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Exploiting an expansion for analytic functions of operators, the
asymptotic distribution of an estimator of the functional regression
parameter is obtained in a rather simple way; the result is applied
to testing linear hypotheses. The expansion is also used to obtain a
quick proof for the asymptotic optimality of a functional classification
rule, given Gaussian populations.

1. Introduction

Certain functions of the covariance operator (such as the square root of a
regularized inverse) are important components of many statistics employed
for functional data analysis. If Σ is a covariances operator on a Hilbert space,
Σ̂ a sample analogue of this operator, and ϕ a function on the complex plane
which is analytic on a domain containing a contour around the spectrum of
Σ, a tool of generic importance is the comparison of ϕ(Σ̂) and ϕ(Σ) by
means of a Taylor expansion

(1.1) ϕ(Σ̂) = ϕ(Σ) + ϕ̇Σ(Σ̂− Σ) + remainder.

(It should be noted that ϕ̇Σ is not in general equal to ϕ′(Σ), where ϕ′ is
the numerical derivative of ϕ; see also Section 3.) In this paper two further
applications of the approximation in (1.1) will be given, both related to
functional regression.

The first application (Section 4) concerns the functional regression esti-
mator itself. Hall & Horowitz (2007) have shown that the IMSE of their
estimator, based on a Tikhonov type regularized inverse, is rate optimal. In
this paper, as a complementary result, the general asymptotic distribution
is obtained, with application to testing linear hypothesis of arbitrary finite
dimension, mentioned in Cardot et al. (2003) as an open problem: these au-
thors concentrate on testing a simple null hypotheses. Cardot et al. (1999)
establish convergence in probability and almost sure convergence of their
estimator which is based on spectral cutoff regularization of the inverse of
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the sample covariance operator. In the present paper the covariance struc-
ture of the Gaussian limit will be completely specified. The proof turns out
to be routine thanks to a “delta-method” for ϕ(Σ̂)− ϕ(Σ), which is almost
immediate from (1.1).

The second application (Section 5) concerns functional classification, ac-
cording to a slight modification of a method by Hastie et al. (1995), ex-
ploiting penalized functional regression. It will be shown that this method
is asymptotically optimal (Bayes) when the two populations are represented
by equivalent Gaussian distributions with the same covariance operator. The
simple proof is based on an upper bound for the norm of ϕ(Σ̂)−ϕ(Σ) which
follows at once from (1.1).

Let us conclude this section with some comments and further references.
The expansion in (1.1) can be found in Gilliam et al. (2009), and the ensuing
delta-method is derived and applied to regularized canonical correlation in
Cupidon et al. (2007). For functional canonical correlation see also Eubank
& Hsing (2008), He et al. (2002), and Leurgans et al. (1993). When the per-
turbation (Σ̂−Σ in the present case) commutes with Σ the expansion (1.1)
can already be found in Dunford & Schwartz (1957, Chapter VII), and the
derivative does indeed reduce to the numerical derivative. This condition is
fulfilled only in very special cases, for instance when the random function,
whose covariance operator is Σ, is a second order stationary process on the
unit interval. In this situation the eigenfunctions are known and only the
eigenvalues are to be estimated. This special case, that will not be considered
here, is discussed in Johannes (2008) who in particular deals with regression
function estimators and their IMSE is Sobolev norms, when the regression is
such a stationary process. General information about functional data anal-
ysis can be found in the monographs by Ramsay & Sliverman (1997, 2002)
and Ferraty & Vieu (2006). Functional time series are considered in Bosq
(2000); see also Mas (2000).

2. Preliminaries and introduction of the models

2.1. Preliminaries

As will be seen in the examples below it is expedient to consider func-
tional data as elements in an abstract Hilbert space H of infinite dimension,
separable, and over the real numbers. Inner product and norm in H will be
denoted by 〈·, ·〉 and ‖ · ‖ respectively. Let (Ω,F ,P) be a probability space,
X : Ω → H a Hilbert space valued random variable (i.e. measurable with
respect to the σ−field of Borel sets BH in H), and η : Ω → R a real valued
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random variable. For all that follows it will be sufficient to assume that

(2.1) E‖X‖4 < ∞, Eη2 < ∞.

The mean and covariance operator of X will be denoted by

(2.2) EX = µX , E(X − µX)⊗ (X − µX) = ΣX,X ,

respectively, where a⊗b is the tensor product in H. The Riesz representation
theorem guarantees that these quantities are uniquely determined by the
relations

(2.3) E〈a,X〉 = 〈a, µX〉 ∀a ∈ H,

(2.4) E〈a,X − µX〉〈X − µX , b〉 = 〈a,ΣX,Xb〉 ∀a ∈ H ∀b ∈ H,

see Laha & Rohatgi (1979). Throughout ΣX,X is assumed to be one-to-one.
Let L denote the Banach space of all bounded linear operators T : H → H,

equipped with the norm ‖ · ‖L. An operator U ∈ L is called Hilbert-Schmidt
if

(2.5)
∞∑

k=1

‖Uek‖2 < ∞,

for any orthonormal basis e1, e2, . . . of H. (The number in (2.5) is in fact
independent of the choice of basis.) The subspace LHS ⊂ L of all Hilbert-
Schmidt operators is a Hilbert space in its own right with the inner product

(2.6) 〈U, V 〉HS =
∞∑

k=1

〈Uek, V ek〉,

again independent of the choice of basis. This inner product yields the norm

(2.7) ‖U‖2HS =
∞∑

k=1

‖Uek‖2,

which is the number in (2.5). The tensor product for elements a, b ∈ H will
be denoted by a⊗ b, and that for elements U, V ∈ LHS by U ⊗HS V .

