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1. Introduction.

A space X is called a Urysohn space if for each pair of distinct points x, y ∈ X there
is a continuous function f : X → IR with the property that f(x) 6= f(y). In her papers
[S1] and [S2], E.N. Stepanova studied spaces in which the separating functions in a Urysohn
space could be chosen in a natural manner. She defined that a space X has a continuous
separating family if there is a continuous function Φ : X2 − ∆ → Cu(X), where Cu(X) is
the space of continuous real-valued functions on X with the uniform convergence topology,
such that if fx,y = Φ(x, y), then fx,y(x) 6= fx,y(y). ( The collection {fx,y : (x, y) ∈ X2 −∆}
is then called a continuous separating family for X.) To have a continuous separating family
is a very strong property, as can be seen from Stepanova’s theorem

1.1 Theorem: Suppose X is a paracompact p-space in the sense of Arhangel’skii. Then the
following are equivalent:

a) X is metrizable;

b) X has a Gδ-diagonal;

c) X has a continuous separating family.

Previous research shows that there are many parallels between the metrization theory
for compact Hausdorff spaces (and for their p-embedded subspaces) and the metrization
theory for linearly ordered topological spaces (and for their p-embedded subspaces). In
this paper, we show that a weak form of that parallelism exists if one considers Stepanova’s
continuous separating families. We show that the existence of a continuous separating family
in a generalized ordered spaces does yield hereditary paracompactness, and that in separable
generalized ordered spaces, the existence of a continuous separating family does give a Gδ-
diagonal. However, for ordered spaces with uncountable cellularity, our examples show that
the expected parallelism breaks down. In addition, our examples clarify the interactions
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between continuous separating families and certain very strong base properties (e.g., σ-
disjoint bases or point-countable bases).

In Section 2 of this paper, we explore the role of continuous separating families in linearly
ordered and generalized ordered spaces, and in Section 3 we use ordered space constructions
to investigate the interaction of continuous separating families with certain strong base
properties.

Recall that a generalized ordered space (GO-space) is a Hausdorff space (X, T ) equipped
with a linear order < such that the topology T has a base consisting of convex sets. It is
known that GO-spaces are precisely the topological subspaces of linearly ordered topological
spaces (LOTS), i.e., linearly ordered sets with their usual open interval topology.

2. GO-spaces with continuous separating families

If a GO-space admits a continuous separating family, then it has a continuous separating
family of a special kind, as described in (2.1) below.

2.1 Proposition: If a GO space X has a continuous separating family, then it has a con-
tinuous separating family {fx,y : (x, y) ∈ S2 −∆} such that if y < x then

a) fx,y(t) = 0 if t ≤ y and
b) fx,y(t) = 1 if x ≤ t.

Proof: We know from [S2] that if a space X has a continuous separating collection, then it
has a continuous separating collection {hx,y : (x, y) ∈ X2 −∆} such that hx,y(x) = −1 and

hx,y(y) = 1. First define gx,y = 1−hx,y
2

and note that gx,y(x) = 1 and gx,y(y) = 0. If y < x,
define

fx,y(t) =

{
0 if t ≤ x
gx,y(t) if t ≥ x

In case x < y define fx,y = gx,y. It is easy to see that {fx,y : (x, y) ∈ X2 − ∆} is a
continuous separating family for X that satisfies conclusion (a) of this lemma. An analogous
modification of fx,y for t ≥ y yields a continuous separating family that satisfies both (a)

and (b).

2.2 Lemma: Let S be a stationary set in a regular uncountable cardinal κ. Then S does
not admit a continuous separating family.

Proof: For contradiction, suppose there is a continuous separating family for S. Modify the
family if necessary to make it satisfy the conclusion of (2.1).

Claim 1: For each y ∈ S there is a δ(y) ∈ S such that for any x > y and any t > δ(y) we
have fx,y(t) = 1.

