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1. Introduction.

By the word “line” in the title of this paper we mean a linearly ordered topological space, or LOTS. Ever since
Kurepa’s early work on the Souslin problem [K], topologists have used trees to study lines. Starting with a line
one can construct a tree whose members are convex subsets of the original line and that sometimes reflects crucial
properties of the line. Alternatively, one can start with a tree from some other source and construct its branch
spaces, often obtaining lines with interesting properties. For more details, see Section 2 below, and for recent
examples of these constructions, see [HJNR], [Sh], [To].

The goal of this paper is to explore certain aspects of the interaction between lines, trees, and branch spaces,
and to obtain some results related to the problem “Which lines can be realized as the branch spaces of nice trees?”
In Section 2 we give relevant definitions and describe the background and motivation for our study. In Section
3 we characterize those situations in which a LOTSX embeds in the branch space of a tree constructed using
convex subsets ofX. In Section 4 we give examples of “nice” properties that a tree might have and list the
topological consequences for their branch spaces. In Section 5 we give an example of the interaction between
trees and lines by characterizing hereditarily ultraparacompact LOTS in terms of the kinds of branch spaces in
which they embed. Specifically, we prove that a LOTSX is hereditarily ultraparacompact if and only ifX embeds
in the branch space of a tree(T ,v) having the properties that:

1) if N is a node ofT and if t ∈ N is not an endpoint ofN , then[t] is a clopen subset of the branch
space; and

2) if t is an endpoint of the nodeN , then{s ∈ T : s v t} is a branch ofT ; and

3) if B is a branch ofT , then both sets{α : the node ofT to whichB(α) belongs has a left (resp.
right) endpoint} are hereditarily paracompact subsets of the ordinal space[0, κ) whereκ is the height
of the treeT .
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This result is not intended as a working characterization of ultraparacompactness in ordered spaces but rather
as an example of the kind of theorems about line-tree-branch space interactions that are possible. We also give
examples showing that the conditions above cannot be replaced by others considered in Section 4.

2. Background and statement of the problem

By a linearly ordered topological space(LOTS) we mean a triple(X, <, I) where(X, <) is a linearly ordered
set andI is the usual open interval topology of the order<. Easy examples show that there can be subsetsY ⊆ X
with the property that the subspace topology onY is not the same as the open interval topology induced onY by
the restriction toY of the linear ordering ofX. That ledČech to introduce the notion of ageneralized ordered
space(GO-space), i.e. a triple(X, <, T ) where< is a linear ordering ofX and whereT is a Hausdorff topology
on X having a base consisting of convex subsets ofX. (Recall that a subsetC ⊆ X is convexprovidedx ∈ C
wheneverx lies between two points ofC.) It is known that the GO-spaces are precisely the spaces that embed
topologically in some LOTS.

By a treewe mean a partially ordered set(T ,v) with the property that for eacht ∈ T , the set{s ∈ T : s v t}
is well-ordered byv. By Tα we mean the set of all elementst ∈ T with the property that the set of all predecessors
of t in (T ,v) is order-isomorphic to the set[0, α) of ordinals. The setTα is called theα-th level ofT and for
any t ∈ Tα we define thelevel oft by lv(t) = α. Clearly, no treeT can haveTα 6= ∅ for α > |T | so that for
sufficiently largeα, Tα = ∅ and the height ofT is the least ordinalκ such thatTκ = ∅. The ordinalκ might or
might not be a limit ordinal. As explained below, the elements of a tree might be convex subsets of some linearly
ordered set, but they might also be some completely different kind of object. See for example the construction of
an Aronszajn tree given in [J]. [R2], or [To]. To emphasize this fact, we will often speak of anabstracttree when
we want to emphasize that the tree is not necessarily made up of convex subsets of some known linearly ordered
set.

For anyt ∈ T thenode containingt is the set of alls ∈ T having exactly the same predecessors as doest. If
s andt belong to the same node ofT thens andt belong to the same level ofT , ands andt are incomparable
using the partial order of the tree. By abranchof T we mean a maximal linearly ordered subset of(T ,v). If B
is a branch of the tree, then for eachα, eitherB ∩ Tα = ∅ or the setB ∩ Tα has exactly one element which we
denote byBα or B(α). Observe that a branch might or might not have a last element.

Suppose each nodeN of T is given a linear ordering<N . (There is no assumption made about how the linear
orders of different nodes are related to each other.) Given these orderings of the nodes, we can linearly order the
set of all branches ofT as follows. LetB andC be distinct branches ofT . Let α = fd(B, C) by which we
mean the first ordinal whereB andC differ. Thenβ < α impliesBβ = Cβ so thatBα andCα belong to the same
nodeN of T . We defineB <B C if and only if Bα <N Cα whereα = fd(B, C). With the usual open interval
topology of the order<B, the setB of all branches ofT is a LOTS called thebranch space ofT . To some extent,
that is a misnomer because the orderings chosen for the nodes ofT determine the branch space just as surely as
does the tree itself. However, one always has:

2.1 Lemma: For eacht ∈ T , the set[t] = {B ∈ B : t ∈ B} is a convex subset of the branch space, and so is
[N ] =

⋃
{[t] : t ∈ N} for any nodeN of T .

Remark: In general one cannot say whether the sets[t] and[N ] will be open or closed in the branch space, and
those simple topological properties of[t] and[N ] are crucial as will be seen from later sections.

The process described above goes from a tree to a line. There is a reverse process that constructs trees starting
with linearly ordered sets. This second process has been described in different ways by different authors, and not
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all descriptions are equivalent. What we describe below is a very general construction that seems to cover most
cases.

The levels of the tree are constructed recursively, and depend upon the choice of a process that breaks up the
convex subsets of the linearly ordered set(X, <). For any convex subsetC ⊆ X, letN (C) = ∅ if |C| ≤ 1 and if
|C| ≥ 2, then letN (C) be a pairwise disjoint collection of convex proper subsets that coverC. DefineT0 = {X}.
If Tα is defined, then letTα+1 =

⋃
{N (C) : C ∈ Tα}. If λ is a limit ordinal andTα is defined for allα < λ, then

let Tλ =
⋃
{N (C) : C =

⋂
{tα : α < λ}, tα ∈ Tα and |C| > 1}. For large enough ordinalsα, Tα = ∅. (This

is guaranteed to happen forα > 2|X|, for example.) DefineT to be the union of all nonemptyTα. The partial
ordering ofT is reverse inclusion, i.e.,s v t if and only if as convex subsets ofX we havet ⊆ s. ThenT is a
tree. (Note that we do not really need to defineN (C) for every convex subsetC ⊆ X, but only for those convex
sets that appear somewhere in the recursion.) Any tree constructed in this fashion is called apartition tree for
(X, <).

