Kevin Long

Department of Mathematics and Statistics Texas Tech University Lubbock, TX 97409 kevin.long@ttu.edu

EDUCATION

Princeton University Ph.D. in Astrophysics, 1990. Thesis: *Kinematics and Dynamics of Barred Galaxies*

Advisor: David Spergel

University of Maryland, College Park B.S. in Astronomy, 1986.

High Honors in Astronomy

Thesis: Tidal Disruption of Open Star Clusters by their Parent Molecular Clouds

Advisor: Leo Blitz

Prince George's County Community College

Attended 1981-82.

POSITIONS HELD

_	OSITIONS HELD		
	Aug 2007-present	Texas Tech University, Lubbock, TX Department of Mathematics and Statistics Associate Professor, Aug 2008-present Visiting Assistant Professor, Aug 2007-Aug 2008	
	1998-2007	Sandia National Laboratories, Livermore, CA Computational Sciences and Mathematics Research Department Principal Member of the Technical Staff, 2004-2007 Senior Member of the Technical Staff, 2000-2004 Limited Term Technical Staff, 1998-2000	
	1996-1998	Beam Technologies, Ithaca, NY Research staff	
	1992-1995	SUNY at Brockport, Brockport, NY Assistant Professor, Physics Department	
	1990-1992	University of Massachusetts, Amherst, MA Postdoc, Physics Department	
	1986-1990	Princeton University, Princeton, NJ Graduate Research Assistant, Astrophysics Department Graduate Teaching Assistant, Astrophysics Department (Spring 1989)	
	1985-1986	University of Maryland, College Park, MD Undergraduate Teaching Assistant, Physics Department Undergraduate Research Assistant, Physics Department (Summer 85,86)	
	Summer 1984	National Bureau of Standards, (now NIST) Gaithersburg, MD Undergraduate Student Intern, Metallurgy Department	

PUBLICATIONS

Articles (Refereed)

 R.A. Erickson, S. B. Cox, J.L. Oates, T.A. Anderson, C.J. Salice, K.R. Long, A Daphnia population model that considers pesticide exposure and demographic stochasticity, 2014, Ecological Modeling, 275:37-47

- P.T. Boggs, D.M. Gay, S.K. Griffiths, R.M. Lewis, K.R. Long, S. Nash, and R.H. Nilson, *Optimization Algorithms for Hierarchical Problems with Application to Nanoporous Materials*, 2012, SIAM J. Optim, v.22(4), p.1285-1308
- K. Long, P.T. Boggs, and B.G. van Bloemen Waanders, Sundance: High-Level Software for PDE-Constrained Optimization, 2012, Scientific Programming, v.20(3) p.293-310.
- V.E. Howle, R.C. Kirby, K. Long, B. Brennan, and K. Kennedy, *Playa: High performance programmable linear algebra*, 2012, Scientific Programming, v.20(3) p.257-273.
- R.A. Erickson, K. Hayhoe, S.M. Presley, L.J.S. Allen, K. Long, and S.B. Cox, *Potential Impacts of Climate Change on the Ecology of Dengue and its Mosquito Vector the Asian Tiger Mosquito (Aedes ablbopictus)*, 2012, Environmental Research Letters, v. 7 (3), 034003
- R. Iyer, K. Long, and J. Milhollan, *Micromagnetics with Eddy Currents*, 2011, Journal of Physics: Conference Series, v.268, 012011.
- K. Long, R. C. Kirby, and B. van Bloemen Waanders, *Unified Embedded Parallel Finite Element Computations via Software-based Frechet Differentiation*, 2010, SIAM Journal on Scientific Computing, volume 32, number 6, pp 3323-3351.
- R. A. Erickson, S. M. Presley, L. J. S. Allen, K. R. Long, and S. B. Cox. *A dengue model with a dynamic, Aedes albopictus vector population*,,2010, Ecological Modeling, volume 221, pp. 2899-2908.
- R. A. Erickson, S. M. Presley, L. J. S. Allen, K. R. Long, and S. B. Cox. 2010. *A stage-structured, Aedes albopictus population model, Ecological Modeling* 221:1273-1282.
- R. Shuttleworth, H. Elman, K. Long (20%), and J. Templeton, Scalable Solvers for Induced Charge Electrophoresis, International Journal for Numerical Methods in Fluids, 2009, DOI: 10.1002/fld.2188
- H. Adalsteinsson, B. Debusschere, K. Long, and H. Najm, Components for atomistic-to-continuum multiscale modeling of flow in micro- and nanofluidic systems, Scientific Programming 2008, Volume 16, Number 4, Page 297.
- P. Boggs, K. Long, S. Margolis, and P. Howard, *Rapid Source Inversion for Chemical/Biological Attacks*, *Part 1: The Steady-State Case*, SIAM Journal on Optimization, Vol 17., No. 2, p. 430, 2006.
- M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, and K. Stanley, *An Overview of the Trilinos Project* ACM Transactions on Mathematical Software, Vol. 31, No. 3, September 2005.
- V. Akcelik, G. Biros, O. Ghattas, K. Long, and B. van Bloemen Waanders, A Variational Finite Element Method for Source Inversion for Convective-Diffusive Transport, Finite Elements in Analysis and Design, vol 39, p. 683, 2003.
- Mancuso, R.V. and Long, K.R. 1995, *The Astro-Blaster*, September 1995 issue of *The Physics Teacher*.
- Long, K. and Murali, C. 1992, Analytical Potentials for Barred Galaxies, The Astrophysical Journal, 397, 44

