀) ⩾ 𝑛 holds for every 𝑅-complex 𝑀 with sup𝑀 ⩽ 𝑢.
The functor G is called bounded if it is bounded below and bounded above.

A.31 Proposition. Let G: D(𝑅)op → D(𝑆) be a triangulated functor.
(a) If G is bounded above, then it restricts to a functor D⊐ (𝑅)op → D⊏ (𝑆) .
(b) If G is bounded below, then it restricts to a functor D⊏ (𝑅)op → D⊐ (𝑆) .
(c) If G is bounded, then it restricts to a functor D⊏⊐ (𝑅)op → D⊏⊐ (𝑆) .
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Proof. (a): By assumption there is a 𝑤 ∈ ℤ such that sup G(𝑀) ⩽ 0 holds for all
complexes 𝑀 with inf 𝑀 ⩾ 𝑤. Let 𝑋 be a complex in D⊐ (𝑅) with H(𝑋) ≠ 0 and
set 𝑖 = inf 𝑋 . As G is triangulated one has G(𝑋) ≃ Σ𝑤−𝑖G(Σ𝑤−𝑖𝑋) in D(𝑆) and,
therefore, sup G(𝑋) = 𝑤 − 𝑖 + sup G(Σ𝑤−𝑖𝑋) ⩽ 𝑤 − 𝑖.

(b): There is a 𝑢 ∈ ℤ such that inf G(𝑀) ⩾ 0 holds for all complexes 𝑀 with
sup𝑀 ⩽ 𝑢. Let 𝑋 ∈ D⊏ (𝑅) with H(𝑋) ≠ 0 and set 𝑠 = sup 𝑋 . As G is triangulated
one has G(𝑋) ≃ Σ𝑢−𝑠G(Σ𝑢−𝑠𝑋) in D(𝑆) and, therefore, inf G(𝑋) ⩾ 𝑢 − 𝑠.

(c): Combine parts (a) and (b). □

A.32 Proposition. Let 𝑁 be an 𝑅-complex.
(a) If 𝑁 is in D⊏ (𝑅), then the functor RHom𝑅 ( , 𝑁) is bounded above.
(b) If 𝑁 has finite injective dimension, then RHom𝑅 ( , 𝑁) is bounded below.
(c) If 𝑁 in D⊏⊐ (𝑅) has finite injective dimension, then RHom𝑅 ( , 𝑁) is bounded.

Proof. Parts (a) and (b) follow from 7.6.7 and 8.2.8, and they imply (c). □

A.33 Lemma. Let G, J : D(𝑅)op → D(𝑆) be triangulated functors and 𝜏 : G→ J a
triangulated natural transformation. Let U be a class of 𝑅-complexes that is closed
under shifts and soft truncations. If 𝜏𝑀 is an isomorphism for every module 𝑀 in
U, then the following assertions hold.

(a) The morphism 𝜏𝑀 is an isomorphism for every complex 𝑀 in U ∩D⊏⊐ (𝑅)op .

(b) If G and J are bounded below, then 𝜏𝑀 is an isomorphism for every complex
𝑀 in U ∩D⊏ (𝑅)op .

(c) If G and J are bounded above, then 𝜏𝑀 is an isomorphism for every complex
𝑀 in U ∩D⊐ (𝑅)op .

(d) If G and J are bounded, then 𝜏𝑀 is an isomorphism for every 𝑀 in U .

Proof. The claims follow from arguments similar to those in the proof of A.28. □

A.34 Lemma. Let G: D(𝑅)op → D(𝑆) be a triangulated functor and U a class of
𝑅-complexes that is closed under shifts and soft truncations. If 𝑆 is left Noetherian
and G(𝑀) belongs to Df (𝑆) for every module 𝑀 in U, then the next assertions hold.

(a) The complex G(𝑀) is in Df (𝑆) for every complex 𝑀 in U ∩D⊏⊐ (𝑅)op .

(b) If G is bounded below, then G(𝑀) is in Df (𝑆) for every 𝑀 in U ∩D⊏ (𝑅)op .

(c) If G is bounded above, then G(𝑀) is in Df (𝑆) for every 𝑀 in U ∩D⊐ (𝑅)op .

(d) If G is bounded, then G(𝑀) is in Df (𝑆) for every 𝑀 in U .

Proof. (a): Because of the isomorphism 𝑀 ≃ 𝑀Ď sup𝑀 in D(𝑅), see 4.2.4, it
suffices to show that G(𝑀Ď𝑛) is in Df (𝑆) for every 𝑛 ∈ ℤ. For 𝑛 ≪ 0 one has
𝑀Ď𝑛 ≃ 0 in D(𝑅) and, therefore, G(𝑀Ď𝑛) ≃ 0 ∈ Df (𝑆). Now proceed by induction
on 𝑛. The complex 𝑀Ď𝑛−1 is in U; assume that G (𝑀Ď𝑛−1) belongs to Df (𝑆).
One has Σ𝑛H𝑛 (𝑀) ≃ (𝑀Ě𝑛)Ď𝑛, so the module H𝑛 (𝑀) belongs to U and thus
G(Σ𝑛H𝑛 (𝑀)) � Σ−𝑛G(H𝑛 (𝑀)) is in Df (𝑆) by assumption. Apply the triangulated
functor G to the distinguished triangle 7.6.6(a),

Σ𝑛H𝑛 (𝑀) −→ 𝑀Ď𝑛 −→ 𝑀Ď𝑛−1 −→ Σ (Σ𝑛H𝑛 (𝑀)) .

8-Mar-2024 Draft - use at own risk



Acyclicity and Boundedness 1001

As the category Df (𝑆) is triangulated, see 7.6.3, it follows that G(𝑀Ď𝑛) is in Df (𝑆).
(b): Fix 𝑛 ∈ ℤ and choose 𝑢 ∈ ℤ such that inf G(𝑋) ⩾ 𝑛 + 1 holds for all 𝑋 with

sup 𝑋 ⩽ 𝑢. Consider the distinguished triangle 𝑀Ě𝑢+1 → 𝑀 → 𝑀Ď𝑢 → Σ (𝑀Ě𝑢+1);
cf. 7.6.6(c). It induces by 6.5.19 an exact sequence of 𝑆-modules

H𝑛 (G(𝑀Ď𝑢)) −→ H𝑛 (G(𝑀)) �−−−→ H𝑛 (G(𝑀Ě𝑢+1)) −→ H𝑛−1 (G(𝑀Ď𝑢)) ,

where the isomorphism is forced by the vanishing of H𝑣 (G(𝑀Ď𝑢)) for 𝑣 ⩽ 𝑛. As
the complex 𝑀Ě𝑢+1 is in U ∩D⊏⊐ (𝑅)op, it follows from part (a) that G(𝑀Ě𝑢+1) is in
Df (𝑆). In particular, H𝑛 (G(𝑀Ě𝑢+1)) is finitely generated, and hence so is H𝑛 (G(𝑀)).

(c): An argument similar to the proof of part (b) applies.
(d): Consider the distinguished triangle 𝑀Ě1 → 𝑀 → 𝑀Ď0 → Σ (𝑀Ě1) in U

from 7.6.6(c). It follows from parts (b) and (c) that G(𝑀Ď0) and G(𝑀Ě1) belong
to Df (𝑆). Since G is a triangulated functor, and Df (𝑆) is a triangulated category, it
follows that G(𝑀) belongs to Df (𝑆). □

A.35. A functor D(𝑅) → D(𝑆)op is called bounded above/below if and only if the
opposite functor D(𝑅)op → D(𝑆) is bounded below/above according to A.30. One
gets results about such functors by interchanging “bounded above” and “bounded
below” in A.33 and A.34.

Exercises

E A.1 Let 𝑀 and 𝑁 be 𝑅-complexes one of which is bounded above. Show that if one has
H−𝑣 (Hom𝑅 (𝑀, 𝑁𝑣 ) ) = 0 for all 𝑣 ∈ ℤ, then H0 (Hom𝑅 (𝑀, 𝑁 ) ) = 0 holds.

E A.2 Let 𝑀 and 𝑁 be 𝑅-complexes one of which is bounded below. Show that if one has
H𝑣 (Hom𝑅 (𝑀𝑣 , 𝑁 ) ) = 0 for all 𝑣 ∈ ℤ, then H0 (Hom𝑅 (𝑀, 𝑁 ) ) = 0 holds.

E A.3 Let 𝑀 be an 𝑅o-complex and 𝑁 an 𝑅-complex such that 𝑀 is bounded above or
𝑁 is bounded below. Show that if one has H−𝑣 (𝑀 ⊗𝑅 𝑁𝑣 ) = 0 for all 𝑣 ∈ ℤ, then
H0 (𝑀 ⊗𝑅 𝑁 ) = 0 holds.

E A.4 Let 𝑀 be an acyclic 𝑅-complex and 𝑁 an 𝑅-module of finite injective dimension. Show
that Hom𝑅 (𝑀, 𝑁 ) is acyclic if Ext𝑚

𝑅
(𝑀𝑣 , 𝑁 ) = 0 holds for every 𝑣 ∈ ℤ and all 𝑚 > 0.

E A.5 Let 𝑁 be an acyclic 𝑅-complex and 𝑀 an 𝑅-module of finite projective dimension. Show
that Hom𝑅 (𝑀, 𝑁 ) is acyclic if Ext𝑚

𝑅
(𝑀, 𝑁𝑣 ) = 0 holds for every 𝑣 ∈ ℤ and all 𝑚 > 0.

E A.6 Let 𝑀 be an acyclic 𝑅o-complex and 𝑁 an 𝑅-module of finite flat dimension. Show that
𝑀 ⊗𝑅 𝑁 is acyclic if Tor𝑅𝑚 (𝑀𝑣 , 𝑁 ) = 0 holds for every 𝑣 ∈ ℤ and all 𝑚 > 0.

E A.7 Let 𝑀 be an 𝑅-complex and 𝑁 an 𝑅-module. Show that if Hom𝑅 (𝑁, 𝑀 ) is acyclic and
Ext1

𝑅
(𝑁, 𝑀𝑣 ) = 0 holds for all 𝑣 ∈ ℤ, then Ext1

𝑅
(𝑁, Z𝑣 (𝑀 ) ) = 0 holds for all 𝑣 ∈ ℤ;

show that the converse holds if 𝑀 is acyclic.
E A.8 Let 𝑀 be an 𝑅-complex and 𝑁 an 𝑅-module. Show that if Hom𝑅 (𝑀, 𝑁 ) is acyclic and

Ext1
𝑅
(𝑀𝑣 , 𝑁 ) = 0 holds for all 𝑣 ∈ ℤ, then Ext1

𝑅
(B𝑣 (𝑀 ) , 𝑁 ) = 0 holds for all 𝑣 ∈ ℤ;

show that the converse holds if 𝑀 is acyclic.
E A.9 Let 𝑀 be an 𝑅-complex and 𝑁 an 𝑅o-module. Show that if 𝑁 ⊗𝑅 𝑀 is acyclic and

Tor𝑅1 (𝑁, 𝑀𝑣 ) = 0 holds for all 𝑣 ∈ ℤ, then Tor𝑅1 (𝑁, B𝑣 (𝑀 ) ) = 0 holds for all 𝑣 ∈ ℤ;
show that the converse holds if 𝑀 is acyclic.

E A.10 Give a proof of A.6.
E A.11 Show that A.9 is also a consequence of A.2.
E A.12 Show that A.11 is also a consequence of A.3.
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E A.13 Give a direct proof of A.9, i.e. one that does not invoke A.5 or A.2.
E A.14 Let F: C(𝑅) → C(𝑆) be a functor such that there is an isomorphism F(Σ𝑀 ) � ΣF(𝑀 )

for every 𝑅-complex 𝑀. (a) Show that F is bounded above if and only if there exists
an integer 𝑑 with sup F(𝑀 )♮ ⩽ sup𝑀♮ + 𝑑 for all 𝑀 ∈ C(𝑅) . (b) Show that F is
bounded below if and only if there exists an integer 𝑑 with inf F(𝑀 )♮ ⩾ inf 𝑀♮ − 𝑑 for
all 𝑀 ∈ C(𝑅) .

E A.15 (Cf. A.21) Let G: C(𝑅) → C(𝑆)op be a functor and U a class of 𝑅-complexes. Define
G be bounded above/below on U if and only if the opposite functor C(𝑅)op → C(𝑆) is
bounded below/above on U. State and prove the result that parallels A.22.

E A.16 Let G: M(𝑅)op →M(𝑆) be additive functor. Show that left derived functor LG is
bounded below and the right derived functor RG is bounded above.

E A.17 (Cf. A.35) Let G: D(𝑅) →D(𝑆)op be a functor. Define G to be bounded above/below
if and only if the opposite functor D(𝑅)op → D(𝑆) is bounded below/above. State and
prove the results that correspond to A.33 and A.34.

E A.18 Let E: D(𝑅) →D(𝑆) and F: D(𝑆) →D(𝑇 ) be functors. Show that if E and F both
are bounded (above/below), then the composite FE is bounded (above/below).

E A.19 Let G: D(𝑅)op →D(𝑆) and F: D(𝑆) →D(𝑇 ) be functors. Show that if F and G both
are bounded (above/below), then the composite FG is bounded (above/below).
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Appendix B
Minimality

Synopsis. Minimal complex; injective envelope; minimal semi-injective resolution; Nakayama’s
lemma; projective cover; minimal semi-projective resolution; semi-perfect ring; perfect ring.

If 𝐼 is a semi-injective complex, then every quasi-isomorphism 𝐼 → 𝐼 is a homo-
topy equivalence by 5.3.24; minimality of 𝐼 would imply that every such quasi-
isomorphism would even be an isomorphism. After giving a few characterizations
of minimal complexes, we prove existence of minimal semi-injective resolutions for
all complexes over any ring. In contrast, existence of minimal semi-projective reso-
lutions for all complexes holds only over perfect rings. For complexes with bounded
above and degreewise finitely generated homology, minimal semi-projective resolu-
tions are more accessible: They can be constructed for every such complex over a
Noetherian semi-perfect ring, in particular over any Noetherian local ring.

The categorical approach to minimality taken here is already present in works of
Roig [217, 218] from the early 1990s. In the context of simplicial complexes, the
idea of minimal subobjects goes back to Eilenberg and Zilber [77] in the 1950s, and
in the same decade Eilenberg [75] also considered minimal resolutions of modules.

Our exposition is heavily influenced by Avramov, Foxby, and Halperin [25]; parts
of the material can be found in works of Avramov and Martsinkovsky [27], García
Rozas [104], and Krause and Saorín [161].

B.1 Lemma. Let 0 −−→ 𝑀 ′
𝛼′−−→ 𝑀

𝛼−−→ 𝑀 ′′ −−→ 0 be a degreewise split exact
sequence of 𝑅-complexes.

(a) The complex 𝑀 ′ is contractible if and only if 𝛼 is a homotopy equivalence,
and in that case the sequence is split in C(𝑅) .

(b) The complex 𝑀 ′′ is contractible if and only if 𝛼′ is a homotopy equivalence,
and in that case the sequence is split in C(𝑅) .

Proof. It follows from 2.3.12 and 2.3.13 that the following sequences are exact.

0→ Hom𝑅 (𝑀 ′, 𝑀 ′) → Hom𝑅 (𝑀 ′, 𝑀)
Hom (𝑀′ ,𝛼)
−−−−−−−−−→ Hom𝑅 (𝑀 ′, 𝑀 ′′) → 0 ,(†)

0→ Hom𝑅 (𝑀 ′′, 𝑀)
Hom (𝛼,𝑀 )
−−−−−−−−−→ Hom𝑅 (𝑀, 𝑀) → Hom𝑅 (𝑀 ′, 𝑀) → 0 ,(‡)
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0→ Hom𝑅 (𝑀 ′′, 𝑀 ′) → Hom𝑅 (𝑀 ′′, 𝑀)
Hom (𝑀′′ ,𝛼)
−−−−−−−−−→ Hom𝑅 (𝑀 ′′, 𝑀 ′′) → 0 .(♭)

If 𝛼 is a homotopy equivalence, then so is Hom𝑅 (𝑀 ′, 𝛼) by 4.3.19; in particular, it
is a quasi-isomorphism. It follows from (†) and 4.2.6 that Hom𝑅 (𝑀 ′, 𝑀 ′) is acyclic,
whence 𝑀 ′ is contractible by 4.3.29.

Conversely, if 𝑀 ′ is contractible, then Hom𝑅 (𝑀 ′, 𝑀) and Hom𝑅 (𝑀 ′′, 𝑀 ′) are
acyclic by 4.3.29. It follows from (♭) that Hom𝑅 (𝑀 ′′, 𝛼) is a quasi-isomorphism.
It is surjective on cycles by 4.2.7, so there exists a morphism 𝛽 : 𝑀 ′′ → 𝑀 with
𝛼𝛽 = 1𝑀′′ ; see 2.3.10. In particular, the original sequence is split in C(𝑅). Moreover,
it follows from (‡) that Hom𝑅 (𝛼, 𝑀) is a quasi-isomorphism, whence there exists a
morphism 𝛽′ : 𝑀 ′′ → 𝑀 such that 𝛽′𝛼 ∼ 1𝑀 . Thus 𝛼 is a homotopy equivalence;
see 4.3.3. This proves part (a), and a similar argument proves (b). □

B.2 Definition. An 𝑅-complex 𝑀 is called minimal if every homotopy equivalence
𝜀 : 𝑀 → 𝑀 is an isomorphism.

Minimality for complexes extends no interesting notion for modules; indeed,
every module is minimal when viewed as a complex. Here are a couple less trivial
examples of minimal complexes.

B.3 Example. The ℤ-complex 𝐼 = 0→ ℚ→ ℚ/ℤ→ 0 is minimal, as there are no
non-zero homomorphisms ℚ/ℤ → ℚ and hence no non-zero homomorphisms
𝐼 → 𝐼 of degree 1. It follows that every homotopy equivalence 𝐼 → 𝐼 is an
isomorphism.

B.4 Example. Let 𝕜 be a field and consider the local ring 𝑅 = 𝕜 [𝑥]/(𝑥2) of dual
numbers. For simplicity, let 𝑥 denote the coset of 𝑥 in 𝑅. The 𝑅-complex

𝑋 = · · · 𝑥−−−→ 𝑅
𝑥−−−→ 𝑅

𝑥−−−→ 𝑅
𝑥−−−→ · · ·

is minimal. Indeed, every homomorphism 𝑅 → 𝑅 is given by multiplication by an
element in 𝑅. A homotopy equivalence 𝛼 : 𝑋 → 𝑋 is, therefore, given by a sequence
of ring elements (𝑎𝑣)𝑣∈ℤ; so is its homotopy inverse 𝛽 = (𝑏𝑣)𝑣∈ℤ and the homotopy
𝜚 = (𝑟𝑣)𝑣∈ℤ from 1𝑋 to 𝛼𝛽. For every 𝑣 ∈ ℤ one has 1 − 𝑎𝑣𝑏𝑣 = 𝑥𝑟𝑣 + 𝑟𝑣−1𝑥. The
element 𝑎𝑣𝑏𝑣 = 1−𝑥(𝑟𝑣+𝑟𝑣−1) is not in the maximal ideal (𝑥) of 𝑅, so it is invertible,
whence 𝛼𝑣 is invertible and 𝛼 is an isomorphism.

B.5 Lemma. Let 𝑀 be an 𝑅-complex. If 𝑀 is minimal, then the zero complex is the
only contractible direct summand of 𝑀 .

Proof. Let 𝑀 be minimal and assume that it is a direct sum 𝑀 = 𝑀 ′ ⊕𝐶 where𝐶 is
contractible. The morphism 1𝑀′ ⊕0𝐶 is a homotopy equivalence 𝑀 → 𝑀; see 4.3.6.
As 𝑀 is minimal, 1𝑀′ ⊕ 0𝐶 is an isomorphism whence 𝐶 is the zero complex. □

Minimality can be characterized in several different ways.

B.6 Proposition. For an 𝑅-complex 𝑀 , the following conditions are equivalent.
(i) 𝑀 is minimal.
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(ii) Every morphism 𝜀 : 𝑀 → 𝑀 with 𝜀 ∼ 1𝑀 is an isomorphism.
(iii) Every homotopy equivalence 𝛼 : 𝐾 → 𝑀 has a right inverse.
(iv) Every homotopy equivalence 𝜀 : 𝑀 → 𝑀 has a right inverse.
(v) Every homotopy equivalence 𝛽 : 𝑀 → 𝑁 has a left inverse.
(vi) Every homotopy equivalence 𝜀 : 𝑀 → 𝑀 has a left inverse.

If these conditions hold, then the complexes Ker𝛼 and Coker 𝛽 are contractible for
all homotopy equivalences 𝛼 : 𝐾→ 𝑀 and 𝛽 : 𝑀 → 𝑁 .

Proof. First notice that if 𝛼 : 𝐾 → 𝑀 is a homotopy equivalence and (iii) holds,
then there is a split exact sequence 0 −−→ Ker𝛼 −−→ 𝐾

𝛼−−→ 𝑀 −−→ 0, and Ker𝛼
is contractible by B.1. Similarly, if 𝛽 : 𝑀 → 𝑁 is a homotopy equivalence and (v)
holds, then Coker 𝛽 is contractible.

The implications (iii)⇒ (iv) and (v)⇒ (vi) are evident.
(i)⇒ (ii): If the endomorphisms 𝜀 : 𝑀 → 𝑀 and 1𝑀 are homotopic, then one has

𝜀2 ∼ 𝜀 ∼ 1𝑀 ; see 4.3.3. It follows that 𝜀 is its own homotopy inverse; in particular,
𝜀 is a homotopy equivalence, so by (i) it is an isomorphism.

(ii)⇒ (iii): Let 𝛼 : 𝐾 → 𝑀 be a homotopy equivalence with homotopy inverse
𝛾 : 𝑀 → 𝐾 . By (ii) the morphism 𝜀 = 𝛼𝛾 is an isomorphism, and it follows that
𝛾𝜀−1 is a right inverse of 𝛼.

(iv)⇒ (i): Let 𝜀 : 𝑀 → 𝑀 be a homotopy equivalence. It has a right inverse, so
the sequence 0 −−→ Ker 𝜀 𝜄−−→ 𝑀

𝜀−−→ 𝑀 −−→ 0 is split exact. Consider the split exact
sequence 0 −−→ 𝑀

𝜎−−→ 𝑀
𝜏−−→ Ker 𝜀 −−→ 0, where 𝜏𝜄 = 1Ker 𝜀 and 𝜀𝜎 = 1𝑀 . As

already noted, Ker 𝜀 is contractible, whence 𝜎 is a homotopy equivalence by B.1 and
surjective by (iv). Thus 𝜎 is an isomorphism and, therefore, 𝜀 is an isomorphism.

(ii)⇒ (v): Let 𝛽 : 𝑀 → 𝑁 be a homotopy equivalence with homotopy inverse
𝛾 : 𝑁 → 𝑀 . By (ii) the morphism 𝜀 = 𝛾𝛽 is an isomorphism, and it follows that
𝜀−1𝛾 is a left inverse of 𝛽.

(vi)⇒ (i): Let 𝜀 : 𝑀 → 𝑀 be a homotopy equivalence. It has a left inverse, so the
sequence 0 −−→ 𝑀

𝜀−−→ 𝑀
𝜋−−→ Coker 𝜀 −−→ 0 is split exact. Consider the split exact

sequence 0 −−→ Coker 𝜀 𝜎−−→ 𝑀
𝜏−−→ 𝑀 −−→ 0, where 𝜋𝜎 = 1Coker 𝜀 and 𝜏𝜀 = 1𝑀 .

As noted, Coker 𝜀 is contractible, whence 𝜏 is a homotopy equivalence by B.1 and
injective by (vi). Thus 𝜏 is an isomorphism and, therefore, 𝜀 is an isomorphism. □

B.7 Corollary. Let 𝑀 and 𝑀 ′ be minimal 𝑅-complexes.
(a) Every homotopy equivalence 𝛼 : 𝑀 → 𝑀 ′ is an isomorphism.
(b) If there exist contractible 𝑅-complexes𝐶 and𝐶′ such that 𝑀 ⊕𝐶 and 𝑀 ′ ⊕𝐶′

are homotopy equivalent, then the complexes 𝑀 and 𝑀 ′ are isomorphic.

Proof. (a): It follows from B.6 that 𝛼 has a right inverse as well as a left inverse,
whence it is an isomorphism.

(b): It follows from B.1 that the injection 𝑀 ↣ 𝑀 ⊕ 𝐶 and the projection
𝑀 ′ ⊕ 𝐶′ ↠ 𝑀 ′ are homotopy equivalences. Therefore, the composite map

𝑀 ↣→ 𝑀 ⊕ 𝐶 ≊−→ 𝑀 ′ ⊕ 𝐶′ −↠ 𝑀 ′

is a homotopy equivalence, and hence an isomorphism by (a). □
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Injective Envelopes

Every graded module can by 5.3.4 be embedded into a graded-injective one; the
immediate goal is to show that there is a unique way to do this minimally.

B.8 Definition. Let 𝑀 be a graded 𝑅-module. A graded submodule 𝑁 of 𝑀 is called
essential if 𝑀 ′ ∩ 𝑁 ≠ 0 holds for every graded submodule 𝑀 ′ ≠ 0 of 𝑀 .

Evidently, a graded 𝑅-submodule 𝑁 ⊆ 𝑀 is essential if and only if it intersects
every cyclic graded submodule non-trivially, i.e. 𝑅⟨𝑚 ⟩ ∩ 𝑁 ≠ 0 for every homoge-
neous element 𝑚 ≠ 0 in 𝑀 .
Remark. Another word for essential submodule is ‘large’ submodule.

B.9 Example. Every non-zero ideal in ℤ is essential.

B.10. A graded direct summand 𝑁 of a graded 𝑅-module 𝑀 is essential if and only
if 𝑁 = 𝑀 .

B.11 Lemma. Let 𝑀 be a graded 𝑅-module with graded submodules 𝑁 and 𝑁 ′.
(a) Assume that there is an inclusion 𝑁 ⊆ 𝑁 ′. If 𝑁 is essential in 𝑁 ′, and 𝑁 ′ is

essential in 𝑀 , then 𝑁 is essential in 𝑀 .
(b) Let 𝑋 and 𝑋 ′ be graded submodules of 𝑁 and 𝑁 ′. If 𝑋 is essential in 𝑁 and

𝑋 ′ is essential in 𝑁 ′, then 𝑋 ∩ 𝑋 ′ is essential in 𝑁 ∩ 𝑁 ′.
(c) Let 𝛼 : 𝑀 → 𝑋 be a homomorphism of graded 𝑅-modules with 𝑁 ∩ Ker𝛼 = 0.

If 𝑁 is essential in 𝑀 , then 𝛼(𝑁) is essential in 𝛼(𝑀) .

Proof. (a): Let 𝑀 ′ ≠ 0 be a graded submodule of 𝑀 . The graded submodule
𝑁 ∩ 𝑀 ′ = 𝑁 ∩ (𝑁 ′ ∩ 𝑀 ′) is non-zero, as𝑁 ′ is essential in𝑀 and𝑁 is essential in𝑁 ′.

(b): Let 𝑀 ′ ≠ 0 be a graded submodule of 𝑁 ∩ 𝑁 ′. The graded submodule
(𝑋 ∩ 𝑋 ′) ∩ 𝑀 ′ = 𝑋 ∩ (𝑋 ′ ∩ 𝑀 ′) is non-zero, as 𝑋 ′ is essential in 𝑁 ′ and 𝑋 is
essential in 𝑁 .

(c): Let 𝑋 ′ ≠ 0 be a graded submodule of 𝛼(𝑀). As 𝛼(𝛼−1 (𝑋 ′)) = 𝑋 ′ is
non-zero one has 𝛼−1 (𝑋 ′) ≠ 0 and thus 𝛼−1 (𝑋 ′) ∩ 𝑁 ≠ 0 holds. By assump-
tion, 𝑁 ∩ Ker𝛼 = 0, and hence 𝛼(𝛼−1 (𝑋 ′) ∩ 𝑁) ≠ 0. Since there is an inclusion
𝛼(𝛼−1 (𝑋 ′) ∩ 𝑁) ⊆ 𝑋 ′ ∩ 𝛼(𝑁), it follows that 𝑋 ′ ∩ 𝛼(𝑁) is non-zero, whence 𝛼(𝑁)
is essential in 𝛼(𝑀). □

B.12 Lemma. Assume that 𝑅 is commutative and Noetherian and let 𝑈 be a multi-
plicative subset of 𝑅. Let 𝑀 be a graded 𝑅-module and 𝑁 ⊆ 𝑀 a graded submodule.
If 𝑁 is essential in 𝑀 , then 𝑈−1𝑁 is an essential graded submodule of the graded
𝑈−1𝑅-module𝑈−1𝑀 .

Proof. It must be argued that for every non-zero homogeneous element 𝑥 ∈ 𝑈−1𝑀
one has (𝑈−1𝑅)⟨𝑥 ⟩ ∩𝑈−1𝑁 ≠ 0. We can assume that 𝑥 has the form 𝑥 = 𝑚

1 with
𝑚 homogeneous in 𝑀 . Consider the set {Ann𝑅 (𝑢𝑚) | 𝑢 ∈ 𝑈 } of ideals in 𝑅. As
𝑅 is Noetherian, it has a maximal element, say, Ann𝑅 (𝑣𝑚), with 𝑣 ∈ 𝑈. Note that
𝑣𝑚 ≠ 0 in 𝑀 as 𝑚

1 ≠ 0 in 𝑈−1𝑀 . As 𝑁 is essential in 𝑀 , one has 𝑅⟨𝑣𝑚 ⟩ ∩ 𝑁 ≠ 0.
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The ideal 𝔞 = (𝑁 :𝑅 𝑣𝑚) satisfies 𝔞(𝑣𝑚) = 𝑅⟨𝑣𝑚 ⟩ ∩ 𝑁 , so 𝔞(𝑣𝑚) ≠ 0 holds. As
𝑅 is Noetherian, the ideal 𝔞 is finitely generated: 𝔞 = (𝑎1, . . . , 𝑎𝑛). Suppose that
𝑎𝑖𝑣𝑚

1 = 0 holds in𝑈−1𝑀 for every 𝑖 ∈ {1, . . . , 𝑛}. It follows that there exists a 𝑤 ∈ 𝑈
with 𝑤𝑎𝑖𝑣𝑚 = 0 in 𝑀 , that is, 𝑎𝑖 ∈ Ann𝑅 (𝑤𝑣𝑚) for every 𝑖 ∈ {1, . . . , 𝑛}. Evidently,
there is an inclusion Ann𝑅 (𝑣𝑚) ⊆ Ann𝑅 (𝑤𝑣𝑚), and since 𝑤𝑣 ∈ 𝑈 the maximality
of Ann𝑅 (𝑣𝑚) implies that one has Ann𝑅 (𝑣𝑚) = Ann𝑅 (𝑤𝑣𝑚). Consequently, 𝑎𝑖 ∈
Ann𝑅 (𝑣𝑚) for every 𝑖 ∈ {1, . . . , 𝑛}, which contradicts the fact that 𝔞(𝑣𝑚) ≠ 0. It
follows that 𝑎𝑖𝑣𝑚1 ≠ 0 holds in𝑈−1𝑀 for some 𝑖 ∈ {1, . . . , 𝑛}. The non-zero element
𝑎𝑖𝑣𝑚

1 certainly belongs to (𝑈−1𝑅)⟨ 𝑚1 ⟩. As 𝑎𝑖𝑣𝑚 ∈ 𝔞(𝑣𝑚) = 𝑅⟨𝑣𝑚 ⟩ ∩ 𝑁 ⊆ 𝑁 one
also has 𝑎𝑖𝑣𝑚

1 ∈ 𝑈−1𝑁 , so the intersection (𝑈−1𝑅)⟨ 𝑚1 ⟩ ∩𝑈
−1𝑁 is non-zero. □

B.13 Definition. An injective envelope of a graded 𝑅-module 𝑀 is an injective
morphism 𝜄 : 𝑀 → 𝐸 of graded 𝑅-modules where 𝐸 is graded-injective and Im 𝜄 is
essential in 𝐸 . The module 𝐸 alone is also referred to as an injective envelope of 𝑀 .

Notice that an injective envelope is an injective preenvelope.
Remark. Another word for injective envelope is ‘injective hull’.

B.14 Example. Recall from 8.2.10 that the ring ℤ/4ℤ is self-injective. Evidently
2ℤ/4ℤ is the only prime ideal in ℤ/4ℤ, and it is the kernel of multiplication by 2
on ℤ/4ℤ. Thus there is an injective homomorphism 𝜄 : (ℤ/4ℤ)/(2ℤ/4ℤ) → ℤ/4ℤ
whose image is clearly essential. It follows that 𝜄 is an injective envelope.

B.15 Example. The ℤ-module ℚ is divisible and hence injective by 1.3.32. As ℤ is
an essential submodule of ℚ, the embedding ℤ↣ ℚ is an injective envelope.

For every prime 𝑝, the Prüfer 𝑝-group ℤ(𝑝∞) = ({1, 𝑝, 𝑝2, . . . }−1ℤ)/ℤ is divis-
ible, and hence injective. To see this, it suffices to show that multiplication by 𝑞 is
surjective on ℤ(𝑝∞) for every prime 𝑞. For 𝑞 = 𝑝 this is clear as [ 𝑥

𝑝𝑛
]ℤ = 𝑝 [ 𝑥

𝑝𝑛+1
]ℤ.

Given 𝑞 ≠ 𝑝 and [ 𝑥
𝑝𝑛
]ℤ in ℤ(𝑝∞), choose integers 𝑎 and 𝑏 with 𝑎𝑞 + 𝑏𝑝𝑛 = 1;

one then has [ 𝑥
𝑝𝑛
]ℤ = 𝑞 [ 𝑎𝑥

𝑝𝑛
]ℤ. The homomorphism 𝜄 : ℤ/𝑝ℤ→ ℤ(𝑝∞) given by

[𝑥] 𝑝ℤ ↦→ [ 𝑥𝑝 ]ℤ is evidently injective. To see that its image is essential in ℤ(𝑝∞), let
𝑦 = [ 𝑥

𝑝𝑛
]ℤ be a non-zero element in ℤ(𝑝∞). One can assume that 𝑥 is not divisible

by 𝑝, and thus [ 𝑥
𝑝
]ℤ = 𝑝𝑛−1𝑦 is a non-zero element in Im 𝜄 ∩ ℤ⟨𝑦⟩. It follows that 𝜄

is an injective envelope.

We shall see that injective envelopes always exist and that they are unique up to
isomorphism. We begin by proving uniqueness, which is the easiest.

B.16 Proposition. Let 𝑀 be a graded 𝑅-module. If 𝜄 : 𝑀 ↣ 𝐸 and 𝜄′ : 𝑀 ↣ 𝐸 ′ are
injective envelopes, then there exists an isomorphism 𝛾 : 𝐸 → 𝐸 ′ with 𝛾𝜄 = 𝜄′.

Proof. By graded-injectivity of 𝐸 ′ there is a morphism 𝛾 : 𝐸 → 𝐸 ′ with 𝛾𝜄 = 𝜄′;
see 5.3.6. Since Ker 𝛾 ∩ Im 𝜄 = 0 holds and Im 𝜄 is essential in 𝐸 , the map 𝛾 is
injective. In particular, Im 𝛾 � 𝐸 is graded-injective, whence there is an equality
𝐸 ′ = Im 𝛾 ⊕ 𝐶 by 5.3.6. As Im 𝜄′ is contained in Im 𝛾 one has Im 𝜄′ ∩ 𝐶 = 0;
consequently, 𝐶 is zero as Im 𝜄′ is essential in 𝐸 ′. It follows that 𝛾 is surjective and
hence an isomorphism. □
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B.17 Theorem. Every graded 𝑅-module has an injective envelope.

Proof. Let 𝑀 be a graded 𝑅-module. By 5.3.4 there exists an injective morphism
of graded 𝑅-modules 𝜄 : 𝑀 → 𝐼, where 𝐼 is graded-injective. The set of graded
submodules of 𝐼 that contains 𝜄(𝑀) as an essential submodule is inductively ordered
by inclusion. Hence, by Zorn’s lemma, it has a maximal element 𝐸 . It remains to
prove that 𝐸 is graded-injective. By another application of Zorn’s lemma, choose a
graded submodule 𝑍 of 𝐼 maximal with the property 𝑍 ∩ 𝐸 = 0. Denote by 𝜁 the
morphism 𝐸 ↣ 𝐼 ↠ 𝐼/𝑍 . It is sufficient to prove that 𝜁 is an isomorphism. Indeed,
the composite of 𝐼 ↠ 𝐼/𝑍 and 𝜁−1 : 𝐼/𝑍 → 𝐸 is then a left inverse of the embedding
𝐸 ↣ 𝐼. As 𝐼 is graded-injective, so is the graded direct summand 𝐸 .

To prove that 𝜁 is an isomorphism, notice first that it is injective as one has
Ker 𝜁 = 𝑍 ∩ 𝐸 = 0. It follows from maximality of 𝑍 that Im 𝜁 is essential in 𝐼/𝑍 . By
the lifting property of the graded-injective module 𝐼 there is a morphism 𝛼 : 𝐼/𝑍 → 𝐼

such that 𝛼𝜁 : 𝐸 → 𝐼 is the inclusion; see 5.3.6. As Ker𝛼 ∩ Im 𝜁 = 0 and Im 𝜁 is
essential in 𝐼/𝑍 , it follows that 𝛼 is injective. Thus B.11 yields that 𝛼𝜁 (𝐸) = 𝐸

is essential in 𝛼(𝐼/𝑍), whence 𝜄(𝑀) is essential in 𝛼(𝐼/𝑍). By maximality of 𝐸
one gets 𝛼(𝐼/𝑍) = 𝐸 , and thus 𝛼 : 𝐼/𝑍 → 𝐸 satisfies 𝛼𝜁 = 1𝐸 . It follows that the
essential submodule Im 𝜁 is a direct summand of 𝐼/𝑍 , so one has Im 𝜁 = 𝐼/𝑍 . □

B.18 Definition. Let 𝑀 be a graded 𝑅-module. The injective module in an injective
envelope of 𝑀 , which by B.16 is unique up to isomorphism, is denoted E𝑅 (𝑀).

Remark. In spite of what the notation might suggest, E𝑅 (𝑀 ) is not natural in 𝑀; that is, the
assignment of injective envelopes is not a functor. The obstruction is the non-uniqueness of lifts of
morphisms 𝑀 → 𝑁 to E𝑅 (𝑀 ) → E𝑅 (𝑁 ); Goodearl makes it explicit in [106, 1.B].

B.19 Corollary. Let 𝐼 be a graded-injective 𝑅-module. For every graded submodule
𝑍 of 𝐼 there exist graded-injective submodules 𝐸 and 𝑉 of 𝐼, such that 𝑍 is essential
in 𝐸 and there is an equality 𝐼 = 𝐸 ⊕ 𝑉 of graded 𝑅-modules. In particular, 𝐸 is an
injective envelope of 𝑍 .

Proof. By B.17 the graded module 𝑍 has an injective envelope 𝜄 : 𝑍 ↣ 𝐸 ′. By
the lifting property of 𝐼 there is a morphism 𝛼 : 𝐸 ′ → 𝐼 such that 𝛼𝜄 : 𝑍 → 𝐼 is the
inclusion; see 5.3.6. As one has Ker𝛼 ∩ Im 𝜄 = 0 and Im 𝜄 is essential in 𝐸 ′, it follows
that 𝛼 is injective. Set 𝐸 = Im𝛼; note that 𝐸 � 𝐸 ′ is graded-injective and hence a
direct summand of 𝐼 by 5.3.6. It follows from B.11 that 𝛼𝜄(𝑍) = 𝑍 is essential in 𝐸 ,
so the assertion holds with 𝑉 = 𝐼/𝐸 . □

Minimal Complexes of Injective Modules

For a complex of injective modules, minimality means that the subcomplex of cycles
is essential.

B.20 Lemma. Let 𝐼 be a complex of injective 𝑅-modules. If the graded submodule
Z(𝐼)♮ of 𝐼♮ is essential, then 𝐼 is minimal.
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Proof. Assume that Z(𝐼)♮ is essential in 𝐼♮. Let 𝜀 : 𝐼 → 𝐼 be an endomorphism
homotopic to 1𝐼 ; to prove that 𝐼 is minimal, it suffices by B.6 to show that 𝜀 is an
isomorphism. By assumption there exists a homomorphism 𝜎 : 𝐼 → 𝐼 of degree 1
with 1𝐼 −𝜀 = 𝜕𝐼𝜎+𝜎𝜕𝐼 . Set 𝑋 = Z(𝐼) ∩ Ker 𝜀; for every 𝑥 in 𝑋 one has 𝑥 = 𝜕𝐼𝜎(𝑥)
and, therefore, 𝜎(𝑋) ∩ Z(𝐼) = 0. As Z(𝐼)♮ is essential in 𝐼♮, it follows that 𝜎(𝑋) is
0, and then 𝑋 is zero. From the definition of 𝑋 it follows that 𝜀 is injective.

The exact sequence 0 −−→ 𝐼
𝜀−−→ 𝐼 −−→ Coker 𝜀 −−→ 0 is degreewise split by 5.3.6.

Since 𝜀 is homotopic to 1𝐼 , it is a homotopy equivalence, and it follows from B.1
that the sequence is split in C(𝑅). Let 𝜚 : 𝐼 → 𝐼 be a morphism such that 𝜚𝜀 = 1𝐼 .
It follows that 𝜚 is homotopic to 1𝐼 , so by the argument above 𝜚 is injective and,
therefore, it is an isomorphism. Hence, also 𝜀 is an isomorphism. □

B.21 Theorem. Let 𝐼 be a complex of injective 𝑅-modules. There is an equality
𝐼 = 𝐼 ′ ⊕ 𝐼 ′′, where 𝐼 ′ and 𝐼 ′′ are complexes of injective 𝑅-modules, 𝐼 ′ is minimal,
and 𝐼 ′′ is contractible. Moreover, the following assertions hold.

(a) The complex 𝐼 ′ is unique in the following sense: if one has 𝐼 = 𝐽′ ⊕ 𝐽′′, where
𝐽′ is minimal and 𝐽′′ is contractible, then 𝐽′ is isomorphic to 𝐼 ′.

(b) 𝐼 is minimal if and only if Z(𝐼)♮ is essential in 𝐼♮.
(c) If 𝐼 is semi-injective, then 𝐼 ′ and 𝐼 ′′ are semi-injective.

Proof. By B.19 there is an equality 𝐼♮ = 𝐸 ⊕ 𝑉 of graded 𝑅-modules, where Z(𝐼)♮
is essential in 𝐸 . As one has 𝑉 ∩ Z(𝐼)♮ = 0, the differential induces an isomorphism
𝑉 � Σ1𝜕𝐼 (𝑉), in particular 𝜕𝐼 (𝑉) is a graded-injective 𝑅-module. As 𝜕𝐼 (𝑉) is
contained in Z(𝐼)♮ and hence in 𝐸 , there is a graded 𝑅-module 𝑈 such that 𝐸 =

𝑈 ⊕ 𝜕𝐼 (𝑉); see 5.3.6. The differential 𝜕𝐼 restricts to a homomorphism from the
graded-injective module 𝑉 ⊕ 𝜕𝐼 (𝑉) to itself. Denote by 𝐼 ′′ the subcomplex of 𝐼
given by 𝑉 ⊕ 𝜕𝐼 (𝑉) and notice that it is contractible with contraction given by the
inverse of the isomorphism 𝜕 :𝑉 → Σ𝜕𝐼 (𝑉). Now it follows from B.1 that there is
an equality 𝐼 = 𝐼 ′ ⊕ 𝐼 ′′in C(𝑅), where 𝐼 ′ is isomorphic to the quotient complex
𝐼 = 𝐼/𝐼 ′′. Since 𝐼 is a complex of injective modules, so is 𝐼 ′. To prove that the
complex 𝐼 ′ � 𝐼 is minimal, it suffices by B.20 to prove that Z(𝐼)♮ is essential in 𝐼♮.
Denote by 𝜋 the canonical map 𝐼 ↠ 𝐼 and note that its restriction to 𝑈 is injective.
Let 𝑥 ≠ 0 be an element in 𝐼 and choose an element 𝑢 ∈ 𝑈 with 𝜋(𝑢) = 𝑥. As Z(𝐼)♮ is
essential in 𝐸 = 𝑈 ⊕ 𝜕𝐼 (𝑉), there exists an element 𝑟 in 𝑅 such that 𝑟𝑢 ≠ 0 is in Z(𝐼)
and, therefore 𝑟𝑥 = 𝜋(𝑟𝑢) ≠ 0 is in Z(𝐼). Thus Z(𝐼) is essential in 𝐼. This proves the
existence of complexes 𝐼 ′ and 𝐼 ′′ with the desired properties. The assertions (a) and
(c) follow from B.7 and 5.3.21, respectively.

(b): The “if” part is B.20. For the converse, assume that 𝐼 is minimal. By the
arguments above, there is an equality of 𝑅-complexes 𝐼 = 𝐼 ′ ⊕ 𝐼 ′′, where 𝐼 ′′ is
contractible and Z(𝐼 ′)♮ is essential in 𝐼 ′♮; in particular, 𝐼 ′ is minimal. The surjection
𝐼 ↠ 𝐼 ′ is a homotopy equivalence by B.1 and hence an isomorphism by B.7. Thus,
one has 𝐼 = 𝐼 ′ so Z(𝐼)♮ is essential in 𝐼♮. □

B.22 Corollary. A complex 𝐼 of injective 𝑅-modules is minimal if and only if the
zero complex is the only contractible direct summand of 𝐼.
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Proof. The “if” part is immediate from the decomposition 𝐼 = 𝐼 ′ ⊕ 𝐼 ′′ from B.21.
and the “only if” follows from B.5. □

Minimal Semi-Injective Resolutions

Every quasi-isomorphism with a semi-injective domain has by 5.3.23/6.3.6 a ho-
motopy left inverse. Under the additional assumption that the domain complex is
minimal, such a quasi-isomorphism has a genuine left inverse.

B.23 Proposition. For an 𝑅-complex 𝐼, the following conditions are equivalent.
(i) 𝐼 is semi-injective and minimal.
(ii) Every quasi-isomorphism 𝐼 → 𝑀 has a left inverse.

Proof. Assume that 𝐼 is semi-injective and minimal. If 𝛽 : 𝐼 → 𝑀 is a quasi-
isomorphism, then there exists by 5.3.23 a morphism 𝛾 : 𝑀 → 𝐼 with 𝛾𝛽 ∼ 1𝐼 .
Set 𝜀 = 𝛾𝛽; by assumption 𝜀 has an inverse, so 𝜀−1𝛾 is a left inverse for 𝛽.

Assume that every quasi-isomorphism 𝐼 → 𝑀 has a left inverse. In particular,
every homotopy equivalence 𝐼 → 𝐼 has a left inverse and hence 𝐼 is minimal by B.6.
It follows from 5.3.16 that 𝐼 is semi-injective. □

B.24 Corollary. A semi-injective 𝑅-complex 𝐼 is minimal if and only if the zero
complex is the only acyclic subcomplex of 𝐼.

Proof. A semi-injective complex 𝐼 with no non-zero acyclic subcomplex is minimal
per B.22. On the other hand, if 𝐴 is an acyclic subcomplex of 𝐼 and 𝐼 is minimal, then
the quasi-isomorphism 𝜋 : 𝐼 ↠ 𝐼/𝐴 has a left inverse by B.23, so 𝜋 is an isomorphism
and 𝐴 = 0. □

B.25 Definition. Let 𝑀 be an 𝑅-complex. A semi-injective resolution 𝑀 ≃−−→ 𝐼 is
called minimal if the semi-injective complex 𝐼 is minimal.

B.26 Theorem. Let 𝑀 be an 𝑅-complex. There exists a minimal semi-injective reso-
lution 𝑀 ≃−−→ 𝐸; further, 𝐸 is unique up to isomorphism and has the next properties.

(a) 𝐸𝑣 = 0 holds for all 𝑣 > sup𝑀 .
(b) For every semi-injective resolution𝑀 ≃−−→ 𝐼 the complex𝐸 is a direct summand

of 𝐼.

Proof. By 5.3.26 there is a semi-injective resolution 𝜄 : 𝑀 ≃−−→ 𝐼 with 𝐼𝑣 = 0 for
𝑣 > sup𝑀 . By B.21 one has 𝐼 = 𝐸 ⊕ 𝐼 ′′, where 𝐸 is semi-injective and minimal,
and 𝐼 ′′ is contractible. Let 𝜋 be the projection 𝐼 ↠ 𝐸 ; by 4.2.6 it is a quasi-
isomorphism, as 𝐼 ′′ is acyclic. Now the composite 𝜋𝜄 : 𝑀 ≃−−→ 𝐸 is a minimal semi-
injective resolution with 𝐸𝑣 = 0 for all 𝑣 > sup𝑀 . This proves existence and part (a).

Let 𝑀 ≃−−→ 𝐼 be any semi-injective resolution. It follows from 5.3.22 that there
is a quasi-isomorphism 𝛼 : 𝐸 → 𝐼, and by B.23 it has left inverse 𝛽. Thus 𝐸 is a
direct summand of 𝐼; this proves part (b). The morphism 𝛽 is a quasi-isomorphism,
so if 𝐼 is minimal, then 𝛽 has a left inverse by the same argument, and then it is an
isomorphism with 𝛽−1 = 𝛼. This proves the uniqueness statement. □
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B.27 Example. If 𝑀 is an acyclic 𝑅-complex, then 𝑀 ≃−−→ 0 is the minimal semi-
injective resolution; the morphism is only injective if 𝑀 is the zero complex.

Nakayama’s Lemma

Intersection and sum of submodules are categorically dual notions. Indeed, if 𝑀 and
𝑁 are submodules of same module, then the commutative diagram

𝑀 ∩ 𝑁
��

��

// // 𝑁
��

��

𝑀 // // 𝑁 + 𝑀 .

is both a pushout and a pullback square. Thus, the following notion of a superfluous
submodule is dual to that of an essential submodule from B.8.

B.28 Definition. Let 𝑀 be a graded 𝑅-module. A graded submodule 𝑁 of 𝑀 is
called superfluous if 𝑁 +𝑀 ′ ≠ 𝑀 holds for every graded submodule 𝑀 ′ ≠ 𝑀 of 𝑀 .

Remark. Another word for superfluous submodule is ‘small’ submodule.

B.29 Example. The only superfluous ideal in ℤ is 0. The maximal ideal 2ℤ/4ℤ is
superfluous in ℤ/4ℤ.

B.30. A graded direct summand 𝑁 of a graded 𝑅-module 𝑀 is superfluous if and
only if 𝑁 = 0.

