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1 Differentiation in vector spaces

Thus far, we’ve developed the theory of minimization without reference to derivatives. We’ve even been able to
compute minimizers of quadratic forms without using derivatives, by proving that the minimizer of a positive
definite quadratic form must be the solution to the algebraic equation Kx = f . However, in computations it’s
convenient and efficient to use derivatives.

We’re developing the theory of minimization of functions set in arbitrary vector spaces, so we need to develop
differential calculus in that setting. In multivariable calculus, you learned three related concepts: directional
derivatives, partial derivatives, and gradients. In arbitrary vector spaces, we will be able to develop a gener-
alization of the directional derivative (called the Gateaux differential) and of the gradient (called the Frechet
derivative). We won’t go deeply into the theory of these derivatives in this course, but we’ll establish the basic
differentiation rules.

A reference for differentiation in infinite-dimensional vector spaces, done at the level of this course, is D. R.
Smith, Variational Methods in Optimization, Dover, 1998. A careful development of the finite-dimensional case
can be found in M. Spivak, Calculus on Manifolds, J. Munkres, Analysis on Manifolds, or Rudin, Principles of
Mathematical Analysis. If you’re interested, E. W. Cheney’s Analysis for Applied Mathematics gives a treatment of
Gateaux and Frechet derivatives at a level one notch above the level of this course.

1.1 The Gateaux differential

The Gateaux differential generalizes the idea of a directional derivative.

Definition 1. Let f : V → U be a function and let h 6= 0 and x be vectors in V. The Gateaux differential dh f is
defined

dh f = lim
ε→0

f (x + εh)− f (x)
ε

.

Some things to notice about the Gateaux differential:

• There is not a single Gateaux differential at each point. Rather, at each point x there is a Gateaux differ-
ential for each direction h. In one dimension, there are two Gateaux differentials for every x: one directed
“forward,” one “backward.” In two of more dimensions, there are infinitely many Gateaux differentials
at each point!

• The Gateaux differential is a one-dimensional calculation along a specified direction h. Because it’s one-
dimensional, you can use ordinary one-dimensional calculus to compute it. Your old friends such as the
chain rule work for Gateaux differentials. Thus, it’s usually easy to compute a Gateaux differential even
when the space V is infinite dimensional.
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1.2 Examples of Gateaux differentials

1.2.1 Linear and quadratic functions

Let f and x be vectors in an inner product space, and define p(x) = xT f . Then

dh p = lim
ε→0

xT f + εhT f − xT f
ε

dh(xT f ) = hT f .

Next, let K be a symmetric matrix, and define p(x) = 2xT f + xTKx. Compute the Gateaux differential

dh p = lim
ε→0

2xT f + εhT f + xTKx + 2εhTKx + ε2hTKh− 2xT f − xTKx
ε

= hT f + 2hTKx.

1.2.2 The exponential function

There are a number of ways to define the exponential function; most convenient for present purposes is to
define it as the infinite series

ex = 1 + x +
x2

2
+ · · ·+ xk

k!
+ · · · .

This makes sense even for vector-valued arguments provided multiplication is understood as “elementwise,”
is in the Matlab “dot-star” operation. In the case of an infinite-dimensional vector space V (for example H1)
whose elements are real-valued functions, the exponential function eu : V → V simply maps u(x) pointwise
to its exponential eu(x).

With ex defined as above, it can be shown (provided multiplication of members of V is commutative!) by
straightforward calculation and rearrangement that ea+b = eaeb (see, e.g., blue or green Rudin. If you’re
interested, see a reference on Lie algebras for information on the exponentiation of non-commutative objects;
that turns out to be useful in fields such as aircraft control and quantum physics.)

With the identity ea+b = eaeb and the series defining ex, we can compute the Gateaux derivative

dh(eu) = lim
ε→0

eueεh − eu

ε

= eu lim
ε→0

eεh − 1
ε

= heu.

1.2.3 The absolute value function in R

Let f (x) = |x|. Calculation of the limit gives

dh f =

{
h x
|x| x 6= 0

|h| x = 0.

