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1. Introduction.

In this paper, we study the roles played by four special types of bases (weakly uniform
bases, ω-in-ω bases, sharp bases, and open-in-finite bases) in the classes of linearly ordered
and generalized ordered spaces. We characterize ordered spaces with such bases in terms
of more familiar topological classes.

To understand the context of our results, recall that many base axioms, known to be
distinct in general spaces, seem to fall into three broad equivalence classes when one consid-
ers only ordered spaces. First, metrizability in a generalized ordered space X is equivalent
to the existence of a σ-discrete base, or a σ-locally finite base, or a σ-locally countable
base, or a development for X. Second, quasi-developability in a generalized ordered space
X is equivalent to the existence of a σ-disjoint base, or of a σ-point-finite base. Third,
the existence of a point-countable base in a generalized ordered space can be characterized
in terms of the Collins-Roscoe property “open (G)”[G]. (For general information on these
topics, see [L].) Our paper shows how the four new base properties mentioned above fit
into this pattern.

We begin Section 2 of this paper by characterizing generalized ordered spaces with
weakly uniform bases. Heath and Lindgren [HL] defined a collection C in a space X to
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be weakly uniform provided that for every pair x 6= y of elements of X, the set {C ∈
C : {x, y} ⊆ C} is finite. They noted that a space with a weakly uniform base has a
Gδ-diagonal so that in the category of linearly ordered spaces, the existence of a weakly
uniform base is equivalent to metrizability. In [HL], the familiar Michael line is cited to
show that the analogous assertion fails for generalized ordered spaces. In (2.3) we prove:

1.1 Theorem: A generalized ordered space has a weakly uniform base if and only if it has
a σ-disjoint base (equivalently, is quasi-developable) and has a Gδ-diagonal.

Combined with examples in Section 2, our results show that among generalized ordered
spaces, the existence of a weakly uniform base lies strictly between metrizability and quasi-
developability. Later, in Corollary 2.7 we show:

1.2 Corollary: Any dense-in-itself generalized ordered space with a weakly uniform base
is metrizable.

Also in Section 2 we study the role of OIF and sharp bases among generalized ordered
spaces. The notion of an OIF base is due to Balogh who, in a private communication,
defined an open-in-finite (OIF) collection to be a collection C such that if U is any non-
empty open subset of X, then U is a subset of at most finitely many members of C. It is
easy to prove that any metric space, and indeed any metacompact Moore space, has an
OIF base, i.e., an OIF collection that is a base for the space, and that a compact Hausdorff
space is metrizable if and only if it is first-countable and has an OIF base. Furthermore,
Balogh noted that for any κ, the standard base for the compact space {0, 1}κ is an OIF
base. Arhangel’skii (see [AJRS]) introduced the notion of a sharp base for a space X,
namely a base B for X with the property that if Uj is a sequence of distinct members of
B, each containing the point x, then {

⋂
{Uj : 1 ≤ j ≤ n} : n ≥ 1} is a local base at x. In

(2.6) we show:

1.3 Theorem: For a generalized ordered space X, the following are equivalent:
a) X is metrizable;
b) X has an OIF base;
c) X has a sharp base.

In Section 3 we consider a generalization of a point-countable base introduced by
Arhangel’skii, Just, Reznichenko, and Szeptycki [AJRS]: a base B for a space X is an ω-
in-ω base if, for each infinite subset A ⊆ X, the collection {B ∈ B : A ⊆ B} is countable.
In (3.3) we prove:

1.4 Theorem: A linearly ordered topological space has a point-countable base if and only
if it is first-countable and has an ω-in-ω base.
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That result contrasts sharply with the situation in arbitrary spaces, and even in generalized
ordered spaces, as can be seen from (3.1) and (3.4) where we prove:

1.5 Example: There exist a linearly ordered space X and a first-countable generalized
ordered space Y such that both X and Y have ω-in-ω bases but neither has a point-countable
base. Indeed, both X and Y have a base with the property that only countably many
members of the base contain any two distinct points of the space.

However, ω-in-ω bases do have some interesting consequences in generalized ordered spaces
(and in monotonically normal spaces) because in Section 3 we also show that the existence
of an ω-in-ω base for a generalized ordered space (or for a monotonically normal space)
guarantees paracompactness.

