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Abstract

In this paper we examine the role of tHespace property (equivalently of the MCM-property)

in generalized ordered (GO-)spaces and, more generally, in monotonically normal spaces. We
show that a GO-space is metrizable iff it igiaspace with a&'s-diagonal and iff it is a quasi-
developables-space. That last assertion is a corollary of a general theorem thét-apstce

with a o-point-finite base must be developable. We use a theorem of Balogh and Rudin to
show that any monotonically normal space that is hereditarily monotonically countably meta-
compact (equivalently, hereditarily@&space) must be hereditarily paracompact, and that any
generalized ordered space that is perfect and hereditafbgace must be metrizable. We
include an appendix on hon-archimedean spaces in which we prove various results announced
without proof by Nyikos.
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1 Introduction

To say that a spadeX, 7) is a3-space [14] means that there is a functioinom {1,2,3---} x X
to 7 such that each(n, =) is a neighborhood of and ify € g(n, z,,) for eachn, then the sequence
(x,) has a cluster point iX. The functiong(n, z) in that definition is said to be &a-function
for X. Many types of spaces hayefunctions, e.g., semi-stratifiable spaces [8\\8paces, strict
p-spaces, and countably compact spaces [12].

Recently thes-space property re-emerged in a completely different context, namely the study
of monotone modifications of topological properties. The following definition appears in [11].

Definition 1.1 A topological space isnonotonically countably metacompa®CM) if for each
decreasing sequende = {D,, : n < w} of closed sets with){D,, : n < w} = 0, there is a
sequencdU(n, D) : n < w} of open sets satisfying:



a) for eachn < w, D, C U(n, D);
b)Y {U(n,D) :n <w} =0;

c)if C = {C,, : n < w} is a decreasing sequence of closed sets with empty intersec-
tion, and ifC,, C D,, for eachn, thenU(n,C) C U(n, D) for eachn.

Note that the open set$(n, D) in that definition depend on an entire decreasing sequénee
(D,,) of closed sets with empty intersection. In a subsequent paper, Ge Ying and Chris Good [23]
proved:

Lemma 1.2 For aT;-spaceX, the following are equivalent:

a) X is MCM;

b) for each point: € X there is a sequenclg(n, z) : n < w} of open neighborhoods

of x such that if{ D,, : n < w} is a decreasing sequence of closed sets with empty
intersection, then the sets(n, D,,) = U{g(n,z) : = € D,} satisfy"\{G(n,D,)) :
n<w}l=~0;

c) X is a-space.d
In the light of Lemma 1.2 we will use the termg-Space” and “MCM-space” interchangeably in
this paper, depending upon which one sounds better in a given context.

It is well-known that every GO-space is hereditarily normal and has the much stronger property
called monotone normality ([13]). By way of contrast, it is also well-known that every GO-space is
hereditarily countably metacompact, but familiar examples show that GO-spaces may fail to have
the monotone countable metacompactness property. The following examples were announced in
[11].

Example 1.3 Neither the Sorgenfrey line nor the Michael line nor the lexicographic pragdtict
(a LOTS that is a topological group) is MCM (equivalently, none of the threesispace).

Those examples immediately lead one to ask which GO-spaces are MCM and what is the role of
the MCM property (equivalently, the-space property) among GO-spaces.

Section 2 contains metrization theorems for GO-spaces that involyedhace property. The first
provides another solution of the equation

GO-space +s-diagonal + (?) = metrizable.
We prove:

Theorem 1.4 A GO-space is metrizable if and only if it isflaspace with a7 s-diagonal.

Theorem 1.5 A GO-space is metrizable if and only if it is a quasi-developab#pace.



Theorem 1.5 is a corollary of a general theorem that asserts:

Theorem 1.6 Any regularg-space with ar-point-finite base is developable.

In Section 3 we investigate the heredit@rgpace property. We use a theorem of Balogh and Rudin
[2] and a stationary set argument to show that:

Proposition 1.7 Any monotonically normal space (and in particular, any GO-space) that is hered-
itarily a J-space is hereditarily paracompact.

