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Abstract

In this paper we characterize generalized ordered spaces that are metrizably fibered in terms of certain
quotient spaces and in terms of the existence of special open covers. We apply our results to give a new
characterization of perfect generalized ordered spaces that have aσ-closed-discrete dense subset and to give
examples of GO-spaces that are, or are not, metrizably fibered.
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1 Introduction

Tkachuk introduced and studied metrizably fibered spaces in [T]. A topological spaceX is metrizably fibered
provided there is a continuous functionf fromX to a metric spaceM with the property that the fiberf−1[m]
of f is a metrizable subspace ofX for eachm ∈M . The functionf : X →M in that definition is said to be a
metric fiberingof X.

In this note we characterize generalized ordered spaces that are metrizably fibered, give several examples
of generalized ordered spaces that are, or are not, metrizably fibered, and show that a perfect GO-space is
metrizably fibered if and only if it has aσ-closed discrete dense subset.

Recall that ageneralized ordered space(GO-space) is a Hausdorff spaceX equipped with a linear ordering
such thatX has a base of order-convex sets. If the topology ofX coincides with the usual open interval
topology of the given order, then we say thatX is a linearly ordered topological space(LOTS). It is known
that the class of generalized ordered spaces coincides with the class of topological subspaces of LOTS.

At several points in our paper we will use the term “relatively convex.” Let(X,<) be a linearly ordered set
and letY ⊆ X. A subsetS ⊆ Y is relatively convex inY providedb ∈ S whenevera < b < c are points ofY
anda, c ∈ S.

2 Metrizably Fibered GO-spaces

Lemma 2.1 : Supposef : X → M is a metric fibering of the GO-spaceX. ThenX is first-countable and
paracompact.

Proof: Fixx ∈ X and letm = f(x). Then the setf−1[m] is aGδ-subset ofX, and{x} is aGδ-subset of the
metric spacef−1[m]. Hence{x} is aGδ-set inX, so thatX is first-countable.
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If X is not paracompact, then there is a stationary setS in a regular uncountable cardinalκ that embeds in
X as a closed subspace [EL]. But thenS is also metrizably fibered byf |S . For notational simplicity, we will
assume thatf : S →M is a metrizable fibering ofS.

For eachn ≥ 1, let G(n) be an open cover of the metric spaceM by balls of radius1
n . LetH(n) be the

family of convex components of the setsf−1[G] for G ∈ G(n). LetL be the set of limit points ofS. ThenL is
also stationary inκ, and for eachn andλ ∈ L choose someH(n, λ) ∈ H(n) that containsλ. Then there is an
ordinalα(λ, n) < λ such that]α(λ, n), λ]∩S ⊆ H(n, λ). Apply the Pressing Down Lemma to the stationary
setL to find an ordinalβ(n) and a cofinal setL(n) ⊆ L such thatα(λ, n) = β(n) for all λ ∈ L(n). But then
[β,→[∩S ⊆ St(β,H(n)) for eachn, whereβ ∈ S is any fixed ordinal greater than everyβ(n). It follows that
[β,→[ ∩ S is mapped to a single pointm ∈ M so that[β,→[ ∩ S ⊆ f−1[m] and that is impossible because
f−1[m] is metrizable.2

Definition 2.2 : LetX be a GO space and letC be a partition ofX into closed, convex, metrizable subspaces.
ByX/C we mean the quotient space obtained fromX by identifying each set inC to a point.

Notice that the given ordering ofX induces a natural linear ordering ofX/C, and van Wouwe (Proposition
1.2.3 of [vW]) proved

Proposition 2.3 : Let X be a GO-space and letC be a partition ofX into closed convex sets. ThenX/C
with the quotient topology is itself a GO-space with respect to the natural ordering, and the natural projection
mapping is closed, continuous, and order-preserving.2

We are now able to characterize metrizably fibered GO-spaces using quotient spaces and special open
covers.

Theorem 2.4 : LetX be a GO-space. Then the following are equivalent:

a)X is metrizably fibered;

b) X is paracompact and there is a sequence{H(n) : n ≥ 1} of open covers ofX such that for
eachx ∈ X, the set

⋂
{St(x,H(n)) : n ≥ 1} is a metrizable subspace ofX;

c) there is a partitionC ofX into closed, convex, metrizable subspaces such that the quotient space
X/C has aGδ-diagonal;

d) there is continuous order-preserving mappingg : X → Y fromX to a metrizable GO-spaceY
such thatg−1[y] is a metrizable subset ofX for eachy ∈ Y .

