6 Non-homogeneous Heat Problems

Up to this point all the problems we have considered for the heat or wave equation we what
we call homogeneous problems. This means that for an interval 0 < x < ¢ the problems were
of the form

ur(z,t) = kg (x,t), U (7, 1) = gy (2, 1),
BQ(U) = O, fBl(u) =0 Bo(u> = O, 31(71) =0
u(z,0) = ¢(z) u(z,0) = f(x), w(r,0) = g(r)

In contrast, in this chapter we are concerned with the more general non-homogeneous cases:

ug(x,t) = kg (z,t) + F(x,t), U (7,1) = gy (2, 1) + F(2,1),
Bo(u) =0(t), Bi(u) = n(t) Bo(u) =0(t), Bi(u) =n()
u<x7 0) = QO(:E) U(ZL‘, O) = f(l‘), ut(xv O) = g(I)

where v;(t) and F(x,t) are known source terms.

Here we have used the notation B;(u) to indicate a boundary condition. So for example we
might have

Bo(u) = apu,(0,t) + Gou(0,t), Bi(u) = aqu.(1,t) + Gru(l,t).

Specifically then for Dirichlet boundary conditions we have Bo(u) = u(0,t), B1(u) = u(1,t)
and for Neumann conditions we have Bg(u) = u,(0,t), Bi(u) = u,(1,1).

6.1 Non-Homogeneous Equation, Homogeneous Dirichlet BCs

We first show how to solve a non-homogeneous heat problem with homogeneous Dirichlet
boundary conditions

ur(z,t) = kg (z,t) + F(x,t), 0<z <l t>0 (6.1)
u(0,t) =0, u(l,t)=0
u(x,0) = o(z)

Let us recall from all our examples involving Fourier series and Sturm-Liouville problems we
have nr
An - _Mia :un = 77 QOn(I) = Sln(/‘LnI)
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and for the non-homogeneous problem, instead of looking for a solution in the form

u(z,t) = Z cnek’\”tgon(x)
n=1

as we would if F'(z,t) =0, we look for

o0

u(e,t) = 3 ealt)pula)

n=1

We can notice from the initial data that
P(o) = u(z.0) = Y nl0)n(a)
n=1
where b, = ¢,(0) are the Fourier Sine coefficients of ¢, i.e.,
P() = 3 bupula)
n=1

where

Next we find {F,,(¢)} so that

by setting

and twice respect to x to obtain

%(m) =) calt) ddf;" (@) = Ancalt)pn(2).

Then plugging these expressions and (6.5) into the PDE (6.1) we arrive at
Z <%(t) — kAncn(t) — Fn(t)) en(z) = 0.
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Then using the orthogonality of the functions {¢,} we obtain an infinite sequence of ODES

de,
d—ct@) —EAen(t) = Fu(t), n=1,2,--.

These equations are first order linear ODEs which we can easily solve by multiplying both

sides by the integrating factor
o~ kAt

which give
d
a (e_k’\"tcn(t)) = e_kA"tFn(t).

We integrate both sides from ¢t = 0 to ¢ to obtain

t
et (1) — e (0) = / T (1) dr.
0

Thus we get
t
cn(t) = eFnih, + e“”t/ e FTE (1) dr
0

where b, = ¢,(0) and from (6.2) we obtain

[e.9]

_ gbnek’\” D3 (/ a7 F, (7 )m) on(2), (6.7)

Let us consider an example with Dirichlet boundary conditions.

Example 6.1. In our first example we consider the case in which F(z,t) = f(x) does not
depend on t.

w(,t) = kuge(z,t) + f(z), 0<z <l t>0 (6.8)
w(0,6) = 0, u(f,t) =
u(z,0) = ¢(x)

We know that the solution is given by (6.7)

[e.9]

:ibnem | [ e ORmar) e

where

t
cn(t) = ek’\”tcn(O) + ek’\”t/ e_k’\“TFn(T) dr
0

and ¢, (0) = b, are the Fourier Sine coefficients of ¢, i.e.,

p(z) = u(z,0) = Z bnon(T)



so that ¢, = ¢,(0) are given by

b, = z/o o(x)pn(z) dx. (6.9)

In this case 5
RO=h=7 [ 10e @

Thus we have .
cn(t) = efAntp, 4 ehAnt / e_k’\”fn dr
0

where f,, is independent of 7 so we can compute
T=t —kAnt
1—e™%n
=/n <T> '
=0 n

1— e—k)\nt
Cn(t) = ek)\ntbn + ek)\ntfn (T)

kAnt 1
Cn(t) = ek/\ntbn + fn <6—)

e*kAnT

t
—kAnT - d = f,
/Oe fodr = f —_k/\n

Thus we have

or

kA,

Therefore the solution can be written

e o0 6k:/\nt -1
u(x,t) = Z bnek)mtSOn(ﬁ) + Z In (T) ©n(T).
n=1 n=1 n

Notice that as t — oo the solution converges to a time independent steady state solution