The rest of Section 3 is devoted to proving metrization theorems that depend on the hereditary
(G-property (equivalently, the hereditary MCM property). We first show that a GO-space with a
closed discrete set is metrizable if and only if each of its subspacésspace and then investigate

what happens if X has ars-closed discrete dense set” is weakenedXoi$ perfect.” Normally,

one expects that metrization theorems for GO-spaces avitltosed-discrete dense sets will not
generalize to perfect spaces because normally one runs into Souslin space problems when one
considers perfect GO-spaces that do not, a priori, has@sed-discrete dense sets. We get around

this problem using results of Qiao and Tall, coupled with some results about non-archimedean
spaces that were announced many years ago by Peter Nyikos. Based on those results, we prove:

Theorem 1.8 A GO-space is metrizable if and only if it is perfect and each of its subspaces is a
(-space.

Because the required results of Nyikos have never been published, we include our proofs of them
in Section 4 of this paper.

Recall that ageneralized ordered spag&O-space) is a triplé X, <, 7) where< is a linear
ordering ofX andr is a Hausdorff topology oX that has a base of order-convex subsets (possibly
including singletons). Probably the best-known GO-spaces are the Sorgenfrey line and the Michael
line. If 7 is the usual open interval topology of the ordering, th&h<, 7) is alinearly ordered
topological spac€LOTS). Cech proved that the GO-spaces are exactly those spaces that embed
topologically in some LOTS.

In this paper we reserve the symbals Q, andR for the sets of all integers, rational, and
real numbers, respectively. For any ordimal cf(z) denotes the cofinality of. We will need to
distinguish between subsets Bfthat arerelatively discretdi.e., are discrete when topologized as
subspaces oK) and sets that are both closed and discrete subsets ahd between dense sets
that ares-relatively discrete subsets af and those that are-closed-discrete.

2 Metrization and the (3-space property

In this section, we investigate how tl¥espace property interacts with other topological properties
to provide metrization theorems. Recall that any LOTS withyadiagonal is metrizable [15] while
GO-spaces witltzs-diagonals may fail to be metrizable (e.g., the Sorgenfrey and Michael lines).
The 3-space property is exactly what is missing, and we have:



Proposition 2.1 A GO-space is metrizable if and only if it issaspace with aGs-diagonal.

Proof: Half of the proposition is trivial. To prove the other half, recall that a spaas para-
compact because it is a GO-space with¥ adiagonal [15]. Also recall that any spadeis semi-
stratifiable if it is ag-space with &5;-diagonal (see Theorem 7.8(ii) of [12]) and that any para-
compact space with &@;-diagonal has &;-diagonal. Therefor&X is semi-stratifiable. Henc&

is metrizable [15]0

Our next result is a general theorem — it is not restricted to GO-spaces.

Proposition 2.2 A T3, 3-space with ar-point-finite base is developable.7A space is metrizable
if and only if it is a collectionwise normal-space with ar-point-finite base.

Proof: The second assertion of the proposition follows from the first because any collectionwise
normal developable space is metrizable. To prove the first assertion, sugpBée) : n > 1} is

a o-point-finite base forX. We may modify that base if necessary so tB&k) is the collection

of all singleton isolated points of for eachk > 1. We may also assume that edgfmn) is closed

under finite intersections so that,ife | J B(i) then there is a membé? (i, z) € B(i) that is the
smallest member d8(i) that contains:.

Let g(n, x) be ag-function for X'. BecauseX is first-countable, we may assume thatn, ) :
n > 1} is a decreasing local base atfor each pointz € X and that ifz is isolated, then
g(n,z) = {x} for eachn.

Claim I Fix z € X andn > 1. Then there is somer > n with z € |JB(m) and B(m,z) C
g(n,z), whereB(m, z) is the smallest member &f(m) that containsc. To prove Claim 1, con-
siderthe sef = {i > 1: 3B € B(i) with x € B C g(n,x)}. If [ is infinite then it certainly
contains somen > n and this is the desired value of. Now, for contradiction, supposkis
finite. Note that ifz is isolated inX, then each even integer belongs/itoHence if! is finite, =
is not isolated. LetV = ({B(i,z) : i € I}. ThenU is an open set containing so that there is
some pointy € U — {z}. The sety(n,z) — {y} is a neighborhood aof so that there is some
and someB, € B(k) with x € By C g(n,z) — {y}. Then the seB(k,z) € B(k) exists and has
x € B(k,z) C By C g(n,x) so thatt € I. But then we have

yeU=({B(i,x):i€el} CBkx)Cgnz)—{y}

and that is impossible. This establishes Claim 1.