Recall that a generalized ordered space (GO-space) is a Hausdorff space equipped with
a linear order such that the topology has a base whose members are order-convex. Such
spaces may be characterized as being those topological spaces that can be embedded in
some linearly ordered topological space with its usual open interval topology. A reference
for the ordered space notation and terminology used in this paper is [L]. Also recall that
a space X is quasi-developable [B] if there is a sequence G(n) of collections of open subsets
of X such that if U is open and p ∈ U , then for some n we have p ∈ St(p,G(n)) ⊆ U .
Throughout this paper, we will reserve the symbols R, P, Q, and Z for, respectively, the
sets of real, irrational, and rational numbers, and the set of integers.

We want to thank the referee, whose comments significantly shortened and simplified
the proofs of our main results.

2. Weakly uniform, OIF, and sharp bases in GO-spaces.

2.1 Lemma: Let C be a collection of convex subsets of a GO-space X. Then C is σ-star-
finite (and hence σ-point finite) if either of the following holds:
a) C is a weakly uniform collection; or
b) C is an OIF collection of open subsets of X.

Proof: First, observe that if E ⊆ C, then each member of E is contained in a maximal
member (with respect to ⊆) of E , because otherwise we could find a strictly increasing
sequence En ∈ E . But that is impossible in the case where C is weakly uniform (because
E2 has at least two points and is contained in infinitely many other members of C), and
also impossible in case C is an OIF collection of open sets.

Let B0 = {C ∈ C : |C| = 1}. Clearly B0 is star-finite (i.e., each member of B0 meets
only a finite number of other members of B0). Further, any member of C − B0 has at
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least two points. For each n ≥ 0, let Bn+1 be the collection of all maximal members of
C −

⋃
{Bk : 0 ≤ k ≤ n}. We claim that C =

⋃
{Bk : k ≥ 0}. For suppose there is a set

C ∈ C −
⋃
{Bk : k ≥ 0}. Then |C| ≥ 2 and for each k ≥ 0, C ∈ C − (

⋃
{Bj : 0 ≤ j ≤ k}.

Hence there is a maximal member Bk+1 of C − (B0 ∪ · · · ∪ Bk) that contains C. The sets
Bk are clearly distinct, and that is impossible if C is an OIF collection of open sets, or if
C is a weakly uniform collection. Thus C =

⋃
{Bk : k ≥ 0}.

We already know that B0 is star-finite, so fix k ≥ 1. We begin with a sequence of
Claims, each easy but somewhat tedious to verify.

Claim 1: If C1 and C2 are distinct members of Bk, then C1−C2 and C2−C1 are non-empty
convex sets.

Claim 2: If C1 and C2 are distinct members of Bk, then every point of C1 −C2 lies below
every point of C2 − C1, or vice versa, because C1 − C2 and C2 − C1 are disjoint convex
sets.

For distinct C1, C2 ∈ Bk, define C1 ≺ C2 to mean that every point of C1 − C2 lies
below every point of C2 − C1.

Claim 3: ≺ is a linear ordering of Bk.

Claim 4: Suppose C1 ≺ C2 in Bk and p ∈ C1 ∩C2. Then C1 −C2 ⊆ ]←, p[ and C2 −C1 ⊆
]p,→[.

Claim 5: Suppose C1 ≺ C2 in Bk. Then every point of C1 is less than every point of
C2 − C1 and every point of C1 − C2 is less than every point if C2. Consider the assertion
for C1 and C2−C1. Observe that C1 = (C1−C2)∪ (C1∩C2). Let p ∈ C1 and q ∈ C2−C1.
If p ∈ C1 − C2, then C1 ≺ C2 yields p < q, and if p ∈ C1 ∩ C2, then Claim 4 yields p < q.

Using those claims about ≺, we will show that Bk is star-finite. For contradiction,
suppose that there is a set B0 ∈ Bk such that the collection D = {C ∈ Bk : B0 ∩ C 6= ∅}
is infinite. Consider R = {C ∈ D : B0 ≺ C}. If R is infinite, then apply the fact that
any infinite linearly ordered set has an infinite strictly monotonic sequence. Choose such
a sequence {Dn : n ≥ 1} in (R,≺).

First consider the case where Dn ≺ Dn+1 for each n ≥ 1. Fix points p ∈ D1−B0, q ∈
D2 −D1 and r ∈ D3 −D2.

Claim 6: p < q < r. Because p ∈ D1∩D2 and D1 ≺ D2, Claim 4 shows that q ∈ D2−D1 ⊆
]p,→[, so that p < q. Next, q ∈ D2 −D1 ⊆ D2 and r ∈ D3 −D2 so that applying Claim 5
to D2 ≺ D3 gives q < r.