• Long, K., Ostriker, J.P., and Aguilar, L.A. 1992, Would a Galactic Bar Destroy the Globular Cluster System?, The Astrophysical Journal, 388, 362.

- Long, K. 1988, Tidal Disruption of Open Clusters in their Parent Molecular Clouds, The Astrophysical Journal, 341, 796.
- Paczynzki, B. and Long, K. 1988, Distribution of Intensities of Gamma-Ray Bursts, The Astrophysical Journal, 333, 694.

Proceedings (refereed)

- J. Carrell, K. Long, H.-C. Zhang, and S. Imam, *Modeling of Heat Transfer in Shape Memory Polymer Nanocomposites*, 2012, ASME Conference Proceedings, IMECE-2012-87702.
- A. R. Terrel and K. Long, Evaluation of Level Set Topology Optimization Formulations for Design of Minimum-Dispersion Microfluidic Devices, Proceedings of the Nanoscience, Engineering, and Computation Institute at Sandia, Sept 2006.
- J. P. Reese, K. Long, C. T. Kelley, W. G. Gray, and C. T. Miller, *Simulating Non-Darcy Flow Through Porous Media using Sundance*, in Proceedings of the XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark, June 2006.
- K. R. Long, Sundance: a rapid prototyping tool for parallel PDE optimization, in Large-Scale PDE-Constrained Optimization, Lecture Notes in Computational Science and Engineering, Volume 30, pp. 331-341, Springer, 2003, editors L. T. Biegler, O. Ghattas, M. Heinkenschloss, B. G. van Bloemen Waanders.
- K. Long and B. van Straalen, *PDESolve: an Object-Oriented PDE Analysis Environment*, in proceedings of the 1998 SIAM Workshop on *Object-Oriented Methods for Interoperable Scientific and Engineering Computing*, editors M. E. Henderson, C. R. Anderson, and S. L. Lyons, SIAM, 1999.
- A.H. Kahn, K.R. Long, S. Ryckebusch, T. Hsieh, and L.R. Testardi, 1986, Determination of Electrical Conductivity Profiles from Frequency-Sweep Eddy Current Measurement, in Review of Progress in Quantitative Non-Destructive Evaluation, 5B, p. 1383.

