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1. Introduction.

By the word “line” in the title of this paper we mean a linearly ordered topological space, or LOTS. Ever since
Kurepa’s early work on the Souslin problem [K], topologists have used trees to study lines. Starting with a lin
one can construct a tree whose members are convex subsets of the original line and that sometimes reflects cri
properties of the line. Alternatively, one can start with a tree from some other source and construct its bran
spaces, often obtaining lines with interesting properties. For more details, see Section 2 below, and for rec
examples of these constructions, see [HINR], [Sh], [To].

The goal of this paper is to explore certain aspects of the interaction between lines, trees, and branch spa
and to obtain some results related to the problem “Which lines can be realized as the branch spaces of nice tree
In Section 2 we give relevant definitions and describe the background and motivation for our study. In Sectic
3 we characterize those situations in which a LOYS®mbeds in the branch space of a tree constructed using
convex subsets oK. In Section 4 we give examples of “nice” properties that a tree might have and list the
topological consequences for their branch spaces. In Section 5 we give an example of the interaction betwe
trees and lines by characterizing hereditarily ultraparacompact LOTS in terms of the kinds of branch spaces
which they embed. Specifically, we prove that a LOY$s hereditarily ultraparacompact if and onlyXfembeds
in the branch space of a tré2, C) having the properties that:

1) if N isanode off and ift € N is not an endpoint ofV, then[t] is a clopen subset of the branch
space; and

2) if ¢t is an endpoint of the nod¥, then{s € 7 : s C ¢} is a branch off; and

3) if B is a branch of7, then both set§« : the node of7” to which B(«) belongs has a left (resp.
right) endpoint} are hereditarily paracompact subsets of the ordinal sjae¢ wherex is the height
of the tree7 .



This result is not intended as a working characterization of ultraparacompactness in ordered spaces but rat
as an example of the kind of theorems about line-tree-branch space interactions that are possible. We also ¢
examples showing that the conditions above cannot be replaced by others considered in Section 4.

2. Background and statement of the problem

By alinearly ordered topological spadg OTS) we mean a tripléX, <,7) where(X, <) is a linearly ordered
set and’ is the usual open interval topology of the orderEasy examples show that there can be sub$&tsX
with the property that the subspace topologyYors not the same as the open interval topology inducet doy
the restriction toY” of the linear ordering ofX. That ledCech to introduce the notion ofgeneralized ordered
space(GO-space), i.e. a tripleX, <, 7)) where< is a linear ordering oX and where7 is a Hausdorff topology
on X having a base consisting of convex subsetXof(Recall that a subsét C X is convexprovidedz € C
wheneverz lies between two points af'.) It is known that the GO-spaces are precisely the spaces that embed
topologically in some LOTS.

By atreewe mean a partially ordered 9&t, C) with the property that for eache 7, these{s € 7 : s C ¢}
is well-ordered by_. By 7, we mean the set of all elemerits 7 with the property that the set of all predecessors
of tin (7,C) is order-isomorphic to the sé, «) of ordinals. The sef,, is called then-th level of 7 and for
anyt € 7, we define thdevel oft by lv(t) = a. Clearly, no treel” can have7, # () for o > |7 | so that for
sufficiently largex, 7, = () and the height of is the least ordinak such that7,, = (). The ordinalx might or
might not be a limit ordinal. As explained below, the elements of a tree might be convex subsets of some lineatr
ordered set, but they might also be some completely different kind of object. See for example the construction
an Aronszajn tree given in [J]. [R2], or [To]. To emphasize this fact, we will often speak abstnacttree when
we want to emphasize that the tree is not necessarily made up of convex subsets of some known linearly orde
set.

For anyt € 7 thenode containing is the set of alk € 7 having exactly the same predecessors as tldés
s andt belong to the same node @f thens andt belong to the same level @f, ands andt are incomparable
using the partial order of the tree. Bybaanchof 7 we mean a maximal linearly ordered subsetdfC). If B
is a branch of the tree, then for eacheitherB N 7., = () or the setB N 7, has exactly one element which we
denote byB,, or B(«). Observe that a branch might or might not have a last element.

Suppose each nodé of 7 is given a linear ordering: . (There is no assumption made about how the linear
orders of different nodes are related to each other.) Given these orderings of the nodes, we can linearly order
set of all branches of as follows. LetB andC be distinct branches df . Leta = fd(B, ) by which we
mean the first ordinal wherg andC differ. Theng < « implies Bs = Cj so thatB, andC,, belong to the same
nodeN of 7. We defineB <z C'if and only if B, <y C, wherea = fd(B, ). With the usual open interval
topology of the ordek 5, the set3 of all branches of is a LOTS called théranch space of . To some extent,
that is a misnomer because the orderings chosen for the nodedetiermine the branch space just as surely as
does the tree itself. However, one always has:

2.1 Lemma For eacht € 7, the seflt] = {B € B : t € B} is a convex subset of the branch space, and so is
[N] = U{[t] : t € N} for any nodeN of 7.

Remark: In general one cannot say whether the $¢tand[/N| will be open or closed in the branch space, and
those simple topological properties[¢fand[/NV] are crucial as will be seen from later sections.

The process described above goes from a tree to a line. There is a reverse process that constructs trees ste
with linearly ordered sets. This second process has been described in different ways by different authors, and



all descriptions are equivalent. What we describe below is a very general construction that seems to cover m
cases.

The levels of the tree are constructed recursively, and depend upon the choice of a process that breaks up

convex subsets of the linearly ordered g€t <). For any convex subsét C X, let V'(C) = 0 if |C| < 1 and if

|C| > 2, then let\V (C') be a pairwise disjoint collection of convex proper subsets that cdvérefineZ, = { X }.

