Method of Undetermined Coefficients

Our goal is to find the general solution of	ay'' + by' + cy = f(x) (*)
---	----------------------------

The general solution of (*) is obtained as $y = y_h + y_p$ where

- 1. y_h is the general solution of the homogeneous problem, i.e. $y_h = c_1y_1 + c_2y_2$ where y_1, y_2 are two linearly independent solutions of ay'' + by' + cy = 0.
- 2. y_p is (any) particular solution of the nonhomogeneous problem (*).

The main problem then is to find y_p .

Remarks on the Method of Undetermined Coefficients

Remark:

1. The general solution of the homogeneous problem is given as a sum of numbers times terms of the form

$$p(x), \quad p(x)e^{ax}, \quad p(x)e^{\alpha x}\cos(\beta x), \quad p(x)e^{\alpha x}\sin(\beta x)$$
 (1)

where p(x) is a polynomial in x. No other types of solutions are possible!

- 2. This remains true for the nonhomogeneous problem (*) provided the right hand side f(x) is also given as a sum of terms of the form (1).
- 3. The main thing is to find y_p and here we consider the case of f(x) in the form (1).

We consider $p(x) = Cx^m + \cdots$ is a polynomial of degree m.

 $ay'' + by' + cy = p(x)e^{r_0x} \implies y_p = x^s(A_mx^m + \dots + A_1x + A_0)e^{r_0x}$ 1. s = 0 if r_0 is not a root of the characteristic polynomial $ar^2 + br + c = 0$ (†). 2. s = 1 if r_0 is a simple root of (†). 3. s = 2 if r_0 is a double root of (†).

N.B. The above case includes the case $r_0 = 0$ in which case the right side is p(x).

 $ay'' + by' + cy = \begin{cases} p(x)e^{\alpha x}\cos(\beta x) \\ \text{or} \\ p(x)e^{\alpha x}\sin(\beta x) \end{cases} \Rightarrow y_p = x^s(A_m x^m + \dots + A_1 x + A_0)e^{\alpha x}\cos(\beta x) \\ + x^s(B_m x^m + \dots + B_1 x + B_0)e^{\alpha x}\sin(\beta x) \end{cases}$ 1. s = 0 if $r_0 = \alpha + i\beta$ is not a root of (†). 2. s = 1 if $r_0 = \alpha + i\beta$ is a simple root of (†).