Notice that this “steady state” function G(z) is a solution to the problem with initial condi-
tion u(x,0) = G(x), i.e., u(z,t) = G(x) satisfies us —ku,, = f(x) since (note u is independent
of tsou; =0

wr— ks = <k (=) it
-y (SECCE fj fupul@) = f

n=1

And clearly u(x,t) satisfies the boundary conditions since every ¢,, does.

Remark 6.1. We learn two very important things from this example:
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1. The solution approaches a (generally) non-constant steady state, i.e., the solution con-
sists of two parts which are often referred to as the transient and the steady state.

U(r,t) = Ugrans (T, 1) + ugs(T, 1) = ugs(x,t) as t — co.

For this problem we have
uss(z,t) = G(x)

which is independent of ¢.
2. While we did not take advantage of this fact, it is clear from looking at the derivation

of the solution that the principle of Superposition holds which would have allowed us to
analyze two simpler problems rather than one harder one. The solution to the problem

ug(z,t) = kuge(z,t) + F(x,t),
u(0,t) =0, u(l,t)=0
u(z,0) = p(x)

can be written as a sum u(x,t) = w(x,t) + v(z,t) where w and v are the solutions of
the simpler problems

©

wy(x,t) = kwg(x,t) + F(x,t), ve(x,t) = kvge(z,t),
w(z,0) =0, w(l,t)=0 v(xz,0) =0, v({,t)=0
w(z,0) =0 v(x,0) = p(z)

3. For a time independent forcing term, i.e., for F'(x,t) = f(z), and homogeneous Dirich-
let boundary conditions the solution u(x,t) converges to a steady state function G(x)
as t goes to infinity. To find G(z) we only need to solve the associated steady state
problem for (6.8). Recall that (6.8) is

up(z,t) = kuge(x,t) + f(x), 0<zx </l t>0
u(0,t) =0, u(l,t)=0
u(z,0) = ¢(z)

and the steady state problem is obtained by setting u; = 0

©

V() —%f(m), 0<a<l,
¥(0) =0, ¥()=0.

Notice this is a non-homogeneous second order constant coefficient boundary value
problem.



Example 6.2. Find the steady state solution for the heat problem

u(z,t) = Uge(z,t) — 62, 0<z<1, t>0
u(0,t) =0, u(l,t)=0
u(r,0) = p(z)

As described in the remark the steady state problem is obtained by setting u; = 0 and
solving the non-homogeneous BVP

P'(z) =6z, 0<z<l,
¥(0) =0, ¥(1)=0

For this problem we apply the techniques from an elementary ODE class. Namely, we know
that the general solution is the sum of the general solution of the homogenous problem 1y,
and any particular solution ,. The general solution of the homogeneous problem 9" (z) = 0
is ¥y(x) = c12 + ¢ and it is clear that v,(x) = z3 is a particular solution. N.B. Remember
we learned two methods to find a particular solution: Undetermined Coefficients, Variation
of Parameters.

So we have ¥(z) = ¥y(x) + ¥p(z) = 1@ + c2 + 2°. Now we try to find ¢; and ¢ so that the
boundary conditions are satisfied. We need

0=1(0)=cy, and 0=1(1)=c, +1°

which implies ¢; = —1 and

Thus for every initial condition ¢(z) the solution u(z,t) to this forced heat problem satisfies

lim u(z,t) = ¢(x).

t—o0

In this next example we show that the steady state solution may be time dependent.

Time Dependent steady State

Example 6.3. Consider the problem

ug(x,t) = kg, (z,t) + f(x)sin(t), 0 <z < 1,
w(0,t) =0, u(l,t)=0
u(z,0) = 0.

In this example we have set £ = 1 and for the initial condition and forcing terms we have
set p(z) = 0 and F(z,t) = f(x)sin(t). Notice that, by the superposition principle, there
is no lose in generality by taking the initial condition ¢ = 0 since the problem breaks up
into two independent problems, one depending on ¢ and the other depending of the forcing
term F'(z,t). Furthermore the part corresponding to a non-zero initial condition will decay
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exponentially to zero as t tends to infinity and so it will not contribute to the steady state
solution.

