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1. Introduction.

Recall that a topological space X is perfect if each closed subset of X is a Gδ-subset
of X and that X is perfectly normal provided X is both normal and perfect. Experience
has shown that many problems in ordered space theory reduce to recognizing when a given
ordered space is perfect, and the purpose of this note is to update an earlier paper [BL]
on that topic.

In Section 2, we will show that several recent generalizations of perfect normality are,
among ordered spaces, equivalent to perfect normality. In Section 3 we use our results to
give necessary and sufficient conditions for L(X) and X∗, the two most familiar linearly
ordered extensions of a generalized ordered space X, to be perfect. In Section 4 we discuss
two interesting generalizations of perfect normality that are not equivalent to perfect nor-
mality in ordered spaces, namely Kočinac’s weakly perfect property (see [K1], [K2], [H],
and [BHL]) and the property called S- normality (see [B2]).

A linearly ordered topological space (LOTS) is a linearly ordered set (X, <) equipped
with the usual open interval topology of <. By a generalized ordered space, or GO-space,
we mean a linearly ordered set equipped with a Hausdorff topology that has a base of open,
convex subsets, where we say that a set C is convex in X provided for any a < b < c in X,
if {a, c} ⊂ C then b ∈ C. It is known that the class of GO-spaces coincides with the class of
subspaces of linearly ordered topological spaces. It will be important to distinguish between
subsets of a space X that are relatively discrete, i.e., discrete in their subspace topologies,
and those subsets that are both closed and discrete. Other notation and terminology will
follow [E] and [L1].

2. Properties equivalent to perfect in GO-spaces

Reed [R] defined that a space X is strongly densely normal provided for each open
set U ⊂ X, there are open sets V (1), V (2) ... in X such that cl(V (n)) ⊂ U and such that⋃
{V (n) : n ≥ 1} is dense in U . A weaker concept was introduced by Kočinac [K2] who
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defined that a space X is almost perfect provided each open subset U ⊂ X contains a
dense subset S that is an Fσ-subset of X. For normal spaces, these two notions coincide.

2.1 Lemma: If X is normal, then X is strongly densely normal if and only if X is almost
perfect.

Easy examples show that, even for compact Hausdorff spaces, the properties “almost
perfect” and “perfect” are quite different.

2.2 Example: The usual product space X = [0, 1]c is compact Hausdorff and almost
perfect, but not perfect. (To see that X is almost perfect, note that X is separable [E].)

However, in the class of GO-spaces, we have:

2.3 Proposition: For any GO-space X, the following are equivalent:
a) X is perfect;
b) X is strongly densely normal;
c) X is almost perfect;
d) if E is a relatively discrete subspace of X, then E is an Fσ-subset of X;
e) if S is a closed, nowhere dense subset of X, then S is a Gδ-subset of X;
f) each regularly closed subset T of X (i.e., T = cl(Int(T )) ) is a Gδ-subset of X.

Proof: Properties (a) and (e) are equivalent in any space, and the equivalence of (a) and
(f) for GO-spaces was proved in [BL]. Clearly a) implies b), and from (2.1), b) and c) are
equivalent in any normal space. Therefore, to complete the proof of this proposition it will
be enough to show that c)⇒ d)⇒ a).

To prove that c) implies d), suppose that X is almost perfect and that E is a relatively
discrete subspace of X. Because X is hereditarily collectionwise normal, there is a collection
{U(e) : e ∈ E} of open convex subsets of X such that U(e)∩E = {e} and U(e)∩U(e′) = ∅
whenever e, e′ ∈ E are distinct. Let U =

⋃
{U(e) : e ∈ E} and choose closed subsets

D(n) ⊂ X such that
⋃
{D(n) : n ≥ 1} is a dense subset of U . Hence for each e ∈ E there

is an n ≥ 1 such that D(n) ∩ U(e) 6= ∅. Let E(n) = {e ∈ E : U(e) ∩D(n) 6= ∅}. Because
E =