Unlike the situation for abstract trees, there is a natural linear ordering of each node of the partition tree
T ; indeed the same natural linear ordering applies to each levelTα of T . Members of each nodeN of T are
pairwise disjoint convex subsets of(X,<) and we define thats <N t if each point ofs precedes each point oft
in the ordering of(X, <). This ordering of nodes will be calledthe precedence order fromX. Using that natural
linear ordering of the nodes ofT , we can define a branch space just as we did for abstract trees. If one uses
the precedence order fromX to impose a linear ordering on each node ofT , it is reasonable to ask about the
relation between the original LOTSX and the branch space of the partition treeT . For any pointx ∈ X the
setB(x) = {t ∈ T : x ∈ t} is a branch ofT and the functione : X → B given bye(x) = B(x) is 1-1 and
increasing. However, there is no guarantee thate is continuous or onto. We begin with two easy examples.

2.2 ExampleLet [0, 1) be a subspace of the usual set of real numbers. For each convex set[a, b) ⊆ [0, 1) choose a
strictly increasing sequencea = c0 < c1 < · · · that haslimn→∞ cn = b and|cn+1− cn| ≤ b−a

2
for eachn ≥ 0. We

may assume that ifa andb are both rational, then so is eachcn. (This extra assumption is not needed in the current
example, but will be useful later, in (5.9).) DefineN ([a, b)) = {[cn, cn+1) : n ≥ 0}. Now defineT0 = {[0, 1)}
and forn ≥ 0 let Tn+1 =

⋃
{N (t) : t ∈ Tn}. The height ofT is ω andT =

⋃
{Tn : n < ω}. Each node ofT

beyond level 0 is countably infinite and its linear ordering is the precedence order induced from[0, 1) as described
above. We obtain a linearly ordered branch spaceB and, as will be seen in Section 3, the original space[0, 1)
embeds inB under the mappinge(x) = {t ∈ T : x ∈ t}. In fact, because[0, 1) is connected andB has no right
endpoint, one can show thate is a homeomorphism from[0, 1) ontoB. 2

Our next example shows that it can happen that a LOTSX does not embed in the branch space of one of its
partition trees and that the functione : X → B may fail to be continuous.

2.3 ExampleLet X = [0, 1) be a subspace of the real line. For any convex set[a, b) ⊆ X defineN ([a, b)) =
{[a, a+b

2
), [a+b

2
, b)}. Let T0 = {X} and forn ≥ 0 defineTn+1 =

⋃
{N (C) : C ∈ Tn} andT =

⋃
{Tn : n ≥ 0}.

Each node ofT has exactly two members. A result of Todorčevic (see 4.1 below) shows that because each node
of our tree is finite, the branch space must be compact. Consequently,X = [0, 1) is not homeomorphic to the
branch space in this example. But even more is true: the functione(x) = B(x) is not continuous because if it
were, then it would be an embedding ofX = [0, 1) into B, and the latter space is totally disconnected so that the
initial spaceX = [0, 1) cannot be embedded in the branch space at all.2

Examples such as the two mentioned above led us to wonder when a line-to-tree-to-branch-space construction
would result in a branch space that contained the original line. This problem is solved in Section 3, at least for the
natural mapping fromX to the branch space. Examples also led us to ask which LOTS could be realized as the
branch space of a tree.
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That second question is easily answered. In his article [To], Todorčevic points out an extreme example of the
line-to-tree construction.

2.4 Example: Every linearly ordered set(X,<) is the branch space of some tree. For any convex setC in any
linearly ordered setX, defineN (C) = {{x} : x ∈ C} if |C| ≥ 2 andN (C) = ∅ otherwise. The resulting
partition tree has exactly two levelsT0 = {X} andT1 = {{x} : x ∈ X}, and its only non-trivial node isT1 which
we linearly order to make it a copy of the originalX. The branch space of this tree is exactly the original linearly
ordered set(X, <). Thus every LOTS is the branch space of some tree, and every GO-space embeds in the branch
space of some tree.2

Some might see Tordočevic’s Example 2.4 as showing that there is no topological utility in trying to embed
LOTS in the branch spaces of trees, since they alreadyare branch spaces of trees. Others might conclude that
the world of branch spaces is exactly as pathological as the world of lines. We reached a different conclusion,
namely that it would be interesting to investigate further restrictions on trees so that their branch spaces would have
interesting topological properties. In Section 4 we give examples of special properties of trees that have significant
ramifications for their branch spaces. In Section 5 we give a characterization of hereditarily ultraparacompact GO-
spaces based on the existence of certain kinds of trees whose branch spaces contain the given GO-space.

3. Continuity of the natural injection

As noted in Section 2, if we begin with a linearly ordered set(X,<), we can build a partition treeT whose
members are convex subsets ofX, Furthermore, each node, and indeed each level, ofT inherits a natural linear
ordering fromX that we call theprecedence order fromX, namely that a convex sets ∈ Tα precedes another
convex sett ∈ Tα if and only if each pointx of the sets hasx < y in X for everyy ∈ t. Using that natural
ordering for each node, we construct the branch spaceB of the treeT and endow it with the usual open interval
topology of its ordering.

As noted in Section 2, there is a natural functione : X → B given bye(x) = {t ∈ T : x ∈ t}, and this
function is always 1-1 and increasing. We will calle the natural injectionof X into the branch space ofT .
Examples 2.2 and 2.3 show thate might or might not be continuous. Because any 1-1, increasing function from
one LOTS into another is always an open mapping from its domain onto its image set, we see that the natural
injectione : X → T is continuous if and only if it is a topological embedding ofX into the branch spaceB of
T . In this section we study the sete[X] and give necessary and sufficient conditions for continuity of the natural
injectione.