B.31 Lemma. Let 𝑀 be a graded 𝑅-module with graded submodules 𝑁 and 𝑁 ′.
(a) Assume that there is an inclusion 𝑁 ⊆ 𝑁 ′. If 𝑁 is superfluous in 𝑁 ′, then 𝑁 is

superfluous in 𝑀 .
(b) If 𝑁 and 𝑁 ′ are superfluous in 𝑀 , then 𝑁 + 𝑁 ′ is superfluous in 𝑀 .
(c) If 𝛼 : 𝑀 → 𝑋 is a homomorphism of graded 𝑅-modules and 𝑁 is superfluous

in 𝑀 , then 𝛼(𝑁) is superfluous in 𝑋 .

Proof. (a): If 𝑀 ′ is a graded submodule of 𝑀 such that 𝑁 + 𝑀 ′ = 𝑀 holds, then
one has 𝑁 ′ = (𝑁 + 𝑀 ′) ∩ 𝑁 ′ = 𝑁 + (𝑀 ′ ∩ 𝑁 ′). Thus, if 𝑁 is superfluous in 𝑁 ′, then
one has 𝑀 ′ ∩ 𝑁 ′ = 𝑁 ′ and, therefore, 𝑁 ′ ⊆ 𝑀 ′. In particular, 𝑁 is a submodule of
𝑀 ′, whence 𝑀 ′ = 𝑁 + 𝑀 ′ = 𝑀 holds.

(b): If 𝑀 ′ is a graded submodule of 𝑀 such that (𝑁 + 𝑁 ′) +𝑀 ′ = 𝑁 + (𝑁 ′ +𝑀 ′)
is 𝑀 , then one has 𝑁 ′ + 𝑀 ′ = 𝑀 because 𝑁 is superfluous in 𝑀 , and then 𝑀 = 𝑀 ′

because 𝑁 ′ is superfluous in 𝑀 as well.
(c): By part (a) it suffices to show that 𝛼(𝑁) is superfluous in 𝛼(𝑀), so assume

without loss of generality that 𝛼 is surjective. If 𝑋 ′ is a submodule of 𝑋 such that
𝛼(𝑁) + 𝑋 ′ = 𝑋 holds, then one has 𝑁 + 𝛼−1 (𝑋 ′) = 𝑀 and, therefore, 𝛼−1 (𝑋 ′) = 𝑀
as 𝑁 is superfluous in 𝑀 . Thus, 𝑋 ′ = 𝛼(𝛼−1 (𝑋 ′)) = 𝛼(𝑀) = 𝑋 holds. □

The next result is known as Nakayama’s lemma.
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B.32 Lemma. Let 𝔍 denote the Jacobson radical of 𝑅. For a left ideal 𝔞 in 𝑅 the
following conditions are equivalent.

(i) The left ideal 𝔞 is a superfluous submodule of 𝑅 .
(ii) There is an inclusion 𝔞 ⊆ 𝔍 .

(iii) For every finitely generated 𝑅-module 𝑀 ≠ 0 one has 𝔞𝑀 ≠ 𝑀 , that is,
𝑅/𝔞 ⊗𝑅 𝑀 ≠ 0 .

(iv) For every graded 𝑅-module 𝑀 and every graded submodule 𝑁 ⊆ 𝑀 such that
the quotient (𝑀/𝑁)𝑣 is non-zero and finitely generated for some 𝑣 ∈ ℤ, one
has 𝑁 + 𝔞𝑀 ≠ 𝑀 .

(v) For every degreewise finitely generated graded 𝑅-module 𝑀 , the submodule
𝔞𝑀 is superfluous.

Proof. Condition (i) is a special case of (v).
(i)⇒ (ii): If 𝔞 is not contained in 𝔍, then 𝔞 ⊈ 𝔐 holds for at least one maximal

left ideal 𝔐. Thus one has 𝔞 +𝔐 = 𝑅, and hence 𝔞 can not be superfluous in 𝑅.
(ii)⇒ (iii): Let 𝑀 ≠ 0 be a finitely generated 𝑅-module and choose a set of

generators {𝑚1, . . . , 𝑚𝑡 } for 𝑀 with 𝑡 least possible. Assume towards a contradiction
that one has 𝔞𝑀 = 𝑀 . Then there exist elements 𝑎1, . . . , 𝑎𝑡 in 𝔞 such that 𝑚1 =∑𝑡
𝑖=1 𝑎𝑖𝑚𝑖 holds. Since 𝑎1 is in 𝔍, the element 1 − 𝑎1 is invertible, whence 𝑚1 is a

linear combination of 𝑚2, . . . , 𝑚𝑡 , which contradicts the minimality of 𝑡.
(iii)⇒ (iv): Assume that (𝑀/𝑁)𝑣 is non-zero and finitely generated. By (iii) one

has 𝔞(𝑀/𝑁)𝑣 ≠ (𝑀/𝑁)𝑣 and, therefore (𝑁 + 𝔞𝑀)𝑣 ≠ 𝑀𝑣.
(iv)⇒ (v): For every proper graded submodule 𝑁 ⊂ 𝑀 it follows from (iv) that

𝑁 + 𝔞𝑀 ≠ 𝑀 holds. Thus, 𝔞𝑀 is superfluous in 𝑀 . □

Projective Covers

B.33 Definition. A projective cover of a graded 𝑅-module 𝑀 is a surjective mor-
phism 𝜋 : 𝑃→ 𝑀 of graded 𝑅-modules where 𝑃 is graded-projective and Ker 𝜋 is
superfluous in 𝑃.

B.34 Example. Let 𝑃 be a graded-projective 𝑅-module. The identity morphism
1𝑃 is a projective cover of 𝑃. Moreover, if 𝑃 is degreewise finitely generated, then
it follows from Nakayama’s lemma B.32 that the canonical map 𝑃 ↠ 𝑃/𝔞𝑃 is a
projective cover for every left ideal 𝔞 contained in the Jacobson radical of 𝑅.

The notion of a projective cover is dual to that of an injective envelope. As estab-
lished in B.17, injective envelopes exist for all graded modules, however, projective
covers do not always exist. In fact, a ring over which every graded module has a
projective cover is perfect and vice versa; see B.53.

B.35 Lemma. Let 𝑀 be a graded 𝑅-module with a projective cover 𝜋 : 𝑃 ↠ 𝑀 and
𝜋′ : 𝑃′ → 𝑀 a surjective morphism with 𝑃′ graded-projective. There is a morphism
𝛾 : 𝑃→ 𝑃′ with 𝜋 = 𝜋′𝛾, and for every such morphism the following hold.

(a) The morphism 𝛾 has a left inverse.
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(b) If 𝜋′ is a projective cover, then 𝛾 is an isomorphism.
For the direct summand 𝑃′′ = 𝛾(𝑃) of 𝑃′, the restriction 𝜋′ |𝑃′′ : 𝑃′′ ↠ 𝑀 is a
projective cover, and there is an equality of graded modules, 𝑃′ = 𝑃′′ ⊕ 𝐾 , where 𝐾
is contained in Ker 𝜋′.

Proof. By 5.2.2 there exist morphisms 𝛾 : 𝑃→ 𝑃′ and 𝛾′ : 𝑃′ → 𝑃with 𝜋 = 𝜋′𝛾 and
𝜋′ = 𝜋𝛾′. Set 𝜀 = 𝛾′𝛾. Then one has 𝜋𝜀 = 𝜋, so there is an equality 𝑃 = 𝜀(𝑃)+Ker 𝜋.
As Ker 𝜋 is superfluous in 𝑃, it follows that 𝜀 is surjective. Since 𝑃 is graded-
projective, Ker 𝜀 is a direct summand of 𝑃; again by 5.2.2. By B.31, the module Ker 𝜀
is superfluous as it is contained in Ker 𝜋, whence it is zero. Thus, 𝜀 is an isomorphism,
and 𝜀−1𝛾′ is a left inverse of 𝛾. This proves part (a), and with 𝑃′′ = 𝛾(𝑃) and
𝐾 = Ker 𝛾′ it follows that there is an equality 𝑃′ = 𝑃′′ ⊕ 𝐾 . The submodule
𝑃′′ ∩ Ker 𝜋′ is superfluous in 𝑃′′, because the isomorphism 𝛾′ |𝑃′′ : 𝑃′′ → 𝑃 maps it
to Ker 𝜋, which is superfluous in 𝑃. Thus, 𝜋′ |𝑃′′ is a projective cover. Moreover, the
equality 𝜋′ = 𝜋𝛾′ implies that 𝐾 is contained in Ker 𝜋′.

To prove part (b), note that one has 𝑃′′ + Ker 𝜋′ = 𝑃′. Thus, if 𝜋′ is a projective
cover, then 𝑃′ = 𝑃′′ holds, whence 𝛾 is an isomorphism. □

As already mentioned, a module might not have a projective cover, however, any
two covers of a given module are necessarily isomorphic.

B.36 Proposition. Let 𝑀 be a graded 𝑅-module. If 𝜋 : 𝑃 ↠ 𝑀 and 𝜋′ : 𝑃′ ↠ 𝑀

are projective covers, then there exists an isomorphism 𝛾 : 𝑃→ 𝑃′ with 𝜋′𝛾 = 𝜋.
Moreover, if 𝑀 is degreewise finitely generated, then so are 𝑃 and 𝑃′.

Proof. The existence of an isomorphism 𝛾 with 𝜋′𝛾 = 𝜋 is part of B.35. It also
follows from B.35 that if 𝑃 ↠ 𝑀 is a projective cover and 𝑃′ → 𝑀 is any surjective
morphism with 𝑃′ graded-projective, then 𝑃 is isomorphic to a graded direct sum-
mand of 𝑃′. If 𝑀 is degreewise finitely generated, then 𝑃′ can be chosen degreewise
finitely generated by 2.5.28, and hence the direct summand 𝑃 is degreewise finitely
generated as well. □

B.37 Lemma. Let 𝔍 denote the Jacobson radical of 𝑅 and 𝑃 ≠ 0 be a graded-
projective 𝑅-module. One has 𝔍𝑃 ≠ 𝑃, and every superfluous submodule of 𝑃
is contained in 𝔍𝑃. In particular, if 𝑀 is a graded 𝑅-module and 𝜋 : 𝑃 ↠ 𝑀 is a
projective cover, then the induced morphism �̄� : 𝑃/𝔍𝑃→ 𝑀/𝔍𝑀 is an isomorphism.

Proof. By 5.2.2 the module 𝑃 is a graded direct summand of a graded free 𝑅-
module 𝐿. Let 𝐸 be a graded basis for 𝐿. Fix a homogeneous element 𝑝 ≠ 0 in
𝑃; it is a unique linear combination of basis elements: 𝑝 =

∑𝑚
𝑖=1 𝑟𝑖𝑒𝑖 . Let 𝜀 be the

composition of canonical morphisms 𝐿 ↠ 𝑃 ↣ 𝐿. For each 𝑖 ∈ {1, . . . , 𝑚} write
𝜀(𝑒𝑖) =

∑𝑛
𝑗=1 𝑎𝑖 𝑗𝑒 𝑗 , where also 𝑒𝑚+1, . . . , 𝑒𝑛 are elements in 𝐸 . Suppose the equality

𝑃 = 𝔍𝑃 holds, then all the elements 𝑎𝑖 𝑗 belong to 𝔍. The equality 𝑝 = 𝜀(𝑝) yields

(★)
𝑚∑
𝑖=1
𝑟𝑖𝑒𝑖 =

𝑚∑
𝑖=1
𝑟𝑖

( 𝑛∑
𝑗=1
𝑎𝑖 𝑗𝑒 𝑗

)
.

Let 𝐼𝑚 denote the 𝑚 ×𝑚 identity matrix and 𝐴 be the 𝑚 ×𝑚 matrix with entries 𝑎𝑖 𝑗
for 𝑖, 𝑗 ∈ {1, . . . , 𝑚}. From (★) one gets the equality (𝑟1, . . . , 𝑟𝑚) (𝐼𝑚 − 𝐴) = 0. It is
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elementary to verify that the Jacobson radical of the matrix ring M𝑚×𝑚 (𝑅) contains
(in fact, equality holds) the ideal M𝑚×𝑚 (𝔍). Since 𝐴 has entries in 𝔍, it follows that
𝐼𝑚 − 𝐴 is invertible in M𝑚×𝑚 (𝑅). Hence (𝑟1, . . . , 𝑟𝑚) is the zero row and one has
𝑝 = 0, a contradiction.

Let 𝑁 be a superfluous graded submodule of 𝑃 and thereby of 𝐿; cf. B.31. It
follows that 𝑁 is contained in every maximal submodule of 𝐿. In particular, 𝑁 is
contained in the module 𝔍𝑒′ + 𝑅⟨𝐸 \ {𝑒′}⟩ for every 𝑒′ ∈ 𝐸 . Indeed, this is the
intersection of the maximal submodules 𝔐𝑒′ + 𝑅⟨𝐸 \ {𝑒′}⟩, where 𝔐 is a maximal
left ideal in 𝑅. Thus, for an element 𝑥 = ∑

𝑒∈𝐸 𝑟𝑒𝑒 in 𝑁 one has 𝑟𝑒 ∈ 𝔍 for all 𝑒 ∈ 𝐸 .
It follows that 𝑁 is contained in 𝔍𝐿 ∩ 𝑃 = 𝔍𝑃, where the equality holds because 𝑃
is a direct summand of 𝐿.

The last assertion is now immediate as the kernel of a cover 𝑃 ↠ 𝑀 is superfluous
in 𝑃 and hence contained in 𝔍𝑃. □

Remark. For a graded-projective 𝑅-module 𝑃, the submodule 𝔍𝑃 itself may not be superfluous;
see E B.16.

Semi-Perfect Modules

B.38 Definition. A graded 𝑅-module𝑀 is called semi-perfect if every homomorphic
image of 𝑀 has a projective cover.

The notion of semi-perfect modules is an auxiliary; its utility comes to fore in
Theorems B.46 and B.53 and, implicitly, in Theorems B.60 and B.61.

B.39 Example. If 𝑅 is semi-simple, then every 𝑅-module is projective by 1.3.28,
and it follows that every 𝑅-module is semi-perfect.

The ℤ-module ℤ has a projective cover, namely 1ℤ, but it is not semi-perfect,
since the quotient ℤ/𝑛ℤ has no projective cover for 𝑛 > 1. Indeed, suppose that
𝜋 : 𝑃 ↠ ℤ/𝑛ℤ is a projective cover and let 𝜋′ : ℤ↠ ℤ/𝑛ℤ be the canonical map.
By B.35 there is an isomorphism of ℤ-modules, ℤ � 𝑃 ⊕ 𝐾 , and since ℤ is
indecomposable, it follows that 𝐾 = 0, 𝑃 = ℤ, and 𝜋 = 𝜋′. However, 𝜋′ : ℤ↠ ℤ/𝑛ℤ
is not a projective cover since its kernel is not superfluous; see B.29.

B.40 Lemma. Let𝔍 denote the Jacobson radical of 𝑅 and 𝑀 be a graded 𝑅-module.
If 𝑀 is semi-perfect, then the following assertions hold.

(a) If 𝑀 is non-zero, then 𝔍𝑀 ≠ 𝑀 holds.
(b) The submodule 𝔍𝑀 is superfluous in 𝑀 .
(c) If 𝑃 ↠ 𝑀 is a projective cover, then 𝑃 is semi-perfect.
(d) The graded 𝑅/𝔍-module 𝑀/𝔍𝑀 is semi-simple.

Let 𝛼 : 𝐿 → 𝑀 be a morphism of graded 𝑅-modules and denote by �̄� the induced
morphism 𝐿/𝔍𝐿 → 𝑀/𝔍𝑀 of 𝑅/𝔍-modules.

(e) If �̄� is surjective, then 𝛼 is surjective.
(f) If �̄� is bĳective and 𝐿 and 𝑀 are graded-projective, then 𝛼 is bĳective.
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Proof. Let 𝜋 : 𝑃 ↠ 𝑀 be a projective cover.
(a): If 𝔍𝑀 = 𝑀 holds, then one has 𝜋(𝔍𝑃) = 𝑀 , whence there is an equality

Ker 𝜋 + 𝔍𝑃 = 𝑃. As 𝑃 is graded-projective and Ker 𝜋 is superfluous in 𝑃, it follows
from B.37 that 𝑃 is zero, whence 𝑀 = 0.

(b): Let 𝑀 ′ be a graded submodule of 𝑀 such that the equality 𝔍𝑀 + 𝑀 ′ = 𝑀

holds. The quotient module 𝑁 = 𝑀/𝑀 ′ then satisfies 𝔍𝑁 = 𝑁 . By assumption the
module 𝑁 is semi-perfect, so part (a) yields 𝑁 = 0, whence one has 𝑀 ′ = 𝑀 .

(c): To prove that 𝑃 is semi-perfect, it must be show that 𝑃/𝑁 has a projective cover
for every graded submodule 𝑁 of 𝑃. Let 𝑁 be such a submodule and set 𝐾 = Ker 𝜋,
then 𝑃/(𝑁 +𝐾) is a homomorphic image of 𝑃/𝐾 � 𝑀 , so there is a projective cover
𝜋′ : 𝑃′ ↠ 𝑃/(𝑁 + 𝐾). As 𝑃′ is graded-projective, there exists by 5.2.2 a morphism
𝛾 : 𝑃′ → 𝑃/𝑁 with 𝜋′ = 𝛽𝛾, where 𝛽 is the canonical morphism 𝑃/𝑁 ↠ 𝑃/(𝑁+𝐾).
To see that 𝛾 is a projective cover, notice first that Ker 𝛽 = (𝑁+𝐾)/𝑁 is a superfluous
submodule of 𝑃/𝑁 , because it is the image of the superfluous submodule 𝐾 of 𝑃;
see B.31. On the other hand, since 𝜋′ is surjective, one has 𝛾(𝑃′) +Ker 𝛽 = 𝑃/𝑁 , so
𝛾 is surjective. Finally, Ker 𝛾 is contained in Ker 𝜋′, which is superfluous in 𝑃′.

(d): The morphism of graded 𝑅/𝔍-modules 𝑃/𝔍𝑃 → 𝑀/𝔍𝑀 , induced by 𝜋,
is surjective; it is, therefore, sufficient to prove that 𝑃/𝔍𝑃 is semi-simple. To that
end, let 𝑋/𝔍𝑃 be a proper graded submodule of 𝑃/𝔍𝑃; the goal is to show that this
submodule is a graded direct summand. The module 𝑃/𝑋 has a projective cover
𝜘 : 𝐹 ↠ 𝑃/𝑋 by part (c). Let 𝛽 be the canonical morphism 𝑃 ↠ 𝑃/𝑋 . By B.35 there
is a morphism 𝛾 : 𝐹 → 𝑃 with 𝜘 = 𝛽𝛾 and 𝑃 = 𝛾(𝐹) ⊕ 𝐾 , where 𝐾 is contained in
Ker 𝛽 = 𝑋 and the restriction of 𝛽 to 𝛾(𝐹) is a projective cover. Replacing 𝜘 with
𝛽 |𝛾 (𝐹 ) one has 𝑃 = 𝐹 ⊕ 𝐾 and, therefore,

(♭)
𝑃

𝔍𝑃
=
𝐹 + 𝔍𝑃
𝔍𝑃

+ 𝑋

𝔍𝑃
.

The submodule 𝐹 ∩ 𝑋 is contained in Ker 𝜘, so it is superfluous in 𝐹 and hence
contained in 𝔍𝐹 ⊆ 𝔍𝑃 by B.37. Thus, the sum in (♭) is direct; indeed, one has

𝐹 + 𝔍𝑃
𝔍𝑃

∩ 𝑋

𝔍𝑃
=
(𝐹 + 𝔍𝑃) ∩ 𝑋

𝔍𝑃
=
(𝐹 ∩ 𝑋) + 𝔍𝑃

𝔍𝑃
= 0 .

(e): Set 𝐶 = Coker𝛼 and consider the exact sequence 𝐿 𝛼−−→ 𝑀 −−→ 𝐶 −−→ 0 of
graded 𝑅-modules. It induces an exact sequence 𝐿/𝔍𝐿 �̄�−−→ 𝑀/𝔍𝑀 −−→ 𝐶/𝔍𝐶 −−→ 0
with 𝐶/𝔍𝐶 = 0 by assumption. The graded module 𝐶 is semi-perfect, because it is
a homomorphic image of 𝑀 . Thus, part (a) yields 𝐶 = 0, whence 𝛼 is surjective.

(f): It follows from part (e) that 𝛼 is surjective. Set 𝐾 = Ker𝛼 and consider the
exact sequence 0 −−→ 𝐾 −−→ 𝐿

𝛼−−→ 𝑀 −−→ 0 of graded 𝑅-modules. By assumption,
𝐿 and 𝑀 are graded-projective, so the sequence is split and 𝐾 is graded-projective by
5.2.2 and 5.2.3. Now the induced sequence 0 −−→ 𝐾/𝔍𝐾 −−→ 𝐿/𝔍𝐿 �̄�−−→ 𝑀/𝔍𝑀 −−→ 0
is exact. By assumption �̄� is injective, so one has 𝐾/𝔍𝐾 = 0. Lemma B.37 now
yields 𝐾 = 0, so 𝛼 is injective. □

B.41 Lemma. Let 𝔍 denote the Jacobson radical of 𝑅 and set 𝒌 = 𝑅/𝔍. Consider
every 𝒌-module as an 𝑅-module via the canonical homomorphism 𝜅 : 𝑅 ↠ 𝒌.
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(a) Let 𝑒 ∈ 𝑅 be an idempotent and set 𝑢 = 𝜅(𝑒). The map 𝜘𝑢 : 𝑅𝑒 ↠ 𝒌𝑢 given by
𝑟𝑒 ↦→ 𝜅(𝑟)𝑢 is a projective cover of the 𝑅-module 𝒌𝑢, and Ker 𝜘𝑢 = 𝔍𝑒 holds.

(b) If a graded 𝒌-module generated by a homogeneous element 𝑢 has a projective
cover as a graded 𝑅-module, then it has one of the form 𝜘𝑢 : Σ |𝑢 |𝑅𝑒𝑢 ↠ 𝒌𝑢,
where 𝑒𝑢 is an idempotent in 𝑅 .

(c) Let 𝑀 be a graded 𝑅-module such that the graded 𝒌-module 𝑀/𝔍𝑀 is semi-
simple. Let 𝑈 be a set of homogeneous elements with 𝑀/𝔍𝑀 =

∐
𝑢∈𝑈 𝒌𝑢.

Assume that each 𝑅-module 𝒌𝑢 has a projective cover 𝜘𝑢 : Σ |𝑢 |𝑅𝑒𝑢 ↠ 𝒌𝑢 with
𝑒𝑢 an idempotent in 𝑅. The 𝑅-module 𝐹 =

∐
𝑢∈𝑈 Σ |𝑢 |𝑅𝑒𝑢 is graded-projective,

and the morphism 𝜘 =
∐
𝑢∈𝑈 𝜘

𝑢 : 𝐹 → 𝑀/𝔍𝑀 is surjective with Ker 𝜘 = 𝔍𝐹.

Proof. (a): Let 𝑒 be an idempotent in 𝑅. The ideal 𝑅𝑒 is a projective 𝑅-module as
one has 𝑅 = 𝑅𝑒 ⊕ 𝑅(1 − 𝑒). The inclusion 𝔍𝑒 ⊆ Ker 𝜘𝑢 holds by the definition of
𝜘𝑢. To prove the reverse inclusion, let 𝑟𝑒 be an element in Ker 𝜘𝑢. The equalities
0 = 𝜅(𝑟)𝑢 = 𝜅(𝑟𝑒) in 𝒌𝑢 show that 𝑟𝑒 is in 𝔍, and since 𝑒 is an idempotent one has
𝑟𝑒 = (𝑟𝑒)𝑒 ∈ 𝔍𝑒. By Nakayama’s lemma B.32, the Jacobson radical 𝔍 is superfluous
in 𝑅, so 𝔍𝑒 = Ker 𝜘𝑢 is superfluous in 𝑅𝑒 by B.31. Thus, 𝜘𝑢 is a projective cover.

(b): Let 𝜋 : 𝑃 ↠ 𝒌𝑢 be a projective cover of 𝒌𝑢 as a graded 𝑅-module. Set
𝑃′ = Σ |𝑢 |𝑅 and let 𝑝 denote the generator 1 in 𝑃′. Let 𝜋′ : 𝑃′ → 𝒌𝑢 be the sur-
jective morphism of graded 𝑅-modules that maps 𝑝 to 𝑢. By B.35 there is a
morphism 𝛾 : 𝑃→ 𝑃′ with 𝜋 = 𝜋′𝛾, 𝑃′′ = 𝛾(𝑃), and 𝑃′ = 𝑃′′ ⊕ 𝐾 , such that
𝜘𝑢 = 𝜋′ |𝑃′′ : 𝑃′′ ↠ 𝒌𝑢 is a projective cover. Restrict the codomain of 𝛾 so that
it becomes an isomorphism 𝛾 : 𝑃→ 𝑃′′ and let 𝜐 : 𝑃′ → 𝑃 denote the canonical
morphism with 𝜐𝛾 = 1𝑃 . One has 𝛾𝜐(𝑝) = 𝑒𝑝 for some 𝑒 ∈ 𝑅. The identity
𝛾𝜐 = 𝛾1𝑃𝜐 = (𝛾𝜐) (𝛾𝜐) yields 𝑒𝑝 = 𝑒2𝑝, so 𝑒 is an idempotent. The equality
𝑅 = 𝑅𝑒 ⊕ 𝑅(1 − 𝑒) now yields 𝑃′′ = Σ |𝑢 |𝑅𝑒, so 𝜘𝑢 is the desired projective cover.

(c): Each graded 𝑅-module Σ |𝑢 |𝑅𝑒𝑢 is graded-projective as 𝑒𝑢 is an idempotent.
It follows from 5.2.12 and 5.2.18 that 𝐹 is graded-projective, and 𝜘 is surjective by
construction. By 3.1.6 and (a) one has Ker 𝜘 =

∐
𝑢∈𝑈 Ker 𝜘𝑢 =

∐
𝑢∈𝑈 𝔍𝑒𝑢 = 𝔍𝐹. □

B.42 Theorem. Let 𝑀 be a semi-perfect graded 𝑅-module. If 𝑃 ↠ 𝑀 is a projective
cover, then P is isomorphic to a module of the form

∐
𝑢∈𝑈 Σ𝑛𝑢𝑅𝑒𝑢, where each 𝑒𝑢 is

an idempotent in 𝑅.

Proof. Let 𝔍 denote the Jacobson radical of 𝑅 and set 𝒌 = 𝑅/𝔍. By parts (c) and
(d) in B.40 the graded 𝑅-module 𝑃 is semi-perfect, and the 𝒌-module 𝑃/𝔍𝑃 is semi-
simple. By a standard application of Zorn’s lemma, choose a set𝑈 of homogeneous
elements with 𝑃/𝔍𝑃 =

∐
𝑢∈𝑈 𝒌𝑢. Each graded module 𝒌𝑢 is a homomorphic image

of 𝑃 and, therefore, it has a projective cover. By B.41 it then has a projective cover
of the form Σ |𝑢 |𝑅𝑒𝑢 ↠ 𝒌𝑢, where 𝑒𝑢 is an idempotent in 𝑅. Now it follows, still
from B.41, that there is a surjective morphism 𝜘 : 𝐹 → 𝑃/𝔍𝑃 with Ker 𝜘 = 𝔍𝐹,
where 𝐹 is the graded-projective 𝑅-module

∐
𝑢∈𝑈 Σ |𝑢 |𝑅𝑒𝑢. By graded-projectivity

of 𝐹, there is a morphism 𝛾 : 𝐹 → 𝑃 such that the composite 𝐹 𝛾−−→ 𝑃 ↠ 𝑃/𝔍𝑃
equals 𝜘; see 5.2.2. The induced morphism �̄� : 𝐹/𝔍𝐹 → 𝑃/𝔍𝑃 is an isomorphism;
it follows that also �̄� : 𝐹/𝔍𝐹 → 𝑃/𝔍𝑃 is an isomorphism, so 𝛾 is an isomorphism
by B.40(f). □
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Semi-Perfect Rings

B.43 Definition. Let 𝔍 denote the Jacobson radical of 𝑅. The ring 𝑅 is called
semi-perfect if 𝑅/𝔍 is semi-simple and idempotents lift from 𝑅/𝔍 to 𝑅.

Remark. Since semi-simplicity is a left–right symmetric property so is semi-perfection. A ring 𝑅
with 𝑅/𝔍 semi-simple is called semi-local. A commutative ring is semi-local if and only it it has
finitely many maximal ideals.

B.44 Example. If 𝑅 is local with unique maximal ideal 𝔪, then 𝒌 = 𝑅/𝔪 is a
division ring, so 1 and 0 are the only idempotents in 𝒌. Moreover, 𝒌 is simple, so 𝑅
is semi-perfect.

If 𝑅 is left (or right) Artinian with Jacobson radical 𝔍, then 𝑅/𝔍 is semi-simple.
Moreover, if 𝑟 is in 𝑅 and [𝑟]𝔍 is an idempotent, then 𝑟 − 𝑟2 is in 𝔍. Since 𝔍 is
nilpotent, there is an integer 𝑛 ⩾ 1 with (𝑟 − 𝑟2)𝑛 = 0. Powers of 𝑟 commute, so one
has 0 = (𝑟 (1 − 𝑟))𝑛 = 𝑟𝑛 (1 − 𝑟)𝑛 = 𝑟𝑛 − 𝑟𝑛+1𝑥 for an element 𝑥 with 𝑟𝑥 = 𝑥𝑟 . It
follows that (𝑟𝑥)𝑛 = 𝑟𝑛𝑥𝑛 = 𝑟𝑛+1𝑥𝑛+1 = (𝑟𝑥)𝑛+1 holds, so the element 𝑒 = (𝑟𝑥)𝑛 is
an idempotent in 𝑅. One has [𝑟]𝔍 = [𝑟𝑛]𝔍 = [𝑟𝑛+1𝑥]𝔍 = [𝑟𝑛+1]𝔍 [𝑥]𝔍 = [𝑟𝑥]𝔍 and
hence [𝑒]𝔍 = [𝑟𝑥]𝑛

𝔍
= [𝑟]𝑛

𝔍
= [𝑟]𝔍. Thus 𝑅 is semi-perfect.

Remark. A ring 𝑅 is semi-perfect with 𝑅/𝔍 simple if and only if it is isomorphic to a matrix ring
M𝑛×𝑛 (𝑆) where 𝑆 is local; see [168, §23]. A commutative ring is semi-perfect if and only if it is a
finite product of commutative local rings; see [168, §23].

B.45 Lemma. Let𝔍 denote the Jacobson radical of 𝑅 and 𝑀 be a graded 𝑅-module.
If 𝑅 is semi-perfect, then there exists a graded-projective 𝑅-module 𝐹 and a surjective
morphism 𝜘 : 𝐹 → 𝑀/𝔍𝑀 with Ker 𝜘 = 𝔍𝐹. Moreover, if 𝑀 is degreewise finitely
generated, then one can choose 𝐹 degreewise finitely generated.

Proof. Set 𝒌 = 𝑅/𝔍 and consider the graded 𝒌-module 𝑀/𝔍𝑀 . By assumption, 𝒌
is semi-simple, so by a standard application of Zorn’s lemma one can choose a set𝑈
of homogeneous elements with 𝑀/𝔍𝑀 =

∐
𝑢∈𝑈 Σ |𝑢 |𝒌𝑢. As every cyclic 𝒌-module

is a direct sum of simple modules generated by idempotents, one can assume that
each 𝑢 is an idempotent in 𝒌. By assumption, each 𝑢 now lifts to an idempotent 𝑒𝑢 in
𝑅, so by B.41 the canonical surjection 𝜘𝑢 : 𝑅𝑒𝑢 → 𝒌𝑢 is a projective cover of 𝒌𝑢, and
the desired morphism is 𝜘 =

∐
𝑢∈𝑈 𝜘

𝑢. Finally, if 𝑀 is degreewise finitely generated,
then one can choose𝑈 with only finitely many elements of each degree. □

We can now link semi-perfectness of rings to existence of projective covers.

B.46 Theorem. The following conditions are equivalent.
(i) 𝑅 is semi-perfect.
(ii) Every degreewise finitely generated graded 𝑅-module has a projective cover.
(iii) Every degreewise finitely generated graded 𝑅-module is semi-perfect.
(iv) The 𝑅-module 𝑅 is semi-perfect.

Moreover, if 𝑅 is semi-perfect and 𝑃 ↠ 𝑀 is a projective cover of a degreewise
finitely generated graded 𝑅-module, then 𝑃 is degreewise finitely generated.
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Proof. Let 𝔍 denote the Jacobson radical of 𝑅 and set 𝒌 = 𝑅/𝔍. The implication
(ii)⇒ (iii) follows from the definition of semi-perfect modules B.38, and (iv) is a
special case of (iii).

(i)⇒ (ii): Let 𝑀 be a degreewise finitely generated graded 𝑅-module. By B.45
there exists a graded-projective and degreewise finitely generated 𝑅-module 𝐹 and
surjective morphism 𝜘 : 𝐹 → 𝑀/𝔍𝑀 with Ker 𝜘 = 𝔍𝐹. Let 𝛽 be the canonical
morphism 𝑀 ↠ 𝑀/𝔍𝑀; by 5.2.2 there exists a morphism 𝛾 : 𝐹 → 𝑀 with 𝛽𝛾 = 𝜘.
Thus, one has 𝑀 = 𝛾(𝐹) + 𝔍𝑀 . It follows from Nakayama’s lemma B.32 that
𝔍𝑀 is superfluous in 𝑀 , so 𝛾 is surjective. To see that 𝛾 is a projective cover, it
remains to verify that Ker 𝛾 is superfluous in 𝐹. This follows as Ker 𝛾 is contained
in Ker 𝜘 = 𝔍𝐹, which is a superfluous submodule by Nakayama’s lemma. As a
projective cover is unique up to isomorphism, see B.36, the final assertion in the
theorem also follows.

(iv)⇒ (i): By B.40(d) the 𝒌-module 𝒌 is semi-simple, so 𝒌 is a semi-simple ring.
From B.40(b) it follows that 𝔍 is superfluous in 𝑅, whence the canonical map 𝑅 ↠ 𝒌
is a projective cover. Let 𝑢 be an idempotent in 𝒌; the goal is to lift 𝑢 to 𝑅. There is
an equality 𝒌 = 𝒌𝑢 ⊕ 𝒌 (1 − 𝑢). As 𝑅 is a semi-perfect 𝑅-module, its homomorphic
images 𝒌𝑢 and 𝒌 (1 − 𝑢) have projective covers 𝜋 : 𝑃 ↠ 𝒌𝑢 and 𝜋′ : 𝑃′ ↠ 𝒌 (1 − 𝑢).
The morphism 𝜋 ⊕ 𝜋′ is a projective cover of 𝒌. By B.35 there is an isomorphism
𝛾 : 𝑃 ⊕ 𝑃′ → 𝑅 such that 𝛾 followed by the canonical map 𝑅 ↠ 𝒌 is 𝜋 ⊕ 𝜋′. Thus,
the modules 𝑃 and 𝑃′ are isomorphic to ideals 𝔢 and 𝔢′ in 𝑅, and one has 𝑅 = 𝔢 ⊕ 𝔢′.
Choose elements 𝑒 ∈ 𝔢 and 𝑒′ ∈ 𝔢′ with 1 = 𝑒 + 𝑒′ in 𝑅. It is elementary to verify
that 𝑒 and 𝑒′ are orthogonal idempotents and that 𝑒 maps to 𝑢 in 𝒌. □

Remark. Every finitely generated flat module over a semi-perfect ring is projective; see E B.21. It
is a result of Kaplansky [154] that the finiteness hypothesis in the next corollary can be omitted.

B.47 Corollary. Let 𝑅 be local. A degreewise finitely generated graded-projective
𝑅-module is graded-free.

Proof. Let 𝑃 be a degreewise finitely generated and graded-projective 𝑅-module.
The identity 1𝑃 is a projective cover of 𝑃. By B.46 the graded module 𝑃 is semi-
perfect, so by B.42 it has the form

∐
𝑢∈𝑈 Σ𝑛𝑢𝑅𝑒𝑢, where each 𝑒𝑢 is an idempotent

in 𝑅. As 𝑅 is local, 1 and 0 are the only idempotents in 𝑅, so 𝑃 is graded-free. □

Perfect Rings

B.48 Definition. A left ideal 𝔞 in 𝑅 is called left T-nilpotent if for every sequence
of elements (𝑎𝑖)𝑖∈ℕ in 𝔞 there is a number 𝑛 ∈ ℕ such that 𝑎1𝑎2 · · · 𝑎𝑛 = 0 holds.

Every nilpotent left ideal is left T-nilpotent; in particular, the Jacobson radical of
a left (or right) Artinian ring is left T-nilpotent. A T-nilpotent ideal has properties
similar to the Jacobson radical as captured by Nakayama’s lemma.

B.49 Lemma. For a left ideal 𝔞 in 𝑅, the following conditions are equivalent.
(i) The left ideal 𝔞 is left T-nilpotent.
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(ii) For every 𝑅o-module 𝑁 ≠ 0 one has (0 :𝑁 𝔞) ≠ 0 .
(iii) For every 𝑅-module 𝑀 ≠ 0 one has 𝔞𝑀 ≠ 𝑀 .
(iv) For every graded 𝑅-module 𝑀 and every proper graded submodule 𝑀 ′ ⊂ 𝑀

one has 𝑀 ′ + 𝔞𝑀 ≠ 𝑀 .
(v) For every graded 𝑅-module 𝑀 the submodule 𝔞𝑀 is superfluous.

Proof. (i)⇒ (ii): Assume that there exists an 𝑅o-module 𝑁 ≠ 0 with (0 :𝑁 𝔞) = 0.
For every element 𝑥 ≠ 0 in 𝑁 there exists then an element 𝑎 ∈ 𝔞 with 𝑥𝑎 ≠ 0. It
follows by induction that there exists a sequence (𝑎𝑖)𝑖∈ℕ in 𝔞 with 𝑎1𝑎2 · · · 𝑎𝑛 ≠ 0
for every 𝑛 ∈ ℕ. Thus, 𝔞 is not left T-nilpotent.

(ii)⇒ (iii): Let 𝑀 ≠ 0 be an 𝑅-module; consider the ideal 𝔟 = (0 :𝑅 𝑀) and the
right ideal 𝔅 = (𝔟 :𝑅 𝔞) = {𝑟 ∈ 𝑅 | 𝑟𝔞 ⊆ 𝔟}. Now (ii) yields 𝔅/𝔟 = (0 :𝑅/𝔟 𝔞) ≠ 0.
It follows that 𝔟 is strictly contained in 𝔅, whence 𝔅𝑀 is non-zero. However, one
has 𝔅𝔞 ⊆ 𝔟 and, therefore, 𝔅(𝔞𝑀) = 0, so 𝔞𝑀 ≠ 𝑀 holds.

(iii)⇒ (iv): Apply (iii) to the non-zero 𝑅-module 𝑀/𝑀 ′.
(iv)⇒ (v): This implication follows immediately from the definition, B.28, of

superfluous submodules.
(v)⇒ (i): Let a sequence (𝑎𝑖)𝑖∈ℕ of elements in 𝔞 be given. For 𝑗 > 𝑖 ⩾ 1

let 𝛼 𝑗𝑖 be the homothety given by right multiplication on 𝑅 with 𝑎𝑖 · · · 𝑎 𝑗−1 and
set 𝛼𝑖𝑖 = 1𝑅. These maps form a direct system of 𝑅-modules; let 𝐴 denote its
colimit. For every element 𝑎 in 𝐴 there is a ring element 𝑟 and an integer 𝑖 ⩾ 1
with 𝑎 = 𝛼𝑖 (𝑟), where 𝛼𝑖 is the canonical morphism 𝑅 → 𝐴; see 3.3.2. From the
equalities 𝛼𝑖 (𝑟) = 𝛼𝑖+1 (𝑟𝑎𝑖) = 𝑟𝑎𝑖𝛼𝑖+1 (1) one gets 𝔞𝐴 = 𝐴. By (v) the submodule
𝔞𝐴 is superfluous in 𝐴, so the colimit 𝐴 is zero. In particular, 𝛼1 (1) is zero, so by
3.3.2 one has 𝛼 𝑗1 (1) = 𝑎1 · · · 𝑎 𝑗−1 = 0 some 𝑗 > 1. Thus, 𝔞 is left T-nilpotent. □

B.50 Definition. Let 𝔍 be the Jacobson radical of 𝑅. The ring 𝑅 is called left perfect
if 𝑅/𝔍 is semi-simple and 𝔍 is left 𝑇-nilpotent.

B.51 Example. As a nilpotent ideal is left T-nilpotent, every left (or right) Artinian
ring is left perfect.

Remark. Perfectness is not a left–right symmetric property; Bass gives an example in [29]. It is a
consequence of Livitzki’s theorem that a left perfect and left Noetherian ring is left Artinian; see
E B.28. Björk [41] proves that a left perfect and right Noetherian ring is right Artinian. See E 5.5.22
for an example of a commutative perfect ring that is not Artinian and hence not Noetherian.

B.52. If the Jacobson radical 𝔍 of 𝑅 is left T-nilpotent, then every element in 𝔍 is
nilpotent, whence idempotents lift from 𝑅/𝔍 to 𝑅; see B.44. Thus, every left perfect
ring is semi-perfect.

B.53 Theorem. The following conditions are equivalent.
(i) 𝑅 is left perfect.
(ii) Every graded 𝑅-module has a projective cover.
(iii) Every graded 𝑅-module is semi-perfect.

Proof. Let 𝔍 denote the Jacobson radical of 𝑅 and set 𝒌 = 𝑅/𝔍. The implication
(ii)⇒ (iii) follows from the definition B.38 of semi-perfect modules.
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(i)⇒ (ii): Let 𝑀 be a graded 𝑅-module. Since 𝑅 is semi-perfect, it follows from
B.45 that there exists a graded-projective 𝑅-module 𝐹 and a surjective morphism
𝜘 : 𝐹 → 𝑀/𝔍𝑀 with Ker 𝜘 = 𝔍𝐹. Let 𝛽 be the canonical morphism 𝑀 ↠ 𝑀/𝔍𝑀;
by 5.2.2 there is a morphism 𝛾 : 𝐹 → 𝑀 with 𝛽𝛾 = 𝜘. Thus, one has𝑀 = 𝛾(𝐹)+𝔍𝑀 .
It follows from B.49 that 𝔍𝑀 is superfluous in 𝑀 , so 𝛾 is surjective. To see that 𝛾 is
a projective cover, it remains to verify that Ker 𝛾 is superfluous in 𝐹. This follows as
Ker 𝛾 is contained in Ker 𝜘 = 𝔍𝐹, which is a superfluous submodule by B.49.

(iii)⇒ (i): It follows from B.40(d) that 𝒌 is semi-simple as a 𝒌-module; i.e. it is a
semi-simple ring. For every graded 𝑅-module 𝑀 the submodule 𝔍𝑀 is superfluous
in 𝑀 by B.40(b), so 𝔍 is left T-nilpotent by B.49. Thus, 𝑅 is left perfect. □

Another homological characterization of perfect rings is given in 5.5.30.

Minimal Complexes of Projective Modules

For a complex of projective modules, minimality means that the subcomplex of
boundaries is superfluous.

B.54 Lemma. Let 𝔍 be the Jacobson radical of 𝑅 and 𝑃 a complex of projective
𝑅-modules. If 𝑃♮ is semi-perfect and 𝜕𝑃 (𝑃) ⊆ 𝔍𝑃 holds, then 𝑃 is minimal.

Proof. Let 𝜀 : 𝑃→ 𝑃 be a morphism with 𝜀 ∼ 1𝑃; it suffices by B.6 to prove that 𝜀 is
an isomorphism. By assumption there exists a homomorphism 𝜎 : 𝑃→ 𝑃 of degree
1 such that 1𝑃−𝜀 = 𝜕𝑃𝜎+𝜎𝜕𝑃 holds. For every 𝑝 ∈ 𝑃, the element 𝑝−𝜀(𝑝) belongs
to 𝔍𝑃 + 𝜎(𝔍𝑃) = 𝔍𝑃. It follows that the induced morphism 𝜀 : 𝑃/𝔍𝑃→ 𝑃/𝔍𝑃 is
the identity 1𝑃/𝔍𝑃 , so 𝜀 is an isomorphism by B.40(f). □

B.55 Theorem. Let 𝔍 denote the Jacobson radical of 𝑅 and 𝑃 be a complex of
projective 𝑅-modules such that 𝑃♮ is semi-perfect. There is an equality 𝑃 = 𝑃′ ⊕ 𝑃′′,
where 𝑃′ and 𝑃′′ are complexes of projective 𝑅-modules, 𝑃′ is minimal, and 𝑃′′ is
contractible. Moreover, the following assertions hold.

(a) The complex 𝑃′ is unique in the following sense: if one has 𝑃 = 𝐹′ ⊕ 𝐹′′,
where 𝐹′ is minimal and 𝐹′′ is contractible, then 𝐹′ is isomorphic to 𝑃′.

(b) 𝑃 is minimal if and only if B(𝑃)♮ is superfluous in 𝑃♮ if and only if the
inclusion 𝜕𝑃 (𝑃) ⊆ 𝔍𝑃 holds.

(c) If 𝑃 is semi-projective, then 𝑃′ and 𝑃′′ are semi-projective.

Proof. Set 𝒌 = 𝑅/𝔍; the graded 𝒌-module (𝑃/𝔍𝑃)♮ is semi-simple by B.40(d).
Set 𝐵 = B(𝑃/𝔍𝑃) and 𝐻 = H(𝑃/𝔍𝑃); by 4.2.17 there is a split exact sequence of
𝒌-complexes,

(★) 0 −→ 𝐻 −→ 𝑃/𝔍𝑃 𝜏−−−→ Cone 1𝐵 −→ 0 .

Because it is a homomorphic image of the semi-perfect graded 𝑅-module 𝑃♮, the
graded module 𝐵♮ is semi-perfect. In particular, 𝐵♮ has a projective cover 𝜘 : 𝐹 ↠ 𝐵♮.

Set 𝑃′′ = Cone 1𝐹 and 𝐶 = Cone 1𝐵; both complexes are contractible by 4.3.31.
The projective cover 𝜘 induces a surjective morphism 𝜒 = 𝜘 ⊕ Σ𝜘 : 𝑃′′ → 𝐶. It is
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elementary to verify that 𝜒 : 𝑃′′♮ ↠ 𝐶♮ is a projective cover. By (★) the graded
module 𝐶♮ is a homomorphic image of 𝑃♮, so it is semi-perfect and, therefore, 𝑃′′♮
is semi-perfect by B.40(c).

Let 𝜋 denote the canonical map 𝑃 ↠ 𝑃/𝔍𝑃. The complexes Hom𝑅 (𝑃, 𝑃′′) and
Hom𝑅 (𝑃,𝐶) are contractible by 4.3.29 so Hom𝑅 (𝑃, 𝜒) is a quasi-isomorphism.
Moreover, Hom𝑅 (𝑃, 𝜒) is surjective by 5.2.2 and hence surjective on cycles; see
4.2.7. Thus, there exists a morphism 𝛾 : 𝑃→ 𝑃′′ with 𝜒𝛾 = 𝜏𝜋. Let 𝜋′ be the
restriction of 𝜋 to the subcomplex 𝑃′ = Ker 𝛾 and consider the commutative diagram

0 // 𝑃′

𝜋′

��

// 𝑃

𝜋

��

𝛾
// 𝑃′′

𝜒

��

// 0

0 // 𝐻 // 𝑃/𝔍𝑃 𝜏
// 𝐶 // 0 .

(⋄)

The bottom row is the split exact sequence (★), and by construction the top row is
exact at 𝑃′ and at 𝑃. To see that it is exact at 𝑃′′, notice that �̄� : 𝑃′′/𝔍𝑃′′ → 𝐶/𝔍𝐶 is
bĳective by B.37 and �̄� is the identity morphism 1𝑃/𝔍𝑃 , while 𝜏 = 𝜏 is surjective. It
follows that �̄� : 𝑃/𝔍𝑃→ 𝑃′′/𝔍𝑃′′ is surjective, and then 𝛾 is surjective by B.40(f).
As 𝑃′′♮ is a graded-projective 𝑅-module, the top row in (⋄) is degreewise split by
5.2.2 and, therefore, split by B.1 as 𝑃′′ is contractible. Thus, one has 𝑃 = 𝑃′ ⊕ 𝑃′′.

To see that 𝑃′ is minimal, note that (⋄) now yields a commutative diagram,

0 // 𝑃′/𝔍𝑃′

�̄�′

��

// 𝑃/𝔍𝑃

1𝑃/𝔍𝑃
��

�̄�
// 𝑃′′/𝔍𝑃′′

�̄��

��

// 0

0 // 𝐻 // 𝑃/𝔍𝑃 𝜏
// 𝐶 // 0 ,

with exact rows. It follows from the Five Lemma that �̄�′ is an isomorphism. The
differential on 𝐻 is zero, so 𝜕𝑃′ (𝑃′) is contained in 𝔍𝑃′. As the top row in (⋄) is
split, the graded-projective 𝑅-module 𝑃′♮ is a homomorphic image of 𝑃♮ and hence
semi-perfect. It follows from B.54 that 𝑃′ is a minimal complex, which finishes the
proof of the first assertion. Parts (a) and (c) follow from B.7 and 5.2.18, respectively.

(b): Since 𝑃♮ is graded-projective and semi-perfect, it follows from B.37 and
B.40(b) that B(𝑃)♮ = (𝜕𝑃 (𝑃))♮ is superfluous in 𝑃♮ if and only if the inclusion
𝜕𝑃 (𝑃) ⊆ 𝔍𝑃 holds. In view of B.54 it remains to prove that 𝜕𝑃 (𝑃) ⊆ 𝔍𝑃 holds if 𝑃
is minimal. Assume that 𝑃 is minimal; by the arguments above one has 𝑃 = 𝑃′ ⊕ 𝑃′′,
where 𝑃′′ is contractible and 𝜕𝑃′ (𝑃′) is contained in 𝔍𝑃′. The surjection 𝑃 → 𝑃′

is a homotopy equivalence by B.1 and hence an isomorphism by B.7. Thus 𝜕𝑃 (𝑃)
is contained in 𝔍𝑃. □

Minimal Semi-Projective Resolutions

Every quasi-isomorphism with a semi-projective codomain has by 5.2.20/6.3.2 a
homotopy right inverse. Under the additional assumption that the codomain complex
is minimal, such a quasi-isomorphism has a genuine right inverse.
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B.56 Proposition. For an 𝑅-complex 𝑃, the following conditions are equivalent.
(i) 𝑃 is semi-projective and minimal.
(ii) Every quasi-isomorphism 𝑀 → 𝑃 has a right inverse.