The two problems to be considered in this paper both deal with cases
where the best linear predictor of η in terms of X is linear:

(2.8) E(η|X) = α+ 〈X, f〉, α ∈ R, f ∈ H.
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Just as in the univariate case (Rao (1965, Section 4g)), we have the relation

(2.9) ΣX,Xf = E(η − µη)(X − ηX) = ΣX,η.

It should be noted that if ΣX,X is one-to-one and ΣX,η in its range, we can
solve (2.9) and obtain

(2.10) f = Σ−1
X,XΣX,η.

Since the underlying distribution is arbitrary, the empirical distribution,
given a sample (X1, η1) . . . , (Xn, ηn) of independent copies of (X, η), can be
substituted for it. The minimization property is now the least squares prop-
erty, the same formulas are obtained with µX ,ΣX,X , µη, and ΣX,η replaced
with their estimators

(2.11) µ̂X =
1

n

n∑

i=1

Xi = X,

(2.12) Σ̂X,X =
1

n

n∑

i=1

(Xi −X)⊗ (Xi −X),

(2.13) µ̂η =
1

n

n∑

i=1

ηi = η,

(2.14) Σ̂X,η =
1

n

n∑

i=1

(ηi − η)× (Xi −X),

Let us next specify the two problems.

2.2. Functional regression estimation

The model here is

(2.15) η = α+ 〈X, f〉+ ε,

where ε is a real valued error variable and the following assumption is sat-
isfied.

Assumption 2.1. The error variable has a finite second moment, and

(2.16) ε ⊥⊥ X, E ε = 0, Var ε = v2 < ∞.
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Example 2.1. The functional regression model in Hall & Horowitz
(2007) is essentially obtained by choosing H = L2(0, 1), so that the generic
observation is given by

(2.17) η = α+

∫ 1

0
X(t)f(t) dt+ ε.

Example 2.2. Mas & Pumo (2007) argue that in the situation of Ex-
ample 2.1 the derivative X ′ of X may contain important information and
should therefore be included. Hence these authors suggest to choose for H

the Sobolev space W 2,1(0, 1) in which case the generic observation satisfies

(2.18) η = α+

∫ 1

0
X(t)f(t) dt+

∫ 1

0
X ′(t)f ′(t) dt+ ε,

Example 2.3. Just as in the univariate case we have that the model

(2.19) η = α+ 〈X, f〉2 + ε,

quadratic in the inner product of H, is in fact linear in the inner product of
LHS , because

(2.20) 〈X, f〉2 = 〈X ⊗X, f ⊗ f〉HS .

We will not pursue this example here.

In the infinite dimensional case Σ̂X,X cannot be one-to-one, and in order
to estimate f from the sample version of (2.10) a regularized inverse of
Tikhonov type will be used, as in Hall & Horowitz (2007). Thus we arrive
at the estimator (see also (2.12) and (2.14))

f̂δ = (δI + Σ̂X,X)−1(
1

n

n∑

i=1

ηi(Xi −X))(2.21)

= (δI + Σ̂X,X)−1Σ̂X,η, for some δ > 0.

Let us also introduce

(2.22) fδ = (δI +Σ)−1Σf, f ∈ H.

In Section 4 the asymptotic distribution of this estimator will be obtained
and the result will be applied to testing.
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2.3. Functional classification

The method discussed here is essentially the one in Hastie et al. (1995)
and Hastie et al. (2001, Sections 4.2 and 4.3). Let P1 and P2 be two probabil-
ity distributions on (H,BH) with means µ1 and µ2 and common covariance
operator Σ. Consider a random element (I,X) : Ω → {1, 2}×H with distri-
bution determined by

(2.23)

{
P{X ∈ B|I = j} = Pj(B), B ∈ BH,
P{I = j} = πj ≥ 0, π1 + π2 = 1.

In this case the distribution of X is π1P1 + π2P2, with mean

(2.24) µX = π1µ1 + π2µ2,

and covariance operator

(2.25) ΣX,X = Σ+ π1π2(µ1 − µ2)⊗ (µ1 − µ2).

Hastie et al. (2001) now introduce the indicator response variables ηj =
1{j}(I), j = 1, 2, and assume that the ηj satisfy (2.8) for αj ∈ R and fj ∈ H.
Note that

(2.26) µηj = Eηj = πj ,

(2.27) ΣX,ηj = Eηj(X − µX) =

{
π1π2(µ1 − µ2), j = 1,
π1π2(µ2 − µ1), j = 2.

Since ηj is Bernoulli we have, of course, E(ηj |X) = P{I = j|X}. Precisely as
for matrices (Rao & Toutenburg (1995, Theorem A.18)) the inverse of the
operator in (2.25) equals

(2.28) Σ−1
X,X = Σ−1 − γ · Σ−1((µ1 − µ2)⊗ (µ1 − µ2))Σ

−1,

where γ = π1π2/(1+π1π2〈µ1−µ2,Σ
−1(µ1−µ2)〉), provided that the following

assumption is satisfied.

Assumption 2.2. The vector µ1 − µ2 lies in the range of Σ, i.e.

(2.29) Σ−1(µ1 − µ2) is well defined.