To prove Claim 1, fix y ∈ S and recall that the function F (x) = fx,y gives a continuous
function from T = S ∩ ]y, κ[ onto a subset M of the metric space Cu(S). Being a metric
space, M has a σ-closed-discrete dense subset N =

⋃{N(i) : i < ω}. For each g ∈ N choose
xg ∈ T such that g = F (xg). Because F is continuous, each set {xg : g ∈ N(i)} is closed and
discrete in S and therefore cannot be cofinal in S because S is stationary in κ. Then, because
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κ is regular and uncountable, the set {xg : g ∈ N} cannot be cofinal in S. Choose δ(y) ∈ S
such that {xg : g ∈ N} ⊆ [0, δ(y)[. Now fix any x > y and any t > δ(y). The function fx,y
belongs to M , so there is a sequence {gn : n < ω} in N that converges to fx,y in M . Write
x(n) for the element xgn chosen above. Note that for each n, t > δ(y) > x(n) so that the
special modifications of the continuous separating family in (2.1) yield fx(n),y(t) = 1. Now,
taking limits, we obtain fx,y(t) = 1 as claimed.

For the rest of this proof, we will say that a net {y(α) : α < λ} is δ-admissible provided

1) λ is a limit ordinal;

2) y(α) ∈ S for each α < λ;

3) if α < β < λ then y(α) < δ(y(α)) < y(β).

Let C be the set of all z < κ such that some δ-admissible net has z as its supremum.

Claim 2: The set C is a closed and unbounded subset of κ.

To see that C is unbounded, note that if we start at any y(0) ∈ S, we can recursively
define y(n) in such a way that y(n) < δ(y(n)) < y(n + 1). Then sup{y(n) : n < ω} belongs
to C and exceeds y(0).

To see that C is closed, let q be any limit point of C and choose a strictly increasing net
{p(α) : α < λ} having supremum q. For each α < λ choose a δ-admissible net {z(α, β) :
β < βα} that converges to p(α). For each α < λ we have p(α) < p(α + 1) so there must
be a γ = γα with p(α) < z(α + 1, γ) < p(α + 1). Defining x(α) = z(α + 1, γ) we obtain a
δ-admissible net whose supremum is q. Thus q ∈ C, and Claim 2 is established.

Because S is stationary, there must be a point z ∈ C ∩ S. Choose a δ-admissible net
{y(α) : α < µ} with supremum equal to z. Let w be any point of S with w > z. Observe
that w > z > y(α + 1) > δ(y(α)) > y(α) for each α < µ.

The net {(w, y(α)) : α < µ} converges to (w, z) so that the net {fw,y(α) : α < µ} converges
to fw,z. Because of the special properties of the continuous separating family established in
(2.1) we know that fw,z(z) = 0. However, the fact that w > z > δ(y(α)) combines with
Claim 1 to show that for each α, fw,y(α)(z) = 1, and that is incompatible with fw,y(α) → fw,z.

2.3 Proposition: Suppose that X is a GO-space (or more generally, any monotonically
normal space) that has a continuous separating family. Then X is hereditarily paracompact.

Proof: If not, then it follows form a theorem of Balogh and Rudin [BR] that X contains
a topological copy of a stationary subset S of some uncountable regular cardinal κ. That
subspace inherits a continuous separating family from the space X, and that is impossible

in the light of (2.2).

In certain situations, Stepanova’s Theorem 1.1 has an analog for GO-spaces.

2.4 Proposition: Suppose X is a GO-space such that X2 −∆ is either separable, or has a
dense Lindelöf subspace, or has countable cellularity. Then the following are equivalent:
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(a) X has a Gδ-diagonal;

(b) X has a weaker metric topology;

(c) X has a continuous separating family.

In particular, if the GO-space X can be p-embedded in some LOTS and satisfies the hypothesis
of this Proposition, then the existence of a continuous separating family is equivalent to
metrizability.

Proof: The equivalence of (a) and (b) is well known for any GO-space, and (b) implies (c)
for any topological space. Therefore it is enough to prove that (c) implies (b).