If 7., is defined, then lef,, ., = J{N(C) : C € 7,}. If Ais alimit ordinal andZ,, is defined for allx < A, then

let7y = U{N(C) : C ={ta : @« < A}, t, € T, and |C| > 1}. For large enough ordinats, 7, = . (This

is guaranteed to happen far> 2/X!, for example.) Defing to be the union of all nonempty,. The partial
ordering of7 is reverse inclusion, i.es, C ¢ if and only if as convex subsets &f we havet C s. Then7 is a

tree. (Note that we do not really need to defivi¢C') for every convex subsét C X, but only for those convex

sets that appear somewhere in the recursion.) Any tree constructed in this fashion is paltétoa treefor

(X, <).

Unlike the situation for abstract trees, there is a natural linear ordering of each node of the partition tre
T; indeed the same natural linear ordering applies to each ®vef 7. Members of each nod® of 7 are
pairwise disjoint convex subsets X, <) and we define that < t if each point ofs precedes each point of
in the ordering of X, <). This ordering of nodes will be calletie precedence order froik. Using that natural
linear ordering of the nodes af, we can define a branch space just as we did for abstract trees. If one use:
the precedence order frorXi to impose a linear ordering on each nodeZqfit is reasonable to ask about the
relation between the original LOTX and the branch space of the partition ttEe For any pointz € X the
setB(z) = {t € T : x € t} is a branch off and the functiore : X — B given bye(z) = B(z) is 1-1 and
increasing. However, there is no guarantee ¢hatcontinuous or onto. We begin with two easy examples.

2.2 ExampleLet [0, 1) be a subspace of the usual set of real numbers. For each conyex$&t [0, 1) choose a
strictly increasing sequenee= ¢y < ¢; < -- - that hadim,,_,. ¢, = band|c,11 —¢,| < b‘T“ for eachn > 0. We
may assume that if andb are both rational, then so is eagh (This extra assumption is not needed in the current
example, but will be useful later, in (5.9).) Definé([a, b)) = {[cn,cns1) : n > 0}. Now defineZ, = {[0,1)}

and forn > 0let7,., = U{N(¢) : t € 7,,}. The height of7 isw and7 = |J{7, : n < w}. Each node of
beyond level 0 is countably infinite and its linear ordering is the precedence order induc€d,fipas described
above. We obtain a linearly ordered branch sp8and, as will be seen in Section 3, the original spgice)
embeds in3 under the mapping(xz) = {t € 7 : x € t}. In fact, becausé, 1) is connected an# has no right
endpoint, one can show thats a homeomorphism froij), 1) onto 5. O

Our next example shows that it can happen that a LAT&oes not embed in the branch space of one of its
partition trees and that the functien X — 5 may fail to be continuous.

2.3 ExampleLet X = [0,1) be a subspace of the real line. For any conveXsé) C X defineN ([a,b)) =

{[a, b, [t b)}. Let Ty = {X} and forn > 0 define7,; = J{N(C) : C € T,} andT = |J{7, : n > 0}
Each node off has exactly two members. A result of Todevic (see 4.1 below) shows that because each node
of our tree is finite, the branch space must be compact. Consequ¥&ntly,[0, 1) is not homeomorphic to the
branch space in this example. But even more is true: the funefion= B(z) is not continuous because if it
were, then it would be an embedding®f= [0, 1) into B, and the latter space is totally disconnected so that the

initial spaceX = [0, 1) cannot be embedded in the branch space atall.

Examples such as the two mentioned above led us to wonder when a line-to-tree-to-branch-space construc
would result in a branch space that contained the original line. This problem is solved in Section 3, at least for tl
natural mapping fromX to the branch space. Examples also led us to ask which LOTS could be realized as th
branch space of a tree.



That second question is easily answered. In his article [To], Tedr points out an extreme example of the
line-to-tree construction.

2.4 Example Every linearly ordered sétX, <) is the branch space of some tree. For any convex’saetany
linearly ordered sek, defineN' (C) = {{z} : « € C} if |C| > 2 and N (C) = ( otherwise. The resulting
partition tree has exactly two levels = { X } and7; = {{z} : z € X'}, and its only non-trivial node i%; which

we linearly order to make it a copy of the origingl The branch space of this tree is exactly the original linearly
ordered setX, <). Thus every LOTS is the branch space of some tree, and every GO-space embeds in the brar
space of some treé€]

Some might see Tordevic's Example 2.4 as showing that there is no topological utility in trying to embed
LOTS in the branch spaces of trees, since they alre@aeyranch spaces of trees. Others might conclude that
the world of branch spaces is exactly as pathological as the world of lines. We reached a different conclusic
namely that it would be interesting to investigate further restrictions on trees so that their branch spaces would hz
interesting topological properties. In Section 4 we give examples of special properties of trees that have significe
ramifications for their branch spaces. In Section 5 we give a characterization of hereditarily ultraparacompact G
spaces based on the existence of certain kinds of trees whose branch spaces contain the given GO-space.

3. Continuity of the natural injection

As noted in Section 2, if we begin with a linearly ordered (S€t <), we can build a partition tre& whose
members are convex subsetsXof Furthermore, each node, and indeed each level, wiherits a natural linear
ordering fromX that we call theprecedence order fronX', namely that a convex sete 7, precedes another
convex set € 7, if and only if each point: of the sets hasz < y in X for everyy € t. Using that natural
ordering for each node, we construct the branch sggctthe treeZ7 and endow it with the usual open interval
topology of its ordering.