It will also be assumed that

(2.30) π1 = π2 =
1

2
.
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Assuming (2.29), equation (2.10) can be solved, and yields after some
algebra

(2.31) fj = Σ−1
X,XΣX,ηj =

{
γΣ−1(µ1 − µ2), j = 1,
γΣ−1(µ2 − µ1), j = 2.

If only X, and not I, is observed the rule in Hastie et al. (2001) assigns X
to P1 if and only if

(2.32) E(η1|X) > E(η2|X),

⇐⇒

(2.33) 〈X − µX ,Σ−1(µ1 − µ2)〉 > (π2 − π1)/2γ.

Because of assumption (2.30) the rule reduces to

(2.34) 〈X − 1

2
(µ1 + µ2),Σ

−1(µ1 − µ2)〉 > 0.

Hastie et al. (2001) claim that in the finite dimensional case their rule
reduces to Fisher’s linear discriminant rule and to the usual rule when the
distributions are normal. This remains in fact true in the present infinite
dimensional case. Let us assume that

(2.35) Pj = G(µj ,Σ), j = 1, 2,

where G(µ,Σ) denotes a Gaussian distribution with mean µ and covariance
operator Σ. It is well known (Feldman (1958), Hájek (1958), Grenander
(1981)) that under Assumption 2.2 these Gaussian distributions are equiv-
alent. This is important since there is no “Lebesgue measure” on H (Sko-
rokhod (1974)). However, now the densities of P1 and P2 with respect to P1

can be considered; it is well known that

(2.36)
dP1

dP2
(x) = e−〈x− 1

2
(µ1+µ2), Σ−1(µ1−µ2)〉, x ∈ H.

This leads at once to (2.34) as an optimal (Bayes) rule, equal in appearance
to the one for the finite dimensional case.

In most practical situations µ1, µ2, and Σ are not known, but a training
sample (I1, X1), . . . , (In, Xn) of independent copies of (I,X) is given. Let

(2.37) Xj =
1

nj

∑

j∈Jj

Xi, Jj = {i : Ii = j}, #Jj = nj ,
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(2.38) Σ̂ =
1

n

2∑

j=1

∑

i∈Jj

(Xi −Xj)⊗ (Xi −Xj),

and we have (cf. (2.25))

(2.39) Σ̂X,X = Σ̂ +
n1n2

n
(X1 −X2)⊗ (X1 −X2).

Once again the operator Σ̂ (and Σ̂X,X for that matter) cannot be one-to-
one. In order to obtain an empirical analogue of the rule (2.33), Hastie et al.
(1995) employ penalized regression, and Hastie et al. (2001) also suggest to
use a regularized inverse. (The methods are related.) Here the latter method
will be used and X will be assigned to P1 if and only if

(2.40) 〈X − 1

2
(X1 +X2), (δI + Σ̂)−1(X1 −X2)〉 > 0.

Section 5 is devoted to showing that this rule is asymptotically optimal when
Assumption (2.2) is fulfilled.

3. A review of some relevant operator theory

It is well known (Laha & Rohatgi (1979)) that the covariance operator
Σ is nonnegative, Hermitian, of finite trace, and hence Hilbert-Schmidt and
therefore compact. The assumption that Σ is one-to-one is equivalent to
assuming that Σ is strictly positive. Consequently Σ has eigenvalues σ2

1 >
σ2
2 > . . . ↓ 0, all of finite multiplicity. If we let P1, P2, . . . be the corresponding

eigenprojections, so that ΣPk = σ2
kPk, we have the spectral representation.

(3.1) Σ =

∞∑

k=1

σ2
kPk, with

∞∑

k=1

Pk = I.

The spectrum of Σ equals σ(Σ) = {0, σ2
1, σ

2
2, . . .} ⊂ [0, σ2

1]. Let us intro-
duce a rectangular contour Γ
around the spectrum as in the picture above, where δ > 0 is the regular-
ization parameter in (2.21), and let Ω be the open region enclosed by Γ.
Furthermore, let D ⊃ (Ω ∪ Γ) = Ω be an open neighborhood of Ω, and
suppose that

(3.2) ϕ : D → C is analytic.

We are interested in approximations of ϕ(Σ̃) = ϕ(Σ+Π), where Π ∈ L is
a perturbation. The application we have in mind arises for Π = Π̂ = Σ̂−Σ,
and yields an approximation of ϕ(Σ̂); see also Watson (1983) for the matrix
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case. Therefore we will not in general assume that Π and Σ will commute.
In the special case where X is stationary, as considered in Johannes (2008),
there exists a simpler estimator Σ of Σ, such that Σ and Π do commute,
which results in a simpler theory; see also Remark (4.1).

The resolvent of Σ,

(3.3) R(z) = (zI − Σ)−1, z ∈ ρ(Σ) = [σ(Σ)]c,

is analytic on the resolvent set ρ(Σ), and the operator

(3.4) ϕ(Σ) =
1

2πi

∮

Γ
ϕ(z)R(z)dz,

is well-defined. For the present operator Σ, as given in (3.1), the resolvent
equals more explicitly

(3.5) R(z) =

∞∑

k=1

1

z − σ2
k

Pk.

Substitution of (3.5) in (3.4) and application of the Cauchy integral formula
yields

(3.6) ϕ(Σ) =
∞∑

k=1

ϕ(σ2
k)Pk.