⋃
{E(n) : n ≥ 1}, it will be enough to show that each E(n) is closed in X

For contradiction, suppose p ∈ cl(E(n)) − E(n) and let W be any convex, open
neighborhood of p. Then the set W ∩E(n) is infinite. Because {U(e) : e ∈ E} is a pairwise
disjoint collection of convex sets, it follows that U(e) ⊂ W for some e ∈ E(n). Because
e ∈ E(n), ∅ 6= D(n) ∩ U(e) ⊂ W so that W ∩ D(n) 6= ∅. Thus, each neighborhood of p

meets D(n) so that p ∈ cl(D(n)) = D(n) ⊂ U . Now choose e ∈ E with p ∈ U(e). But
then U(e) is a neighborhood of p that contains at most one point of E(n), contradicting
p ∈ cl(E(n))− E(n). Hence E(n) is closed in X as required.
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To prove that d) implies a), suppose X is a GO space having property d) and p ∈ X.
We first show that the half-line H = ] ←, p[ is an Fσ-subset of X. If p is not a limit
point of H, there is nothing to prove. Hence assume that every neighborhood of p meets
H. Let κ = cf( ] ←, p[ ) and choose a strictly increasing net {x(α) : α < κ} whose
supremum is p. Let E = {x(α) : α < κ is not a limit ordinal }. Then E is a relatively
discrete subspace of X so that, according to d), E is the union of a sequence of closed sets
E(n). Let C(n) = {x ∈ X : x ≤ e for some e ∈ E(n)}. Then C(n) is closed in X and
H =

⋃
{C(n) : n ≥ 1}. An analogous proof shows that ]p,→ [ is also an Fσ in X. It

follows that each convex subset of X is an Fσ- subset of X.
Now suppose U is an open subset of X. Let {U(α) : α ∈ A} be the family of all convex

components of U and for each α choose a point p(α) ∈ U(α). Let E = {p(α) : α ∈ A}.
The E is a relatively discrete subset of X so that E =

⋃
{E(n) : n ≥ 1} where each

E(n) is closed in X. Let A(n) = {α ∈ A : p(α) ∈ E(n)}. For each α ∈ A(n) let
C(α, n, 1) ⊂ C(α, n, 2) ⊂ ... be closed convex subsets of X having p(α) ∈ C(α, n, 1) and⋃
{C(α, n,m) : m ≥ 1} = U(α). Define F (n, m) =

⋃
{C(α, n,m) : α ∈ A(n)}. Then each

F (n, m) is closed in X and U =
⋃
{F (n, m) : n, m ≥ 1} as required.

2.4 Remark: The equivalence of a) and d) in 2.3 is due to Faber [F, Theorem 2.4.5].

3. Perfect ordered extensions of generalized ordered spaces

There are two familiar constructions in ordered space theory for embedding any GO-
space into a LOTS. For any GO-space (X, T ), let I denote the usual open interval topology
of the given ordering of X. Then I ⊂ T . Define subsets of X as follows:

R = {x ∈ X : [x→ [ ∈ T − I}, and
L = {x ∈ X : ]←, x] ∈ T − I}.

Let N be the set of all natural numbers and define

L(X) = (X × {0}) ∪ (R× {−1}) ∪ (L× {1})

and

X∗ = (X × {0}) ∪ ({(x,−n) : x ∈ R, n ∈ N}) ∪ ({(x, n) : x ∈ L, n ∈ N}).

Order both sets lexicographically and endow each with the open interval topology of the
lexicographic order. Then X is a dense subspace of the LOTS L(X) and is a closed
subspace of the LOTS X∗. It is important to note that L(X) is not a subspace of X∗.

It is of some use in constructing examples to know conditions under which X∗ and
L(X) must be perfect.
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3.1 Proposition: Let X be a GO-space. Then X∗ is perfect if and only if X is perfect
and the set R ∪ L is σ-closed discrete in X.

Proof: Suppose X∗ is perfect. Then so is its subspace X. Let T be the given topology
of X, and let R, and L be as above. Consider S = {(x,−1) : x ∈ R}. Then S is a
relatively discrete open subset of X∗ so that there are closed subsets S(n) of X∗ having
S =

⋃
{S(n) : n ≥ 1}. Each S(n) is a closed, discrete subspace of X∗. Let R(n) = {x ∈

R : (x,−1) ∈ S(n)}. Because R =
⋃
{R(n) : n ≥ 1} it will be enough to show that each

R(n) is a closed, discrete subset of X. Fix n and fix any point p ∈ X. We will find
a neighborhood V of p that contains at most one point of R(n). Consider (p, 0) ∈ X∗.
Because S(n) is closed and discrete, there are points (u, i) < (p, 0) < (v, j) of X∗ such that
](u, i), (v, j)[ ∩S(n) = ∅.