As noted in Section 2, there is a natural function X — B given bye(z) = {t € T : = € t}, and this
function is always 1-1 and increasing. We will calthe natural injectionof X into the branch space df.
Examples 2.2 and 2.3 show thamight or might not be continuous. Because any 1-1, increasing function from
one LOTS into another is always an open mapping from its domain onto its image set, we see that the natu
injectione : X — 7 is continuous if and only if it is a topological embedding.finto the branch spacB of
7. In this section we study the s€tX] and give necessary and sufficient conditions for continuity of the natural
injectione.

3.1 Propositiont The set[X] is always dense ii.

Proof: Suppos&, D € Bwith B <z D and(B, D) # (), where<; denotes the linear order on the branch space
B. Computen = fd(B, D). ThenB,, the unique member d8 N7, preceded,,, the unique member dd N7,
while Bs = Dg for each3 < a. Furthermore3, andD,, belong to the same nod¢, of 7. Let <, be the linear
ordering ofV,,. If there is some € N, with B, <, t <, D,, choose any < t, Thene(z) € (B, D). If B, and

D, are adjacent members 6f,, choose any’' € (B, D) and note thaBBs = C3 = Dy for eachg < a, while
eitherB, = C, <, D, or elseB,, <, C, = D,. Consider the case where, = C, <, D,, the other case
being analogous. Compute= fd(B, C). Theny > « and in the nodéV, that contains botli., andC., we have

B, <, C,. Choose any € C.,. Thene(x) € (B, D). Therefore the set{ X] is dense in3. O

Our next lemma records the facts that we will need about the interactions betWeen, the convex subsets
of X that belong to the partition trg@, C), and the branch spa¢8, <z).

3.2 Lemma Let B be the branch space of a partition ttEef the linearly ordered séiX, <). Then, with notation
as above:



a)if B € Bandif() # Bz C (<, z) for someg and some: € X, thenB <z B(2);
b) if Bis a branch of7, then|"\{t:t € B}| < 1;

c) if D is a non-empty subcollection @f that is linearly ordered by reverse inclusion (i.e., by the
partial ordering= of 7)) and hag") D = ), then the collectiorB = {t € 7 : ¢t contains some member
of D} is a branch of7 .

Proof: To prove (c) observe thatiif € B for i = 1,2, then there exist; € D with d; C t;,. Hencet; Nty #
so thatt; andt, are comparable if". HenceB is a linearly ordered subset @f. Supposes is not a branch of
7. Then there is a branafi of 7 with B C C. Chooses € C' — B. Thens is comparable to each € D, and
d C s is false for eachl € D (otherwises € B). Hences C d for eachd € D, showing thaf{ ) D contains the
non-empty set, contrary to) D = (). Therefore,B is a branch off as claimedd

3.3 Proposition Let 3 be the branch space of a partition tfEef the LOTS(X, <, Z). With notation as above,
the following are equivalent:

a) the functiore : X — Bis notcontinuous at the point € X;

b) eitherx is a limit point in X of the set(«, z) and for somex the setB,(x) is defined and has
x € B,(z) C [z,—) and the collectiorD = {t € 7 : tis a cofinal subset of—, x)} is nonempty
and hag\ D = 0, or elsex is a limit point in X of the set(x, —) and for somex the setB,(z)
is defined and has € B,(z) C («+,z] and the collectiorf = {t € 7 : t is a coinitial subset of
(z,—)} is non-empty and hg5/ € = 0.

Proof: First we show that a) implies b). Suppose thiatnot continuous at. Without loss of generality we may
assume that is a limit point of («—, ) and that

(*) someB € B has the property thaB(y) <z B <p B(z) for everyy € («, ).

Let o« = fd(B,B(z)). ThenB, precedesB,(x) in X and Bz = Bg(x) for every3 < «. We claim that
r € By(z) [z,—). To verify that set inclusion, suppose somec B,(z) hasy < z in X. Then for
8 < a, Bs(y) = Bg(x) = Bs while B,(y) = B,(z) showing thatB,, precedesB,(y) in X. HenceB <p
B(y) < B(x), contradicting (*). ThusB,(z) C [z, —).

We claim that the seB,, is a cofinal subset of—,z). ThatB, C («+,x) follows from the fact thatB,
precedes3,(z) in X. To see thai3, is cofinal in(«+, z), suppose not. Then there is some X withy < z
andB, C (+,y|. Becauser is a limit point of (<, =) there is az € (y,x). Apply Lemma 3.2(a) to conclude
that B <z B(z) <g B(x) contrary to (*). Therefore3, is a cofinal subset of—, x) and the collectiorD is
non-empty.

Next, we show that if3 > « and Bg is defined, then the se€8; is a cofinal subset of—, z). Because
Bs C B, C («,x) itis enough to check cofinality. The proof of cofinality uses (3.2-a) again. Therefore
{Bs : B > aandBg is defined} C D, sothat\D C (\{Bs : f > « and B is defined} = ({t : t € B}.
Hence, to complete the proof of (b), it is enough to show fhét: ¢ € B} = 0.

BecauseB is a branch of7 we know that|({t : t € B}| < 1 by (3.2-b). For contradiction, suppose
(Wt :t € B} = {w} forsomew € X. ThenB = B(w) andw € B, forcesw < x. Butz is a limit point of

5



(<, x) so there is some € (w, ) and then we hav® = B(w) <p B(z) <g B(x) contrary to (*). Therefore,
D = 0 as claimed in (b).