Example 3.1. The two functions

(3.7) ϕ1(z) =
1

δ + z
, ϕ2(z) =

z

δ + z
, z ∈ C\{−δ},



10 F. RUYMGAART ET AL.

are analytic on their domain that satisfies the conditions. With the help of
these functions we may write (cf. (2.21) and (2.22))

(3.8) f̂δ − fδ = (ϕ1(Σ))(
1

n

n∑

i=1

εi(Xi −X)) + (ϕ2(Σ̂)− ϕ2(Σ))f, f ∈ H,

and (cf. (2.40))

(3.9) (δI + Σ̂)−1(X1 −X2) = ϕ1(Σ̂)(X1 −X2).

Regarding the following brief summary and slight extension of some of the
results in Gilliam et al. (2008) we also refer to Dunford & Schwartz (1957),
Kato (1966), and Watson (1983). Henceforth we will assume that

(3.10) ‖Π‖L ≤ δ

4
.

For such perturbations we have σ(Σ̃) = σ(Σ+Π) ⊂ Ω, so that the resolvent
set of Σ̃ satisfies

(3.11) ρ(Σ̃) = ρ(Σ + Π) ⊃ Ωc ⊃ Γ.

It should also be noted that

(3.12) ‖R(z)‖L = sup
k∈N

1

|z − σ2
k|

≤ 2

δ
∀z ∈ Ωc.

The basic expansion (similar to Watson (1983))

(3.13) R̃(z) = (zI − Σ̃)−1 = R(z) +
∞∑

k=1

R(z)(ΠR(z))k, z ∈ Ωc,

can be written as

(3.14) R̃(z) = R(z) +R(z)ΠR(z)(I −ΠR(z))−1,

useful for analyzing the error probability for δ → 0, as n → ∞, and also as

(3.15) R̃(z) = R(z) +R(z)ΠR(z) +R(z)(ΠR(z))2(I −ΠR(z))−1,

useful for analyzing the convergence in distribution of the estimators.
Let us decompose the contour Γ into two parts Γ0 = {−1

2δ + iy : −1 ≤
y ≤ 1} and Γ1 = Γ\Γ0, write Mϕ = max

z∈Γ
|ϕ(z)|, and observe that (3.10) and

(3.12) entail that

(3.16) ‖(I −ΠR(z))−1‖L ≤ 2, z ∈ Ωc.
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We now have

‖ 1

2πi

∮

Γ
ϕ(z)R(z)(ΠR(z))k(I −ΠR(z))−1dz‖L(3.17)

≤ 1

π
Mϕ‖Π‖kL

∮

Γ
‖R(z)‖k+1

L dz

≤ 1

π
Mϕ‖Π‖kL{

∫ +1

−1
(
1

4
δ2 + y2)−

1

2
(k+1)dy + |

∫

Γ1

1 dz|}

≤ 2

π
Mϕ‖Π‖kL{(

4

δ
)k + 5 + 2‖Σ‖L}, k ∈ N.

Multiplying both sides by ϕ(z), taking ( 1
2πi)

∮
Γ, and using 0 < C < ∞ as a

generic constant that does not depend on Π or δ, (3.14) and (3.15) yield the
following.

Theorem 3.1. Provided that (3.10) is fulfilled, we have

(3.18) ‖ϕ(Σ + Π)− ϕ(Σ)‖L ≤ CMϕ
‖Π‖L
δ

,

(3.19) ‖ϕ(Σ + Π)− ϕ(Σ)− ϕ̇ΣΠ‖L ≤ CMϕ

(‖Π‖L
δ

)2

,

where ϕ̇Σ : L → L is a bounded operator, given by

(3.20) ϕ̇ΣΠ =
∑

k

ϕ′(σ2
k)PkΠPk +

∑∑

j 6=k

ϕ(σ2
k)− ϕ(σ2

j )

σ2
k − σ2

j

PjΠPk.

Remark 3.1. If Σ and Π commute, so will Pk and Π, and R(z) and Π,
and the expressions simplify considerably. In particular (3.20) reduces to

(3.21) ϕ̇ΣΠ = (
∑

k

ϕ′(σ2
k)Pk)Π,

i.e. ϕ̇Σ = ϕ′(Σ), where ϕ′ is the numerical derivative of ϕ, and ϕ′(Σ) should
be understood in the sense of “functional calculus” as in (3.6). For the
commuting case see Dunford & Schwartz (1957).

Let us now present some basic facts that are useful to subsequent sta-
tistical applications. Dauxois et al. (1982) have shown that there exists a

Gaussian random element GΣ : Ω → LHS , such that
√
n(Σ̂− Σ)

d−→ GΣ, as
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n → ∞, in LHS . Because the identity map from LHS in L is continuous, we
may state

(3.22)
√
n(Σ̂− Σ)

d−→ GΣ, as n → ∞, in LHS ⇒ in L,

by the continuous mapping theorem. This entails that

(3.23) ‖Π̂‖L = ‖Σ̂− Σ‖L = Op(
1√
n
), as n → ∞,

so that condition (3.10) is fulfilled with arbitrary high probability for n
sufficiently large. Expansions (3.14) and (3.15) and the resulting inequalities
hold true for Σ̃ replaced with Σ̂(ω) = Σ + Π̂(ω) for ω ∈ {‖Π̂‖L ≤ δ

4}.