If p is an isolated point of X, then V = {p} is the required neighborhood of p, so
assume p is not isolated. Then at least one of the sets [p,→ [ and ]←, p] is not open in
(X, T ). Without loss of generality, assume that [p,→ [ is not open. Then (p,−1) cannot
be a point of X∗ so that if (p, n) ∈ X∗, then n ≥ 0. Because (u, i) < (p, 0) we conclude
that u < p. We claim that ]u, p[ ∩R(n) = ∅. For suppose that x ∈ ]u, p[ ∩R(n). Then
(x,−1) ∈ S(n). Because u < x < p in X, we have (u, i) < (x,−1) < (p, 0) < (v, j) in X∗.
But then (x,−1) ∈ ](u, i), (v, j)[ ∩S(n) = ∅. Hence ]u, p[ ∩R(n) = ∅.

If the set V = ]u, p] is open in X, then V is the required neighborhood of p with
|V ∩ R(n)| ≤ 1, so assume that ]u, p] is not open in X. Then (p, +1) 6∈ X∗ so that
(p, n) ∈ X∗ implies n ≤ 0. But then (p, n) ∈ X∗ implies n = 0 so that (p, 0) < (v, j)
implies p < v in X. As was the case with the interval ]u, p[ , the set ]p, v[ ∩R(n) = ∅.
But then V = ]u, v[ is a neighborhood of p in X having |V ∩ R(n)| ≤ 1, as required to
show that R(n) is a closed discrete subset of X. Therefore, R is σ-closed discrete in X as
claimed. Analogously, L is σ-closed discrete in X.

To prove the converse, suppose that R ∪ L is σ- closed discrete in X. We first show
that the set X∗ − X is an Fσ in X∗. Write R =

⋃
{R(n) : n ≥ 1} where each R(n) is

a closed, discrete subset of X. For each k ≤ 0, define R(n, k) = {(x, k) : x ∈ R(n)}.
Because R(n, 0) = R(n), the set R(n, 0) is closed and discrete in X∗. Suppose k < 0 and
let (p, j) ∈ X∗. We will find a neighborhood W of (p, j) in X∗ that contains at most one
point of R(n, k). If j 6= 0 then {(p, j)} is the required neighborhood, so assume j = 0.
Because R(n) is closed and discrete in X, there is a neighborhood U of p in X that is
convex in X and has |U ∩ R(n)| ≤ 1. There are four cases to consider, depending upon
the shape of U .

Case 1: Suppose U = {p}. Then W = {(p, 0)} is open in X∗ and has |W ∩R(n, k)| ≤ 1 as
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required.
Case 2: Suppose that U = [p, q[ with q > p and that {p} is not open in X. Then
]p, q[ 6= ∅ and we may choose r ∈ ]p, q[ . Because [p, q[ is open in X, either p has
an immediate predecessor in the ordering of X or else (p,−1) ∈ X∗. In either case,
the set W = [(p, 0), (r, 0)[ is open in X∗. If (x, k) ∈ W ∩ R(n, k) then x ∈ R(n) and
(p, 0) ≤ (x, k) < (r, 0). Then in X, p ≤ x ≤ r so that x ∈ R(n) ∩ [p, r] ⊂ R(n) ∩ [p, q[ .
By choice of U = [p, q[ there is at most one point x ∈ R(n)∩ [p, q[ so that, k being fixed,
there is at most one point in R(n, k) ∩W .
Case 3: Suppose U = ]q, p] with q < p and {p} is not open in X. This case parallels Case
2.
Case 4: Suppose U = ]q, r[ and that neither [p,→ [ nor ] ←, p] is open in X. Then we
may choose q′ ∈ ]q, p[ and r′ ∈ ]p, r[ . If (x, k) ∈ R(n, k)∩ ](q′, 0), (r′, 0)[ , then x ∈ R(n)
and q′ ≤ x ≤ r′ so that x ∈ R(n) ∩ [q′, r′] ⊂ R(n) ∩ ]̧q, r[ . But there is at most one such
point x so that if we let W = ](q′, 0), (r′, 0)[ then (p, 0) ∈ W and (k being fixed) there is
at most one point in W ∩R(n, k).

Analogously, the set {(x, k) : x ∈ L and k ≥ 0} is a σ-closed discrete subset of X∗.
Because x ∈ R ∪ L whenever (x, k) ∈ X∗ has k 6= 0, we see that X∗ − X is a σ-closed
discrete subset of X∗.

To complete the proof that X∗ is perfect, suppose that U is any open subset of X∗.
Then U ∩X is relatively open in X so that, X being perfect and closed in X∗, U ∩X is
an Fσ-subset of X∗. Because U −X ⊂ X∗ −X we also know that U −X is an Fσ-subset
of X∗. Hence so is U , as required.