Suppose that Φ : X2−∆→ Cu(X) is a continuous separating family. Let M = Φ[X2−∆].
Then M is a separable metric space, so there is a set {gn : n ≥ 0} ⊆ M that is dense in M
with respect to the uniform convergence topology inherited from Cu(X). Fix distinct points
x, y in X. Then fx,y separates the points x and y and some subsequence of {gn : n ≥ 0}
converges uniformly to fx,y, so that for some n, gn(x) 6= gn(y). Define G : X → IRω by the
rule that G(x) = 〈g0(x), g1(x), g2(x), · · ·〉. Then G is a continuous, 1-1 function from X into
IRω, so that X has a weaker metric topology, as claimed.

Now suppose that the GO-space X can be p-embedded into some LOTS, and that X2−∆
is separable, or has a dense Lindelöf subspace, or has countable cellularity. Then the existence
of a continuous separating family yields a Gδ-diagonal, and it is known that for GO-spaces

that p-embed in some LOTS, the existence of a Gδ-diagonal yields metrizability [L].

Remark: Two of the hypotheses in (2.4) are deceptively general. For a GO-space X, one
can show that X is separable if and only if X2 − ∆ has countable cellularity. (This is
essentially a result of Kurepa; see problem 2.7.10 (b) in [E].) We do not know whether the
property “X2 −∆ has a dense Lindelöf subspace” is strictly weaker than separability (for a
GO-space).

Examples in Section 3 will show that Proposition (2.4) fails for more general GO-spaces
and LOTS. All of the examples have uncountable cellularity and in an earlier draft of this
paper, we asked whether (2.4) holds if separability of X is relaxed to countable cellularity
of X. We asked

2.5 Question: Suppose that X is a non-separable GO-space that has countable cellularity
(i.e., X is a Souslin space). Can X have a continuous separating family?

Recently Gary Gruenhage proved that if there is a Souslin space, then there is a Souslin
space that admits a continuous separating family, thereby answering Question 2.5 in the
affirmative.

By combining results of van Wouwe [vW] and Stepanova (cited above), we obtain another
metrization theorem for linearly ordered spaces, namely:

2.6 Proposition: Suppose X is a LOTS. Then X is metrizable if and only if X has a
σ-closed-discrete dense subset and a continuous separating family.

Proof: It is enough to show that every LOTS with a σ-closed-discrete dense set and a contin-
uous separating family is metrizable. To that end, we invoke the Corollary to Theorem 2.1.6
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in [vW] to see that any LOTS with a σ-closed-discrete dense subset must be a paracompact
p-space in the sense of Arhangel’skii, and then the theorem of Stepanova (see (1.1), above)

to conclude that X is metrizable.

Results in [BHL] allow us to extend (2.6) to perfect LOTS that have continuous separating
families and certain other properties. For example:

2.7 Proposition: Suppose X is a perfect LOTS that has a continuous separating family.
Then the following are equivalent:

a) X is metrizable;

b) X is the union of countably many metrizable subspaces;

c) X can be mapped by a continuous s-mapping onto some topological space with a Gδ-

diagonal.

There is a family of questions about the difference between perfect GO-spaces and the
apparently more restrictive class of GO-spaces with σ-closed-discrete dense sets. See [QT]
for a survey, and a proof that many of these questions are equivalent to each other. We add
another question to the list.

2.8 Question: Is there a perfect, non-metrizable LOTS that has a continuous separating
family?

3. Continuous separating families and base conditions.

The examples in this section show that the existence of a continuous separating family
does not yield metrizability, even in the presence of very strong base conditions, and even in
the very restrictive context of linearly ordered topological spaces.

Because the Sorgenfrey and Michael lines each have a weaker metric topology (namely
the usual topology of the space IR), we know that each has a continuous separating family.
Thus, for GO-spaces in general, Stepanova’s continuous separating families do not yield
metrizability. However, experience shows that it can happen that a topological property
does not yield metrizability for GO-spaces, but does imply metrizability for linearly ordered
spaces. One such property is the existence of a Gδ-diagonal. Examples in this section show
that Stepanova’s continuous separating families do not yield metrizability, even in linearly
ordered spaces.