Proof. Assume that 𝑃 is semi-projective and minimal. If 𝛼 : 𝑀 → 𝑃 is a quasi-
isomorphism, then there exists by 5.2.20 a morphism 𝛾 : 𝑃→ 𝑀 with 𝛼𝛾 ∼ 1𝑃 . Set
𝜀 = 𝛼𝛾; by assumption, 𝜀 has an inverse, so 𝛾𝜀−1 is a right inverse for 𝛼.

Assume that every quasi-isomorphism 𝑀 → 𝑃 has a right inverse. In particular,
every homotopy equivalence 𝑃 → 𝑃 has a right inverse and hence 𝑃 is minimal by
B.6. It follows from 5.2.10 that 𝑃 is semi-projective. □

B.57 Definition. Let 𝑀 be an 𝑅-complex. A semi-projective resolution 𝑃 ≃−−→ 𝑀 is
called minimal if the semi-projective complex 𝑃 is minimal.

B.58 Theorem. Let 𝑀 be an 𝑅-complex. If 𝐿 ≃−−→ 𝑀 is a minimal semi-projective
resolution, then 𝐿 is unique up to isomorphism, and it has the following properties.

(a) 𝐿𝑣 = 0 holds for all 𝑣 < inf 𝑀 .
(b) For every semi-projective resolution 𝑃

≃−−→ 𝑀 the complex 𝐿 is a direct
summand of 𝑃.

Proof. Part (a) follows from part (b), as one by 5.2.15 can choose a semi-projective
resolution 𝑃 ≃−−→ 𝑀 with 𝑃𝑣 = 0 for all 𝑣 < inf 𝑀 . To prove part (b), let 𝑃 ≃−−→ 𝑀

be any semi-projective resolution. It follows from 5.2.19 that there is a quasi-
isomorphism 𝛼 : 𝑃→ 𝐿, and by B.56 it has right inverse 𝛽. Thus 𝐿 is a direct
summand of 𝑃. The morphism 𝛽 is a quasi-isomorphism, so if 𝑃 is minimal, then
𝛽 has a right inverse by the same argument, and then it is an isomorphism with
𝛽−1 = 𝛼. This proves the uniqueness statement. □

B.59 Example. If 𝑀 is an acyclic 𝑅-complex, then 0 ≃−−→ 𝑀 is the minimal semi-
projective resolution; this morphism is only surjective if 𝑀 is the zero complex.

B.60 Theorem. If 𝑅 is left perfect, then every 𝑅-complex has a minimal semi-
projective resolution.

Proof. Let 𝑀 be an 𝑅-complex, by 5.2.15 there is a semi-projective resolution
𝜋 : 𝑃 ≃−−→ 𝑀 . By B.53 the graded 𝑅-module 𝑃♮ is semi-perfect, so by B.55 one has
𝑃 = 𝐿 ⊕ 𝑃′′, where 𝐿 is minimal and semi-projective, and 𝑃′′ is contractible. Let 𝜄
be the embedding 𝐿↣ 𝑃; by 4.2.6 it is a quasi-isomorphism as 𝑃′′ is acyclic. Thus
𝜋𝜄 : 𝑃 ≃−−→ 𝑀 is the desired resolution. □

Remark. Minimal projective resolutions of modules over perfect rings were treated by Eilenberg
[75] as early as 1956.

B.61 Theorem. Assume that 𝑅 is left Noetherian and semi-perfect. Every 𝑅-complex
𝑀 with H(𝑀) bounded below and degreewise finitely generated has a minimal semi-
projective resolution 𝐿 ≃−−→ 𝑀 with 𝐿 degreewise finitely generated.
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Proof. By 5.2.16 there is a semi-projective resolution 𝜋 : 𝑃 ≃−−→ 𝑀 with 𝑃 degree-
wise finitely generated. By B.46 the graded 𝑅-module 𝑃♮ is semi-perfect, so by B.55
one has 𝑃 = 𝐿⊕𝑃′′, where 𝐿 is minimal and semi-projective, and 𝑃′′ is contractible.
Let 𝜄 be the embedding 𝐿↣ 𝑃; by 4.2.6 it is a quasi-isomorphism as 𝑃′′ is acyclic.
Thus 𝜋𝜄 : 𝐿 ≃−−→ 𝑀 is the desired resolution. □

B.62 Definition. Let 𝑀 be an 𝑅-complex. A semi-free resolution 𝐿 ≃−−→ 𝑀 is called
minimal if the semi-free complex 𝐿 is minimal.

B.63 Corollary. Assume that 𝑅 is left Noetherian and local. Every 𝑅-complex 𝑀
with H(𝑀) bounded below and degreewise finitely generated has a minimal semi-free
resolution 𝐿 ≃−−→ 𝑀 with 𝐿 degreewise finitely generated.

Proof. As 𝑅 is semi-perfect, see B.44, it follows from B.61 that 𝑀 has a minimal
semi-projective resolution 𝐿 ≃−−→ 𝑀 with 𝐿 degreewise finitely generated. By B.58
and B.47 the complex 𝐿 is bounded below and consists of free 𝑅-modules, so 𝐿 is
semi-free by 5.1.3. □

Exercises

E B.1 Show that the conclusions in B.1 may fail if the exact sequence is not degreewise split.
E B.2 Assume that 𝑅 is left Noetherian. Show that every injective 𝑅-module has an indecom-

posable direct summand.
E B.3 Let {𝑀𝑢 }𝑢∈𝑈 and {𝑁𝑢 }𝑢∈𝑈 be a families of graded 𝑅-modules such that 𝑁𝑢 is a

submodule of 𝑀𝑢 for every 𝑢 ∈ 𝑈. The graded submodule
∐
𝑢∈𝑈 𝑁

𝑢 of
∐
𝑢∈𝑈 𝑀

𝑢 is
essential if and only if 𝑁𝑢 is essential in 𝑀𝑢 for every 𝑢 ∈ 𝑈.

E B.4 Let 𝑅 be an integral domain with field of fractions 𝑄. Show that the embedding 𝑅↣ 𝑄

is an injective envelope of the 𝑅-module 𝑅.
E B.5 Let 𝜄 : 𝑀 ↣ 𝐼 be an injective preenvelope of an 𝑅-module. Show that 𝜄 is an injective

envelope if and only if every endomorphism 𝛾 : 𝐼 → 𝐼 with 𝛾 𝜄 = 𝜄 is an automorphism.
E B.6 Let 𝜄 : 𝑀 ↣ 𝐼 and 𝜄′ : 𝑀 ′ ↣ 𝐼 ′ be injective envelopes of graded 𝑅-modules. Show that

the direct sum 𝜄 ⊕ 𝜄′ : 𝑀 ⊕ 𝑀 ′ → 𝐼 ⊕ 𝐼 ′ is an injective envelope.
E B.7 Assume that 𝑅 is left Noetherian and let { 𝜄𝑛 : 𝑀𝑛 ↣ 𝐼𝑛 }𝑛∈ℕ be a family of injective

envelopes. Show that the coproduct
∐
𝑛∈ℕ 𝜄

𝑛 :
∐
𝑛∈ℕ 𝑀

𝑛 → ∐
𝑛∈ℕ 𝐼

𝑛 is an injective en-
velope. Hint: See Xu [256, 1.4].

E B.8 Let 𝑝 be a prime and consider the injective envelope ℤ/𝑝ℤ↣ ℤ(𝑝∞ ) from B.15. Show
that the product (ℤ/𝑝ℤ)ℕ → ℤ(𝑝∞ )ℕ is not an injective envelope.

E B.9 Consider an 𝑅-complex 𝑀 = 0→ 𝑀 ′ → 𝑀 ′′ → 0. Show that if Hom𝑅 (𝑀 ′′, 𝑀 ′ ) = 0
holds, then 𝑀 is minimal.

E B.10 Show how to construct a minimal injective resolution of an 𝑅-module by taking successive
injective envelopes.

E B.11 Show that in a minimal semi-injective resolution 𝜄 : 𝑀 → 𝐼 of an 𝑅-complex the map 𝜄
need not be injective.

E B.12 Let 𝐼 be a complex of injective 𝑅-modules. Show that the complexes 𝐼ď𝑛 and 𝐼ě𝑛 are
minimal for every 𝑛 ∈ ℤ.

E B.13 Let 𝑝 ∈ ℤ be a prime. Show that the canonical ring homomorphism ℤ𝑝ℤ → ℤ/𝑝ℤ is a
projective cover of the ℤ𝑝ℤ-module ℤ/𝑝ℤ.
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E B.14 Let 𝑀 be a graded 𝑅-module with graded submodules 𝑁 ⊆ 𝑀 and 𝑁 ′ ⊆ 𝑀 ′ ⊆ 𝑀.
Show that if 𝑁 ′ is superfluous in 𝑀 ′ and 𝑀 ′ ⊆ 𝑁 +𝑁 ′ holds, then 𝑀 ′ is contained in 𝑁 .

E B.15 Show that the unique maximal ideal in a local ring is both essential and superfluous.
E B.16 Set𝑅 = { 𝑠

𝑡
∈ ℚ | (𝑠, 𝑡 ) = 1 and 𝑡 odd}. Show that the Jacobson radical of𝑅 is𝔍 = 𝑅 (2) .

Set 𝐹 = 𝑅 (ℕ) and let 𝜇 : 𝐹 → ℚ be the map given by (𝑎𝑛 )𝑛∈ℕ ↦→
∑
𝑛∈ℕ

𝑎𝑛
2𝑛 . Show that

𝜇 (𝔍𝐹 ) is not superfluous in ℚ and conclude that 𝔍𝐹 is not superfluous in 𝐹.
E B.17 Let 𝔞 be an ideal in 𝑅 such that 𝑅/𝔞 is local. Show that idempotents lift from 𝑅/𝔞 to 𝑅.
E B.18 Show that a sum of orthogonal idempotents is an idempotent.
E B.19 Let 𝜋 : 𝑃 ↠ 𝑀 be a projective precover of an 𝑅-module. Show that 𝜋 is a projective cover

if and only if every endomorphism 𝛾 : 𝑃 → 𝑃 with 𝜋𝛾 = 𝜋 is an automorphism.
E B.20 Show that every flat module over a perfect ring is projective. Hint: 1.3.44.
E B.21 Show that every finitely generated flat module over a semi-perfect ring is projective. Give

an example of a semi-perfect ring that is not left Noetherian.
E B.22 Let 𝜋 : 𝑃 ↠ 𝑀 and 𝜋′ : 𝑃′ ↠ 𝑀 ′ be projective covers of graded 𝑅-modules. Show that

the direct sum 𝜋 ⊕ 𝜋′ : 𝑃 ⊕ 𝑃′ → 𝑀 ⊕ 𝑀 ′ is a projective cover.
E B.23 Assume that 𝑅 is left perfect and let { 𝜋𝑛 : 𝑃𝑛 ↠ 𝑀𝑛 }𝑛∈ℕ be a family of projective

covers. Show that
∐
𝑛∈ℕ 𝜋

𝑛 :
∐
𝑛∈ℕ 𝑃

𝑛 → ∐
𝑛∈ℕ 𝑀

𝑛 is a projective cover. Hint: See Xu
[256, 1.4].

E B.24 Let 𝑝 ∈ ℤ be a prime and consider the projective cover ℤ𝑝ℤ → ℤ/𝑝ℤ from E B.13.
Show that the coproduct (ℤ𝑝ℤ ) (ℕ) → (ℤ/𝑝ℤ) (ℕ) is not a projective cover.

E B.25 Let 𝑃 be a minimal semi-projective 𝑅-complex and 𝑀 a simple 𝑅-module. Show that the
complex Hom𝑅 (𝑃, 𝑀 ) has zero differential.

E B.26 Assume that 𝑅 is left perfect. Show how to construct a minimal projective resolution of
an 𝑅-module by taking successive projective covers.

E B.27 Show that in a minimal semi-projective resolution 𝜋 : 𝑃 → 𝑀 of an 𝑅-complex the map
𝜋 need not be surjective.

E B.28 Assume that 𝑅 is left Noetherian. Let 𝔍 be the Jacobson radical of 𝑅 and assume that the
ring 𝑅/𝔍 is left Artinian. Show that 𝑅/𝔍𝑛 is an Artinian 𝑅-module and a left Artinian
ring for every 𝑛 ∈ ℕ. Use Levitzki’s theorem [168, §10] to conclude that a left perfect and
left Noetherian ring is left Artinian.

E B.29 Let 𝕜 be a field and consider the local ring 𝑅 = 𝕜⟦𝑥, 𝑦⟧. Identify the minimal free
resolution of 𝑅/(𝑥, 𝑦) as a summand of each of the resolutions

0 −→ 𝑅2

(
−𝑦 0
𝑥 0
0 1

)
−−−−−→ 𝑅3 ( 𝑥 𝑦 0 )

−−−−−→ 𝑅 −→ 0
and

0 −→ 𝑅2

( −𝑦 𝑦
𝑥 −𝑥
0 1

)
−−−−−−→ 𝑅3 ( 𝑥 𝑦 0 )

−−−−−→ 𝑅 −→ 0 .
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Appendix C
Structure of Injective Modules

Synopsis. Hom vanishing; faithfully injective module; structure of injective module over Noether-
ian ring; injective precover; indecomposable injective module; endomorphism of ∼.

In his thesis [179] Matlis developed a structure theory for injective modules over
Noetherian rings. Our goal is to expose its main points, which are that every injective
module is a coproduct of indecomposable modules (C.4 below), and that these have
elementary descriptions over Artinian rings (C.6) and over commutative rings (C.23).

We open with a general result that is known as the Hom Vanishing Lemma. A
stronger version is available over commutative Noetherian rings; see 17.1.3.

C.1 Lemma. Let𝑀 and 𝑁 be 𝑅-modules. A necessary condition for Hom𝑅 (𝑀, 𝑁) to
be non-zero is existence of elements𝑚 in𝑀 and 𝑛 ≠ 0 in 𝑁 with (0 :𝑅 𝑚) ⊆ (0 :𝑅 𝑛).
If 𝑁 is injective, then this condition is also sufficient.

Proof. If 𝜑 : 𝑀 → 𝑁 is a non-zero homomorphism, then there is an element𝑚 ∈ 𝑀
with 𝜑(𝑚) ≠ 0, and by 𝑅-linearity of 𝜑 one has (0 :𝑅 𝑚) ⊆ (0 :𝑅 𝜑(𝑚)). Conversely,
if𝑚 and 𝑛 ≠ 0 are elements with (0 :𝑅 𝑚) ⊆ (0 :𝑅 𝑛), then the assignment 𝑟𝑚 ↦→ 𝑟𝑛

defines a non-zero homomorphism from the submodule 𝑅⟨𝑚 ⟩ ⊆ 𝑀 to 𝑁 , and if 𝑁
is injective, then it extends to a homomorphism 𝑀 → 𝑁 . □

C.2 Proposition. Every indecomposable injective 𝑅-module is isomorphic to the
injective envelope E𝑅 (𝑅/𝔞) for some left ideal 𝔞 in 𝑅. In particular, the collection
of isomorphism classes of indecomposable injective 𝑅-modules constitutes a set.

Proof. Let 𝐸 be an indecomposable injective 𝑅-module. Every non-zero element
in 𝐸 generates a submodule isomorphic to 𝑅/𝔞 for some left ideal 𝔞; see 1.3.1. As
𝐸 is injective it follows from B.19 that the injective envelope E𝑅 (𝑅/𝔞) is a direct
summand of 𝐸 , so by indecomposability of 𝐸 one has E𝑅 (𝑅/𝔞) � 𝐸 . □

C.3 Proposition. Let Max 𝑅 denote the set of maximal left ideals of 𝑅. The 𝑅-module∏
𝔪∈Max 𝑅

E𝑅 (𝑅/𝔪)

is faithfully injective.
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Proof. The module 𝐸 =
∏

𝔪∈Max 𝑅 E𝑅 (𝑅/𝔪) is injective by 1.3.27. To see that the
functor Hom𝑅 ( , 𝐸) is faithful, notice that for every 𝑅-module 𝑀 and for every
𝑚 ≠ 0 in 𝑀 one has (0 :𝑅 𝑚) ⊆ 𝔪 for some 𝔪 in Max 𝑅. Now it follows from C.1
that there is a non-zero homomorphism 𝑀 → E𝑅 (𝑅/𝔪)↣ 𝐸 . □

If 𝑅 is left Noetherian, then also the coproduct
∐

𝔪∈Max 𝑅 E𝑅 (𝑅/𝔪) of the modules
from C.3 is a faithfully injective 𝑅-module; cf. 8.2.20.

Left Noetherian Rings

C.4 Theorem. If 𝑅 is left Noetherian, then every injective 𝑅-module is a coproduct
of indecomposable injective modules.

Proof. We first argue that every injective 𝑅-module 𝐼 ≠ 0 contains an indecompos-
able injective submodule. Let 𝑖 ≠ 0 be an element in 𝐼; by B.19 there is an injective
submodule 𝐸 of 𝐼 such that 𝑅⟨𝑖⟩ is essential in 𝐸 . As 𝑅 is left Noetherian, the module
𝑅⟨𝑖⟩ cannot accommodate an infinite independent family of non-zero submodules,
see 1.1.24(b), and since 𝑅⟨𝑖⟩ is essential in 𝐸 , neither can 𝐸 . It follows that 𝐸
contains an indecomposable direct summand. Indeed, if 𝐸 is indecomposable, then
that is the desired module. Otherwise, one has 𝐸 = 𝑀1 ⊕ 𝐸1 for non-zero modules
𝑀1 and 𝐸1. If 𝐸1 is indecomposable, then that is the desired module, and if not then
one has 𝐸1 = 𝑀2 ⊕ 𝐸2, etc. As the family 𝑀1, 𝑀2, . . . is independent, the process
terminates after finitely many iterations with an indecomposable direct summand
𝐸𝑛 of 𝐸 . In particular, 𝐸𝑛 is an injective submodule of 𝐼.

Given an injective 𝑅-module 𝐼, consider the set of all independent families of
indecomposable injective submodules of 𝐼. By the argument above, this set is non-
empty, and furthermore it is inductively ordered under inclusion. By Zorn’s lemma
there exists a maximal such family {𝐼𝑢}𝑢∈𝑈 . The submodule ∑

𝑢∈𝑈 𝐼
𝑢 �

∐
𝑢∈𝑈 𝐼

𝑢 is
injective by 8.2.20, so one has 𝐼 = 𝐸 ⊕∑

𝑢∈𝑈 𝐼
𝑢 for some 𝑅-module 𝐸 , which is also

injective. If 𝐸 were non-zero, then it would contain an indecomposable submodule
𝐸 ′, and the family {𝐼𝑢}𝑢∈𝑈 ∪ {𝐸 ′} would be independent, which would contradict
the maximality of {𝐼𝑢}𝑢∈𝑈 . Thus, one has 𝐸 = 0 and 𝐼 �

∐
𝑢∈𝑈 𝐼

𝑢. □

Remark. The decomposition of injective modules described in C.4 is unique to Noetherian rings;
this is also a result of Matlis [180].

For the next result, recall that a direct sum is finite by convention.

C.5 Corollary. Assume that 𝑅 is left Noetherian and let 𝑀 be a finitely generated
𝑅-module. The injective envelope E𝑅 (𝑀) is a direct sum of indecomposable injective
modules.

Proof. By C.4 the module E𝑅 (𝑀) is the sum ∑
𝑢∈𝑈 𝐸

𝑢 of an independent family of
indecomposable injective submodules. As 𝑀 is finitely generated, it is contained in
the sum 𝐸 ′ = 𝐸𝑢1 + · · · + 𝐸𝑢𝑛 � 𝐸𝑢1 ⊕ · · · ⊕ 𝐸𝑢𝑛 of finitely many of these modules.
Now, since 𝑀 is an essential submodule of E𝑅 (𝑀), one has 𝐸 ′ = E𝑅 (𝑀). □
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It is evident that the injective envelope of a simple module is indecomposable.
To fully appreciate the next result, recall that—up to isomorphism—a left Artinian
ring has only finitely many simple modules.

C.6 Theorem. Assume that 𝑅 is left Artinian. The assignment 𝑁 ↦→ E𝑅 (𝑁) yields a
one-to-one correspondence between isomorphism classes of simple 𝑅-modules and
isomorphism classes of indecomposable injective 𝑅-modules. In particular, every
indecomposable injective 𝑅-module is isomorphic to E𝑅 (𝑅/𝔪) for some maximal
left ideal 𝔪 in 𝑅.

Proof. Let 𝐸 be an indecomposable injective 𝑅-module. For every element 𝑒 ≠ 0
in 𝐸 the finitely generated submodule 𝑅⟨𝑒⟩ has a composition series, so it contains
a simple 𝑅-module 𝑁 . Because 𝐸 is indecomposable, it is an injective envelope of 𝑁
by B.19. To see that non-isomorphic simple modules have non-isomorphic injective
envelopes, let 𝑁 and 𝑁 ′ be simple 𝑅-modules with 𝐸 = E𝑅 (𝑁) � E𝑅 (𝑁 ′). There are
then injective homomorphisms 𝜄 : 𝑁 → 𝐸 and 𝜄′ : 𝑁 ′ → 𝐸 such that Im 𝜄 and Im 𝜄′

are essential in 𝐸 . By B.11 the submodule Im 𝜄 ∩ Im 𝜄′ is essential in 𝐸 ; in particular,
it is non-zero. It is also isomorphic to a submodule of 𝑁 and to a submodule of 𝑁 ′,
and hence isomorphic to both 𝑁 and 𝑁 ′. Thus, one has 𝑁 � 𝑁 ′. A simple 𝑅-module
is cyclic and hence isomorphic to 𝑅/𝔪 for some maximal left ideal 𝔪 in 𝑅. □

Caveat. For every maximal left ideal 𝔪 in 𝑅 the quotient 𝑅/𝔪 is a simple 𝑅-module, and every
simple 𝑅-module is isomorphic to one of those. However, if 𝑅 is not commutative, then distinct
maximal left ideals may yield isomorphic simple modules; see also E 8.2.16 and E 12.4.1.

C.7 Definition. LetX be a class of 𝑅-modules and𝑀 an 𝑅-module. AnX-precover of
𝑀 is a homomorphism 𝜑 : 𝑋 → 𝑀 with 𝑋 ∈ X such that for every homomorphism
𝜑′ : 𝑋 ′ → 𝑀 with 𝑋 ′ ∈ X there is a homomorphism 𝜒 : 𝑋 ′ → 𝑋 that makes the
following diagram commutative,

𝑋 ′

𝜑′

��

𝜒

~~

𝑋
𝜑
// 𝑀 .

C.8 Example. LetP0 denote the class of projective 𝑅-modules. By 1.3.12 and 1.3.17
every 𝑅-module has a P0-precover, also called a projective precover.

C.9. Let X be a class of 𝑅-modules and 𝑀 an 𝑅-module. A homomorphism
𝜑 : 𝑋 → 𝑀 with 𝑋 ∈ X is an X-precover if and only if Hom𝑅 (𝑋 ′, 𝜑) is surjec-
tive for every 𝑋 ′ ∈ X. Notice that if 𝑀 is a homomorphic image of some module
from X, then every X-precover 𝑋 → 𝑀 is surjective.

Let I0 denote the class of injective 𝑅-modules; an I0-precover is called an injective
precover; cf. C.8.

C.10 Proposition. If 𝑅 is left Noetherian, then every 𝑅-module has an injective pre-
cover.
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Proof. Let {𝐸𝑢}𝑢∈𝑈 be a set of representatives for the isomorphism classes of
indecomposable injective 𝑅-modules, see C.2, and let 𝑀 be an 𝑅-module. Consider
the module 𝐸 =

∐
𝑢∈𝑈 𝐸

(Hom𝑅 (𝐸𝑢 ,𝑀 ) )
𝑢 , which is injective by 8.2.20. For 𝑢 ∈ 𝑈 and

𝛼 ∈ Hom𝑅 (𝐸𝑢, 𝑀) write 𝜀𝑢,𝛼 : 𝐸𝑢 → 𝐸 for the embedding. Let 𝜑 : 𝐸 → 𝑀 be the
unique homomorphism that satisfies 𝜑𝜀𝑢,𝛼 = 𝛼 for every 𝑢 and 𝛼; cf. 1.1.20. For
every 𝑢 ∈ 𝑈 the homomorphism Hom𝑅 (𝐸𝑢, 𝜑) : Hom𝑅 (𝐸𝑢, 𝐸) → Hom𝑅 (𝐸𝑢, 𝑀)
maps 𝜀𝑢,𝛼 to 𝛼, and thus Hom𝑅 (𝐸𝑢, 𝜑) is surjective. Every injective 𝑅-module 𝐸 ′ is
by C.4 a coproduct of modules 𝐸𝑢, so Hom𝑅 (𝐸 ′, 𝜑) is a product of homomorphisms
of the form Hom𝑅 (𝐸𝑢, 𝜑); see 3.1.27. Since each map Hom𝑅 (𝐸𝑢, 𝜑) is surjective, so
is Hom𝑅 (𝐸 ′, 𝜑). This means that every homomorphism 𝜑′ : 𝐸 ′ → 𝑀 has the form
𝜑′ = 𝜑𝜒 for some 𝜒 : 𝐸 ′ → 𝐸 . □

C.11 Proposition. Let 𝑅 → 𝑆 be a ring homomorphism and 𝑀 an 𝑅-module. If 𝑆
is flat as an 𝑅o-module and 𝜑 : 𝐼 → 𝑀 an injective precover, then the induced map
of 𝑆-modules, Hom𝑅 (𝑆, 𝜑) : Hom𝑅 (𝑆, 𝐼) → Hom𝑅 (𝑆, 𝑀), is an injective precover.

Proof. The 𝑆-module Hom𝑅 (𝑆, 𝐼) is injective by 5.4.28(a), and for every 𝑆-module
𝐸 there are by adjunction 4.4.12 and the unitor 4.4.1 ismorphisms,

(★) Hom𝑆 (𝐸,Hom𝑅 (𝑆, 𝜑)) � Hom𝑅 (𝑆 ⊗𝑆 𝐸, 𝜑) � Hom𝑅 (𝐸, 𝜑) .

If 𝐸 is injective, then it is also injective as an 𝑅-module, see 5.4.28(b), and it follows
from C.9 that Hom𝑅 (𝐸, 𝜑) is surjective. Now (★) shows that Hom𝑆 (𝐸,Hom𝑅 (𝑆, 𝜑))
is surjective, whence Hom𝑅 (𝑆, 𝜑) is an injective precover, again by C.9. □

Commutative Noetherian Rings

If 𝑅 is commutative and Artinian with maximal ideals 𝔪1, . . . ,𝔪𝑛, then by C.6 and
C.3 the indecomposable injective 𝑅-modules are precisely the injective envelopes
E𝑅 (𝑅/𝔪1), . . . ,E𝑅 (𝑅/𝔪𝑛), and the direct sum 𝐷 =

⊕𝑛
𝑢=1 E𝑅 (𝑅/𝔪𝑢) is a faithfully

injective 𝑅-module. The endomorphism ring of 𝐷 is by 18.2.2 isomorphic to 𝑅, that
is, every 𝑅-linear map 𝐷 → 𝐷 is a homothety. This is just one striking consequence
of the structure of injective 𝑅-modules.

In the rest of this appendix, we use some of the standard notation and terminol-
ogy from commutative algebra recalled in Sect. 12.4. An injective module over a
commutative Noetherian ring is by C.4 a direct sum of indecomposable modules,
and another theorem due to Matlis describes the building blocks.

C.12 Theorem. Assume that 𝑅 is commutative and Noetherian. An indecomposable
injective 𝑅-module has exactly one associated prime ideal, and the assignment
𝔭 ↦→ E𝑅 (𝑅/𝔭) yields a one-to-one correspondence between prime ideals of 𝑅 and
isomorphism classes of indecomposable injective 𝑅-modules.

Proof. If 𝐸 is an indecomposable injective 𝑅-module, then 𝐸 is by B.19 an injective
envelope of every submodule 𝑁 ≠ 0 of 𝐸 . Since 𝑅 is Noetherian, the module 𝐸
has an associated prime ideal 𝔭, that is, it contains a submodule 𝑁 isomorphic to
𝑅/𝔭. Suppose 𝔭′ is also an associated prime ideal of 𝐸 , then there is a submodule
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𝑁 ′ � 𝑅/𝔭′ of 𝐸 , and the intersection 𝑁 ∩ 𝑁 ′ is non-zero as 𝑁 is essential in 𝐸 . It
follows that there is a non-zero submodule of 𝑅/𝔭 that is annihilated by 𝔭′, whence
one has 𝔭′ ⊆ 𝔭 as 𝔭 is a prime ideal. By symmetry, one gets 𝔭 = 𝔭′. Thus, 𝔭 is the
only associated prime ideal of 𝐸 , and one has 𝐸 � E𝑅 (𝑅/𝔭).

Conversely, let 𝔭 be a prime ideal in 𝑅. To see that E𝑅 (𝑅/𝔭) is indecomposable,
assume that one has E𝑅 (𝑅/𝔭) = 𝐸 ′ ⊕ 𝐸 ′′. There are ideals 𝔞′ ⊇ 𝔭 and 𝔞′′ ⊇ 𝔭 in 𝑅
with 𝐸 ′ ∩ 𝑅/𝔭 = 𝔞′/𝔭 and 𝐸 ′′ ∩ 𝑅/𝔭 = 𝔞′′/𝔭. The intersection 𝔞′/𝔭 ∩ 𝔞′′/𝔭 in 𝑅/𝔭
is trivial, so one has 𝔞′𝔞′′ ⊆ 𝔞′ ∩ 𝔞′′ ⊆ 𝔭. As 𝔭 is a prime ideal this implies that,
say, 𝔞′ is contained in 𝔭, so 𝐸 ′ ∩ 𝑅/𝔭 is trivial. As 𝑅/𝔭 is essential in E𝑅 (𝑅/𝔭), this
forces 𝐸 ′ = 0. □

C.13 Example. It follows from C.12 and B.15 that the indecomposable injective
ℤ-modules are precisely Eℤ (ℤ) � ℚ and Eℤ (ℤ/𝑝ℤ) � ℤ(𝑝∞) where 𝑝 is a prime.
It is routine to verify that the ℤ-modules ℚ/ℤ and

∐
𝑝 prime ℤ(𝑝∞) are isomorphic.

For a prime ideal 𝔭 in 𝑅, the next result establishes that E𝑅 (𝑅/𝔭) is 𝔭-torsion in
the sense of 11.2.6.

C.14 Proposition. Assume that 𝑅 is commutative and Noetherian and let 𝔭 be a
prime ideal in 𝑅. Every element in E𝑅 (𝑅/𝔭) is annihilated by a power of 𝔭.

Proof. Let 𝑒 be a non-zero element of 𝐸 = E𝑅 (𝑅/𝔭) and set 𝔞 = (0 :𝑅 𝑒); the
goal is to prove that some power 𝔭𝑛 is contained in 𝔞. As 𝔭 is finitely generated, it
suffices to show that every element 𝑥 ∈ 𝔭 has a power in 𝔞. Fix an 𝑥 in 𝔭; the ideals
𝔟𝑛 = (𝔞 :𝑅 𝑥𝑛) form an ascending chain, so 𝔟𝑛 = 𝔟𝑛+1 holds for some 𝑛.

As 𝔭 is the only associated prime ideal of 𝐸 , see C.12, the submodule 𝑅⟨𝑒⟩ � 𝑅/𝔞
of 𝐸 has an element 𝑟𝑒 with (0 :𝑅 𝑟𝑒) = 𝔭, whence there is an element 𝑦 in 𝑅 with
(𝔞 :𝑅 𝑦) = 𝔭. One has 𝔞 = (𝔞 + 𝑅𝑦) ∩ (𝔞 + 𝑅𝑥𝑛). Indeed, an element 𝑧 in the
intersection has the form 𝑎 + 𝑟𝑦 = 𝑧 = 𝑎′ + 𝑟 ′𝑥𝑛, so 𝑥𝑧 = 𝑥𝑎 + 𝑟𝑥𝑦 is in 𝔞 and hence
so is 𝑥𝑧 − 𝑥𝑎′ = 𝑟 ′𝑥𝑛+1. Thus, the element 𝑟 ′ is in 𝔟𝑛+1 = 𝔟𝑛, so 𝑟 ′𝑥𝑛 and hence 𝑧 is
in 𝔞. The ideal 𝔞 + 𝑅𝑦 strictly contains 𝔞, so it corresponds to a non-zero submodule
of 𝑅/𝔞 � 𝑅⟨𝑒⟩ ⊆ 𝐸 . Every non-zero submodule of 𝐸 is essential, cf. B.19, so it
follows that 𝔞 + 𝑅𝑥𝑛 corresponds to the zero submodule, i.e. 𝑥𝑛 is in 𝔞. □

C.15 Proposition. Assume that 𝑅 is commutative and Noetherian and let 𝔭 be a
prime ideal in 𝑅. The following assertions hold.

(a) Ass𝑅 E𝑅 (𝑅/𝔭) = {𝔭} .
(b) Supp𝑅 E𝑅 (𝑅/𝔭) = V(𝔭) .
(c) For every prime ideal 𝔮 the following conditions are equivalent:

(i) 𝔭 ⊆ 𝔮 .

(ii) Hom𝑅 (𝑅/𝔭,E𝑅 (𝑅/𝔮)) ≠ 0 .
(iii) Hom𝑅 (E𝑅 (𝑅/𝔭),E𝑅 (𝑅/𝔮)) ≠ 0 .

Proof. Part (a) follows from C.12.
(b): Let 𝑒 ≠ 0 be an element in E𝑅 (𝑅/𝔭). If 𝔭 ⊈ 𝔮, then one can choose an

element 𝑥 ∈ 𝔭 \ 𝔮. By C.14 one has 𝑥𝑛𝑒 = 0 for some 𝑛 ∈ ℕ, and since 𝔮 is a prime
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ideal, 𝑥𝑛 is not in 𝔮. Thus 𝑒
𝑟
= 𝑥𝑛𝑒
𝑥𝑛𝑟

= 0 holds for every 𝑟 ∈ 𝑅 \ 𝔮, so E𝑅 (𝑅/𝔭)𝔮 = 0.
On the other hand, if 𝔮 contains 𝔭, then [1]𝔭 ≠ 0 in E𝑅 (𝑅/𝔭)𝔮.

(c): If 𝔮 contains 𝔭, then the composite 𝑅/𝔭 ↠ 𝑅/𝔮↣ E𝑅 (𝑅/𝔮) of canonical
homomorphisms is non-zero, and it extends by injectivity of E𝑅 (𝑅/𝔮) to a non-
zero homomorphism E𝑅 (𝑅/𝔭) → E𝑅 (𝑅/𝔮). On the other hand, existence of such
a homomorphism implies by C.1 and C.14 that a power of 𝔭 is contained in the
annihilator of a non-zero element in the module E𝑅 (𝑅/𝔮) and hence contained in its
unique associated prime ideal 𝔮; cf. (a). Thus, 𝔮 contains 𝔭. □

C.16 Proposition. Assume that 𝑅 is commutative and Noetherian and let 𝔞 be an
ideal in 𝑅. For every prime ideal 𝔭 in 𝑅 there is an isomorphism of 𝑅/𝔞-modules,

Hom𝑅 (𝑅/𝔞,E𝑅 (𝑅/𝔭)) �
{

E𝑅/𝔞 (𝑅/𝔭) if 𝔞 ⊆ 𝔭

0 if 𝔞 ⊈ 𝔭 .

Proof. For a prime ideal 𝔭 that does not contain 𝔞, the Hom Vanishing Lemma
C.1 and C.15(a) yield Hom𝑅 (𝑅/𝔞,E𝑅 (𝑅/𝔭)) = 0. Now let 𝔭 ∈ V(𝔞). The injective
evelope 𝑅/𝔭↣ E𝑅 (𝑅/𝔭) yields an injective homomorphism,

(♭) Hom𝑅 (𝑅/𝔞, 𝑅/𝔭) −→ Hom𝑅 (𝑅/𝔞,E𝑅 (𝑅/𝔭)) ,

and by 5.4.28(a) the 𝑅/𝔞-module Hom𝑅 (𝑅/𝔞,E𝑅 (𝑅/𝔭)) is injective. The map (♭) is
per 1.1.8 isomorphic to the inclusion of 𝑅/𝔭 into the submodule (0 :E𝑅 (𝑅/𝔭) 𝔞) of
E𝑅 (𝑅/𝔭), and 𝑅/𝔭 being essential in E𝑅 (𝑅/𝔭) is essential (0 :E𝑅 (𝑅/𝔭) 𝔞). □

C.17 Lemma. Assume that 𝑅 is commutative and Noetherian and let 𝔭 ∈ Spec 𝑅.
For every 𝑥 ∈ 𝑅 \ 𝔭 the homothety 𝑥E𝑅 (𝑅/𝔭) is an automorphism.

Proof. Multiplication by 𝑥 ∈ 𝑅 \ 𝔭 is injective on the essential submodule 𝑅/𝔭 of
𝐸 = E𝑅 (𝑅/𝔭) and hence injective on 𝐸 . The submodule 𝑥𝐸 � 𝐸 of 𝐸 is injective,
whence it is a direct summand of 𝐸 , and since 𝐸 is indecomposable it is all of 𝐸 . □

Via the next result, questions about indecomposable injective modules can often
be dealt with in a local setting.

C.18 Proposition. Assume that 𝑅 is commutative and Noetherian and let 𝔮 ⊆ 𝔭

be prime ideals in 𝑅. The 𝑅-module E𝑅 (𝑅/𝔮) has a canonical structure of an
𝑅𝔭-module, and as such it is isomorphic to E𝑅𝔭

(𝑅𝔭/𝔮𝔭). In particular, there is an
isomorphism E𝑅 (𝑅/𝔭) � E𝑅𝔭

(κ (𝔭)) of 𝑅𝔭-modules, where κ (𝔭) is the field 𝑅𝔭/𝔭𝔭.

Proof. It follows from C.17 that 𝐸 = E𝑅 (𝑅/𝔮) is an 𝑅𝔭-module when one sets
𝑟
𝑥
𝑒 = 𝑟 (𝑥𝐸)−1 (𝑒) for 𝑟 ∈ 𝑅, 𝑥 ∈ 𝑅 \ 𝔭, and 𝑒 ∈ 𝐸 . With this structure, 𝐸 is an

injective 𝑅𝔭-module; indeed, by 1.2.6 there are natural isomorphisms,

Hom𝑅𝔭
( , 𝐸) � Hom𝑅𝔭

(𝑅𝔭 ⊗𝑅 , 𝐸)
� Hom𝑅 ( ,Hom𝑅𝔭

(𝑅𝔭, 𝐸))
� Hom𝑅 ( , 𝐸) ,

of functors on M(𝑅𝔭). It follows from B.12 that (𝑅/𝔮)𝔭 is essential in 𝐸𝔭 � 𝐸 , so
𝐸 is by B.16 isomorphic to the injective envelope E𝑅𝔭

(𝑅𝔭/𝔮𝔭). □
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C.19 Example. Let 𝑝 be a prime. One has Eℤ (ℤ) = ℚ and Eℤ (ℤ/𝑝ℤ) = ℤ(𝑝∞) by
B.15. It follows from C.18 applied with 𝔭 = 𝑝ℤ and 𝔮 = 0 that ℚ as a ℤ𝑝ℤ-module
is the injective envelope of ℤ𝑝ℤ. Applied with 𝔭 = 𝑝ℤ = 𝔮 it shows that the Prüfer
𝑝-group ℤ(𝑝∞) is the injective envelope of the residue field of the local ring ℤ𝑝ℤ.

C.20 Construction. Assume that 𝑅 is commutative and Noetherian. Let 𝔭 ∈ Spec 𝑅,
set 𝐸 = E𝑅 (𝑅/𝔭), and for 𝑛 ⩾ 0 set

𝐸𝑛 = (0 :𝐸 𝔭𝑛) .

By C.14 these submodules yield a filtration 0 = 𝐸0 ⊆ 𝐸1 ⊆ · · · with 𝐸 =
⋃
𝑛⩾0 𝐸

𝑛.

C.21 Proposition. Assume that 𝑅 is commutative Noetherian and local with unique
maximal ideal 𝔪; set 𝒌 = 𝑅/𝔪 and 𝐸 = E𝑅 (𝒌).

(a) For a 𝒌-vector space 𝑉 of finite rank, one has

Hom𝑅 (𝑉, 𝐸) = Hom𝑅 (𝑉, 𝒌) � 𝑉 .

(b) For every 𝒌-vector space 𝑉 of finite rank, the biduality homomorphism from
1.4.2, i.e. 𝛿𝑉

𝐸
:𝑉 → Hom𝑅 (Hom𝑅 (𝑉, 𝐸), 𝐸), is an isomorphism.

(c) With the notation from C.20 there are isomorphisms of 𝑅-modules,

𝐸𝑛/𝐸𝑛−1 � 𝔪𝑛−1/𝔪𝑛 and Hom𝑅 (𝐸𝑛, 𝐸) � 𝑅/𝔪𝑛 .

The isomorphism 𝑅/𝔪𝑛 → Hom𝑅 (𝐸𝑛, 𝐸) maps an element [𝑟]𝔪𝑛 in 𝑅/𝔪𝑛

to the homomorphism 𝐸𝑛 → 𝐸 given by multiplication by 𝑟. In particular,
one has (0 :𝑅 𝐸𝑛) = 𝔪𝑛.

Proof. (a): The image of a homomorphism 𝑉 → 𝐸 is contained in 𝐸1, cf. C.1, and
𝐸1 is a 𝒌-vector space of rank 1, as 𝒌 is essential in 𝐸 . Thus one has 𝐸1 = 𝒌 and
Hom𝑅 (𝑉, 𝐸) = Hom𝑅 (𝑉, 𝐸1) � Hom𝒌 (𝑉, 𝒌) � 𝑉 .

(b): It follows from C.3 and 4.5.3 that 𝛿𝑉
𝐸

is injective and hence an isomorphism,
as the 𝒌-vector spaces 𝑉 and Hom𝑅 (Hom𝑅 (𝑉, 𝐸), 𝐸) have the same rank by (a).

(c): For every 𝑛 ⩾ 0 one has Hom𝑅 (𝑅/𝔪𝑛, 𝐸) � 𝐸𝑛; see 1.1.8. Apply the exact
functor Hom𝑅 ( , 𝐸) to the sequence 0→ 𝔪𝑛−1/𝔪𝑛 → 𝑅/𝔪𝑛 → 𝑅/𝔪𝑛−1 → 0 to
get an exact sequence

0 −→ 𝐸𝑛−1 −→ 𝐸𝑛 −→ Hom𝑅 (𝔪𝑛−1/𝔪𝑛, 𝐸) −→ 0 .

By (a) one now has 𝐸𝑛/𝐸𝑛−1 � Hom𝑅 (𝔪𝑛−1/𝔪𝑛, 𝐸) � 𝔪𝑛−1/𝔪𝑛.
The module Hom𝑅 (𝐸𝑛, 𝐸) is isomorphic to Hom𝑅 (Hom𝑅 (𝑅/𝔪𝑛, 𝐸), 𝐸), so to

prove the second isomorphism in (c), it suffices to show that biduality, 𝛿𝑅/𝔪
𝑛

𝐸
is

an isomorphism. Note that 𝛿𝔪
𝑛−1/𝔪𝑛

𝐸
is an isomorphism by (b); in particular, 𝛿𝑅/𝔪

𝐸

is an isomorphism. Let 𝑛 > 1 and assume that 𝛿𝑅/𝔪
𝑛−1

𝐸
is an isomorphism. Set

( )∨ = Hom𝑅 ( , 𝐸). An application of the Five Lemma 1.1.2 to the commutative
diagram below shows that 𝛿𝑅/𝔪

𝑛

𝐸
is an isomorphism.
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0 // 𝔪𝑛−1/𝔪𝑛 //

𝛿
𝔪𝑛−1/𝔪𝑛
𝐸

�

��

𝑅/𝔪𝑛 //

𝛿
𝑅/𝔪𝑛
𝐸

��

𝑅/𝔪𝑛−1 //

𝛿
𝑅/𝔪𝑛−1
𝐸

�

��

0

0 // (𝔪𝑛−1/𝔪𝑛)∨∨ // (𝑅/𝔪𝑛)∨∨ // (𝑅/𝔪𝑛−1)∨∨ // 0 .

Finally, note that the isomorphism 𝑅/𝔪𝑛 → Hom𝑅 (𝐸𝑛, 𝐸) is the composite

𝑅/𝔪𝑛 𝛿
𝑅/𝔪𝑛
𝐸−−−−−→ Hom𝑅 (Hom𝑅 (𝑅/𝔪𝑛, 𝐸), 𝐸) Hom (𝜑,𝐸 )−−−−−−−−−→ Hom𝑅 (𝐸𝑛, 𝐸)

where 𝛿𝑅/𝔪
𝑛

𝐸
is the biduality homomorphism, whose action is described in 1.4.2,

and 𝜑 : 𝐸𝑛 → Hom𝑅 (𝑅/𝔪𝑛, 𝐸) is the isomorphism from 1.1.8. Consequently, the
composite isomorphism maps [𝑟]𝔪𝑛 to multiplication by 𝑟 on 𝐸𝑛, as claimed. □

C.22 Corollary. Assume that 𝑅 is commutative and Noetherian and let 𝔪 be a
maximal ideal in 𝑅.

(a) For every 𝑛 ∈ ℕ the submodule (0 :E𝑅 (𝑅/𝔪) 𝔪𝑛) has finite length.
(b) Every finitely generated submodule of E𝑅 (𝑅/𝔪) has finite length.

Proof. Set 𝐸 = E𝑅 (𝑅/𝔪) and adopt the notation from C.20. Part (b) follows from
part (a) as one has 𝐸 =

⋃
𝑛∈ℕ 𝐸

𝑛. To prove part (a) one may by C.18 assume that 𝑅 is
local with maximal ideal 𝔪, and then it follows from C.21(c) that each subquotient
𝐸𝑛/𝐸𝑛−1 is an 𝑅/𝔪-vector space of finite rank. □

We close with Matlis’ structure theorem for injective modules.

C.23 Theorem. Assume that 𝑅 is commutative and Noetherian. Let 𝐼 be an injective
𝑅-module. For every 𝔭 ∈ Spec 𝑅 there exists by C.4 and C.12 a set 𝑈 (𝔭) such that
there is an isomorphism,

𝐼 �
∐

𝔭∈Spec𝑅
E𝑅 (𝑅/𝔭) (𝑈 (𝔭) ) .

This decomposition is unique in the sense that the cardinality of each𝑈 (𝔭) is given
by the rank of the vector space Hom𝑅𝔭

(κ (𝔭), 𝐼𝔭) over the field κ (𝔭) = 𝑅𝔭/𝔭𝔭.

Proof. By 1.1.11, 3.1.13, and C.15(b) there are isomorphisms

𝐼𝔭 �
( ∐
𝔮∈Spec𝑅

E𝑅 (𝑅/𝔮) (𝑈 (𝔮) )
)
𝔭
�

∐
𝔮⊆𝔭

E𝑅 (𝑅/𝔮) (𝑈 (𝔮) )𝔭 .

Moreover, one has Hom𝑅𝔭
(κ (𝔭),E𝑅 (𝑅/𝔮)𝔭) � Hom𝑅 (𝑅/𝔭,E𝑅 (𝑅/𝔮))𝔭 by 12.1.21,

and by C.15(c) this module is zero if 𝔭 ⊈ 𝔮. This explains the 3rd isomorphisms
below; the 2nd isomorphism follows from 3.1.33 and the 4th from C.18 and C.21(a).

Hom𝑅𝔭
(κ (𝔭), 𝐼𝔭) � Hom𝑅𝔭

(
κ (𝔭), ∐

𝔮⊆𝔭
E𝑅 (𝑅/𝔮) (𝑈 (𝔮) )𝔭

)
�

∐
𝔮⊆𝔭

Hom𝑅𝔭
(κ (𝔭),E𝑅 (𝑅/𝔮)𝔭) (𝑈 (𝔮) )

� Hom𝑅𝔭
(κ (𝔭),E𝑅 (𝑅/𝔭)𝔭) (𝑈 (𝔭) )
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� κ (𝔭) (𝑈 (𝔭) ) . □

C.24 Proposition. Assume that 𝑅 is commutative and Noetherian. Let 𝐼 be an
injective 𝑅-module, decomposed per C.23 as

𝐼 �
∐

𝔮∈Spec𝑅
E𝑅 (𝑅/𝔮) (𝑈 (𝔮) ) .

For 𝔭 ∈ Spec 𝑅 there are isomorphisms of 𝑅𝔭-modules,∐
𝔮⊆𝔭

E𝑅 (𝑅/𝔮) (𝑈 (𝔮) ) � 𝐼𝔭 �
∐
𝔮⊆𝔭

E𝑅𝔭
(𝑅𝔭/𝔮𝔭) (𝑈 (𝔮) ) .

In particular, 𝐼𝔭 is injective as an 𝑅-module and as an 𝑅𝔭-module.

Proof. By C.15(b) one has Supp𝑅 E𝑅 (𝑅/𝔮) = V(𝔮) and localization preserves
coproducts per 3.1.13; thus one has

𝐼𝔭 �
∐
𝔮⊆𝔭

E𝑅 (𝑅/𝔮) (𝑈 (𝔮) )𝔭 .

The asserted isomorphisms now follow from C.18. □

Remark. Over a commutative non-noetherian ring, the localization of an injective module need
not be injective, see Everett [72].

Exercises

E C.1 Let X be a class of 𝑅-modules, 𝑀 an 𝑅-module, and 𝜑 : 𝑋 → 𝑀 an X-precover. Show
that a homomorphism 𝜑′ : 𝑋′ → 𝑀 with 𝑋′ ∈ X is an X-precover if there exists a homo-
morphism 𝜓 : 𝑋 → 𝑋′ with 𝜑′𝜓 = 𝜑.

E C.2 (Cf. C.13) Show that the ℤ-modules ℚ/ℤ and
∐
𝑝 prime ℤ(𝑝∞ ) are isomorphic.

E C.3 An 𝑅-module 𝐸 is called 𝛴 -injective if 𝐸 (𝑈) is injective for every set 𝑈. Show that the
field of fractions of an integral domain is 𝛴 -injective. Hint: Baer’s criterion 1.3.30.

E C.4 Assume that 𝑅 is commutative and Noetherian and let 𝑈 be a multiplicative subset of 𝑅.
Show that the indecomposable injective 𝑈−1𝑅-modules are the modules E𝑅 (𝑅/𝔭) with
𝔭 ∩𝑈 = ∅.
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Appendix D
Projective Dimension of Flat Modules

Synopsis. Jensen’s theorem; continuous chain; Eklof’s lemma; transfinite extension of modules
of finite projective dimension; countably related flat module; finitistic projective dimension of
Noetherian ring; flat preenvelope.

