I. (RHS only contains
$$x$$
) $y' = f(x) \Rightarrow y = \int f(x) dx + C$
II. (Separable) $f(y)y' = g(x) \Rightarrow \int f(y) dy - \int g(x) dx = C$
III. (First Order Linear) $y' + P(x)y = Q(x)$ Set $\mu = e^{\int P dx}$ then $[y\mu]' = \mu Q$
IV. (Exact) $M(x, y) dx + N(x, y) dy = 0$ is exact if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. If exact then there exists $F(x, y)$ so that $M = \frac{\partial F}{\partial x}$, $N = \frac{\partial F}{\partial y}$. Use these to find solution $F(x, y) = C$.
V. (Integrating factor) $\widetilde{M}(x, y) dx + \widetilde{N}(x, y) dy = 0$ $f(x) = \frac{\widetilde{M}_y - \widetilde{N}_x}{\widetilde{N}} \Rightarrow \mu = e^{\int f(x) dx}$
V1. (Integrating factor) $\widetilde{M}(x, y) dx + \widetilde{N}(x, y) dy = 0$ $g(y) = \frac{\widetilde{M}_y - \widetilde{N}_x}{\widetilde{M}} \Rightarrow \mu = e^{-\int g(y) dy}$
V1. (Integrating factor) $\widetilde{M}(x, y) dx + \widetilde{N}(x, y) dy = 0$ the substitution $v = ax + by + c$
transforms the problem to $v' = a + bf(v)$ which is separable.
VIII. (Substitution: Henselinear in x and y) $y' = f(y/x)$ the substitution $v = y/x$ produces $xv' + v = f(v)$ which is separable.
IX. (Substitution: Bernoulli) $y' + P(x)y = Q(x)y^n, n \neq 0, 1$ then the substitution $v = y^{1-n}$ provides a first order linear equation for v $v' + (1 - n)P(x)v = (1 - n)Q(x)$

which is First Order Linear.