Proof: Clearlyd)⇒ a) so we provea)⇒ b), b)⇒ c) andc)⇒ d). However, see 2.5, below.

a)⇒ b). Supposef : X → M is a metric fibering of the GO-spaceX. LetB(n) be the collection of all open
1
n balls inM . LetG(n) be the collection of all convex components of all sets of the formf−1[B] forB ∈ B(n).
EachG(n) is an open cover ofX and for eachx ∈ X we have

⋂
{St(x,G(n)) : n ≥ 1} ⊆ f−1[f(x)]. Because

f−1[f(x)] is metrizable, so is
⋂
{St(x,G(n)) : n ≥ 1}, as required.

b)⇒ c): Suppose thatX is paracompact and the coversG(n) exist as in (b). Using paracompactness, we
recursively define collectionsH(n) of X such that
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i) eachH(n) is a convex open cover ofX that refinesG(n);

ii) for eachn ≥ 1 and eachH ∈ H(n + 1), St(St(St(H,H(n + 1)),H(n + 1)),H(n + 1)) is a
subset of some member ofH(n);

iii) for eachx ∈ X and eachn ≥ 1, ClX(St(x,H(n+ 1)) ⊆ St(x,H(n)).

For eachx ∈ X defineCx =
⋂
{St(x,H(n) : n ≥ 1}. Because of (i), eachCx is a convex, metrizable subset

of X. In the light of (iii), eachCx is closed inX. Finally, (ii) implies that ifCx ∩ Cy 6= ∅, thenCx = Cy, i.e.,
the collectionC = {Cx : x ∈ X} is a partition ofX.

Let Y = X/C be the quotient space obtained by collapsing each member ofC to a point. According to
Proposition 2.3,Y is a GO-space under its natural ordering, and the projection mappingπ : X → Y is a closed,
continuous, order preserving mapping.

We show thatY has aGδ-diagonal. For each open subsetU of X, letU∗ =
⋃
{C ∈ C : C ⊆ U}. Because

π is a closed mapping, each setU∗ is open inX and its imageπ[U∗] is open in the quotient spaceY . Define

L(n) = {π[H∗] : H ∈ H(n)}.

To see that eachL(n) is an open cover ofY , letCx ∈ C. Then for eachn ≥ 1, Cx ⊆ St(x,H(n + 1)) and
by (ii), someH ∈ H(n) hasSt(x,H(n + 1)) ⊆ H. But then in the spaceY we haveCx ∈ π[H∗] ∈ L(n).
ThusL(n) is an open cover ofY . To complete the proof thatY has aGδ-diagonal, suppose thatCx ∈ C and
for eachn ≥ 1 we haveCx ∈ π[H∗(n)] for someH(n) ∈ H(n). Then we havex ∈ H(n) so that

Cx ⊆
⋂
{H(n) : n ≥ 1} ⊆

⋂
{St(x,H(n)) : n ≥ 1} = Cx.

Therefore, in the spaceY, {Cx} =
⋂
{π[H∗(n)] : n ≥ 1}, showing that the open coversL(n) are aGδ-

diagonal sequence for the spaceY , as claimed.

c)⇒ d): According to c) we have a partitionC of X such that the quotient spaceY = X/C has aGδ-diagonal.
As noted in Proposition 2.3, the spaceY with its quotient topologyτ is a GO-space, so that according to a
theorem of Przymusinski ([A]) there is a metrizable GO-topologyσ onY with σ ⊆ τ . But then the mapping
π : X → (Y, σ) is the mappingg described in d).2

Remark 2.5 : Notice that, fora) ⇒ b), all we need to know is that the range spaceY has aGδ-diagonal
(and fibers of the mappingf are metrizable). In addition, the referee pointed out thatany Tychonoff space
X is metrizably fibered if and only if there is a sequence{U(n) : n ≥ 1} of open covers ofX such that
U(n + 1) star-refinesU(n) for eachn and such that

⋂
{St(p,U(n)) : n ≥ 1} is metrizable for eachp ∈ X.

Consequently the equivalence of a) and b) in the previous theorem is actually a consequence of the general
theory of metrizably fibered spaces.

Theorem 2.6 : LetX be a perfect GO-space. ThenX is metrizably fibered if and only ifX has aσ-closed-
discrete dense set.

Proof: First suppose thatX has aσ-closed-discrete dense set. ThenX is paracompact [F] and from [BHL] we
know that there is a sequenceH(n) of open covers ofX such that for eachx ∈ X the set

⋂
{St(x,H(n) : n ≥

1} is a countable set. But any countable GO-space is metrizable. Now apply part b) of Theorem 2.4.
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Conversely, supposeX is perfect and metrizably fibered. We claim that every metrizable, convex, open
subsetU0 of X is contained in a maximal open, convex metrizable subset ofX. We can apply Zorn’s lemma
to the collection{V : V is a metrizable open convex subset ofX andU0 ⊆ V } partially ordered by inclusion,
provided we show that ifC is a chain of convex, open metrizable subspaces ofX, then the subspaceS =

⋃
C

is metrizable. Fixp ∈ S. It will be enough to show that both[p,→[ ∩ S and]←, p] ∩ S are metrizable.

