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Abstract

In this paper we characterize generalized ordered spaces that are metrizably fibered in terms of certain
quotient spaces and in terms of the existence of special open covers. We apply our results to give a new
characterization of perfect generalized ordered spaces that hawwdoaed-discrete dense subset and to give
examples of GO-spaces that are, or are not, metrizably fibered.
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1 Introduction

Tkachuk introduced and studied metrizably fibered spaces in [T]. A topological sp&metrizably fibered
provided there is a continuous functigrfrom X to a metric spacé/ with the property that the fibef~![m)]
of f is a metrizable subspace &ffor eachm € M. The functionf : X — M in that definition is said to be a
metric fiberingof X.

In this note we characterize generalized ordered spaces that are metrizably fibered, give several examples
of generalized ordered spaces that are, or are not, metrizably fibered, and show that a perfect GO-space is
metrizably fibered if and only if it has @closed discrete dense subset.

Recall that ayeneralized ordered spa¢&O-space) is a Hausdorff spa&eequipped with a linear ordering
such thatX has a base of order-convex sets. If the topologyXotoincides with the usual open interval
topology of the given order, then we say th¥tis alinearly ordered topological spac@.OTS). It is known
that the class of generalized ordered spaces coincides with the class of topological subspaces of LOTS.

At several points in our paper we will use the term “relatively convex.” (¢t <) be a linearly ordered set
and letY” C X. A subsetS C Y isrelatively convex it providedb € S whenever < b < ¢ are points oft”
anda,c € S.

2 Metrizably Fibered GO-spaces

Lemma 2.1 : Supposef : X — M is a metric fibering of the GO-spacg. ThenX is first-countable and
paracompact.

Proof: Fixx € X and letm = f(z). Then the sef ~![m] is aGs-subset ofX, and{x} is aGs-subset of the
metric spacef ~![m]. Hence{z} is aG;-setinX, so thatX is first-countable.



If X is not paracompact, then there is a stationaryssieta regular uncountable cardinathat embeds in
X as a closed subspace [EL]. But thérnis also metrizably fibered by|s. For notational simplicity, we will
assume thaf : S — M is a metrizable fibering aof.

For eachn > 1, letG(n) be an open cover of the metric spakeby balls of radius};. Let H(n) be the
family of convex components of the sets![G] for G € G(n). Let L be the set of limit points of. ThenL is
also stationary i, and for eacln and\ € L choose soméf (n, \) € H(n) that contains\. Then there is an
ordinal (A, n) < A such thafa(A, n), \]NS C H(n, ). Apply the Pressing Down Lemma to the stationary
setL to find an ordinal3(n) and a cofinal set.(n) C L such thatw(\,n) = 5(n) forall A\ € L(n). But then
[B,—[NS C St(8,H(n)) for eachn, wheres € S is any fixed ordinal greater than evefyn). It follows that
[3,—[N S is mapped to a single poimt € M so that[3, —[N S C f~![m] and that is impossible because
f~1[m] is metrizable O

Definition 2.2 : Let X be a GO space and |étbe a partition ofX into closed, convex, metrizable subspaces.
By X/C we mean the quotient space obtained fr&nty identifying each set ié to a point.

Notice that the given ordering of induces a natural linear ordering &f/C, and van Wouwe (Proposition
1.2.3 of [vW]) proved

Proposition 2.3 : Let X be a GO-space and l&t be a partition of X into closed convex sets. ThefyC
with the quotient topology is itself a GO-space with respect to the natural ordering, and the natural projection
mapping is closed, continuous, and order-preserving.

We are now able to characterize metrizably fibered GO-spaces using quotient spaces and special open
covers.

Theorem 2.4 : Let X be a GO-space. Then the following are equivalent:
a) X is metrizably fibered;

b) X is paracompact and there is a sequer@é(n) : n > 1} of open covers oK such that for
eachz € X, the se{"\{St(z, H(n)) : n > 1} is a metrizable subspace 4f;

c) there is a partitiorC of X into closed, convex, metrizable subspaces such that the quotient space
X/C has aGs-diagonal;

d) there is continuous order-preserving mapping X — Y from X to a metrizable GO-spacg
such thatg~![y] is a metrizable subset df for eachy € Y.