Extended Abstracts (refereed)

• K. Long, Efficient Discretization and Differentiation of Partial Differential Equations through Automatic Functional Differentiation, 4th International Conference on Automatic Differentiation, July 2004

Technical Reports (non-refereed)

- B. Debusschere, M. Hickner, F. Zendejas, H. Adalsteinsson, H. Tran, K. Long, H. Najm, D. Chinn, M. Kent, and B. Simmons, Computational and Experimental Study of Nanoporous Membranes for Water Desalinization and Decontamination, 2008, Sandia National Laboratories Technical Report SAND2008-7603.
- B. van Bloemen Waanders, S. Altman, B. Carnes, J. Hill, K. Long, L. McGrath, and Y. Marzouk, Decontamination of Water Networks: A Numerical and Experimental Investigation of Biofilms, 2008, Sandia National Laboratories Technical Report SAND2008-8127.
- K. Long, Sundance 2.0 Tutorial, Sandia National Laboratories Technical Report SAND2004-4793
- M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski,
 E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, and K. Stanley, An Overview of Trilinos, Sandia National Laboratories Technical Report SAND2003-2927.

• B. van Bloemen Waanders et. al., Algorithm and Simulation Support for Response Strategies for Contamination Events in Air and Water Systems, Sandia National Laboratories Technical Report SAND2006-0074.

• B. van Bloemen Waanders, R. Bartlett, K. Long, P. Boggs, and A. Salinger *Large-scale Nonlinear Programming for PDE-Constrained Optimization* Sandia Technical Report, SAND2002-3198

Manuscripts Currently Submitted

• K.R. Long, K.D. McKale, and L. Juan, Fast Computation of Inverse Transcendental Functions of Polynomial Chaos Expansions Through Iterated Means, submitted to International Journal on Numerical Analysis and Modeling, Dec 2014.

PROFESSIONAL PRESENTATIONS

Conference Presentations

- K. Long, P. Boggs, and B. van Bloemen Waanders, *Software Tools for PDE-constrained Optimization*, SIAM Conference on Computational Science and Engineering, Boston MA, 27 Feb 2013.
- K. Long and K. D. McKale, New Tricks for an Old Dog: Archimedes, Gauss, and the Fast Computation of Stochastic Inverse Transcendentals, US DOE Applied Math PI Meeting, Reston, VA, 17 Oct 2011.
- K. Long, *Scientific Computing in the Real World*, Texas Applied Math Meeting for Students, 2 April 2011, Lubbock, TX
- K. Long and K. D. McKale, *Archimedes, Gauss, and Uncertainty Quantification: A new (old) approach to the efficient computation of stochastic transcendentals,* 2011 Uncertainty Quantification Workshop, University of Southern California, Los Angeles, CA, 7 March 2011.
- K. Long, Automated Embedded Uncertainty Quantification in PDE Simulations, Workshop on Uncertainty Quantification in Multiscale Systems, Johns Hopkins University, 20 July 2010.
- K. Long, Automated Self-Assembly of Components for Multiphysics Simulation, SIAM Conference on Parallel Computing, Seattle, WA, 26 Feb 2010.
- K. Long, Sundance Hands-On Tutorial, DOE ACTS Workshop, 20 Aug 2008, Lawrence Berkeley National Laboratory
- K. Long, Combinatorial Dataflow Analysis for Differentiation of High-Level PDE Simulations, SIAM Annual Meeting, 11 July 2008, San Diego, CA.
- K. Long, Sundance: A Trilinos package for efficient developers of efficient simulators, Copper Mountain Trilinos Workshop, 7 Apr 2008, Copper Mountain, CO. 11 July 2008, San Diego, CA.
- B. Debusschere, H. Adalsteinsson, K. Long, H. Najm, M. Hickner, P. Ponce, B. Simmons, and R. Davalos, *Multiscale Simulation of Ionic Flux through a Nanopore*, American Physical Society Division of Fluid Dynamics, Nov 2006.
- K. Long, Rapid Development of Efficient Codes for PDE Simulation and Optimization, Sandia CIS External Review, Albuquerque, NM, August 2005
- K. Long and M. Heroux, *The Trilinos Solver Framework*, ACTS Workshop, Lawrence Berkeley Laboratory, Sept 2002
- P. Boggs and K. Long, *Tightly-Coupled SQP Algorithms from Loosely-Coupled Components*, First SIAM Conference on Computational Science and Engineering, Washington DC, Sept 2000
- K. Long and B. van Straalen, *PDESolve: an Object-Oriented Environment for PDE Simulations*, SIAM Workshop on Interoperable Object-Oriented Computing, IBM Research Center, Oct 1998