The first goal is to prove the following result of Jensen [147]; stated in 8.5.18.

Theorem. For every flat 𝑅-module 𝐹 one has pd𝑅 𝐹 ⩽ FPD 𝑅.

The proof, which comes after D.12, is based on an in-depth study of kernels of free
precovers of flat modules. As part of it emerges a result of independent interest,
D.9, which asserts that a flat module has projective dimension at most 1 if it can be
generated by a set of elements with only countably many relations among them.

Continuous Chains

The notion of a continuous chain plays a key role in the proof of Jensen’s theorem,
which is based on transfinite induction.

D.1 Definition. Let 𝑀 be an 𝑅-complex and λ an ordinal. A family {𝑀α }α<λ of
subcomplexes of 𝑀 is called a continuous chain if the next conditions are satisfied.

(1) For α ⩽ β < λ one has 𝑀α ⊆ 𝑀β .
(2) If β < λ is a limit ordinal, then one has 𝑀β =

⋃
α<β 𝑀

α .

The following result is known as Eklof’s lemma, as the proof originates in [79].
Here it is stated as it appears in [81] by Eklof and Trlifaj.

D.2 Lemma. Let Y be a class of 𝑅-modules and set
⊥Y = {𝑀 ∈ M(𝑅) | Ext1𝑅 (𝑀,𝑌 ) = 0 for every 𝑌 ∈ Y} .

If an 𝑅-module 𝑀 is the union of a continuous chain {𝑀α }α<λ of submodules with
𝑀0 ∈ ⊥Y and 𝑀α+1/𝑀α ∈ ⊥Y for every ordinal α with α + 1 < λ, then 𝑀 ∈ ⊥Y.
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Proof. Without loss of generality one can assume that λ is a limit ordinal. Indeed,
if λ = κ + 1 is a successor ordinal, then 𝑀 =

⋃
α<λ 𝑀

α = 𝑀κ holds, so one can
choose a limit ordinal λ0 > λ and extend {𝑀α }α<λ to a continuous chain {𝑀α }α<λ0

with 𝑀α = 𝑀 for λ ⩽ α < λ0.
Now, set 𝑀λ = 𝑀 =

⋃
α<λ 𝑀

α . We show by transfinite induction that 𝑀α ∈ ⊥Y
holds for every α ⩽ λ; in particular, 𝑀λ = 𝑀 is in ⊥Y, as desired.

By assumption one has 𝑀0 ∈ ⊥Y. Now let 0 < δ ⩽ λ be an ordinal and assume
that 𝑀α ∈ ⊥Y holds for every α < δ. It must be argued that one has 𝑀δ ∈ ⊥Y. There
are two cases: δ < λ is a successor ordinal or δ ⩽ λ is a limit ordinal.

If δ < λ is a successor ordinal, say, δ = α + 1, one considers the exact sequence,

0 −→ 𝑀α −→ 𝑀α+1 −→ 𝑀α+1/𝑀α −→ 0 .

By the induction hypothesis one has 𝑀α ∈ ⊥Y and by assumption the quotient
𝑀α+1/𝑀α belongs to ⊥Y, so it follows from 7.3.35 that 𝑀δ = 𝑀α+1 is in ⊥Y.

Now let δ ⩽ λ be a limit ordinal. To show 𝑀δ ∈ ⊥Y, let 𝑌 ∈ Y be given. To prove
that Ext1𝑅 (𝑀δ , 𝑌 ) = 0 holds, it suffices by 7.3.36 to see that every exact sequence,

(†) 0 −→ 𝑌
𝜓−−−→ 𝑋

𝜑−−−→ 𝑀δ −→ 0 ,

is split. Let α ⩽ δ be given. As Im𝜓 = Ker 𝜑 = 𝜑−1 ({0}) ⊆ 𝜑−1 (𝑀α) holds, 𝜓
corestricts to a homomorphism 𝑌 → 𝜑−1 (𝑀α), which we also denote by 𝜓. Evi-
dently, 𝜑 (co)restricts to a surjective homomorphism 𝜑−1 (𝑀α) → 𝑀α , which we
also denote by 𝜑. Thus, for every α ⩽ δ there is an exact sequence,

(†α) 0 −→ 𝑌
𝜓−−−→ 𝜑−1 (𝑀α) 𝜑−−−→ 𝑀α −→ 0 .

The sequence (†δ) coincides with (†), and for α < δ the sequence (†α) is split by
7.3.36 as one has 𝑀α ∈ ⊥Y. By transfinite induction we now construct a family of
homomorphisms {𝜎α : 𝑀α → 𝜑−1 (𝑀α)}α⩽δ such that for every α ⩽ δ one has:
(♭α) For every 𝑥 ∈ 𝑀α one has 𝜑𝜎α (𝑥) = 𝑥.
(♯α) For every β ⩽ α and 𝑥 ∈ 𝑀β one has 𝜎α (𝑥) = 𝜎β (𝑥).

Once such a family is constructed, the homomorphism 𝜎δ : 𝑀δ → 𝜑−1 (𝑀δ) = 𝑋 is
a right inverse of 𝜑 : 𝑋 → 𝑀δ by (♭δ), so the sequence (†) is split, as desired.

As the sequence (†0) is split there is a homomorphism 𝜎0 : 𝑀0 → 𝜑−1 (𝑀0) with
𝜑𝜎0 (𝑥) = 𝑥 for 𝑥 ∈ 𝑀0. Thus condition (♭0) holds, and trivially so does (♯0).

Now, let 0 < γ ⩽ δ be given and assume that we have constructed a family
{𝜎α : 𝑀α → 𝜑−1 (𝑀α)}α<γ such that conditions (♭α) and (♯α) hold for every α < γ.
The goal is to construct a homomorphism𝜎γ : 𝑀 γ → 𝜑−1 (𝑀 γ) satisfying conditions
(♭γ) and (♯γ). Again there are two cases to consider: γ ⩽ δ is a limit ordinal or γ < δ

is a successor ordinal.
Assume first that γ ⩽ δ is a limit ordinal. As one has 𝑀 γ =

⋃
α<γ 𝑀

α , every
element 𝑥 ∈ 𝑀 γ is in 𝑀α for some α < γ. If 𝑥 is in both 𝑀α and 𝑀β for some
α, β < γ, then one has 𝜎α (𝑥) = 𝜎β (𝑥). Indeed, as λ is well-ordered one can assume
that β ⩽ α holds, so condition (♯α), which holds by the induction hypothesis, yields
𝜎α (𝑥) = 𝜎β (𝑥). Thus one can define a homomorphism 𝜎γ : 𝑀 γ → 𝜑−1 (𝑀 γ) by
setting 𝜎γ (𝑥) = 𝜎α (𝑥) for any ordinal α < γ with 𝑥 ∈ 𝑀α . Condition (♯γ) holds
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by construction. For α < γ and 𝑥 ∈ 𝑀α one has 𝜑𝜎γ (𝑥) = 𝜑𝜎α (𝑥) = 𝑥 by the
definition of 𝜎γ and condition (♭α), which holds by the induction hypothesis. Thus,
condition (♭γ) holds as well.

Finally, assume that γ < δ is a successor ordinal, say, γ = ω +1. By the induction
hypothesis there is a homomorphism 𝜎ω : 𝑀ω → 𝜑−1 (𝑀ω) with 𝜑𝜎ω (𝑥) = 𝑥 for
𝑥 ∈ 𝑀ω , see condition (♭ω). As the sequence (†ω+1) is split there is a homomorphism
𝜏 : 𝑀ω+1 → 𝜑−1 (𝑀ω+1) with 𝜑𝜏(𝑥) = 𝑥 for 𝑥 ∈ 𝑀ω+1. It follows that one has
𝜏(𝑀ω) ⊆ 𝜑−1 (𝑀ω), so 𝜏 (co)restricts to a homomorphism 𝜏 : 𝑀ω → 𝜑−1 (𝑀ω). For
𝑥 ∈ 𝑀ω one has 𝜑𝜎ω (𝑥) − 𝜑𝜏(𝑥) = 𝑥 − 𝑥 = 0, so the image of the homomorphism
𝜎ω − 𝜏 : 𝑀ω → 𝜑−1 (𝑀ω) is contained in the kernel of 𝜑 : 𝜑−1 (𝑀ω) → 𝑀ω . Now
exactness of the sequence (†ω) yields a (unique) homomorphism 𝜗 : 𝑀ω → 𝑌 with
𝜓𝜗 = 𝜎ω − 𝜏. By 7.3.35 and 7.3.27 application of Hom𝑅 ( , 𝑌 ) to the exact sequence
0→ 𝑀ω → 𝑀ω+1 → 𝑀ω+1/𝑀ω → 0 yields an exact sequence,

Hom𝑅 (𝑀ω+1, 𝑌 ) −→ Hom𝑅 (𝑀ω , 𝑌 ) −→ Ext1𝑅 (𝑀ω+1/𝑀ω , 𝑌 ) .

By assumption one has Ext1𝑅 (𝑀ω+1/𝑀ω , 𝑌 ) = 0 so 𝜗 : 𝑀ω → 𝑌 extends to a homo-
morphism �̃� : 𝑀ω+1 → 𝑌 . Set 𝜎ω+1 = 𝜓�̃� + 𝜏 : 𝑀ω+1 → 𝜑−1 (𝑀ω+1). For 𝑥 ∈ 𝑀ω+1

one has 𝜑𝜎ω+1 (𝑥) = 𝜑𝜓�̃�(𝑥) + 𝜑𝜏(𝑥) = 0 + 𝑥 = 𝑥 so condition (♭ω+1) is satisfied.
Further, for β < γ = ω + 1, i.e. for β ⩽ ω, and 𝑥 ∈ 𝑀β ⊆ 𝑀ω one has

𝜎ω+1 (𝑥) = 𝜓�̃�(𝑥) + 𝜏(𝑥) = 𝜓𝜗(𝑥) + 𝜏(𝑥) = 𝜎ω (𝑥) = 𝜎β (𝑥) ,

where the last equality follows from condition (♯ω), which holds by the induction
hypothesis. This shows that condition (♯ω+1) holds. □

The next result is due to Auslander [7]; here we derive it as an easy consequence
of Eklof’s lemma. The case 𝑛 = 0 says that the class of projective modules is closed
under transfinite extensions.

D.3 Corollary. Let 𝑀 be an 𝑅-module and 𝑛 ⩾ 0 an integer. If 𝑀 is the union of a
continuous chain {𝑀α }α<λ of submodules with

pd𝑅 𝑀0 ⩽ 𝑛 and pd𝑅 (𝑀α+1/𝑀α) ⩽ 𝑛

for every ordinal α with α + 1 < λ, then one has pd𝑅 𝑀 ⩽ 𝑛.

Proof. Choose for each 𝑅-module 𝑁 an injective replacement 𝐼𝑁 and notice from
8.2.6 that one has Ext𝑛+1

𝑅
(𝑀 ′, 𝑁) � Ext1𝑅 (𝑀 ′,Z−𝑛 (𝐼𝑁 )) for every 𝑅-module 𝑀 ′.

Thus, it follows from 8.1.8 that with Z𝑛 = {Z−𝑛 (𝐼𝑁 ) | 𝑁 ∈ M(𝑅) } the class
⊥Z𝑛 = {𝑀 ′ ∈ M(𝑅) | Ext1𝑅 (𝑀 ′, 𝑍) = 0 for every 𝑍 ∈ Z𝑛 } .

coincides with the class of 𝑅-modules 𝑀 ′ with pd𝑅 𝑀 ′ ⩽ 𝑛. Now apply D.2. □

D.4 Lemma. Let 𝜘 : 𝑀 → 𝑁 be a homomorphism of 𝑅-modules and assume that 𝑀
is the union of a continuous chain {𝑀α }α<λ of submodules. If 𝜘|𝑀α

: 𝑀α → 𝑁 is a
pure monomorphism for every α < λ, then 𝜘 is a pure monomorphism.

Proof. For α < β < λ there is a commutative diagram with exact rows,
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ηα = 0 // 𝑀α
��

��

𝜘 |𝑀α
// 𝑁 // Coker(𝜘|𝑀α

)

��

// 0

ηβ = 0 // 𝑀β

𝜘 |𝑀β
// 𝑁 // Coker(𝜘|𝑀β

) // 0 .

These diagrams yield a filtered direct systems of 𝑅-complexes with

η = colim
α<λ

ηα = 0 −→ 𝑀
𝜘−−−→ 𝑁 −→ Coker 𝜘 −→ 0 ,

see 3.3.3, and η is exact by 3.3.16. Let 𝐾 be an 𝑅o-module; by 3.2.23 one has

𝐾 ⊗𝑅 η = 𝐾 ⊗𝑅
(
colim
α<λ

ηα
)
� colim

α<λ
(𝐾 ⊗𝑅 ηα) .

Each sequence 𝐾 ⊗𝑅 ηα is exact as 𝜘|𝑀α
is a pure monomorphism, see 5.5.15, so

it follows, again by 3.3.16, that 𝐾 ⊗𝑅 η is exact. Thus, 𝐾 ⊗𝑅 η is exact for every
𝑅o-module 𝐾 , whence η is pure exact; that is, 𝜘 is a pure monomorphism. □

Countably Related Flat Modules

D.5 Definition. Let ℵ be an infinite cardinal. An 𝑅-module is called ℵ-generated if
it has a set 𝐸 of generators with card 𝐸 ⩽ ℵ, and it is called ℵ<-generated if it has
a set 𝐸 of generators with card 𝐸 < ℵ. For an ordinal α the notation α < ℵ means
α < ωℵ, where ωℵ is the first ordinal of cardinality ℵ. For an ℵ-generated module
this convention allows us to write a set of generators on the form 𝐸 = {𝑒α }α<ℵ.

An ℵ0-generated module is called countably generated; notice that a module is
ℵ<0 -generated if and only if it is finitely generated.

D.6. Let 𝐿 be a free 𝑅-module with basis {𝑒𝑢}𝑢∈𝑈 . Every element 𝑙 in 𝐿 has a
representation 𝑙 = ∑

𝑢∈𝑈𝑙 𝑟𝑢𝑒𝑢 for a uniquely determined finite subset 𝑈𝑙 of 𝑈 and
uniquely determined elements 𝑟𝑢 ≠ 0 in 𝑅. Note that𝑈0 is the empty set.

Given a submodule 𝐾 of 𝐿, set 𝑈𝐾 =
⋃
𝑘∈𝐾 𝑈𝑘 ; now 𝐾 is contained in the free

submodule 𝐿′ = 𝑅⟨𝑈𝐾 ⟩ of 𝐿, and the quotient 𝐿/𝐿′ is free with basis 𝑈 \ 𝑈𝐾 .
Notice that if 𝐾 is generated by 𝑘1, . . . , 𝑘𝑛, then one has 𝑈𝐾 = 𝑈𝑘1 ∪ · · · ∪𝑈𝑘𝑛 ; that
is, 𝑈𝐾 is finite. Similarly, if ℵ is an infinite cardinal and 𝐾 is ℵ-generated, then
card𝑈𝐾 ⩽ ℵ holds.

D.7 Proposition. For an exact sequence η = 0 −−→ 𝐾
𝜘−−→ 𝐿

𝜋−−→ 𝐹 −−→ 0 of
𝑅-modules where 𝐿 is free, the following conditions are equivalent.

(i) 𝐹 is flat.
(ii) The sequence η is pure.
(iii) For every finitely generated submodule 𝐻 of 𝐾 there is a homomorphism

𝜚 : 𝐿 → 𝐾 that satisfies 𝜚𝜘|𝐻 = 1𝐻 .

Proof. The equivalence of conditions (i) and (ii) is a special case of 5.5.18.
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(ii)⇒ (iii): Let 𝐻 be a finitely generated submodule of 𝐾 . Choose by 1.3.12
a surjective homomorphism 𝜋′ : 𝐿′ → 𝐻 with 𝐿′ finitely generated and free. As
Im(𝜘𝜋′) = 𝜘(𝐻) is a finitely generated submodule of 𝐿, it is contained in a finitely
generated direct summand 𝐿′′ of 𝐿; cf. D.6. Now consider the commutative diagram,

𝐿′

𝜋′

��

𝜘𝜋′
// 𝐿′′
��

𝜀

��

𝐾
𝜘
// 𝐿 .

By (ii) the sequence η is pure exact, so 5.5.14 yields a homomorphism 𝜚′ : 𝐿′′ → 𝐾

with 𝜚′ (𝜘𝜋′) = 𝜋′. As 𝐿′′ is a direct summand of 𝐿, there is a projection𝜛 : 𝐿 ↠ 𝐿′′

with 𝜛𝜀 = 1𝐿′′ . Set 𝜚 = 𝜚′𝜛 and note that one has 𝜚𝜘𝜋′ = 𝜚′𝜛𝜀𝜘𝜋′ = 𝜚′𝜘𝜋′ = 𝜋′.
As Im 𝜋′ is 𝐻 it follows that 𝜚𝜘|𝐻 = 1𝐻 holds, as desired.

(iii)⇒ (ii): Consider a commutative diagram,

𝐿′

𝜑′

��

𝜘′
// 𝐿′′

𝜑′′

��

𝐾
𝜘
// 𝐿 ,

where also 𝐿′ and 𝐿′′ are finitely generated free 𝑅-modules. To show that η is pure,
it is by 5.5.14 sufficient to show the existence of a homomorphism 𝜚′ : 𝐿′′ → 𝐾 with
𝜚′𝜘′ = 𝜑′. As Im 𝜑′ is a finitely generated submodule of 𝐾 , it follows from (iii) that
there is a homomorphism 𝜚 : 𝐿 → 𝐾 with 𝜚𝜘𝜑′ = 𝜑′. Now set 𝜚′ = 𝜚𝜑′′, and note
that one has 𝜚′𝜘′ = 𝜚𝜑′′𝜘′ = 𝜚𝜘𝜑′ = 𝜑′, as desired. □

D.8. Consider a short exact sequence of 𝑅-modules, 0 −−→ 𝐾
𝜘−−→ 𝐿

𝜋−−→ 𝐹 −−→ 0
where 𝐿 is free with basis {𝑒𝑢}𝑢∈𝑈 and 𝐹 is flat. Let 𝐾 ′ be a submodule of 𝐾 and 𝐿′
a free submodule of 𝐿 with 𝜘(𝐾 ′) ⊆ 𝐿′; cf. D.6. Let 𝜘′ : 𝐾 ′ → 𝐿′ be the restriction
of 𝜘, set 𝐹′ = Coker 𝜘′, and let 𝜋′ : 𝐿′ → 𝐹′ be the canonical homomorphism. If 𝐾 ′
is a pure submodule of 𝐾 , then 𝐹′ is flat. Indeed, there is a commutative diagram

(D.8.1)
0 // 𝐾 ′

��

𝜄

��

𝜘′
// 𝐿′
��

��

𝜋′
// 𝐹′

��

// 0

0 // 𝐾
𝜘
// 𝐿

𝜋
// 𝐹 // 0 .

It is elementary to verify that a composite 𝛼𝛽 of monomorphisms is pure if both 𝛼
and 𝛽 are pure and only if 𝛽 is pure. By D.7 the monomorphism 𝜘 is pure. Thus, if 𝜄
is pure, then 𝜘𝜄 is pure, whence 𝜘′ is pure by commutativity of (D.8.1), and 𝐹′ is flat.

An 𝑅-module 𝑀 is called countably related if there exists a short exact sequence
0 → 𝐾 → 𝐿 → 𝑀 → 0 where 𝐿 is free and 𝐾 is countably generated. The next
theorem asserts: A countably related flat module has projective dimension at most 1.

D.9 Theorem. Let 0 → 𝐾 → 𝐿 → 𝐹 → 0 be an exact sequence of 𝑅-modules
where 𝐿 is free and 𝐹 is flat. If 𝐾 is countably generated, then 𝐾 is projective.
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Proof. By 8.1.20 the module 𝐾 is projective if and only if pd𝑅 𝐹 ⩽ 1 holds. As
in D.8 denote the homomorphisms in the exact sequence by 𝜘 and 𝜋. Since 𝐾 is
countably generated, there is a diagram as (D.8.1) with 𝐿′ countably generated and
𝐿′′ = 𝐿/𝐿′ free; see D.6. As one has 𝐹 = 𝐹′ ⊕ 𝐿′′, one can assume that 𝐿 is
countably generated in the first place. To prove the inequality pd𝑅 𝐹 ⩽ 1, we write
𝐾 as the union of a chain 𝐾1 ⊆ 𝐾2 ⊆ · · · of finitely generated submodules and
construct endomorphisms 𝜑𝑢 : 𝐿 → 𝐿 with the following properties.

(a) 𝜋𝜑𝑢 = 𝜋 for all 𝑢 in ℕ .

(b) 𝜑𝑢𝜘|𝐾𝑢 = 0 for all 𝑢 in ℕ .

(c) 𝜑𝑤𝜑𝑣 = 𝜑𝑤 for all 𝑤 > 𝑣 in ℕ .

From these data we construct an exact sequence,

(⋄) 0 −→ 𝐿 (ℕ)
𝛷−−−→ 𝐿 (ℕ)

𝛱−−−→ 𝐹 −→ 0 ,

showing that pd𝑅 𝐹 ⩽ 1 holds as desired.
Assume for the moment that the submodules 𝐾𝑢 and the endomorphisms 𝜑𝑢 have

been constructed. The sequence (⋄) is then obtained by setting

𝛷((𝑙𝑢)𝑢∈ℕ) = (𝑙𝑢 − 𝜑𝑢−1 (𝑙𝑢−1))𝑢∈ℕ and 𝛱 ((𝑙𝑢)𝑢∈ℕ) = 𝜋
( ∑
𝑢∈ℕ

𝑙𝑢
)
,

with the ingenuous convention 𝜑0 (𝑙0) = 0. It is evident that 𝛷 is injective and that
𝛱 is surjective; furthermore, (a) yields

𝛱𝛷((𝑙𝑢)𝑢∈ℕ) = 𝜋
( ∑
𝑢∈ℕ
(𝑙𝑢 − 𝜑𝑢−1 (𝑙𝑢−1))

)
= 𝜋

( ∑
𝑢∈ℕ

𝑙𝑢
)
− 𝜋

( ∑
𝑢∈ℕ

𝜑𝑢 (𝑙𝑢)
)
= 0 .

To show that (⋄) is exact, it remains to see that Ker𝛱 is contained in Im𝛷. Let
𝑙 = (𝑙𝑢)𝑢∈ℕ be an element in Ker𝛱 , then ∑

𝑢∈ℕ 𝑙
𝑢 is in Ker 𝜋 = Im 𝜘, so there is an

element 𝑘 in 𝐾 =
⋃
𝑢∈ℕ 𝐾

𝑢 with 𝜘(𝑘) = ∑
𝑢∈ℕ 𝑙

𝑢. As the submodules 𝐾𝑢 form an
ascending chain, one has 𝑘 ∈ 𝐾𝑢 for all 𝑢 ≫ 0. Choose 𝑣 such that 𝑘 is in 𝐾𝑣 and
such that 𝑙𝑢 = 0 holds for all 𝑢 > 𝑣. Define 𝑥 = (𝑥𝑢)𝑢∈ℕ in 𝐿 (ℕ) by setting 𝑥1 = 𝑙1,

𝑥𝑢 = 𝑙𝑢 + 𝜑𝑢−1 (𝑢−1∑
𝑖=1

𝑙𝑖
)

for 1 < 𝑢 ⩽ 𝑣 and 𝑥𝑢 = 0 for 𝑢 > 𝑣 .

One has𝛷(𝑥) = 𝑙; that is, 𝑥𝑢 − 𝜑𝑢−1 (𝑥𝑢−1) = 𝑙𝑢 holds for all 𝑢 ∈ ℕ. It is evident for
𝑢 = 1, and for 𝑢 = 2 it is a short computation, 𝑥2−𝜑1 (𝑥1) = 𝑙2+𝜑1 (𝑙1) −𝜑1 (𝑙1) = 𝑙2.
For 2 < 𝑢 ⩽ 𝑣 one has 𝜑𝑢−1𝜑𝑢−2 = 𝜑𝑢−1 by (c) and, consequently,

𝑥𝑢 − 𝜑𝑢−1 (𝑥𝑢−1) = 𝑙𝑢 + 𝜑𝑢−1 (𝑢−1∑
𝑖=1

𝑙𝑖
)
− 𝜑𝑢−1 (𝑙𝑢−1 + 𝜑𝑢−2 (𝑢−2∑

𝑖=1
𝑙𝑖

) )
= 𝑙𝑢 .

For 𝑢 > 𝑣 + 1 one has 𝑥𝑢 − 𝜑𝑢−1 (𝑥𝑢−1) = 0 = 𝑙𝑢 and, finally, (c) and (b) yield

𝑥𝑣+1 − 𝜑𝑣 (𝑥𝑣) = 0 − 𝜑𝑣
(
𝑙𝑣 + 𝜑𝑣−1 ( 𝑣−1∑

𝑖=1
𝑙𝑖

) )
= −𝜑𝑣

( 𝑣∑
𝑖=1
𝑙𝑖

)
= 𝜑𝑣𝜘(𝑘) = 0 = 𝑙𝑣+1 .

It remains to construct the submodules𝐾𝑢 and the endomorphisms 𝜑𝑢. Recall that
𝐿 is countably generated and let {𝑒𝑢}𝑢∈ℕ be a basis; we proceed with a construction
that applies to every finitely generated submodule𝐻 of𝐾 . Assume that𝐻 is generated
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by elements ℎ1, . . . , ℎ𝑛. By D.7 there is a homomorphism 𝜚 : 𝐿 → 𝐾 with 𝜚𝜘|𝐻 = 1𝐻 .
Choose 𝑣 ≫ 0 such that 𝜘(𝐻) is contained in 𝑅⟨𝑒1, . . . , 𝑒𝑣 ⟩, and denote by 𝐻 the
submodule of 𝐾 generated by 𝜚(𝑒1), . . . , 𝜚(𝑒𝑣). The assignments

𝑒𝑢 ↦→ 𝑒𝑢 − 𝜘𝜚(𝑒𝑢) for 1 ⩽ 𝑢 ⩽ 𝑣 and 𝑒𝑢 ↦→ 𝑒𝑢 for 𝑢 > 𝑣

define an endomorphism 𝜑𝐻 : 𝐿 → 𝐿 with the following properties,
(1) For every 𝑢 ∈ ℕ one has 𝜑𝐻 (𝑒𝑢) = 𝑒𝑢 + 𝑥𝑢 for some 𝑥𝑢 ∈ 𝜘(𝐻) .
(2) 𝜋𝜑𝐻 = 𝜋 .

(3) 𝜑𝐻𝜘|𝐻 = 0 .
(4) 𝐻 ⊆ 𝐻.

Property (1) is immediate from the definitions of 𝜑𝐻 and 𝐻, and then (2) holds as
the composite 𝜋𝜘 is the zero morphism. To establish (3) and (4) write

𝜘(ℎ𝒿) =
𝑣∑
𝑢=1

𝑟𝒿𝑢𝑒𝑢 for 𝒿 ∈ {1, . . . , 𝑛} .

For every 𝒿 ∈ {1, . . . , 𝑛} one has ℎ𝒿 = 𝜚𝜘(ℎ𝒿) =
∑𝑣
𝑢=1 𝑟𝒿𝑢𝜚(𝑒𝑢), which proves

(4). The next computation establishes (3); the penultimate equality uses the identity
𝜚𝜘|𝐻 = 1𝐻 .

𝜑𝐻𝜘(ℎ𝒿) = 𝜑𝐻
( 𝑣∑
𝑢=1

𝑟𝒿𝑢𝑒𝑢
)

=
𝑣∑
𝑢=1

𝑟𝒿𝑢 (𝑒𝑢 − 𝜘𝜚(𝑒𝑢))

= 𝜘(ℎ𝒿) − 𝜘𝜚𝜘(ℎ𝒿)
= 𝜘(ℎ𝒿 − 𝜚𝜘(ℎ𝒿))
= 0

Being countably generated, 𝐾 is the union of an ascending chain 𝐻1 ⊆ 𝐻2 ⊆ · · ·
of finitely generated submodules. Set 𝐾1 = 𝐻1 and 𝐾𝑢 = 𝐾𝑢−1 + 𝐻𝑢 for 𝑢 > 1. By
these definitions and (4) one has 𝐾 =

⋃
𝑢∈ℕ 𝐾

𝑢 and

𝐾1 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ 𝐾2 ⊆ 𝐾3 ⊆ · · · .

For every 𝑢 ∈ ℕ set 𝜑𝑢 = 𝜑𝐾
𝑢 ; the properties (a) and (b) follow immediately from

(2) and (3). To prove (c), let 𝑤 > 𝑣 and apply (1) to write 𝜑𝐾𝑣 (𝑒𝑢) = 𝑒𝑢 + 𝑥𝑢 for
some 𝑥𝑢 ∈ 𝜘(𝐾𝑣) ⊆ 𝜘(𝐾𝑤). As 𝜑𝐾𝑤𝜘|𝐾𝑤 = 0 holds by (b) one has 𝜑𝐾𝑤 (𝑥𝑢) = 0 and,
therefore, 𝜑𝐾𝑤𝜑𝐾𝑣 (𝑒𝑢) = 𝜑𝐾

𝑤 (𝑒𝑢 + 𝑥𝑢) = 𝜑𝐾
𝑤 (𝑒𝑢). □

Proof of Jensen’s Theorem

Theorem D.9 and the next result furnish the base cases for the induction arugments
that establish Jensen’s theorem.

D.10 Lemma. Let 0 −−→ 𝐾
𝜘−−→ 𝐿

𝜋−−→ 𝐹 −−→ 0 be an exact sequence of 𝑅-modules
where 𝐿 is free and 𝐹 is flat. For every countably generated submodule 𝐻 of 𝐾 there
is a countably generated submodule 𝐻′ of 𝐾 such that 𝐻 is contained in 𝐻′ and 𝜘|𝐻′
is a pure monomorphism.
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Proof. Let {𝑒𝑢}𝑢∈𝑈 be a basis for 𝐿 and {ℎ𝑛}𝑛∈ℕ a set of generators for 𝐻. Set
𝐻0 = 0; we construct a family of modules {𝐻𝑛}𝑛∈ℕ and a family of homomorphisms
{𝜚𝑛 : 𝐿 → 𝐻𝑛}𝑛∈ℕ with the following properties.

(a) 𝐻𝑛 is a finitely generated submodule of 𝐾 with ℎ𝑛 ∈ 𝐻𝑛 and 𝐻𝑛−1 ⊆ 𝐻𝑛.
(b) 𝜚𝑛𝜘|𝐻𝑛−1 = 1𝐻𝑛−1 .

Assuming that such families have been constructed, set 𝐻′ = ⋃
𝑛∈ℕ 𝐻

𝑛. By con-
struction, 𝐻′ is a submodule of 𝐾 and countably generated. Moreover, 𝐻′ contains
𝐻 as each generator ℎ𝑛 is in 𝐻′ by (a). To see that the monomorphism 𝜘|𝐻′ is
pure, it suffices by D.7 to argue that for every finitely generated submodule 𝐻′′ of
𝐻′ there is a homomorphism 𝜚 : 𝐿 → 𝐻′ with 𝜚𝜘|𝐻′′ = 1𝐻′′ . Thus, let 𝐻′′ be a
finitely generated submodule of 𝐻′ and choose by (a) an 𝑚 in ℕ such that 𝐻′′ is
contained in 𝐻𝑚. Since 𝜚𝑚+1 : 𝐿 → 𝐻𝑚+1 ⊆ 𝐻′ satisfies 𝜚𝑚+1𝜘|𝐻𝑚 = 1𝐻𝑚 by (b),
the homomorphism 𝜚 = 𝜚𝑚+1 has the sought after property.

To construct the submodules 𝐻𝑛 and the homomorphisms 𝜚𝑛, set 𝜚0 = 0 and
proceed recursively. Assuming that 𝐻𝑛−1 and 𝜚𝑛−1 have been constructed, the sub-
module 𝐾𝑛 = 𝐻𝑛−1 + 𝑅⟨ℎ𝑛 ⟩ of 𝐾 is finitely generated, so there exists by D.7 a
homomorphism 𝜚′ : 𝐿 → 𝐾 with 𝜚′𝜘|𝐾𝑛 = 1𝐾𝑛 . Let 𝑈𝜘(𝐾𝑛 ) be the set constructed
in D.6. The assignments

𝑒𝑢 ↦→ 𝜚′ (𝑒𝑢) for 𝑢 ∈ 𝑈𝜘(𝐾𝑛 ) and 𝑒𝑢 ↦→ 0 for 𝑢 ∉ 𝑈𝜘(𝐾𝑛 )

define a homomorphism 𝜚𝑛 : 𝐿 → 𝐾 , and with 𝐻𝑛 = Im 𝜚𝑛 both (a) and (b) hold.
Indeed, the set 𝑈𝜘(𝐾𝑛 ) is finite, and thus 𝐻𝑛 is finitely generated. For ℎ ∈ 𝐾𝑛 one
has 𝜘(ℎ) = ∑

𝑢∈𝑈𝜘(ℎ) 𝑟𝑢𝑒𝑢, and since𝑈𝜘(ℎ) is contained in𝑈𝜘(𝐾𝑛 ) , one obtains

(†) ℎ = 𝜚′𝜘(ℎ) = ∑
𝑢∈𝑈𝜘(ℎ)

𝑟𝑖 𝜚
′ (𝑒𝑢) =

∑
𝑢∈𝑈𝜘(ℎ)

𝑟𝑖 𝜚
𝑛 (𝑒𝑢) = 𝜚𝑛𝜘(ℎ) ;

in particular, ℎ belongs to 𝐻𝑛. With 𝐾𝑛 contained in 𝐻𝑛, one has both ℎ𝑛 ∈ 𝐻𝑛 and
𝐻𝑛−1 ⊆ 𝐻𝑛, which establishes (a). Furthermore, as 𝐻𝑛−1 is contained in 𝐾𝑛 one has
𝜚𝑛𝜘|𝐻𝑛−1 = 1𝐻𝑛−1 , also by (†), whence (b) holds as well. □

The next result is inspired by Osofsky [198].

D.11 Proposition. Let 0 −−→ 𝐾
𝜘−−→ 𝐿

𝜋−−→ 𝐹 −−→ 0 be an exact sequence of
𝑅-modules where 𝐿 is free and 𝐹 is flat. Let ℵ be an infinite cardinal and 𝐻 an
ℵ-generated submodule of 𝐾 .

(a) There is an ℵ-generated submodule 𝐻′ of 𝐾 such that 𝐻 is contained in 𝐻′
and 𝜘|𝐻′ is a pure monomorphism.

(b) If ℵ is uncountable, then there is a continuous chain {𝐻α }α<ℵ of submodules
in 𝐾 , such that each module 𝐻α is max{card α,ℵ0}-generated, each mono-
morphism 𝜘|𝐻α is pure, and one has 𝐻 ⊆ ⋃

α<ℵ 𝐻
α .

Proof. We proceed by induction on ℵ. For ℵ = ℵ0 part (a) holds by D.10. Assume
now that ℵ is uncountable and that (a) holds for all ℵ<-generated submodules of 𝐾 .
The goal is to prove (a) and (b) for all ℵ-generated submodules 𝐻 of 𝐾; we start by
noting that (a) follows from (b). Indeed, assume (b) holds and set 𝐻′ = ⋃

α<ℵ 𝐻
α .
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This module contains 𝐻, and it follows from D.4 that 𝜘|𝐻′ is a pure monomorphism.
Since each module 𝐻α has a set 𝐸α of generators with card 𝐸α ⩽ ℵ (actually,
card 𝐸α < ℵ) the set 𝐸 ′ = ⋃

α<ℵ 𝐸α of generators for 𝐻′ has card 𝐸 ′ ⩽ ℵ2 = ℵ.
To prove (b), let 𝐻 be an ℵ-generated submodule of 𝐾 and {ℎα }α<ℵ a set of

generators for 𝐻. We construct a continuous chain {𝐻α }α<ℵ of max{card α,ℵ0}-
generated submodules of 𝐾 such that each monomorphism 𝜘|𝐻α is pure, and one
has ℎα ∈ 𝐻β for all α < β. The module 𝐻′ = ⋃

α<ℵ 𝐻
α then contains the family

{ℎα }α<ℵ and hence it contains 𝐻.
Set 𝐻0 = 0; it is generated by ∅, it is a submodule of every other submodule

of 𝐾 , and the zero morphism is pure. Now, let γ < ℵ and assume that there is
a continuous chain {𝐻α }α<γ of max{card α,ℵ0}-generated submodules of 𝐾 such
that each monomorphism 𝜘|𝐻α is pure, and one has ℎα ∈ 𝐻β for all α < β < γ.

If γ is a limit ordinal, then 𝐻γ =
⋃

α<γ 𝐻
α contains ℎα for all α < γ, the family

{𝐻α }α<γ+1 is a continuous chain of submodules, and 𝜘|𝐻 γ is pure by D.4. To see
that 𝐻γ is max{card γ,ℵ0}-generated, note that each module 𝐻α for α < γ has a
set of generators 𝐸α with card 𝐸α ⩽ max{card α,ℵ0} ⩽ card γ. Thus, the set 𝐸γ =⋃

α<γ 𝐸α of generators for 𝐻γ has card 𝐸γ ⩽ (card γ)2 = card γ = max{card γ,ℵ0}.
If γ = α + 1 is a successor ordinal, consider the submodule 𝐾 ′ = 𝐻α + 𝑅⟨ℎα ⟩

of 𝐾 . By assumption, 𝐻α and, therefore, 𝐾 ′ has a set of generators of cardinality at
most max{card α,ℵ0} = max{card γ,ℵ0} < ℵ. By the assumption that (a) holds for
all ℵ<-generated submodules of 𝐾 , there is a max{card γ,ℵ0}-generated submodule
𝐻γ of 𝐾 such that 𝜘|𝐻 γ is pure and 𝐾 ′ is contained in 𝐻γ . This ensures that ℎα is in
𝐻γ for all α < γ and that {𝐻α }α<γ+1 is a continuous chain of submodules. □

The next result is essentially a restatement of Jensen’s theorem.

D.12 Theorem. If FPD 𝑅 is finite, then every pure submodule of a free 𝑅-module
has finite projective dimension.

Proof. Let 𝐿 be a free 𝑅-module, ℵ an infinite cardinal, and 𝐻 an ℵ-generated
pure submodule of 𝐿. By transfinite induction we prove that 𝐻 has finite projective
dimension. Note that 𝐿/𝐻 is a flat module by D.7.

If 𝐻 is ℵ0-generated, then it is projective by D.9. Now let ℵ > ℵ0 and assume
that all ℵ<-generated pure submodules of 𝐿 have finite projective dimension. An
application of D.11 to the exact sequence 0 → 𝐻 → 𝐿 → 𝐿/𝐻 → 0 shows that
𝐻 is the union of a continuous chain {𝐻α }α<ℵ of ℵ<-generated pure submodules
of 𝐿. Set 𝑝 = FPD 𝑅; by the induction hypothesis the modules in the chain have
pd𝑅 𝐻α ⩽ 𝑝. For every α with α + 1 < ℵ it follows from 8.1.9 applied to the
sequence 0→ 𝐻α → 𝐻α+1 → 𝐻α+1/𝐻α → 0 that also pd𝑅 (𝐻α+1/𝐻α) ⩽ 𝑝 holds.
The desired conclusion, pd𝑅 𝐻 ⩽ 𝑝, is now immediate from D.3. □

Proof of 8.5.18. One can assume that FPD 𝑅 is finite. Let 𝐹 be a flat 𝑅-module
and choose by 1.3.12 a surjective homomorphism 𝜋 : 𝐿 → 𝐹 with 𝐿 free. The exact
sequence 0 → Ker 𝜋 → 𝐿 → 𝐹 → 0 is pure by D.7, so Ker 𝜋 has finite projective
dimension by D.12. It follows from 8.1.9 that 𝐹 has finite projective dimension as
well, whence pd𝑅 𝐹 ⩽ FPD 𝑅 holds. □
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Modules of Finite Projective Dimension over Noetherian Rings

The next goal is to prove a companion result to 8.5.18, which was noticed by Jensen
in [148, §5] and stated here in 8.5.24:

Theorem. Assume that 𝑅 is left Noetherian and let 𝑀 be an 𝑅-module. If 𝑀 has
finite projective dimension, then pd𝑅 𝑀 ⩽ FFD 𝑅 + 1 holds.

They key ingredient in the proof, which comes after D.15, is D.14; we prove it
here with an argument learned from Raynaud and Gruson [207].

D.13 Lemma. Assume that 𝑅 is left Noetherian and let 𝑀 be an 𝑅-module. If 𝑀 is
countably generated, then every submodule of 𝑀 is countably generated.

Proof. Let 𝑀 be generated by elements {𝑥𝑛 | 𝑛 ∈ ℕ}; in particular, 𝑀 is the union⋃
𝑘∈ℕ 𝑅⟨𝑥1, . . . , 𝑥𝑘 ⟩. A submodule 𝑁 of 𝑀 is the union ⋃

𝑘∈ℕ (𝑅⟨𝑥1, . . . , 𝑥𝑘 ⟩ ∩ 𝑁),
and each submodule 𝑅⟨𝑥1, . . . , 𝑥𝑘 ⟩ ∩ 𝑁 is finitely generated, as 𝑅 is left Noetherian.
Thus 𝑁 is countably generated. □

Remark. A ring with the property that every ideal is countably generated, equivalently, every
submodule of a countably generated module is countably generated, is called left ℵ0-Noetherian.
See Jensen [146] and Osofsky [198].

D.14 Proposition. Assume that 𝑅 is left Noetherian and let 𝑀 be an 𝑅-module. If 𝑀
has finite projective dimension, then it is the union of a continuous chain {𝑀α }α<λ
of submodules such that 𝑀0 and 𝑀α+1/𝑀α for every ordinal α with α + 1 < λ are
countably generated modules of finite projective dimension.

Proof. Let 𝑀 be an 𝑅-module of finite projective dimension and 𝐿′ ≃−−→ 𝑀 a free
resolution, see 5.1.16. By 8.1.8 the module C𝑝 (𝐿′) is projective for some 𝑝 > 0, and
by Eilenberg’s swindle 1.3.20 there is a free 𝑅-module 𝐿′′ with C𝑝 (𝐿′) ⊕ 𝐿′′ � 𝐿′′.
The complex 𝐿 = D𝑝 (𝐿′′) ⊕ 𝐿′Ď𝑝 is now a semi-free replacement of 𝑀 with 𝐿𝑣 = 0
for 𝑣 > 𝑝 and 𝑣 < 0. Let {𝑒𝑢 | 𝑢 ∈ 𝑈 } be a graded basis for the graded-free
module 𝐿♮. We proceed to write 𝐿 as the union of a continuous chain {𝐿α }α<λ of
subcomplexes in such a way that for every α < λ one has:

(1) The graded submodule (𝐿α)♮ has the form
∐
𝑢∈𝑈α

𝑅𝑒𝑢 where 𝑈α is a subset
of𝑈, and𝑈β ⊆ 𝑈α holds for every β ⩽ α .

(2) The embedding 𝐿α → 𝐿 induces an injective morphism H(𝐿α) → H(𝐿) .
Notice that if 𝐿α is a subcomplex of 𝐿 that satisfies requirements (1) and (2), then
(𝐿α)♮ is graded-free with graded basis {𝑒𝑢 | 𝑢 ∈ 𝑈α }, one has H𝑣 (𝐿α) = 0 for 𝑣 ≠ 0,
and H0 (𝐿α) is a submodule of H0 (𝐿) � 𝑀 . Further, if 𝐿β for β ⩽ α is another
subcomplex that satisfies (1) and (2), then 𝐿β ↣ 𝐿 factors through 𝐿α , per the
inclusion 𝑈β ⊆ 𝑈α . It follows that the injective morphism H(𝐿β) → H(𝐿) factors
through H(𝐿α), so 𝐿β ↣ 𝐿α induces an injective morphism H(𝐿β) → H(𝐿α).

Set 𝐿0 = 0; with𝑈0 = ∅ it has the form specified in (1) and condition (2) is trivial.
Let α be an ordinal and assume that 𝐿β has been constructed for all ordinals β < α.

In the case α is a limit ordinal, set 𝐿α =
⋃

β<α 𝐿
β and notice from 3.3.3 and

3.3.15(d) that one has
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(†) H(𝐿α) � H
(
colim
β<α

𝐿β
)
� colim

β<α
H(𝐿β) � ⋃

β<α

H(𝐿β) .

The complex 𝐿α evidently satisfies condition (2). To see that (𝐿α)♮ has the form
specified in (1), set𝑈α =

⋃
β<α𝑈β and notice that there are equalities,

(𝐿α)♮ =
( ⋃
β<α

𝐿β
) ♮

=
⋃
β<α

(𝐿β)♮ =
⋃
β<α

( ∐
𝑢∈𝑈β

𝑅𝑒𝑢
)
=

∐
𝑢∈𝑈α

𝑅𝑒𝑢 .

Now assume that α = β + 1 is a successor ordinal. If 𝑈β = 𝑈 the construction is
complete. Otherwise, let 𝜕 denote the differential on the quotient complex 𝐿 = 𝐿/𝐿β

and for 𝑢 ∈ 𝑈 let 𝑒𝑢 denote the coset of 𝑒𝑢 in 𝐿. The graded module (𝐿)♮ is graded-
free with graded basis {𝑒𝑢 | 𝑢 ∈ 𝑈 \𝑈β }. Let 𝐼 ⊆ 𝑈 \𝑈β be a countable set. The
submodule 𝜕 (∐𝑢∈𝐼 𝑅𝑒𝑢) is countably generated and, since 𝑅 is left Noetherian, so
is B(𝐿) ∩∐

𝑢∈𝐼 𝑅𝑒𝑢, see D.13. Thus, adding countably many elements from𝑈 \𝑈β

to 𝐼 one gets a countable subset 𝐼 ′ with

𝜕
( ∐
𝑢∈𝐼

𝑅𝑒𝑢
)
⊆ ∐

𝑢∈𝐼 ′
𝑅𝑒𝑢 and B(𝐿) ∩ ∐

𝑢∈𝐼
𝑅𝑒𝑢 ⊆ 𝜕

( ∐
𝑢∈𝐼 ′

𝑅𝑒𝑢
)
.

Starting with 𝐽0 = {𝑒𝑢} for some 𝑢 ∈ 𝑈\𝑈β the construction above yields a sequence
𝐽0 ⊆ 𝐽1 ⊆ · · · of countable subsets of𝑈 \𝑈β , where 𝐽𝑛+1 = 𝐽′𝑛, such that one has

𝜕
( ∐
𝑢∈𝐽𝑛

𝑅𝑒𝑢
)
⊆ ∐

𝑢∈𝐽𝑛+1
𝑅𝑒𝑢 and B(𝐿) ∩ ∐

𝑢∈𝐽𝑛
𝑅𝑒𝑢 ⊆ 𝜕

( ∐
𝑢∈𝐽𝑛+1

𝑅𝑒𝑢
)
.

Set 𝐽 =
⋃
𝑛⩾0 𝐽𝑛 and 𝐹 =

∐
𝑢∈𝐽 𝑅𝑒𝑢. By construction one has B(𝐿) ∩ 𝐹 = 𝜕 (𝐹); it

follows that 𝐹 defines a subcomplex of 𝐿 and that the map H(𝐹) → H(𝐿) induced
by the embedding 𝐹 → 𝐿 is injective. Let 𝐿β+1 be the unique subcomplex of 𝐿 with
𝐿β+1/𝐿β = 𝐹. Evidently, one has

(𝐿β+1)♮ =
∐

𝑢∈𝑈β+1
𝑅𝑒𝑢 where 𝑈β+1 = 𝐽 ∪𝑈β .

The complex 𝐿β+1 satisfies condition (1). To see that it satiesfies (2), notice first that
the exact sequence 0→ 𝐿β → 𝐿 → 𝐿 → 0 per 2.2.21 induces an exact sequence

· · · −→ H1 (𝐿) −→ H1 (𝐿) −→ H0 (𝐿β) −→ H0 (𝐿) −→ H0 (𝐿) −→ 0 .

As 𝐿β satisfies condition (2), one has H𝑣 (𝐿β) = 0 = H𝑣 (𝐿) for 𝑣 ⩾ 1, which implies
H𝑣 (𝐿) = 0 for 𝑣 ⩾ 2. Subsequently, injectivity of the map H0 (𝐿β) → H0 (𝐿) forces
H1 (𝐿) = 0. As the morphism H(𝐹) → H(𝐿) is injective, it now follows that H(𝐹)
is concentrated in degree 0. Applying the argument above to the exact sequence of
homology modules associated to the exact sequence 0 → 𝐹 → 𝐿 → 𝐿/𝐿β+1 → 0
one now gets that H(𝐿/𝐿β+1) is concentrated in degree 0. Finally, associated to the
exact sequence 0→ 𝐿β+1 → 𝐿 → 𝐿/𝐿β+1 → 0 one has the exact sequence,

· · · −→ H1 (𝐿/𝐿β+1) −→ H0 (𝐿β+1) −→ H0 (𝐿) −→ H0 (𝐿/𝐿β+1) −→ 0 .

It shows that the morphism H(𝐿β+1) → H(𝐿) is injective.
For every successor ordinal β + 1 with𝑈β ⊂ 𝑈 one has𝑈β ⊂ 𝑈β+1 so the process

described above terminates; as desired, 𝐿 is now the union of a continuous chain
{𝐿α }α<λ where each subcomplex 𝐿α satisfies (1) and (2).
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It follows from (†) and the consequences of (2) discussed before the construction
of the continuous chain {𝐿α }α<λ that {H0 (𝐿α)}α<λ is a continuous chain with union
H0 (𝐿) � 𝑀 . Further, for every ordinal β with β + 1 < λ, the short exact sequence
0→ 𝐿β → 𝐿β+1 → 𝐿β+1/𝐿β → 0 induces an exact sequence,

0 −→ H0 (𝐿β) −→ H0 (𝐿β+1) −→ H0 (𝐿β+1/𝐿β) −→ 0 ,

which shows that H0 (𝐿β+1)/H0 (𝐿β) is isomorphic to H0 (𝐿β+1/𝐿β) = H0 (𝐹). In
particular, the quotient H0 (𝐿β+1)/H0 (𝐿β) is countably generated and has projective
dimension at most 𝑝; indeed, 𝐹 is degreewise countably generated and a semi-free
replacement of H0 (𝐹). □

Remark. The proof of D.14 shows that for a module 𝑀 of projective dimension 𝑝 > 0, the
projective dimension of 𝑀0 and each quotient 𝑀α+1/𝑀α is at most 𝑝. For our applications of
D.14 it makes no difference, but the same is true for a module of projective dimension 𝑝 = 0. If fact,
Kaplansky [154] proves an even stronger result: A projective module is a coproduct of countably
generated projective modules. This results is also a key ingredient in the proof of freeness of
projective modules over local rings, cf. the Remarks after 1.3.21 and B.46.