We will consider[p,→[ ∩ S, the other half being analogous. There are two cases. If some pointq ∈ X
is both an upper bound forS and a limit point ofS, then there is an increasing sequencexn in S whose
supremum isq. Then[p, q] = {q} ∪ (

⋃
{[p, xn] : n ≥ 1}), so that the GO-space[p, q] is a countable union

of closed metrizable subspaces, whence[p, q] is metrizable. Consequently,S ∩ [p, q[ is also metrizable. The
second case is whereS has no supremum inX, i.e., the supremum ofS is a gap ofX. But then, becauseX
is paracompact, a theorem of Faber [F] shows that there is a closed, discrete cofinal subsetT ⊆ [p,→[ ∩ S.
Using the setT , we can write[p,→[∩S as a discrete union of closed metrizable convex subspaces and thereby
conclude that[p,→[ ∩ S is metrizable.

Now letE be the collection of all maximal, open, convex, metrizable subspaces ofX. Then members ofE
are pairwise disjoint, so thatE0 =

⋃
E is a metrizable open subspace ofX. BecauseX is perfect,E0 is the

union of countably many closed subspacesXn of X, each metrizable, and henceXn has a dense subsetDn

that isσ-closed-discrete inX. ThereforeE0 also has a dense subset that isσ-closed-discrete inX.

Let Y = X −E0. ThenY is closed inX. We claim that ify1 < y2 are points ofY and ifT = [y1, y2]∩ Y
is metrizable, then[y1, y2] is a metrizable subspace ofX. Clearly[y1, y2] = T ∪ ([y1, y2] ∩ E0). From above,
the latter set is metrizable and is anFσ-subset ofX. Hence[y1, y2] is the union of countably many closed
metrizable subspaces. Because[y1, y2] is a GO-space, it must be metrizable, as claimed. Consequently,]y1, y2[
must be contained in some member ofE . But then[y1, y2] ∩ Y = {y1, y2}. Thus, any relatively convex,
metrizable subset ofY has at most two points.

To complete the proof, observe that the subspaceY of X is also metrizably fibered so that, according to
Theorem 2.4, there is a sequenceH(n) of relatively open, relatively convex covers ofY with the property that
for eachy ∈ Y , the setCy =

⋂
{St(y,H(n) : n ≥ 1} is metrizable. But then, by the previous paragraph,Cy

has at most two points. Now invoke the main theorem in [BHL] to conclude that the subspaceY has a dense
subset that is relativelyσ-closed-discrete inY , and hence alsoσ-closed discrete inX. As noted above,E0 also
contains a dense subset that isσ-closed-discrete inX. HenceX has such a subset.2

Question 2.7 : Is there a ZFC example of a perfect GO-space that is not metrizably fibered? In the light of
Theorem 2.6 that question is equivalent to an old question of R.W. Heath, namely “Is there a ZFC example of
a perfect GO-space that does not have aσ-closed-discrete dense subset?”(Note that a Souslin space would be a
perfect GO-space that does not have such a dense subset, but consistently, Souslin spaces do not exist.)

As noted in the Introduction, the class of GO-spaces is precisely the class of subspaces of linearly ordered
topological spaces. The key step in the proof of that assertion is to construct, for any GO-space(X, τ,<),
a canonical LOTSX∗ that containsX as a closed subspace. To defineX∗, let λ be the usual open-interval
topology of the given order<. Define

R = {x ∈ X : [x,→[ ∈ τ − λ}

and
L = {x ∈ X : ]←, x] ∈ τ − λ}

and then letX∗ be the lexicographically ordered set

{(x, 0) : x ∈ X} ∪ {(x, n) : x ∈ R, n ≤ 0} ∪ {(x, n) : x ∈ L, n ≥ 0}.
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It is known that many topological properties atX are “inherited” byX∗. One such example, proved in [L2]
and needed below, is:

Lemma 2.8 : The GO-spaceX is metrizable if and only if the LOTSX∗ is metrizable

However, there are some topological properties thatX∗ does not “inherit” fromX, the best known being the
property “each closed subet ofX is aGδ-subset ofX.” Therefore, it is natural to ask whether a GO-spaceX is
metrizably fibered if and only if the LOTSX∗ is also metrizably fibered, and the answer is given by:

Proposition 2.9 : A GO-spaceX is metrizably fibered if and only if the LOTSX∗ is metrizably fibered.

Proof: The only part of the theorem that requires proof is that if the GO-spaceX is metrizably fibered, then so
isX∗. Apply Theorem 2.4 to show that ifX is metrizably fibered, then there is a metrizable GO-spaceY and
a continuous, increasing mapf : X → Y such that for eachy ∈ Y, f−1[y] is metrizable. Clearly the fibers of
f are convex subsets ofX.