3.1 Proposition: The sete[X] is always dense inB.

Proof: SupposeB, D ∈ B with B <B D and(B, D) 6= ∅, where<B denotes the linear order on the branch space
B. Computeα = fd(B, D). ThenBα, the unique member ofB∩Tα, precedesDα, the unique member ofD∩Tα

while Bβ = Dβ for eachβ < α. Furthermore,Bα andDα belong to the same nodeNα of T . Let <α be the linear
ordering ofNα. If there is somet ∈ Nα with Bα <α t <α Dα, choose anyx ∈ t, Thene(x) ∈ (B, D). If Bα and
Dα are adjacent members ofNα, choose anyC ∈ (B, D) and note thatBβ = Cβ = Dβ for eachβ < α, while
eitherBα = Cα <α Dα or elseBα <α Cα = Dα. Consider the case whereBα = Cα <α Dα, the other case
being analogous. Computeγ = fd(B, C). Thenγ > α and in the nodeNγ that contains bothBγ andCγ we have
Bγ <γ Cγ. Choose anyx ∈ Cγ. Thene(x) ∈ (B, D). Therefore the sete[X] is dense inB. 2

Our next lemma records the facts that we will need about the interactions between(X, <), the convex subsets
of X that belong to the partition tree(T ,v), and the branch space(B, <B).

3.2 Lemma: LetB be the branch space of a partition treeT of the linearly ordered set(X, <). Then, with notation
as above:
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a) if B ∈ B and if∅ 6= Bβ ⊆ (←, z) for someβ and somez ∈ X, thenB <B B(z);

b) if B is a branch ofT , then|
⋂
{t : t ∈ B}| ≤ 1;

c) if D is a non-empty subcollection ofT that is linearly ordered by reverse inclusion (i.e., by the
partial orderingv of T ) and has

⋂
D = ∅, then the collectionB = {t ∈ T : t contains some member

of D} is a branch ofT .

Proof: To prove (c) observe that ifti ∈ B for i = 1, 2, then there existdi ∈ D with di ⊆ ti. Hencet1 ∩ t2 6= ∅
so thatt1 andt2 are comparable inT . HenceB is a linearly ordered subset ofT . SupposeB is not a branch of
T . Then there is a branchC of T with B ⊂ C. Chooses ∈ C − B. Thens is comparable to eachd ∈ D, and
d ⊆ s is false for eachd ∈ D (otherwises ∈ B). Hences ⊆ d for eachd ∈ D, showing that

⋂
D contains the

non-empty sets, contrary to
⋂
D = ∅. Therefore,B is a branch ofT as claimed.2

3.3 Proposition: Let B be the branch space of a partition treeT of the LOTS(X, <, I). With notation as above,
the following are equivalent:

a) the functione : X → B is notcontinuous at the pointx ∈ X;

b) eitherx is a limit point inX of the set(←, x) and for someα the setBα(x) is defined and has
x ∈ Bα(x) ⊆ [x,→) and the collectionD = {t ∈ T : t is a cofinal subset of(←, x)} is nonempty
and has

⋂
D = ∅, or elsex is a limit point in X of the set(x,→) and for someα the setBα(x)

is defined and hasx ∈ Bα(x) ⊆ (←, x] and the collectionE = {t ∈ T : t is a coinitial subset of
(x,→)} is non-empty and has

⋂
E = ∅.

Proof: First we show that a) implies b). Suppose thate is not continuous atx. Without loss of generality we may
assume thatx is a limit point of(←, x) and that

(*) someB ∈ B has the property thatB(y) <B B <B B(x) for everyy ∈ (←, x).

Let α = fd(B, B(x)). ThenBα precedesBα(x) in X and Bβ = Bβ(x) for everyβ < α. We claim that
x ∈ Bα(x) ⊆ [x,→). To verify that set inclusion, suppose somey ∈ Bα(x) hasy < x in X. Then for
β ≤ α, Bβ(y) = Bβ(x) = Bβ while Bα(y) = Bα(x) showing thatBα precedesBα(y) in X. HenceB <B
B(y) <B B(x), contradicting (*). ThusBα(x) ⊆ [x,→).

We claim that the setBα is a cofinal subset of(←, x). That Bα ⊆ (←, x) follows from the fact thatBα

precedesBα(x) in X. To see thatBα is cofinal in(←, x), suppose not. Then there is somey ∈ X with y < x
andBα ⊆ (←, y]. Becausex is a limit point of (←, x) there is az ∈ (y, x). Apply Lemma 3.2(a) to conclude
that B <B B(z) <B B(x) contrary to (*). ThereforeBα is a cofinal subset of(←, x) and the collectionD is
non-empty.

Next, we show that ifβ > α andBβ is defined, then the setBβ is a cofinal subset of(←, x). Because
Bβ ⊆ Bα ⊆ (←, x) it is enough to check cofinality. The proof of cofinality uses (3.2-a) again. Therefore
{Bβ : β ≥ α andBβ is defined} ⊆ D, so that

⋂
D ⊆

⋂
{Bβ : β ≥ α andBβ is defined} =

⋂
{t : t ∈ B}.

Hence, to complete the proof of (b), it is enough to show that
⋂
{t : t ∈ B} = ∅.

BecauseB is a branch ofT we know that|
⋂
{t : t ∈ B}| ≤ 1 by (3.2-b). For contradiction, suppose⋂

{t : t ∈ B} = {w} for somew ∈ X. ThenB = B(w) andw ∈ Bα forcesw < x. But x is a limit point of
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(←, x) so there is somez ∈ (w, x) and then we haveB = B(w) <B B(z) <B B(x) contrary to (*). Therefore,⋂
D = ∅ as claimed in (b).