We can also give necessary and sufficient conditions for the space L(X) to be perfect,
but the result is less satisfactory than (3.1) because the conditions are not internal to the
GO-space X. We prove a slightly more general result, namely:

3.2 Proposition: Suppose X ⊂ Y are GO-spaces with X dense in Y . Then Y is perfect
if and only if each relatively discrete subspace of X is an Fσ-subset of Y . In particular,
for a perfect GO-space X, the LOTS L(X) is perfect if and only if each relatively discrete
subspace of X is an Fσ-subset of L(X).

Proof: If Y is perfect, apply (2.3)(d) to conclude that any relatively discrete subspace of
X is an Fσ-subset of Y .

To prove the converse, we again apply (2.3). Suppose that D is a relatively discrete
subspace of Y . We will show that D is an Fσ-subset of Y . Write D = (D ∩X)∪ (D−X).
By hypothesis, D ∩X is an Fσ-subset of Y , so it is enough to show that the set D −X is
an Fσ-subset of Y .



6

Because D − X is a relatively discrete subset of Y , for each d ∈ D − X there is a
convex open subset U(d) of Y such that U(d)∩(D−X) = {d} and because Y is hereditarily
collectionwise normal, we may assume that the sets U(d) are pairwise disjoint. For each
d ∈ D − X there is a convex open subset V (d) of Y with d ∈ V (d) ⊂ cl(V (d)) ⊂ U(d).
Because X is dense in Y , we may choose x(d) ∈ V (d) ∩X. Then P = {x(d) : d ∈ D −X}
is a relatively discrete subspace of X, so by hypothesis, P is an Fσ-subset of Y , say
P =

⋃
{P (n) : n ≥ 1} where each P (n) is closed and discrete in Y . Let A(n) = {d ∈

D −X : x(d) ∈ P (n)} and let V(n) = {V (d) : d ∈ A(n)}. It will be enough to show that
each set A(n) is closed in Y , because D − X =

⋃
{A(n) : n ≥ 1}. To show that A(n) is

closed in Y , it will be enough to prove that V(n) is a discrete collection in Y . To that
end, suppose q ∈ Y . If q ∈

⋃
V(n) choose the unique set V (d) ∈ V(n) with q ∈ V (d).

Then V (d) is a neighborhood of q meeting at most one member of V(n). So suppose
q 6∈

⋃
V(n). Because P (n) ⊂

⋃
V(n) we know that q 6∈ P (n). Hence there is a convex,

open neighborhood W of q that is disjoint from P (n). If W meets more than two members
of V(n), then convexity forces W to entirely contain some member V (d0) ∈ V(n). But
then d0 ∈W ∩P (n) contrary to our choice of W . Hence W meets at most two members of
V(n). If W meets only one member of V(n), we are done, so suppose there are two distinct
members V (d1), V (d2) ∈ V(n) that both meet W . Recall that cl(V (di)) ⊂ U(di) so that
cl(V (d1)) ∩ cl(V (d2)) = ∅. We may assume that q 6∈ cl(V (d1)). But then W − cl(V (d1))
is a neighborhood of q that meets at most one member of V(n). Thus, V(n) is indeed a
discrete collection of open subsets of Y . But then the set A(n) is a closed discrete subset
of Y , as required.

4. Two generalizations of perfect normality in ordered spaces

Recall that a space X is weakly perfect if each closed subset C of X contains a set D

having:
a) D is a Gδ-subset of X; and
b) the closure of D in X is C.

This property was introduced in [K1] and [K2] and studied by Heath in [H]. The current
authors have studied weakly perfect generalized ordered spaces at length in [BHL]. For this
paper, it will be enough to note that a linearly ordered space can be weakly perfect but not
perfect: the usual space of countable ordinals is one such example, and [BHL] constructs
examples of compact linearly ordered spaces that are hereditarily weakly perfect but not
perfect. In addition, [BHL] contains examples showing that if X is a (weakly) perfect
GO-space, then the ordered extensions X∗ and L(X) might, or might not, be weakly
perfect.
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Another generalization of perfect normality, called S-normality, was studied in [B2].
A topological space X is said to be S-normal if for each closed subset C ⊂ X there is a
countable collection S of open subsets of X such that if p ∈ C and q ∈ X − C, then for
some S ∈ S we have p ∈ S and q 6∈ S. As will be seen in (4.2), this property is strictly
weaker than perfect normality in ordered spaces.

