
Installing compilers on a Linux system

September 7, 2010

All Linux distributions will provide the option of installing C, C++, and Fortran compilers from the Gnu Com-
piler Collection (GCC). Commercial compilers from Intel, the Portland Group, and others are also available for
a price, but we’ll concentrate on the GCC compilers which are open source and available for free.

When working with “bleeding edge” software it’s a good idea to be able to build with different compiler
versions. It’s possible to maintain multiple compiler versions on a single computer, but you need to set things
up carefully to avoid accidental inconsistencies between compilers and libraries.

1 Installing the distribution’s default compiler

This part is easy: Use your distribution’s package manager to install the compilers gcc, g++, and gfortran.

If your machine is 64 bit, install support for both 64 and 32 bit. You should also install the development tools
make and m4 and the gdb and ddd debuggers.

Most distributions will put the compiler’s executable in /usr/bin. You can locate the compiler by running

which gcc

which will respond by giving the full pathname of the compiler. No matter how many other compilers you
install, you can always run the default compiler by giving the full pathname, e.g., /usr/bin/gcc instead of gcc.

2 Installing an alternate compiler

2.1 Prerequisites

Check the GCC installation documentation to see what other software must be installed before building a
compiler. Currently, the prerequisites are the MPFR, GMP, and MPC multiple-precision libraries.

If MPFR and GMP are not already installed, you’ll need to do so yourself. Get the source code. You’ll install
into /usr/local. To get the dependencies right, build GMP first, then MPFR, then MPC.

See the online installation information for MPFR, GMP, and MPC if you need further information.

2.2 Installing the compiler

If you’re maintaining multiple compilers on your system, you need to install the compiler someplace where it
won’t conflict with other compilers. Suppose you are working with GCC version x.y.z. I recommend installing
it in the directory

/usr/ l o c a l /gcc−x . y . z

Specification of the installation directory is done with the --prefix option. From the build directory, do:

1

. . / gcc−x . y . z/conf igure −−p r e f i x =/usr/ l o c a l /gcc−x . y . z −−enable−languages=c , c ++ , f o r t r a n
−−with−mpfr=/usr/ l o c a l −−with−gmp=/usr/ l o c a l −−with−mpc=/usr/ l o c a l

make

sudo make i n s t a l l

2.3 Post-installation configuration

2.3.1 Set your path to find the compiler

Edit your .bashrc or .tcshrc file to put the installation directory first in your path. Source the file to invoke
the new path immediately.

2.3.2 Setting the runtime library path

A program built with shared libraries will load them at runtime. To do so, it needs to find them; it looks for
them in the runtime library path, often called the rpath. You’ll need to set the rpath for your new compiler.

It’s important to understand that each compiler you install on your system will need its own rpath. With the
LD_LIBRARY_PATH environment variable it is possible to set an runtime library path to be used by all executa-
bles. Do NOT use LD_LIBRARY_PATH. Doing so can cause mismatch between libraries and executables.

The syntax for setting the rpath varies from compiler to compiler. With the GCC compilers, the rpath is set in a
specs file. The following bash script will create a specs file in the correct location and splice the correct rpath
into it.

!/ bin/bash
Patch the compiler specs f i l e to s e t the search path f o r shared l i b r a r i e s
You w i l l need wri te permissions in the gcc i n s t a l l a t i o n di rec tory , so
you w i l l probably need to run t h i s as root .

rpathbase = ‘which gcc | sed ’ s|bin/gcc || ’ ‘
specpath = ‘ gcc −−print−f i l e l i b g c c . a | sed ’ s|/ l i b g c c . a || ’ ‘

i f [−d $ { rpathbase }/ l i b 6 4] ; then
rpath ="$ { rpathbase } l i b ; $ { rpathbase } l i b 6 4 "

e l s e
rpath ="$ { rpathbase } l i b "

f i

echo " rpath w i l l be : " $rpath
echo " wri t ing to " $ { specpath } "/ specs "

gcc −dumpspecs | sed ’/\∗ l i n k : / {
N
s|\∗ l i n k :\n|\∗ l i n k :\n%{! rpath : −rpath ’ $rpath ’ } |
} ’ > $ { specpath }/ specs

3 Checklist for installation of an alternate compiler

1. Make sure you are ready to build an alternate compiler

(a) If you didn’t install the default compiler for your distribution, do so now using your distribution’s
package manager.

2

(b) Check that make and m4 have been installed. If not, do so now using your distribution’s package
manager.

(c) Check that you’ve installed GMP, MPFR, and MPC in /usr/local. If not:

i. Check the GCC website’s installation instructions for the minimum required versions of GMP,
MPFR, and MPC. Get the source tarballs from the project website.

ii. Configure GMP with --prefix=/usr/local, then make and sudo make install.
iii. Configure MPFR with the arguments --prefix=/usr/local --with-gmp=/usr/local, then

make and sudo make install.
iv. Configure MPC with the argument

--prefix=/usr/local --with-gmp=/usr/local --with-mpfr=/usr/local

then make and sudo make install.

2. Get and unpack the source for your alternate compiler. I’ll refer to the alternate as GCC x.y.z.

3. Make a build directory.

4. From within the build directory, run configure with arguments
--prefix=/usr/local/gcc-x.y.z --with-gmp=/usr/local --with-mpfr=/usr/local --with-mpc=/usr/local

--enable-languages=c,c++,fortran

5. Run make, then sudo make install

6. Put /usr/local/gcc-x.y.z first in your path.

7. Run (with sudo) the script patch-compiler-specs.sh to set the RPATH for the new compiler.

8. Test that you can build and run “Hello, World” in C, C++, and Fortran.

4 Troubleshooting

4.1 Which compiler am I running?

Even when you’ve installed everything correctly, it’s possible to get confused about which compiler you’re
running (particularly when running it indirectly through a wrapper such as mpicc.) Two tools can help: the
which commmand and GCC’s --version option. Running which gcc (or which gfortran, or which g++) will
give the full pathname of the compiler. The --version option prints the version number; it can pass through a
wrapper such as mpicc to tell which gcc is being invoked by mpicc.

Here are some situations in which things can go wrong:

• If you’ve installed an alternate gcc but not gfortran, the shell will find the default gfortran and use
it along with your alternate gcc. This inconsistency will cause build failures at best, runtime failures at
worst.

• If you’re not careful when specifying the compilers to be used when building MPI, the MPI compiler
wrappers mpicc, mpif77, and mpicxx can wrap inconsistent compilers. Use the --version flag to check.

3