We now prove that b) implies a). Assume that we have a pointx that is a limit point inX of the set(←, x)
and anα so thatx ∈ Bα(x) ⊆ [x,→) and that the collectionD = {t ∈ T : t is a cofinal subset of(←, x)} is
nonempty and has

⋂
D = ∅. Because any two members ofD have non-empty intersection, any two members of

D are comparable inT . Then the collectionB = {t ∈ T : t contains some member ofD} is a branch ofT in
the light of (3.2-c). By hypothesis onD, someBγ ∈ B hasBγ ⊆ (←, x) and thereforeB <B B(x) by (3.2-a).
Consider anyy < x in X. There is somed ∈ D ⊆ B with y 6∈ d. Becausey < x andd is cofinal in(←, x), we
conclude thatd ⊆ (y,→). But thenB(y) <B B and thereforee(x) is not a limit point inB of {e(y) : y < x}
even thoughx is a limit point inX of (←, x). Thereforee is not continuous atx, as claimed in (a).2

4. Examples of “nice” tree properties

In this section, we return to the study of abstract trees, i.e., trees that do not necessarily come from convex
sets in a given linearly ordered set. What kinds of properties of such trees might lead to interesting topological
properties of their branch spaces? The following result, used in Example 2.3 above, is due to Todorčevic [To].

4.1 Proposition: Suppose that each node of a treeT is linearly ordered in such a way that it is order-complete.
Then the branch space ofT is compact.

Another property of trees that has very strong topological consequences for branch spaces (and for anything
that embeds in one of the branch spaces) is that for eacht ∈ T , the set[t] = {B ∈ B : t ∈ B} is open inB. What
would force each[t] to be open inB? One sufficient condition is that for eacht ∈ T the nodeN = {u ∈ T : u is
an immediate successor oft} is nonempty and the linearly ordered set(N, <N) has no endpoints. The next result
describes properties of the branch space of such a tree.

4.2 Proposition: Let T be a tree with the property that[t] is open in the branch spaceB for eacht ∈ T . Then:

a) each set[t] is clopen inB;

b) the branch spaceB is zero-dimensional;

c) {[t] : t ∈ T } is a base forB that is a tree under reverse inclusion, i.e.,B is non-archimedean;

d) any space that embeds inB has a continuous separating family in the sense of [BL] [St]; and

e) any space that embeds inB is hereditarily paracompact.

Proof: Fixt ∈ T and computeα = lv(t). For eachβ < α there is a uniquetβ ∈ T with tβ v t. Then

B − [t] =
⋃
{[s] : s ∈ Tα − {t}} ∪

⋃
{[s] : β < α and s ∈ Tβ − {tβ}}.

Hence each[t] is clopen inB. For each branchB ∈ B, {[t] : t ∈ B} is a local base atB. ThereforeB is zero
dimensional. The collection{[t] : t ∈ T } is a base forB, and is a tree under reverse inclusion. Thus c) holds.

The proof of d) is due to Gary Gruenhage. The notion of a continuous separating family was introduced in
[St] and we verify thatB satisfies the definition given there. For each pair(B, C) of distinct branches ofT find
α = fd(B, C) and letD = min(B, C). DefineΨ(B, C) to be the characteristic function of the clopen set[D(α)].
ThenΨ(B, C) is a continuous function fromX to R, andΨ : B2 − ∆ → Cu(B) is continuous, whereCu(B)
is the space of all continuous real-valued functions onB topologized by the topology of uniform convergence.
Furthermore,Ψ(B, C)(B) 6= Ψ(B, C)(C). Hence d) holds.
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Assertion e) now follows from a result of [BL] that any GO-space with a continuous separating family must
be hereditarily paracompact. Direct proofs of hereditary paracompactness ofB are also possible.2

Let us give another example of how embedding in branch spaces of “nice” trees can have topological conse-
quences. Recall that a Souslin tree is a tree(S,v) of heightω1 that contains no uncountable chains (= linearly
ordered subsets) or anti-chains (= sets whose elements are pairwise incompatible in the partial ordering of the
tree). Whether a Souslin tree exists is undecidable in ZFC. Starting with any Souslin tree, one can obtain another
Souslin treeT with the property that each node is a countably infinite set. Linearly order the nodes of that second
tree to make each a copy of the setZ of all integers. ThenT has the property that[t] is open in the branch space
for eacht ∈ T . Gruenhage proved:

4.3 Proposition: Suppose(T ,v) is a Souslin tree with the property that each[t] is open in the branch space
B. If X is a space that can be embedded inB, thenX × X is hereditarily paracompact. In particular,B is a
non-separable, hereditarily Lindelöf LOTS for whichB2 is hereditarily paracompact.

Proof: LetW be any collection of open subsets ofB2 and letZ =
⋃
W. It will be enough to show that there is

an open cover ofZ that is star-countable and refinesW.

We say that an ordered pair(s, t) of elements ofT is minimal if the open set[s] × [t] is a subset of some
member ofW while no other ordered pair(s′, t′) with s′ v s and t′ v t has that same property. ThenU =
{[s]× [t] : (s, t) is minimal} is an open refinement ofW that covers

⋃
W. We claim thatU is star-countable. For

contradiction, suppose that(s0, t0) is minimal and that there are distinct minimal pairs(sα, tα) with the property
that([s0]× [t0])∩([sα]× [tα]) 6= ∅ for eachα in the uncountable setA. It follows that[s0]∩ [sα] 6= ∅ so thats0 and
sα must be comparable in(T ,v) for eachα ∈ A. The elements0 has only countably many predecessors inT .
Suppose that there is one predecessoru of s0 with the property that the setB = {α ∈ A : sα = u} is uncountable.
For eachα ∈ B chooseWα ∈ W with [u] × [tα] ⊆ Wα. The set{tα : α ∈ B} cannot be an anti-chain, so there
exist distinctα1, α2 ∈ B with tα1 v tα2 . But then

[sα2 ]× [tα2 ] = [u]× [tα2 ] ⊆ [u]× [tα1 ] = [sα1 ]× [tα1 ] ⊆ Wα1

and that is impossible because(sα2 , tα2) is minimal. Therefore, only countably many of the pairs(sα, tα) have
sα v s0. Let C = A− {α ∈ A : sα v s0}. ThenC is uncountable.

Let α ∈ C. Because([s0]× [t0])∩([sα]× [tα]) 6= ∅, we conclude that[tα]∩ [t0] 6= ∅ and hencetα is comparable
to t0 in T . Sincet0 has only countably many predecessors inT , it follows that the setD = {α ∈ C : t0 v tα}
is uncountable. Choose anyα1 ∈ D with (s0, t0) 6= (sα1 , tα1). But then the existence of(s0, t0) contradicts
minimality of (sα1 , tα1). Therefore, the collectionU is a star-countable open cover of

⋃
W that refinesW, as

required.2

Gruenhage’s Proposition 4.3 contrasts sharply with an earlier result about certain Souslin lines that is due to
Rudin [R1]:

4.4 Proposition: SupposeX is a compact Souslin space, i.e., a compact non-separable, hereditarily Lindelöf
LOTS. ThenX2 is not hereditarily normal.