D.15 Corollary. If 𝑅 is left Noetherian, then there is an equality,

FPD 𝑅 = sup{pd𝑅 𝑀 | 𝑀 is a countably generated 𝑅-module with pd𝑅 𝑀 < ∞} .

Proof. Per D.3 the assertion follows immediately from D.14. □

Proof of 8.5.24. Set 𝑛 = FFD 𝑅 and assume that it is finite, otherwise there
is nothing to prove. Let 𝑀 be an 𝑅-module of finite projective dimension; per
D.14 and D.3 one can assume that it is countably generated. Choose a surjective
homomorphism 𝜋 : 𝐿0 → 𝑀 where 𝐿0 is a countably generated free 𝑅-module, see
the proof of 1.3.12. As 𝑅 is left Noetherian, the submodule Ker 𝜋 is countably
generated, see D.13, so recursively one builds a degreewise countably generated free
resolution 𝐿 ≃−−→ 𝑀 . By 8.3.6 and 8.3.11 the cokernel C𝑛 (𝐿) is flat, so it follows
from D.9 applied to the exact sequence 0 → C𝑛+1 (𝐿) → 𝐿𝑛 → C𝑛 (𝐿) → 0 that
C𝑛+1 (𝐿) is projective. Thus, one has pd𝑅 𝑀 ⩽ 𝑛 + 1. □

Flat Preenvelopes

D.16. Let α be an infinite cardinal and {𝑀𝑢}𝑢∈𝑈 a family of 𝑅-modules with
card𝑀𝑢 ⩽ α for every 𝑢 ∈ 𝑈. For the coproduct one has

card
( ∐
𝑢∈𝑈

𝑀𝑢
)
⩽ max{α, card𝑈} .

If each 𝑀𝑢 is a submodule of a common 𝑅-module 𝑀 , then one can consider the sum∑
𝑢∈𝑈 𝑀

𝑢. There is a canonical surjective homomorphism
∐
𝑢∈𝑈 𝑀

𝑢 → ∑
𝑢∈𝑈 𝑀

𝑢,
see 3.1.4, and hence one also has card(∑𝑢∈𝑈 𝑀

𝑢) ⩽ max{α, card𝑈}.

D.17 Lemma. Given a cardinal α there is a cardinal α̃, depending on α and card 𝑅,
with the following property: For every 𝑅-module 𝑀 and every submodule 𝑁 ⊆ 𝑀
with card 𝑁 ⩽ α, there exists a pure submodule 𝑁 ⊆ 𝑀 with card 𝑁 ⩽ α̃ and 𝑁 ⊆ 𝑁 .
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Proof. Let Δ be the set of all triples (𝑚, 𝑛, 𝜘) where 𝑚, 𝑛 ∈ ℕ and 𝜘 : 𝑅𝑚 → 𝑅𝑛 is a
homomorphism. Let 𝜅 : 𝐹 → 𝐹′ be the coproduct over Δ of the homomorphisms 𝜘.
That is, one has 𝐹 =

∐
(𝑚,𝑛,𝜘) ∈Δ 𝑅

𝑚 and 𝐹′ =
∐
(𝑚,𝑛,𝜘) ∈Δ 𝑅

𝑛, and 𝜅 is uniquely
determined by commutativity of the diagrams,

𝑅𝑚

𝜀(𝑚,𝑛,𝜘)
��

𝜘
// 𝑅𝑛

𝜀′(𝑚,𝑛,𝜘)
��

𝐹
𝜅
// 𝐹′ ,

where 𝜀 and 𝜀′ denote the canonical embeddings.
We now construct a sequence 𝑁 = 𝑁0 ⊆ 𝑁1 ⊆ 𝑁2 ⊆ · · · of submodules of

𝑀 . Set 𝑁0 = 𝑁 . Given 𝑁𝑢 we construct 𝑁𝑢+1 as follows. Let Ψ𝑢 be the set of all
homomorphisms 𝜓 : 𝐹 → 𝑁𝑢 for which there exists some commutative diagram,

(⋄)
𝐹

𝜓

��

𝜅
// 𝐹′

��

𝑁𝑢 //
𝜈𝑢
// 𝑀 ,

where 𝜈𝑢 is the embedding. Choose for every𝜓 ∈ Ψ𝑢 a homomorphism𝜓′ : 𝐹′ → 𝑀 ,
that makes the diagram (⋄) commutative and set 𝑁𝑢+1 = 𝑁𝑢 +

∑
𝜓∈Ψ𝑢 Im𝜓′. We

show that 𝑁 =
⋃∞
𝑢=0 𝑁𝑢 has the desired properties. Notice that each 𝜈𝑢 factors as a

composite of embeddings �̃�𝑢 : 𝑁𝑢 ↣ 𝑁 and �̃� : 𝑁 ↣ 𝑀 .
Evidently one has 𝑁 ⊆ 𝑁 ⊆ 𝑀 . To see that 𝑁 is a pure submodule of 𝑀 it

suffices, by 5.5.14, to show that for every commutative diagram,

(★)

𝑅𝑚

𝜑

��

𝜘
// 𝑅𝑛

𝜑′

��

𝑁 //
�̃�
// 𝑀 ,

there exists a homomorphism 𝜚 : 𝑅𝑛 → 𝑁 with 𝜚𝜘 = 𝜑. Let (★) be given and notice
that (𝑚, 𝑛, 𝜘) is an element in Δ. As 𝑅𝑚 is finitely generated, 𝜑 factors through some
𝑁𝑢, that is, 𝜑 can be written as a composite

𝑅𝑚
�̄�
// 𝑁𝑢 //

�̃�𝑢
// 𝑁 .

Let 𝜓 : 𝐹 → 𝑁𝑢 and 𝜉 : 𝐹′ → 𝑀 be the homomorphisms given by

𝜓𝜀 (�̀�,�̀�,�̀�) =

{
�̄� for (�̀�, �̀�, �̀�) = (𝑚, 𝑛, 𝜘)
0 for (�̀�, �̀�, �̀�) ≠ (𝑚, 𝑛, 𝜘)

and
𝜉𝜀′(�̀�,�̀�,�̀�) =

{
𝜑′ for (�̀�, �̀�, �̀�) = (𝑚, 𝑛, 𝜘)
0 for (�̀�, �̀�, �̀�) ≠ (𝑚, 𝑛, 𝜘)

for (�̀�, �̀�, �̀�) ∈ Δ. Now 𝜈𝑢𝜓 = 𝜉𝜅 holds, that is, the diagram (⋄) with 𝜉 as the dotted
arrow is commutative. Indeed, one has
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𝜈𝑢𝜓𝜀 (𝑚,𝑛,𝜘) = 𝜈𝑢�̄� = �̃� �̃�𝑢�̄� = �̃�𝜑 = 𝜑′𝜘 = 𝜉𝜀′(𝑚,𝑛,𝜘)𝜘 = 𝜉𝜅𝜀 (𝑚,𝑛,𝜘)

and 𝜈𝑢𝜓𝜀 (�̀�,�̀�,�̀�) = 0 = 𝜉𝜀′(�̀�,�̀�,�̀�)𝜘 = 𝜉𝜅𝜀 (�̀�,�̀�,�̀�) for all (�̀�, �̀�, �̀�) ≠ (𝑚, 𝑛, 𝜘) in Δ.
This means that the homomorphism 𝜓 : 𝐹 → 𝑁𝑢 belongs to the set Ψ𝑢. By con-
struction of 𝑁𝑢+1 there exists a homomorphism 𝜓′ that makes the diagram below
commutative,

𝐹

𝜓

��

𝜅
// 𝐹′

𝜓′

��

𝑁𝑢 //
𝜈𝑢,𝑢+1

// 𝑁𝑢+1 ;

here 𝜈𝑢,𝑢+1 denotes the embedding. We argue that 𝜚 = �̃�𝑢+1𝜓′𝜀′(𝑚,𝑛,𝜘) : 𝑅
𝑛 → 𝑁

satisfies 𝜚𝜘 = 𝜑 as required. As �̃� is injective, it suffices to show that �̃� 𝜚𝜘 = �̃�𝜑

holds. To verify this is a computation based on commutativity of the diagrams above:

�̃� 𝜚𝜘 = �̃� �̃�𝑢+1𝜓
′𝜀′(𝑚,𝑛,𝜘)𝜘

= 𝜈𝑢+1𝜓
′𝜀′(𝑚,𝑛,𝜘)𝜘

= 𝜈𝑢+1𝜓
′𝜅𝜀 (𝑚,𝑛,𝜘)

= 𝜈𝑢+1𝜈𝑢,𝑢+1𝜓𝜀 (𝑚,𝑛,𝜘)

= 𝜈𝑢𝜓𝜀 (𝑚,𝑛,𝜘)

= 𝜈𝑢�̄�

= �̃� �̃�𝑢�̄�

= �̃�𝜑 .

It remains to prove the assertion about cardinality. Without loss of generality one
can assume that α is infinite. Set λ = max{ℵ0, card 𝑅} and α̃ = α λ . We show that if
card 𝑁 ⩽ α holds, then one has card 𝑁 ⩽ α̃. As 𝑁 is the countable union ⋃∞

𝑢=0 𝑁𝑢, it
suffices to argue that card 𝑁𝑢 ⩽ α̃ holds for every 𝑢. We prove this by induction. For
𝑢 = 0 we have 𝑁0 = 𝑁 and hence card 𝑁0 ⩽ α ⩽ α̃. Now assume that card 𝑁𝑢 ⩽ α̃

holds for some 𝑢. Note that cardΔ = λ whence the free modules 𝐹 and 𝐹′ have bases
of cardinality λ. It follows that

Hom𝑅 (𝐹, 𝑁𝑢) � Hom𝑅 (𝑅 (λ) , 𝑁𝑢) � 𝑁 λ
𝑢 ,

and consequently, card(Hom𝑅 (𝐹, 𝑁𝑢)) ⩽ α̃ λ = (α λ)λ = α λ ·λ = α λ = α̃, where
the inequality comes from the assumption card 𝑁𝑢 ⩽ α̃. As Ψ𝑢 is a subset of
Hom𝑅 (𝐹, 𝑁𝑢) one also has cardΨ𝑢 ⩽ α̃. Recall that 𝑁𝑢+1 = 𝑁𝑢 +

∑
𝜓∈Ψ𝑢 Im𝜓′

where each 𝜓′ is a homomorphism 𝐹′ → 𝑋 . In particular, one has

card(Im𝜓′) ⩽ card 𝐹′ = card 𝑅 (λ) ⩽ max{λ, card 𝑅} = λ ⩽ α̃ .

Thus 𝑁𝑢+1 is a sum, over a set of cardinality at most α̃, of modules of cardinality at
most α̃. It follows that card 𝑁𝑢+1 ⩽ α̃; see D.16. □

D.18 Definition. Let X be a class of 𝑅-modules and 𝑀 an 𝑅-module. An X-
preenvelope of 𝑀 is a homomorphism 𝜑 : 𝑀 → 𝑋 with 𝑋 ∈ X such that for every
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homomorphism 𝜑′ : 𝑀 → 𝑋 ′ with 𝑋 ′ ∈ X there is a homomorphism 𝜒 : 𝑋 → 𝑋 ′

that makes the following diagram commutative,

𝑀

𝜑′

��

𝜑
// 𝑋

𝜒
~~

𝑋 ′ .

D.19 Example. Let I0 denote the class of injective 𝑅-modules. By 5.3.30 and 5.3.27
every 𝑅-module has an I0-preenvelope, also called an injective preenvelope.

D.20. Let X be a class of 𝑅-modules and 𝑀 an 𝑅-module. A homomorphism
𝜑 : 𝑀 → 𝑋 with 𝑋 ∈ X is an X-preenvelope if and only if Hom𝑅 (𝜑, 𝑋 ′) is surjective
for every 𝑋 ′ ∈ X. Notice that if 𝑀 can be embedded in some module from X, then
every X-preenvelope 𝑀 → 𝑋 is injective.

D.21 Theorem. Let X be a class of 𝑅-modules. If the next two conditions are
satisfied, then every 𝑅-module has an X-preenvelope.

(1) Every pure submodule of a module in X belongs to X .

(2) For every family {𝑋𝑢}𝑢∈𝑈 of modules in X the product
∏
𝑢∈𝑈 𝑋𝑢 is in X .

Proof. Let 𝑀 be an 𝑅-module. Set α = card𝑀 and let α̃ be as in D.17. The
collection of isomorphism classes of modules in X of cardinality ⩽ α̃ constitutes a
set; let {𝑋𝑢}𝑢∈𝑈 be a set of representatives for these classes. That is, every 𝑋 ∈ X

with card 𝑋 ⩽ α̃ is isomorphic to some 𝑋𝑢. By assumption the product

𝑋 =
∏
𝑢∈𝑈

𝑋
Hom𝑅 (𝑀,𝑋𝑢 )
𝑢

belongs to X. For every 𝑢 ∈ 𝑈 and 𝛽 ∈ Hom𝑅 (𝑀, 𝑋𝑢) let 𝜋𝑢,𝛽 : 𝑋 → 𝑋𝑢 be
the projection. Now, let 𝜑 : 𝑀 → 𝑋 be the unique homomorphism that satisfies
𝜋𝑢,𝛽𝜑 = 𝛽 for every 𝑢 and 𝛽; see 1.1.19. To see that 𝜑 is an X-preenvelope, let
𝜑′ : 𝑀 → 𝑋 ′ be a homomorphism with 𝑋 ′ ∈ X. Note that the submodule Im 𝜑′ ⊆ 𝑋 ′
has card(Im 𝜑′) ⩽ card𝑀 = α, so D.17 yields a pure submodule 𝑌 ⊆ 𝑋 ′ with
Im 𝜑′ ⊆ 𝑌 and card𝑌 ⩽ α̃. By assumption, 𝑌 belongs to X. Hence there is an
isomorphism 𝑌 � 𝑋𝑢 for some 𝑢. As 𝜑′ factors through Im 𝜑′, it also factors
through 𝑌 � 𝑋𝑢. Thus there exist homomorphisms 𝛽 : 𝑀 → 𝑋𝑢 and 𝛾 : 𝑋𝑢 → 𝑋 ′

with 𝛾𝛽 = 𝜑′. Therefore the homomorphism 𝜒 = 𝛾𝜋𝑢,𝛽 : 𝑋 → 𝑋 ′ satisfies 𝜒𝜑 =

𝛾𝜋𝑢,𝛽𝜑 = 𝛾𝛽 = 𝜑′. □

Let F0 denote the class of flat 𝑅-modules; an F0-preenvelope is called a flat
preenvelope; cf. D.19.

D.22 Corollary. Assume that 𝑅 is right Noetherian and let 𝑛 ⩾ 0 be an integer. Set

F𝑛 = {𝑀 ∈ M(𝑅) | fd𝑅 𝑀 ⩽ 𝑛} .

Every 𝑅-module has an F𝑛-preenvelope; in particular, every 𝑅-module has a flat
preenvelope.
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Proof. Let 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be a pure exact sequence of 𝑅-modules. By
5.5.14 there is a split exact sequence of 𝑅o-modules,

0 −→ Homk (𝑀 ′′,𝔼) −→ Homk (𝑀,𝔼) −→ Homk (𝑀 ′,𝔼) −→ 0 ,

so 8.3.17 and 8.2.12 show that one has fd𝑅 𝑀 = max{fd𝑅 𝑀 ′, fd𝑅 𝑀 ′′}. In partic-
ular, fd𝑅 𝑀 ′ ⩽ fd𝑅 𝑀 holds, so the class F𝑛 is closed under pure submodules. By
8.3.27 the class F𝑛 is closed under products, so the assertion follows from D.21. □

As noted in D.19 above, every module has an injective preenvelope; in fact, every
module has an injective envelope by B.17. Here is a related result:

D.23 Corollary. Assume that 𝑅 is left Noetherian and let 𝑛 ⩾ 0 be an integer. Set

I𝑛 = {𝑀 ∈ M(𝑅) | id𝑅 𝑀 ⩽ 𝑛} .

Every 𝑅-module has an I𝑛-preenvelope.

Proof. Let 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 be a pure exact sequence of 𝑅-modules. By
5.5.14 there is a split exact sequence of 𝑅o-modules,

0 −→ Homk (𝑀 ′′,𝔼) −→ Homk (𝑀,𝔼) −→ Homk (𝑀 ′,𝔼) −→ 0 ,

so 8.3.18 and 8.3.13 show that one has id𝑅 𝑀 = max{id𝑅 𝑀 ′, id𝑅 𝑀 ′′}. In partic-
ular, id𝑅 𝑀 ′ ⩽ id𝑅 𝑀 holds, so the class I𝑛 is closed under pure submodules. By
8.2.12 the class I𝑛 is closed under products, so the assertion follows from D.21. □

D.24 Proposition. Let 𝑅 → 𝑆 be a ring homomorphism and 𝑀 an 𝑅-module.
If 𝑆 is flat as an 𝑅-module and 𝜑 : 𝑀 → 𝐹 a flat preenvelope, then the induced
homomorphism of 𝑆-modules, 𝑆 ⊗𝑅 𝜑 : 𝑆 ⊗𝑅 𝑀 → 𝑆 ⊗𝑅 𝐹, is a flat preenvelope.

Proof. The 𝑆-module 𝑆 ⊗𝑅 𝐹 is flat by 5.4.24(a), and for every 𝑆-module 𝐺 there
are by adjunction 4.4.12 and the counitor 4.4.2 ismorphisms,

(⋄) Hom𝑆 (𝑆 ⊗𝑅 𝜑, 𝐺) � Hom𝑅 (𝜑,Hom𝑆 (𝑆, 𝐺)) � Hom𝑅 (𝜑, 𝐺) .

If𝐺 is flat, then it is also flat as an 𝑅-module, see 5.4.24(b), and it follows from D.20
that Hom𝑅 (𝜑, 𝐺) is surjective. Now (⋄) shows that Hom𝑆 (𝑆 ⊗𝑅 𝜑, 𝐺) is surjective,
whence 𝑆 ⊗𝑅 𝜑 is a flat preenvelope by another application of D.20. □

Exercises

E D.1 Let X be a class of 𝑅-modules, 𝑀 an 𝑅-module, and 𝜑 : 𝑀 → 𝑋 an X-preenvelope. Show
that a homomorphism 𝜑′ : 𝑀 → 𝑋′ with 𝑋′ ∈ X is an X-preenvelope if there exists a
homomorphism 𝜓 : 𝑋′ → 𝑋 with 𝜓𝜑′ = 𝜑.

E D.2 Let 𝑅 → 𝑆 be a ring homomorphism and 𝑀 an 𝑅-module. If 𝑆 is flat as an 𝑅-module
and 𝜑 : 𝑀 → 𝐹 an F𝑛-preenvelope, then the induced homomorphism of 𝑆-modules,
𝑆 ⊗𝑅 𝜑 : 𝑆 ⊗𝑅 𝑀 → 𝑆 ⊗𝑅 𝐹, is an F𝑛-preenvelope.
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Appendix E
Triangulated Categories

Synopsis. Axioms for triangulated category; triangulated functor; triangulated subcategory; Five
Lemma; split triangle.

In this appendix T is an additive category equipped with an additive automorphism
Σ. We describe the conditions for (T,Σ) to form a triangulated category; the first
step is to settle on a collection of triangles.

E.1 Definition. A candidate triangle in T is a diagram

𝑀
𝛼−−−→ 𝑁

𝛽−−−→ 𝑋
𝛾−−−→ Σ𝑀 ,

such that the composites 𝛽𝛼, 𝛾𝛽, and (Σ𝛼)𝛾 are all zero. An morphism (𝜑, 𝜓, 𝜒) of
candidate triangles is a commutative diagram in T,

𝑀

𝜑

��

𝛼
// 𝑁

𝜓

��

𝛽
// 𝑋

𝜒

��

𝛾
// Σ𝑀

Σ𝜑

��

𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′

𝛾′
// Σ𝑀 ′ ;

it is called an isomorphism if 𝜑, 𝜓, and 𝜒 are isomorphisms in T.

E.2. For a collection △ of candidate triangles in T, consider the next conditions.
(TR0) For every 𝑀 in T, the candidate triangle

𝑀
1𝑀−−−→ 𝑀 −→ 0 −→ Σ𝑀

is in △. Every candidate triangle that is isomorphic to one from △ is in △.
(TR1) Every morphism 𝛼 : 𝑀 → 𝑁 in T fits in a candidate triangle from △,

𝑀
𝛼−−−→ 𝑁 −→ 𝑋 −→ Σ𝑀 .

(TR2) For every candidate triangle 𝑀 𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 in △, the following
two candidate triangles belong to △ as well,

𝑁
𝛽−−−→ 𝑋

𝛾−−−→ Σ𝑀
−Σ𝛼−−−−→ Σ𝑁 and Σ−1𝑋

−Σ−1𝛾−−−−−→ 𝑀
𝛼−−−→ 𝑁

𝛽−−−→ 𝑋 .
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(TR2′) Consider two candidate triangles,

𝑀
𝛼−−−→ 𝑁

𝛽−−−→ 𝑋
𝛾−−−→ Σ𝑀 and 𝑁

−𝛽−−−→ 𝑋
−𝛾−−−→ Σ𝑀

−Σ𝛼−−−−→ Σ𝑁 .

If one belongs to △ then so does the other.
(TR3) For every commutative diagram

(E.2.1)
𝑀

𝜑

��

𝛼
// 𝑁

𝜓

��

𝛽
// 𝑋

𝛾
// Σ𝑀

Σ𝜑

��

𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′

𝛾′
// Σ𝑀 ′ ,

where the rows are candidate triangles in △, there exists a (not necessar-
ily unique) morphism 𝜒 : 𝑋 → 𝑋 ′, such that (𝜑, 𝜓, 𝜒) is a morphism of
candidate triangles.

(TR4′) For every commutative diagram (E.2.1), where the rows are candidate tri-
angles in △, there exists a (not necessarily unique) morphism 𝜒 : 𝑋 → 𝑋 ′

such that (𝜑, 𝜓, 𝜒) is a morphism of candidate triangles, and such that the
following candidate triangle belongs to △,

(E.2.2)
𝑀 ′

⊕
𝑁

(
𝛼′ 𝜓
0 −𝛽

)
−−−−−−−→

𝑁 ′

⊕
𝑋

(
𝛽′ 𝜒
0 −𝛾

)
−−−−−−−→

𝑋 ′

⊕
Σ𝑀

(
𝛾′ Σ𝜑
0 −Σ𝛼

)
−−−−−−−−−→

Σ𝑀 ′

⊕
Σ𝑁

.

The candidate triangle (E.2.2) is called the mapping cone of (𝜑, 𝜓, 𝜒).

Condition (TR4′) is evidently stronger than (TR3), and it is proved in E.5 below
that (TR2) and (TR2′) are equivalent under assumption of (TR0). The conditions in
E.2 supply the axioms for a triangulated category.

E.3 Definition. A triangulated category is an additive category T equipped with
an additive automorphism Σ and a collection △ of candidate triangles, called distin-
guished triangles, such that (TR0), (TR1), (TR2′), and (TR4′) are satisfied.

In a triangulated category (T,Σ), the functor Σ is usually called the translation.
Axiom (TR4′) is perhaps the less intuitive of the lot; here is a simple application.

E.4 Example. Let (T,Σ) be a triangulated category. For 𝑋 and 𝑀 in T it follows
from (TR0) and (TR2′) that there are distinguished triangles

Δ𝑋 = Σ−1𝑋 −→ 0 −→ 𝑋
−1𝑋−−−→ 𝑋 and Δ𝑀 = 𝑀

1𝑀−−−→ 𝑀 −→ 0 −→ Σ𝑀 .

The only morphism from Δ𝑋 to Δ𝑀 is the zero morphism, and its mapping cone,

𝑀

(
1𝑀
0

)
−−−−−→

𝑀

⊕
𝑋

( 0 1𝑋 )−−−−−−→ 𝑋
0−−−→ Σ𝑀 ,

is a distinguished triangle by (TR4′).
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Remark. If the collection △ in (T, Σ) satisfies only (TR0), (TR1), (TR2′), and (TR3), then
T is called pretriangulated. It can be proved that for a pretriangulated category the so-called
Octahedral Axiom, which is usually denoted (TR4), is equivalent to (TR4′); see Neeman [190].
That is, a triangulated category is a pretriangulated category that satisfies the Octahedral Axiom.
This perspective goes back to Verdier’s thesis on derived categories [247] from the mid 1960s—it
was published 30 years late and only after Verdier’s passing. Indeed, triangulated categories in
algebra were originally defined through axiomatization of the properties of derived categories; the
axioms being (TR0), (TR1), (TR2), (TR3), and (TR4); usually with (TR0) included in (TR1). The
contemporary formulation of the definition in E.3 follows Neeman’s monograph [191].

E.5 Lemma. Let △ be a collection of candidate triangles in (T,Σ) such that (TR0)
is satisfied. Condition (TR2) is then satisfied if and only if (TR2′) is satisfied.

Proof. Assume that (TR2′) is satisfied. Let𝑀 𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 be a candidate
triangle in △. Consider the following isomorphism of candidate triangles,

(⋄)
𝑁

𝛽
// 𝑋

−1𝑋�

��

𝛾
// Σ𝑀

−Σ𝛼
// Σ𝑁

𝑁
−𝛽
// 𝑋

−𝛾
// Σ𝑀

−Σ𝛼
// Σ𝑁 .

By (TR2′) the lower row in (⋄) belongs to △, and hence so does the upper row by
(TR0). To show that the candidate triangle

Σ−1𝑋
−Σ−1𝛾−−−−−→ 𝑀

𝛼−−−→ 𝑁
𝛽−−−→ 𝑋

is in △, is by (TR2′) equivalent to showing that 𝑀 −𝛼−−→ 𝑁
−𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 is in △,
and that follows from (TR0) and the next isomorphism of candidate triangles,

𝑀
−𝛼
// 𝑁

−1𝑁�

��

−𝛽
// 𝑋

𝛾
// Σ𝑀

𝑀
𝛼
// 𝑁

𝛽
// 𝑋

𝛾
// Σ𝑀 .

Similar arguments show that (TR2) implies (TR2′). □

Although triangulated categories are seldom Abelian, they are close enough to
Abelian categories that one can do homological algebra in much the same fashion.
The object 𝑋 in a distinguished triangle 𝑀 𝛼−−→ 𝑁 −−→ 𝑋 −−→ Σ𝑀 is a pseudo-
cokernel—and Σ−1𝑋 is a pseudo-kernel—of 𝛼. In this perspective, the distinguished
triangles correspond to short exact sequences.

E.6 Proposition. Let (T,Σ) be a triangulated category. The opposite category
(Top,Σ−1) is triangulated in the following canonical way: A candidate triangle
𝑀 → 𝑁 → 𝑋 → Σ−1𝑀 in Top is distinguished if and only if the corresponding
diagram Σ−1𝑀 → 𝑋 → 𝑁 → 𝑀 is a distinguished triangle in T.

Proof. It is evident that a diagram in Top is a candidate triangle if and only if
the corresponding diagram in T is a candidate triangle. Let △ be the collection of
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distinguished triangles in T. It is elementary to verify that the collection of diagrams
𝑀 → 𝑁 → 𝑋 → Σ−1𝑀 in Top such that the corresponding diagram in T belongs
to △ satisfies the axioms in E.3. As an example, we provide the details for (TR0).

Let 𝑀 be an object in Top and hence in T. The candidate triangle

(⋄) 𝑀
1𝑀−−−→ 𝑀 −→ 0 −→ Σ−1𝑀

in Top is distinguished if and only if the corresponding candidate triangle in T,

(♭) Σ−1𝑀 −→ 0 −→ 𝑀
1𝑀−−−→ 𝑀 ,

belongs to △. By (TR2′), applied twice, (♭) is in △ if and only if the following
candidate triangle is in △,

(†) 𝑀
1𝑀−−−→ 𝑀 −→ Σ0 −→ Σ𝑀 .

There is an isomorphism Σ0 � 0 in T, so by (TR0) the triangle (†) is in △, whence
(⋄) is distinguished in Top. Next, let

(‡)
𝑀 ′

𝜑�

��

𝛼′
// 𝑁 ′

𝜓�

��

𝛽′
// 𝑋 ′

𝜒�

��

𝛾′
// Σ−1𝑀 ′

Σ−1𝜑�
��

𝑀
𝛼
// 𝑁

𝛽
// 𝑋

𝛾
// Σ−1𝑀

be an isomorphism of candidate triangles in Top, and assume that the bottom row is
distinguished. In the corresponding diagram in T,

Σ−1𝑀

Σ−1𝜑�
��

𝛾
// 𝑋

𝜒�

��

𝛽
// 𝑁

𝜓�

��

𝛼
// 𝑀

𝜑�

��

Σ−1𝑀 ′
𝛾′
// 𝑋 ′

𝛽′
// 𝑁 ′

𝛼′
// 𝑀 ′ ,

the top row belongs to △, and by (TR0) so does the bottom row. Hence, the top row
in (‡) is a distinguished triangle in Top. □

Triangulated Functors and Triangulated Subcategories

E.7 Definition. Consider triangulated categories (T,ΣT) and (U,ΣU). A functor
F: T → U is called triangulated if it is additive and there is a natural isomorphism
𝜙 : FΣT→ ΣUF such that for every distinguished triangle in T,

𝑀
𝛼−−−→ 𝑁

𝛽−−−→ 𝑋
𝛾−−−→ ΣT𝑀 ,

the induced candidate triangle in U,

F(𝑀) F(𝛼)−−−−→ F(𝑁) F(𝛽)−−−−→ F(𝑋) 𝜙𝑀 F(𝛾)−−−−−−−→ ΣUF(𝑀) ,

is distinguished. Although a triangulated functor is a pair (F, 𝜙), it is customary to
suppress 𝜙 and when needed refer to it as the natural isomorphism associated to F.
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In the suggested analogy with Abelian categories, triangulated functors corre-
spond to exact functors. The translation functor, for example, is triangulated.

E.8 Example. Let (T,Σ) be a triangulated category. Given a distinguished triangle

𝑀
𝛼−−−→ 𝑁

𝛽−−−→ 𝑋
𝛾−−−→ Σ𝑀

in T, successive applications of (TR2′) yield distinguished triangles

𝑁
−𝛽
// 𝑋

−𝛾
// Σ𝑀

−Σ𝛼
// Σ𝑁 ,

𝑋
𝛾
// Σ𝑀

Σ𝛼
// Σ𝑁

Σ𝛽
// Σ𝑋 , and

Σ𝑀
−Σ𝛼

// Σ𝑁
−Σ𝛽

// Σ𝑋
−Σ𝛾
// Σ2𝑀 .

Now it follows from the isomorphism of candidate triangles,

Σ𝑀
−Σ𝛼
// Σ𝑁

� −1𝑁

��

−Σ𝛽
// Σ𝑋

−Σ𝛾
// Σ2𝑀

Σ𝑀
Σ𝛼
// Σ𝑁

Σ𝛽
// Σ𝑋

−Σ𝛾
// Σ2𝑀 ,

that Σ𝑀 Σ𝛼−−−→ Σ𝑁
Σ𝛽−−−→ Σ𝑋

−Σ𝛾−−−−→ Σ2𝑀 is distinguished, so the functor Σ : T → T is
triangulated with −1Σ2𝑀 for the natural isomorphism Σ (Σ𝑀) → Σ (Σ𝑀).

E.9 Proposition. Let (T,ΣT), (U,ΣU), and (V,ΣV) be triangulated categories
and F: T → U and G: U→ V be functors. If F and G are triangulated with as-
sociated natural isomorphisms 𝜙 : FΣT→ ΣUF and 𝜓 : GΣU→ ΣVG, then GF is
triangulated with associated natural isomorphism 𝜓F ◦G𝜙 : GFΣT→ ΣVGF.

Proof. Let 𝑀 𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 be a distinguished triangle in T. As F is
triangulated, the diagram

F(𝑀) F(𝛼)−−−−→ F(𝑁) F(𝛽)−−−−→ F(𝑋) 𝜙𝑀 F(𝛾)−−−−−−−→ ΣUF(𝑀)

is a distinguished triangle inU. It yields, as G is triangulated, a distinguished triangle

GF(𝑀) GF(𝛼)−−−−−−→ GF(𝑁) GF(𝛽)−−−−−→ GF(𝑋) 𝜓F(𝑀)G(𝜙𝑀 F(𝛾) )−−−−−−−−−−−−−−−→ ΣUGF(𝑀)

in V. It remains to note that one has 𝜓F(𝑀 )G(𝜙𝑀F(𝛾)) = 𝜓F(𝑀 )G(𝜙𝑀 ) GF(𝛾). □

E.10. Let (T,ΣT) and (U,ΣU) be triangulated categories. It is straightforward to
verify that if F: T → U is a triangulated functor with associated natural isomorphism
𝜙 : FΣT→ ΣUF, then the opposite functor Fop : Top → Uop is triangulated with
associated natural isomorphism (Σ−1

U
𝜙Σ−1

T
)op : Σ−1

U
Fop→ Fop Σ−1

T
.

E.11 Definition. For triangulated categories T and U, an equivalence T ⇄ U is
called an equivalence of triangulated categories if the functors are triangulated.

8-Mar-2024 Draft - use at own risk



1056 Appendix E

It is not automatic that a natural transformations between triangulated functors
commutes with translation; hence one makes the following definition.

E.12 Definition. Let (T,ΣT) and (U,ΣU) be triangulated categories and F and G be
triangulated functors T → Uwith associated natural isomorphisms 𝜙 : FΣT→ ΣUF
and 𝜓 : GΣ→ ΣUG. A natural transformation 𝜏 : F→ G is called triangulated if the
following diagram is commutative for every 𝑋 in T,

F(ΣT 𝑋)

𝜏Σ𝑋

��

�

𝜙𝑋
// ΣUF(𝑋)

Σ𝜏𝑋

��

G(ΣT 𝑋) �

𝜓𝑋
// ΣUG(𝑋) .

That is, 𝜏ΣT𝑋 and ΣU𝜏
𝑋 are isomorphic, and the isomorphism is natural in 𝑋 .

Remark. Another name for triangulated natural transformation is ‘graded’ natural transformation;
see Bondal and Orlov [42]. It is proved ibid. that the unit and counit in an adjunction of triangulated
functors are automatically triangulated.

E.13 Example. Let (T,ΣT) and (U,ΣU) be triangulated categories and F: T → U a
triangulated functor with associated natural isomorphism 𝜙 : FΣ→ ΣUF. It follows
from E.8 and E.9 that the functors FΣT and ΣUF are triangulated with associated
natural isomorphisms

−𝜙ΣT : FΣ2
T −→ ΣUFΣT and −ΣU𝜙 : ΣUFΣT −→ Σ2

UF .

Thus, the natural isomorphism 𝜙 is triangulated.

E.14 Definition. Let (T,Σ) be a triangulated category. A triangulated subcategory
of T is a full additive subcategory S that satisfies the following conditions.

(1) If 𝑁 and 𝑁 ′ are isomorphic objects in T, then 𝑁 belongs to S if and only if 𝑁 ′
belongs to S .

(2) An object 𝑁 in T belongs to S if and only if Σ𝑁 belongs to S .

(3) For every distinguished triangle 𝑀 → 𝑁 → 𝑋 → Σ𝑀 in T, such that the
objects 𝑀 and 𝑁 belong to S, also 𝑋 belongs to S .

Conveniently, the conditions (1)–(3) above are expressed as: S is closed under
isomorphisms, shifts, and distinguished triangles in T.

Notice that if S is a triangulated subcategory of (T,Σ), then (S,Σ) is on its own
a triangulated category.

The Five Lemma

E.15 Definition. Let (T,Σ) be a triangulated category and E an Abelian category.
An additive functor F: T → E is called homological if the sequence

F(𝑀) F(𝛼)−−−−→ F(𝑁) F(𝛽)−−−−→ F(𝑋)
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in E is exact for every distinguished triangle 𝑀 𝛼−−→ 𝑁
𝛽−−→ 𝑋 −−→ Σ𝑀 in T.

E.16. Let (T,Σ) be a triangulated category and E an Abelian category. It follows
from (TR2′) that a homological functor F: T → E induces an exact sequence in E,

· · · −→ F(Σ−1𝑋) F(Σ−1𝛾)−−−−−−−→ F(𝑀)
F(𝛼)−−−−→ F(𝑁) F(𝛽)−−−−→ F(𝑋) F(𝛾)−−−−→ F(Σ𝑀) F(Σ𝛼)−−−−−→ F(Σ𝑁) −→ · · · ,

for every distinguished triangle 𝑀 𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 in T.

E.17 Lemma. Let (T,Σ) be a triangulated category. For every object 𝑌 in T, the
functor T(𝑌,−) : T →M(ℤ) is homological.

Proof. Let 𝑀 𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 be a distinguished triangle in T. It must be
shown that the sequence

T(𝑌, 𝑀) T (𝑌,𝛼)−−−−−−→ T(𝑌, 𝑁) T (𝑌,𝛽)−−−−−−→ T(𝑌, 𝑋)

is exact. As one has 𝛽𝛼 = 0, it follows that the inclusion ImT(𝑌, 𝛼) ⊆ KerT(𝑌, 𝛽)
holds. Conversely, assume that 𝜗 : 𝑌 → 𝑁 is in KerT(𝑌, 𝛽), that is, one has 𝛽𝜗 = 0.
It follows that the next diagram is commutative,

𝑌
1𝑌
// 𝑌

𝜗

��

// 0

��

// Σ𝑌

𝑀
𝛼
// 𝑁

𝛽
// 𝑋

𝛾
// Σ𝑀 .

The rows are distinguished triangles by (TR1) and by assumption. By (TR2′) and
(TR4′) there is a morphism 𝜐 : 𝑌 → 𝑀 with 𝛼𝜐 = 𝜗, whence 𝜗 is in ImT(𝑌, 𝛼). □

Remark. Let (T, Σ) be a triangulated category and E an Abelian category. An additive functor
G: Top → E is called cohomological if the opposite functor Gop : T → Eop is homological. Dually
to E.17 one can show that the functor T (−, 𝑌 ) : Top →M(ℤ) is cohomological for every𝑌 in T.

The next result is the triangulated analogue of the Five Lemma.

E.18 Lemma. Let (T,Σ) be a triangulated category and consider a morphism,

𝑀

𝜑

��

𝛼
// 𝑁

𝜓

��

𝛽
// 𝑋

𝜒

��

𝛾
// Σ𝑀

Σ𝜑

��

𝑀 ′
𝛼′
// 𝑁 ′

𝛽′
// 𝑋 ′

𝛾′
// Σ𝑀 ′ ,

of distinguished triangles. If two of the morphisms 𝜑, 𝜓, and 𝜒 are isomorphisms,
then so is the third.
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Proof. By axiom (TR2′) it suffices to argue that if 𝜑 and 𝜓 are isomorphisms, then
so is 𝜒. To this end, it is enough to show that for every object 𝑌 in T, the induced ho-
momorphism T(𝑌, 𝜒) : T(𝑌, 𝑋) → T(𝑌, 𝑋 ′) of Abelian groups is an isomorphism.
Indeed, by surjectivity of T(𝑋 ′, 𝜒) there is a morphism 𝜉 : 𝑋 ′ → 𝑋 with 𝜒𝜉 = 1𝑋′ .
Now the equalities 𝜒(𝜉𝜒) = 1𝑋′ 𝜒 = 𝜒1𝑋 and injectivity of T(𝑋, 𝜒) yield 𝜉𝜒 = 1𝑋,
whence 𝜉 is an inverse of 𝜒. To prove that T(𝑌, 𝜒) is an isomorphism, consider the
following commutative diagram,

T(𝑌, 𝑀)

T (𝑌,𝜑)
��

T (𝑌,𝛼)
// T(𝑌, 𝑁)

T (𝑌,𝜓)
��

T (𝑌,𝛽)
// T(𝑌, 𝑋)

T (𝑌,𝜒)
��

T (𝑌,𝛾)
// T(𝑌, Σ𝑀)

T (𝑌,Σ𝜑)
��

T (𝑌,Σ𝛼)
// T(𝑌, Σ𝑁)

T (𝑌,Σ𝜓)
��

T(𝑌, 𝑀 ′)
T (𝑌,𝛼′ )

// T(𝑌, 𝑁 ′)
T (𝑌,𝛽′ )

// T(𝑌, 𝑋 ′)
T (𝑌,𝛾′ )

// T(𝑌, Σ𝑀 ′)
T (𝑌,Σ𝛼′ )

// T(𝑌, Σ𝑁 ′) ,

whose rows are exact by E.16 and E.17. As 𝜑 and 𝜓 are isomorphisms, the Five
Lemma 1.1.2 yields the desired conclusion. □

E.19 Proposition. Let F,G: T → U be triangulated functors between triangulated
catgories and 𝜏 : F→ G a triangulated natural transformation. The class

{𝑀 ∈ T | 𝜏𝑀 is an isomorphism}

is a triangulated subcategory of T.

Proof. Write ΣT and ΣU for the translation functors on T and U. If 𝑀 and 𝑁 are
isomorphic objects in T, then evidently 𝜏𝑀 is an isomorphism if and only if 𝜏𝑁 is so.
As 𝜏 is triangulated, see E.12, one has 𝜏ΣT𝑀 � ΣU𝜏

𝑀 for every object 𝑀 in T, and
hence 𝜏𝑀 is an isomorphism if and only if 𝜏ΣT𝑀 is so. Let 𝑀 → 𝑁 → 𝑋 → ΣT𝑀

be a distinguished triangle in T such that 𝜏𝑀 and 𝜏𝑁 are isomorphisms. Application
of E.18 to the commutative diagram below now shows that 𝜏𝑋 is an isomorphism.

F(𝑀)

𝜏𝑀�

��

// F(𝑁)

𝜏𝑁�

��

// F(𝑋)

𝜏𝑋

��

// ΣUF(𝑀)

ΣU𝜏
𝑀�

��

G(𝑀) // G(𝑁) // G(𝑋) // ΣUG(𝑀) .

Thus the asserted class is a triangulated subcategory of T by E.14. □

E.20 Proposition. Let F: T → U be a triangulated functor and V a triangulated
subcatgory of U. The preimage of V, that is,

F−1 (V) = {𝑀 ∈ T | F(𝑀) ∈ V} ,

is a triangulated subcategory of T.

Proof. Write ΣT and ΣU for the translation functors on T and U. If 𝑀 and 𝑁 are
isomorphic objects in T, then F(𝑀) and F(𝑁) are isomorphic objects in U, so it
follows that one has 𝑀 ∈ F−1 (V) if and only if 𝑁 ∈ F−1 (V). For every object 𝑀 in
T one has F(ΣT𝑀) � ΣUF(𝑀), so it follows that one has 𝑀 ∈ F−1 (V) if and only

8-Mar-2024 Draft - use at own risk



Triangulated Categories 1059

if ΣT𝑀 ∈ F−1 (V). Finally, let 𝑀 → 𝑁 → 𝑋 → ΣT𝑀 be a distinguished triangle
in T with 𝑀 and 𝑁 in F−1 (V). Since F(𝑀) → F(𝑁) → F(𝑋) → ΣUF(𝑀) is a
distinguished triangle in U with F(𝑀) and F(𝑁) in V, it follows that F(𝑋) is in V, i.e.
𝑋 belongs to F−1 (V). Thus F−1 (V) is a triangulated subcategory of T by E.14. □

In the suggested analogy with Abelian categories, distinguished triangles of the
form 𝑀 −−→ 𝑁 −−→ 𝑋

0−−→ Σ𝑀 correspond to split exact sequences.

E.21 Definition. Let (T,Σ) be a triangulated category. A distinguished triangle
𝑀

𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 in T is called split if there exist morphisms 𝜚 : 𝑁 → 𝑀

and 𝜎 : 𝑋 → 𝑁 such that the following hold,

𝜚𝛼 = 1𝑀 , 𝛼𝜚 + 𝜎𝛽 = 1𝑁 , and 𝛽𝜎 = 1𝑋 .

E.22 Proposition. Let (T,Σ) be a triangulated category. For a distinguished triangle
Δ = 𝑀

𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 in T, the following conditions are equivalent.
(i) The distinguished triangle Δ is split.
(ii) There exists a morphism 𝜚 : 𝑁 → 𝑀 such that 𝜚𝛼 = 1𝑀 .
(iii) There exists a morphism 𝜎 : 𝑋 → 𝑁 such that 𝛽𝜎 = 1𝑋.
(iv) Δ is isomorphic to the distinguished triangle 𝑀 𝜀−−→ 𝑀 ⊕ 𝑋 𝜛−−→ 𝑋

0−−→ Σ𝑀 ,
where 𝜀 and 𝜛 are the injection and the projection, respectively.

(v) The morphism 𝛾 is zero.
Moreover, if Δ is split, then the diagram 𝑋

𝜎−−→ 𝑁
𝜚−−→ 𝑀

0−−→ Σ𝑋 , where 𝜚 and 𝜎
are as in E.21, is a split distinguished triangle in T.

Proof. Conditions (ii) and (iii) follow from (i). Condition (v) follows from (iii) as
one has 𝛾𝛽 = 0, and similarly (v) follows from (ii), as (Σ𝛼)𝛾 = 0 holds.

(v)⇒ (iv): Consider the commutative diagram

(†)
𝑀

𝛼
// 𝑁

𝛽
// 𝑋

𝛾
// Σ𝑀

𝑀
𝜀𝑀
// 𝑀 ⊕ 𝑋 𝜛𝑋

// 𝑋
0
// Σ𝑀 .

The lower row in (†) is a distinguished triangle by E.4. By (TR4′) there exists a
morphism 𝜓 : 𝑁 → 𝑀 ⊕ 𝑋 such that the resulting diagram is commutative, and it
follows from the Five Lemma E.18 that 𝜓 is an isomorphism.

(iv)⇒ (i): By assumption there is an isomorphism of distinguished triangles,

𝑀

𝜑≃
��

𝛼
// 𝑁

𝜓≃
��

𝛽
// 𝑋

𝜒≃
��

𝛾
// Σ𝑀

Σ𝜑≃
��

𝑀
𝜀𝑀
// 𝑀 ⊕ 𝑋 𝜛𝑋

// 𝑋
0
// Σ𝑀 .

With 𝜚 = 𝜑−1𝜛𝑀𝜓 and 𝜎 = 𝜓−1𝜀𝑋𝜒, one has 𝜚𝛼 = 𝜑−1𝜛𝑀𝜓𝛼 = 1𝑀 and,
similarly, 𝛽𝜎 = 𝛽𝜓−1𝜀𝑋𝜒 = 1𝑋. Finally, one has
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𝛼𝜚 + 𝜎𝛽 = 𝛼𝜑−1𝜛𝑀𝜓 + 𝜓−1𝜀𝑋𝜒𝛽 = 𝜓−1 (𝜀𝑀𝜛𝑀 + 𝜀𝑋𝜛𝑋)𝜓 = 1𝑁 .

Now assume that Δ is split. The diagram Δ′ = 𝑋
𝜎−−→ 𝑁

𝜚−−→ 𝑀
0−−→ Σ𝑋 is a

candidate triangle; indeed, pre- and postcomposing the identity 𝛼𝜚 +𝜎𝛽 = 1𝑁 by 𝜎
and 𝜚 one gets 𝜚𝜎 = 0. If Δ′ is distinguished, then it is split because 𝑀 → Σ𝑋 is
the zero morphism. In the commutative diagram

(‡)
𝑋

𝜎
// 𝑁

𝜚
// 𝑀

0
// Σ𝑋

𝑋
𝜀𝑋
// 𝑋 ⊕ 𝑀 𝜛𝑀

// 𝑀
0
// Σ𝑀 ,

the lower row is a distinguished triangle by E.4. Since Δ is split, the morphism
𝜓 = (𝛽 𝜚)t from 𝑁 to 𝑋 ⊕𝑀 is an isomorphism with inverse 𝜓−1 = (𝜎 𝛼). It yields
an isomorphism betweenΔ′ and the lower row in (‡), whenceΔ′ is distinguished. □

The next result facilitates verification of axiom (TR4′).

E.23 Proposition. Let T be an additive category equipped with an additive auto-
morphism Σ. Consider a commutative diagram in T,

𝑀1

𝜑
��

𝛼1
// 𝑁1

𝜓
��

𝛽1
// 𝑋1

𝜒
��

𝛾1
// Σ𝑀1

Σ𝜑

��

𝑀1

𝜇1

�

??

𝜑

��

𝛼1
// 𝑁1

𝜈1

�

??

𝜓

��

𝛽1
// 𝑋1

𝜅1

�

??

𝜒

��

𝛾1
// Σ𝑀1

Σ𝜇1

�

??

Σ𝜑

��

𝑀2 𝛼2
// 𝑁2 𝛽2

// 𝑋2 𝛾2
// Σ𝑀2 ,

𝑀2
𝜇2�
??

𝛼2
// 𝑁2

𝜈2�
??

𝛽2
// 𝑋2

𝜅2�
??

𝛾2
// Σ𝑀2

Σ𝜇2�
??

where (𝜑, 𝜓, 𝜒) and (𝜑, 𝜓, �̃�) are morphisms of candidate triangles, and (𝜇1, 𝜈1, 𝜅1)
and (𝜇2, 𝜈2, 𝜅2) are isomorphisms of candidate triangles. The mapping cone candi-
date triangles of (𝜑, 𝜓, 𝜒) and (𝜑, 𝜓, �̃�) are isomorphic.

Proof. The commutative diagram

𝑀2

⊕
𝑁1

(
𝛼2 𝜓

0 −𝛽1

)
//

�

(
𝜇2 0
0 𝜈1

)
��

𝑁2

⊕
𝑋1

(
𝛽2 𝜒

0 −𝛾1

)
//

�
(
𝜈2 0
0 𝜅1

)
��

𝑋2

⊕
Σ𝑀1

(
𝛾2 Σ𝜑

0 −Σ𝛼1

)
//

�

(
𝜅2 0
0 Σ𝜇1

)
��

Σ𝑀2

⊕
Σ𝑁1

�

(
Σ𝜇2 0

0 Σ𝜈1

)
��

𝑀2

⊕
𝑁1

(
𝛼2 𝜓

0 −𝛽1

)
//

𝑁2

⊕
𝑋1

(
𝛽2 𝜒

0 −𝛾1

)
//

𝑋2

⊕
Σ𝑀1

(
𝛾2 Σ𝜑

0 −Σ𝛼1

)
//

Σ𝑀2

⊕
Σ𝑁1
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is an isomorphism from the mapping cone candidate triangle of (𝜑, 𝜓, 𝜒) to the
mapping cone candidate triangle of (𝜑, 𝜓, �̃�). □

Recall that in any category, a morphism is called a split monomorphism or split
epimorphism if it has a left inverse, respectively, a right inverse. Evidently, a split
monomorphism is a monomorphism and a split epimorphism is an epimorphism.
The converse rarely holds in an Abelian category, but it does hold in a triangulated
category. Thus, every object in a triangulated category is injective and projective.