3.1 Example There is a LOTS with a continuous separating family that is not first countable.

Proof: Let X be the space obtained by isolating every countable ordinal in [0, ω1] and
letting ω1 have its usual neighborhoods. Then X is homeomorphic to the lexicographic
product ([0, ω1[ × ZZ) ∪ {(ω1, 0)}, so X is a linearly ordered topological space. For any
(α, β) ∈ X2−∆ let Φ(α, β) be the characteristic function of the interval [0,min(α, β)]. Then

Φ gives the required continuous separating family.

It is harder to find first-countable linearly ordered spaces that have continuous separating
families and are not metrizable. The LOTS extension of the Michael line is one such space.
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3.2 Example: There is a first countable LOTS that has a σ-disjoint base and has a contin-
uous separating family, and is not metrizable.

Proof: Let X = M∗ be the LOTS extension of the Michael line, i.e., let X be the set

(IR× {0}) ∪ (IP× ZZ)

equipped with the open interval topology of the lexicographic order. Then X is a LOTS
and has a σ-disjoint base [L]. To show that X has a continuous separating family, we define
Φ((x, i), (y, j)) = f(x,i),(y,j) where

a) f(x,i),(y,j)((z, k)) = |x− z| in case x 6= y

b) f(x,i),(x,j) is the characteristic function of the set {(x, j)} in case x = y.

Then f(x,i),(y,j)((x, i)) 6= f(x,i),(y,j)((y, j)) and each f(x,i),(y,j) is continuous from X to IR

To show that Φ is continuous, suppose ((xn, in), (yn, jn)) is a sequence in X2 − ∆ that
converges to ((x0, i0), (y0, j0)) ∈ X2 − ∆. We must show that the sequence f(xn,in),(yn,jn)

converges uniformly to f(x0,i0),(y0,j0). We consider four cases, depending upon the nature of
the points x0 and y0.

Case 1: If x0, y0 ∈ IP then the sequence ((xn, in), (yn, jn)) is eventually constant because
both (x0, i0) and (y0, j0) are isolated points, so there is nothing to prove.

Case 2: Suppose x0 ∈ IP and y0 /∈ IP. Then (x0, i0) is isolated and we may assume
that (xn, in) = (x0, i0) for all n. Further, y0 ∈ IR − IP forces j0 = 0. Because x0 6=
y0, we may assume that for each n, (yn, jn) 6= (x0, i0) = (xn, in). Therefore, for each
(z, k), f(xn,in),(yn,jn)((z, k)) = |xn − z| and f(x0,i0),(y0,j0)((z, k)) = |xn − z|. Hence xn → x0

shows that we have the required uniform convergence.

Case 3: Suppose x0 /∈ IP (whence i0 = 0) and y0 ∈ IP. This case is analogous to Case 2.

Case 4: Suppose neither x0 nor y0 belongs to IP. Then i0 = 0 = j0 so that ((x0, i0), (y0, j0)) ∈
X2−∆ forces x0 6= y0. Because xn → x0 and yn → y0 we may assume that every xn lies on the
same side of x0+y0

2
as does x0, and that each yn lies on the same side of x0+y0

2
as does y0. Thus,

xn 6= yn for each n. But then f(xn,in),(yn,jn)((z, k)) = |xn−z| and f(x0,i0),(y0,j0)((z, k)) = |x0−z|
so once again we have the required uniform convergence.

Remark: In a recent paper, [HH], Halbeisen and Hungerbuhler proved that a space X
admits a continuous separating family that depends on only one parameter (in the sense
that fx,y = fx,z whenever y, z ∈ X − {x}) if and only of X has a weaker metric topology.
They gave an example of a paracompact space S that has a continuous separating family, but
does not have a one-parameter continuous separating family. Their example had χ(S) = ω1.
Because the LOTS M∗ is non-metrizable, it cannot have a Gδ-diagonal and hence does not
have a weaker metric topology. It follows from (3.2) and the characterization in [HH] that
M∗ is another example of a space that has a continuous separating family but does not have
a one-parameter continuous separating family, and M∗ has the advantage that it is also first
countable.
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3.3 Example: There is a Lindelöf LOTS X with a σ-disjoint base that has a continuous
separating family and is not metrizable.

