Reduction of Order

Suppose that y_{1} is a solution to the problem

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{1}
\end{equation*}
$$

Our goal is to find a second linearly independent solution y_{2}.
The motivation for this approach is the method of variation of parameters seen earlier in the class. We seek a solution in the form

$$
y_{2}(x)=v(x) y_{1}(x) .
$$

This implies that

$$
y_{2}^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime},
$$

and

$$
y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime} .
$$

Substituting these expressions into (1) gives

$$
\left[v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right]+p(x)\left[v^{\prime} y_{1}+v y_{1}^{\prime}\right]+q(x)\left[v y_{1}\right]=0 .
$$

Collecting the terms multiplying v we get

$$
v\left(y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}\right)=0
$$

so the equation for v simplifies to

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) v^{\prime}=0 .
$$

Thus we obtain

$$
\begin{equation*}
v^{\prime \prime}+\frac{\left(2 y_{1}^{\prime}+p(x) y_{1}\right)}{y_{1}} v^{\prime}=0 \tag{2}
\end{equation*}
$$

Setting $w=v^{\prime}$ and $P=\frac{\left(2 y_{1}^{\prime}+p(x) y_{1}\right)}{y_{1}}$ this equation reduces to the first order linear equation

$$
w^{\prime}+P w=0 .
$$

A solution is $w=\exp \left(-\int^{x} P(s) d s\right)$ so that

$$
v^{\prime}=\exp \left(-\int^{x} P(s) d s\right)=\exp \left(-\int^{x}\left[\frac{2 y_{1}^{\prime}}{y_{1}}+p(x)\right] d s\right)=\frac{1}{y_{1}^{2}} \exp \left(-\int^{x} p(x) d s\right)
$$

and hence

$$
v=\int \frac{1}{y_{1}^{2}(x)} \exp \left(-\int^{x} p(x) d s\right) d x
$$

So we have

$$
y_{2}=y_{1} \int \frac{1}{y_{1}^{2}(x)} \exp \left(-\int^{x} p(x) d s\right) d x .
$$

As an example consider $y^{\prime \prime}-2 r_{0} y^{\prime}+r_{0}^{2} y=0$. The characteristic equation has a double root $r=r_{0}$ so one solution is $y_{1}=e^{r_{0} x}$. Here $p(x)=-2 r_{0}$ and $q(x)=r_{0}^{2}$. We seek $y_{2}=v y_{1}$ and obtain :

$$
y_{2}=e^{r_{0} x} \int \frac{1}{e^{2 r_{0} x}} \exp \left(-\int^{x}-2 r_{0} d s\right) d x=e^{r_{0} x} \int d x=x e^{r_{0} x}
$$

