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Why apply game theory in vaccination?

Theory and examples

Game theory

1. Game theory is the formal study on "how to choose", based on maximizing players’ payoff.
Game theory has been used in many disciplines such as economics, political science,
business, information science, and biology as well.

2. Game theory has been applied to predict human behavior in the context of epidemiology for
over two decades. People choose the best strategy to maximize their own payoffs, based on
the outcomes of different strategies.

3. In epidemiology, we actually mean "vaccination". Since this is the scenario when people
need to choose.

4. The theory of "Game theory and vaccination" is identical with evolutionary game theory.
These two both deal with problems on population-levels.
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Why apply game theory in vaccination?

Theory and examples

Example

We consider a population with two types.

Example
Type A Type B

Type A a b
Type B c d

This payoff matrix is used to describe interactions of two types: If A interacts with another A, the
payoff is a; and so on. We have

x = x1 = 1− x2,

where x1 is the fraction of type A and x2 is the fraction of type B. The payoffs are

πA = ax + b(1− x),

πB = cx + d(1− x).
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Why apply game theory in vaccination?

Theory and examples

The dynamics of this type of game is described by replicator equation (General formula):

ẋi = xi (πi − 〈π〉).

〈π〉 represents the average payoff of the whole population. In this game, the replicator equation is

ẋ = x(1− x)[(a− b − c + d)x + b − d ].

There are three fixed points, two trivial ones are x = 0 and x = 1. The third one is

x? =
d − b

a− b − c + d
,

for a > c and d > b or for a < c and d < b.
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Why apply game theory in vaccination?

Theory and examples

1. Dominance. If a > c and b > d , type A dominates type B. In this case, the fixed point at
x = 1 is stable and the fixed point at x = 0 is unstable. If a < c and b < d , type B
dominates type A. In this case, the fixed point at x = 0 is stable and the fixed point at x = 1
is unstable.

2. Bistability. If a > c and d > b, the fixed points at x = 0 and x = 1 are both stable and the
fixed point at x? is unstable.

3. Coexistence. If a < c and d < b, the fixed points at x = 0 and x = 1 are both unstable and
the fixed point at x? is stable. The population eventually becomes a stable mixture of type A
and type B. This is the case we will meet in the vaccination games.

4. Neutrality. For a = c and b = d .
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Why apply game theory in vaccination?

Application in vaccination

The formal game and its payoff matrix

Vaccination offers protection, but also cost and risk. Before the outbreak of epidemic, people
need to evaluate the costs of infection and vaccination. Eventually, a certain percentage of
people goes into the vaccinated class, while others stay in the susceptible class.
The formal vaccination game can be described as:

Vaccination Game as general
Vaccinated individual j Susceptible individual j

Vaccinated individual i −Cv −Cv
Susceptible individual i 0 −πpCi

All elements can be translated easily. By using game theory, the expected vaccine coverage level
is expressed in terms of the attack ratio. We need to use mathematical models to find another
relation between attack ratio and vaccine coverage level, to make the prediction more accurate.
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Application in vaccination

Flowchart

Figure: Vaccination model
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Application in vaccination

The major goal of "Vaccination games" is to predict the expected vaccine coverage levels. Two
weapons are: Game theory and mathematical models.

Figure: Vaccination game theory
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Vaccination games in homogeneous mixing population

Case of perfect vaccine

Vaccination game with perfect vaccine

Fully-effective Vaccination Game
Vaccinated
individual j

Susceptible
individual j

Vaccinated
individual i

−Cv −Cv

Susceptible
individual i

0 −πpCi

1. Cost of infection is −Ci and cost of vaccination is −Cv .

2. All elements are negative.

3. We assume that Ci > Cv .

4. NE (Nash equilibrium) is: fraction of population to be
vaccinated is p.

5. Question is: How to find p?
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Vaccination games in homogeneous mixing population

Case of perfect vaccine

Assume the final fraction of people who take vaccination is p; the fraction of people to be
vaccinated is xv and the fraction of people not to be vaccinated is xs , {xv , xs} = {p, 1− p}.

1.
fv = −Cv xv − Cv xs = −Cv ,

fs = −πpCi xs.

2.
ẋv = xv (fv − f̄ ),

ẋs = xs(fs − f̄ ),

with
f̄ = xv fv + xs fs.

3. The fraction xv = 1− Cv
πpCi

. If we define the relative cost r = Cv
Ci

, the expected vaccine
coverage level is:

p = 1−
r
πp
.

4. πp can be estimated by epidemic models.
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Vaccination games in homogeneous mixing population

Case of perfect vaccine

1. The SIR mathematical model is
dS
dt

= −βSI

dI
dt

= βSI − αI

dR
dt

= αI,

2. The final size relation can be obtained from SIR model,

ln
S0

S∞
=
β

α
[S0 − S∞].