Example 3.2. : application to asymptotic distribution theory. In this
application δ > 0 will be kept fixed: see also Section 4.1. It is based on
the delta method for functions of operators (Cupidon et al. (2007)) which
follows easily from (3.19). In conjunction with (3.22) this yields

(3.24)
√
n(ϕ2(Σ̂)− ϕ2(Σ))

d−→ ϕ̇2,ΣGΣ, as n → ∞, in L.

In turn this yields

(3.25)
√
n(ϕ2(Σ̂)− ϕ2(Σ))f

d−→ (ϕ̇2,ΣGΣ)f, as n → ∞, in H,

for any f ∈ H, by the continuous mapping theorem. This result will be used
in Section 4.

Example 3.3. : application to classification. Here we will let δ = δ(n) ↓
0, as n → ∞, and write ϕ1,n(z) = 1/(δ(n)+ z) to stress this dependence on
sample sizes. Since

(3.26) max
z∈Γ

|ϕ1,n(z)| ≤
1

δ(n)
,

it is immediate from (3.18) that

(3.27) ‖ϕ1,n(Σ̂)− ϕ1,n(Σ))‖L = Op(
1

δ2(n)
√
n
), as n → ∞,

a result that will be used in Section 5.
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4. Asymptotics for the regression estimator

4.1. The asymptotic distribution

The central limit theorem in Hilbert spaces entails at once

(4.1)
1√
n

n∑

i=1

εi(Xi − µ)
d−→ G0, as n → ∞, in H,

where G0 s a zero mean Gaussian random variable in H, and

(4.2)
1√
n

n∑

i=1

{(Xi − µ)⊗ (Xi − µ)− Σ} d−→ GΣ, as n → ∞, in LHS ,

where GΣ is a zero mean random variable in LHS . These convergence results
remain true with µ replaced byX and, because ε ⊥⊥ X by assumption (2.16),
we also have that jointly

(4.3)




1√
n

n∑

i=1

εi(Xi −X)

√
n(Σ̂− Σ)


 d−→

[
G0

GΣ

]
, as n → ∞, in H× LHS ,

where GΣ is the same in (3.22), and

(4.4) G0 ⊥⊥ GΣ.

Because the limiting variables are generated by the sums of iid variables
on the left in (4.1) and (4.2) we have

EG0 ⊗ G0 = E{ε(X − µ)} ⊗ {ε(X − µ)}(4.5)

= (Eε2)E(X − µ)⊗ (X − µ)

= v2Σ,

(4.6) EGΣ⊗HSGΣ = E{(X−µ)⊗(X−µ)−Σ}⊗HS {(X−µ)⊗(X−µ)−Σ},

for the respective covariance structures. These are important to further spec-
ify the limiting distribution of the regression estimator as will be seen in
Section 4.2.

Let is write, for brevity,

(4.7) f̂δ − fδ = Un + Vn,
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where, according to (2.21) and (2.22),

(4.8) Un = (ϕ1(Σ̂))(
1

n

n∑

i=1

εi(Xi −X)),

(4.9) Vn = (ϕ2(Σ̂)− ϕ2(Σ))f.

Note that ϕ1 and ϕ2 depend on δ.
With statistical applications in mind, it would be interesting if there would

exist numbers an ↑ ∞ and δ(n) ↓ 0, as n → ∞, such that

(4.10) an(f̂δ(n) − f)
d−→ H, as n → ∞, in H,

where H is a nondegenerate random vector. First we will show that when
f = 0, such numbers do not exist. In this case f̂δ − fδ = f̂δ = Un, so let us
assume that

(4.11) anUn = an(δ(n)I +Σ)−1(
1

n

n∑

i=1

εi(Xi − µ))
d−→ H, as n → ∞,

for some nondegenerate (i.e. not concentrated on a submanifold) random
element H in H. If this were true we’d have, on the one hand,

(4.12) 〈anUn, pk〉 d−→ 〈H, pk〉, as n → ∞,

where the limit is nondegenerate in R, and on the other hand

(4.13) 〈anUn, pk〉 =
an/

√
n

δ(n) + σ2
k

1√
n

n∑

i=1

εi〈Xi − µ, pk〉,

where n−1/2
∑n

i=1 εi〈Xi − µ, pk〉 d−→ Zk
d
= N(0, v2σ2

k), cf.(2.16). Therefore,
and because δ(n) → 0, (4.12) and (4.13) can only be compatible if an ∼ c

√
n,

for some 0 < c < ∞. Taking c = 1 we henceforth may assume that an =
√
n.

Relation (4.11) now entails the existence of a number x0, such that

(4.14) P{n‖Un‖2 ≥ x0} → P{‖H‖2 ≥ x0} <
1

4
.

According to (4.12) we have, however,
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P{n‖Un‖2 ≥ x0} ≥ P{n〈Un, pk〉2 ≥ x0} → P{( v

σk
)2Z2 ≥ x0}(4.15)

= P{Z2 ≥ x0(
σk
v
)2}, as n → ∞,

where Z
d
= N(0, 1). This holds true for every k ∈ N, and since σ2

k ↓ 0, as
k ↑ ∞, this entails that the l.h.s in (4.15) must be larger than 1

2 , for n
sufficiently large, which yields a contradiction with (4.14).