Proof: Let B ⊂ [0, 1] be a Bernstein set, i.e., a set such that if K is an uncountable compact
subset of [0, 1], then both K∩B and K−B are non-empty. Bernstein sets exist in ZFC [Ox].
Write C = [0, 1] − B and define X = (B × ZZ) ∪ (C × {0}). Let X have the open interval
topology of the lexicographic order. The resulting LOTS is Lindelöf and is not metrizable,
and has a σ-disjoint base. A continuous separating family {fx,y : (x, y) ∈ X2 − ∆} for X
can be defined as in in (3.2)

It is interesting to note that the space M∗ of (3.2) consistently contains Lindelöf sub-
spaces that inherit a continuous separating family from M∗ and are non-metrizable. In [M1],
Michael showed that CH yields a subset L of the usual space of real numbers that contains
Q and is concentrated on Q. Burke and Davis [BD] used the existence of an ω1-scale to get
the same conclusion. Topologize L as a subspace of the Michael line M and let X = L∗ be
the LOTS extension of L, i.e., the lexicographically ordered set

(Q × {0}) ∪ ((L−Q)× ZZ).

This space is known to be Lindelöf and non-metrizable and it inherits a σ-disjoint base and

a continuous separating family from the superspace M∗.

While the spaces described in (3.2) and (3.3) are not metrizable, they do have a σ-disjoint
base, and that is a very strong base condition among ordered spaces. Our next example shows
that the existence of a continuous separating family does not yield a point-countable base
and does not force a point-countable base to be σ-disjoint.

3.4 Example: There is a LOTS with a continuous separating family that does not have a
point-countable base, and there is a LOTS with a continuous separating family that has a
point-countable base but not a σ-disjoint base.

Proof: For each α ≤ ω1, let Bα = {x : [0, α] → IR : ∀β < α, x(β) ∈ IP and x(α) ∈ Q}.
Let B =

⋃{Bα : α ≤ ω1}. Note that if x and y are distinct elements of B, then there
is a first ordinal α = fd(x, y) such that x(α) 6= y(α). We define x ≺ y if x(α) < y(α)
and y ≺ x otherwise. Endow B with the open interval topology of the order ≺. One can
verify that basic neighborhoods of x ∈ Bα have the form B(x, n) = {y ∈ B : y(β) =
x(β) if β < α and |y(α)− x(α)| < 1

n
}. In [BL] we showed that the LOTS B does not have

a point-countable base, and in [B] it was shown that the subspace C =
⋃{Bα : α < ω1} is a

LOTS with a point-countable base, but not a σ-disjoint base. We will complete this proof
by showing that the LOTS B has a continuous separating family {fx,y : (x, y) ∈ B2 − ∆}.
Then the subcollection {fx,y|C : (x, y) ∈ C2 −∆} will be a continuous separating family for
the subspace C.

It is enough to define fx,y in case x ≺ y in B. Compute α = fd(x, y) and note that
x(α) < y(α). For any t ∈ B, define

fx,y(t) =


0 if t � x
1 if y � t
t(α)−x(α)
y(α)−x(α)

if x � t � y.
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A case-by-case analysis shows that if 〈(xn, yn)〉 converges to (x, y) in B2 −∆, then 〈fxn,yn〉
converges uniformly to fx,y in Cu(B).

A LOTS that is, in many senses, at the opposite end of the spectrum from M∗ is the
LOTS extension S∗ of the Sorgenfrey line S. Recall that S∗ is the lexicographically ordered
set IR × {n ∈ ZZ : n ≤ 0}. Whether or not S∗ has a continuous separating family may be
axiom-sensitive. The hypothesis of our next result – that there is an uncountable subspace
of S whose square is Lindelöf – is a consequence of the Continuum Hypothesis [M1] and is
consistent with (MA + not CH), but is not consistent with OCA or PFA [BuMo].

3.5 Example: If there is an uncountable subspace of the Sorgenfrey line S whose square is
Lindelöf, then S∗ does not have a continuous separating family.