3. The attack ratio can be expressed in terms of p,

ln
1

1− πp
=
β

α
(1− p)Nπp.
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Vaccination games in homogeneous mixing population

Case of imperfect vaccine

Vaccination with imperfect vaccine

Partial-effective Vaccination Game
Vaccinated
individual

Susceptible
individual

Vaccinated
individual

−Cv −
σπv Ci

−Cv −
σπpCi

Susceptible
individual

−πv Ci −πpCi

1. Infection factor σ, σ = 0 represents the vaccine is
perfect.

2. Cost of infection is −Ci and cost of vaccination is −Cv ,
πv and πp are attack ratios.

3. The expected vaccine coverage level p and attack ratios
πp and πv satisfy

r
1− σ

= pπv + (1− p)πp,

with r relative cost to measure the vaccine. πp and πv
can be expressed by SVIR model.

4. p is smaller than the threshold value pc (Herd immunity
threshold).
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Vaccination games in homogeneous mixing population

Case of imperfect vaccine

1. With replicator equation, we have:

r
1− σ

= pπv + (1− p)πp.

2. Construct the SVIR model,
dS
dt

= −βSI,

dV
dt

= −σβVI,

dI
dt

= βSI + σβVI − αI,

dR
dt

= αI,

3. The final size relation can be derived from the model,

ln
S∞
S0

=
β

α
[S∞ + V∞ − S0 − V0],

ln
V∞
V0

=
σβ

α
[S∞ + V∞ − S0 − V0].
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Vaccination games in homogeneous mixing population

Case of imperfect vaccine

Epi-game theory has been applied to different types of epidemic:
I Influenza
I Smallpox
I Chickenpox
I Measles
I Rubella
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Vaccination games in homogeneous mixing population

Uniqueness of NEs (Nash Equilibria)

Uniqueness

πp(1− p) = r ,

pπv + (1− p)πp =
r

1− σ
.

For uniqueness:

1. From the equations of vaccine coverage level in vaccination game with perfect vaccine, to
differentiate the left side of the equation,

π′p(1− p)− πp,

2. From the equations of vaccine coverage level in vaccination game with imperfect vaccine, to
differentiate the left side of the equation,

πv + pπ′v − πp + (1− p)π′p

= (πv − πp) + pπ′v + (1− p)π′p.

3. Both right sides of two equations are constants. π′p < 0 and π′v < 0 are important for
uniqueness of Nash equilibria.
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Vaccination games in homogeneous mixing population

Proof of uniqueness

Perfect vaccine

ln
S0

S∞
=
β

α
S0[1−

S∞
S0

],

dS∞
dp

= −
1

S0
− β
α

1
S∞
− β
α

> 0,

dπp

dp
< 0.

Theorem
In the SIR compartmental model, when vaccine coverage level p increases from 0 to the herd
immunity threshold pc , the final size S∞ of susceptible class will increase, the attack ratio will
decrease. If p ≥ pc , the whole population is protected completely by the vaccine.
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Vaccination games in homogeneous mixing population

Proof of uniqueness

Imperfect vaccine

Lemma
In the SVIR model with infection factor σ, there exists a threshold value σc , which is defined as

( S0

S∞

)σc = Rc =
β

α
N.

If the infection factor σ is smaller than σc , V0
V∞

< Rc <
S0

S∞
holds when the vaccine coverage

level is low, and by increasing the vaccine coverage level p, Rc <
V0

V∞
<

S0
S∞

. If the infection

factor σ is bigger than σc , the inequality Rc <
V0

V∞
<

S0
S∞

holds.

Theorem
If σ is smaller than σc , there exists a critical value p0, as vaccine coverage level p increasing
from 0 to p0, S∞ will decrease and V∞ will still increase; while p increasing from p0 to 1, S∞
and V∞ both increase, where p0 is the critical value we described in previous lemma. If σ is
bigger than σc , when the vaccine coverage level p increases, S∞ will decrease and V∞ will
increase. If the vaccine coverage level p increases between 0 and the herd immunity threshold,
for vaccinated group, for non-vaccinated group and for the whole population, the attack ratios
decrease. The infection factor σ and the attack ratios are independent.
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Vaccination games in homogeneous mixing population

Extension to more complicated epidemic

application of age-of-infection models

1. If in previous two vaccination games, the diseases have more compartments such as
exposed stage, whether the results on attack ratios still hold? Whether these two games
have unique Nash equilibria?

2. All compartmental epidemic models can be describe by age-of-infection model, such as:

S′ = −
a

N0
Sφ

φ(t) = φ0(t) +
∫ t

0
a

N0
S(t − τ)φ(t − τ)A(τ)dτ

= φ0(t) +
∫ t

0 [−S′(t − τ)]A(τ)dτ.

We are able to prove the final size relation to this general age-of-infection model is similar
comparing with SIR/SVIR models.

3. One example: influenza has exposed stage. We analyze the vaccination game of influenza,
this game has one unique Nash equilibrium.



Game theory and epidemiology

Vaccination games in homogeneous mixing population

Extension to more complicated epidemic

application of age-of-infection models

1. If in previous two vaccination games, the diseases have more compartments such as
exposed stage, whether the results on attack ratios still hold? Whether these two games
have unique Nash equilibria?