Our next result is easy to verify and gives several sufficient conditions for a space to
be S-normal.

4.1 Proposition: A topological space X is S- normal if any one of the following holds:

a) X is perfectly normal;

b) X has a countable open cover U that separates points of X, i.e., if x, y are distinct
points of X, then some U ∈ U has x ∈ U ⊂ X − {y};

c) X has a weaker topology that is separable and metrizable;

d) X can be embedded in an S-normal space Y .

4.2) Example: There is an S-normal LOTS that is not perfect. Let R,P, Q denote the
usual spaces of real, irrational, and rational numbers, respectively, and let Z be the set of
all integers. Let X be the lexicographically ordered set X = (R×{0})∪ (P ×Z). With the
usual open interval topology of that ordering, X is a quasi-developable LOTS [B1] that is
not perfect (because Q× {0} is a closed subset of X that is not a Gδ-subset of X).

To show that X is S-normal, for each pair of rational numbers r < s define U(r, s) =
](r, 0), (s, 0)[ in the ordered set X. Let C be any closed subset of X and let U0 = {(x, i) ∈
C : (x, i) is isolated in X}. Let U = {U0} ∪ {U(r, s) : r, s ∈ Q and r < s}. Then U is a
countable collection of open subsets of X. Now suppose (x, i) ∈ C and (y, j) ∈ X − C. If
(x, i) ∈ U0, we are done, so suppose (x, i) 6∈ U0. Then (x, i) is not isolated in X and hence
x ∈ Q and i = 0. Because no other point of X has x as its first coordinate, we conclude
that y 6= x. Hence there are rational numbers r, s with r < x < s and either y < r or
s < y. In either case, (x, i) ∈ U(r, s) ⊂ X − {(y, j)} as required.

S-normal spaces resemble perfect spaces in two important ways. First, each point in
such a space must be a Gδ-set, so that an S-normal GO space must be first countable.
Second, we have:

4.3 Proposition: If T is a stationary subset of a regular uncountable cardinal κ, then with
the topology that it inherits from the usual ordinal space, T is not S- normal. Therefore,
any S-normal GO space, and any monotonically normal space that is S-normal, must be
hereditarily paracompact
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Proof: Let C be the set of non-isolated points of the set T . Then C is also stationary in κ

and is closed in T . Assume that T is S-normal. Then there is a countable collection U of
open subsets of T such that if x ∈ C ⊂ T − {y} then some U ∈ U has x ∈ U ⊂ T − {y}.

Let U1 be the family of all U ∈ U such that some λ(U) ∈ T, [λ(U),→ [ ∩T ⊂ U .
Because U is countable and κ is uncountable and regular, there is an ordinal µ ∈ C such
that λ(U) < µ for each U ∈ U1. Then [µ,→ [ ∩T ⊂ U for each U ∈ U1.

Let U2 = U −U1 and index U2 as {U(n) : n ≥ 1}. Let ν be the first element of T that
is greater than µ. Then ν is not an element of the set C and for each λ ∈ C with λ > ν, we
can find some U ∈ U with λ ∈ U ⊂ T − {ν}. Because ν > µ we conclude [µ,→ [ ∩T 6⊂ U

so that U 6∈ U1. Hence U ∈ U2. Therefore, for each λ ∈ ]ν,→ [ ∩C, there is an integer
n(λ) ≥ 1 with λ ∈ U(n(λ)) ⊂ T − {ν}. Define C(m) = {λ ∈ C∩ ]ν,→ [ : n(λ) = m}.
Then C∩ ]ν,→ [ =

⋃
{C(m) : m ≥ 1} so that one of the sets C(m0) must be stationary.

Observe that for each λ ∈ C(m0), λ ∈ U(m0) so that there must be an α(λ) < λ such that
]α(λ), λ]∩ T ⊂ U(m0). Apply the Pressing Down Lemma to find some β and a cofinal set
D ⊂ C(m0) with β = α(λ) for each λ ∈ D. Then ]β, λ] ∩ T ⊂ U(m0) for each λ ∈ D, so
that ]β,→ [ ∩T ⊂ U(m0) because D is cofinal in T . But then U(m0) ∈ U1, contradicting
the fact that U(m0) ∈ U2. That contradiction establishes that the subspace T cannot be
S- normal.

Now consider any GO space X, or any monotonically normal space X, that is S-
normal. If X is not hereditarily paracompact, then there is an uncountable regular cardinal
κ and a stationary subset T ⊂ [0, κ[ that embeds topologically in the space X [EL], [BR].
According to (4.1-d), the space T would be S-normal, and that is impossible by the first
part of this proof. Thus, X is hereditarily paracompact.