For F(z,t) = f(x)sin(t) (6.7) becomes

[e.e]

u(a,t) =Y ( /0 t TR (1) dT) sin (nmx)

n=1

where we compute F,(t) using (6.6) which gives

F.(1)= QSin(T)/O f@)pn(z)dx =sin(7) fr, fn= 2/0 f(z)pn(z) de.

Thus we have

¢ ¢
/ ekk”(t_T)Fn(T) dr = / ghAn(t=7) sin(7) f,, dr
0 0

t
:fnek’\"t/ e FAnTsin(7) dr (6.10)
0

(see calculation below) (6.11)

[e**t — cos(t) — kA, sin(t)]

=

(6.12)

In the above we need to use a special form of integration by parts which we carry out here

t t
/ e M gin(7) dr = / e FAnT(— cos(T)) dr
0 0

t

= ¢ M7 (— cos(7))

—/0(—k)\n)e_k)\"T(—COS(T))dT

0
t

= —e Mnlcos(t) 41 — k)\n/ e FAnT (sin(7)) dr
0

¢
= —e Mnlcog(t) + 1 — kM, [e“” sin(7)

t
+k)\n/ e AT sin(7) dT]
0

0

t
—e "t cos(t) + 1 — ke ™D sin(t) — (k:)\n)2/ e FAnT sin(r) dr.
0

Thus we have

t
(14 (kX\n)?) / e sin(T) dr = —e Tt cos(t) + 1 — khpe " sin(t)
0



so that
—e Rt cos(t) + 1 — kX,e F et sin(t)

/0 e M T sin(7) dr = (L5 (o))

t . . : kAnt
ek/\nt/ e~FMT sin(r) dr = cos(t) — kA, sin(t) + e '
0 (14 (kAn)?)

Finally, then

With this we can write the solution as

2. [ —cos(t) — k), sin(t) + eFrnt .
u(z,t) = Z ( ( >(1 n (k)\n)g)) i ) fnsin (nmx) (6.13)

n=1

Notice that in this case the steady state (which we denote by v(z,t)) is not independent of
time. Namely we have

_ ~ [ —cos(t) — kA, sin(t) ,
v(x,t) = Z ( 0+ (o)) ) fnsin (nmz)

n=1

which is a 27 periodic funtion of ¢. Notice that

(7))
+ — 1,
(14 (kAn)?) (14 (kAn)?)

which implies there is an angle «,, so that

n(a) = 1 cos(a) = —FAn
sinan) = —rmm ) = ey
So that
v(x,t) = Z (— sin(ay,) cos(t) — cos(ay,) sin(t)) f,sin (nmx)

= Z sin(t — ) frsin (nmx)

6.2 Non-Homogeneous Equation, Homogeneous Neumann BCs

As it turns out very little changes if we change the boundary conditions. We show this by
considering the case of Neumann boundary conditions. Let us consider the problem

wg(z,t) = kg, (x,t) + F(x,t),
u.(0,8) =0, wu,(l,t)=0
u(x,0) = p(z)



which can be written as a sum u(z,t) = w(x,t) + z(x,t) where w and v are the solutions of
the simpler problems

wy(x,t) = kwg(x,t) + F(x,t), zi(w,t) = kzge(z, 1),
we(2,0) =0, w,(l,t)=0 2:(2,0) =0, 2,(¢,t) =0
w(z,0) =0 z(2,0) = o(z)

The main difference in this case is that the eigenvalues and eigenfunctions change. Recall
that for Neumann conditions zero is a eigenvalue. We have A\g = 0, po(z) = 1, p, = (nw/l),

An = _,ui> en(@) = cos(pinz).

For the problem for z(x,t) we have We compute

o0

p(r) = % + ) anpa(@). (6.14)
where )t
a, = Z/o o(x)on(x) d. (6.15)

Then the solution to the v(z,t) equation is

z(x,t) = % + Z ane* o, ().
n=1

Next for the w(z,t) problem we find {F,(¢)} so that

F(z,t) = FOT(” + ) Fu(t)pn(x), (6.16)
where ,
Fu(t) = % /0 Fla, )on(x) da. (6.17)

We seek a solution to the w problem in the form

Co

w(z,t) =

43 o)

and repeat verbatim the calculation carried out in the Dirichlet case except that now the
initial condition for w is zero so that ¢,(0) = for alln =0,1,2,---.