We now prove that b) implies a). Assume that we have a pothiat is a limit point inX of the set(«, z)
and ana so thatr € B,(x) C [z,—) and that the collectio® = {t € 7 : t is a cofinal subset of—, z)} is
nonempty and haS) D = (). Because any two membersBfhave non-empty intersection, any two members of
D are comparable ii. Then the collectiorB = {t € 7 : ¢t contains some member &f} is a branch of7 in
the light of (3.2-c). By hypothesis i, someB, € B hasB., C (+,z) and therefore3 <z B(x) by (3.2-a).
Consider any < z in X. There is somé& € D C B with y ¢ d. Because) < = andd is cofinal in(«—, x), we
conclude thatl C (y,—). But thenB(y) <z B and therefore:(x) is not a limit point inB of {e(y) : y < z}
even thouglr is a limit point in X of (<, z). Thereforee is not continuous at, as claimed in (a)X

4. Examples of “nice” tree properties

In this section, we return to the study of abstract trees, i.e., trees that do not necessarily come from conv
sets in a given linearly ordered set. What kinds of properties of such trees might lead to interesting topologic
properties of their branch spaces? The following result, used in Example 2.3 above, is due &eViedao].

4.1 Proposition Suppose that each node of a tfEas linearly ordered in such a way that it is order-complete.
Then the branch space @fis compact.

Another property of trees that has very strong topological consequences for branch spaces (and for anyth
that embeds in one of the branch spaces) is that for each, the seft] = { B € B : t € B} is open in5. What
would force eact] to be open in3? One sufficient condition is that for eacke 7 the nodeN = {u € 7 : uis
an immediate successor@fis nonempty and the linearly ordered §8t <) has no endpoints. The next result
describes properties of the branch space of such a tree.

4.2 Proposition Let 7 be a tree with the property tht is open in the branch spagkfor eacht € 7. Then:

a) each seftt| is clopen inB;

b) the branch spads is zero-dimensional;

c){[t] : t € T} is abase foB3 that is a tree under reverse inclusion, if&is non-archimedean;

d) any space that embeds/#has a continuous separating family in the sense of [BL] [St]; and
e) any space that embedshns hereditarily paracompact.

Proof: Fixt € 7 and computer = [v(t). For eachs < « there is a uniqueéz € 7 with ¢z C ¢. Then

B—[t]=|J{ls]:s € Ta—{t}} U J{ls] : B < aand s € Ty — {ts}}.

Hence eaclit] is clopen inB3. For each brancl? € B, {[t] : t € B} is alocal base aB. Therefores5 is zero
dimensional. The collectiofit] : t € 7} is a base foi3, and is a tree under reverse inclusion. Thus c) holds.

The proof of d) is due to Gary Gruenhage. The notion of a continuous separating family was introduced i
[St] and we verify that3 satisfies the definition given there. For each g&irC) of distinct branches of find
a = fd(B,C) and letD = min(B, C). Define¥ (B, C) to be the characteristic function of the clopen|¢eta)].
Then¥ (B, C) is a continuous function fronX to R, and¥ : B> — A — C,(B) is continuous, wher€’, (53)
is the space of all continuous real-valued functionslotopologized by the topology of uniform convergence.
Furthermore¥ (B, C)(B) # ¥(B, C)(C). Hence d) holds.
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Assertion e) now follows from a result of [BL] that any GO-space with a continuous separating family must
be hereditarily paracompact. Direct proofs of hereditary paracompactnBsarefalso possiblel

Let us give another example of how embedding in branch spaces of “nice” trees can have topological cons
quences. Recall that a Souslin tree is a i8eC) of heightw, that contains no uncountable chains (= linearly
ordered subsets) or anti-chains (= sets whose elements are pairwise incompatible in the partial ordering of
tree). Whether a Souslin tree exists is undecidable in ZFC. Starting with any Souslin tree, one can obtain anotl
Souslin treel” with the property that each node is a countably infinite set. Linearly order the nodes of that secon
tree to make each a copy of the geof all integers. Ther¥ has the property that] is open in the branch space
for eacht € 7. Gruenhage proved:

4.3 Proposition Suppos€7,LC) is a Souslin tree with the property that ed¢his open in the branch space
B. If X is a space that can be embeddedsinthen X x X is hereditarily paracompact. In particuldt,is a
non-separable, hereditarily LindéILOTS for which5? is hereditarily paracompact.

Proof: LetW be any collection of open subsets®f and letZ = | JW. It will be enough to show that there is
an open cover of that is star-countable and refings.

We say that an ordered pdis, ) of elements of7 is minimal if the open sefs| x [t] is a subset of some
member of\) while no other ordered paifs’, t') with s C s andt’ C ¢ has that same property. Théh=
{[s] x [t] : (s,t) is minimal} is an open refinement &% that coverg J V. We claim that/ is star-countable. For
contradiction, suppose thed,, ¢y) is minimal and that there are distinct minimal pa&iss, t,,) with the property
that([so] % [to]) N ([sa] X [ta]) # 0 for eacha in the uncountable set. It follows that[sy] N [s,] # 0 so thatsy, and
s, must be comparable ifV, C) for eacha € A. The elemenst, has only countably many predecessorgin
Suppose that there is one predecessuirs, with the property that the sét = {a € A : s, = u} is uncountable.
For eachv € B choosélV,, € W with [u] x [t,] C W,. The sef{t, : « € B} cannot be an anti-chain, so there
exist distinctoy, ay € B with t,,, C t,,. But then

[SO@] X [taz] = [u] X [toe] C [u] X [tal] = [501] X [tm] C Wa,

and that is impossible becauge,,, t.,) is minimal. Therefore, only countably many of the pdiss, t,) have
So C so. LetC=A—{a € A: s, C so}. ThenC is uncountable.