E.24 Proposition. In a triangulated category, every monomorphism is a split mono-
morphism and every epimorphism is a split epimorphism.

Proof. Let (T,Σ) be a triangulated category and 𝛼 : 𝑀 → 𝑁 a monomorphism in
T. By (TR1) there is a distinguished triangle Δ = 𝑀

𝛼−−→ 𝑁
𝛽−−→ 𝑋

𝛾−−→ Σ𝑀 in T

which by (TR2) yields a distinguished triangle,

Σ−1𝑋
−Σ−1𝛾−−−−−→ 𝑀

𝛼−−−→ 𝑁
𝛽−−−→ 𝑋 .

As one has 𝛼 ◦ Σ−1𝛾 = 0 and 𝛼 is monomorphism, it follows that 𝛾 = 0. Thus Δ is
split and 𝛼 has a left inverse; see E.22. Similarly one shows that every epimorphism
in T has a right inverse. □

Exercises

E E.1 Let 𝛼 : 𝑀 → 𝑁 be a morphism in a triangulated category (T, Σ) . Show that the complex
𝑋 in a distinguished triangle 𝑀 𝛼−→ 𝑁 −→ 𝑋 −→ Σ𝑀 in T is unique up to isomorphism.

E E.2 (Cf. E.6) Let (T, Σ) be a triangulated category. Show that (Top, Σ−1 ) is triangulated in the
canonical way: A candidate triangle 𝑀 → 𝑁 → 𝑋 → Σ−1𝑀 in Top is distinguished if and
only if the candidate triangle Σ−1𝑀 → 𝑋 → 𝑁 → 𝑀 is distinguished in T.

E E.3 Two homomorphisms of 𝑅-modules 𝛼, 𝛽 : 𝑀 → 𝑁 are called stably equivalent if 𝛼 − 𝛽
factors through a projective 𝑅-module. The stable module category M(𝑅) has as objects
all 𝑅-modules. The hom-set M(𝑅) (𝑀, 𝑁 ) , often written as Hom

𝑅
(𝑀, 𝑁 ) , is the set

of classes of stably equivalent homomorphisms 𝑀 → 𝑁 . (a) Show that M(𝑅) is a 𝕜-
linear category with coproducts. (b) For an 𝑅-module 𝑀, let Ω(𝑀 ) be the kernel of any
projective precover 𝑃 ↠ 𝑀. Show that Ω is a well-defined 𝕜-linear endofunctor on M(𝑅) .
(c) Show that the category M(𝑅) is triangulated if 𝑅 is quasi-Frobenius.

E E.4 Show that the stable module category M(ℚ[𝑥 ]/(𝑥2 ) ) is not Abelian.

8-Mar-2024 Draft - use at own risk



8-Mar-2024 Draft - use at own risk



Bibliography

1. Aberbach, I.M., Li, J.: Asymptotic vanishing conditions which force regularity in local rings
of prime characteristic. Math. Res. Lett. 15(4), 815–820 (2008). DOI 10.4310/MRL.2008.
v15.n4.a17. URL https://doi.org/10.4310/MRL.2008.v15.n4.a17

2. Adámek, J., Rosický, J.: Locally presentable and accessible categories, London Mathematical
Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994). DOI
10.1017/CBO9780511600579. URL http://dx.doi.org/10.1017/CBO9780511600579

3. Alonso Tarrío, L., Jeremías López, A., Lipman, J.: Local homology and cohomology on
schemes. Ann. Sci. École Norm. Sup. (4) 30(1), 1–39 (1997)

4. André, Y.: La conjecture du facteur direct. Publ. Math. Inst. Hautes Études Sci. 127,
71–93 (2018). DOI 10.1007/s10240-017-0097-9. URL https://doi.org/10.1007/
s10240-017-0097-9

5. André, Y.: Perfectoid spaces and the homological conjectures. In: Proceedings of the In-
ternational Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, pp.
277–289. World Sci. Publ., Hackensack, NJ (2018)

6. Apassov, D.: Annihilating complexes of modules. Math. Scand. 84(1), 11–22 (1999)
7. Auslander, M.: On the dimension of modules and algebras. III. Global dimension. Nagoya

Math. J. 9, 67–77 (1955). URL http://projecteuclid.org/euclid.nmj/1118799684
8. Auslander, M.: Anneaux de Gorenstein, et torsion en algèbre commutative. Secrétariat

mathématique, Paris (1967). Séminaire d’Algèbre Commutative dirigé par Pierre Samuel,
1966/67. Texte rédigé, d’après des exposés de Maurice Auslander, par Marquerite Mangeney,
Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles. Available at
http://www.numdam.org

9. Auslander, M., Bridger, M.: Stable module theory. Memoirs of the American Mathematical
Society, No. 94. American Mathematical Society, Providence, R.I. (1969)

10. Auslander, M., Buchsbaum, D.A.: Homological dimension in Noetherian rings. Proc. Nat.
Acad. Sci. U.S.A. 42, 36–38 (1956)

11. Auslander, M., Buchsbaum, D.A.: Homological dimension in local rings. Trans. Amer. Math.
Soc. 85, 390–405 (1957)

12. Auslander, M., Buchsbaum, D.A.: Homological dimension in noetherian rings. II. Trans.
Amer. Math. Soc. 88, 194–206 (1958)

13. Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math.
86(1), 111–152 (1991)

14. Authors, T.S.P.: Stacks project. URL https://stacks.math.columbia.edu/
15. Avramov, L.L.: Homological asymptotics of modules over local rings. In: Commutative

algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., vol. 15, pp. 33–62. Springer, New
York (1989)

16. Avramov, L.L.: Problems on infinite free resolutions. In: Free resolutions in commutative
algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math., vol. 2, pp. 3–23.
Jones and Bartlett, Boston, MA (1992)

1063



1064 Bibliography

17. Avramov, L.L.: Infinite free resolutions. In: Six lectures on commutative algebra (Bellaterra,
1996), Progr. Math., vol. 166, pp. 1–118. Birkhäuser, Basel (1998)

18. Avramov, L.L.: Infinite free resolutions [mr1648664]. In: Six lectures on commutative
algebra, Mod. Birkhäuser Class., pp. 1–118. Birkhäuser Verlag, Basel (2010). DOI 10.1007/
978-3-0346-0329-4\_1. URL https://doi.org/10.1007/978-3-0346-0329-4_1

19. Avramov, L.L.: A cohomological study of local rings of embedding codepth 3. J. Pure
Appl. Algebra 216(11), 2489–2506 (2012). DOI 10.1016/j.jpaa.2012.03.012. URL http:
//dx.doi.org/10.1016/j.jpaa.2012.03.012

20. Avramov, L.L., Foxby, H.B.: Gorenstein local homomorphisms. Bull. Amer. Math. Soc.
(N.S.) 23(1), 145–150 (1990)

21. Avramov, L.L., Foxby, H.B.: Homological dimensions of unbounded complexes. J. Pure
Appl. Algebra 71(2-3), 129–155 (1991)

22. Avramov, L.L., Foxby, H.B.: Locally Gorenstein homomorphisms. Amer. J. Math. 114(5),
1007–1047 (1992)

23. Avramov, L.L., Foxby, H.B.: Ring homomorphisms and finite Gorenstein dimension. Proc.
London Math. Soc. (3) 75(2), 241–270 (1997)

24. Avramov, L.L., Foxby, H.B.: Cohen–Macaulay properties of ring homomorphisms. Adv.
Math. 133(1), 54–95 (1998)

25. Avramov, L.L., Foxby, H.B., Halperin, S.: Differential graded homological algebra. preprint
(1994–2017)

26. Avramov, L.L., Foxby, H.B., Lescot, J.: Bass series of local ring homomorphisms of finite
flat dimension. Trans. Amer. Math. Soc. 335(2), 497–523 (1993)

27. Avramov, L.L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of
finite Gorenstein dimension. Proc. London Math. Soc. (3) 85(2), 393–440 (2002)

28. Baer, R.: Abelian groups that are direct summands of every containing abelian group. Bull.
Amer. Math. Soc. 46, 800–806 (1940)

29. Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans.
Amer. Math. Soc. 95, 466–488 (1960). DOI 10.2307/1993568. URL https://doi.org/
10.2307/1993568

30. Bass, H.: Injective dimension in Noetherian rings. Trans. Amer. Math. Soc. 102, 18–29
(1962)

31. Bass, H.: Big projective modules are free. Illinois J. Math. 7, 24–31 (1963)
32. Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)
33. Bass, H., Murthy, M.P.: Grothendieck groups and Picard groups of abelian group rings. Ann.

of Math. (2) 86, 16–73 (1967)
34. Bazzoni, S., Cortés-Izurdiaga, M., Estrada, S.: Periodic modules and acyclic complexes.

Algebr. Represent. Theory 23(5), 1861–1883 (2020). DOI 10.1007/s10468-019-09918-z.
URL https://doi.org/10.1007/s10468-019-09918-z

35. Belshoff, R.G.: Matlis reflexive modules. Comm. Algebra 19(4), 1099–1118 (1991). DOI
10.1080/00927879108824192. URL https://doi.org/10.1080/00927879108824192

36. Bennis, D., Hu, K., Wang, F.: Gorenstein analogue of Auslander’s theorem on the global
dimension. Comm. Algebra 43(1), 174–181 (2015). DOI 10.1080/00927872.2014.897557.
URL https://doi.org/10.1080/00927872.2014.897557

37. Benson, D.J., Goodearl, K.R.: Periodic flat modules, and flat modules for finite groups. Pacific
J. Math. 196(1), 45–67 (2000). DOI 10.2140/pjm.2000.196.45

38. Benson, D.J., Iyengar, S.B., Krause, H.: Colocalizing subcategories and cosupport. J. Reine
Angew. Math. 673, 161–207 (2012). DOI 10.1515/crelle.2011.180. URL https://doi.
org/10.1515/crelle.2011.180

39. Bergman, G.M.: Every module is an inverse limit of injectives. Proc. Amer. Math. Soc.
141(4), 1177–1183 (2013). DOI 10.1090/S0002-9939-2012-11453-4. URL http://dx.
doi.org/10.1090/S0002-9939-2012-11453-4

40. Bican, L., El Bashir, R., Enochs, E.E.: All modules have flat covers. Bull. London Math. Soc.
33(4), 385–390 (2001)

8-Mar-2024 Draft - use at own risk



Bibliography 1065

41. Björk, J.E.: Rings satisfying a minimum condition on principal ideals. J. Reine Angew. Math.
236, 112–119 (1969). DOI 10.1515/crll.1969.236.112. URL https://doi.org/10.1515/
crll.1969.236.112

42. Bondal, A., Orlov, D.: Reconstruction of a variety from the derived category and groups of au-
toequivalences. Compositio Math. 125(3), 327–344 (2001). DOI 10.1023/A:1002470302976.
URL http://dx.doi.org/10.1023/A:1002470302976

43. Bouchiba, S.: On Gorenstein flat dimension. J. Algebra Appl. 14(6), 1550,096, 18 pp. (2015).
DOI 10.1142/S0219498815500966. URL https://doi-org.lib-e2.lib.ttu.edu/10.
1142/S0219498815500966

44. Bridgeland, T., Iyengar, S.: A criterion for regularity of local rings. C. R. Math. Acad.
Sci. Paris 342(10), 723–726 (2006). DOI 10.1016/j.crma.2006.03.019. URL https://
doi-org.lib-e2.lib.ttu.edu/10.1016/j.crma.2006.03.019

45. Brodmann, M.P., Sharp, R.Y.: Local cohomology: an algebraic introduction with geometric
applications, Cambridge Studies in Advanced Mathematics, vol. 60. Cambridge University
Press, Cambridge (1998)

46. Bruns, W., Herzog, J.: Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics,
vol. 39. Cambridge University Press, Cambridge (1993)

47. Buchweitz, R.O.: Maximal Cohen-Macaulay modules and Tate cohomology, Mathematical
Surveys and Monographs, vol. 262. American Mathematical Society, Providence, RI ([2021]
©2021). DOI 10.1090/surv/262. URL https://doi.org/10.1090/surv/262. With
appendices and an introduction by Luchezar L. Avramov, Benjamin Briggs, Srikanth B.
Iyengar and Janina C. Letz

48. Cartan, H., Eilenberg, S.: Homological algebra. Princeton Landmarks in Mathematics. Prince-
ton University Press, Princeton, NJ (1999). With an appendix by David A. Buchsbaum, Reprint
of the 1956 original

49. Chase, S.U.: Direct products of modules. Trans. Amer. Math. Soc. 97, 457–473 (1960)
50. Chen, X.W., Iyengar, S.B.: Support and injective resolutions of complexes over commutative

rings. Homology, Homotopy Appl. 12(1), 39–44 (2010). URL http://projecteuclid.
org/euclid.hha/1296223820

51. Chouinard II, L.G.: On finite weak and injective dimension. Proc. Amer. Math. Soc. 60,
57–60 (1977) (1976)

52. Christensen, L.W.: Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747.
Springer-Verlag, Berlin (2000)

53. Christensen, L.W.: Sequences for complexes. Math. Scand. 89(2), 161–180 (2001)
54. Christensen, L.W.: Sequences for complexes. II. Math. Scand. 91(2), 161–174 (2002)
55. Christensen, L.W., Estrada, S., Liang, L., Thompson, P., Wu, D., Yang, G.: A refinement of

Gorenstein flat dimension via the flat–cotorsion theory. J. Algebra 567, 346–370 (2021). DOI
10.1016/j.jalgebra.2020.09.024. URL https://doi.org/10.1016/j.jalgebra.2020.
09.024

56. Christensen, L.W., Estrada, S., Thompson, P.: Gorenstein weak global dimension is sym-
metric. Math. Nachr. 294(11), 2121–2128 (2021). DOI 10.1002/mana.202100141. URL
https://doi-org.lib-e2.lib.ttu.edu/10.1002/mana.202100141

57. Christensen, L.W., Estrada, S., Thompson, P.: Five theorems on Gorenstein global dimensions.
In: Algebra and coding theory, Contemp. Math., vol. 785, pp. 67–78. Amer. Math. Soc.,
[Providence], RI ([2023] ©2023). DOI 10.1090/conm/785/15776. URL https://doi-org.
lib-e2.lib.ttu.edu/10.1090/conm/785/15776

58. Christensen, L.W., Ferraro, L., Thompson, P.: Rigidity of ext and tor via flat–cotorsion theory.
Proc. Edinb. Math. Soc., to appear. Preprint arXiv:2112.00103 [math.AC], 10 pp.

59. Christensen, L.W., Foxby, H.B., Frankild, A.: Restricted homological dimensions and Cohen-
Macaulayness. J. Algebra 251(1), 479–502 (2002)

60. Christensen, L.W., Foxby, H.B., Holm, H.: Beyond totally reflexive modules and back: A
survey on Gorenstein dimensions. In: Commutative algebra—Noetherian and non-Noetherian
perspectives, pp. 101–143. Springer, New York (2011). DOI 10.1007/978-1-4419-6990-3_5.
URL http://dx.doi.org/10.1007/978-1-4419-6990-3_5

8-Mar-2024 Draft - use at own risk



1066 Bibliography

61. Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat
dimensions—A functorial description with applications. J. Algebra 302(1), 231–279 (2006)

62. Christensen, L.W., Holm, H.: Ascent properties of Auslander categories. Canad. J. Math.
61(1), 76–108 (2009)

63. Christensen, L.W., Holm, H.: The direct limit closure of perfect complexes. J. Pure Appl.
Algebra 219(3), 449–463 (2015). DOI 10.1016/j.jpaa.2014.05.004. URL http://dx.doi.
org/10.1016/j.jpaa.2014.05.004

64. Christensen, L.W., Iyengar, S.B.: Tests for injectivity of modules over commutative rings.
Collect. Math. 68(2), 243–250 (2017). DOI 10.1007/s13348-016-0176-0. URL http:
//dx.doi.org/10.1007/s13348-016-0176-0

65. Christensen, L.W., Iyengar, S.B.: Dimension of finite free complexes over commutative Noe-
therian rings. In: Commutative algebra—150 years with Roger and Sylvia Wiegand, Contemp.
Math., vol. 773, pp. 11–17. Amer. Math. Soc., [Providence], RI ([2021] ©2021). DOI
10.1090/conm/773/15529. URL https://doi-org.lib-e2.lib.ttu.edu/10.1090/
conm/773/15529

66. Christensen, L.W., Iyengar, S.B., Marley, T.: Rigidity of Ext and Tor with coefficients
in residue fields of a commutative Noetherian ring. Proc. Edinb. Math. Soc. (2) 62(2),
305–321 (2019). DOI 10.1017/s0013091518000081. URL https://doi.org/10.1017/
s0013091518000081

67. Christensen, L.W., Kato, K.: Totally acyclic complexes and locally Gorenstein rings. J.
Algebra Appl. 17(3), 1850,039, 6 pp. (2018). DOI 10.1142/S0219498818500391. URL
https://doi.org/10.1142/S0219498818500391

68. Christensen, L.W., Striuli, J., Veliche, O.: Growth in the minimal injective resolution of a
local ring. J. Lond. Math. Soc. (2) 81(1), 24–44 (2010). DOI 10.1112/jlms/jdp058. URL
http://dx.doi.org/10.1112/jlms/jdp058

69. Christensen, L.W., Thompson, P.: Pure-minimal chain complexes. Rend. Semin. Mat. Univ.
Padova 142, 41–67 (2019). DOI 10.4171/RSMUP/29. URL https://doi.org/10.4171/
RSMUP/29

70. Cohen, I.S.: On the structure and ideal theory of complete local rings. Trans. Amer. Math.
Soc. 59, 54–106 (1946)

71. Crawley-Boevey, W.: Locally finitely presented additive categories. Comm. Algebra 22(5),
1641–1674 (1994). DOI 10.1080/00927879408824927. URL http://dx.doi.org/10.
1080/00927879408824927

72. Dade, E.C.: Localization of injective modules. J. Algebra 69(2), 416–425 (1981). DOI
10.1016/0021-8693(81)90213-1. URL https://doi-org.lib-e2.lib.ttu.edu/10.
1016/0021-8693(81)90213-1

73. Dold, A.: Zur Homotopietheorie der Kettenkomplexe. Math. Ann. 140, 278–298 (1960)
74. Dwyer, W., Greenlees, J.P.C., Iyengar, S.: Finiteness in derived categories of local rings.

Comment. Math. Helv. 81(2), 383–432 (2006). DOI 10.4171/CMH/56. URL https://
doi.org/10.4171/CMH/56

75. Eilenberg, S.: Homological dimension and syzygies. Ann. of Math. (2) 64, 328–336 (1956)
76. Eilenberg, S., MacLane, S.: General theory of natural equivalences. Trans. Amer. Math. Soc.

58, 231–294 (1945)
77. Eilenberg, S., Zilber, J.A.: Semi-simplicial complexes and singular homology. Ann. of Math.

(2) 51, 499–513 (1950). URL https://doi.org/10.2307/1969364
78. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Springer-Verlag,

New York (1995). Graduate Texts in Mathematics, vol. 150
79. Eklof, P.C.: Homological algebra and set theory. Trans. Amer. Math. Soc. 227, 207–225

(1977). DOI 10.2307/1997458. URL https://doi-org.lib-e2.lib.ttu.edu/10.
2307/1997458

80. Eklof, P.C., Goodearl, K.R., Trlifaj, J.: Dually slender modules and steady rings. Forum Math.
9(1), 61–74 (1997). DOI 10.1515/form.1997.9.61

81. Eklof, P.C., Trlifaj, J.: How to make Ext vanish. Bull. London Math. Soc. 33(1), 41–51
(2001). DOI 10.1112/blms/33.1.41

8-Mar-2024 Draft - use at own risk



Bibliography 1067

82. Emmanouil, I.: On the finiteness of Gorenstein homological dimensions. J. Algebra 372, 376–
396 (2012). DOI 10.1016/j.jalgebra.2012.09.018. URL http://dx.doi.org/10.1016/
j.jalgebra.2012.09.018

83. Emmanouil, I.: On pure acyclic complexes. J. Algebra 465, 190–213 (2016). DOI 10.1016/j.
jalgebra.2016.07.009. URL http://dx.doi.org/10.1016/j.jalgebra.2016.07.009

84. Emmanouil, I., Talelli, O.: On the flat length of injective modules. J. Lond. Math. Soc. (2)
84(2), 408–432 (2011). DOI 10.1112/jlms/jdr014

85. Enochs, E.: Flat covers and flat cotorsion modules. Proc. Amer. Math. Soc. 92(2), 179–184
(1984). DOI 10.2307/2045180. URL https://doi.org/10.2307/2045180

86. Enochs, E.E., García Rozas, J.R.: Flat covers of complexes. J. Algebra 210(1), 86–102 (1998).
DOI 10.1006/jabr.1998.7582. URL http://dx.doi.org/10.1006/jabr.1998.7582

87. Enochs, E.E., Jenda, O.M.G.: Relative homological algebra, de Gruyter Expositions in Math-
ematics, vol. 30. Walter de Gruyter & Co., Berlin (2000)

88. Enochs, E.E., López-Ramos, J.A.: Kaplansky classes. Rend. Sem. Mat. Univ. Padova 107,
67–79 (2002)

89. Evans, E.G., Griffith, P.: The syzygy problem. Ann. of Math. (2) 114(2), 323–333 (1981). DOI
10.2307/1971296. URL https://doi-org.lib-e2.lib.ttu.edu/10.2307/1971296

90. Foxby, H.B.: Gorenstein modules and related modules. Math. Scand. 31, 267–284 (1973)
(1972)

91. Foxby, H.B.: Isomorphisms between complexes with applications to the homological theory
of modules. Math. Scand. 40(1), 5–19 (1977)

92. Foxby, H.B.: On the 𝜇𝑖 in a minimal injective resolution II. Math. Scand. 41(1), 19–44 (1977)
93. Foxby, H.B.: Bounded complexes of flat modules. J. Pure Appl. Algebra 15(2), 149–

172 (1979). DOI 10.1016/0022-4049(79)90030-6. URL https://doi.org/10.1016/
0022-4049(79)90030-6

94. Foxby, H.B.: Homological dimensions of complexes of modules. In: Séminaire d’Algèbre
Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), Lecture Notes in Math.,
vol. 795, pp. 360–368. Springer, Berlin (1980)

95. Foxby, H.B.: A Homological Theory for Complexes of Modules. Preprint Series 1981
nos. 19a&b, Matematisk Institut, Københavns Universitet (1981)

96. Foxby, H.B.: Hyperhomological algebra & commutative rings. lecture notes (1998)
97. Foxby, H.B., Frankild, A.J.: Cyclic modules of finite Gorenstein injective dimension and

Gorenstein rings. Illinois J. Math. 51(1), 67–82 (2007)
98. Foxby, H.B., Iyengar, S.: Depth and amplitude for unbounded complexes. In: Commutative

algebra (Grenoble/Lyon, 2001), Contemp. Math., vol. 331, pp. 119–137. Amer. Math. Soc.,
Providence, RI (2003). DOI 10.1090/conm/331/05906. URL https://doi-org.lib-e2.
lib.ttu.edu/10.1090/conm/331/05906

99. Foxby, H.B., Thorup, A.: Minimal injective resolutions under flat base change. Proc. Amer.
Math. Soc. 67(1), 27–31 (1977)

100. Foxby, H.B.r.: Intersection properties of modules. In: Algebraic geometry (Proc. Summer
Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., vol. 732, pp. 90–97.
Springer, Berlin (1979)

101. Frankild, A.J., Sather-Wagstaff, S.: Detecting completeness from Ext-vanishing. Proc. Amer.
Math. Soc. 136(7), 2303–2312 (2008)

102. Freyd, P.: Abelian categories. An introduction to the theory of functors. Harper’s Series in
Modern Mathematics. Harper & Row Publishers, New York (1964)

103. Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. Ergebnisse der Mathe-
matik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York (1967)

104. García Rozas, J.R.: Covers and envelopes in the category of complexes of modules, Chapman
& Hall/CRC Research Notes in Mathematics, vol. 407. Chapman & Hall/CRC, Boca Raton,
FL (1999)

105. Gedrich, T.V., Gruenberg, K.W.: Complete cohomological functors on groups. pp. 203–
223 (1987). DOI 10.1016/0166-8641(87)90015-0. URL https://doi.org/10.1016/
0166-8641(87)90015-0. Singapore topology conference (Singapore, 1985)

8-Mar-2024 Draft - use at own risk



1068 Bibliography

106. Goodearl, K.R.: Ring theory. Marcel Dekker Inc., New York (1976). Nonsingular rings and
modules, Pure and Applied Mathematics, No. 33

107. Govorov, V.E.: On flat modules. Sibirsk. Mat. Ž. 6, 300–304 (1965)
108. Green, E.L., Kirkman, E., Kuzmanovich, J.: Finitistic dimensions of finite-dimensional mono-

mial algebras. J. Algebra 136(1), 37–50 (1991). DOI 10.1016/0021-8693(91)90062-D. URL
http://dx.doi.org/10.1016/0021-8693(91)90062-D

109. Greenlees, J.P.C., May, J.P.: Derived functors of 𝐼-adic completion and local homology.
J. Algebra 149(2), 438–453 (1992). DOI 10.1016/0021-8693(92)90026-I. URL https:
//doi.org/10.1016/0021-8693(92)90026-I

110. Grothendieck, A.: Sur quelques points d’algèbre homologique. Tôhoku Math. J. (2) 9, 119–
221 (1957)

111. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des
morphismes de schémas. I. Inst. Hautes Études Sci. Publ. Math. (20), 259 (1964)

112. Grothendieck, A.: Éléments de géométrie algébrique IV. Étude locale des schémas et des
morphismes de schémas II. Inst. Hautes Études Sci. Publ. Math. (24), 231 (1965)

113. Gruson, L., Jensen, C.U.: Dimensions cohomologiques reliées aux foncteurs lim←−
(𝑖) . In: Paul

Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980), Lecture Notes
in Math., vol. 867, pp. 234–294. Springer, Berlin (1981)

114. Hartshorne, R.: Residues and duality, Lecture notes of a seminar on the work of A.
Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes
in Mathematics, vol. 20. Springer-Verlag, Berlin (1966)

115. Hartshorne, R.: Local cohomology, A seminar given by A. Grothendieck, Harvard University,
Fall 1961, vol. 41. Springer-Verlag, Berlin (1967)

116. Head, T.: Preservation of coproducts by Hom𝑅 (𝑀, −) . Rocky Mountain J. Math. 2(2),
235–237 (1972)

117. Heinrich, K.: Some remarks on biequidimensionality of topological spaces and Noetherian
schemes. J. Commut. Algebra 9(1), 49–63 (2017). DOI 10.1216/JCA-2017-9-1-49. URL
https://doi.org/10.1216/JCA-2017-9-1-49

118. Heitmann, R.C.: Characterization of completions of unique factorization domains. Trans.
Amer. Math. Soc. 337(1), 379–387 (1993)

119. Heitmann, R.C.: A counterexample to the rigidity conjecture for rings. Bull. Amer. Math.
Soc. (N.S.) 29(1), 94–97 (1993). DOI 10.1090/S0273-0979-1993-00410-5. URL https:
//doi-org.lib-e2.lib.ttu.edu/10.1090/S0273-0979-1993-00410-5

120. Heitmann, R.C., Jorgensen, D.A.: Are complete intersections complete intersections? J.
Algebra 371, 276–299 (2012). DOI 10.1016/j.jalgebra.2012.08.006. URL https://doi.
org/10.1016/j.jalgebra.2012.08.006

121. Herzog, J.: Finite free resolutions. In: Computational commutative and non-commutative
algebraic geometry, NATO Sci. Ser. III Comput. Syst. Sci., vol. 196, pp. 118–144. IOS,
Amsterdam (2005)

122. Herzog, J., Kunz, E. (eds.): Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture
Notes in Mathematics, vol. Vol. 238. Springer-Verlag, Berlin-New York (1971). Seminar über
die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester
1970/1971

123. Hochster, M.: Deep local rings. Preprint Series 8, Matematisk Institut, Aarhus Universitet,
1973/74

124. Hochster, M.: The equicharacteristic case of some homological conjectures on local rings.
Bull. Amer. Math. Soc. 80, 683–686 (1974). DOI 10.1090/S0002-9904-1974-13548-2. URL
https://doi-org.lib-e2.lib.ttu.edu/10.1090/S0002-9904-1974-13548-2

125. Hochster, M.: Big Cohen-Macaulay modules and algebras and embeddability in rings of
Witt vectors. In: Conference on Commutative Algebra–1975 (Queen’s Univ., Kingston, Ont.,
1975), pp. 106–195. Queen’s Papers on Pure and Applied Math., No. 42 (1975)

126. Hochster, M.: Topics in the homological theory of modules over commutative rings. Published
for the Conference Board of the Mathematical Sciences by the American Mathematical
Society, Providence, R.I. (1975). Expository lectures from the CBMS Regional Conference

8-Mar-2024 Draft - use at own risk



Bibliography 1069

held at the University of Nebraska, Lincoln, Neb., June 24–28, 1974, Conference Board of
the Mathematical Sciences Regional Conference Series in Mathematics, No. 24

127. Hochster, M.: Some applications of the Frobenius in characteristic 0. Bull. Amer. Math. Soc.
84(5), 886–912 (1978). DOI 10.1090/S0002-9904-1978-14531-5. URL https://doi.
org/10.1090/S0002-9904-1978-14531-5

128. Hochster, M.: Homological conjectures and lim Cohen-Macaulay sequences. In: Homological
and computational methods in commutative algebra, Springer INdAM Ser., vol. 20, pp. 173–
197. Springer, Cham (2017)

129. Hochster, M., Huneke, C.: Infinite integral extensions and big Cohen-Macaulay algebras.
Ann. of Math. (2) 135(1), 53–89 (1992)

130. Hochster, M., Huneke, C.: Applications of the existence of big Cohen-Macaulay algebras.
Adv. Math. 113(1), 45–117 (1995). DOI 10.1006/aima.1995.1035. URLhttps://doi-org.
lib-e2.lib.ttu.edu/10.1006/aima.1995.1035

131. Holm, H.: Gorenstein derived functors. Proc. Amer. Math. Soc. 132(7), 1913–1923 (2004)
132. Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189(1-3), 167–193

(2004)
133. Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimen-

sions. J. Pure Appl. Algebra 205(2), 423–445 (2006)
134. Holm, H., Jørgensen, P.: Cohen-Macaulay homological dimensions. Rend. Semin. Mat. Univ.

Padova 117, 87–112 (2007)
135. Holm, H., Jørgensen, P.: Rings without a Gorenstein analogue of the Govorov-Lazard theorem.

Q. J. Math. 62(4), 977–988 (2011). DOI 10.1093/qmath/haq023. URL https://doi.org/
10.1093/qmath/haq023

136. Hovey, M.: Model categories, Mathematical Surveys and Monographs, vol. 63. American
Mathematical Society, Providence, RI (1999)

137. Hovey, M., Strickland, N.P.: Morava 𝐾-theories and localisation. Mem. Amer. Math. Soc.
139(666), viii+100 (1999). DOI 10.1090/memo/0666. URL https://doi.org/10.1090/
memo/0666

138. Huneke, C.: Problems on local cohomology. In: Free resolutions in commutative algebra and
algebraic geometry (Sundance, UT, 1990), Res. Notes Math., vol. 2, pp. 93–108. Jones and
Bartlett, Boston, MA (1992)

139. Iacob, A.: Gorenstein injective envelopes and covers over two sided noetherian rings. Comm.
Algebra 45(5), 2238–2244 (2017). DOI 10.1080/00927872.2016.1233193. URL https:
//doi.org/10.1080/00927872.2016.1233193

140. Iacob, A., Iyengar, S.B.: Homological dimensions and regular rings. J. Algebra 322(10),
3451–3458 (2009). DOI 10.1016/j.jalgebra.2009.08.006

141. Iversen, B.: Amplitude inequalities for complexes. Ann. Sci. École Norm. Sup. (4) 10(4),
547–558 (1977)

142. Iversen, B.: Depth inequalities for complexes. In: Algebraic geometry (Proc. Sympos., Univ.
Tromsø, Tromsø, 1977), Lecture Notes in Math., vol. 687, pp. 92–111. Springer, Berlin (1978)

143. Iyengar, S.: Depth for complexes, and intersection theorems. Math. Z. 230(3), 545–567 (1999)
144. Iyengar, S.B., Ma, L., Schwede, K., Walker, M.E.: Maximal Cohen-Macaulay complexes and

their uses: a partial survey. In: Commutative algebra, pp. 475–500. Springer, Cham ([2021]
©2021). DOI 10.1007/978-3-030-89694-2\_15. URL https://doi-org.lib-e2.lib.
ttu.edu/10.1007/978-3-030-89694-2_15

145. Jategaonkar, A.V.: A counter-example in ring theory and homological algebra. J. Algebra
12, 418–440 (1969). DOI 10.1016/0021-8693(69)90040-4. URL https://doi.org/10.
1016/0021-8693(69)90040-4

146. Jensen, C.U.: On homological dimensions of rings with countably generated ideals. Math.
Scand. 18, 97–105 (1966)

147. Jensen, C.U.: On the vanishing of lim
←−
(𝑖) . J. Algebra 15, 151–166 (1970)

148. Jensen, C.U.: Les foncteurs dérivés de lim←− et leurs applications en théorie des modules.
Lecture Notes in Mathematics, Vol. 254. Springer-Verlag, Berlin-New York (1972)

8-Mar-2024 Draft - use at own risk



1070 Bibliography

149. Jensen, C.U., Lenzing, H.: Homological dimension and representation type of algebras under
base field extension. Manuscripta Math. 39(1), 1–13 (1982). DOI 10.1007/BF01312441

150. Jensen, C.U., Lenzing, H.: Model-theoretic algebra with particular emphasis on fields, rings,
modules, Algebra, Logic and Applications, vol. 2. Gordon and Breach Science Publishers,
New York (1989)

151. Jorgensen, D.A., Şega, L.M.: Independence of the total reflexivity conditions for modules.
Algebr. Represent. Theory 9(2), 217–226 (2006)

152. Jørgensen, P.: The homotopy category of complexes of projective modules. Adv. Math.
193(1), 223–232 (2005)

153. Jørgensen, P.: Existence of Gorenstein projective resolutions and Tate cohomology. J. Eur.
Math. Soc. (JEMS) 9(1), 59–76 (2007)

154. Kaplansky, I.: Projective modules. Ann. of Math (2) 68, 372–377 (1958)
155. Kaplansky, I.: Commutative rings. In: Conference on Commutative Algebra (Univ. Kansas,

Lawrence, Kan., 1972), pp. 153–166. Lecture Notes in Math., Vol. 311. Springer, Berlin
(1973)

156. Kashiwara, M., Schapira, P.: Categories and sheaves, Grundlehren der Mathematischen Wis-
senschaften, vol. 332. Springer-Verlag, Berlin (2006)

157. Kawasaki, T.: On arithmetic Macaulayfication of Noetherian rings. Trans. Amer. Math. Soc.
354(1), 123–149 (2002)

158. Kirkman, E., Kuzmanovich, J., Small, L.: Finitistic dimensions of Noetherian rings. J.
Algebra 147(2), 350–364 (1992). DOI 10.1016/0021-8693(92)90210-D. URL https:
//doi-org.lib-e2.lib.ttu.edu/10.1016/0021-8693(92)90210-D

159. Krause, H.: Functors on locally finitely presented additive categories. Colloq. Math. 75(1),
105–132 (1998)

160. Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141(5),
1128–1162 (2005)

161. Krause, H., Saorín, M.: On minimal approximations of modules. In: Trends in the representa-
tion theory of finite-dimensional algebras (Seattle, WA, 1997), Contemp. Math., vol. 229, pp.
227–236. Amer. Math. Soc., Providence, RI (1998). DOI 10.1090/conm/229/03321. URL
https://doi.org/10.1090/conm/229/03321

162. Krull, W.: Beiträge zur Arithmetik kommutativer Integritätsbereiche. Math. Z. 42(1), 745–
766 (1937). DOI 10.1007/BF01160110. URL https://doi-org.lib-e2.lib.ttu.edu/
10.1007/BF01160110

163. Krull, W.: Dimensionstheorie in stellenringen. J. Reine Angew. Math. 179, 204–226 (1938).
DOI 10.1515/crll.1938.179.204

164. Krull, W.: Zur Theorie der kommutativen Integritätsbereiche. J. Reine Angew. Math. 192,
230–252 (1953)

165. Kunz, E.: Introduction to commutative algebra and algebraic geometry. Birkhäuser Boston,
Inc., Boston, MA (1985). Translated from the German by Michael Ackerman, With a preface
by David Mumford

166. Kunz, E.: Introduction to commutative algebra and algebraic geometry. Modern Birkhäuser
Classics. Birkhäuser/Springer, New York (2013). DOI 10.1007/978-1-4614-5987-3. URL
https://doi.org/10.1007/978-1-4614-5987-3. Translated from the 1980 German
original [MR0562105] by Michael Ackerman, With a preface by David Mumford, Reprint of
the 1985 edition [MR0789602]

167. Lam, T.Y.: Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189. Springer-
Verlag, New York (1999)

168. Lam, T.Y.: A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131,
second edn. Springer-Verlag, New York (2001)

169. Lam, T.Y.: Serre’s problem on projective modules. Springer Monographs in Mathematics.
Springer-Verlag, Berlin (2006). DOI 10.1007/978-3-540-34575-6

170. Lazard, D.: Autour de la platitude. Bull. Soc. Math. France 97, 81–128 (1969)
171. Leuschke, G.J., Wiegand, R.: Cohen-Macaulay representations, Mathematical Surveys and

Monographs, vol. 181. American Mathematical Society, Providence, RI (2012). DOI
10.1090/surv/181. URL http://dx.doi.org/10.1090/surv/181

8-Mar-2024 Draft - use at own risk



Bibliography 1071

172. Li, J.: Characterizations of regular local rings in positive characteristics. Proc. Amer. Math.
Soc. 136(5), 1553–1558 (2008). DOI 10.1090/S0002-9939-07-09158-7. URL https:
//doi.org/10.1090/S0002-9939-07-09158-7

173. Lipman, J.: Lectures on local cohomology and duality. In: Local cohomology and its ap-
plications (Guanajuato, 1999), Lecture Notes in Pure and Appl. Math., vol. 226, pp. 39–89.
Dekker, New York (2002)

174. Lipman, J.: Notes on derived functors and Grothendieck duality. In: Foundations of
Grothendieck duality for diagrams of schemes, Lecture Notes in Math., vol. 1960, pp. 1–
259. Springer, Berlin (2009). DOI 10.1007/978-3-540-85420-3. URL https://doi.org/
10.1007/978-3-540-85420-3

175. Mac Lane, S.: Categories for the working mathematician, Graduate Texts in Mathematics,
vol. 5, second edn. Springer-Verlag, New York (1998)

176. Macaulay, F.S.: The algebraic theory of modular systems. Cambridge Mathematical Library.
Cambridge University Press, Cambridge (1994). Revised reprint of the 1916 original, With
an introduction by Paul Roberts

177. Maeda, F.: Kontinuierliche Geometrien. Die Grundlehren der mathematischen Wis-
senschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete,
Band 95. Springer-Verlag, Berlin-Göttingen-Heidelberg (1958)

178. Massey, W.S.: A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127.
Springer-Verlag, New York (1991)

179. Matlis, E.: INJECTIVE MODULES. ProQuest LLC, Ann Arbor, MI (1958). URL https://
search.proquest.com/docview/301920515?accountid=13607. Thesis (Ph.D.)–The
University of Chicago

180. Matlis, E.: Injective modules over Noetherian rings. Pacific J. Math. 8, 511–528 (1958)
181. Matlis, E.: The higher properties of 𝑅-sequences. J. Algebra 50(1), 77–112 (1978).

DOI 10.1016/0021-8693(78)90176-X. URL https://doi-org.ep.fjernadgang.kb.
dk/10.1016/0021-8693(78)90176-X

182. Matsumura, H.: Commutative ring theory, Cambridge Studies in Advanced Mathematics,
vol. 8, second edn. Cambridge University Press, Cambridge (1989). Translated from the
Japanese by M. Reid

183. McCullough, J., Peeva, I.: Infinite graded free resolutions. In: Commutative algebra and
noncommutative algebraic geometry. Vol. I, Math. Sci. Res. Inst. Publ., vol. 67, pp. 215–257.
Cambridge Univ. Press, New York (2015)

184. Mitchell, B.: The full imbedding theorem. Amer. J. Math. 86, 619–637 (1964)
185. Miyata, T.: Note on direct summands of modules. J. Math. Kyoto Univ. 7, 65–69 (1967)
186. Morita, K.: Duality for modules and its applications to the theory of rings with minimum

condition. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6, 83–142 (1958)
187. Murfet, D.: The mock homotopy category of projectives and Grothendieck duality. Ph.D. the-

sis, Australian National University (2007, x+145 pp.). Available from www.therisingsea.org
188. Nagata, M.: Local rings. Interscience Tracts in Pure and Applied Mathematics, No. 13.

Interscience Publishers a division of John Wiley & Sons New York-London (1962)
189. Nakamura, T., Thompson, P.: Minimal semi-flat-cotorsion replacements and cosupport. J.

Algebra 562, 587–620 (2020). DOI 10.1016/j.jalgebra.2020.07.001. URL https://doi.
org/10.1016/j.jalgebra.2020.07.001

190. Neeman, A.: Some new axioms for triangulated categories. J. Algebra 139(1), 221–255
(1991). DOI 10.1016/0021-8693(91)90292-G

191. Neeman, A.: Triangulated categories, Annals of Mathematics Studies, vol. 148. Princeton
University Press, Princeton, NJ (2001). DOI 10.1515/9781400837212. URL https://doi.
org/10.1515/9781400837212

192. Neeman, A.: The homotopy category of flat modules, and Grothendieck duality. Invent. Math.
174(2), 255–308 (2008)

193. Neeman, A.: Dualizing complexes—the modern way. In: Cycles, motives and Shimura
varieties, Tata Inst. Fund. Res. Stud. Math., vol. 21, pp. 419–447. Tata Inst. Fund. Res.,
Mumbai (2010)

8-Mar-2024 Draft - use at own risk



1072 Bibliography

194. Northcott, D.G.: Finite free resolutions, Cambridge Tracts in Mathematics, vol. No. 71.
Cambridge University Press, Cambridge-New York-Melbourne (1976)

195. Nucinkis, B.E.A.: Complete cohomology for arbitrary rings using injectives. J. Pure Appl.
Algebra 131(3), 297–318 (1998). DOI 10.1016/S0022-4049(97)00082-0. URL http://
dx.doi.org/10.1016/S0022-4049(97)00082-0

196. Osofsky, B.L.: Global dimension of valuation rings. Trans. Amer. Math. Soc. 127, 136–149
(1967)

197. Osofsky, B.L.: Homological dimension and the continuum hypothesis. Trans. Amer. Math.
Soc. 132, 217–230 (1968)

198. Osofsky, B.L.: Upper bounds on homological dimensions. Nagoya Math. J. 32, 315–322
(1968)

199. Osofsky, B.L.: A commutative local ring with finite global dimension and zero divisors.
Trans. Amer. Math. Soc. 141, 377–385 (1969). DOI 10.2307/1995109. URL https:
//doi-org.lib-e2.lib.ttu.edu/10.2307/1995109

200. Osofsky, B.L.: Homological dimension and cardinality. Trans. Amer. Math. Soc. 151, 641–
649 (1970)

201. Perry, A.: Faithfully flat descent for projectivity of modules. arXiv:1011.0038 [math.AC]; 22
pp.

202. Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie locale. Applications à la
démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck. Inst. Hautes
Études Sci. Publ. Math. (42), 47–119 (1973). URL http://www.numdam.org/item?id=
PMIHES_1973__42__47_0

203. Peskine, C., Szpiro, L.: Syzygies et multiplicités. C. R. Acad. Sci. Paris Sér. A 278, 1421–1424
(1974)

204. Porta, M., Shaul, L., Yekutieli, A.: On the homology of completion and torsion. Algebr.
Represent. Theory 17(1), 31–67 (2014). DOI 10.1007/s10468-012-9385-8. URL https:
//doi.org/10.1007/s10468-012-9385-8

205. Quillen, D.: Projective modules over polynomial rings. Invent. Math. 36, 167–171 (1976)
206. Ratliff Jr., L.J.: Catenary rings and the altitude formula. Amer. J. Math. 94, 458–466

(1972). DOI 10.2307/2374632. URL https://doi-org.lib-e2.lib.ttu.edu/10.
2307/2374632

207. Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de “platification”
d’un module. Invent. Math. 13, 1–89 (1971)

208. Rees, D.: Two classical theorems of ideal theory. Proc. Cambridge Philos. Soc. 52,
155–157 (1956). DOI 10.1017/s0305004100031091. URL https://doi.org/10.1017/
s0305004100031091

209. Reiten, I.: The converse to a theorem of Sharp on Gorenstein modules. Proc. Amer. Math. Soc.
32, 417–420 (1972). DOI 10.2307/2037829. URL https://doi.org/10.2307/2037829

210. Reiten, I.: The converse to a theorem of Sharp on Gorenstein modules. Proc. Amer. Math.
Soc. 32, 417–420 (1972)

211. Rentschler, R.: Sur les modules 𝑀 tels que Hom(𝑀, −) commute avec les sommes directes.
C. R. Acad. Sci. Paris Sér. A-B 268, A930–A933 (1969)

212. Rickard, J.: Derived equivalences as derived functors. J. London Math. Soc. (2) 43(1),
37–48 (1991). DOI 10.1112/jlms/s2-43.1.37. URL http://dx.doi.org/10.1112/jlms/
s2-43.1.37

213. Roberts, P.: Two applications of dualizing complexes over local rings. Ann. Sci. École Norm.
Sup. (4) 9(1), 103–106 (1976)

214. Roberts, P.: Rings of type 1 are Gorenstein. Bull. London Math. Soc. 15(1), 48–50 (1983)
215. Roberts, P.: Le théorème d’intersection. C. R. Acad. Sci. Paris Sér. I Math. 304(7), 177–180

(1987)
216. Roberts, P.C.: Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathe-

matics, vol. 133. Cambridge University Press, Cambridge (1998)
217. Roig, A.: Minimal resolutions and other minimal models. Publ. Mat. 37(2), 285–303 (1993).

URL https://doi.org/10.5565/PUBLMAT_37293_04

8-Mar-2024 Draft - use at own risk



Bibliography 1073

218. Roig, A.: Modèles minimaux et foncteurs dérivés. J. Pure Appl. Algebra 91(1-3), 231–
254 (1994). DOI 10.1016/0022-4049(94)90145-7. URL https://doi.org/10.1016/
0022-4049(94)90145-7

219. Rotman, J.J.: An introduction to homological algebra, Pure and Applied Mathematics, vol. 85.
Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1979)

220. Rotman, J.J.: An introduction to homological algebra, second edn. Universitext. Springer,
New York (2009)

221. Rouquier, R., Zimmermann, A.: Picard groups for derived module categories. Proc. London
Math. Soc. (3) 87(1), 197–225 (2003). DOI 10.1112/S0024611503014059. URL https:
//doi.org/10.1112/S0024611503014059

222. Sather-Wagstaff, S., Wicklein, R.: Support and adic finiteness for complexes. Comm. Algebra
45(6), 2569–2592 (2017). DOI 10.1080/00927872.2015.1087008. URL https://doi.
org/10.1080/00927872.2015.1087008

223. Schenzel, P.: Proregular sequences, local cohomology, and completion. Math. Scand. 92(2),
161–180 (2003)

224. Schenzel, P., Simon, A.M.: Completion, Čech and local homology and cohomology. Springer
Monographs in Mathematics. Springer, Cham (2018). DOI 10.1007/978-3-319-96517-8.
URL https://doi.org/10.1007/978-3-319-96517-8

225. Scholze, P.: Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci. 116, 245–313 (2012).
DOI 10.1007/s10240-012-0042-x. URL https://doi-org.lib-e2.lib.ttu.edu/10.
1007/s10240-012-0042-x

226. Serre, J.P.: Sur la dimension homologique des anneaux et des modules noethériens. In:
Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko,
1955, pp. 175–189. Science Council of Japan, Tokyo (1956)

227. Serre, J.P.: Algèbre locale. Multiplicités, Lecture Notes in Mathematics, vol. 11. Springer-
Verlag, Berlin-New York (1965). Cours au Collège de France, 1957–1958, rédigé par Pierre
Gabriel, Seconde édition, 1965

228. Sharp, R.Y.: Finitely generated modules of finite injective dimension over certain Cohen-
Macaulay rings. Proc. London Math. Soc. (3) 25, 303–328 (1972). DOI 10.1112/plms/s3-25.
2.303. URL https://doi.org/10.1112/plms/s3-25.2.303

229. Sharp, R.Y.: Necessary conditions for the existence of dualizing complexes in commutative
algebra. In: Séminaire d’Algèbre Paul Dubreil 31ème année (Paris, 1977–1978), Lecture
Notes in Math., vol. 740, pp. 213–229. Springer, Berlin (1979)

230. Sharp, R.Y.: Cohen-Macaulay properties for balanced big Cohen-Macaulay modules. Math.
Proc. Cambridge Philos. Soc. 90(2), 229–238 (1981). DOI 10.1017/S0305004100058680.
URL https://doi.org/10.1017/S0305004100058680

231. Shelah, S.: Infinite abelian groups, Whitehead problem and some constructions. Israel J.
Math. 18, 243–256 (1974)

232. Sierpiński, W.a.: Cardinal and ordinal numbers. Polska Akademia Nauk, Monografie Matem-
atyczne. Tom 34. Państwowe Wydawnictwo Naukowe, Warsaw (1958)

233. Simon, A.M.: Some homological properties of complete modules. Math. Proc. Cambridge
Philos. Soc. 108(2), 231–246 (1990). DOI 10.1017/S0305004100069103. URL https:
//doi.org/10.1017/S0305004100069103

234. Simon, A.M.: Adic-completion and some dual homological results. Publ. Mat. 36(2B), 965–
979 (1993) (1992). DOI 10.5565/PUBLMAT_362B92_14. URL https://doi.org/10.
5565/PUBLMAT_362B92_14

235. Simon, A.M.: Approximations of complete modules by complete big Cohen-Macaulay
modules over a Cohen-Macaulay local ring. Algebr. Represent. Theory 12(2-5), 385–
400 (2009). DOI 10.1007/s10468-009-9151-8. URL https://doi.org/10.1007/
s10468-009-9151-8

236. Simson, D.: A remark on projective dimension of flat modules. Math. Ann. 209, 181–182
(1974). DOI 10.1007/BF01351846. URL https://doi.org/10.1007/BF01351846

237. Singh, A.K.: 𝑝-torsion elements in local cohomology modules. Math. Res. Lett. 7(2-3),
165–176 (2000). DOI 10.4310/MRL.2000.v7.n2.a3. URL https://doi-org.lib-e2.
lib.ttu.edu/10.4310/MRL.2000.v7.n2.a3

8-Mar-2024 Draft - use at own risk



1074 Bibliography

238. Small, L.W.: An example in Noetherian rings. Proc. Nat. Acad. Sci. U.S.A. 54, 1035–1036
(1965)

239. Spaltenstein, N.: Resolutions of unbounded complexes. Compositio Math. 65(2), 121–154
(1988). URL http://www.numdam.org/item?id=CM_1988__65_2_121_0

240. Stein, K.: Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Pe-
riodizitätsmoduln und das zweite Cousinsche Problem. Math. Ann. 123, 201–222 (1951)

241. Š ’tovíček, J.: On purity and applications to coderived and singularity categories. preprint.
arXiv:1412.1615 [math.CT]; 45 pp.