In particular, using the orthogonality of the functions {¢,} we obtain an infinite sequence
of ODES p
Cn

%(t) — k’)\nCn(t) = Fn(t>, n = 07 1, 2, MR



which gives

For n = 0 we have

t o]
F.(r)d t
w(z,t) = w + > ( / A= B (1) dT) on () (6.18)
n=1 0
Finally we obtain the desired solution u(x,t) as
u(x,t) = z(x,t) + w(x,t)
6.3 Non-homogeneous Dirichlet Boundary Conditions
In this section we consider forcing through Dirichlet boundary conditions
ur(z,t) = ktge(z,t), 0<z <, t>0 (6.19)
u(0,8) = y0(t), ul(l,t) =7(t)
u(x,0) = p(x)

In order to obtain a continuous solution we also need to impose the compatibility conditions

©(0) =7(0), »(0) =(0).

Our method to solve this problem is to transform it into a problem like the ones found in
the previous section. In order to do this we introduce the function

x
h(z,t) = 0(t) + Z(’Yl(t) — (1))
Then we introduce a new function v(z,t) by

v(x,t) = u(x,t) — h(z,t).

Our goal is to see what problem v(x,t) satisfies. To this end we note that

bl t) =0 elat) = D000 + 5 (0 - o)

We see that
vy — kvgy = (u(z,t) — bz, b)), — k (u(z,t) — h(z, 1)), = —hi(z,1)

and

0(0,8) = u(0,8) — h(0,8) =0,  wv(t,t) = u(l,t) — h(L,t) = 0,

10



x
o(,0) = u(ar,0) — Az, 0) = (x) ~ (100) + 2(1(0) ~ (0)) = wula). (620
Collecting this information we find that v(z,t) satisfies

v, 1) = kvge(x,t) — hy(z,t), O<ax <l t>0 (6.21)
v(0,t) =0, v(l,t)=0
v(x,0) = vo(z)

So we can apply the results of the last section to obtain a formula for v(z,t).
Once we do this (see below) we can obtain the desired solution from

u(z,t) =v(z,t) + h(z,t).

Following the procedure outlined in (6.1)-(6.7) we proceed as follows. First as in (6.6) we
compute {h,(t)} so that

h(z,t) =Y ha(t)pn(z), (6.22)
where z_
() = % /0 W, () da. (6.23)

Then for the initial condition we compute

p(r) =Y bugpn(2). (6.24)
where ,
by — % /O on(2)00(x) d. (6.25)

Combining these results we obtain

v(x,t) = Z bt () — Z (/0 ek’\"(t_T)%(T) dT) on(T) (6.26)

n=1
and finally
u(z,t) = v(z,t) + h(z,1).

Example 6.4. Let us consider a very special case of the previous example. Suppose that
70(t) = o and 71 (t) = § (are constants) so that (6.19) becomes

ur(z,t) = kg, (z,t), 0<z <, t>0 (6.27)
u(0.1) = 0 u(t.t) =
u(x,0) = p(z)

11



In this case

h(z,t) =a+ (8 — a)% = U(z)

and we have hi(x,t) = 0 so that the integral terms in (6.26) are all zero. Also we have
vo(z) = p(x) —h(x,0) = ¢(x) — U(z) and the equation for v(x,t) = u(x,t) — h(z,t) becomes

ve(z,t) = kvge(z,t), 0<ax <l t>0
v(0,t) =0, v(l,t)=0

and with we find

v(x,t) = Z bnef o, (), b, = Z/o vo(z)pn(x) dz
n=1

and findally

u(z,t) =U(x) + Z bpefnto, (2).

Notice in this case that as t — oo all the exponential terms in the sum tend to zero and we
have
lim u(z,t) = U(x).

t—o0

This represents a nonzero and non constant steady state temperature profile.

Example 6.5. We now consider one final example where the boundary forcing function is
not a constant.

u(x,t) = kug(z,t), 0<z <l t>0 (6.28)
u(0,t) =0, u(l,t) =sin(t)

u(x,0) = p(z)
In this case vo(t) = 0, v1(t) = sin(t) and h(z,t) = (z/¢)sin(t). We need to compute

¢ ¢
hn(t) = %/0 h(z,t)pn(z) dx = sin(t) %/0 xop(z) dz = sin(t)c,

and
9 [t
bn:—/ vo(x)pn(x) dz.
tJo

Notice in this example, since h(x,0) = 0 we have vy(x) = ¢(z) — h(z,0) = p(x) (see (6.20)).