Notice that the Gateaux differentials of |x| do exist at zero; however, at zero, the Gateaux differentials depend
on h in a nonlinear way.
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1.2.4 A spatial derivative

dh

(
du
dx

)
= lim

ε→0

ux + εhx − ux

ε

=
dh
dx

1.2.5 A functional

Let J : H1(Ω)→ R be

J[u] =
�

Ω

[
1
2

u2
x +

1
2

u2
]

dx.

Then

dh J = lim
ε→0

�
Ω

[
1
2 u2

x + 1
2 u2 + εuh + εuxhx + 1

2 ε2h2
x + 1

2 εh2 − 1
2 u2

x − 1
2 u2
]

dx

ε

dh J =
�

Ω
[uh + uxhx] dx

Note: it’s routine in infinite-dimensional optimization problems to exchange integration and Gateaux differ-
entiation without comment. The integration variable x and the differentiation variable u are different. If the
limit ε → 0 can be taken by means of a sequence {εn} for which the difference quotient of the integrand is
dominated by a Lebesgue-integrable function, the conditions of the Lebesgue dominated convergence theorem
hold and the limit and integral can be interchanged safely. For the section on optimization, we’ll assume this to
be true throughout. However, later in the semester we’ll see some examples with Fourier series and transforms
where differentiation of a convergent series or integral results in divergence at one or more points.

There is, however, an important real-world case where this process requires a little more care: the case where
the limits of integration depend on the variable u. This arises in the field of shape optimization, where the “design
variable” u determines the size and shape of a domain Ω.

1.3 Rules for Gateaux differentials

Computing from the definition quickly gets dull, so as with ordinary calculus, let’s work out rules for Gateaux
differentials.

1.3.1 Differential of a constant

The Gateaux differential of a constant is zero: dhc = 0. The proof follows immediately from the definition.

1.3.2 Sum rule

Gateaux differentiation distributes over sums: dh ( f ± g) = dh f ± dhg. The proof follows immediately from
the definition.

1.3.3 Product rule and quotient rule

The Gateaux differential of an elementwise product f g is dh( f g) = (dh f )g + f (dhg).

The Gateaux differential of an inner product 〈 f , g〉 (or f T g) is dh 〈 f , g〉 = 〈 f , dhg〉+ 〈dh f , g〉 . With transpose
notation, this is dh( f T g) = f Tdhg + (dh f )T g.

The proofs are similar to what you would do in R, and are left as exercises; the little-o notation below will be
useful.
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1.3.4 Chain rule

It will be useful to introduce “little-o notation,” which may be familiar from analysis. To say that a quantity q
“is o(ε)” means

lim
ε→0

q
ε

= 0.

For example, ε1+a is o(ε) whenever a > 0, but sin(εa) is not o(ε) when a 6= 0. Notice that if q is o(ε) then
certainly limε→0 q = 0.

If a function f is Gateaux differentiable, we have, by definition

dh f = lim
ε→0

f (x + εh)− f (x)
ε

.

From this and the definition of o(ε) it follows that

f (x + εh) = f (x) + εdh f (x) + o(ε).

Now, assume g : V → U is Gateaux differentiable at x ∈ V, and that f : U → W is Gateaux differentiable at
g(x). We want to compute the Gateaux differential of their composition ( f ◦ g)(x) = f (g(x)). Start with the
difference quotient, and use the identity f (x + εh) = f (x) + εdh f (x) + o(ε) twice:

dh( f ◦ g)(x) = lim
ε→0

f (g(x + εh))− f (g(x))
ε

= lim
ε→0

f (g(x) + εdhg(x) + o(ε))− f (g(x))
ε

= lim
ε→0

f (g(x) + ε(dhg(x) + ε−1o(ε)))− f (g(x))
ε

= lim
ε→0

f (g(x)) + εd(dhg+ε−1o(ε)) f (g)− f (g(x))
ε

= ddhg f (g).

This may not be immediately recognizable as the chain rule: where’s the multiplication? Let’s do an example
to see how it works.