• Chase, J.R. and Long, K.R. 1995, *Analytical Approximations for Potentials of Nearly Spherical Galaxies.*, presented at the 1995 National Conference on Undergraduate Research.

- Long, K. and Weinberg, M. D. 1993, *Tidal Influences on Satellite Shapes.*, presented at the January 1993 meeting of the American Astronomical Society.
- Long, K. and Weinberg, M. D. 1993, Effect of a Galactic Bar on the Distribution of Long-Period Variables. published in Back to the Galaxy, the proceedings of the 3rd annual Maryland Conference on Astrophysics.

FUNDING

- Co-PI for Metanumerical Computing for Emerging Architectures: Automated Embedded Algorithms for Partial Differential Equations on Multicore Platforms, NSF, \$499,654, Oct 2011-Nov 2014.
- PI for Finite Element Discretization of Materials with Networks of Nanoscale Pores, subcontract from Sandia National Laboratories, funded for \$34996 for one year beginning Apr 2011
- PI for Finite Element Discretization of Materials with Networks of Nanoscale Pores, subcontract from Sandia National Laboratories, funded for \$30808 for one year beginning Nov 2009
- PI for *Quantifying Prediction Fidelity in Multiscale Multiphysics Simulations*, DOE Office of Science, funded for \$74,915 over one year beginning Oct 2009, continued for \$71,000 for year beginning Oct 2010.
- PI for Uncertainty Quantification for Petascale Simulation of Carbon Sequestration through Fast Ultra-Scalable Stochastic Finite Element Methods, NSF, funded for \$269,899 over three years beginning July 2009
- Co-PI on NSF project, Automated Intrusive Algorithms for Numerical Solution of Partial Differential Equations via Software-Based Frechet Differentiation, with R. Kirby and V. Howle, Funded for \$355,685 over 3 years, beginning 1 Oct 2008.
- Co-PI on TTU Research Enhancement Foundation project, *Automated Scientific Computing: High-Level, High-Performance Finite Element Software.* Funded for \$35,000, 1 Sept 2008-31 Aug 2009
- PI on TTU subcontract for Finite Element Methods for Local Density Functional Theory Simulations of Electronic Structure Calculations, from Sandia National Laboratories, Fall 2008, \$22,310.
- PI on TTU subcontract for Computational and Experimental Study of Nanoporous Membranes for Water Desalination and Decontamination, from Sandia National Laboratories, Summer 2008, \$13,975.
- Co-investigator on Computational and Experimental Study of Nanoporous Membranes for Water Desalinization and Decontamination, 2006, through DOE LDRD program at Sandia National Laboratories, Livermore. PI Bert Debusschere. Total funding is \$1.68 million (3 years).
- Principal investigator on *Efficient Algorithms for Robust Decision Making through PDE-Constrained Optimization*, 2004, through DOE CSRF program at Sandia National Laboratories, Livermore. Total funding \$675,000 (3 years).
- Principal investigator on *Shape and Topology Optimization for Improving the Performance of Microfluidic Sensors*, 2003, through DOE LDRD program at Sandia National Laboratories, Livermore. Total funding \$620,000 (3 years).
- Principal investigator on *Topology Optimization for Improving the Performance of Microfluidic Sensors*, 2002, through DOE CSRF program at Sandia National Laboratories, Livermore. Total funding \$150,000 (1 year).
- Co-investigator on *Computational Tools for Rapid Response to Toxic Release in Buildings*, 2002, through DOE CSRF program at Sandia National Laboratories, Livermore. PI Paul Boggs. Total funding \$450,000 (3 years).