Claim 7: For each n ≥ 3, r ∈ Dn. Otherwise, there would be a first n ≥ 3 with r 6∈ Dn.
Then n ≥ 4 and r ∈ Dn−1−Dn. Because p ∈ Dn∩Dn−1, Claim 4 yields Dn−1−Dn ⊆ ]←, p[
so that r < p, and that contradicts Claim 6.
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Because each Dn is convex, Claim 7 yields q ∈ ]p, r[ ⊆ [p, r] ⊆ Dn for each n ≥ 3. But that
is impossible because C is either weakly uniform or is an OIF collection. (In the weakly
uniform case, we have shown that the two points p and r both belong to each Dn for n ≥ 3,
and in the OIF case we have shown that the non-empty open set ]p, r[ is contained in each
Dn for n ≥ 3.)

Next consider the case where Dn+1 ≺ Dn for each n ≥ 1. Then we have B0 ≺ Dn

for each n and we choose p ∈ B0 ∩ D1, q ∈ B0 ∩ D2, and r ∈ B0 ∩ D3. Once again,
{p, q, r} ⊂ Dn for each n ≥ 3 and, as above, that is impossible.

Therefore R is finite. Similarly, L = {D ∈ D : D ≺ B0} is finite. Because D =
L ∪ {B0} ∪ R, we see that D is finite. Hence Bk is star-finite.

2.2 Lemma: Let X be a GO-space and suppose A is either a weakly uniform base or an
OIF base. Then the collection B consisting of all convex components of all members of A
is a base of the same type, and the collection C of all non-degenerate members of B is both
σ-star-finite and σ-locally finite in X.
Proof: It is clear that B is a base for X of the same type as A. Lemma 2.1 shows that
C =

⋃
{Ck : k ≥ 1} where each Ck is star-finite in X. Thus Ck is locally finite at each point

of
⋃
Ck. Because B is a base for X, each non-isolated point of X lies in

⋃
Ck for each

k ≥ 1, showing that every point of X −
⋃
Ck is isolated. Therefore, Ck is locally finite at

each point of X.

Lemma (2.1) allows us to characterize GO-spaces with weakly uniform bases as follows:

2.3 Proposition: A generalized ordered space X has a weakly uniform base if and only if
X is quasi-developable and has a Gδ-diagonal.

Proof: First, suppose that X is quasi-developable and has a Gδ-diagonal. Because X is
a GO-space and has a Gδ-diagonal, X is paracompact [L]. Hence we may assume that
{G(n) : n ≥ 1} is a Gδ-diagonal sequence of open covers of X such that G(n + 1) is point-
finite in X, star-refines G(n), and consists of convex open subsets of X. Because X is
quasi-developable, X has a σ-disjoint base, say B =

⋃
{ B(n) : n ≥ 1} [B],[L].

For each B ∈ B(n), let H(B,n) = {B ∩ G : G ∈ G(n)} and let H(n) =
⋃
{H(B,n) :

B ∈ B(n)}. Then H(n) is point-finite and H =
⋃
{H(n) : n ≥ 1} is a base for X. If

L = {Hk : k ≥ 1} is an infinite collection of distinct members of H, each containing
the point p, then point-finiteness of each H(n) forces L ∩ H(n) 6= ∅ for infinitely many
values of n, so that p ∈

⋂
{Hk : k ≥ 1} ⊆

⋂
{St(p,G(n)) : n ≥ 1} = {p}. Thus, H is a

weakly-uniform base for X.
To prove the converse, next suppose that X has a weakly uniform base. Heath and

Lindgren [HL] have shown that X has a Gδ-diagonal. To complete the proof, it will be
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enough to show that X has a σ-point-finite base. Let A be a weakly uniform base for
X. By (2.2), the collection of all convex components of members of A is also a weakly
uniform base, and by (2.1) is a σ-point-finite collection. Thus, X has a σ-point-finite base,
as required. .

Our next examples show that the hypotheses of (2.3) cannot be weakened, and that
the conclusion of (2.3) cannot be strengthened to metrizability.

2.4 Example: There is a LOTS that is quasi-developable and does not have a weakly
uniform base, and a GO-space with a weakly uniform base that is not metrizable.

Proof: As shown by Heath and Lindgren [HL], the Michael line M is a GO-space that
has a weakly uniform base but is not metrizable. (However, as [HL] noted, a LOTS
with a weakly uniform base is metrizable.) To obtain an example of a quasi-developable
LOTS that does not have a weakly uniform base, consider the lexicographically ordered
set M∗ = (R × {0}) ∪ (P × Z). This linearly ordered topological space is not metrizable
(because it contains the Michael line M as a subspace) and therefore cannot have a Gδ-
diagonal. In the light of [HL], M∗ cannot have a weakly uniform base. However, M∗ is
known to be quasi-developable [L].

