Formulas Cullen Zill AEM Chapters 1 and 2

I. (RHS only contains $x) \not y^{\prime}=f(x) \Rightarrow y=\int f(x) d x+C$
II. (Separable) $f(y) y^{\prime}=g(x) \Rightarrow \int f(y) d y-\int g(x) d x=C$
III. (First Order Linear) $y^{\prime}+P(x) y=Q(x)$ Set $\mu=e^{\int P d x}$ then $[y \mu]^{\prime}=\mu Q$
IV. (Exact) $M(x, y) d x+N(x, y) d y=0$ is exact if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. If exact then there exists $F(x, y)$ so that $M=\frac{\partial F}{\partial x}, \quad N=\frac{\partial F}{\partial y}$. Use these to find solution $F(x, y)=C$.
V. (Integrating factor)

$$
\widetilde{M}(x, y) d x+\widetilde{N}(x, y) d y=0 \quad f(x)=\frac{\widetilde{M}_{y}-\widetilde{N}_{x}}{\widetilde{N}} \Rightarrow \mu=e^{\int f(x) d x}
$$

VI. (Integrating factor) $\widetilde{M}(x, y) d x+\widetilde{N}(x, y) d y=0$ $g(y)=\frac{\widetilde{M}_{y}-\widetilde{N}_{x}}{\widetilde{M}} \Rightarrow \mu=e^{-\int g(y) d y}$
VII. (Substitution: RHS Linear in x and $y) y^{\prime}=f(a x+b y+c)$ the substitution $v=a x+b y+c$ transforms the problem to $v^{\prime}=a+b f(v)$ which is separable.
VIII. (Substitution: Homogenous) $y^{\prime}=f(y / x)$ the substitution $v=y / x$ produces $x v^{\prime}+v=f(v)$ which is separable.
IX. (Substitution: Bernoulli) $y^{\prime}+P(x) y=Q(x) y^{n}, n \neq 0,1$ then the substitution $v=y^{1-n}$ provides a first order linear equation for $v \quad v^{\prime}+(1-n) P(x) v=(1-n) Q(x)$ which is First Order Linear.