The hypothesis that each[t] is open in the branch space is very restrictive. An example of a weaker, but still
“nice,” condition that a tree might satisfy is that for eacht ∈ T , the set[t] has non-empty interior. We thank
the referee for pointing out that our original proof that any such branch space is a Baire space actually proves
more, namely that any such branch space isα-favorable. Consequently, the product of any such branch space with
another Baire space is a Baire space.
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To defineα-favorability, recall the Banach-Mazur game, a topological game played by two playersα andβ
using non-empty open sets. Playerβ chooses any non-empty open setV1 and playerα responds by choosing a
non-empty open subsetU1 ⊆ V1. Then playerβ chooses a non-void open setV2 ⊆ U1. For anyn ≥ 1, onceβ has
chosen the open setVn ⊆ Un−1, playerα responds by choosing a non-empty open setUn ⊆ Vn. Playerα wins the
game if

⋂
{Un : n ≥ 1} 6= ∅, and a topological space is said to beα-favorableif playerα has a winning strategy

in the Banach-Mazur game [Ox], [MN].

4.5 Proposition: Suppose thatT is a tree with the property that for eacht ∈ T , intB([t]) 6= ∅. Then the branch
spaceB is α-favorable.

Proof: Suppose we are at stagen of the Banach-Mazur game and that nonempty open setsV1 ⊇ U1 ⊇ · · · ⊇
Un−1 ⊇ Vn have been chosen by the two players. Then playerα should find the first ordinalδn such that some
t ∈ Tδn has[t] ⊆ Vn. Playerα should choose any sucht and respond withUn = Int([t]). Any play of this game
will then produce a sequenceδ1 ≤ δ2 ≤ · · · of ordinals and pointstn ∈ Tδn with t1 ≤T t2 ≤T · · ·. There is a
branchB of T that contains eachtn, and this branch hasB ∈

⋂
{Un : n ≥ 1} as required.2

It is much easier for a tree to satisfy the hypothesis of (4.5) than to satisfy the more restrictive hypothesis that
each set[t] is open in the branch space. One sufficient condition, in the light of (2.1), is that at least three branches
run through eacht ∈ T .

5. Characterization of ultraparacompactness via embeddings in branch spaces

Recall that a topological space isultraparacompactif each open cover ofX has a disjoint open refinement. In
this section, we give what could be viewed as a characterization of ultraparacompactness in a LOTS or GO-space.
However, that is not our real goal. Instead, our goal is to illustrate the possible interaction between properties of
an ordered spaceX and the kinds of trees whose branch spaces containX as a subspace.

Faber [F] gave a particularly useful version of an earlier characterization of paracompactness in a LOTS or
GO-space that is due to Gillman and Henriksen [GH].

5.1 Proposition: A GO spaceX is paracompact if and only if wheneverX = G ∪H whereG andH are convex
open subsets ofX with the property thatx < y for eachx ∈ G and eachy ∈ H, there are closed discrete subsets
D ⊂ G andE ⊂ H such thatD is cofinal inG andE is coinitial inH. (Note that one of the setsG, H might be
empty.)

Because a topological spaceX is hereditarily paracompact if and only each open subspace is paracompact,
and because each open subspace of a GO-space is the topological sum of its convex components, we have

5.2 Proposition: A GO-spaceX is hereditarily paracompact if and only if each open convex subspaceY of X
contains a relatively closed discrete subset that is both cofinal and coinitial inY .

Remark: One way to obtain a relatively closed discrete cofinal (respectively coinitial) subset ofY in (5.2) is to
show that there is a cofinal (resp. coinitial) convex subsetZ ⊆ Y that admits a pairwise disjoint open cover by
sets that are not cofinal (resp. not coinitial) inY . Then choosing one point from each member of the cover ofZ
gives the required set.

Our next result must be well-known. It can be proved using the “method of coherent collections” described in
[L]. We thank Jerry Vaughan for pointing out that it also follows from the fact that “ultranormal plus paracompact
implies ultraparacompact” which is proved in [El].

5.3 Proposition: A GO-spaceX is (hereditarily) ultraparacompact if and only ifX is (hereditarily) paracompact
and zero-dimensional.2
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Our goal in this section is to characterize GO-spaces that are hereditarily ultraparacompact in terms of certain
kinds of trees in whose branch spaces they embed. We will consider three properties of a tree(T v):

R-1) if N is a node ofT and if t ∈ N is not an endpoint of the linearly ordered set(N, <N), then[t]
is a clopen subset of the branch space;

R-2) if t is an endpoint of the nodeN , then{s ∈ T : s v t} is a branch ofT ;

R-3) if B is a branch ofT , then both sets{α : the node ofT to whichB(α) belongs has a left (resp.
right) endpoint} are hereditarily paracompact subspaces of the ordinal space[0, κ) whereκ is the
height ofT .

We will prove:

5.4 Theorem: A GO-spaceX is hereditarily ultraparacompact if and only ifX embeds in the branch space of a
tree having properties R-1, R-2, and R-3.