242. Suslin, A.A.: Projective modules over polynomial rings are free. Dokl. Akad. Nauk SSSR
229(5), 1063–1066 (1976)

243. Thompson, P.: Cosupport computations for finitely generated modules over commutative
noetherian rings. J. Algebra 511, 249–269 (2018). DOI 10.1016/j.jalgebra.2018.06.014.
URL https://doi.org/10.1016/j.jalgebra.2018.06.014

244. Thompson, P.: Cosupport computations for finitely generated modules over commutative
noetherian rings. J. Algebra 511, 249–269 (2018). DOI 10.1016/j.jalgebra.2018.06.014.
URL https://doi.org/10.1016/j.jalgebra.2018.06.014

245. Vámos, P.: Ideals and modules testing injectivity. Comm. Algebra 11(22), 2495–
2505 (1983). DOI 10.1080/00927878308822975. URL http://dx.doi.org/10.1080/
00927878308822975

246. Vasconcelos, W.V.: Divisor theory in module categories. North-Holland Publishing Co.,
Amsterdam (1974). North-Holland Mathematics Studies, No. 14, Notas de Matemática No.
53. [Notes on Mathematics, No. 53]

247. Verdier, J.L.: Des catégories dérivées des catégories abéliennes. Astérisque (239), xii+253 pp.
(1997) (1996). With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis

248. Šaroch, J., Šťovíček, J.: Singular compactness and definability for 𝛴 -cotorsion and Goren-
stein modules. Selecta Math. (N.S.) 26(2), Paper No. 23, 40 pp. (2020). DOI
10.1007/s00029-020-0543-2. URL https://doi.org/10.1007/s00029-020-0543-2

249. Vyas, R., Yekutieli, A.: Weak proregularity, weak stability, and the noncommutative MGM
equivalence. J. Algebra 513, 265–325 (2018). DOI 10.1016/j.jalgebra.2018.07.023. URL
https://doi.org/10.1016/j.jalgebra.2018.07.023

250. Wang, J., Li, H.: When do the Gorenstein injective modules and strongly cotorsion mod-
ules coincide? Bull. Iranian Math. Soc. 49(6), Paper No. 82, 7 (2023). DOI 10.1007/
s41980-023-00825-0. URL https://doi.org/10.1007/s41980-023-00825-0

251. Wang, J., Yang, G., Shao, Q., Zhang, X.: On Gorenstein global and Gorenstein weak global
dimensions. Colloq. Math., to appear

252. Watts, C.E.: Intrinsic characterizations of some additive functors. Proc. Amer. Math. Soc.
11, 5–8 (1960)

253. Weibel, C.A.: An introduction to homological algebra, Cambridge Studies in Advanced Math-
ematics, vol. 38. Cambridge University Press, Cambridge (1994)

254. Weibel, C.A.: History of homological algebra. In: History of topology, pp. 797–836. North-
Holland, Amsterdam (1999). DOI 10.1016/B978-044482375-5/50029-8

255. Wu, Q.S., Zhang, J.J.: Dualizing complexes over noncommutative local rings. J. Algebra
239(2), 513–548 (2001). DOI 10.1006/jabr.2000.8689. URL http://dx.doi.org/10.
1006/jabr.2000.8689

256. Xu, J.: Flat covers of modules, Lecture Notes in Mathematics, vol. 1634. Springer-Verlag,
Berlin (1996)

257. Yekutieli, A.: Dualizing complexes, Morita equivalence and the derived Picard group of a
ring. J. London Math. Soc. (2) 60(3), 723–746 (1999)

258. Yekutieli, A.: On flatness and completion for infinitely generated modules over Noetherian
rings. Comm. Algebra 39(11), 4221–4245 (2011). DOI 10.1080/00927872.2010.522159.
URL https://doi.org/10.1080/00927872.2010.522159

259. Yekutieli, A., Zhang, J.J.: Rings with Auslander dualizing complexes. J. Algebra 213(1),
1–51 (1999)

260. Yoneda, N.: On the inverse chain maps. J. Fac. Sci. Univ. Tokyo. Sect. I. 7, 33–67 (1954)

8-Mar-2024 Draft - use at own risk



Bibliography 1075

261. Yoshino, Y.: Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical
Society Lecture Note Series, vol. 146. Cambridge University Press, Cambridge (1990)

262. Zaks, A.: Injective dimension of semi-primary rings. J. Algebra 13, 73–86 (1969)
263. Zariski, O.: Algebraic varieties over ground fields of characteristic zero. Amer. J. Math.

62, 187–221 (1940). DOI 10.2307/2371447. URL https://doi-org.lib-e2.lib.ttu.
edu/10.2307/2371447

264. Zariski, O.: The concept of a simple point of an abstract algebraic variety. Trans. Amer.
Math. Soc. 62, 1–52 (1947). DOI 10.2307/1990628. URL https://doi-org.lib-e2.
lib.ttu.edu/10.2307/1990628

8-Mar-2024 Draft - use at own risk



8-Mar-2024 Draft - use at own risk



Glossary

Here we recapitulate, briefly, the definitions of several key notions. For other standard
concepts that we use but do not define, we refer to the following textbooks.
• “Categories for the Working Mathematician” [175] by MacLane for notions in

category theory,
• “Lectures on Modules and Rings” [167] and “A First Course in Noncommutative

Rings” [168] by Lam for notions in ring theory, and
• “Commutative Ring Theory” [182] by Matsumura for notions in commutative

algebra.
Abelian category. An additive category in which every morphism has a kernel and a cokernel,
every monomorphism is the kernel of a morphism, and every epimorphism is the cokernel of a
morphism. The opposite category of an Abelian category is Abelian. See [175, VIII.3].

In the Abelian categories M(𝑅) , Mgr (𝑅) , and C(𝑅) , a kernel is identified with its domain
and a cokernel is identified with its codomain.

Adjoint functors. Functors F: U→ V and G: V→ U are adjoint if for all objects 𝑀 in U and
𝑁 in V there are isomorphisms of hom-sets 𝛷𝑀,𝑁 : V(F(𝑀 ) , 𝑁 ) → U(𝑀,G(𝑁 ) ) which are
natural in 𝑀 and 𝑁 . The functor F is then said to be a left adjoint for G, and G is said to be a right
adjoint for F. In a diagram of adjoint functors,

U
F
//
V ,

G
oo

it is standard to place left adjoint above the right adjoint.
For objects𝑀 inU the images of 1F(𝑀) under𝛷𝑀,F(𝑀) are natural morphisms𝑀 → GF(𝑀 ) ,

whence there is a natural transformation 𝛼 : IdU→ GF, called the unit of adjunction. Similarly,
for objects 𝑁 in V the images of 1G(𝑁 ) under (𝛷G(𝑁 ) ,𝑁 )−1 yield a natural transformation
𝛽 : FG→ IdV, called the counit of adjunction. Moreover, the composites below are the identity
transformations; they are called the zigzag identities.

F F𝛼−−→ FGF 𝛽F−−→ F and G 𝛼G−−→ GFG G𝛽−−→ G .
Conversely, the existence of natural transformations 𝛼 : IdU→ GF and 𝛽 : FG→ IdV such that
the zigzag identities hold implies that F and G are adjoint and that 𝛼 and 𝛽 are the unit and counit
of the adjunction. See [175, IV.1].

𝕜-algebra. A unital associative ring 𝐴 and a homomorphism of unital rings 𝕜 → 𝐴, called the
structure map, that maps 𝕜 to the center of 𝐴.

Artinian module. A module that satisfies the Descending Chain Condition. That is, every chain
of submodules, 𝑀0 ⊇ 𝑀1 ⊇ 𝑀2 ⊇ · · · , stabilizes in the sense that there is an 𝑛 ∈ ℕ such that
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𝑀𝑛 = 𝑀𝑢 holds for all 𝑢 ⩾ 𝑛. The Artinian 𝑅-modules constitute a Serre subcategory of M(𝑅);
in particular, submodules and quotients of Artinian modules are Artinian.

Artinian ring. A ring that is both left and right Artinian. A ring is left Artinian if it is Artinian
as a module over itself, i.e. it satisfies the Descending Chain Condition on left ideals. A ring 𝑅 is
right Artinian if 𝑅o is left Artinian. A left Artinian ring is left Noetherian, and the quotient of a left
Artinian ring by its Jacobson radical is a semi-simple ring. See [168, §§1,4].

Center of ring. The subring 𝑅c of a ring 𝑅 consisting of the elements that commute with all
elements of 𝑅. Elements in the center are called central.

Coherent ring. A ring that is both left and right coherent. A ring 𝑅 is left coherent if every finitely
generated left ideal is finitely presented, equivalently, every finitely generated submodule of a
finitely presented 𝑅-module is finitely presented. A ring 𝑅 is right coherent if 𝑅o is left coherent.
See [167, §4G].

Colon submodule. Let 𝑀 be an 𝑅-module and 𝑀 ′ ⊆ 𝑀 a submodule. For a subset 𝔞 ⊆ 𝑅 the set
(𝑀 ′ :𝑀 𝔞) = {𝑚 ∈ 𝑀 | 𝔞𝑚 ⊆ 𝑀 ′ }

is a submodule of the k-module 𝑀; if 𝔞 is a right ideal, then (𝑀 ′ :𝑀 𝔞) is an 𝑅-submodule of 𝑀.
For a subset 𝑋 ⊆ 𝑀, the set

(𝑀 ′ :𝑅 𝑋) = {𝑟 ∈ 𝑅 | 𝑟𝑋 ⊆ 𝑀 ′ }
is a left ideal, and if 𝑋 is a submodule, then (𝑀 ′ :𝑅 𝑋) is an ideal. Notice that for 𝑀 = 𝑅 the
symbol (𝑀 ′ :𝑅 𝑋) could be interpreted, differently, according to the first display, but it should
always be interpreted as in the second display.

For a subset 𝑋 ⊆ 𝑀 the left ideal (0 :𝑅 𝑋) is called the annihilator of 𝑋. If 𝑋 consists of a
single element 𝑚, then the annihilator is written (0 :𝑅 𝑚) and called the annihilator of 𝑚. If 𝑅 is
commutative, then one has (0 :𝑅 𝑚) = (0 :𝑅 𝑅⟨𝑚 ⟩) , and we use the former, simpler, symbol.

Conservative functor. A functor F: U→ V is said to reflect mono-/epi-/isomorphisms if given
a morphism 𝛼 in U such that F(𝛼) is a mono-/epi-/isomorphism in V, then 𝛼 is a mono-/epi-
/isomorphism in U. A conservative functor is one that reflects isomorphisms.

Coproduct. Let V be a category. The coproduct of a set-indexed family {𝑀𝑢 }𝑢∈𝑈 of objects
in V is an object 𝑀 ∈ V together with morphisms 𝑀𝑢 → 𝑀, called injections, with the
following universal property: For every family of morphisms {𝛼𝑢 : 𝑀𝑢 → 𝑁 }𝑢∈𝑈 there is a
unique morphism from 𝑀 to 𝑁 that for every 𝑢 ∈ 𝑈 makes the next diagram commutative

𝑀𝑢

𝛼𝑢

��

// 𝑀

}}

𝑁 .

Such a coproduct 𝑀 is unique up to isomorphism in V and usually denoted
∐
𝑢∈𝑈 𝑀

𝑢.
Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢 }𝑢∈𝑈 be a family of morphisms in V. If {𝑀𝑢 → 𝑀 }𝑢∈𝑈 is a coproduct

of {𝑀𝑢 }𝑢∈𝑈 and {𝑁𝑢 → 𝑁 }𝑢∈𝑈 is a coproduct of {𝑁𝑢 }𝑢∈𝑈 , then the unique morphism from
𝑀 to 𝑁 that makes the diagram

𝑀𝑢

𝛼𝑢

��

// 𝑀

��

𝑁𝑢 // 𝑁

commutative for every 𝑢 ∈ 𝑈 is called the coproduct of {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢 }𝑢∈𝑈 and denoted∐
𝑢∈𝑈 𝛼

𝑢.
One says that V has coproducts if every set-indexed family of objects in V has a coproduct.
A functor F: V→W between categories that have coproducts is said to preserve coproducts

if given any family {𝑀𝑢 }𝑢∈𝑈 of objects in V the unique morphism that makes the diagram
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F(𝑀𝑢 )

��

//
∐
𝑢∈𝑈 F(𝑀𝑢 )

ww

F(∐𝑢∈𝑈 𝑀𝑢 )
in W commutative for every 𝑢 ∈ 𝑈, is an isomorphism. Here the horizontal morphism is the
injection while the vertical morphism is the image of the injection 𝑀𝑢 → ∐

𝑢∈𝑈 𝑀
𝑢 under F.

Let F: V→W be a functor between categories that have coproducts. For every family of
morphisms {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢 }𝑢∈𝑈 in V there is a commutative diagram in W,∐

𝑢∈𝑈 F(𝑀𝑢 )

��

∐
𝑢∈𝑈 F(𝛼𝑢 )

//
∐
𝑢∈𝑈 F(𝑁𝑢 )

��

F(∐𝑢∈𝑈 𝑀𝑢 )
F(∐𝑢∈𝑈 𝛼𝑢 )

// F(∐𝑢∈𝑈 𝑁𝑢 ) ,
so if F preserves coproducts, then the morphisms

∐
𝑢∈𝑈 F(𝛼𝑢 ) and F(∐𝑢∈𝑈 𝛼𝑢 ) are isomorphic.

Dedekind domain. An integral domain in which every non-zero ideal, equivalently every fractional
ideal, is invertible. A Dedekind domain is Noetherian. See [167, §2].

Division ring. A ring in which every non-zero element has a multiplicative inverse. See [168, §13].

Domain. A ring 𝑅 with the property that for elements 𝑟 , 𝑟 ′ ∈ 𝑅 the product 𝑟𝑟 ′ is zero (if and)
only if one has 𝑟 = 0 or 𝑟 ′ = 0. A commutative domain is called an integral domain.

Endomorphism ring. Let U be an preadditive category and 𝑀 an object in U. A morphism
𝑀 → 𝑀 is called an endomorphism of 𝑀. The hom-set U(𝑀, 𝑀 ) is an abelian group under
addition and a ring with multiplication given by composition of endomorphisms.

Equivalence of categories. A pair of functors F: U→ V and G: V→ U such that there are natural
isomorphisms GF→ IdU and FG→ IdV. An equivalence of categories U and Vop is also called
a duality of U and V and an equivalence of U and Uop simply a duality on U. See [175, I.4].

Faithful functor. A functor that is injective on hom-sets. See [175, I.3].

Filtered set. A preordered set (𝑈, ⩽) with the property that for all elements 𝑢 and 𝑣 in𝑈 there is
a 𝑤 ∈ 𝑈 with 𝑢 ⩽ 𝑤 and 𝑣 ⩽ 𝑤. See [175, IX.1]. A filtered set is also called a directed set.

Filtration of module. Let 𝑀 be an 𝑅-module. A filtration of 𝑀 is a finite sequence
0 = 𝑀0 ⊆ 𝑀1 ⊆ · · · ⊆ 𝑀𝑛 = 𝑀

of submodules. The number of non-zero quotients 𝑀𝑖/𝑀𝑖−1 is called the length of the filtration.
A composition series is a filtration in which all the quotients 𝑀𝑖/𝑀𝑖−1 are simple modules. If
𝑀 has a composition series, then all such series have the same length, and that number, written
length𝑅 𝑀, is also called the length of 𝑀. If 𝑀 does not have a composition series, then one sets
length𝑅 𝑀 = ∞. Submodules and quotients of modules of finite length have finite length, and for
an exact seqeunce 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 one has length𝑅 𝑀 = length𝑅 𝑀 ′ + length𝑅 𝑀 ′′.
See [168, §1].

Full functor. A functor that is surjective on hom-sets. See [175, I.3].

Hereditary ring. A ring that is both left and right hereditary. A ring 𝑅 is left hereditary if every left
ideal is projective as an 𝑅-module; 𝑅 is right hereditary if 𝑅o is left hereditary. See [167, §2E].

Idempotent in ring. A ring element 𝑥 with 𝑥2 = 𝑥. Idempotents 𝑥 and 𝑦 are called orthogonal if
𝑥𝑦 = 0 = 𝑦𝑥 holds.

Inductively ordered set. A (partially) ordered set such that every totally ordered subset has an upper
bound. Zorn’s lemma states that a nonempty inductively ordered set has a maximal element.
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Invariant Basis Number (IBN). A left–right symmetric property: 𝑅 has (left) IBN if for all numbers
𝑚 and 𝑛 in ℕ one has 𝑅𝑛 � 𝑅𝑚 as 𝑅-modules if and only if 𝑚 = 𝑛. See [167, §1A].

Indecomposable module. A non-zero module 𝑀 with no other direct summands than 0 and 𝑀.
See [168, §7].

Isomorphism of categories. A functor F: U→ V that has an inverse, that is, there exists a functor
G: V→ U such that GF = IdU and FG = IdV hold. See [175, I.3].

Integral domain. A commutative domain.

Jacobson radical of ring. The intersection of all maximal left ideals or, equivalently, all maximal
right ideals. In particular, the Jacobson radical is an ideal. See [168, §4].

Local ring. A ring with a unique maximal left ideal or, equivalently, a unique (the same) maximal
right ideal. The set of units in a local ring is the complement of the maximal ideal. See [168, §19].

Localization of module or ring. Assume that 𝑅 is commutative and let𝑈 be a multiplicative subset
of 𝑅. The localization 𝑈−1𝑀 of an 𝑅-module 𝑀 at 𝑈 is the 𝑅-module of fractions 𝑚

𝑢
with

𝑚 ∈ 𝑀 and 𝑢 ∈ 𝑈. The 𝑅-module 𝑈−1𝑅 is an 𝑅-algebra, and 𝑈−1𝑀 is a module over 𝑈−1𝑅.
Localization,𝑈−1, is an exact functor and idempotent, i.e.𝑈−1 (𝑈−1𝑀 ) � 𝑈−1𝑀. See [182, §4].

Middle 𝑅-linear map. A map 𝜑 : 𝑀 × 𝑁 → 𝑋, where 𝑀 is an 𝑅o-module, 𝑁 is an 𝑅-module,
and 𝑋 is a 𝕜-module, such that 𝜑 (𝑚𝑟, 𝑛) = 𝜑 (𝑚, 𝑟𝑛) holds for all 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁 , and 𝑟 ∈ 𝑅.

Monomial. A monic polynomial with only one term.

Natural transformation. For functors F,G: U→ V a natural transformation 𝜏 : F→ G assigns to
each object 𝑀 in U a morphism 𝜏𝑀 : F(𝑀 ) → G(𝑀 ) in V which is natural in 𝑀 in the sense
that 𝜏𝑁 F(𝛼) = G(𝛼)𝜏𝑀 holds for every morphism 𝛼 : 𝑀 → 𝑁 in U. If each morphism 𝜏𝑀 is
an isomorphism, then 𝜏 is called a natural isomorphism. See [175, I.4].

Nilpotent element/ideal in ring. An element 𝑥 (an ideal 𝔞) with 𝑥𝑛 = 0 (𝔞𝑛 = 0) for some 𝑛 ∈ ℕ.
The same terminology is used for left and right ideals. Every element of a nilpotent (left/right) ideal
is nilpotent. A (left/right) ideal is called nil if all its elements are nilpotent. See [168, §4].

Noetherian module. A module that satisfies the Ascending Chain Condition. That is, every chain
of submodules, 𝑀0 ⊆ 𝑀1 ⊆ 𝑀2 ⊆ · · · , stabilizes in the sense that there is an 𝑛 ∈ ℕ such
that 𝑀𝑛 = 𝑀𝑢 holds for all 𝑢 ⩾ 𝑛. The Noetherian 𝑅-modules constitute a Serre subcategory of
M(𝑅); in particular, submodules and quotients of Noetherian modules are Noetherian. Further, if
𝑅 is commutative and𝑈 ⊆ 𝑅 is a multiplicative subset, then𝑈−1𝑀 is a Noetherian𝑈−1𝑅-module.
See [168, §1] and [182, §4].

Noetherian ring. A ring that is both left and right Noetherian. A ring 𝑅 is left Noetherian if
it is Noetherian as an 𝑅-module, i.e. it satisfies the Ascending Chain Condition on left ideals,
equivalently, every submodule of a finitely generated 𝑅-module is finitely generated. A ring 𝑅 is
right Noetherian if 𝑅o is left Noetherian. If 𝑅 is left Noetherian and 𝔞 an ideal in 𝑅, then 𝑅/𝔞 is
left Noetherian. If 𝑅 is commutative and Noetherian and 𝑈 ⊆ 𝑅 is a multiplicative subset, then
𝑈−1𝑅 is Noetherian. See [168, §1] and [182, §4].

Opposite category. For a category U, the opposite category Uop has the same objects as U. A
hom-set Uop (𝑀, 𝑁 ) is identified with U(𝑁, 𝑀 ) under interchange of domains and codomains.
Composition Uop (𝑀, 𝑁 ) × Uop (𝐿, 𝑀 ) → Uop (𝐿, 𝑁 ) is given by U(𝑀, 𝐿) × U(𝑁, 𝑀 ) →
U(𝑁, 𝐿); that is, for 𝛼 ∈ Uop (𝑀, 𝑁 ) and 𝛽 ∈ Uop (𝐿, 𝑀 ) the composite 𝛼 ◦ 𝛽 in Uop (𝐿, 𝑁 )
is 𝛽𝛼 ∈ U(𝑁, 𝐿) with domain and codomain interchanged. See [175, II.2].

Opposite functor. For a functor F: U→ V, the opposite functor Fop : Uop → Vop is defined on
objects by Fop (𝑀 ) = F(𝑀 ) . For every morphism 𝛼 in Uop (𝑀, 𝑁 ) the morphism Fop (𝛼) in
Vop (Fop (𝑀 ) , Fop (𝑁 ) ) is F(𝛼) in V(F(𝑁 ) , F(𝑀 ) ) with domain and codomain interchanged.
For a natural transformation 𝜏 : F→ G of functors U → V, the opposite natural transformation
𝜏op : Gop→ Fop of the opposite functors Uop → Vop assigns to each object 𝑀 the morphism in

8-Mar-2024 Draft - use at own risk



Glossary 1081

Vop (Gop (𝑀 ) , Fop (𝑀 ) ) obtained from 𝜏𝑀 in V(F(𝑀 ) ,G(𝑀 ) ) by interchanging the domain
and codomain. See [175, II.2].

Opposite ring. The opposite ring 𝑅o of a ring 𝑅 has the same underlying additive group while
multiplication is given by 𝑎𝑏 = 𝑏 · 𝑎, where ‘·’ denotes multiplication in 𝑅. There is no distinction
between a commutative ring and its opposite ring. See [168, §1].

Partially ordered set. A set endowed with a binary relation that is reflexive, transitive, and anti-
symmetric. A partially ordered set is, in particular, a preordered set. See [175, I.2].

Preordered set. A set endowed with a binary relation that is reflexive and transitive. See [175, I.2].
In a preordered set (𝑈, ⩽) , an element 𝑤 is called a maximal element if 𝑤 ⩽ 𝑢 implies 𝑢 = 𝑤, and
it is called a greatest element if 𝑢 ⩽ 𝑤 holds for all 𝑢 ∈ 𝑈. Analogously one defines a minimal
element and a least element.

Prime Avoidance. Assume that 𝑅 is commutative and Noetherian. Let 𝔭1, . . . , 𝔭𝑛 be ideals in 𝑅, at
most two of which are not prime. If an ideal 𝔞 is contained in the union ⋃𝑛

𝑖=1 𝔭𝑖 , then 𝔞 is contained
in one of the ideals 𝔭𝑖 .

Principal (left/right) ideal domain. A domain 𝑅 is a principal left ideal domain if every left ideal
in 𝑅 is principal, i.e. of the form 𝑅𝑥 for some 𝑥 ∈ 𝑅. A domain 𝑅 is a principal right ideal domain
if 𝑅o is principal left ideal domain. A commutative principal left (= right) ideal domain is called a
principal ideal domain.

Product. Let V be a category. The product of a set-indexed family {𝑁𝑢 }𝑢∈𝑈 of objects in V is an
object 𝑁 ∈ V together with morphisms 𝑁 → 𝑁𝑢, called projections, with the following universal
property: For every family of morphisms {𝛼𝑢 : 𝑀 → 𝑁𝑢 }𝑢∈𝑈 there is a unique morphism from
𝑀 to 𝑁 that for every 𝑢 ∈ 𝑈 makes the next diagram commutative

𝑁

��

𝑀

==

𝛼𝑢
// 𝑁𝑢 .

Such a product 𝑁 is unique up to isomorphism in V and usually denoted
∏
𝑢∈𝑈 𝑁

𝑢.
Let {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢 }𝑢∈𝑈 be a family of morphisms in V. If {𝑀 → 𝑀𝑢 }𝑢∈𝑈 is a product of

{𝑀𝑢 }𝑢∈𝑈 and {𝑁 → 𝑁𝑢 }𝑢∈𝑈 is a product of {𝑁𝑢 }𝑢∈𝑈 , then the unique morphism from 𝑀 to
𝑁 that makes the diagram

𝑀

��

// 𝑁

��

𝑀𝑢 𝛼𝑢
// 𝑁𝑢

commutative for every 𝑢 ∈ 𝑈 is called the product of {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢 }𝑢∈𝑈 and denoted∏
𝑢∈𝑈 𝛼

𝑢.
One says that V has products if every set-indexed family of objects in V has a product.
A functor F: V→W between categories that have products is said to preserve products if

given any family {𝑁𝑢 }𝑢∈𝑈 of objects in V the unique morphism that makes the diagram∏
𝑢∈𝑈 F(𝑁𝑢 )

��

F(∏𝑢∈𝑈 𝑁𝑢 )
77

// F(𝑁𝑢 )
inW commutative for every𝑢 ∈ 𝑈, is an isomorphism. Here the vertical morphism is the projection
while the horizontal morphism is the image of the projection

∏
𝑢∈𝑈 𝑁

𝑢 → 𝑁𝑢 under F.
Let F: V→W be a functor between categories that have products. For every family of mor-

phisms {𝛼𝑢 : 𝑀𝑢 → 𝑁𝑢 }𝑢∈𝑈 in V there is a commutative diagram in W,
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F(∏𝑢∈𝑈 𝑀𝑢 )

��

F(∏𝑢∈𝑈 𝛼𝑢 )
// F(∏𝑢∈𝑈 𝑁𝑢 )

��∏
𝑢∈𝑈 F(𝑀𝑢 )

∏
𝑢∈𝑈 F(𝛼𝑢 )

//
∏
𝑢∈𝑈 F(𝑁𝑢 ) ,

so if F preserves products, then the morphisms F(∏𝑢∈𝑈 𝛼𝑢 ) and
∏
𝑢∈𝑈 F(𝛼𝑢 ) are isomorphic.

Quasi-Frobenius ring. A ring 𝑅 such that an 𝑅-module (equivalently, an 𝑅o-module) is projective
if and only if it is injective. Such a ring is Artinian and hence Noetherian. See [167, §§15A–15B].

Self-injective ring. A ring that is both left and right self-injective. A ring 𝑅 is left self-injective if it
is injective as a module over itself. A ring 𝑅 is right self-injective if 𝑅o is left self-injective. A left
(or right) Noetherian ring that is left or right self-injective is quasi-Frobenius. See [167, §15A].

Semi-simple module. A module whose every submodule is a direct summand. A module is semi-
simple if and only if it is a coproduct of simple modules. See [168, §2].

Semi-simple ring. A ring 𝑅 such that every 𝑅-module (equivalently: every 𝑅o-module, the 𝑅-
module 𝑅, or the 𝑅o-module 𝑅) is semi-simple. A cyclic module over a semi-simple ring is
isomorphic to a direct sum of simple ideals generated by idempotents. A semi-simple ring is
Artinian, in particular Noetherian. See [168, §§2–3].

Serre subcategory. A full subcategory U of an Abelian category V, such that 0 belongs to U and
for every exact sequence 0→ 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 in V the object 𝑀 belongs to U if and only
if 𝑀 ′ and 𝑀 ′′ belong to U.

Simple module. A module 𝑀 ≠ 0 with no other submodules than 0 and 𝑀. See [168, §2].

Simple ring. A non-zero ring 𝑅 with no other ideals than 0 and 𝑅. See [168, §1].

Torsion. Assume that 𝑅 is commutative. An element 𝑚 of an 𝑅-module 𝑀 is torsion if 𝑥𝑚 = 0
holds for some non-zerodivisor 𝑥 in 𝑅. The torsion elements in 𝑀 form a submodule 𝑀T of 𝑀
called the torsion submodule. If one has 𝑀T = 𝑀, then 𝑀 is torsion, and 𝑀 is torsion-free if
𝑀T = 0 holds. See [167, §4B].

von Neumann regular ring. A ring 𝑅 such that for every 𝑥 ∈ 𝑅 there is an 𝑟 ∈ 𝑅 with 𝑥 = 𝑥𝑟 𝑥;
equivalently, every finitely generated left ideal (equivalently, every finitely generated right ideal) in
𝑅 is generated by an idempotent. See [168, §4].

Zerodivisor. Assume that 𝑅 is commutative. An element 𝑧 ∈ 𝑅 is a zerodivisor if 𝑧𝑟 = 0 holds for
some 𝑟 ≠ 0 in 𝑅. An element that is not a zerodivisor is called a non-zerodivisor. See [168, §1].
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Page numbers refer to definitions.

≪ 0 sufficiently small xxxv
≫ 0 sufficiently large xxxv
↣ injective map xxxv
↠ surjective map xxxv
⊂ proper subset xxxv
⊆ subset xxxv
\ difference of sets xxxv⊎ disjoint union of sets xxxv
× cartesian product of sets xxxv

∼ homotopy 67
≃ quasi-isomorphism

in category of complexes 164
in homotopy category 278

isomorphism in derived category 293
≊ homotopy equivalence 170

isomorphism in homotopy cat. 256
� isomorphism xxxv

√
radical 603

∇ superdiagonal 108∧ exterior algebra 46
∧ wedge product 46∐

coproduct 1078
in category of modules 8
in category of complexes 96
in homotopy category 257
in derived category 295

⊔ pushout 115∏
product 1081

in category of modules 7
in category of complexes 100
in homotopy category 257
in derived category 295

⊓ pullback 143∑ sum
of submodules 9
of subcomplexes 96

⊕ biproduct 6
direct sum

in linear category 7
in category of modules 8
in category of graded modules 45
in category of complexes 104
in homotopy category 258
in derived category 297

⊗ tensor product
in category of modules 5
in category of complexes 76
in homotopy category 322

⊗L derived tensor product 347, 348

| · | degree of homogeneous element 43
[ · ] homology class 63
[ · ]𝑀 coset of submodule 𝑀 5
⟨·⟩ generators for submodule 21

basis for free module 22, 91
( : ) colon submodule 1078
( ·)♮ underlying graded module 47
(̂ · )

𝔞
𝔞-completion of ring 541

(̂ · ) completion of local ring 729
( ·)⊗𝑝 𝑝th tensor power 46
( ·)c center of ring 1078
( ·)e enveloping algebra 10
( ·)o opposite ring xxxv
( ·)op opposite category/functor xxxv
( ·)𝑈 𝑈-fold product 8
( ·) (𝑈) 𝑈-fold coproduct 8
( ·)ď/ě hard truncation above/below 88
( ·)Ď/Ě soft truncation above/below 89

1083
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( ·)𝔭 localization at complement of 𝔭
of module or ring 604
of complex 653

( ·)T torsion submodule 1082

𝛼
𝑋

unit of Hom–tensor adjunction 199
𝜶
𝑋

derived 505
β𝑚 𝑚th Betti number 761
𝛽
𝑋

counit of Hom–tensor adjunction 199
𝜷𝑋 derived 506
Γ𝔞 𝔞-torsion 550
𝜕 differential 47
𝛿
𝑋

biduality
in category of modules 37
in category of complexes 189
in homotopy category 323

𝜹𝑋 in derived category 409
𝜖
𝑅

counitor
in category of modules 17
in category of complexes 181
in homotopy category 323

𝝐
𝑅

in derived category 360
𝜁 swap isomorphism

in category of modules 19
in category of complexes 185
in homotopy category 323

𝜻 in derived category 368
𝜂 homomorphism evaluation

in category of modules 40
in category of complexes 196
in homotopy category 324

𝜼 in derived category 416
𝜃 tensor evaluation

in category of modules 38
in category of complexes 192
in homotopy category 324

𝜽 in derived category 410
𝜄𝑅 semi-injective resolution transf. 283

κ ( ·) residue field 689
Λ𝔞 𝔞-completion 536
μ𝑚 𝑚th Bass number 767
𝜇
𝑅

unitor
in category of modules 16
in category of complexes 181
in homotopy category 322

𝝁
𝑅

in derived category 358
𝜋𝑅 semi-projective resolution transf. 279
𝜌 adjunction isomorphism

in category of modules 19
in category of complexes 187
in homotopy category 323

𝝆 in derived category 370
Σ shift 59

𝜍 degree shift chain map 59
𝜏Ď/Ě truncation morphism 89
𝜐 commutativity isomorphism

in category of modules 17
in category of complexes 182
in homotopy category 323

𝝊 in derived category 360
𝜒
𝑅o𝑅 homothety formation

in category of complexes 190
in homotopy category 495

𝝌
𝑅o𝑅 in derived category 495
𝜔 associativity isomorphism

in category of modules 18
in category of complexes 183
in homotopy category 323

𝝎 in derived category 363

ℂ complex numbers xxxv
𝔼 faithfully injective 𝕜-module 31
𝕜 commutative base ring xxxv
ℕ natural numbers xxxv
ℕ0 non-negative integers xxxv
ℚ rational numbers xxxv
ℝ real numbers xxxv
ℤ integers xxxv

ℤ(𝑝∞ ) Prüfer 𝑝-group 1007

Â,A (gross) Auslander Category 512
B̂,B (gross) Bass Category 512

C category of complexes 51, 52
D derived category 291, 335

D⊏/⊏⊐/⊐ subcategory of D 372
D𝔞-com 561
D𝔞-tor 564
Dart 664
Df 376
Dℓ 664
F subcategory of D⊏⊐ 499
I 499
K homotopy category 256, 321
M category of modules 3, 10

Mgr category of graded modules 44
P subcategory of D⊏⊐ 499
R 503

U( ·, · ) hom-set in category U 6

1𝑀 identity morphism on 𝑀 6
amp amplitude 82
ann derived annihilator 710
Ass associated prime ideals 602

B( ·) boundary subcomplex 60
boundary functor 62
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C( ·) cokernel quotient complex 60
cokernel functor 62

Č𝑅 Čech complex 569
card cardinality xxxv
cmd Cohen–Macaulay defect 783

codim codimension 880
Coker cokernel 45
colim colimit 108
Cone mapping cone 155

cosupp cosupport 696
Cyl mapping cylinder 172

D ( ·) disk complex 91
deg degree 762

depth depth 741
𝔞-depth depth 670

dim Krull dimension 660
E𝑅 injective envelope 1008
Ext homology of RHom 342
fd flat dimension 398

FFD finitistic flat dimension 422
FID finitistic injective dimension 422
FPD finitistic projective dimension 422
Gfd Gorenstein flat dimension 468

Ggldim Gorenstein global dimension 484
Gwgldim Gorenstein weak global dim. 486

Gid Gorenstein injective dimension 455
gldim global dimension 419

Gpd Gorenstein projective dimension 434
grade grade 880
H( ·) homology subquotient complex 60

homology functor
on category of complexes 63
on homotopy category 274
on derived category 310

H𝔞 local cohomology supported at 𝔞 565
H𝔞 local homology supported at 𝔞 562

Hom homomorphisms
in category of modules 5
in category of complexes 69
in homotopy category 321

I𝑅 semi-injective resolution functor 283
I
𝑅
(𝑡 ) Bass series 767
Id identity functor xxxv
id injective dimension 389

Im image 45
inf infimum of complex 82

K𝑅 Koszul complex 48
Ker kernel 45

L ( ·) left derived functor 327

L( ·) left derived functor 328
LΛ𝔞 derived 𝔞-completion 561

length length of module 1079
lim limit 134

M𝑚×𝑛 𝑚 × 𝑛 matrices 10
Max maximal ideals 602
Min minimal prime ideals 602
ord order 762
P𝑅 semi-proj. resolution functor 279

P𝑅 (𝑡 ) Poincaré series 761
pd projective dimension 380

R ( ·) right derived functor 327
R( ·) right derived functor 328
RΓ𝔞 derived 𝔞-torsion 564
rank rank of free module 23

res restriction of scalars 6
Rfd restricted flat dimension 482

RHom derived Hom 335
(𝑅,𝔪) local ring 727

sfli supremum of flat lengths
of injective modules 427

silf/silp supremum of injective lengths
of flat/projective modules 427

Soc socle 728
Spec prime ideal spectrum of commutative

Noetherian ring 602
splf/spli supremum of projective lengths

of flat/injective modules 427
sup supremum of complex 82

Supp classic support
of module 602
of complex 652

supp support 690
Tor homology of ⊗L 353

𝑈−1 ( ·) localization at𝑈
of module or ring 1080
of complex 56

V( ·) closed subset of Spec 603
wgldim weak global dimension 420

width width 738
𝔞-width width 674

𝑥𝑥𝑥 non-empty finite sequence
𝑥𝑥𝑥𝑢 sequence of 𝑢th powers of 𝑥𝑥𝑥 535

Z( ·) cycle subcomplex 60
cycle functor 62
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Page numbers in italics refer to definitions and those in (parentheses) to exercises.
Numbers in the range 578–985 refer to results over commutative Noetherian rings.

Symbols
ℵ-generated module 1038, 1042
𝔞-completion 536

see also completion
𝔞-depth 670

see also depth
𝔞-torsion 550

see also torsion
𝔞-width 674

see also width
𝕜-algebra xxxv, 1077
♮-functor 56, 57
Σ-functor 157, 158, 273–274, 320, 995, 997
Σ-transformation 157, 158, 274, 320, 995, 997

A
Abelian category 12, 14, 320, 1077
absolutely flat ring see von Neumann regular

ring
acyclic complex 60, (69), 82–83, 177, (253),

311, 698, 879
two-of-three property 83
amplitude/infimum/supremum 82
codimension 880
Cohen–Macaulay defect 783, 862
colimit of ∼s 122
coproduct of ∼s 98
𝔞-depth 670
empty classic support 660
empty cosupport 698
empty support 692
grade 880
homological dimensions 380, 389, 399,

434, 455, 469, 482

Krull dimension 660
limit of ∼s 150, (153)
product of ∼s 102
𝔞-width 674
zero object in derived category 294

Acyclicity Lemma 879
additive category 7
additive functor 7

on category of complexes 175–177
extended from modules 57, 159, 176,

(180), 261, 263, 995, 996
on category of modules 330, (334), 997,

(1002)
preserves direct sums 13

adic completion see completion
adjoint functor (106, 107), (117), (145), (188),

263, 302, 303, 1077
adjunction isomorphism

in category of complexes 187, 582, (589)
in category of modules 19, (21)
in derived category 370, 594

augmentation 370, 370–371, 596
in homotopy category 323

algebraically compact module see pure-
injective module

amalgamated product see pushout
amplitude 82, 373

Iversen’s ∼ inequality 876
of Grothendieck dual 847
vs. completion 852
vs. localization 653

annihilator 602, 880, 1078
vs. base change 712
vs. classic support 651, 652
vs. derived annihilator 711

1087



1088 Index

vs. Krull dimension 651, 827
vs. Tor (357)
vs. vanishing of (derived) Hom 5, 774, 825,

1025
vs. vanishing of (derived) tensor product

774, 826
Artin algebra 498, 498
Artin–Rees Lemma 624
Artinian module 662–665, 774, 1078

classic support 663
over local ring (748), 783, 834, 836, 862
𝔪-torsion 734
socle 728

vs. localization 665
(left/right) Artinian ring 1017, 1019, 1078

commutative see commutative Artinian ring
injective dimension over 394
injective module over 1027
projective dimension over 386

Ascending Chain Condition 1080
associated prime ideal 602, (771), 773, 774

of injective module 692, 1028, 1029
vs. classic support 602
vs. depth 672, 685, 742, 743, 746, 822, 823
vs. support 692, 775

associativity isomorphism
in category of complexes 183, 582, (589)
in category of modules 18
in derived category 363, 594

augmentation 364, 363–367, 595
in homotopy category 323

(gross) Auslander Category 512, (522)
closed under coproducts (532)
closed under products 516, (522)
equivalent to Bass Category 514
vs. finite homological dim. 524, (532)

Auslander’s zerodivisor conjecture 877
Auslander–Buchsbaum Formula 758

B
Baer’s criterion 28, 389
balanced category 14
base change 20, 56, 584, 585

derived 599
faithfully flat 586
flat 585–586
see also ring extension

basis 22, (36), 1038
dual 37
graded 91

(gross) Bass Category 512, (522)
closed under coproducts 516, (522)
closed under products (532)
equivalent to Auslander Category 514

vs. finite homological dim. 526, (532)
Bass Formula 761
Bass number 767, 771, 862

no holes 863
vs. localization 767

Bass series 767, 767–769, 847
of derived Hom 767
of derived tensor product 769
of Grothendieck dual 847
of local ring 802, 848, 855
vs. completion 854
vs. flat base change 769
vs. shift (772)

Betti number 761, 762, 765, (772)
no holes 766

biduality
in category of complexes 189, 582

(co)unit of an adjunction 191
isomorphism 189, (201), 583, 735
null-homotopic (201)

in category of modules 37, (253), 407,
(560)

isomorphism 38, 530
in derived category 409, 409, 594, 596

(co)unit of adjunction 499
isomorphism 498, (501), 502, 503, 597,

735, 780, 838
in homotopy category 324

big Cohen–Macaulay module 866
𝔪-complete 867
balanced 867

bimodule 10
complex of ∼s 52, 321, 335
graded 46
symmetric 10, 580–581

biproduct 6, 257
see also direct sum

boundary (sub)complex 60, 62
boundary functor 62, 64, (68)

preserves coproducts 98
preserves filtered colimits 122
preserves products 102

bounded (above/below) complex 82
bounded (above/below) functor

on category of complexes 995, 996, (1002)
on derived category 997, 999, (1002)

C
candidate triangle 1051

in homotopy category 265
isomorphism of ∼s 1051

canonical module 838, (851)
cardinality xxxv
Cartesian square see pullback
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categorical product see product
categorical sum see coproduct
categorically flat complex 246
categorically injective complex (228)
categorically projective complex (216)
category

Abelian 1077
(pre-)additive 7
balanced 14
duality/equivalence of ∼ies 1079
has coproducts 1079
has products 1081
isomorphism of ∼ies 1080
(pre-)linear 6
of bimodules 10
of complexes 51
of graded modules 44
of modules 3, 52, 256, 292
opposite xxxv, 1080
triangulated 1052

catenary ring 785, 785, 843, 882
Čech complex

colimit of dual Koszul complexes 570
Čech complex 569, 569–572, 615, 632

acyclic 571
base change 572
classic support 652
finite projective dimension 574
flat dimension 569, (757)
semi-flat 569
semi-free resolution 574
support 695

center xxxv, (21), 1078
central element 51, 1078
chain complex see complex
chain map 50, 59, 72, 78

cycle in Hom complex 70
null-homotopic 67

character complex 217
contractible (201), (253)
flat dimension 404
Gorenstein flat dimension 527
Gorenstein injective dimension 469
injective dimension 403

character module 217, (347), 397
Chouinard Formula

for flat dimension 792
for injective dimension 814

classic support (Supp) 604, 652
empty 660
of coproduct 652
of derived tensor product 655, 693
of derived 𝔞-torsion complex 708
of derived 𝔪-torsion complex 734

of module 602
finitely generated 651

of product 652
of tensor product 655
specialization closed 602, 652
vs. localization 653
vs. support 691, 692, 695

cobase change 20, 56, 587
derived 601

Cocartesian square see pushout
cochain complex see complex
cocontinuous functor 113
codimension 880, 880–882, (884)

vs. grade 880–882
vs. Krull dimension 881

coextension of scalars see cobase change
cofinal subset 119, 138
Cohen–Macaulay complex 783

bounded homology 783
localization 783, 784

Cohen–Macaulay defect 783, 862, 862
non-negative 783, 861
of derived tensor product 874, 875
of Grothendieck dual 847
vs. completion 854
vs. flat extension 788
vs. localization 783, (864)

Cohen–Macaulay ring 787
catenary 788
finitistic dimensions 805
local 786, 786–787, 869, 876, (884)

catenary 786
completion 855
dualizing complex for (851)
equidimensional 786
finitistic dimensions 806
flat extension 788

localization 787, (790)
polynomial extension 789
power series extension 789
product of ∼s (790)
unmixed (790)

(left/right) coherent ring 467, (589), 1078
flat module/dimension o. (133), 406, (408)

cohomological functor 1057
cokernel (quotient) complex 60, 62
cokernel functor 62

preserves coproducts 98
preserves filtered colimits 122
preserves products 102
right exact 64

colimit 108
∼s commute 111
filtered 117
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functors that preserve ∼s 113, 112–114,
(117), 121–122

in category of (graded) modules (117)
in opposite category (145)
of morphisms 110
of telescope 131
right exact 110
universal property 108, 112, (117)

colocalization 658
at complement of prime ideal (659), 659

vs. cosupport 700, (702), 777, (781)
vs. cosupport 699

colon ideal/submodule 1078
commutative Artinian ring 665–666
𝔞-complete 665
Cohen–Macaulay 787
dualizing complex for 838, 845
local 834, 835

Cohen–Macaulay 786
dualizing complex for 495

commutative Noetherian ring
biequidimensional 785
catenary 785
Cohen–Macaulay 787
𝔞-completion 542, 703
dualizing complex for 494, 838
equicodimensional 785
equidimensional 785
finitistic dimensions 800, 804, 807
global dimension 800
Gorenstein 801
Krull dimension 602, 807
local see local ring
localization 689
prime ideal spectrum 602

commutativity isomorphism
in category of complexes 182, 582, (589)
in category of modules 17
in derived category 360, 593

augmentation 361, 360–362, 594
in homotopy category 323

𝔞-complete complex 537, 546–549
homology 549
over 𝔞-complete ring 548
restriction of scalars 537

complete local ring 729, 730, 733, 857
catenary 844
cosupport 730
dualizing complex for 840
Matlis Duality Theorem 836

𝔞-complete module 606, 617
derived 𝔞-complete 623
flat dimension 722
flat resolution 622

injective dimension 797
Krull’s intersection theorem 703
Nakayama’s lemma 728
over 𝔞-complete ring 548
restriction of scalars 537

𝔪-complete module 729
flat dimension 756
injective dimension 798

𝔞-complete ring 541–544, 621, 703
cosupport 701
local 542, 729
Noetherian 542

completely reducible module see semi-simple
module

𝔞-completion functor 536, 536–539
♮-functor and Σ-functor 538
determined by radical of 𝔞 609
exactness 546, 563, 624
idempotent 548
independent of base 537
over Noetherian ring 625–626
preserves products 538

complex 47
acyclic 60, 294
bounded (above/below) 82
categorically flat 246
Cohen–Macaulay 783
𝔞-complete 537
concentrated in certain degree(s) 48
contractible 177, 257
degreewise Artinian 664
degreewise finitely generated 82
degreewise finitely presented 82
degreewise of finite length 664
derived 𝔞-complete 561
derived Matlis reflexive 735
derived reflexive 503
derived 𝔞-torsion 564
dualizing 494
homology 60

see also homology complex
homomorphism of ∼es 50
invertible 505
Matlis reflexive 735
minimal 1004
morphism of ∼es 51
of bimodules 52, 321, 335
pure acyclic 245, (253)
𝔞-quasi-complete 537
semi-dualizing (501)
semi-flat 231, 232, 238
semi-free 203
semi-injective 220, 223
semi-projective 210, 211
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𝔞-separated 537
sub- and quotient 51
𝔞-torsion 551

composition series 1079
connecting homomorphism 5
connecting morphism 54

in homology 65, 168
conservative functor 1078
continuous chain of subcomplexes 127, 1035
continuous chain of submodules 1035, 1035,

1037
continuous functor 139
Continuum Hypothesis 809
contractible complex 177, 177, 179, 257,

1003
pure acyclic 245

contraction 177
contravariant functor xxxv
coproduct 1079

functors that preserve ∼s 13, 97–99, (106),
106, 259–262, 298–301, 320, 325, 330

in category of complexes 96, 109
in category of graded modules 96
in category of modules 8
in derived category 295
in homotopy category 257
universal property 96, 97, 101, (106), 1078

coregular element/sequence (748)
coresolution see resolution
cosupport 696, 696–701, 777–779

two-of-three property 697
empty 698
maximal elements 701, 745
of coproduct 699
of derived 𝔞-complete complex 707
of derived 𝔪-complete complex 730
of derived Hom 698
of derived tensor product 778
of product 697
vs. colocalization 699, 700, 777

at complement of prime ideal (702)
vs. derived 𝔞-completion 701
vs. finite depth/width 701, 745, 777
vs. support 701, 745, 778, (781)
vs. vanishing of local (co)homology 777,

(781)
Cosupport Formula 698
cosyzygy 228
counit of adjunction 1077
counitor

in category of complexes 181, 581
in category of modules 17
in derived category 360, 593
in homotopy category 323

countably generated module 1038
countably related module 1039
covariant functor xxxv
cycle (sub)complex 60, 62
cycle functor 62

left exact 63
preserves coproducts 98
preserves filtered colimits 122
preserves products 102

cyclic module 22, (607)

D
de Rham cohomology 62
de Rham complex 50, 70
Dedekind domain 1079
degree

of graded homomorphism 44
of homogeneous element 43

degreewise Artinian complex 664
localization 665
morphism of ∼s 779
over (complete) local ring