 Co-investigator on Large-Scale Nonlinear Programming for PDE-Constrained Optimization, 1999, through DOE LDRD program at Sandia National Laboratories, Albuquerque. PI Bart van Bloemen Waanders.

- Co-investigator on A Tool for Analysis and Optimization of the Dynamics of High-Lift Control Devices, SBIR through NASA. PI Gahl Berkooz. Total funding \$599,154 (2 years)
- Co-investigator on *An Object-Oriented Toolbox for Distributed Parameter Control Design with Application to JSF*, SBIR through USAF AFOSR. PI Gahl Berkooz. Total funding \$100,000 (9 months).
- Co-investigator on A toolbox for partial differential equation based optimization with an application to optimizing materials processing, SBIR through USAF AFOSR. PI Gahl Berkooz. Total funding \$750,000 (2 years).
- Co-investigator on A Domain Specific Library and API for Simulation of Partial Differential Equations in Heterogeneous Environments, SBIR through DARPA. PI Gahl Berkooz. Total funding \$306,481 (2 years).

TEACHING

Courses taught

At TTU

- Spring 2015: Numerical Analysis (4310); Higher Mathematics for Scientists and Engineers II (3351)
- Fall 2014: Topics in Numerical Analysis: Numerical Methods for Ordinary Diff (5344); Higher Mathematics for Scientists and Engineers II (3351)
- Spring 2014: Numerical Analysis II (5335); Higher Mathematics for Scientists and Engineers II (3351)
- Fall 2013: Numerical Analysis I (5334); Higher Mathematics for Scientists and Engineers II (3351)
- Spring 2013: Principles of Classical Applied Analysis II (5311); Topics in Numerical Analysis:
 High-Performance Numerical Linear Algebra (5345)
- Fall 2012: Principles of Classical Applied Analysis I (5310); Topics in Numerical Analysis: A Practical Introduction to Finite Element Methods (5344)
- Spring 2012: Numerical Analysis II (5335)
- Fall 2011: Numerical Analysis I (5334)
- Spring 2011: Principles of Classical Applied Analysis II (5311)
- Fall 2010: Principles of Classical Applied Analysis I (5310)
- Spring 2010: Principles of Classical Applied Analysis II (5311)
- Fall 2009: Principles of Classical Applied Analysis I (5310); Higher Mathematics for Scientists and Engineers II (3351)
- Spring 2009: Principles of Classical Applied Analysis II (5311)
- Fall 2008: Higher Mathematics for Scientists and Engineers I (3350)
- Spring 2008: Higher Mathematics for Scientists and Engineers I (3350)
- Fall 2007: Calculus II (1351)

• At SUNY

- Fall 1995: Classical Physics; General Astronomy with Lab
- Spring 1995: Statistical Mechanics and Thermodynamics; General Astronomy with Lab
- Fall 1994: Classical Physics; General Astronomy with Lab

- Spring 1994: Classical Mechanics; General Astronomy with Lab
- Fall 1993: Modern Physics; General Astronomy with Lab
- Spring 1993: Classical Mechanics; General Astronomy with Lab
- Fall 1992: Statistical Mechanics and Thermodynamics; General Astronomy with Lab

RESEARCH DIRECTION

Chair or Co-Chair of Doctoral Committees

- Richard Erickson (Environmental Toxicology), Quantifying the Effects of Toxicants on Ecological Populations
- Senay Tewalde (Mechanical Engineering), in progress, thermal detection of retinal tumors
- Chandani Dissanayake, in progress, multiscale PDE-constrained optimization
- Josh Engwar, in progress, computational electromagnetics
- Simon Rush, in progress, wake interference in wind farms