In [B2], a property related to S-normality was used to characterize quasi-developability
in linearly ordered topological spaces. It is natural to ask whether every quasi-developable
LOTS must be S-normal. The next example provides a negative answer.

4.4 Example: There is a quasi-developable LOTS that is not S-normal. We will begin
by constructing a quasi- developable GO space Y that is not S-normal and then, using
techniques from [L] we will embed it into a quasi- developable LOTS Y ∗. In the light of
(4.1-d), Y ∗ cannot be S-normal.

Let {Sα : α < κ} be a well-ordering of the collection of all subsets of the set R of real
numbers, where κ = 2c and where Sα 6= Sβ whenever α < β < κ. For each α, let M(Sα)
be the Michael line obtained by isolating every point of the set Sα and letting all points of
Cα = R− Sα have their usual neighborhoods. Then Cα will be a closed subset of M(Sα).
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Let Y be the lexicographically ordered set [0, κ[ ×R. In the usual open interval
topology I of Y, each set Yα = {α} × R is open and is a copy of the usual space of real
numbers. Modify the topology I by isolating every point of

⋃
{{α} × Sα : α < κ}. The

resulting GO-space (Y, T ) is a topological sum of copies of the Michael lines M(Sα) so
that (Y, T ) is quasi-developable.

To prove that Y is not S-normal, consider the closed set C =
⋃
{{α} × Cα : α < κ}.

Suppose there is a sequence U(1), U(2), ... of open subsets of Y such that if (α, x) ∈ C ⊂
Y −{(β, y)}, then for some n we have (α, x) ∈ U(n) ⊂ Y −{(β, y)}. Let V (n) = IntI(U(n))
for each n ≥ 1 and observe that for each α < κ, V (n) ∩ Yα is an open subset of R in the
usual topology. Further, because I-neighborhoods and T -neighborhoods are the same for
points of the closed set C, we know that if (α, x) ∈ C ⊂ Y − {(β, y)}, then for some n we
have (α, x) ∈ V (n) ⊂ Y − {(β, y)}.

The usual space of real numbers has only c many open sets. Hence the set Σ =
{(W1, W2, ...) : each Wi is open in the usual topology of R} also has |Σ| = c. Using
the fixed sequence < V (n) > found above, define a function σ : [0, κ[ → Σ by the rule
σ(α) = (V (1) ∩ Yα, V (2) ∩ Yα, ...). (In the definition of σ we are identifying the subset
V (n) ∩ Yα of Yα with the subset πα[V (n) ∩ Yα], where πα : Yα → R is second coordinate
projection.) Because κ = 2c, we know that σ(α) = σ(β) for some α 6= β in [0, κ[ .

Because α 6= β we know that Sα 6= Sβ . Without loss of generality, choose x ∈ Sβ−Sα.
Then (α, x) ∈ Cα ⊂ C while (β, x) 6∈ C so that for some n, (α, x) ∈ V (n) ⊂ Y − {(β, x)}.
However, from σ(α) = σ(β) we conclude that V (n) ∩ Yα = V (n) ∩ Yβ so that (α, x) ∈
V (n) ∩ Yα forces (β, x) ∈ V (n) ∩ Yβ ⊂ V (n), contrary to our choice of V (n). That
contradiction shows that Y is not S-normal, as required.

4.5 Example: Let X be the usual Sorgenfrey line. Then X is perfect but its ordered
extension X∗ is not S-normal. Consider the closed subset C = X×{0} of X∗, and suppose
S is a countable collection of open subsets of X∗ as in the definition of S-normality. We
may assume that if S ∈ S, then every convex component of S meets C. Consequently,
we may assume that every member of S is convex. Choose (x, 0) ∈ C that is not one
of the countably many end-points of members of S. Then the points (x, 0) ∈ C and
(x,−1) ∈ X∗ − C cannot be separated by any member of S.

4.6 Example: Let X be the GO-space obtained by isolating every point of [0, ω1[ . Then
X is perfect, but because the ordered extension L(X) contains a topological copy of the
usual space [0, ω1[ , (4.3) shows that L(X) is not S-normal.

In closing, let us note that the classes of weakly perfect GO-spaces and S-normal
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GO-spaces are quite distinct. The usual space of countable ordinals is weakly perfect but
not S-normal, while the Michael line is S-normal (by (4.1-c)) but not weakly perfect.
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