2.5 Remark: There are two covering properties that are naturally associated with the no-
tion of a weakly uniform base, namely that every open cover U of X has an open refinement
V with the property that if a and b are distinct points of X, then {V ∈ V : {a, b} ⊆ V }
is finite (respectively, countable). An easy Pressing Down Lemma argument shows that
no stationary set in a regular uncountable cardinal can have either of these properties.
Consequently, any generalized ordered space, or more generally any monotonically normal
space, having either of these two properties must be paracompact ([EL], [BR]).

2.6 Theorem: For any GO-space X, the following are equivalent:

a) X is metrizable;

b) X has an OIF base;

c) X has a sharp base.

Proof: Because any metrizable space has a sharp base, a) implies c). Thus it will be enough
to show that (c) implies (b) and (b) implies (a).

To show that (c) implies (b), let B be any sharp base for X. Because the family of
all convex components of members of B is also a sharp base for X, we may assume that
members of B are convex. Let U be a non-empty open subset of X, and (for contradiction)
suppose that there is an infinite collection C = {Bn : n ≥ 1} of members of B, each
containing the set U . If |U | > 1, choose two points x 6= y of U and note that no finite
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intersection of members of C can separate x and y, so that the family of finite intersections
of members of C is not a base at x. Because B is a sharp base for X, that is impossible.
Hence, for some point p we have U = {p}. Let D be the family of non-degenerate members
of C. Each of the infinitely many members of D meets either ]←, p[ or ]p,→[. Without
loss of generality we may assume that the set D∗ = {Bi ∈ D : Bi ∩ ]←, p[ 6= ∅} is infinite.
For each Bi ∈ D∗ choose qi ∈ Bi ∩ ]←, p[. Because B is a sharp base, there is a k

such that
⋂
{Bi ∈ D∗ : 1 ≤ i ≤ k} = {p}. But that is impossible, because the point

q = max{qi : i ≤ k} lies in
⋂
{Bi ∈ D∗ : 1 ≤ i ≤ k} and is less than p. That contradiction

shows that for any non-void open set U , only finitely many members of B can contain U ,
i.e., that B is an OIF base for X.

To prove that (b) implies (a), let B be an OIF base for the GO-space X. Because of
(2.2) we may assume that members of B are convex, and we know that the collection C of
all non-degenerate members of B is a base at every non-isolated point of X and is σ-locally
finite in X. Next let Ik = {x ∈ I : x belongs to at most k members of B}. Then Ik is
closed in X so that with Ik = {{x} : x ∈ Ik}, the collection

⋃
{Ik : k ≥ 1} is a σ-discrete

collection in X that contains a base at each isolated point of X. Thus, X has a σ-locally
finite base and is therefore metrizable.

Theorem 2.6 allows us to obtain a sharpening of Theorem 2.3 for GO-spaces that are
dense-in-themselves, namely:

2.7 Corollary: Suppose X is a generalized ordered space that has no isolated points and
has a weakly uniform base. Then X is metrizable.
Proof: Let B be a weakly uniform base for X. As in (2.2), we may assume that members
of B are convex. Any non-empty open set U ⊆ X has at least two points, so that (as in
the proof of 2.6), the family of members of B that contain U must be finite. Hence B is
an OIF base for X, so X is metrizable.

3. Point-countable bases in ordered spaces.

A collection C of subsets of a space X is an ω-in-ω collection provided, for each infinite
subset A ⊆ X, the collection {C ∈ C : A ⊆ C} is countable [AJRS]. We begin with an
example showing that point-countable collections and ω-in-ω collections are quite different
things, even in a LOTS.

3.1 Example: There is a LOTS with an ω-in-ω base that is not first-countable, and hence
does not have a point-countable base.

Proof: Let Z be the usual set of integers, and let X be the lexicographically ordered set
([0, ω1[×Z)∪{(ω1, 0)} endowed with the usual open interval topology of that order. Write
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Ω = (ω1, 0) and let B = {{p} : p ∈ X, p < Ω} ∪ {]p, Ω] : p < Ω}. Clearly B is a base for
X. Then B is an ω-in-ω base for X. In fact we will show more. Let A be any subset of X

with at least two points. Let α be the least of the first coordinates of points in A. Then
α < ω1 so that A cannot be a subset of any ]p, Ω] ∈ B where the first coordinate of p is
above α. Thus, A is a subset of at most countably many members of B.