Proof: Clearlyd) = a) so we prover) = b), b) = ¢) andc) = d). However, see 2.5, below.

a) = b). Supposef : X — M is a metric fibering of the GO-spaceé. Let 3(n) be the collection of all open
L pallsinM. LetG(n) be the collection of all convex components of all sets of the férhi B] for B € B(n).
EachgG(n) is an open cover ok and for eachr € X we haveg\{St(z,G(n)) : n > 1} C f~1[f(x)]. Because
7Y f(z)] is metrizable, so i§){St(x,G(n)) : n > 1}, as required.

b) = ¢): Suppose tha is paracompact and the cove¥én) exist as in (b). Using paracompactness, we
recursively define collectiori¥(n) of X such that



i) eachH(n) is a convex open cover of that refinegj(n);

ii) for eachn > 1 and eachd € H(n + 1), St(St(St(H,H(n+1)),H(n+1)),H(n+1))isa
subset of some member Bf(n);

iii) for eachz € X and eachn > 1, Cly (St(z, H(n + 1)) C St(z, H(n)).

For eachr € X defineC, = N{St(xz,H(n) : n > 1}. Because of (i), eacl, is a convex, metrizable subset
of X. In the light of (iii), eachC; is closed inX. Finally, (i) implies that ifC;, N C,, # 0, thenC,, = Cy, i.e.,
the collectionC = {C,, : x € X} is a partition ofX.

Let Y = X/C be the quotient space obtained by collapsing each memb@twf point. According to
Proposition 2.3Y is a GO-space under its natural ordering, and the projection mappidg — Y is a closed,
continuous, order preserving mapping.

We show that” has aGs-diagonal. For each open subgéebf X, letU* = | J{C € C : C C U}. Because
7 is a closed mapping, each gét is open inX and its imager[U*] is open in the quotient spadé Define

L(n)={x[H*]: H € H(n)}.

To see that eaci(n) is an open cover oY, letC,, € C. Then for eacln > 1, C,; C St(z, H(n + 1)) and
by (ii), someH € H(n) hasSt(z, H(n + 1)) C H. But then in the spac¥ we haveC, € n[H*| € L(n).
ThusL(n) is an open cover of. To complete the proof that has aGs-diagonal, suppose thét, € C and
for eachn > 1 we haveC, € 7[H*(n)] for someH (n) € H(n). Then we have: € H(n) so that

Co C(H(n):n>1} C({St(x,H(n)) : n > 1} = C,.

Therefore, in the spackg, {C;} = ({n[H*(n)] : n > 1}, showing that the open coveyn) are aGs-
diagonal sequence for the spaceas claimed.

¢) = d): According to c) we have a partitiahof X such that the quotient spate= X/C has aGs-diagonal.
As noted in Proposition 2.3, the spakewith its quotient topologyr is a GO-space, so that according to a
theorem of Przymusinski ([A]) there is a metrizable GO-topolegyn Y with & C 7. But then the mapping
m: X — (Y, o) is the mapping described in d)O

Remark 2.5 : Notice that, fora) = b), all we need to know is that the range spatdas aGs-diagonal

(and fibers of the mapping are metrizable). In addition, the referee pointed out #rgt Tychonoff space

X is metrizably fibered if and only if there is a sequedé&(n) : n > 1} of open covers ofX such that

U(n + 1) star-refines/(n) for eachn and such thaf\{St(p,U(n)) : n > 1} is metrizable for each € X.
Consequently the equivalence of a) and b) in the previous theorem is actually a consequence of the general
theory of metrizably fibered spaces.

Theorem 2.6 : Let X be a perfect GO-space. Theéfis metrizably fibered if and only X has ac-closed-
discrete dense set.

Proof: First suppose that has ar-closed-discrete dense set. ThEris paracompact [F] and from [BHL] we
know that there is a sequent&n) of open covers o such that for each € X the se{\{St(z, H(n) : n >
1} is a countable set. But any countable GO-space is metrizable. Now apply part b) of Theorem 2.4.



Conversely, suppos¥ is perfect and metrizably fibered. We claim that every metrizable, convex, open
subset/, of X is contained in a maximal open, convex metrizable subsét.ofVe can apply Zorn’s lemma
to the collection{V : V' is a metrizable open convex subsetofandlU, C V'} partially ordered by inclusion,
provided we show that i is a chain of convex, open metrizable subspace¥s ahen the subspace = | JC
is metrizable. Fixp € S. It will be enough to show that botlp, —[ N S and]«, p] N .S are metrizable.