Outline of Proof: We will prove a sequence of lemmas that, when combined, establish (5.4). In (5.5) we will
show that the branch space of any tree satisfying R-1, R-2, and R-3 must be zero-dimensional. In (5.6) we will
show that the branch space of a tree satisfying R-1, R-2, and R-3 must be hereditarily paracompact. Combining
(5.6) and (5.5) with (5.3) will show that a branch space of a tree satisfying R-1, R-2, and R-3 must be hereditarily
ultraparacompact. That establishes half of (5.4). For the converse, in (5.8) we will start with any GO-space that
is hereditarily ultraparacompact and embed it into a LOTS with the same property. Then we will then show how
such a LOTS can be used to construct a tree satisfying R-1, R-2, and R-3, and will invoke results from Section 3
to insure that the LOTS embeds in the branch space of the tree. That will complete the proof of (5.4)2

5.5 Lemma: Suppose the tree(T ,v) has properties R-1, R-2, and R-3. Then its branch spaceB is zero dimen-
sional.

Proof: We show that ifB <B D in B, then[B, D] is not connected. Computeα = fd(B, D). ThenBα andDα

belong to the same nodeNα of T andBα <α Dα where<α denotes the linear ordering ofNα. If there is some
t ∈ Nα with Bα <α t <α Dα then by R-1 the set[t] is clopen inB and the setsG = {C ∈ B : C ≤B E for some
E ∈ [t]} andH = B − G are clopen sets inB that separateB andD. In case no sucht exists, thenB andD are
the left and right endpoints ofNα so that by R-2,B = {Bβ : β ≤ α} andD = {Dβ; β ≤ α} and we see thatB
andD are adjacent points ofB so that[B, D] is not connected.2

5.6 Lemma: Suppose the tree(T ,v) has properties R-1, R-2, and R-3. Then its branch spaceB is hereditarily
paracompact.

Proof: In the light of (5.2) it will be enough to show that each convex open subspaceY of B has a relatively closed
discrete subset that is cofinal and coinitial inY. We will construct a cofinal relatively closed discrete subset, the
coinitial set construction being analogous. Note that ifY has a right endpoint, or ifY has cofinalityω, there is
nothing to prove, so we will assume thatcf(Y) ≥ ω1.

For eachα there is at most one settα ∈ Tα so that[tα] ∩ Y is a cofinal subset ofY. Let σ = min{α : tα does
not exist}. Thenσ is less than or equal to the height of the treeT .

Observe that the set{tα : α < σ} is linearly ordered byv and that inB the corresponding collection
{[tα] ∩ Y : α < σ} is well-ordered by reverse inclusion. There are several cases to consider, based on the nature
of the setS =

⋂
{[tα] ∩ Y : α < σ} and the ordinalσ.
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Case 1: WhereS 6= ∅. ThenS is a cofinal subset ofY so thatS must be infinite, becausecf(Y) ≥ ω1. For each
B ∈ S we haveB ∈ [tα] for eachα < σ so that{tα : α < σ} ⊆ B. Because there is more than one branchB
with this property, the set{tα : α < σ} cannot be a branch ofT . ThereforeBσ is defined for eachB ∈ S and all
Bσ for B ∈ S belong to the same nodeNσ of T . Furthermore, no set[Bσ] ∩ Y can be cofinal inY because of the
definition ofσ. Hence, noBσ is the right endpoint ofNσ and at most one is the left endpoint ofNσ. Therefore,
using all but at most one of the sets[Bσ] we obtain a pairwise disjoint cover of a cofinal convex subset ofY by
clopen sets, none of which is cofinal inY. Choosing one point from each of the clopen sets, we obtain a relatively
closed discrete cofinal subset ofY as required.

Case 2:S = ∅ andσ is not a limit ordinal. Write σ = γ + 1. ThenS = [tγ] ∩ Y 6= ∅ is a cofinal convex subset of
Y, and that is impossible in Case 2.

Case 3: whereS = ∅ andσ is a limit ordinal.If cf(σ) = ω then the fact thatS = ∅would forceY to havecf(Y) =
ω contrary tocf(Y) ≥ ω1. Hence assume thatcf(σ) ≥ ω1. Let L = {α < σ : the nodeNα of T to which tα
belongs has a left endpoint in its given linear order<α}. According to R-3,L is hereditarily paracompact when
viewed as a subspace of the ordinal space[0, σ). Becausecf(σ) > ω there is a closed unbounded setC ⊆ [0, σ)
with C ∩ L = ∅. We next establish a sequence of claims.

Claim 1:
⋂
{[Nα] ∩ Y : α < σ} = ∅ whereNα is the node ofT to which tα belongs and[Nα] is as defined in

(2.1). For supposeB ∈
⋂
{[Nα] ∩ Y : α < σ}. Fix anyα < σ. Becauseσ is a limit ordinal,α + 1 < σ. But

[Nα+1] ⊆ [tα] so thatB ∈ S. Hence
⋂
{[Nα] ∩ Y : α < σ} ⊆ S. But in case 3,S = ∅ so that Claim 1 holds.

Claim 2: If λ < σ is a limit ordinal, then
⋂
{[Nα] ∩ Y : α < λ} ⊆ [Nλ]. For supposeB ∈

⋂
{[Nα] ∩ Y : α < λ}.

Then for eachα < λ, α + 1 < λ so thatB ∈ [Nα+1] ⊆ [tα]. Therefore{tα : α < λ} ⊆ B. Becauseλ < σ the
set{tα : α < λ} is not a maximal linearly ordered subset ofT so that{tα : α < σ} ⊆ B forcesBλ to be defined.
BecauseBλ has exactly the same predecessors in(T ,v) as doestλ we see thatBλ ∈ Nλ and thereforeB ∈ [Nλ]
as required.

Claim 3: For eachα ∈ C the set[Nα] ∩ Y is a clopen cofinal convex subset ofY. The set is always convex, and
is cofinal inY becausetα ∈ Nα. It remains to verify that the set is clopen. The only possible problem is that
[Nα] ∩ Y might have a limit pointB ∈ Y such that[Nα] ∩ Y ⊆ (B,→). BecauseB 6∈ [Nα], B does not have
exactly the same predecessors astα. Choose the firstγ < α such thatBγ 6= tγ. ThenBγ ∈ Nγ. Because[tγ] ∩ Y
is cofinal inY, it cannot be thatBγ >γ tγ so that so thatBγ <γ tγ where<γ is the given linear ordering of the
nodeNγ. BecauseBα is defined andγ < α, it cannot be true thatBγ is the left endpoint ofNγ, in the light of
R-2. BecauseBγ <γ tγ, Bγ is not the right endpoint ofNγ. By R-1, [Bγ] is a clopen subset ofB that contains
B and is disjoint from[tγ]. But γ < α so that[Nα] ⊆ [tγ] showing thatB is not a limit point of[Nα]. Therefore
[Nα] is closed inY.