Leta € C. Becausé|[so] x [to]) N ([sa] X [ta]) # 0, we conclude thdt,|N[te] # 0 and hence,, is comparable
to ¢y in 7. Sincet, has only countably many predecessorginit follows that the seD = {a« € C' : ¢, C t,}
is uncountable. Choose amy € D with (sg,%9) # (say,ta,). But then the existence @k, t,) contradicts
minimality of (s,,,t.,). Therefore, the collectiolf is a star-countable open cover |gf)V that refinesV, as
required.C

Gruenhage’s Proposition 4.3 contrasts sharply with an earlier result about certain Souslin lines that is due
Rudin [R1]:

4.4 Proposition SupposeX is a compact Souslin space, i.e., a compact non-separable, hereditarilydfindel
LOTS. ThenX? is not hereditarily normal.

The hypothesis that eagtj is open in the branch space is very restrictive. An example of a weaker, but still
“nice,” condition that a tree might satisfy is that for eacke 7', the set]t] has non-empty interior. We thank
the referee for pointing out that our original proof that any such branch space is a Baire space actually prov
more, namely that any such branch spacefavorable. Consequently, the product of any such branch space with
another Baire space is a Baire space.



To definea-favorability, recall the Banach-Mazur game, a topological game played by two playsard 5
using non-empty open sets. Playechooses any non-empty open $gtand playerx responds by choosing a
non-empty open subs&t C V;. Then players chooses a non-void open 3étC U;. For anyn > 1, onceg has
chosen the open s&t, C U,,_1, playera responds by choosing a non-empty operiset V,,. Playera wins the
game if {U, : n > 1} # (), and a topological space is said toddavorableif player « has a winning strategy
in the Banach-Mazur game [Ox], [MN].

4.5 Proposition Suppose thaf is a tree with the property that for eatke 7', ints([t]) # 0. Then the branch
space is a-favorable.

Proof: Suppose we are at stagef the Banach-Mazur game and that nonempty openlgets U; O --- D
U,.-1 2 V, have been chosen by the two players. Then playshould find the first ordinal,, such that some
t € 75, has[t] C V,. Playera should choose any su¢tand respond witl/,, = Int([t]). Any play of this game
will then produce a sequenée < 4, < --- of ordinals and points, € 7;, witht; <7 t, <7 ---. Thereis a
branchB of 7 that contains each),, and this branch haB € (\{U,, : n > 1} as requiredD

It is much easier for a tree to satisfy the hypothesis of (4.5) than to satisfy the more restrictive hypothesis th
each seft| is open in the branch space. One sufficient condition, in the light of (2.1), is that at least three branche
run through each e 7.

5. Characterization of ultraparacompactness via embeddings in branch spaces

Recall that a topological spaceuliraparacompactf each open cover ok has a disjoint open refinement. In
this section, we give what could be viewed as a characterization of ultraparacompactness in a LOTS or GO-spsz
However, that is not our real goal. Instead, our goal is to illustrate the possible interaction between properties
an ordered spack and the kinds of trees whose branch spaces coifaas a subspace.

Faber [F] gave a particularly useful version of an earlier characterization of paracompactness in a LOTS
GO-space that is due to Gillman and Henriksen [GH].

5.1 Proposition A GO spaceX is paracompact if and only if whenev&r = G U H whereG and H are convex
open subsets of with the property that < y for eachr € G and eachy € H, there are closed discrete subsets
D C GandE C H such thatD is cofinal inG and E is coinitial in H. (Note that one of the sets, H might be

empty.)
Because a topological spaéeis hereditarily paracompact if and only each open subspace is paracompact
and because each open subspace of a GO-space is the topological sum of its convex components, we have

5.2 Proposition A GO-spaceX is hereditarily paracompact if and only if each open convex subspamieX
contains a relatively closed discrete subset that is both cofinal and coinitial in

Remark: One way to obtain a relatively closed discrete cofinal (respectively coinitial) sub%etrof5.2) is to
show that there is a cofinal (resp. coinitial) convex subis&t Y that admits a pairwise disjoint open cover by
sets that are not cofinal (resp. not coinitial)yin Then choosing one point from each member of the covéf of
gives the required set.

Our next result must be well-known. It can be proved using the “method of coherent collections” described i
[L]. We thank Jerry Vaughan for pointing out that it also follows from the fact that “ultranormal plus paracompact
implies ultraparacompact” which is proved in [EI].

5.3 Proposition A GO-spaceX is (hereditarily) ultraparacompact if and onlyXf is (hereditarily) paracompact
and zero-dimensional



Our goal in this section is to characterize GO-spaces that are hereditarily ultraparacompact in terms of cert:
kinds of trees in whose branch spaces they embed. We will consider three properties ¢7alrge

R-1) if N is anode off and ift € NV is not an endpoint of the linearly ordered 8t <y ), then[t]
is a clopen subset of the branch space;

R-2) if ¢ is an endpoint of the nod¥, then{s € 7 : s C ¢t} is a branch of7;

R-3) if B is a branch off, then both set$« : the node of7 to which B(«) belongs has a left (resp.
right) endpoint} are hereditarily paracompact subspaces of the ordinal §pacewherex is the
height of 7.

We will prove:

5.4 Theorem A GO-spaceX is hereditarily ultraparacompact if and onlyXf embeds in the branch space of a
tree having properties R-1, R-2, and R-3.