The situation in a first-countable LOTS contrasts sharply with (3.1), as can be seen
from:

3.2 Proposition: Let X be a first-countable LOTS and let C be an ω-in-ω collection of
convex open subsets of X. Then C is a point-countable collection.

Proof: For p ∈ X, let C(p) = {C ∈ C : p ∈ C}. We will show that each C(p) is countable.
First consider the case where p is not isolated. Then there is a sequence xk of distinct
points of X that converges to p. Let An = {xk : k ≥ n} and observe that if C ∈ C(p), then
An ⊆ C for some n. Because C is an ω-in-ω collection, each Cn = {C ∈ C : An ⊆ C} is
countable. Because C(p) ⊆

⋃
{Cn : n ≥ 1}, C(p) is countable whenever p is a non-isolated

point of X.
Next we show that C(p) is countable in case p is an isolated point of X. Let X+ denote

the usual Dedekind compactification of X. For the rest of this proof, interval notation will
refer to intervals in X+. Each member C ∈ C(p) has the form C = ]uC , vC [ ∩ X where
uC , vC ∈ X+ ∪ {←,→}. Consider the set R = {vC : C ∈ C(p)}. We will show that R is
countable.

In case the set [p→[∩X is finite, so is R. Consider the case where [p→[∩X is infinite.
Then p is not the right end point of X. Let p0 = p. Because p0 is an isolated point of
the LOTS X, there is a point p1 ∈ X with p0 < p1 and ]p0, p1[ = ∅. We will say that
p0 and p1 are adjacent points. For induction, suppose n ≥ 1 and that we have defined a
strictly increasing sequence pj of adjacent points for 0 ≤ j ≤ n. If pn is a limit point of
X, we define q = pn and the induction stops. If pn is not a limit point of X, then there is
a point pn+1 that is the immediate successor of pn in X (because pn cannot be the right
end point of X since [p→[∩X is infinite), and the induction continues. If pn is defined for
each n ≥ 0, then let q = sup{pn : n ≥ 0}, the supremum being taken in the compact space
X+. In either case, we have a limit point q ∈ X+ such that p < q and [p, q] is countable.

Let R1 = R ∩ ]p, q] and R2 = R ∩ ]q→[. Then R = R1 ∪R2. Clearly R1 is countable,
so it is enough to show that R2 is also countable. Fix vC ∈ R2. Then ]uC , vC [ ∩X ∈ C(p)
and [p, q] ⊂ ]uC , vC [. There are two cases to consider. If q ∈ X, then vC ∈ R2 implies
]uC , vC [ ∩X ∈ C(q) and first part of the proof shows that C(q) is countable because q is
not isolated. If q ∈ X+ −X, then the set S = X ∩ [p, q[ is infinite so that because C is an
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ω-in-ω collection, the family C(S) = {C ∈ C : S ⊆ C} is countable. Observe that vC ∈ R2

implies C = (]uc, vC [ ∩X) ∈ C(S). Therefore R2 is countable. Hence R is countable.
A similar argument shows that L = {uC : C ∈ C(p)} is also countable. Hence so is

C(p), as required.

We want to thank the referee for pointing out an error in a draft version of this paper
in which (3.2) was asserted to hold for collections of open sets that are not necessarily
convex. As the referee noted, an uncountable almost disjoint collection of infinite subsets
of the usual space of integers is an ω-in-ω collection of open sets in a first- countable LOTS
that is not point-countable.

3.3 Corollary: A LOTS X has a point-countable base if an only if X is first-countable
and has an ω-in-ω base.
Proof: First, suppose that X has an ω-in-ω base C. If necessary, replace C by the collection
C′

of all convex components of all members of C, and observe that if C is an ω-in-ω
collection, then so is C′

. Further, observe that because C is a base for X, so is C′
. Apply

(3.2) to conclude that C′
is a point countable base for X. The converse is clear.

The role of ω-in-ω bases in generalized ordered spaces, as opposed to LOTS, is more
complicated. We begin with an example showing that a first-countable GO-space can have
an ω-in-ω base without having a point-countable base. The example is a variation on the
space known as the “Big Bush” [B2].