Given Claim 1, for each fixed andn we may definep(n, z) to be the first integem > n
havingz € | B(m) andB(m, x) C g(n,z). Observe that for each fixed ¢(n,z) < ¢(z,n+1).

Now defineh(n,z) = ({B(i,z) : € UB(i) and i < ¢(z,n)}. Thenh(n + 1,z) C h(n,z)
andh(n,z) C g(n,z) so thath is also as-function for X and{h(n,x) : n > 1} is a local base at
x for each point ofX.

Claim2 If p € h(n,z,) for eachn > 1, then(z,) clusters top. We know that(z,,) clusters
to some pointy of X becausé: is a g-function. For contradiction, suppoge# p. Because
{h(n,q) : n > 1} is a local base aj there is anV such thaty € h(N,q) C X — {p}. Because



(x,) clusters ay, there is somey, > ¢(N,q) with z,,, € h(N,q). Becauser,, € h(N,q) =
({B(i,q) : ¢ € UB(i) and i < (N, q)} we know that

if g € UB(@) and ¢ < ¢(N, q) then z,,, € B(i,q)

and, in addition,
B(i, xp,) exists and B(i, z,,) C B(i,q).

Observe that)(ng, z,,,) > no > ¢(N,q) so that we now have € h(ng, z,,) = (B, Tn,)
i < @(ng, Tn,) and x,, € |JB(i)} which is a subset of\{B(i, z,,) : i < ¢(q,N) and x,, €
UB(G)} € ({B(i, ) i < 6, N) and q € UB(i)}.

But becaus¢ \{B(i,x,,) : i < ¢(q,N) and q € |JB(i)} is a subset of {B(i,q) : i <
¢(q,N) and g € \UB(i)} = h(q, N), we are forced to conclude

p € h(no,on,) € (g, N) € X — {p}

which is impossible. Therefore Claim 2 is established.

A theorem of Aull [1] shows thak, having as-point-finite base, must be quasi-developable.
To complete the proof, all we need to show is tikais perfect. For any closed sét let G,, =
U{h(n,x) : x € C'}. ThenG,, is an open set and in the light of Claim2{G,, : n > 1} = C. O

We do not know whether the previous proposition can be generalized to quasi-developable
spaces. (That would be a generalization, because Aull has proved that any space\ptnt
finite base is quasi-developable.) A recent paper [16] claimed that any quasi-develdsgialee
must be developable, but some details of the proof are unclear.

Whether or not each quasi-developabispace is developable, we have the following equiva-
lence for GO-spaces:

Corollary 2.3 A GO-space is metrizable if and only if it is a quasi-developab#pace.
Proof: To prove the non-trivial half of the corollary, suppaseis a GO-space that is quasi-

developable and g-space. Then by [3], [15K has as-point-finite base and is collectionwise
normal. Now apply Proposition 2.2]

3 The hereditary 3-space property

In our paper [6] we proved that any GO-space that is hereditarilyspace must be hereditarily
paracompact. The key to the proof was a pressing down lemma argument that showed:

Lemma 3.1 No stationary subset of a regular uncountable cardinal can be hereditarihspace
in its relative topologyd



In [6], we then combined Lemma 3.1 with a characterization of paracompactness in generalized
ordered spaces from [9] to get the desired result. Since the time of that earlier paper, Balogh and
Rudin [2] have significantly generalized the result from [9], showing that a monotonically normal
space fails to be paracompact if and only if it contains a closed subspace that is homeomorphic to
a stationary set in a regular uncountable cardinal. Combining that result with Lemma 3.1 gives:

Corollary 3.2 A monotonically normal space that is hereditarilysaspace is hereditarily para-
compact.0

In the remainder of this section we prove that the hereditary MCM property is a natural com-
ponent of metrizability in GO-spaces. We begin by recalling the following lemma [10], [4].

Lemma 3.3 SupposeX is a GO-space with a dense subset thatislosed-discrete. Then:

a) X is perfect (i.e., each closed set i$:g-set) and first-countable;

b) there is a sequencg(n) : n > 1} of open covers ok such that for each €
X, N{St(p,H(n)) : n > 1} has at most two points.

c) (Faber’s Metrization Theorem [10]) the GO-spa&eis metrizable if and only if the
setsR={r e X :[z,—) e}, L={r € X :(«—,z]jer}and] = {z € X :
{z} € 7} are eachs-closed-discrete iX. O

Theorem 3.4 Let (X, <, 7) be a GO-space. Thel is metrizable if and only iX has ac-closed-
discrete dense set and is hereditarilypapace.