We will consider[p, —[ N S, the other half being analogous. There are two cases. If somepaink
is both an upper bound fof and a limit point ofS, then there is an increasing sequengein S whose
supremum is;. Thenp,q] = {q} U (U{[p, z»n] : n > 1}), so that the GO-spadp, ¢ is a countable union
of closed metrizable subspaces, whefice] is metrizable. Consequentl, N [p, ¢[ is also metrizable. The
second case is wheffhas no supremum iX, i.e., the supremum of is a gap ofX. But then, becaus&
is paracompact, a theorem of Faber [F] shows that there is a closed, discrete cofinal’sabget—[ N S.
Using the sef’, we can writep, —[N S as a discrete union of closed metrizable convex subspaces and thereby
conclude thalp, —[ N S is metrizable.

Now let & be the collection of all maximal, open, convex, metrizable subspacks @hen members of
are pairwise disjoint, so thdf, = | £ is a metrizable open subspaceXf BecauseX is perfect,E) is the
union of countably many closed subspacdésof X, each metrizable, and henédg, has a dense subsg,
that iso-closed-discrete itk. ThereforeF, also has a dense subset thatislosed-discrete itk .

LetY = X — Ey. ThenY is closed inX. We claim that ify; < y» are points ot” and if 7" = [y1,y2] NY
is metrizable, thefy;, y2] is a metrizable subspace &f. Clearly|y:,y2] = T'U ([y1, y2] N Ep). From above,
the latter set is metrizable and is &p-subset ofX. Hencely, y2] is the union of countably many closed
metrizable subspaces. Becalige y2] is a GO-space, it must be metrizable, as claimed. Consequiemthyz|
must be contained in some member&f But then[y;,y2] N Y = {y1,y2}. Thus, any relatively convex,
metrizable subset df has at most two points.

To complete the proof, observe that the subspgaad X is also metrizably fibered so that, according to
Theorem 2.4, there is a sequeri¢én) of relatively open, relatively convex covers Bfwith the property that
for eachy € Y, the setC, = ({St(y, H(n) : n > 1} is metrizable. But then, by the previous paragrap,
has at most two points. Now invoke the main theorem in [BHL] to conclude that the subgpaa® a dense
subset that is relatively-closed-discrete iy, and hence alse-closed discrete itX. As noted abovel, also
contains a dense subset thatislosed-discrete itX. HenceX has such a subset.

Question 2.7 : Is there a ZFC example of a perfect GO-space that is not metrizably fibered? In the light of
Theorem 2.6 that question is equivalent to an old question of R.W. Heath, namely “Is there a ZFC example of
a perfect GO-space that does not have@dosed-discrete dense subset?”(Note that a Souslin space would be a
perfect GO-space that does not have such a dense subset, but consistently, Souslin spaces do not exist.)

As noted in the Introduction, the class of GO-spaces is precisely the class of subspaces of linearly ordered
topological spaces. The key step in the proof of that assertion is to construct, for any GQ-Epace ),
a canonical LOTSX* that containsX as a closed subspace. To defiké, let A be the usual open-interval
topology of the given ordet.. Define

R={zeX:[z,—[eT— A}

and
L={zeX:|—zleT—)\}

and then letX* be the lexicographically ordered set

{(,0):x € X} U{(z,n):x € R, n<0}U{(xz,n):xz € L, n>0}
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It is known that many topological properties’g@tare “inherited” byX™*. One such example, proved in [L2]
and needed below, is:

Lemma 2.8 : The GO-spaceX is metrizable if and only if the LOTS* is metrizable

However, there are some topological properties fhatdoes not “inherit” fromX, the best known being the
property “each closed subet &f is aGs-subset ofX.” Therefore, it is natural to ask whether a GO-spaces
metrizably fibered if and only if the LOTX ™" is also metrizably fibered, and the answer is given by:

Proposition 2.9 : A GO-spaceX is metrizably fibered if and only if the LOTS* is metrizably fibered.

Proof: The only part of the theorem that requires proof is that if the GO-sjasanetrizably fibered, then so
is X*. Apply Theorem 2.4 to show that X is metrizably fibered, then there is a metrizable GO-spaead
a continuous, increasing map: X — Y such that for each € Y, f~![y] is metrizable. Clearly the fibers of
f are convex subsets &f.