For f 6= 0 we are inclined to decompose f̂δ(n) − f according to (4.8) and

(4.9) and write an(f̂δ(n) − f) = anUn + anVn + an(fδ(n) − f), where the
third term is deterministic. As before, anUn cannot converge. The sum of
the three terms together, however, could possibly still converge due to some
cancellation. We will not pursue this further and focus on the asymptotics
of f̂δ − fδ, for fixed but arbitrary δ > 0. The following basic result is im-
mediate from (4.3), (4.7)-(4.9), the continuous mapping theorem, and the
delta-method as in (3.25).

Theorem 4.1. For fixed δ > 0 we have

(4.16)
√
n(f̂δ − fδ)

d−→ H = H1 +H2, as n → ∞, in H,

where H1 = ϕ1(Σ)G0 and H2 = (ϕ̇2,ΣGΣ)f are zero mean Gaussian random
elements, and H1 ⊥⊥ H2.

Further information about the structure of the covariance operator of the
random vector H on the right in (4.16) will be needed in order to be able
to exploit the theorem for statistical inference. This will be addressed in the
next section.

4.2. Further specification of the limiting distribution

It follows from (4.5) that G0 has a Karhunen-Loève expansion

(4.17) G0 =
∞∑

i=1

vσjZjpj ,

where the real valued random variables

(4.18) Zj(j ∈ N) are iid N(0, 1).
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Accordingly H1 in (4.16) can be further specified as

(4.19) H1 = ϕ1(Σ)G0 = v

∞∑

j=1

σj
δ + σ2

j

Zjpj .

The Gaussian operator in (4.2) has been investigated in Dauxois et al.

(1982) and here we will briefly summarize some of their results in our nota-
tion. By evaluating the inner product in LHS in the basis p1, p2 · · · it follows
from (4.6) that

E〈pj ⊗ pk,GΣ〉HS〈GΣ, pα ⊗ pβ〉HS(4.20)

= E〈pj , 〈X − µ, pk〉(X − µ)− σ2
kpk〉 × 〈pα, 〈X − µ, pβ〉(X − µ)− σ2

βpβ〉
= E〈X − µ, pj〉〈X − µ, pk〉〈X − µ, pα〉〈X − µ, pβ〉 − δj,kδα,βσ

2
kσ

2
β .

This last expression does not in general further simplify. However, if we
assume that the regressor X satisfies

(4.21) X
d
= Gaussian (µ,Σ),

it can be easily seen that the

(4.22) 〈X − µ, pj〉 d
= N(0, σ2

j ) are independent,

so that the expression in (4.20) equals zero if (j, k) 6= (α, β). As in Dauxois
et al. (1982) we obtain in this case

(4.23) E〈pj ⊗ pk,GΣ〉HS〈GΣ, pα ⊗ pβ〉HS =

{
0, (j, k) 6= (α, β),
v2j,k, (j, k) = (α, β),

where

(4.24) v2j,k =

{
2σ4

j , j = k,

σ2
j · σ2

k, j 6= k.

Consequently the pj ⊗ pk (j ∈ N, k ∈ N) are an orthonormal basis of
eigenvectors of the covariance operator of GΣ with eigenvalues v2j,k. Hence
GΣ has the Karhunen-Loève expansion (in LHS)

(4.25) GΣ =
∞∑

j=1

∞∑

k=1

vj,kZj,k pj ⊗ pk,

where the random variables

(4.26) Zj,k(j ∈ N, k ∈ N) are iid N(0, 1).
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Let us, for brevity write (see (3.7) for ϕ2)

wj,k =





ϕ2(σ
2
k)− ϕ2(σ

2
j )

σ2
k − σ2

j

, j 6= k

ϕ′
2(σ

2
j ), j = k





(4.27)

=
δ

(δ + σ2
j )(δ + σ2

k)
, for all j, k ∈ N.

Then we have, exploiting (4.25)

H2 = (ϕ̇2,Σ G)f(4.28)

=
∞∑

j=1

∞∑

k=1

wj,kPjGΣPkf

=
∞∑

j=1

∞∑

k=1

wj,kPj(
∞∑

α=1

∞∑

β=1

vα,βZα,βpα ⊗ pβ)Pkf

=

∞∑

j=1

∞∑

k=1

wj,kvj,kZj,k〈f, pk〉pj .

Summarizing we have the following result.

Corollary 4.1. The random element H1, on the right in (4.16) can be

represented by (4.19). If we assume that the regressor X
d
= Gaussian (µ,Σ),

the random element H2 on the right in (4.16) can be represented by (4.28),
where the Zj,k in (4.26) are stochastically independent of the Zj in (4.18).

4.3. Asymptotics under the null hypothesis

Let us recall that fδ is related to f according to (2.22) so that the equiv-
alence

(4.29) H0 : fδ = 0 ⇐⇒ f = 0,

where again δ > 0 is fixed, holds true. Under the null hypothesis in (4.29)
it is immediate from Theorem 4.1 that

(4.30) n‖f̂δ‖2 d−→ ‖H‖2 = ‖H1‖2, as n → ∞,

and from (4.19) that

(4.31) ‖H1‖2 d
= v2

∞∑

j=1

σ2
j

(δ + σ2
j )

2
Z2
j .
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Hence the test statistic on the left in (4.30) has a complicated chi-square
type distribution with unknown parameters v2, σ2

1, σ
2
2, . . ..