Let ψ : X∗ → X be given byψ(x, n) = x for each(x, n) ∈ X∗. Thenψ is continuous and order-
preserving. Letg = f ◦ψ. Theng is a continuous, order-preserving mapping fromX∗ toM . Fix anym ∈M .
Theng−1[m] = {(x, n) ∈ X∗ : x ∈ f−1[m]}. LetZ = f−1[m] topologized as a subspace ofX. ThenZ is a
metrizable GO-space, so that we can apply the canonical construction to find a LOTSZ∗ that containsZ as a
closed subspace. BecauseZ is metrizable, Lemma 2.8 shows thatZ∗ is also metrizable. BecauseZ is a convex
subset ofX, the spaceg−1[m] is a subspace ofZ∗ and is therefore metrizable, as required.2

3 Examples

As the next two examples show, there are GO-spaces that can be seen to be metrizably fibered without invoking
the characterizations given in the previous section, because the necessary continuous mapping onto a metric
space is obvious.

Example 3.1 : The lexicographic square and the double arrow space are metrizably fibered compact LOTS.
(Because the lexicographic square is metrizably fibered, we see that a compact LOTS can be metrizably fibered
without being perfect.) The Sorgenfrey line and the Michael line are GO-spaces that are metrizably fibered.2

Example 3.2 : The spaceE(Y,X) of [BL2] and [BL1] is a Čech complete, non-metrizable space that has
weightω1 and has aσ-closed-discrete dense subset. HenceE(Y,X) is metrizably fibered.

Proof: The spaceE(Y,X) is constructed by starting with a special metric spaceX ⊂ Dω described by A.
Stone in [S], whereD is a discrete space with cardinalityω1. Let Y be the closure ofX in Dω and note that,
according to a theorem of Herrlich [H]Y is a LOTS under some linear order. The LOTSE(Y,X) is constructed
by “splitting” each point ofY into two consecutive points and using the lexicographic ordering. We see that
E(Y,X) is metrically fibered because the projectiuon mapping that re-collapses the points ofE(Y,X) that
were split is the required metric fibering. Alternatively, becauseE(X,Y ) has aσ-closed-discrete dense subset,
it is metrizably fibered, by Theorem 2.6.2

We next give examples showing how our results can be used to show that certain spaces arenot metrizably
fibered.

The next example is due to Tkachuk [T] who used it to show that there are first-countable compact Hausdorff
spaces that are not metrizably fibered. Our results make the proof shorter.
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Example 3.3 : The lexicographic cube[0, 1]3 is not metrizably fibered.

Proof: If X = [0, 1]3 were metrizably fibered, then by Theorem 2.4 there would be a continuous order-
preserving mappingf from X onto a metrizable GO-spaceY . Note thatY is compact and hence separa-
ble. For eachx ∈ [0, 1] the interval[(x, 0, 0), (x, 1, 1)], being a copy of the lexicographic square, is non-
metrizable and therefore cannot be a subset of any fiber off , so thatf(x, 0, 0) < f(x, 1, 1) in Y . But then
{]f(x, 0, 0), f(x, 1, 1)[ : x ∈ [0, 1]} is an uncountable collection of pairwise disjoint, non-degenerate, con-
nected convex subsets of the separable GO-spaceY , and that is impossible.2

Example 3.4 The “big bush” in [B] is a non-metrizable paracompact LOTS with a point-countable base that
is not metrizably fibered.

Proof: LetX be the “big bush.” The spaceX is the set

{f : [0, α]→ R : α < ω1, ∀β < α, f(β) ∈ P, and f(α) ∈ Q}

whereQ, P, andR denote, respectively, the usual sets of rational, irrational, and real numbers. EquipX with
the open interval topology of the lexicographic order.

The key feature ofX is that it has no metrizable convex sets larger than a single point. For contradiction,
supposeX is metrizably fibered, and consider the open coversH(n) in Theorem 2.4. The convex setsCx must
be singletons, showing that the spaceX must have aGδ-diagonal, and that is impossible becauseX is a LOTS
and is not metrizable. [L1]2

Our final example concerns Souslin spaces, i.e., linearly ordered spaces that are not separable and yet
have countable cellularity. No connectedness or completeness is assumed. The existence of such spaces is
undecidable in ZFC. Our result slightly improves an example in [T] which begins with a compact, connected
Souslin space having no separable open intervals.

Example 3.5 : A Souslin space cannot be metrizably fibered.

Proof: Any Souslin space is perfect. Hence, Theorem 2.6 shows that if it were metrizably fibered, then it would
have aσ-closed-discrete dense setD. But thenD would be countable, and that is impossible.2
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