Method of Undetermined Coefficients

Our goal is to find the general solution of

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(x)(*)
$$

The general solution of $(*)$ is obtained as $y=y_{h}+y_{p}$ where

1. y_{h} is the general solution of the homogeneous problem, i.e. $y_{h}=c_{1} y_{1}+c_{2} y_{2}$ where y_{1}, y_{2} are two linearly independent solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$.
2. y_{p} is (any) particular solution of the nonhomogeneous problem $(*)$.

The main problem then is to find y_{p}.

Remarks on the Method of Undetermined Coefficients

Remark:

1. The general solution of the homogeneous problem is given as a sum of numbers times terms of the form

$$
\begin{equation*}
p(x), \quad p(x) e^{a x}, \quad p(x) e^{\alpha x} \cos (\beta x), \quad p(x) e^{\alpha x} \sin (\beta x) \tag{1}
\end{equation*}
$$

where $p(x)$ is a polynomial in x. No other types of solutions are possible!
2. This remains true for the nonhomogeneous problem $(*)$ provided the right hand side $f(x)$ is also given as a sum of terms of the form (1).
3. The main thing is to find y_{p} and here we consider the case of $f(x)$ in the form (1).

We consider $p(x)=C x^{m}+\cdots$ is a polynomial of degree m.

$$
\begin{aligned}
& \qquad a y^{\prime \prime}+b y^{\prime}+c y=p(x) e^{r_{0} x} \Rightarrow y_{p}=x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{r_{0} x} \\
& \text { 1. } s=0 \text { if } r_{0} \text { is not a root of the characteristic polynomial } a r^{2}+b r+c=0 \quad(\dagger) . \\
& \text { 2. } s=1 \text { if } r_{0} \text { is a simple root of (} \dagger \text {). } \\
& \text { 3. } s=2 \text { if } r_{0} \text { is a double root of }(\dagger) .
\end{aligned}
$$

N.B. The above case includes the case $r_{0}=0$ in which case the right side is $p(x)$.

$$
a y^{\prime \prime}+b y^{\prime}+c y=\left\{\begin{array}{c}
p(x) e^{\alpha x} \cos (\beta x) \\
\text { or } \\
p(x) e^{\alpha x} \sin (\beta x)
\end{array} \Rightarrow \begin{array}{rl}
\\
y_{p}= & x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{\alpha x} \cos (\beta x) \\
& +x^{s}\left(B_{m} x^{m}+\cdots+B_{1} x+B_{0}\right) e^{\alpha x} \sin (\beta x)
\end{array}\right.
$$

1. $s=0$ if $r_{0}=\alpha+i \beta$ is not a root of (\dagger).
2. $s=1$ if $r_{0}=\alpha+i \beta$ is a simple root of (\dagger).