We can compute ¢, explicitly and we have
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Then using (6.26) we have

MS ||M8

WE

3

n

3

1

[M]#

1

—_

k)m ZL’

b kXnt

On(T
Pn (:L’

(b ek)\nt o
n

n€
kAnt
n€ "

b

Z]

9 [t
—/ xsin(p,) dx
t Jo
2 [ ’
tJo Hn
9 ¢
21 (_cos(pnx))
l I L, 0
2 -_écos(p,nﬁ) sin( e, )
l [in 17,
2€< 1)n+1

nm

kA, cos(t) + sin(t)

(7 dr ) )

M=) cos(7) dT) Cn on(T)

0% (]
-2

- i (kAne’wt -
kA::’:W
L+ (kA,)? C")

- Utrans(ma t) + 'Uss(l‘a t)

1+ (kAn)?

kM, cos(t

— sin(t)

+z(

1+m)

)W

)

)ennto

Note that vyans(z,t) — 0 as t — oo and vg(x,t) is a steady state periodic function of ¢.

Finally then we return to our original solution u(x,t) to obtain u(z,t)

which gives

where

and

Uss(z,t) = %sin(t) + vgs(, t) = — sm )+ Z (

utrans(xa t) = Utrans(xa t) = Z

u(z,t)

n=1

KAnt

= utrans(xa t) + uss(x> t)

(bne

1+ (kA

kA, cos(t

kM, efrnt

2 Cn) on()

— sin(t)

1+ ( m)

= v(z,t) + h(x,t)

)t

So we find that forcing the boundary with a periodic function produces a solution that

consists of a transient part that goes to zero plus a steady state part that is a periodic
solution with the same period as the forcing term.
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6.4 Non-homogeneous Neumann Boundary Conditions

In this section we consider forcing through Neumann boundary conditions.

u(z,t) = kug(z,t), 0<z <l t>0 (6.29)
ux(o, t) = 70(75)7 uﬂﬁ(& t) = Vl(t)
u(z,0) = p(z)

The primary difference between this problem and that considered in the previous section
(i.e., (6.19)) is that we need a different function h(x,t).

In order to find an appropriate function h(z,t) lets us examine the properties we desire. We
want a function that satisfies two conditions:

ha(0,8) = 2(t),  ha(l,t) = m(t)

First we find two functions ag(x) and oy (x) satisfying
ag(0) =1, ap(f) =0, «j(0)=0, o)) =1.

We find, for example,
(0 —x)? z?

ol =g

ap(z) = —
Then we take
h(z,t) = ao(z)0(t) + ax(z)71 ()
and set
U($,t) = U(l’,t) o h(l’,t),
which implies
v(x,t) = u(x,t) — h(z,t).

With this we can compute (just as above)
vy — kvg, = (u(z,t) — h(z, b)), — k (u(z, t) — bz, 1)), = —he(z,t) + khyy(x, 1)
where

her = =00+ p(8), ) = ao(e) T 4 () T

So we set

F(x,t) = —hy(z,t) + khy(z, ).

So to find the function v(x,t) we need only solve
vp(,t) = kvge(x,t) + F(z,t), 0<z<{, t>0 (6.30)
v(0,t) =0, v(l,t)=0
v(z,0) = vo(x) = p(x) — h(z,0).

Notice once again that the initial condition vy is not just the original initial condition. Finally

we obtain
u(x,t) = v(x,t) + h(z,t).

14



7 Assignment

1. Solve the non-homogeneous heat problem
ur(z,t) = Uge(x,t) + Fz,t), 0<ax<m t>0

(a) F(x,t) =2sin(3z), BC:u(0,t) =0, u(mt)=0, IC: u(z,0)=sin(2x).
Also find the steady state.

(b) F(z,t) =sin(x) — 2sin(2z), BC: u(0,t) =0, u(m,t)=0, IC: u(z,0)=0.
Also find the steady state.

(c) F(z,t) =esin(x), BC:wu(0,t) =0, u(mt)=0, IC: u(z,0)=0.
Also find the steady state.

(d) F(x,t) = —cos(z), BC:u.(0,t) =0, uy(mt)=0, IC: u(z,0)=1.
Also find the steady state solution.

2. Find the steady state solution ¢ (z) for the problem

ur(z,t) = uge(x,t) +cos(z), 0<zx<m t>0
u(0,t) =0, u(m,t)=0

u(z,0) = z(r — x)

3. Find the steady state solution ¢ (z) for the problem

u(z,t) = Uge(x,t) +2, 0<z <1, t>0
u(0,t) =0, u(l,t)=0

u(z,0) = sin(z)e”

4. Solve the heat equation
ur(,t) = Uge(z,t), 0<z <1, t>0
with non-homogeneous boundary conditions

(a) BC: u(0,t) =1, wu(l,t)=1 IC: u(z,0)=0
(b) BC: u,(0,t) =1, wu,(1,t) =1, IC: u(z,0)=0
(¢c) BC: u(0,t) =0, u(l,t)=2, IC: u(z,0)=0

(d) BC: w(0,t) =0, u(l,t)=e"" IC: u(z,0)==x
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