For eachα ∈ C, let α+ be the first element ofC that is larger thanα. Such an ordinal exists because
cf(C) > ω. DefineE(α) = Y ∩ ([Nα]− [Nα+ ]). Then eachE(α) is clopen inY and no setE(α) is cofinal inY,
for α ∈ C. Let α0 be the first member ofC and fixB0 ∈ Y ∩ [Nα0 ].

Claim 4: [B0,→) ∩ Y ⊆
⋃
{E(α) : α ∈ C}. For supposeB ∈ Y andB ≥ B0. BecauseC is a cofinal

subset of[0, σ), Claim 1 yields
⋂
{[Nα] ∩ Y : α ∈ C} = ∅. Choose the firstα ∈ C with B 6∈ [Nα]. Then

B ∈ [Nβ] for everyβ ∈ C with β < α. If α were a limit point ofC, then Claim 2 would apply to show that
B ∈

⋂
{[Nβ] ∩ Y : β ∈ C ∩ [0, α)} = [Nα] contrary toB 6∈ [Nα]. BecauseC is a closed subset of[0, σ), there is

someβ ∈ C with α = β+, and thenB ∈ E(β). That proves Claim 4.

Now choose one point from each setE(α). As noted in the Remark after Proposition 5.2, we obtain a relatively
closed discrete cofinal subset ofY. That completes the proof of Lemma 5.6.2
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5.7 Corollary: Any GO-space that embeds in the branch space of a tree with properties R-1, R-2, and R-3 must
be hereditarily ultraparacompact.

Proof: Combine (5.3) and (5.6).2

5.8 Lemma: Any hereditarily ultraparacompact GO-space embeds in the branch space of a tree having properties
R-1, R-2, and R-3.

Proof: LetY be any hereditarily ultraparacompact GO-space. We first show thatY embeds in some LOTSX that
is hereditarily ultraparacompact and dense ordered in the sense that(x, y) 6= ∅ wheneverx < y are points ofX.
Denote the given topology ofY byS and the usual open interval topology ofY by I. The first step is to construct
the lexicographically ordered setX1 given by

(Y ×{0})∪ {(y, q) : y ∈ Y, [y →) ∈ S −I, q ∈ Q, q ≤ 0} ∪ {(y, q) : y ∈ Y, (←, y] ∈ S −I, q ∈ Q, q ≥ 0},

whereQ is the set of rational numbers. ThenX1 is a hereditarily ultraparacompact LOTS that containsY as a
closed subspace. HoweverX1 might not be dense ordered, so we fill in any jumps ofX1 with copies ofQ. Let
J0 = {x ∈ X : for somey ∈ X, x < y and(x, y) = ∅} andJ1 = {y ∈ X : for somex < y, (x, y) = ∅}. Now
let X be the lexicographically ordered set

X = (X1 × {0}) ∪ {(z, q) : q ∈ Q, q > 0, z ∈ J0} ∪ {(z, q) : q ∈ Q, q < 0, z ∈ J1}.

ThenX is a hereditarily ultraparacompact LOTS that is densely ordered and contains the original GO-spaceY as
a closed subspace. It will be enough to show thatX embeds in the branch space of a partition treeT that satisfies
R-1, R-2, and R-3.

For any convex subsetC ⊆ X, letN (C) = ∅ if |C| ≤ 1. If |C| > 1, then letEP (C) be the set of all endpoints
of C, if any. BecauseX is hereditarily ultraparacompact, there is a pairwise disjoint collectionP(C) that covers
C − EP (C) and has the properties that

a) each member ofP(C) is a clopen convex subset ofX and is a subset ofC − EP (C);

b) the collectionP(C) has no first or last members in terms of the precedence order fromX.

We note that it is possible to obtain (b) because the setX is dense-ordered. Now defineN (C) = P(C) ∪ {{x} :
x ∈ EP (C)} and linearly orderN (C) using the precedence ordering fromX. Observe that for each convex set
C ⊆ X with more than one point, every member ofP(C) is an infinite convex set.

Now define the partition treeT as described in Sections 2 and 3 and consider its branch spaceB. Each node
and each level ofT is linearly ordered by a precedence ordering inherited fromX: we say that a convex sets
precedes a convex sett in the precedence order fromX providedx < y for eachx ∈ s andy ∈ t. Observe that

(*) if N is a node ofT at a non-limit level, then(N, <N) has no end members.

Proposition 3.3 guarantees that the natural injection embedsX into B. It remains to prove that the partition
tree(T ,v) – wherev is reverse inclusion – satisfies properties R-1, R-2, and R-3.

First we verify R-1. Fix an ordinalα and a nodeNα at levelα of the tree. LetE(Nα) be the set of end
members ofNα in the precedence order fromX and lett ∈ Nα − E(Nα). Then, viewed as a subset ofX, the
convex sett has no endpoints, so that the nodeN ′ of all immediate successors oft is exactly the collectionP(t)
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and, by construction, that collection has no end members with respect to the precedence order fromX. That is
enough to force[t] to be an open subset of the branch spaceB. Next we show that[t] is also closed in the branch
spaceB. Becauset is not an end member of the nodeNα we may choose memberss, u ∈ Nα such that the convex
subsets of X precedest andt precedesu in (X, <). Therefore,[t] is not a cofinal or coinitial subset of[Nα].
Because the interior of[Nα] in the branch spaceB is covered by the pairwise disjoint open convex sets[v] for
v ∈ Nα − E(Nα), we see that[t] is also a closed subset ofB.

Next we verify R-2. Suppose thatN is a node ofT and thatt is an end member ofN is the precedence
ordering inherited fromX. Then by (*) above,N must be a node at a limit levelλ and each member ofN has
exactly the same set of predecessors in(T ,v), namely{tγ : γ < λ} wheretγ is the unique member ofTγ that
lies belowt in the ordering of(T ,v). Viewing eachtγ as a convex sunset ofX, let C =

⋂
{tγ : γ < λ}. Then

t = {x} for one of the endpointsx ∈ C, and thereforet has no successor in(T ,v) at levelλ + 1 or higher.
Therefore,{s ∈ T : s v t} is a branch ofT as required by R-2.