Proof: Any metric space hassaclosed-discrete dense set and is hereditarilyspace. To prove

the converse, suppose has as-closed-discrete dense subgeand is hereditarily @&-space. We

will apply Faber’s metrization theorem in part (c) of 3.3. The set of isolated points, being a subset
of E, is o-closed-discrete. We prove that the &t {z € X : [z, —) € 7} is o-closed-discrete;

the proof for the sef. = {z € X : («,z| € 7} in Faber's theorem (see Lemma 3.3(c)) is
analogous.

By Lemma 3.3,X is perfect so that each relatively discrete subseX a$ o-closed-discrete.
Therefore, it will be enough to show that the detis the union of countably many relatively
discrete, but perhaps not closed, subsets. To that end, forreacR, find a sequencég(n, ) :

n > 1} of sets that satisfy Lemma 1.2 for the subspg@Berr). Replacing those sets by smaller
sets if necessary, we may assume:

a){g(n,z) : n > 1} is a decreasing local basezain the subspacér, 75);

b) each sey(n,x) is contained in some member of the cové(n) described in
Lemma 3.3(b);

) g(n,x) C [z, —) for eachx and each;
d) if a < b < c are points ofR with a, c € g(n, x) thenb € g(n, x).



LetG(n) = {g(n,z) : = € X} and defineR(n) = {x € R : St(z,G(n)) C [z,—)}. Then
R(n) € R(n + 1) for eachn. Let R* = [J{R(n) : n > 1}. For eache € R* there is some
n with St(z,G(k)) C [z,—) for eachk > n. But theng(k, z) is the unique member & (k)
that containse for eachk > n so that the setSt(x,G(k)) = g(k, x) form a neighborhood base
for x in the spacé R, 7g). Thus, the subspadd?*, 7z-) is developable and hence is metrizable.
Applying Faber’s metrization theorem, we see that the/&ds the countable union of subspaces
that are relatively discrete. We claifd = R*. If not, then there is a poinf € R — R*. Then

y ¢ R(n) for eachn so there must be some points € R withy € g(n,z,) Z [y, —). Because
g(n,z,) C [z,,—) we must have;,, < y.

There cannot be an infinite sequence < ny, < --- with z,,, = z,,, = --- because then
y € g(ng,x,,) = g(ng, z,,) would make it impossible for the sey$n, =, ) to be a decreasing
local base at the point,,. We claim that there cannot be a sequence < my < --- with
Tm, > Tm, > ---. FOr suppose such a decreasing subsequence exists. Then fgreach we
have
{Zma, T, ¥} C [Ty y] N R C g(my, ;) € 907, Tmy) € G(J)

which shows that
{ Ty, Ty y} € St(y, G(4)) € St(y, H(j))

for each; > 2 and that is impossible in the light of the special properties of the cdkérs
described in part (b) of Lemma 3.3.

Therefore the sequence,,) has no constant subsequences and no decreasing subsequences,
so there must be a strictly increasing subsequence< z,, < ---. Let Ay, = {z,, : i > k}
and observe thatl, has no limit points inR. Hence{A, : k > 1} is a decreasing sequence of
closed sets with empty intersection. However, witfk, A;) defined as in Lemma 1.2, we have
y € ({G(k, Ax) : k > 1} and that is impossible. Hende = R*, so R is the union of countably
many subspaces, each being relatively discrete. The same is true of the/sabsetve may now
apply Faber’'s metrization theorem to complete the probof.

Experience has shown that many results proved for GO-spaces hatinged-discrete dense
sets become axiom-sensitive when stated for the broader class of perfect GO-spaces. Itis somewhat
surprising that the Theorem 3.4 is not of this type. We begin with a result about dense metrizable
subspaces. Then, by combining Theorem 3.4 with some known results about non-archimedean
spaces (i.e., spaces with a base that is a tree under reverse inclusion) we obtain a new metrization
theorem for perfect GO-spaces.

Proposition 3.5 Let X be a first-countable GO-space that is hereditarilp-&pace. TherX has
a dense metrizable subspace.

Proof: We need two results from the literature.

a) Any first-countable GO-space contains a dense non-archimedean subspace, i.e., a
dense subspace having a base of open, convex sets that is a tree under reverse inclusion.

b) Any first-countable, non-archimedegrspace is metrizable.