2. All compartmental epidemic models can be describe by age-of-infection model, such as:

S′ = −
a

N0
Sφ

φ(t) = φ0(t) +
∫ t

0
a

N0
S(t − τ)φ(t − τ)A(τ)dτ

= φ0(t) +
∫ t

0 [−S′(t − τ)]A(τ)dτ.

We are able to prove the final size relation to this general age-of-infection model is similar
comparing with SIR/SVIR models.

3. One example: influenza has exposed stage. We analyze the vaccination game of influenza,
this game has one unique Nash equilibrium.



Game theory and epidemiology

Vaccination games in homogeneous mixing population

Extension to more complicated epidemic

application of age-of-infection models

1. If in previous two vaccination games, the diseases have more compartments such as
exposed stage, whether the results on attack ratios still hold? Whether these two games
have unique Nash equilibria?

2. All compartmental epidemic models can be describe by age-of-infection model, such as:

S′ = −
a

N0
Sφ

φ(t) = φ0(t) +
∫ t

0
a

N0
S(t − τ)φ(t − τ)A(τ)dτ

= φ0(t) +
∫ t

0 [−S′(t − τ)]A(τ)dτ.

We are able to prove the final size relation to this general age-of-infection model is similar
comparing with SIR/SVIR models.

3. One example: influenza has exposed stage. We analyze the vaccination game of influenza,
this game has one unique Nash equilibrium.



Game theory and epidemiology

Vaccination games in homogeneous mixing population

Extension to more complicated epidemic

1. If the epidemic is described by SEIR model,

S′ = −βS(I + εE)

E ′ = βS(I + εE)− κE

I′ = κE − αI

R′ = αI.

2. This SEIR can be expressed by age-of-infection model with distribution function

A(τ) = εe−κτ +
κ

κ− α
[e−ατ − e−κτ ].

3. The final size relation of age-of-infection model shows that the attack ratios are decreasing
functions, vaccination games with SEIR-structure epidemics have unique NEs.
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Two vaccination games

formal games

Some basic setup:

1, The sizes of two sub-groups are N1 and N2, respectively. N1 and N2 are constants.

2, Group i members make ai contacts in unit time and the fraction of contacts made by a
member of group i is with a member of group j is pij ,(i, j = 1, 2).

3, Costs of vaccination for members in sub-group 1 is Cv1 and for members in sub-group 2 is
Cv2.

4, Probabilities of being infected for two groups are πp1 and πq2 associated with the vaccine
coverage level p and q in each subgroup.
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Two vaccination games

Payoff matrices

Fully-effective vaccination game with two-subgroups
Vaccinated
individual 1

Susceptible
individual 1

Vaccinated
individual 2

Susceptible
individual 2

Vaccinated
individual 1

−Cv1 −Cv1 −Cv1 −Cv1

Susceptible
individual 1

0 −πp1Ci1 0 −πq2Ci1

Vaccinated
individual 2

−Cv2 −Cv2 −Cv2 −Cv2

Susceptible
individual 2

0 −πp1Ci2 0 −πq2Ci2

The NE can be expressed as:

p = 1−
Cr1p22 − Cr2p21

p11p22 − p12p21

1
πp1

, q = 1−
Cr2p11 − Cr1p12

p11p22 − p12p21

1
πq2

,
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Two vaccination games

Partial-effective Vaccination Game with two-subgroups
Vaccinated
individual 1

Susceptible
individual 1

Vaccinated
individual 2

Susceptible
individual 2

Vaccinated
individual 1

−Cv1 −
σ1πpv1Ci1

−Cv1 −
σ1πpv1Ci1

−Cv1 −
σ1πqv2Ci1

−Cv1 −
σ1πqi2Ci1

Susceptible
individual 1

−πpv1Ci1 −πpi1Ci1 −πqv2Ci1 −πqi2Ci1

Vaccinated
individual 2

−Cv2 −
σ2πpv1Ci2

−Cv2 −
σ2πpi1Ci2

−Cv2 −
σ2πqv2Ci2

−Cv2 −
σ2πqi2Ci2

Susceptible
individual 2

−πpv1Ci2 −πpi1Ci2 −πqv2Ci2 −πqi2Ci2

The NE is:

p =

Cr1(p11p22+p12p22)
1−σ1

− Cr2(p12p21+p12p22)
1−σ2

− πpi1(p11p22 − p12p21)

(πpv1 − πpi1)(p11p22 − p12p21)
,

q =

Cr1(p11p21+p12p21)
1−σ1

− Cr2(p11p21+p11p22)
1−σ2

− πqi2(p12p21 − p11p22)

(πqv2 − πqi2)(p12p21 − p11p22)
,
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Some partial results

Results on uniqueness

It is quite difficult to prove the uniqueness of vaccine coverage levels p and q, the idea is to focus
on the properties of several attack ratio functions. This problem is still open.
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Some interesting and open problems:

1. Long time scale. Involve human birth and human death (Malaria for example).

2. Combine game theory and stochastic modeling (network modeling).

3. Analysis of uniqueness of NE in vaccination games in population with two or more
sub-groups.
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Thank you for attending!
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