Finally, we verify R-3. LetB be any branch ofT . Then for some ordinalσ we haveB = {tα : α < σ} where
tα ∈ Tα. First consider the case whereσ is a limit ordinal, i.e., whereB has no final element in(T ,v). For each
α < σ let Nα be the node ofT to which tα belongs. BecauseB continues beyond levelα + 1, tα cannot be an
end member ofNα is the precedence ordering fromX. Therefore, ifα < β < σ and if we viewtα, tβ as convex
subsets ofX, thentα ⊇ tβ. Even more is true:

(**) if γ < δ < σ then there are pointsa, b ∈ X such that, as subsets ofX, tδ ⊆ (a, b) ⊆ [a, b] ⊆ tγ.

Let L = {α < σ : Nα has a left end member in the precedence order inherited fromX}. ThenL ⊆ [0, σ). We
show thatL is hereditarily paracompact by proving thatL embeds into the hereditarily paracompact spaceX.

Let α ∈ L. Then by (*) above,α must be a limit ordinal and the left end member of the nodeNα has the
form {pα} wherepα is the left endpoint inX of the convex setCα =

⋂
{tγ : γ < α}. For eachα ∈ L define

f(α) = pα.

The functionf is strictly increasing. For supposeα < β < σ are inL. Then bothα andβ are limit ordinals
andα + 1 < α + 2 < β so that in the spaceX we haveCβ =

⋂
{tγ : γ < β} ⊆ tα+2 ⊆ tα+1 ⊆ Cα. As noted

in (**) above, we can find pointsa, b ∈ tα+1 such that inX the convex settα+2 is a subset of(a, b). Therefore
pα ≤ a < pβ, i.e.,f(α) < f(β).

To show thatf : L → X is continuous, supposeα ∈ L is a limit point of L. We must show that in
X, f(α) = sup{f(β) : β ∈ L, β < α}. For each limit ordinalβ < α, Cβ is the convex subset ofX given by
Cβ =

⋂
{tγ : γ < β}. Becauseα is a limit ordinal andβ < α, tβ+1 is defined andtβ+1 ⊆ Cβ so that|Cβ| ≥ ω.

Furthermore, ifβ ∈ L, thenf(β) = pβ is the left endpoint ofCβ in X. Observe that becauseα is a limit point of
L we have ⋂

{Cβ : β < α, β ∈ L} =
⋂
{
⋂
{tγ : γ < β} : β ∈ L, β < α} =

⋂
{tγ : γ < α} = Cα

and that forces the endpointspβ to converge upwards topα in the LOTSX. Hencef(α) = sup{f(β) : β <
α, β ∈ L} as required to prove continuity off .

Finally we show thatf is a closed mapping fromL ontof [L] ⊆ X. (Note that this is not automatic because
the domainL is not known to be a LOTS in the order that it inherits from[0, σ).) It will be enough to show that
if α ∈ L is not a limit point of {β ∈ L : β < α}, thenf(α) is not a limit point of{f(β) : β ∈ L, β < α} in X.
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Becauseα is not a limit point of[0, α) ∩ L, there is someγ < α with [0, α) ∩ L ⊆ [0, γ]. Becauseα ∈ L, α is a
limit ordinal so thatγ + 1 < α. Consider anyβ ∈ L with β < α. Thenβ ≤ γ so that in the LOTS(X, <, I) we
have

Cβ =
⋂
{tδ : δ < β} ⊇ tγ ⊇ tγ+1 ⊇ tγ+2 ⊇

⋂
{tδ : δ < α} = Cα.

As noted in (**) above, we may choose pointsa, b ∈ X with tγ+2 ⊆ (a, b) ⊆ [a, b] ⊆ tγ+1. But thenCα ⊆
(a, b) ⊆ [a, b] ⊆ Cβ and that forces us to conclude that the left endpointspα, pβ of Cα andCβ respectively
must satisfypβ ≤ a < pα. Observe that the choice ofa depended only onγ and therefore we have shown
that f(β) = pβ ≤ a < pα = f(α) wheneverβ ∈ L ∩ [0, α). Therefore,f(α) is not a limit point inX of
{f(β) : β ∈ L ∩ [0, α)}. Therefore,f : L→ X is a closed mapping ontof [L].

At this stage we know thatf is a continuous, 1-1, closed mapping fromL onto the subspacef [L] of the
hereditarily paracompact spaceX. Therefore,L is also hereditarily paracompact, as required for R-3.

It remains to consider the case where the branchB has a last member. Thenσ = λ+1 for some limit ordinalλ.
We apply the first part of the proof to the linearly ordered set{tα : α < λ} to conclude that the setL0 = {α < λ :
the nodeNα has a left end member} is hereditarily paracompact as a subspace of[0, σ). But then so is the set
L = L0 ∪ {λ} as required by R-3.2

It is natural to ask whether R-1 in Theorem 5.4 could be strengthened to require that[t] is open in the branch
space for eacht ∈ T . Then answer is “No” as the next example shows.

5.9 Example: Let X be the lexicographically ordered LOTSX = R× {n ∈ Z : n ≤ 0}. ThenX is hereditarily
ultraparacompact and cannot be embedded in the branch spaceB of any treeT where[t] is open inB for each
t ∈ T .

Proof: For contradiction, supposeX embeds in the branch spaceB of a treeT with the property that[t] is
open inB for eacht ∈ T . It follows from Proposition 4.2 thatB has a base for its topology that is a tree
under reverse inclusion. Hence so does each subspace ofB. However, the usual Sorgenfrey line is the subspace
S = {(x, 0) : x ∈ R} of X and hence ofB, and it is well-known thatS does not have any base of open sets that
is a tree under reverse inclusion.2

Remark: Notice that Theorem 5.4 doesnot say that whenever a hereditarily ultraparacompact LOTS embeds in
the branch space of one of its partition trees, then that partition tree must satisfy R-1, R-2, and R-3. For example,
return to (2.2) and replace the interval[0, 1) by the LOTSX = Q ∩ [0, 1) whereQ is the set of rational numbers.
Replace every membert of the partition tree in (2.2) by the sett ∩ Q. The resulting partition tree forX is
isomorphic as a partially ordered set to the partition tree in (2.2). Therefore its branch spaceB is the same as the
branch space found in (2.2), and thusB is homeomorphic to[0, 1). Clearly the partition tree forX does not satisfy
R-1, R-2, and R-3.
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