Outline of Proof: We will prove a sequence of lemmas that, when combined, establish (5.4). In (5.5) we wil
show that the branch space of any tree satisfying R-1, R-2, and R-3 must be zero-dimensional. In (5.6) we w
show that the branch space of a tree satisfying R-1, R-2, and R-3 must be hereditarily paracompact. Combin
(5.6) and (5.5) with (5.3) will show that a branch space of a tree satisfying R-1, R-2, and R-3 must be hereditari
ultraparacompact. That establishes half of (5.4). For the converse, in (5.8) we will start with any GO-space th
is hereditarily ultraparacompact and embed it into a LOTS with the same property. Then we will then show ho
such a LOTS can be used to construct a tree satisfying R-1, R-2, and R-3, and will invoke results from Section
to insure that the LOTS embeds in the branch space of the tree. That will complete the proof of (5.4)

5.5 Lemma Suppose the tre€Z, C) has properties R-1, R-2, and R-3. Then its branch spaisezero dimen-
sional.

Proof: We show that iB <z D in B, then[B, D] is not connected. Compute= fd(B, D). ThenB, and D,
belong to the same nodg€, of 7 and B, <., D, where<, denotes the linear ordering of,. If there is some
t € N, with B, <, t <, D, then by R-1 the s€t] is clopen inB and the set§ = {C' € B: C' <z E for some
E € [t]} andH = B — G are clopen sets if§ that separaté and D. In case no suchexists, thenB and D are
the left and right endpoints a¥,, so that by R-2B = {Bs : § < a} andD = {Dg; 8 < a} and we see thaB
andD are adjacent points @ so that| B, D] is not connected

5.6 Lemma Suppose the tre€7, C) has properties R-1, R-2, and R-3. Then its branch spaisehereditarily
paracompact.

Proof: In the light of (5.2) it will be enough to show that each convex open subgpats has a relatively closed
discrete subset that is cofinal and coinitiaDin We will construct a cofinal relatively closed discrete subset, the
coinitial set construction being analogous. Note thaf iias a right endpoint, or §’ has cofinalityw, there is
nothing to prove, so we will assume thdt)) > w;.

For eachn there is at most one s&t € 7, so that[t,] N} is a cofinal subset @f. Letoc = min{« : ¢, does
not exist}. Theno is less than or equal to the height of the tfee

Observe that the sdtt, : o < o} is linearly ordered by_ and that inB the corresponding collection
{[ta) N Y : @ < o} is well-ordered by reverse inclusion. There are several cases to consider, based on the natt
of the setS = ({[t.)] N Y : @ < ¢} and the ordinat.



Case 1: Where # (). ThenS is a cofinal subset @Y so thatS must be infinite, becausé()) > w;. For each

B € S we haveB € |[t,] for eacha < o so that{t, : a < ¢} C B. Because there is more than one brafth
with this property, the seftt,, : @ < o} cannot be a branch af. ThereforeB, is defined for eacl3 € S and alll

B, for B € S belong to the same nod€, of 7. Furthermore, no seB,| N ) can be cofinal i) because of the
definition of o. Hence, naB, is the right endpoint ofV, and at most one is the left endpoint &f. Therefore,
using all but at most one of the sgf3,] we obtain a pairwise disjoint cover of a cofinal convex subsét bfy
clopen sets, none of which is cofinalJh Choosing one point from each of the clopen sets, we obtain a relatively
closed discrete cofinal subsetYfas required.

Case 2:S = () ando is not a limit ordinal Write o = v+ 1. ThenS = [t,] N ) # () is a cofinal convex subset of
YV, and that is impossible in Case 2.

Case 3: wher& = () ando is a limit ordinal.If c¢f(c) = w then the fact tha$ = () would force) to havect()) =

w contrary tocf()) > w;. Hence assume thaf(c) > w;. Let L = {a < o : the nodeN,, of 7 to whicht,
belongs has a left endpoint in its given linear order}. According to R-3,L is hereditarily paracompact when
viewed as a subspace of the ordinal spéice). Becausef(o) > w there is a closed unbounded gétC [0, o)
with C'N L = (). We next establish a sequence of claims.

ClamZ® ({[NoJNY : a < o} = 0 whereN, is the node off to whicht, belongs andN,]| is as defined in
(2.1). For suppos® € ({[N.]NY : a < ¢}. Fixanya < o. Because is a limit ordinal,a + 1 < 0. But
[Nat1] C [ta] sothatB € S. Hence{[N.]NY : @ < o} C S. Butin case 3S = () so that Claim 1 holds.

Claim 2 If A < o is alimit ordinal, ther{[N.] N Y : @ < A} C [N,]. For supposé3 € ({[No]NY : a < A}.
Then for eachv < A\, a+1 < AsothatB € [N,.1] C [t.]. Therefore{t, : « < A} C B. Because\ < o the
set{t, : @« < A} is not a maximal linearly ordered subset®fo that{t,, : « < ¢} C B forcesB, to be defined.
BecauseB, has exactly the same predecessord/inC) as does), we see thaBB, € N, and thereforeB € [N, ]
as required.

Claim 3 For eachn € C the sef N,| N Y is a clopen cofinal convex subsetYf The set is always convex, and

is cofinal in) becausé, € N,. It remains to verify that the set is clopen. The only possible problem is that
[N.] N'Y might have a limit pointB € ) such thafN,] Y C (B, —). BecauseB ¢ [N,|, B does not have
exactly the same predecessors asChoose the firsy < a such thatB, # t,. ThenB, € N,. Becausét,| N Y

is cofinal in), it cannot be tha3, >, ¢, so that so thal3, <, t, where<, is the given linear ordering of the
nodelN,. Because, is defined andy < «, it cannot be true thaB, is the left endpoint ofV,, in the light of

R-2. Becauses, <, t,, B, is not the right endpoint oiV,. By R-1, [B,] is a clopen subset @ that contains

B and is disjoint from¢,]. Buty < « so that[N,] C [t,] showing thatB is not a limit point of[V,]. Therefore

[N,] is closed inY.