Let F (v2, σ2
1, σ

2
2, . . . ;x), x ≥ 0, be the c.d.f of the random variable on the

right in (4.31). For any collection of consistent estimators v̂2, σ̂2
1, σ̂

2
2, . . . for

the above mentioned parameters let us write F̂ (x) = F (v̂2, σ̂2
1, σ̂

2
2, . . . ; x), x ≥

0. The estimators σ̂2
k can be obtained as the eigenvalues of Σ̂; these are nec-

essarily finite in number. To estimate v2 we may use

(4.32) v̂2 =
1

n

n∑

i=1

{ηi − 〈Xi −X, f̂δ(n)〉}2,

where f̂δ(n) is as in (2.6) with δ replaced by δ(n) ↓ 0, as n → ∞. Note that
we may choose δ(n) different from δ. We now have the following result.

Theorem 4.2. An approximate level α ∈ (0, 1) test for testing H0 in
(4.29) rejects the null hypothesis for n‖f̂δ‖2 > F̂−1(1− α).

An immediate generalization of the hypothesis in (4.29) is

(4.33) H0 : fδ = fδ,0 = (ϕ2(Σ))f0 ⇐⇒ f = f0,

for some given f0 ∈ H. This hypothesis is in principle of interest for con-
fidence sets. Of course, testing (4.33) can be reduced to testing (4.29) by
replacing the ηi with

(4.34) η′i = ηi − 〈Xi, fδ,0〉 = α+ 〈Xi, f − fδ,0〉+ εi,

and then using the estimator

(4.35) f̂ ′
δ = (δI + Σ̂)−1(

1

n

n∑

i=1

ηi,0(Xi −X)).

Under (4.33) we have f − fδ,0 = 0 and consequently

(4.36) n‖f̂ ′
δ‖2

d−→ ‖H1‖2, as n → ∞,

where ‖H1‖2 has the same distribution as in (4.31). Related results can be
found in Cardot et al. (2003).

Another generalization of the hypothesis in (4.29) is

(4.37) H0 : fδ ∈ M = [q1, . . . , qM ],
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where q1, . . . , qM are orthonormal vectors in H. Let Q and Q⊥ denote the
orthogonal projection onto M and M

⊥ respectively, and note that fδ ∈ M if
and only if ‖Q⊥fδ‖ = 0. A natural test statistic in this case appears to be

(4.38) n‖Q⊥f̂δ‖2 d−→ ‖Q⊥H‖2, as n → ∞,

where the limiting result in (4.38) is under H0 in (4.37).
The distribution on the right in (4.38) is rather complicated if q1, . . . , qM

remain arbitrary. But if we are willing to assume (4.21) it follows from (4.28)
that

‖Q⊥H‖2 = ‖Q⊥H1‖2 + ‖Q⊥H2‖2 + 2〈Q⊥H1, Q
⊥H2〉(4.39)

= v2
∞∑

j=1

∞∑

k=1

σj
δ + σ2

j

σk
δ + σ2

k

ZjZk〈Q⊥pj , Q
⊥pk〉

+

∞∑

j=1

∞∑

k=1

∞∑

α=1

∞∑

β=1

wj,kwα,βvj,kvα,βZj,kZα,β

×〈f, pk〉〈f, pβ〉〈Q⊥pj , Q
⊥pα〉

+2v
∞∑

j=1

σj
δ + σ2

j

Zj

∞∑

α=1

∞∑

β=1

wα,βvα,βZα,β

×〈f, pβ〉〈Q⊥pj , Q
⊥pα〉.

The numbers wj,k are known, the eigenvalues σ2
j and eigenvectors pj can in

principle be estimated by the corresponding quantities of the sample covari-
ance operator Σ̂, the unknown regression function f should be estimated by
f̂δn as in (4.32), an estimator of v2 is given by v̂2 in (4.32). Since we are in
the Gaussian case a natural estimator of σj,k will be

(4.40) v̂2j,k =

{
2σ̂4

j , j = k,

σ̂2
j · σ̂2

k, j 6= k,

as can be seen from (4.24). In principle it is now possible to obtain an
approximate level α test in a similar manner as in Theorem 4.1, but it is
clear that the procedure is extremely complicated.

A simplification is possible if we are willing to modify the hypothesis in
(4.37) and use a so-called neighborhood hypothesis. This notion has a rather
long history, and has been investigated by Hodges & Lehmann (1954) for
certain parametric models. Dette & Munk (1998) have rekindled the interest
in it by an application in nonparametric regression. In the present context
we might replace (4.37) with the neighborhood hypothesis

(4.41) H0,ε : ‖Q⊥fδ‖2 ≤ ε2, for some ε > 0.
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It is known from the literature that the advantage of using a neighborhood
hypothesis is not only that such a hypothesis might be more realistic and
that the asymptotics are much simpler, but also that without extra compli-
cation we might interchange null hypothesis and alternative. This means in
the current situation that we might as well test the null hypothesis

(4.42) H ′
0,ε : ‖Q⊥fδ‖2 ≥ ε2, for some ε > 0,

which could be more suitable, in particular in goodness-of-fit problems.
The functional g 7→ ‖Q⊥g‖2, g ∈ H, has a Fréchet derivative at fδ given

by the functional g 7→ 2〈g,Q⊥fδ〉, g ∈ H. Therefore the delta-method in
conjunction with Theorem 4.1 entails the following

Corollary 4.2. Under the hypothesis in (4.37) we have

(4.43)
√
n{‖Q⊥f̂δ‖2 − ‖Q⊥fδ‖2} d−→ 2〈H, Q⊥fδ〉, as n → ∞.

The limiting distribution on the right in (4.43) is normal with mean zero
and complicated variance.