Matlis reflexive 836
𝔪-torsion 734

degreewise finitely generated complex 82, 86,
88, 91, (92)

base change 585
cobase change 587
𝔞-completion 624–625
morphism of ∼s 779
over (complete) local ring

Matlis dual degreewise Artinian 734
Matlis reflexive 835

degreewise finitely presented complex 82, 92,
125

degreewise of finite length complex 664
over local ring
𝔪-complete 736
Matlis refleive 736

degreewise split exact sequence 56, 73, 74,
(76), 79, 80, (181), (276), 1003

𝔞-depth 670, 670–673, 678–679, 682–685,
823

determined by radical of 𝔞 679
of coproduct 671
of derived Hom (687)
of derived 𝔞-torsion complex 672
of product 671
two-of-three property 673
vs. cosupport 701
vs. depth over local ring 822, 860
vs. grade 880
vs. localization 820, 821, 823
vs. regular sequence 685–686
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vs. restriction of scalars 673
vs. support 701
vs. supremum 672, (677)
vs. vanishing of (local) cohomology 678
vs. 𝔞-width 675, (677), 682, 701

depth 741, 741–746
complex of finite 744, 745
of derived Hom 744
of derived tensor product 748, 769
of derived 𝔪-torsion complex 742
of Grothendieck dual 847, (851)
of Matlis dual 744
order of Bass series 767
vs. 𝔪-depth 741
vs. associated prime ideals 742, 743
vs. completion 853
vs. cosupport 745, 777
derived 𝔞-completion 742
derived 𝔪-completion 744
derived 𝔞-torsion 742
derived 𝔪-torsion 744
vs. flat base change 769
vs. Krull dimension 782, 861
vs. localization 760, 828, 860
vs. regular sequence 746
vs. support 745, 775
vs. supremum 742, 743, 821, 825
vs. vanishing of (local) cohomology 742,

(747)
vs. vanishing of local homology 746
vs. width 745, 747, (757)

derived annihilator 710, 710–711
vs. annihilator of homology 711
vs. base change 711

derived base change 599, 599–600, (601)
derived category 292

bounded subcategories 373
has (co)products 295
isomorphism in 293
triangulated 305
universal property 298–302, 308–309, 325
zero object in 294

derived cobase change (601), 601, 601, 658
derived 𝔞-complete complex 561, 622–623,

641–642, 649
category of ∼es 561, 622, 641, 645
cosupport 701, 707
derived cobase change 619
flat dimension 721
injective dimension 797
restriction of scalars 619
𝔞-width 675

derived 𝔪-complete complex 745, 849, 859
category of ∼es 730, 736

colocalization 708
cosupport 730
depth 860
flat dimension 731, 755
injective dimension 798
supremum 746
width 739

derived 𝔞-completion functor 561, 614–619,
(624), 641

adjoint 641, 644, 645
bounded 615
determined by radical of 𝔞 610
idempotent 638
independent of base 619
over Noetherian ring 626
preserves products 615
vs. colocalization 659

derived functor 328, 330
universal property 332–333

derived Hom 335
augmentation 336, 335–340, 590
bounded functor 998, 1000
classic support 657
colocalization (659)
cosupport 698
degreewise finitely generated homology

377, (501), (510), 591, 713, 715
depth (687), 744
derived base change 600
derived cobasechange 601
derived 𝔞-complete 617, 620, 622, 649,

(650)
derived 𝔞-torsion 633, 636, 637, 644, (650)
flat dimension 414, 418
infimum 342, 376, (737), 763, 768
injective dimension 402, 767, 796
Krull dimension (667), (884)
localization 657
preserves products 336
projective dimension 418, 763, 768
support 775
supremum 342, 374–376, (378), 679, (687),

(737), (747), 825–826, 859, 861
triangulated functor 336
width 750, 751

derived Matlis reflexive complex 735, 735,
835–836

two-of-three property 735
derived Morita equivalent rings 508
derived natural transformation 328
derived reflexive complex 503, 503, 531

category of ∼es 503, 503, 515
derived tensor product 348

amplitude 876
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associative see associativity iso.
augmentation 348, 348–352, 591
bounded functor 998
classic support 655, 693
Cohen–Macaulay defect 874, 875
colocalization (659)
commutative see commutativity iso.
cosupport 778
degreewise finitely generated homology

378, (510), 592, 713
depth 748, 769
derived base change 599
derived 𝔞-complete 618, 620, 622, 642
derived 𝔞-torsion 633, 636, 637, 649
flat dimension 402
infimum 354, 374–376, 681, (737), 741,

(747), 826, 827, 861
injective dimension 414, 769
Krull dimension 662, (667), 827, 828, 859,

873, 875
localization 654
preserves coproducts 349
projective dimension 402, 762
support 693
supremum 354, 376, (737), (830)
triangulated functor 349
width (687), 740

derived 𝔞-torsion complex 564, 637–638,
643–644, 649, 857

category of ∼es 564, 637, 643, 645
classic support 708
𝔞-depth 672
derived base change 635
flat dimension 720, 793
injective dimension 717
Krull dimension 708
localization 657
projective dimension 714
restriction of scalars 635
support 695, 708

derived 𝔪-torsion complex 745, 849, 857, 859
amplitude (790)
category of ∼es 734–736
classic support 734
depth 742
flat dimension 793
infimum 746
injective dimension 731, 754
Krull dimension 734
localization 709
support 734

derived 𝔞-torsion functor 564–565, 632–634,
643

adjoint 643–645

bounded 632
determined by radical of 𝔞 627
idempotent 638
independent of base 635
preserves coproducts 632
vs. localization 657

Descending Chain Condition 1077
DG-flat see semi-flat
DG-injective see semi-injective
DG-projective see semi-projective
differential 47
differential graded algebra 70
differential graded module see complex
direct limit see filtered colimit
direct product see product
direct sum(mand)

in category of complexes 104
in category of graded modules 45
in category of modules 9
in derived category 297
in homotopy category 258
in linear category 7
internal see independent family of

submodules
direct system 107

category of ∼s (117)
colimit 108
in opposite category (145)
morphism of ∼s 110

directed set see filtered set
disk complex 91, 177
distinguished triangle 1052

in derived category 305, 313
vs. homology 310–312

in homotopy category 265, (276)
vs. homology 275, (324)

split 1059
divisible module 29, 29, (560)
division ring (35), 1079
Dold complex 47, 204

acyclic 60, (216), (228), (253)
totally acyclic 431, 449, 464

domain 1079
dual basis 37
dual numbers 588, 1004
duality of categories 1079

derived reflexivity 503
Grothendieck Duality 500, 838
Matlis Duality 835, 836

dualizing complex 494, 496–498
existence 497, 839

Artin algebra 498
commutative Artinian local ring 495
commutative Artinian ring 838
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complete local ring 840
Gorenstein ring 839
Iwanaga–Gorenstein ring 497

for commutative Noetherian (local) ring
494, 838–849

amplitude 846
Bass series 841, 845
classic support 840
Cohen–Macaulay 841
cosupport 840
localization 840
normalized 845
support 840

for Noetherian ring 494, (501)
Foxby–Sharp Equivalence 514
Grothendieck Duality 500, 838
parametrization of ∼es 521, 839
projective dimension 501
semi- (501)

dualizing module 838, (851)

E
Eilenberg’s swindle 26, 431
embedded prime ideal 602, 784
endomorphism 1079
endomorphism ring 1079
enveloping algebra 10, (15, 16)
equicodimensional ring 785
equidimensional ring 785, 785, 882
equivalence of categories 1055, 1079

Foxby–Sharp Equivalence 514
Morita Equivalence 508

essential submodule (396), 628, 1006, 1006
exact complex see acyclic complex
exact functor 13

on category of modules (68, 69)
exact sequence

in category of complexes 52
in category of modules 3
of functors 121
see also short exact sequence

Ext 342, 342–346, 397
associated prime ideals 823
dimension shifting 381, 390, (448), (463)
(long) exact sequence 345
half exact 345, (396)
localization 657
of Matlis dual 732
rigidity 717, 754, 755
vs. completion 852, 853
vs. filtered colimits 344
vs. products 344

extension of modules 12, 343
trival 12

trivial 346
extension of scalars see base change
extension property see unique extension

property
exterior algebra 46, 48, (58)
exterior power 47

of free module 47

F
F-totally acyclic complex see totally acyclic

complex of flat modules
faithful functor 14, 1079
faithfully exact functor 14
faithfully flat module 32, 83, 698, 703

base change (36)
character module 34
𝔞-depth 671
support 693
𝔞-width 674

faithfully injective module 27, 34, 83, 703
cobase change 30, (36)
cosupport 699
existence 31, 1025

faithfully projective module 25, 83
base change (36)

fibered coproduct/sum see pushout
fibered product see pullback
field of fractions 376, 557, (560), 666, (696)

flat 32
(𝛴 -)injective (1023), (1033)
(𝛴 -)injective 29

filtered colimit 117, 118–120, 125, 467
exact 120
functors that preserve ∼s 121–122, 125
homology 122

filtered limit 138
filtered set 1079
filtration of module 603, 662, 1079
finite length module 663

Artinian 664
over local ring (738), (747)

Cohen–Macaulay 783
𝔪-complete 736
Matlis dual 737, 835
Matlis reflexive 736
projective dimension 869

finitely generated module 22, 24–25, 676
classic support 651, 655
(derived) 𝔞-completion (559), 626
injective enelope 1026
Krull dimension 651
Krull’s intersection theorem 703
Nakayama’s lemma 1012
over Artinian (local) ring 665, 834
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over complete local ring 835
over local ring 727

Bass numbers 863
injective dimension 761, 876
Matlis dual Artinian 734
Nakayama’s lemma 728

vanishing of functor on ∼s 604–607
vanishing of functor on ∼s 35, 664, 729

finitely presented module 31, (107), (133)
finitely related module (36)
finitistic dimension

flat 483
finitistic dimensions 422–426, 804

flat 422, 423, 425, (427), (491)
vs. localization (725), 804

Gorenstein flat 484
Gorenstein injective 484
Gorenstein projective 484
injective 422, 423, (427)

vs. localization 804
of Cohen–Macaulay ring 805, 806
of Gorenstein ring 802
of Iwanaga–Gorenstein ring 426
of local ring 806

with dualizing complex 850
of (left/right) Noetherian ring 425
of (left/right) perfect ring 424
projective 422, 423, 424, (427), 779, 1046

vs. localization (725)
vs. global dimension 424–425, 800
vs. injective dimension 424–426, 800
vs. Krull dimension 806–807, 850

Five Lemma
in category of complexes 53
in category of modules 4
in derived category 310
in homotopy category 275, (276)
in triangulated category 1057

flat dimension 398, 400, (659), 718–722,
791–793

Chouinard Formula 792
complex(es) of finite 398, 423, 424, 426,

518, 748–749, 807, 844, 850, 868,
873–874

two-of-three property 401, (407)
category of (407), 499, 508, 513, 514
Cohen–Macaulay defect 868

finitistic 422
of character complex 404
of 𝔞-complete module 722
of 𝔪-complete module 756
of complex with degreewise finitely

generated homology 758
vs. projective dimension 404, 719, 758

of coproduct 402
of derived 𝔞-complete complex 721
of derived 𝔪-complete complex 755
of derived Hom 414, 418, (724)
of derived tensor product 402, (724)
of derived 𝔞-torsion complex 793
of derived 𝔪-torsion complex 793
of filtered colimit (408)
of Hom 723
of module 405
of product 406, (408)
of tensor product 723
of 𝔞-torsion module 793
of 𝔪-torsion module 793
over (left/right) perfect ring 404
vs. codimension 881
vs. colocalization 811, 812
vs. derived base change 399, 719
vs. derived 𝔞-completion 720–722
vs. derived 𝔪-completion 731
vs. derived 𝔞-torsion 720, 722
vs. faithfully flat base change 719
vs. injective dimension 403, 404, 723
vs. Krull dimension 868, 874
vs. localization 792
vs. projective dimension 399, 402, 404, 423,

424, 518, 719, 807, 844, 850
vs. restriction of scalars (407), 720, 792

flat module 32, 32–34, 83, (133), 398, 405
two-of-three property 235
associated prime ideals (608)
base change (36), 235
character module 34, 235, (347)
colimit of ∼s 235
colimit of fin. gen. free modules 242
𝔞-completion 617, 621
complex of ∼s 81, (180), 230, (559)

two-of-three property 230
acyclic 247
𝔞-completion 621
pure acyclic (427), (809)
semi-flat 232
totally acyclic 464

coproduct of ∼s 235
countably related 1039
faithfully 32, 693
finitely generated (1024)
finitely presented 33
finitely related (36)
graded- 231
lifting property 242
product of ∼s 406
projective 33, 252, (1024)
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projective dimension 404, 423, (427), 518,
850, 1035

restriction of scalars 235
tensor product of ∼s 235
torsion-free 557, 558
vs. vanishing of Tor 398

flat preenvelope 1049
base change 1050

flat resolution 405, 406, 622
forgetful functor

see also restriction of scalars
Foxby–Sharp Equivalence 514–515
∼ Theorem 514

fp-injective module (347), (347)
free module 22, 22–23

base change (36), 207
character module 35, 227
complex of fin. gen. ∼s

acyclic (873)
complex of fin. gen. ∼s

acyclic 870
totally acyclic 443

coproduct of ∼s 23
exterior power 47
faithfully flat 32
faithfully projective 26
graded- 91
projective 26
rank 23
restriction of scalars 207
tensor power 47
unique extension property 22, (35)

free presentation 31, 92
free resolution 208
full functor 1079
functor
♮- 56
Σ- 157, 158
additive 7
adjoint 1077
bounded (above/below) 995–997, 999
cohomological 1057
conservative 1078
derived 328
exact 13
faithful 14, 1079
faithfully exact 14
full 1079
half exact 13
homological 1056
homotopy invariant 258
left exact 13
(multi-)linear 7
opposite xxxv, 1081

preserves colimits 113
preserves coproducts 13, 97, 1078
preserves filtered colimits 121
preserves homotopy 175

on opposite category 176
on product category 319

preserves limits 13, 139, 141
preserves products 13, 101, 103, 1081
preserves quasi-isomorphisms 166
quasi-triangulated 271, 272
reflects quasi-isomorphisms 167
right exact 13
triangulated 1054

G
G-dimension see Gorenstein projective

dimension
generators of module 22

graded 91
minimal number 727, 762
minimal set 22

global dimension 420, 420–424
of (left/right) perfect ring 421
of (left/right) Noetherian ring 422
vs. finitistic dimensions 424–425, 800
vs. localization (725)
vs. weak global dimension 421, 422, (427)

Gorenstein flat dimension 469, 469–481
complex(es) of finite 471, 475

two-of-three property 471
category of (483), 524
vs. (gross) Auslander Category 524

of character complex 527
of complex with degreewise finitely

generated homology 481
of coproduct 476
of filtered colimit (483)
of module 473, 481
of product 529, (533)
refinement of flat dimension 470
vs. Gorenstein injective dimension 469, 527
vs. Gorenstein projective dimension 478,

481
Gorenstein flat module 464, 464–468, 481

character module 465, 467
colimit of ∼s 468
coproduct of ∼s 465
finitely generated 480
product of ∼s 528
projectively resolving 468
vs. vanishing of Tor 465, 468

Gorenstein global dimension 485, 485–486
of Noetherian ring 489–491
vs. finitistic dimensions 485, 486
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vs. global dimension 485
vs. Gorenstein weak global dimension 487,

490
Gorenstein injective dimension 455, 455–462

complex(es) of finite 456, 460
two-of-three property 456
category of (463), 526
vs. (gross) Bass Category 526

of character complex 469
of coproduct 529, (533)
of filtered colimit (533)
of module 458, 462
of product 462
refinement of injective dimension 455, 461
vs. Gorenstein flat dimension 469, 527

Gorenstein injective module 449, 449–454,
462

coproduct of ∼s 528
cotorsion 454
filtered colimit of ∼s 528
injectively resolving 450
product of ∼s 450
vs. vanishing of Ext 454, 525

Gorenstein projective dimension 434,
434–447

complex(es) of finite 436, 439, 444, 445,
531

category of (448), 524
two-of-three property 435
vs. (gross) Auslander Category 524

of complex with degreewise finitely
generated homology 444, 445, 531

vs. Gorenstein flat dimension 481
of coproduct 441
of module 438, 444, 446, 447
refinement of projective dimension 435,

441
vs. Gorenstein flat dimension 478, 481

Gorenstein projective module 429, 429–434,
446

coproduct of ∼s 432
finitely generated 443, 480, 530
projectively resolving 432
vs. vanishing of Ext 430, 434, 443, 449, 524

Gorenstein ring 801, 801–804
Cohen–Macaulay 801
finitistic dimensions 802
Krull dimension 801, 802
local 801, 801, 855

Bass series 802
Cohen–Macaulay 801
completion 855
flat extension 802
Krull dimension 801

minimal injective resolution 802
localization 801, (809)
polynomial extension 803
power series extension 803
product of ∼s (809)
see also Iwanaga–Gorenstein ring

Gorenstein weak global dimension 486,
487–488

left–right symmetric 488
of Noetherian ring 489, 490
vs. finitistic dimensions 488
vs. Gorenstein global dimension 487, 490
vs. weak global dimension 487

Govorov and Lazard’s theorem 238, 241–243
grade 686, 880, (884), 880–884

vs. codimension 880–882
graded basis 91, (93), 203
graded direct sum(mand) 45
graded Hom 44
graded homomorphism 44, (57)
graded module 43, 43–46

(homo)morphism of ∼s 44
semi-simple 168

graded natural transformation see triangulated
natural transformation

graded quotient module 45
graded submodule 44, (57), 168

essential 1006, (1023)
superfluous 1011

graded tensor product 45
universal property 45

graded-flat module 231, 232, (236, 237),
241–242

two-of-three property 230
character module 230
lifting property 242

graded-free module 91, 91, 203, 1018
character module 219
unique extension property (93)

graded-injective module 219, 219, 224, (228,
229), 1008

two-of-three property 219
lifting property 219

graded-projective module 209, 210, 212,
(216, 217), 1013

two-of-three property 210
degreewise finitely generated 1018
lifting property 209

greatest element of preordered set 1081
Greenlees–May Equivalence 644–645
∼ Theorem 645

gross Auslander/Bass Category see
Auslander/Bass Category

Grothendieck Duality 498–500
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∼ Theorem 500, 835, 838

H
half exact functor 13, (16)

on category of modules
vanishing 604–607, (659), 664, 729

vanishing 35
height of ideal 880
(left/right) hereditary ring 1079

complex over (303), (388), (397)
of flat modules (236)
of injective modules (180), (228)
of projective modules (180), (216)

derived category (314), (334)
homotopy category (315)
injective module over (41)
projective module over (36)

Hom
base change 585
cobase change 587
localization 657
of complexes 70, 69–75, 321
♮-functor 73, 74
Σ-functor 159, 161, (163)
acyclic 989–992
bounded functor 995, 997
boundedness 85, (92)
degreewise finitely generated 86
exactness 75, 346, 347
over commutative ring 580
preserves homotopy 176

of modules 5, 11, 343
associated prime ideals 773
classic support 657
finitely generated 24
over commutative ring 580
vanishing (560), 773, 774, 1025

preserves limits 141, 142
preserves products 102, 103, 321
vs. colimits 122, 125
vs. coproducts 106, (107)

Hom Vanishing Lemma 1025
Hom–Hom adjunction 191, (201)

derived 499, (501)
see also Grothendieck and Matlis Duality

Hom–tensor adjunction 198, (201)
derived (372), 505, (510)

see also Foxby–Sharp, Greenlees–May,
and Morita Equivalence

see also adjuction isomorphism
homogeneous element 43

in graded Hom 44
in graded tensor product 45

homological functor 1056

homologically trivial complex see acyclic
complex

homology class 63
homology (subquotient) complex 60, 62

bounded (above/below) 373
𝔞-complete 623, 642
degreewise Artinian 664, (837)

category of complexes with 664, (667),
734, 834, 836

degreewise finitely generated 377, 745
category of complexes with 377, 500,

509, 626, 664, 730, 834, 836, 838
over (left/right) Noetherian ring 377–378
vs. completion 852
vs. derived base change 599
vs. derived cobase change 601
vs. flat base change 585
vs. localization 653

degreewise of finite length 664
category of complexes with 664, 735, 737,

834, 835, 849
vs. completion 736

𝔞-torsion 553, 637, 643
vs. flat base change 585
vs. localization 653

homology equivalence see quasi-isomorphism
homology functor

homological 274, (276), 310, (315)
homotopy invariant 259
on category of complexes 63
on derived category 310, 312
on homotopy category 274
preserves coproducts 98, 274, 310
preserves filtered colimits 122
preserves products 102, 274, 310
vs. limits 151, 152

homology isomorphism see quasi-
isomorphism

homomorphism
of bimodules 10
of complexes 50
of graded modules 44
of modules 3

homomorphism evaluation
in category of complexes 196, (201), 583,

(589)
isomorphism 197, (201), 584
vs. counit of Hom–tensor adjunction 198

in category of modules 40
isomorphism 41, (42)

in derived category 416, 594
augmentation 416, 416–418, 598
isomorphism 417, 418, (419), 525, (533),

598, 599
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vs. counit of derived Hom–tensor adj. 505
in homotopy category 324

homothety 44, (58)
mapping cone 156, 568
null-homotopic 710

homothety formation
in category of complexes 190, 493, 732

morphism of algebras 544
in derived category 495, 504, 710, 781
in homotopy category 495

homotopic chain maps 67, (69), 156, 176,
(180)

in product category 319
homotopically flat complex (237)
homotopically injective complex (229)
homotopically projective complex (216)
homotopically trivial complex see contractible

complex
homotopy 67, (69), 177

congruence relation 67
diagram commutative up to 68
functor that preserves 175

on opposite category 176
on product category 319

homotopy annihilator see derived annihilator
homotopy Cartesian square (315)
homotopy category 256

has (co)products 257
isomorphism in 256
triangulated 265
universal property 259–263, 271–274, 319
zero object in 257

homotopy class 256
homotopy equivalence 171, 178, (180), 256,

293, 1003
coproduct of ∼s 172
in opposite category 176
mapping cone 178
product of ∼s 172
quasi-isomorphism 171

homotopy invariant functor 258, 259–261,
263, 271–273

homotopy inverse 171
uniqueness 171

Homotopy Lemma 243
homotopy pullback (315)
homotopy pushout (315)
Horseshoe Lemma 384, 393

I
IBN 23, (35, 36), (589), 1080
(left/right) ideal xxxv

colon 1078
genrators 22

nil(potent) 1080
parameter 727
perfect 884
primary 603
radical 603
topologically equivalent ∼s 539

idempotent (element) in ring 1079
identity functor xxxv
identity morphism 6
Improved New Intersection Theorem 871
indecomposable injective module 1025–1027

over (left/right) Artinian ring 1027
over (left/right) Noetherian ring 1026
over commutative Artinian ring 666
over commutative Noetherian ring 1028
𝔞-torsion submodule 627
classic support 692, 1029
cosupport 697
𝔞-depth 671
localization 1030, (1033)
support 692
𝔞-width 674

indecomposable module 1080
independent family of subcomplexes 96
independent family of submodules 9, 9
inductive limit see colimit
inductively ordered set 1079
infimum of complex 82, 82–83, 310, 311, 373

vs. completion 852
vs. localization 653, (659), 825

injection 8, 96, 1078
injective dimension 389, 390, 714–717,

794–796
Chouinard Formula 814
complex(es) of finite 389, 426, (501), (510),

715, 751, 753, (884)
two-of-three property 392, (407)
amplitude 876
category of (397), 499, 500, 508, 509,

513, 514, 713, 715, 838
Gorenstein 801

finitistic 422
of character complex 403
of 𝔞-complete module 797
of 𝔪-complete module 798
of complex with degreewise finitely

generated homology 760
vs. flat base change 769
Bass Formula 761
degree of Bass series 767
vs. completion 854
vs. Krull dimension 760
vs. localization 760

of coproduct 396, (397)
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of derived 𝔞-complete complex 797
of derived 𝔪-complete complex 798
of derived Hom 402, (724), 767, 796
of derived tensor product 414, (724), 769
of derived 𝔞-torsion complex 717
of derived 𝔪-torsion complex 754
of filtered colimit (397)
of Grothendieck dual 847
of Hom 723
of module 395

finitely generated 761
of product 393
of tensor product 724
of 𝔞-torsion module 717
of 𝔪-torsion module 754
over (left/right) Artinian ring 394
vs. colocalization 795
vs. derived cobase change 389, 796
vs. derived 𝔞-completion 717, 797
vs. derived 𝔞-torsion 716–717
vs. derived 𝔪-torsion 731
vs. flat dimension 403, 404, 723
vs. localization 797, 814, 817
vs. restriction of scalars (407), 715, 795

injective envelope (820), 1007
existence 1008
finite length 666
of residue field 728, 834, 1030, 1031

see also local ring
over (left/right) Noetherian ring 1026

injective hull see injective envelope
injective limit see colimit
injective module 27, 27–31, 83, 227, 236,

395, 419
𝛴 - (1033)
two-of-three property 227
Baer’s criterion 29
base change (589)
cobase change 30, (36), 236, (252), (800)
complex of ∼s

semi-injective (229)
complex of ∼s 75, (180), 219, (560)

two-of-three property 219
contractible (228), (427), (809)
minimal 629, 658, 776, 1009
semi-injective 223
support 776
totally acyclic 449

coproduct of ∼s (36), 395, (397)
divisible 29
faithfully 27, 31, 699
fp- (347)
graded- 219
indecomposable 1025–1028

lifting property 27
over (left/right) Noetherian ring 1026–1027

coproduct of ∼s 395
filtered colimit of ∼s 395

over commutative Noetherian ring
1028–1033

localization 628, 1033
support 692
𝔞-torsion submodule 627, 628

over principal (left/right) ideal domain 29
product of ∼s 28
pure- 245
restriction of scalars 236
vs. vanishing of Ext 388

injective precover 449, 1027
cobase change 1028

injective preenvelope 227, (1023), 1049
injective resolution (228), 228
integral domain 29, (560), 666, (1023), 1080
Invariant Basis Number see IBN
inverse limit see limit
inverse system 134

category of ∼s (144)
in opposite category (145)
limit 135
morphism of ∼s 136

invertible complex 505, 505–509, (510)
for commutative Noetherian ring 839
inverse 508
vs. dualizing complex 519–521, 839

irreducible module see simple module
isomorphism

in category of complexes 179
in derived category 293
in homotopy category 256
of candidate triangles 1051
of categories 1080

Iwanaga–Gorenstein ring 426, 426, 501, 513,
801, 839

Gorenstein (weak) global dimension 489
see also Gorenstein ring

J
Jacobson radical 1080

of power series algebra 586
Jensen’s theorem 423, 518, 1043

K
K-flat complex (237), (237), (357), (407)
K-injective complex (229), (229), (334), (396)
K-projective complex (216), (217), (334),

(388)
Koszul complex 48, 184, 567, 667
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acyclic 571
as mapping cone 568
base change 572
classic support 652
cosupport 778
depth 683
derived 𝔞-complete 623
derived 𝔞-torsion 638
differential graded algebra 70
homology 61, 567, 667–670, (677)

annihilator 568
no holes 669
vs. depth 670, 678, 742
vs. width 674, 680, 739

infimum 667–670
Krull dimension 660
minimal 765
projective dimension 567
self-dual 568, 667
semi-free 567
support 691
supremum 667–670
width 683

Koszul relation 61
Koszul Sign Convention 51
Krull dimension 660, 660–662, (666)

of derived tensor product 662, (667), 827,
828, 859, 873, 875

of derived 𝔞-torsion complex 708
of derived 𝔪-torsion complex 734
of Grothendieck dual 847
of module 602, (781)

finitely generated 651
of tensor product of finitely generated

modules 828
of tensor product of modules 875
vs. codimension 881
vs. completion 854
vs. depth 782, 861
vs. flat dimension 868, 874
vs. localization 661, (666)
vs. projective dimension 869
vs. vanishing of local cohomology 858, 860

Krull’s intersection theorem 603, 703
Krull’s principal ideal theorem 603, 869
Künneth Formula 84, (92), 376

L
large submodule see essential submodule
least element of preordered set 1081
left adjoint functor see adjoint functor
left bounded complex see bounded above

complex
left derived functor see derived functor

left exact functor 13, (16)
on category of complexes 140, 142
on category of modules (42), (68, 69), (334)

vanishing 605
left fraction 288, 291
left prefraction 286, 287
Leibniz Rule 70
length of filtration/module 1079

see also finite length module
lifting property

of flat module 242
of graded-flat module 242
of graded-injective module 219
of graded-projective module 209
of injective module 27, 227
of projective module 25
of semi-flat complex 240
of semi-injective complex 223, 278, 293
of semi-projective complex 211, 277, 293
see also unique extension property

limit 135
∼s commute 137
functors that preserve ∼s 13, 139, 141,

139–142, (145)
in category of (graded) modules (144)
in opposite category (145)
left exact 136
of morphisms 136
of tower 146
universal property 134, 139, (144)

linear category 6
linear functor 7
local cohomology supported at 𝔞 565

determined by radical of 𝔞 627
(long) exact sequence 565
flat base change 635
Grothendieck’s vanishing theorem 860
independent of base 635
localization 657
of colimit 634
restriction of scalars 635
𝔞-torsion 566
vs. completion 853
vs. 𝔞-depth 678
vs. Krull dimension 860

local cohomology supported at 𝔪 746
Artinian 834
Local Duality 857
of Cohen–Macaulay ring 786
of Gorenstein ring 856
vs. depth 742
vs. Krull dimension 858

Local Duality Theorem 857
local homology supported at 𝔞 562
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determined by radical of 𝔞 610
(long) exact sequence 562
independent of base 619
projective cobase change 619
𝔞-quasi-complete 563
restriction of scalars 619
vs. cocompletion 852
vs. 𝔞-width 680

local homology supported at 𝔪 746
vs. width 739

local ring 1080
commutative Artinian 834, 835

dualizing complex for 495
commutative Noetherian 727–729, 732

Cohen–Macaulay 786
Cohen–Macaulay defect 783, 846, 868,

876
𝔞-completion 542, 729
completion 730, 730–732, 840, 842, 849,

851–855, 865
see also complete local ring

depth 786
equicharacteristic 866
finitistic dimensions 806
Gorenstein 801
injective envelope of residue field 728,

732–734, (737), 745, 771, 840, 849,
1030, 1031

Krull dimension 727, 786, 806, 855
mixed characteristic 866
residue field 689, 727

𝔞-completion 542
semi-perfect 1017

localization 6, 604, 1080
at complement of prime ideal 602, 653–658

of ring 689
vs. classic support 653
vs. support 694, 775–776, (781)

at set of powers of element 131, 552, 558
properties as functor 32, 56, 300
vs. classic support 603
vs. support 694

M
mapping cone 155, 155–157

acyclic 168, 295
contractible 178, 257
of homothety 568
vs. Hom 159, 161
vs. tensor product 161, 163
∼ sequence 156, 168, 265

split exact 157
mapping cylinder 172
∼ sequence 173, 270

Matlis dual complex 731
infimum 732
length 737
supremum 732

Matlis Duality 835–836, 849
∼ functor 731
∼ Theorem 835, 836

Matlis reflexive complex 735, 735, 835
two-of-three property 736

Matlis’ structure theorem 1026
maximal Cohen–Macaulay module 865
maximal depth module 865, (873)

derived 𝔪-complete 865, 867
existence 866
finitely generated 865, 867
support 867

maximal element of preordered set 1081
middle linear map 1080
minimal complex 1004

of injective modules 1009
localization 658
𝔞-torsion 629

of projective modules 765, 1020
semi-injective 394, 771, 1010
semi-projective 1022, (1024)

minimal element of preordered set 1081
minimal semi-free resolution 765, 1023

existence and uniqueness 1023
vs. Betti numbers 765

minimal semi-injective resolution 394, 771,
777, 1010

existence and uniqueness 1010
localization 658
of Artinian module 833
of module (1023)
vs. Bass numbers 771

minimal semi-projective resolution 385, 1022
existence and uniqueness 1022
of module (1024)
over commutative Noetherian local ring 765

(trivial) Mittag-Leffler Condition 147
module xxxv
ℵ-generated 1038
Artinian 1078
countably generated 1038
countably related 1039
cyclic 22
divisible 29
finitely generated 22
finitely presented 31
finitely related (36)
flat 32
fp-injective (347)
free 22
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generators 22
minimal number 727
minimal set 22

Gorenstein flat 464
Gorenstein injective 449
Gorenstein projective 429
graded 43
homomorphism of ∼s 3
in a certain degree of graded ∼ 43
indecomposable 1080
injective 27
localization 1080
Noetherian 1080
of finite length 1079

see also finite length module
of maximal depth 865

see also maximal depth module
projective 25
pure-injective 245
pure-projective 245
reflexive 530
semi-simple 1082
simple 1082
strongly cotorsion 454
torsion(-free) 1082
torsionless (560)

Monomial 1080
Morita Equivalence Theorem 508, 509
morphism

in category of complexes 51
𝔞-dense 545
homotopy equivalence 171
mapping cone 155
mapping cylinder 172
null-homotopic 67
quasi-isomorphism 164

in category of graded modules 44
in derived category 292, 342
in homotopy category 256

quasi-isomorphism 258
of candidate triangles 1051

mapping cone 1052, 1060
multilinear functor 7

N
Nakayama’s lemma 728, 1012
natural isomorphism 1080
natural transformation 1080

Σ- 157, 158
derived 328
opposite xxxv, 1081
quasi-triangulated 271, 272
triangulated 1056

New Intersection Theorem 870

improved 871
nil(potent) ideal 1080
nilpotent element 1080
Noetherian module 1080
(left/right) Noetherian ring 1080

dualizing complex for 494
finitistic dimensions 425
(weak) global dimension 422
injective module over 395, 1026–1027
von Neumann regular 422
see also commutative Noetherian ring

non-zerodivisor (559), 1082
normalized dualizing complex 845, (851)

for Artinian ring 845
for Cohen–Macaulay local ring (851)
for local ring 845–849, 857

Bass series 845
completion 842, 849
minimal semi-injective resolution 849
Poincaré series 848
unique 846

minimal semi-injective resolution 848
null-homotopic chain map 67, 70, 72, 78
null-homotopic morphism 256

coproduct of ∼s 97
in opposite category 176
mapping cone sequence 157
product of ∼s 100

O
Octahedral Axiom 1053
opposite category xxxv, 1080

of Abelian category 1077
of module category (16)
of (pre)linear category 6
of triangulated category 1053

opposite functor xxxv, 1081
bounded (above/below) (1002)
bounded (above/beow) 997, 1001
(left/right) exact (16)
homotopy invariant 259
triangulated 1055

opposite natural transformation xxxv, 1081
opposite ring xxxv, 1081

P
parameter ideal 727
parameter sequence 727, 867
partially ordered set 1081
perfect complex 505
(left/right) 𝑛-perfect ring 404
(left/right) perfect ring 252, (253), 1019, 1019

finitistic dimensions 424

8-Mar-2024 Draft - use at own risk



1104 Index

flat dimension over 404
(weak) global dimension 421
projective dimension over 386

Poincaré series 761, 762–764, 847
monomial 766
of completion 854
of derived Hom 763, 768
of derived tensor product 762
of Grothendieck dual 847
of normalized dualizing complex 848
vs. flat base change 764
vs. shift (772)

Prüfer 𝑝-group 1007
precover 1027
preenvelope 1048
prelinear category 6
preordered set 1081
pretriangulated category 1053
primary ideal 603, (607), 727
Prime Avoidance 1081
prime ideal

associated 602
embedded 602
spectrum of ∼s see spectrum of

commutative Noetherian ring
principal (left/right) ideal domain 1081

flat module over 558
free module over 23, (347), (560)
injective module over 29
projective module over 27

product 1082
functors that preserve ∼s 13, 101–105,

(107), 259–262, 298–301, 320, 325, 330
in category of complexes 100, 135
in category of graded modules 100
in category of modules 8
in derived category 295
in homotopy category 257
in opposite category 103
universal property 100, (106), 1081

projection 8, 101, 1081
projective cover 1012, (1024)

over perfect ring 1019
over semi-perfect ring 1017

projective dimension 380, 381, 712–714, 799
complex(es) of finite 380, 425, 426, 502,

(510), 597, 713, 750, 875–878
two-of-three property 382
amplitude (757), 882
category of (388), 499, 500, 503, 508,

509, 513, 514, 713, 715, 838
Cohen–Macaulay defect (851), 868
grade 882

(not) detected locally 798

finitistic 422
of complex of finite flat dimension 402,

423, 424, 518, 807, 844, 850
of complex with degreewise finitely gener-

ated homology 384–386, 502–503, 713,
758

Auslander–Buchsbaum Formula 758
degree of Poincaré series 762
vs. completion 854
vs. flat base change 764
vs. flat dimension 404, 719, 758
vs. Krull dimension 869, 875, 877

of coproduct 383
of derived Hom 418, (724), 763, 768
of derived tensor product 402, (724), 762
of flat module 423, (522), 1035
of Grothendieck dual 847
of module 387
of transfinite extension 1037
over (left/right) Artinian ring 386
over (left/right) Noetherian ring 384–386,

1044
over (left/right) perfect ring 386
vs. depth 758
vs. derived base change 380
vs. derived 𝔞-completion 714
vs. derived 𝔞-torsion 714
vs. faithfully flat base change 720
vs. faithfully projective base change (724)
vs. flat dimension 399, 404, 719
vs. localization 798
vs. restriction of scalars (388), 714

projective limit see limit
projective module 25, 25, (41), 83, 227, 387

two-of-three property 215
base change (36), 215, (589)
complex of ∼s

contractible (216), (427)
totally acyclic 429

complex of ∼s 75, (180), 209, (550)
two-of-three property 210
contractible 250
minimal 1020
pure acyclic 250
semi-flat 250
semi-projective 211, (217)
totally acyclic 431

coproduct of ∼s 27
faithfully 25
finitely generated 33, 1018
flat 32
graded- 210
lifting property 25
over local ring 1018

8-Mar-2024 Draft - use at own risk



Index 1105

over principal (left/right) ideal domain 27
restriction of scalars 215
tensor product of ∼s 215
vs. vanishing of Ext 379

projective precover 26, (1024), 1027, (1061)
projective resolution 215, (216)
pullback 143

homotopy ∼ (315)
pure acyclic complex 245, (253)
pure epimorphism 245
pure exact sequence 243, (253)
pure monomorphism 245
pure quotient module 245

of flat module 246, (407)
of Gorenstein flat module 467
of Gorenstein injective module (533)
of injective module (407)

pure submodule 245
of flat module 246, (407)
of free module 1043
of Gorenstein flat module 467
of Gorenstein injective module (533)
of injective module (347), (407)

pure-injective module 245, (253)
pure-projective module 245, (253)
pushout 115

homotopy ∼ (315)

Q
quasi-Frobenius ring 485, (501), (1061), 1082
quasi-isomorphism 164, 165–168, 293, 995,

997
two-of-three property 165
in homotopy category 258

two-of-three property 275
in opposite category 176
in product of homotopy categories 325
injective (170)
mapping cone 168
surjective 166

quasi-ordered set see preordered set
quasi-triangulated functor 271, 272, 271–273
quasi-triangulated natural transformation 271,

272, 271–273
quotient complex 51, 135
quotient module

graded 45
of finitely presented module 31
pure 245

R
radical of ideal 603, 609, 610, 627, 727
rank of free module 23, 47, 49, 870

reflexive module 530
regular element 683, 746

vs. depth 684, (687)
regular ring 396
regular sequence 683, 683–687, (687), 765,

877
base change 686
for finitely generated module 685–687, 746,

765
localization 686
maximal 685, 685, (687), 746
vs. depth 685–686, 746, 880
vs. parameter sequence 727, 867

residue field 689, 727
resolution

flat 405
free 208
injective 228
projective 215
semi-free 204
semi-injective 220
semi-projective 212

restricted flat dimension 482
complex(es) of finite

two-of-three property 482
restriction of scalars 6, 10, 14, 20, 56, 261,

262, 301, (372)
right adjoint functor see adjoint functor
right bounded complex see bounded below

complex
right derived functor see derived functor
right exact functor 13, (16)

on category of complexes 113
on category of modules (42), (68, 69), (334)

right fraction 297
right prefraction 297
ring xxxv

(left/right) Artinian 1078
(left/right) coherent 1078
𝔞-completion 541–544
(left/right) hereditary 1079
local 1080
localization 1080
(left/right) Noetherian 1080
opposite xxxv, 1081
(left/right) 𝑛-perfect 404
(left/right) perfect 1019
quasi-Frobenius 1082
(left/right) self-injective 1082
semi-local 1017
semi-perfect 1017
semi-simple 1082
simple 1082
von Neumann regular 1082
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ring extension
faithfully flat 586, 764, 769, 828

polynomial 340, 586, 789, 803
power series 340, 586, 789, 803

S
Schanuel’s lemma 383, 393, 403
(left/right) self-injective ring 392, 495, 801,

1082
semi-basis 203
semi-dualizing complex (501)
semi-flat complex 231, 231–234, 238

two-of-three property 233, (237)
acyclic 246–249
base change 234, (236)
character complex 232
𝔞-completion 622
coproduct of ∼es 233
lifting property 240
localization 658
of projective modules 250
product of ∼es 407
quasi-isomorphism of ∼s 234, 249, 250
restriction of scalars 234
tensor product of ∼s 234
truncation (237), 405

semi-flat replacement 352, 398, 469
of module 406

semi-free complex 203, 203–204, (208)
base change 206
character complex 218
coproduct of ∼es (208)
localization 657
restriction of scalars 206
semi-flat 232
semi-projective 212
tensor product of ∼s 206
truncation (208)

semi-free filtration (208)
semi-free resolution 204

existence 204, 206, 207, 1023
minimal 1023
of module 208

semi-injective complex 220, 223–228, 236
two-of-three property 225, (228)
acyclic (228)
cobase change (228), 236
colocalization 659
lifting property 223, 225, 278, 293
localization 658
minimal 1010
product of ∼es 225
quasi-isomorphism of ∼s 226
restriction of scalars 236

𝔞-torsion subcomplex 628
truncation (228)

semi-injective replacement 341, 389, 393, 455
semi-injective resolution 220, (229), 341

existence 224, 226, 1010
minimal 1010
of module (228), 228

semi-injective resolution functor 283
semi-local ring 666, 1017
semi-perfect module 1014, 1016
semi-perfect ring 386, 1017, 1017, 1022
semi-projective complex 210, 210–214, 226

two-of-three property 213, (216)
acyclic (216)
base change 214, (216)
character complex 224
coproduct of ∼es 213
lifting property 211, 214, 277, 293
localization 657
minimal 1022
of free modules (216)
quasi-isomorphism of ∼s 214
restriction of scalars 214
semi-flat 232
tensor product of ∼s 214
truncation (216)

semi-projective replacement 340, 380, 384,
434

semi-projective resolution 212, (217), 340
existence 212, 213, 1022
minimal 1022
of module 215, (216)

semi-projective resolution functor 279
semi-simple module (15), 169, (170), 1082
semi-simple ring 28, 420, 1082

complex over (92), 169, (180), (216), (228),
294, (388), (396)

derived category (314), (347), (357)
homotopy category (264)

sequence in 𝑅 535
see also regular sequence

Serre subcategory 1082
shift 59
short exact sequence

in category of complexes 52, 63, 174, 313
degreewise split 56
split 55
vs. homology 65, 83, 166

in category of modules 3
pure 243
split 12

simple module 1082
simple ring 1082
singular chain complex 49, 51, (58), 61, 171
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singular cochain complex 49, 70
singular homology 61, 172
skew field see division ring
small submodule see superfluous submodule
Snake Lemma

in category of complexes 54
in category of modules 5

socle 728, 743
spectrum of comm. Noetherian ring 602
split distinguished triangle 1059, 1059
split epimorphism 1061
split exact complex see contractible complex
split exact sequence

in category of complexes 55, 55, (276)
in category of modules 12, (76), (276), 346

split monomorphism 1061
stable image of tower 147
stable module category (1061), (1061)
stalk complex 82
strict triangle in homotopy category 265
string 123
strongly cotorsion module 454
structure map 586, 1077
subcomplex 51

continuous chain of ∼s 1035
independent family of ∼s 96

submodule 22
cardinality 1038, 1039, 1044, 1046
continuous chain of ∼s 1035
essential 1006
independent family of ∼s 9
of free module 23, (560), 1038, 1039
pure 245
superfluous 1011

sum
of subcomplexes 96
of submodules 9, 22
see also direct sum

superfluous submodule 1011
support 690, 690–693, (696), 701, 775–777,

(781)
two-of-three property 690
empty 692
maximal elements 701, 745
of coproduct 690
of derived Hom 775
of derived tensor product 693
of derived 𝔞-torsion complex 708
of derived 𝔪-torsion complex 734
of product 691
subset of classic support (Supp) 691, 695
vs. cosupport 701, 745, 778, (781)
vs. derived 𝔞-torsion 695
vs. finite depth/width 701, 745, 775

vs. localization 694
vs. minimal semi-injective resolution 777
vs. vanishing of local (co)homology 776,

(781)
see also classic support (Supp)

Support Formula 693
supremum of complex 82, 82–83, 310, 311,

373
vs. completion 852
vs. localization 653, (659), 822

suspension see shift
swap isomorphism

in category of complexes 185, 582, (589)
in category of modules 19
in derived category 368, 594

augmentation 368, 368–369, 595
in homotopy category 323

symmetric algebra 46, (57)
symmetric power 46

of free module 47
syzygy 215

T
(left) T-nilpotency 1018
t-structure 374
telescope 131, 132

colimit 131
morphism of ∼s 131

tensor algebra 46, (57)
tensor evaluation

in category of complexes 192, (201), 583,
(589)

isomorphism 193, 583
vs. unit of Hom–tensor adjunction 198

in category of modules 38
isomorphism 39, (42)

in derived category 410, 594
augmentation 410, 410–413, 597
isomorphism 412, 413, (419), 522, 523,

(533), 597, 598
vs. unit of derived Hom–tensor adj. 505

in homotopy category 324
tensor power 46, 47

of free module 47
tensor product

associative see associativity iso.
base change 584
commutative see commutativity iso.
localization 654
of complexes 76, 76–81, 321
♮-functor 79, 80
Σ-functor 161, (164)
acyclic 993–994
bounded functor 995
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1108 Index

boundedness 88, (93)
degreewise finitely generated 88
exactness 81, 357
over commutative ring 581
preserves homotopy 176

of modules 5, 11, 354
classic support 655
finitely generated 25
over commutative ring 580
vanishing 774

preserves colimits 114
preserves coproducts 99, 322
vs. products 104, 105, (107)

topologically equivalent ideals 539, 539,
(550), 554, 609

Tor 353, 353–356, (372), 397
commutative 354
dimension shifting 399, (483)
(long) exact sequence 356
half exact 356, (407)
localization 654
Matlis dual 732
rigidity 722, 756, 757
vs. colimits 355
vs. completion 852
vs. products 355

𝔞-torsion complex 551, 552
derived 𝔞-torsion 637
homology 553
over 𝔞-complete ring 555
restriction of scalars 552
two-of-three property (559)

𝔞-torsion element/(sub)complex 551
torsion element/(sub)module 552, (559, 560),

1082
𝔞-torsion functor 550, 550–554
♮-functor and Σ-functor 553
determined by radical of 𝔞 627
idempotent 553
independent of base 551
preserves coproducts 553
preserves filtered colimit 553
right derived 564

torsion functor (560)
𝔞-torsion module (559), 607

derived 𝔞-torsion 637
flat dimension 793
injective dimension 717
over 𝔞-complete ring 555
restriction of scalars 552
two-of-three property 551

𝔪-torsion module 729
flat dimension 793
injective dimension 754

torsion-free module 29, 557–558, (560), 1082
torsionless module (560)
totally acyclic complex

of finitely generated free modules 443
of flat modules 464
of injective modules 449
of projective modules 429, (483)

finitely generated 431, 530
totally reflexive module 443
tower 146, 146

limit 146
exactness 150
vs. homology 151, 152

morphism of ∼s 146
stable image 147
trump 147

transfinite extension 1037
translation 1052

see also shift
triangulated category 1052
triangulated functor 308–309, 311, 312, 319,

325, 1054
bounded 998–1000

triangulated natural transformation 308–309,
327, 998, 1000, 1056, 1058

triangulated subcategory (276), (315), 1056,
1058

truncation
hard (above/below) 88, (93), (180)
soft (above/below) 89, 90, (93), 262, (276),

302, (315)
induces quasi-isomorphism 165
preserves homotopy 176
preserves quasi-isomorphisms 167

U
unique extension property

of free module 22, (35)
of graded-free module (93)

unit of adjunction 1077
unitor

in category of complexes 181, 581
in category of modules 17
in derived category 359, 593
in homotopy category 322

universal property
of (graded) tensor product 45
of colimit 108
of coproduct 96, 1078
of derived category 298
of derived functor 332, 333
of homotopy category 259
of limit 134
of product 100, 1081
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V
von Neumann regular ring 32, (133), (253),

340, 352, (407), 421, 422, 1082

W
way-out functor 995
weak global dimension 420, 421–424

left–right symmetric 421
of (left/right) Noetherian ring 422
vs. global dimension 421, 422, (427)

wedge product 47
Whitehead’s problem 387
𝔞-width 674, 674–678, 680–682, 823

determined by radical of 𝔞 681
of complex with degreewise finitely

generated homology 675
of coproduct 674
of derived 𝔞-complete complex 675
of derived tensor product (687)
of product 674
two-of-three property 677
vs. cosupport 701
vs. 𝔞-depth 675, (677), 682, 701
vs. infimum 675, (677)
vs. localization (830)
vs. restriction of scalars 676
vs. support 701
vs. vanishing of (local) homology 680

width 738, 739–741
complex of finite 744, 745
of complex with degreewise finitely

generated homology 739
of derived 𝔪-complete complex 739
of derived Hom 750, 751

of derived tensor product 740
of Grothendieck dual 847, (851)
of Matlis dual 744
vs. 𝔪-width 738
vs. completion 853
vs. coregular sequence (748)
vs. cosupport 745, 777
vs. depth 745, 747, (757)
derived 𝔞-completion 739
derived 𝔪-completion 744
derived 𝔞-torsion 739
derived 𝔪-torsion 744
vs. infimum 739, 740, 824
vs. localization 828
vs. support 745, 775
vs. vanishing of (local) homology 739,

(747)
vs. vanishing of local cohomology 746

Y
Yoneda Ext 343

Z
Zariski topology 603
zero morphism 7

in derived category (303)
in homotopy category 256

zero object 6
in derived category 294
in homotopy category 257

zerodivisor 61, 602, 1082
Auslander’s ∼ conjecture 877

zigzag identities 1077
Zorn’s lemma 1079

8-Mar-2024 Draft - use at own risk