Lety : X* — X be given byy(z,n) = x for each(x,n) € X*. Thenq is continuous and order-
preserving. Ley = f o 4. Theng is a continuous, order-preserving mapping frdmto M. Fix anym € M.
Theng=i[m] = {(z,n) € X* : x € f~[m]}. LetZ = f~![m] topologized as a subspaceXf ThenZ is a
metrizable GO-space, so that we can apply the canonical construction to find aX’Of&t containsZ as a
closed subspace. Becausés metrizable, Lemma 2.8 shows that is also metrizable. Becauggis a convex
subset ofX, the spacg—![m] is a subspace of* and is therefore metrizable, as required.

3 Examples

As the next two examples show, there are GO-spaces that can be seen to be metrizably fibered without invoking
the characterizations given in the previous section, because the necessary continuous mapping onto a metric
space is obvious.

Example 3.1 : The lexicographic square and the double arrow space are metrizably fibered compact LOTS.
(Because the lexicographic square is metrizably fibered, we see that a compact LOTS can be metrizably fibered
without being perfect.) The Sorgenfrey line and the Michael line are GO-spaces that are metrizably fibered.

Example 3.2 : The spaceE (Y, X) of [BL2] and [BL1] is a Cech complete, non-metrizable space that has
weightw; and has ar-closed-discrete dense subset. Heh&’, X ) is metrizably fibered.

Proof: The spacé’(Y, X) is constructed by starting with a special metric spAce_ D“ described by A.
Stone in [S], wherdD is a discrete space with cardinality. LetY be the closure oK in D“ and note that,
according to a theorem of Herrlich [H] is a LOTS under some linear order. The LOEEY, X) is constructed

by “splitting” each point ofY” into two consecutive points and using the lexicographic ordering. We see that
E(Y, X) is metrically fibered because the projectiuon mapping that re-collapses the poiit3’ok') that

were split is the required metric fibering. Alternatively, becali$&’, Y') has ar-closed-discrete dense subset,

it is metrizably fibered, by Theorem 2.6.

We next give examples showing how our results can be used to show that certain spactmatezably
fibered.

The next example is due to Tkachuk [T] who used it to show that there are first-countable compact Hausdorff
spaces that are not metrizably fibered. Our results make the proof shorter.



Example 3.3 : The lexicographic cub@, 1]? is not metrizably fibered.

Proof: If X = [0,1]3 were metrizably fibered, then by Theorem 2.4 there would be a continuous order-
preserving mapping’ from X onto a metrizable GO-spadé. Note thatY is compact and hence separa-
ble. For eache € [0, 1] the interval[(x,0,0), (z,1,1)], being a copy of the lexicographic square, is non-
metrizable and therefore cannot be a subset of any fibg¢r 66 thatf(z,0,0) < f(z,1,1) in Y. But then
{]f(2,0,0), f(z,1,1)] : = € [0,1]} is an uncountable collection of pairwise disjoint, non-degenerate, con-
nected convex subsets of the separable GO-spaead that is impossiblel

Example 3.4 The “big bush” in [B] is a non-metrizable paracompact LOTS with a point-countable base that
is not metrizably fibered.

Proof: LetX be the “big bush.” The spack is the set
{f:[0,a) > R:a<wy, V8 <a, f(#) €P, and f(«a) € Q}

whereQ, P, andR denote, respectively, the usual sets of rational, irrational, and real numbers. Equitp
the open interval topology of the lexicographic order.

The key feature ofX is that it has no metrizable convex sets larger than a single point. For contradiction,
supposeX is metrizably fibered, and consider the open co¢é(s) in Theorem 2.4. The convex se&fs must
be singletons, showing that the spacemust have &-s-diagonal, and that is impossible becausés a LOTS
and is not metrizable. [L1]

Our final example concerns Souslin spaces, i.e., linearly ordered spaces that are not separable and yet
have countable cellularity. No connectedness or completeness is assumed. The existence of such spaces is
undecidable in ZFC. Our result slightly improves an example in [T] which begins with a compact, connected
Souslin space having no separable open intervals.

Example 3.5 : A Souslin space cannot be metrizably fibered.

Proof: Any Souslin space is perfect. Hence, Theorem 2.6 shows that if it were metrizably fibered, then it would
have ar-closed-discrete dense det But thenD would be countable, and that is impossitile.
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