7



The first is due to Qiao and Tall [20] (who proved the result for first-countable LOTS, but a slight
modification of their proof establishes the result for first-countable GO-spaces). The second is due
to Nyikos [17]. No proof of the second result has appeared in print and we include a proof and
relevant definitions in the final section of this paper.

Now supposeX is a first countable GO-space. Létbe a dense non-archimedean subspaceg.of
If X is hereditarily as-space, thery is a 3-space. Now apply assertion b) above to show that
is metrizable D

Theorem 3.6 : SupposeX is a GO-space. TheX is metrizable if and only iX is perfect and
hereditarily MCM.

Proof: To prove the non-trivial part of the theorem, suppose ¥as perfect and hereditarily
MCM. Apply Proposition 3.5 to find a dense metrizable subspgaaef X. ThenY contains a
dense subsdb that is the union of countably many subsét&n), each being relatively discrete.
But then, X being perfect, eacld)(n) is the union of countably many subsdign, k) where
eachD(n, k) is a closed discrete subspaceof Now apply Theorem 3.4 to conclude th#tis
metrizable.O

As noted in the Introduction, any compact or countably compact spagespgmce because
every sequence in a countably compact space has a cluster point. Hence the lexicographic square
is a J-space, as is the ordinal spdfew;). However, thehereditary3-space property is another
matter, and we have the following question.

Question 3.7 Is there a compact, first-countable LOTSthat is hereditarily a3-space and not
metrizable?

Note that, in the light of Corollary 3.5, iX is a first-countable compact LOTS that is hereditarily

a (-space, therX has a dense metrizable subspace, as does each subspac@lsb note that

by Theorem 3.6 and assertion (b) in the proof of (3.6), many kinds of subspaces of skichiln

be metrizable. These include perfect subspaces (a class that includes all separable subspaces and,
more generally, all subspaces witlralosed discrete dense subset), non-archimedean subspaces,
and subspaces with a point-countable base (because, according to a result of Chaber [7] (see also
Theorem 7.9 of [12]) any first-countable, paracompaspace with a point-countable base must be
metrizable). Other results in the literature suggest that one place to look for the required example

is in the branch spaces of certain trees ([21], [22]).

4  Appendix on non-archimedean spaces

A regular spaceX is non-archimedearif it has a base that is a tree under reverse inclusion.
Basic topological results about such spaces were announced by Peter Nyikos in [17], [18], and
[19] but, Nyikos has informed us, no proof of the one result needed in this paper (namely that
a first-countable non-archimedegrspace is metrizable) has even been published. The goal of
this appendix is to provide the required proof. Our approach is as follows. First we will show



that any non-archimedean space is paracompact. Next we will show that any first-countable non-
archimedeart-space is developable and then, from general metrization theory, we will conclude
that any first-countable, non-archimede&space is metrizable. It happens to be true that any
non-archimedean space is a GO-space, but we will not use that fact in our proofs.

Lemma 4.1 Supposes is a tree-base for the non-archimedean spaceThen:

a) each member df is clopen;
b) each subspace of is ultraparacompact;

c)ifp e X andifC C B hasp € (C, then eitheC is a neighborhood of or else
(C = {p} andC is a neighborhood base at

Proof: For anyp € X, letB(p) = {B € B : p € B}. ThenB(p) is well-ordered by reverse
inclusion and ifp € B; N B, (whereB; € B) then eitherB; C B, or By C Bj.

To prove a), letB € B. Letp be any limit point of B and suppose ¢ B. Choose; € B.
Because # ¢, we may choos®’ € Bwithp € B’ C X — {¢q}. ThenBN B’ # dandB C B'is
impossible, so thgi € B’ C B, contrary top ¢ B. HenceB is clopen.

To prove b), recall that a spagéis ultraparacompactf each open cover of” has a pairwise
disjoint open refinement. Léf be any collection of open subsets &t LetC be the collection
of all B € B that are contained in some memberaf Let V be the collection of all minimal
members of® with respect to the tree ordering (i.e., reverse inclusiorf3.ol henV refinesit, is
pairwise disjoint, and hag)V = | JU. It follows that every open subspace®f and hence every
subspace oKX, is ultraparacompact.