3.4 Example: There is a first-countable GO-space X that has an ω-in-ω base, but does
not have a point-countable base.

Proof: Let R, P , and Q denote the sets of real, irrational, and rational numbers, re-
spectively. Let X be the set of all functions f : [0, ω1[→ R with the property that either
f(α) ∈ P for all α < ω1 or else there is a β < ω1 such that f [[0, β[]⊆ P and f(γ) = f(β) ∈ Q

for each γ ∈ [β, ω1[. In the first case, we will write L(f) = ω1 and in the second L(f) = β.
Lexicographically order the set X, i.e., if f 6= g are points of X, let γ be the first ordinal
where f(γ) 6= g(γ), and define f < g to mean that, in R, f(γ) < g(γ). This linear ordering
induces an open interval topology on X, and we modify that topology by declaring that
every point f with L(f) = ω1 is isolated. It is easy to see that the resulting GO-space is
first-countable.

Suppose that f ∈ X and L(f) < ω1. For each n ≥ 1 define two new functions f−n

and f+n by:
f−n(γ) = f(γ) if γ < L(f)
f−n(γ) = f(γ)− 1

n if L(f) ≤ γ < ω1
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f+n(γ) = f(γ) if γ < L(f)

f+n(γ) = f(γ) + 1
n if L(f) ≤ γ < ω1

It is easy to verify that:

a) In X, if g < h < k and if g(β) = k(β) for each β < α, then h(β) = g(β) for each
β < α.

Consequently,

b) In X if α = L(f) < ω1, then ]f−n, f+n[ = {g ∈ X : g(β) = f(β) if β < α and |f(α)−
g(α)| < 1

n}
and

c) The sets B(f, n) = ]f−n, f+n[ form a neighborhood base at f whenever L(f) < ω1.

Let

B = {B(f, n) : f ∈ X and L(f) < ω1 and n ≥ 1} ∪ {{f} : f ∈ X and L(f) = ω1}.

Clearly, B is a base for X. We claim that B is an ω-in-ω collection. We will prove much
more, namely that if f 6= g are points of X, then only countably many members of B
contain {f, g}. To that end, let γ be the first ordinal where f and g differ. Then γ < ω1.
Suppose B ∈ B contains both f and g. Then B cannot be a singleton, so B must have
the form B(h, n) for some h ∈ X with L(h) < ω1 and some n ≥ 1. We will complete
this part of the proof by showing that there are only countably many possible functions
h with {f, g} ⊆ B(h, n). First note that L(h) ≤ γ. Next observe that the values of h

on [0, L(h)[ coincide with the values of f on [0, L(h)[ and that there are only countably
many possibilities for the rational number h(L(h)). Because γ < ω1, we now see that
{B ∈ B : {f, g} ⊆ B} is a countable collection.

It only remains to observe that no base for the space X can be point-countable. The
proof parallels the argument given in [B2] or [BLP].

Even though the existence of an ω-in-ω base does not yield a point-countable base in
a GO-space, such bases do have a role to play because they guarantee paracompactness in
a GO-space, and in the more general category of monotonically normal spaces. We begin
with:

3.5 Lemma: Let S be a stationary set in an uncountable regular cardinal κ. Then the
open cover U = {[0, α[ ∩ S : α ∈ S} has no open refinement that is an ω-in-ω collection.

Proof: For contradiction, suppose there is an open refinement V of U that is an ω-in-ω
collection. Let T be the set of non-isolated points of the subspace S of [0, κ[. Then T is
also stationary in κ. Because V refines U , for each λ ∈ T we may choose V (λ) ∈ V and
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α(λ) > λ such that λ ∈ V (λ) ⊆ [0, α(λ)[ ∩S ∈ U . Observe that if λ < µ are points of T

with α(λ) < µ, then V (λ) 6= V (µ). Choose β(λ) < λ such that S ∩ ]β(λ), λ] ⊆ V (λ). The
Pressing Down Lemma yields a point γ and a cofinal set T

′ ⊆ T such that β(λ) = γ for
each λ ∈ T

′
. Choose δ ∈ S such that the set A = S ∩ [γ, δ] is infinite. Because κ is regular

and uncountable, there are uncountably many λ ∈ T
′
with λ > δ. But then A is a subset

of uncountably many distinct sets V (λ) ∈ V, and that is impossible.

3.6 Corollary: A monotonically normal space X is paracompact if and only if every
open cover of X has an open refinement that is an ω-in-ω collection. In particular, this
characterization applies to any generalized ordered space.

Proof: By a result of Balogh and Rudin [BR], if a monotonically normal space is not
paracompact, then it contains a stationary subset of a regular uncountable cardinal as a
closed subspace. Now apply (3.5).
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