For eacha € C, let o™ be the first element of' that is larger thanv. Such an ordinal exists because
cf(C) > w. Define€(a) = Y N ([Na] — [No+]). Then eaclt€(«) is clopen in) and no se€(«) is cofinal in),
for o € C. Leta, be the first member af’ and fix By € Y N [Ny, ]

Claim4 [By,—)NY C (H{&(a) : a € C}. For supposeB € Y andB > By. BecauseC is a cofinal
subset of0, o), Claim 1 yields{[N.] N Y : a € C} = (. Choose the firstt € C with B ¢ [N,]. Then
B € [Ng] for every s € C with 5 < «a. If a were a limit point ofC, then Claim 2 would apply to show that
Be({[Ng|nY:B8eCn[0,a)} =[N, contrary toB ¢ [N,]. Becaus&” is a closed subset i, o), there is
somef € C' with « = 51, and thenB € £(3). That proves Claim 4.

Now choose one point from each $&tv). As noted in the Remark after Proposition 5.2, we obtain a relatively
closed discrete cofinal subset}f That completes the proof of Lemma 5[8.
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5.7 Corollary: Any GO-space that embeds in the branch space of a tree with properties R-1, R-2, and R-3 mu
be hereditarily ultraparacompact.

Proof: Combine (5.3) and (5.6}

5.8 Lemma Any hereditarily ultraparacompact GO-space embeds in the branch space of a tree having properti
R-1, R-2, and R-3.

Proof: LetY be any hereditarily ultraparacompact GO-space. We first showtleatbeds in some LOTS that
is hereditarily ultraparacompact and dense ordered in the senge thatZ () wheneverr: < y are points ofX.
Denote the given topology &f by S and the usual open interval topologyYofoy Z. The first step is to construct
the lexicographically ordered s&t, given by

YV x{0}H)U{(y,q):yeY, [y—=)eS—-T7,¢qeQ, ¢<0}U{(y,q):y €Y, («—y eS—-17,¢eQ, ¢=>0}

whereQ is the set of rational numbers. Théf is a hereditarily ultraparacompact LOTS that contdinas a
closed subspace. Howev&r, might not be dense ordered, so we fill in any jumpsXefwith copies ofQ. Let
Jo={z € X :forsomey € X, z < yand(z,y) =0} and.J; = {y € X : for somez < y, (z,y) = 0}. Now
let X be the lexicographically ordered set

X=X x{0H)U{(2,9):¢€Q,g>0,2€ Lo} U{(2,9) : ¢ €Q, ¢<0,2 € J1}.

ThenX is a hereditarily ultraparacompact LOTS that is densely ordered and contains the original GO-gace
a closed subspace. It will be enough to show fkismbeds in the branch space of a partition fethat satisfies
R-1, R-2, and R-3.

For any convex subsét C X, let \V/(C) = 0if |C] < 1. If |C| > 1, then letE P(C) be the set of all endpoints
of C, if any. BecauseX is hereditarily ultraparacompact, there is a pairwise disjoint colleddgri) that covers
C — EP(C) and has the properties that

a) each member @P(C) is a clopen convex subset &f and is a subset af' — EP(C);

b) the collectiorP(C') has no first or last members in terms of the precedence orderXrom

We note that it is possible to obtain (b) because theXset dense-ordered. Now definé(C) = P(C) U {{z} :
x € EP(C)} and linearly orde\V(C) using the precedence ordering froth Observe that for each convex set
C' C X with more than one point, every member/fC') is an infinite convex set.

Now define the partition treg as described in Sections 2 and 3 and consider its branch gpdeach node
and each level of is linearly ordered by a precedence ordering inherited ffomwe say that a convex set
precedes a convex skin the precedence order frof providedz < y for eachr € s andy € t. Observe that

(*) if N isanode of7 at a non-limit level, the N, <) has no end members.

Proposition 3.3 guarantees that the natural injection emBeutgo 5. It remains to prove that the partition
tree(7,C) —whereC is reverse inclusion — satisfies properties R-1, R-2, and R-3.

First we verify R-1. Fix an ordinatv and a nodeV,, at levela of the tree. LetE(N,) be the set of end
members ofV, in the precedence order froii and lett € N, — E(N,). Then, viewed as a subset &f, the
convex set has no endpoints, so that the nadléof all immediate successors bfs exactly the collectiorP(¢)
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and, by construction, that collection has no end members with respect to the precedence ordér Trbat is
enough to forcet] to be an open subset of the branch spdcélext we show thaft] is also closed in the branch
space3. Because is not an end member of the nodg we may choose membessu € N, such that the convex
subsets of X precedes andt precedes: in (X, <). Therefore,[t] is not a cofinal or coinitial subset ¢iV,].
Because the interior dfV,] in the branch spacB is covered by the pairwise disjoint open convex getdor

v € N, — E(N,), we see thaft] is also a closed subset Bf

Next we verify R-2. Suppose thal is a node of7 and thatt is an end member oWV is the precedence
ordering inherited fromX. Then by (*) above N must be a node at a limit leveland each member a¥ has
exactly the same set of predecessor§ZinC ), namely{t, : v < A} wheret, is the unique member df, that
lies belowt in the ordering of 7, C). Viewing eacht, as a convex sunset of, let C' = (\{t, : v < A}. Then
t = {x} for one of the endpoints € C, and therefore has no successor i{Y,C) at level\ + 1 or higher.
Therefore{s € 7 : s C ¢} is a branch off as required by R-2.