To prove c), suppose € () C and that") C is not a neighborhood gf. Thenp is not isolated
in X. We claim thai{\|C = {p}. For suppose there are at least two pojnigin (| C and choose
any membeB, € Bwithp € By C X — {q}. ThenB, meets eacld’ € C and B, cannot contain
any member o€. HenceB, is a subset of each member®fand therefore3, C (C. But that
makeg | C a neighborhood of which is impossible. Henc@)|C = {p}. Let B; be any member
of B that containg. Because is not isolated, we may choogse= B, — {p} and findC € C with
p € C; C X —{q}. ThenC; N By # 0 andB; C C is impossible, so that; C B; as required
to show that is a local base at. O

Proposition 4.2 If X is a non-archimedea#fi-space in which points ar@'s-sets, thenX is metriz-
able.

Proof: Part c) of Lemma 4.1 shows that a non-archimedean space in which poifitssets must
be first-countable.

Let B be a tree-base for the spadeand letg(n,z) be aj-function for X as described in
Section 1. Because we can replace egh x) by a smaller neighborhood af and still have
a p-function, we may assume thatn,z) € B and that{g(n,z) : n > 1} is a local base at.
We may also assume thatn + 1,z) is a proper subset of(n, z) unlessz is isolated and that
g(n,z) = {x} for eachn if x is isolated.



We now describe a partition process that will be applied to variougjéets). If x is isolated,
theng(n,z) = g(n+1,z) = {2} andwe lebV(g(n,z)) = {g(n+1,x)}. If x is not isolated, then
the setS = g(n,z) — g(n + 1, x) is not empty and, by part a) of Lemma 44 js open. Let the
members olV(g(n, z)) beg(n + 1, z) together with all members of the collecti¢n(k,y) : k& >
n+ 1 and g(k,y) C S} that are minimal in the ordering of the tréB, D). ThenW(g(n,z)) is a
pairwise disjoint open cover @f(n, x) by sets of the forng(k, y) € B wherek > n + 1. Note that
if g(k,y) € W(g(n,x)) with y # z, thenz & g(k,y). For each selV’ € W(g(n, z)) choose one
pointy(W) € W such that?V = g(k,y(W)) andk > n+ 1, making sure that ifi’ = g(n+ 1, x),
theny(W) = z. LetC(g(n,z)) = {y(W) : W € W(g(n,z))}.

LetH(0) = {X}. GivenH(n) for somen, define

H(n+1) = J{W(g(m.x)) : g(m,x) € H(n)}.

LetC(n) = {y(W) : W € H(n)}. EachH(n) is a pairwise disjoint cover ok by members oB3
that have the forng(y, k) for exactly oney € C(n) andk > n.

We claim that the sequend@é(1), H(2), - - - is a development foX. Fix anyp € X. Then
p belongs to exactly one member ®f(n) so thatSt(p, H(n)) is a member of{(n) and has the
form g(k,,y,) wherey, € C(n) andk, > n. Furthermoreg(k,i1,yn+1) C g(kn,yn) because
of the way that the collection®/(n) were constructed. Becausg > n we havep € g(n,y,)
and therefore the sequengge ., - - - must cluster at some pointe X. Becausey(k, 1, yni1) C

g(kn,yn) we see that eacli(k,, y,) contains{y,, : m > n} and therefore the pointis a point
of the closure of each(k,, y,). But g(k,,y,) is clopen, being a member &, so that{p, ¢} C

ﬂ{g(knvyn) tn > 1}'

If infinitely many terms in sequencg, 1, - - - are the same, say, = yy for eachn in the
infinite set/, then becausé, > n the setsy(k,,y,) form a local base ayy so thatp,q €
{9(kn,yn) : n > 1} = {yn} forcesp = ¢ = yy and hencg St(p,H(n)) : n > 1} is a local
base afp}.

If the sequence,, 12, - - - has no constant subsequences, then there is a subsequence of distinct
terms. For notational simplicity, assume that# y; whenever; # j. Then we know that
Yn & g(kns1, yns1) SO that the sef’ = (N{g(k,, y») : n > 1} contains no poing,. Hencel cannot
be a neighborhood af even thougly € T'. But by part c) of Lemma 4.1 we know that sin€das
not a neighborhood of, it must be true thal” = {¢} and{g(k,,v.) : n > 1} is a neighborhood
base ay. But{p,q} C T then forcep = ¢ so that, once agaifSt(p, H(n)) : n > 1} is a local
base ap.

At this stage of the proof, we know thaf is developable and paracompact (by part (b) of
Lemma 4.1) and therefore metrizable.
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