Chain rule example Compute the Gateaux differential of F(x) = (xTx)2. Let f (u) = u2. This is a mapping
f : R → R. Let g(x) = xTx. This is a mapping from some vector space V to the reals. Our function F(x) is
the composition of these two: F(x) = f (g(x)). Now, from the product rule for inner products we know that
dh(xTx) = 2hTx, and from the product rule for elementwise products we know that dk(u2) = 2ku. The chain
rule tells us that

dhF(x) = ddhg f (g)

which is, given our f and g,

dhF = d2hT x(g2)

4



= 2(2hTx)g

= 4(hTx)(xTx).

You should check by comparing to dhF computed directly from the definition of Gateaux differential. Also,
compare to the 1D case F(x) = (x2)2.

The multiplicative structure of the chain rule is buried in the use of dhg, the differential of the “inner” function
g as the direction for the differential of the outer function f . Usually – but not always – the direction will
appear linearly in the differential, recovering in the usual case the expected form of the chain rule. See below
for discussion of exactly when the direction will appear linearly.

1.3.5 Transcendental functions

Gateaux differentiation of the exponential function has been shown above. A similar computation can be done
for any other function that can be defined as a power series, for example, the trigonometric functions.

1.4 The Frechet derivative

The Frechet derivative D f of f : V → U is defined implicitly by

f (x + k) = f (x) + (D f ) k + o(‖k‖).

To establish the relationship to the Gateaux differential, take k = εh and write

f (x + εh) = f (x) + ε(D f )h + h o(ε).

In the limit ε→ 0, we have (D f ) h = dh f . Then, if dh f has the form A h, then we can identify D f = A.

1.4.1 Existence and uniqueness of the Frechet derivative

I’ll cite two theorems without proof

Theorem 2. The Frechet derivative exists at x=a iff all Gateaux differentials are continuous functions of x at x = a.

Proof. See, for example, Munkres or Spivak (for RN) or Cheney (for any normed vector space).

Theorem 3. If it exists for a function f at a point x, the Frechet derivative is unique.

Proof. Assume otherwise, then construct a contradiction. See, for example, Munkres or Spivak (for RN) or
Cheney (for any normed vector space).

1.4.2 Examples of Gateaux differentiable functions that are not Frechet differentiable

Example: f (x) = |x| The Gateaux differential at x = 0 is

dh f = lim
ε→0

|εh|
ε

= |h| .

This is not a linear function of h. Therefore, the Frechet derivative does not exist.
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Example: f (x, y) = 2xy/
√

x2 + y2. This function is indeterminate at (0,0). However, we can still construct
a function that is continuous at (0,0) provided that lim(x,y)→(0,0) f (x, y) exists and is independent of the path
along which the limit is taken. Let (x, y) = (εh, εk) with h 6= 0, k 6= 0, so that f = 2εhk/

√
h2 + k2. Then

limε→0 f = 0 independently of (h, k). By defining

f (x, y) =


2xy√
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

we have constructed a continuous function.

Compute the Gateaux derivative at (0, 0) :

dh f (0, 0) = lim
ε→0

2εhxhy/
√

h2
x + h2

y

ε

=
2 hxhy√
h2

x + h2
y

.

This is not a linear function of h = (hx,hy), so f (x, y) is not Frechet differentiable at (0, 0).

1.5 The chain rule for Frechet differentiation

Recall the chain rule for Gateaux differentials: dh( f ◦ g) = ddhg(x) f (g). When both f and g are Frechet differ-
entiable, then dhg = (Dg) h and dk f = (D f ) k. Thus, dh( f ◦ g) = (D f ) (Dg) h. This has the expected form of a
product of derivatives.

1.6 The Frechet derivative defines a tangent hyperplane

Consider a real-valued function, f : V → R. When the Frechet derivative D f exists at a point x = a, f can be
approximated to first order in ‖h‖ by

f (a + h) ≈ f (a) + (D f ) h.

Note that h ∈ V and D f : V → V. We’ll write D f as ∇ f , and call it the gradient. The term (∇ f ) h is an inner
product, 〈∇ f , h〉 which is of course commutative; we’ll often write the linear term as hT∇ f .

Now, define p(h) = f (a) + hT∇ f (a). This is a linear real-valued function in h, and as a linear function, it
defines a hyperplane in the space V. Clearly p(0) = f (a) and Dp(0) = D f (a): the function p defines the
tangent hyperplane to f .
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