Finally, we verify R-3. LetB be any branch of . Then for some ordinat we haveB = {t, : « < o} where
to € 7,. First consider the case wherés a limit ordinal, i.e., where3 has no final element ifZ", C). For each
a < o let N, be the node of to whicht, belongs. BecausB continues beyond level + 1, ¢, cannot be an
end member ofV,, is the precedence ordering frai Therefore, ifa < 5 < o and if we viewt,,, ¢z as convex
subsets ofX, thent, D t3. Even more is true:

(**)if v < < o then there are points b € X such that, as subsets &f, t; C (a,b) C [a,b] C t,.

Let L = {a < 0 : N, has aleft end member in the precedence order inherited ¥¢nirhenL C [0,0). We
show thatl is hereditarily paracompact by proving thaembeds into the hereditarily paracompact spsce

Leta € L. Then by (*) aboven must be a limit ordinal and the left end member of the ndflehas the
form {p,} wherep, is the left endpoint inX of the convex set’, = (\{t, : v < a}. For eachn € L define
f(a) = Pa-

The functionf is strictly increasing. For suppose< (3 < ¢ are inL. Then bothn and are limit ordinals
anda + 1 < a+2 <  so that in the spac& we haveCs = ({t, : v < B} C tat2 C tar1 € C,. As noted
in (**) above, we can find points, b € ¢,., such that inX the convex set, ., is a subset ofa, b). Therefore
Pa < a < pg, ie., f(a) < f(B).

To show thatf : L — X is continuous, suppose € L is a limit point of L. We must show that in
X, f(a) =sup{f(B) : B € L, < a}. For each limit ordina3 < «, Cj is the convex subset of given by
Cs = ({t, : v < B}. Becausex is a limit ordinal ands < a, tg4, is defined andg,; C Cp so that|Cy| > w.
Furthermore, if3 € L, thenf(5) = pg is the left endpoint of’; in X. Observe that becauseis a limit point of
L we have

(WCs:B8<aBely = [tr:v<By:BeLB<al=({t,:7<a}=C,

and that forces the endpoints to converge upwards tp, in the LOTSX. Hencef(a) = sup{f(8) : 8 <
a, 3 € L} as required to prove continuity gt

Finally we show thaf is a closed mapping from onto f[L] C X. (Note that this is not automatic because
the domainL is not known to be a LOTS in the order that it inherits fr@ime).) It will be enough to show that
if « € Lisnota limit pointof {8 € L : § < a}, thenf(«) is not a limit point of{ f(3) : B € L, f < a} in X.
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Becausex is not a limit point of[0, ) N L, there is some < « with [0,a) N L C [0,]. Becausex € L, ais a
limit ordinal so thaty + 1 < «. Consider any; € L with § < a. Theng < v so that in the LOTS X, <,7Z) we
have

Co=[ts:6<BY 2ty 2ty1 2t n 2 (fts: 6 <} =C.

As noted in (**) above, we may choose pointsh € X with ¢, 5 C (a,b) C [a,b] C t,4;. ButthenC, C
(a,b) C [a,b] € Cp and that forces us to conclude that the left endpaitsps of C, and Cj; respectively
must satisfyps < a < p,. Observe that the choice afdepended only ony and therefore we have shown
that f(5) = ps < a < po = f(a) wheneverG € LN [0,«). Therefore,f(a) is not a limit point in X of
{f(B): € Ln|0,a)}. Thereforef : L — X is a closed mapping ontfL].

At this stage we know thaf is a continuous, 1-1, closed mapping frdmonto the subspacé[L| of the
hereditarily paracompact spa&e Therefore L is also hereditarily paracompact, as required for R-3.

It remains to consider the case where the braBitias a last member. Then= A+ 1 for some limit ordinal\.
We apply the first part of the proof to the linearly ordered{ggt: « < A} to conclude that the séfy = {a < X :
the nodeN,, has a left end membaéris hereditarily paracompact as a subspac@of). But then so is the set
L = Ly U{\} as required by R-31

It is natural to ask whether R-1 in Theorem 5.4 could be strengthened to requifé thapen in the branch
space for eache 7. Then answer is “No” as the next example shows.

5.9 Example Let X be the lexicographically ordered LOTS = R x {n € Z : n < 0}. ThenX is hereditarily
ultraparacompact and cannot be embedded in the branch Bpafcany treeZ7 where(t] is open in3 for each
teT.

Proof: For contradiction, supposg€ embeds in the branch spateof a tree7 with the property thaft] is
open inB for eacht € 7. It follows from Proposition 4.2 thaBB has a base for its topology that is a tree
under reverse inclusion. Hence so does each subspdgelbdwever, the usual Sorgenfrey line is the subspace
S ={(z,0) : x € R} of X and hence oB, and it is well-known that’ does not have any base of open sets that
is a tree under reverse inclusidn.

Remark: Notice that Theorem 5.4 do@®t say that whenever a hereditarily ultraparacompact LOTS embeds in
the branch space of one of its partition trees, then that partition tree must satisfy R-1, R-2, and R-3. For examp
return to (2.2) and replace the interV@al 1) by the LOTSX = QN [0, 1) whereQ is the set of rational numbers.
Replace every memberof the partition tree in (2.2) by the séth Q. The resulting partition tree foX is
isomorphic as a partially ordered set to the partition tree in (2.2). Therefore its branch®sate same as the
branch space found in (2.2), and th8iss homeomorphic t@0), 1). Clearly the partition tree fok” does not satisfy

R-1, R-2, and R-3.
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