Member of Doctoral Committees

- James E. Bragg (TTU Electrical Engineering) Ferrimagnetic-Based Coaxial Nonlinear Transmission Lines
- Cory Farley (TTU Mechanical Engineering) Reactions of aluminum with halogen containing oxides
- Nick Landes (TTU Civil Engineering) Experimental Studies and Mathematical Modeling of Simultaneous Nitrification/Denitrification in Membrane-Aerated Biofilm Reactors
- Anton Kliewer (TTU Math) Monte Carlo Methods for Jump Diffusion Processes
- Janelle Charles (TTU Math) Probability distribution estimation using control theoretic smoothing splines
- Brian Miller (TTU Math) On the integration of elementary functions: Computing the logarithmic part
- Masaki Ogura (TTU Math) Mean Stability of Switched Linear Systems
- Dinesh Ekanayake (TTU Math) Robust control of saturating, non-monotone hysteretic systems with nonlinear frequency-dependent power losses
- Matthew Lochman (TTU Math) An extremal problem for convex continua
- Janitha Gunatilake (TTU Math) Hierarchical Bases and a Multilevel Finite Element Solver
- Rochana Meegaskumbura (TTU Math) Control Theoretic Smoothing Splines with Derivative Constraints
- Alexandre Cunha (Carnegie Mellon University, Computational Science and Engineering) A fully Eulerian method for shape optimization with application to Navier Stokes flows

Chair of Masters' Committees

- Brad Armstrong, MS Thesis, Numerical Simulation of 1D Compressible Flow
- Simon Rush, MS Report, Spectral Methods in Uncertainty Quantification
- Kimberly Kennedy, MS Thesis, Implementing Conjugate Gradients with Incomplete Cholesky Preconditioning in Playa

• Vipin Palande, MS Report, Experimental Study of a Factorization-Free Algorithm for Identifying the Eigenvalues Missed by an Eigensolver

- Jedediah Goehlke, MS Thesis, A Validation Study of a Software Implementation of the Gauge Finite Element Method for the Incompressible Navier-Stokes Equations
- Kaleb McKale, MS Thesis, Archimedes, Gauss, and Stochastic Computation: a New (Old) Approach to Fast Computation of Stochastic Transcendentals
- Jon Milhollan, MS Thesis, A Numerical Study of Ferromagnetic Bodies with Dynamic Boundary Conditions
- Chandani Dissanayake, MS Report, Regularized Image Matching Through Finite Element Methods

Member of Masters' Committees

- Richard Erickson
- Sarah Osborn
- Anna Krylova
- Morgan Blackwell
- King David Manga
- Joe Tipton
- Jarod Clopton
- Ashlee Fuchs
- Josef Cepak (Mechanical Engineering)

Student Interns Supervised (Sandia)

- Catherine Beni (2005-2007, Caltech, NPSC Graduate Fellow)
- Andy Terrel (2006, University of Chicago)
- Jill Reese (2004-2005, North Carolina State University)
- Patricia Howard (2003-2005, WPI, Rice)
- Allen Harvey (2003, undergraduate, SUNY at Brockport)
- Clemens Kadow (2002, Carnegie Mellon University)
- Mike Boldt (2002, undergraduate, St. John's University)
- John Gentile (2001, undergraduate, SUNY at Brockport)

Student Interns Supervised (BEAM)

• Adam Florence (1997, Cornell)

SERVICE

Departmental service

- Search Committee for Department Chair (2015)
- Numerical Analysis Prelim Committee (2009-present)
- Hiring Committee (2011-2013)
- Teaching review for graduate TAs (2007-present)
- Arts & Sciences Research Council (2012-present)

Program Reviews

• External Review Committee Member, Review of TTU Department of Physics Graduate Program, 2014

Refereeing

- SIAM Journal on Scientific Computing
- Scientific Programming
- ACM Transactions on Mathematical Software
- AIMS Conference on Dynamical Systems, Differential Equations, and Applications

Proposal Reviews

 US DOE Office of Science, Advanced Scientific Computing Research (ASCR) Applied Math research program