Proof: Let T be an uncountable subspace of the Sorgenfrey line S such that T×T is Lindelöf.
A result of Michael [HM] shows that S2 is perfect, so we know that T 2 is hereditarily Lindelöf.

Let � be the lexicographic order on S∗. For contradiction, suppose that there is a
continuous separating family for S∗, say {f(x,i),(y,j) : ((x, i), (y, j)) ∈ (S∗)2 −∆}. By Lemma
(2.1), we may assume that if (y, j) ≺ (x, i), then

f(x,i),(y,j)((z, k)) =

{
0 whenever (z, k) � (y, j)
1 whenever (y, j) � (z, k).

Consider the subspace X = {(x, i) ∈ S∗ : x ∈ T, i ∈ {0, 1}} of S∗. Restricting the
continuous separating family to the subspace X gives a continuous separating family for X.
The rest of the proof is devoted to using the special properties of the Cartesian product
space T 2 to show that the space X cannot have a continuous separating family.

Fix k and let Bk = {(x, y) ∈ T 2 : y < x and |f(x,0),(y,−1)((y, 0))| ≥ 1
k
}. We claim that

the set Yk = {y ∈ T : (T × {y}) ∩ Bk 6= ∅} is countable. If not, choose distinct yα ∈ Yk
for 0 ≤ α < ω1 and then choose xα such that (xα, yα) ∈ Bk. As noted above, the space T 2

is hereditarily Lindelöf, so that the uncountable set A = {(xα, yα) : α < ω1} must contain
a limit point of itself, say (x′, y′). Choose ordinals αn < ω1 such that (xαn , yαn) converges
to (x′, y′). Because the points yα are distinct, the sequence {yαn : n ≥ 1} has a strictly
monotone decreasing subsequence. We may assume that yαn > yαn+1 for each n. Then we
have

(a) limn→∞(xαn , 0) = (x′, 0)

(b) limn→∞(yαn , 0) = (y′, 0)

(c) limn→∞(yαn ,−1) = (y′, 0)

(d) because (x′, y′) ∈ A ⊆ Bk, we know that y′ < x′.

Then the sequence 〈f(xαn ,0),(yαn ,−1)〉 converges to f(x′,0),(y′,0) uniformly and therefore

lim
n→∞

f(xαn ,0),(yαn ,−1)((yαn , 0)) = f(x′,0),(y′,0)(y
′, 0) = 0.
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However |f(xαn ,0),(yαn ,−1)((yαn , 0))| ≥ 1
k

for each n, and that is impossible. Therefore, each
set Yk is countable, and hence so is the set Y =

⋃{Yk : k ≥ 1}.

Because T is uncountable and hereditarily Lindelöf, the set T contains an ω1-limit point
ŷ of itself, i.e., a point ŷ such that T ∩ ]ŷ, ŷ + 1

n
[ is uncountable for each n. Indeed, T must

contain uncountably many such points, so we may choose one that is not in the countable
set Y . We will denote the chosen point by ŷ. For each n, choose xn ∈ (]ŷ, ŷ + 1

n
[ ∩ T )− Y .

Then xn > ŷ and because ŷ 6∈ Y no point x ∈ T ∩ ]ŷ,→[ can have f(x,0),(ŷ,−1)(ŷ, 0) 6= 0. In
particular, for all n, we have f(xn,0),(ŷ,−1)((ŷ, 0)) = 0.

But 〈xn〉 → ŷ so that in L, (xn, 0) → (ŷ, 0). Consequently f(xn,0),(ŷ,−1) converges uni-
formly to f(ŷ,0),(ŷ,−1) and hence f(xn,0),(ŷ,−1)((ŷ, 0)) converges to f(ŷ,0),(ŷ,−1)((ŷ, 0)). But that
is impossible because

f(xn,0),(ŷ,−1)((ŷ, 0)) = 0

for every n while
f(ŷ,0),(ŷ,−1)((ŷ, 0)) = 1.

That contradiction completes the proof of (3.4)

3.6 Question: In ZFC, does S∗ have a continuous separating family?
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