△2 = 4E〈H, Q⊥fδ〉2(4.44)

= 4{E〈H1, Q
⊥fδ〉2 + E〈H2, Q

⊥fδ〉2}

= 4v2
∞∑

j=1

σ2
j

(δ + σ2
j )

2
〈pj , Q⊥fδ〉2

+4E〈
∞∑

j=1

∞∑

k=1

wj,kPj(
∞∑

α=1

∞∑

β=1

vα,βZα,βpα ⊗ pβ)Pkf,Q
⊥fδ〉2

= 4v2
∞∑

j=1

σ2
j

(δ + σ2
j )

2
〈pj , Q⊥fδ〉2

+4
∞∑

j=1

∞∑

k=1

w2
j,kv

2
j,k〈f, pk〉2〈pj , Q⊥fδ〉2.

Using the same estimators as suggested for the previous problem, including

f̂δ(n) for f and f̂δ for fδ, we arrive at a consistent estimator △̂2
of △2.

However, assuming (4.21) again we have the the following result which is
immediate from (4.42) and (4.43).

Corollary 4.3. Assume that △2 > 0. Under H0,ε in (4.41) we have

(4.45) Tn =
1

△̂
√
n(‖Q⊥f̂δ‖2 − ε2)

d−→ N(0, 1), as n → ∞,
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and hence an asymptotic level α ∈ (0, 1) test is obtained when we reject the
null hypothesis if Tn > Φ−1(1− α), where Φ is the standard normal c.d.f.

Remark 4.1. In this paper we have dealt with the situation where Σ
is entirely unknown. It has been observed in Johannes (2008) that if X
is a stationary process on the unit interval, the eigenfunctions pj of the
covariance operator are always the same, known system of trigonometric
functions, and only its eigenvalues σ2

j are unknown. Knowing the pj leads
to several simplifications.

In the first place, Σ can now be estimated by the expression on the right
in (3.1) with only the σ2

k replaced with estimators. If Σ̃ is this estimator, it

is clear that Σ and Π̃ = Σ̃ − Σ commute, so that the derivative ϕ̇2,Σ now
simplifies considerably (see Remark 3.1). Secondly, we might consider the
special case of H0 in (4.37), where qj = pj , j = 1, . . . ,M . We now have

(4.46) fδ ∈ M = [p1, . . . , pM ] ⇐⇒ f ∈ M,

so that even for fixed δ we can test the actual regression function.
In the third place, under the null hypothesis in (4.46), the number of

unknown parameters in (4.39) reduces considerably because now Q⊥pj = 0
for j = 1, . . . ,M .

When the pj are known, in addition to all the changes mentioned above,

also the limiting distribution of Σ differs from that of Σ̂. Considering all these
modifications that are needed, it seems better not to include this important
special case in this paper.

4.4. Asymptotics under local alternatives

Again we assume that X is Gaussian. Suppose that

(4.47) f = fn = f̃ +
1√
n
g, for f̃ , g ∈ H.

For such fn only minor changes in the asymptotics are required, because the
conditions on the Xi and εi are still the same and don’t change with n. Let
us write

(4.48) fδ = fn,δ = f̃δ +
1√
n
gδ,

where f̃δ = (δI + Σ)−1f̃ , gδ = (δI + Σ)−1Σg. The following is immediate
from a minor modification of Theorem 4.1.
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Theorem 4.3. For fδ = fn,δ as in (4.48) we have

(4.49)
√
n(f̂δ − f̃δ)

d−→ gδ +H1 + H̃2,

where H1 = ϕ1(Σ)G0 is the same as in (4.19), H̃2 is obtained from H2 in
(4.28) by replacing f with f̃ , and H1 ⊥⊥ H̃2.

By way of an example let us apply this result to testing the neighborhood
hypothesis and consider the asymptotics of the test statistics in (4.43) under
the local alternatives fn,δ in (4.48) with

(4.50) ‖Q⊥f̃δ‖2 = ε2, gδ ⊥ M, 〈f̃δ, gδ〉 > 0.

Note that under such alternatives f̂δ(n) is still a consistent estimator of f̃

for any δ(n) ↓ 0, as n → ∞, and so is f̂δ for fδ. The following is immediate
from Theorem 4.3.

Corollary 4.4. For fδ = fn,δ as in (4.49) and (4.50), assuming (4.21)
we have

(4.51) Tn =

√
n

△̂
(‖Q⊥f̂δ‖2 − ε2)

d−→ N(
2〈gδ, Q⊥f̃δ〉

△ , 1), as n → ∞,

where △̂ is the same as in (4.45).

5. Asymptotic optimality of the classification rule

In addition to Assumption 2.2 and (2.35) it will be assumed that the
smoothness parameter δ = δ(n) in (2.40) satisfies

(5.1) δ(n) → 0 & δ(n) ≫ n−1/4, as n → ∞.

We will also assume that the sizes of the trainning samples n1 and n2 (see
(2.37)) are deterministic and satisfy (n = n1 + n2)

(5.2) 0 < lim
n→∞

inf
nj

n
≤ lim

n→∞
sup

nj

n
< 1.

Let us recall from (3.7) that ϕ1(z) = ϕ1,n(z) = 1/{δ(n) + z}, z 6= −δ(n).
Under these conditions the probability of misclassification equals P{〈X −
1

2
(X1 +X2), ϕ1,n(Σ̂)(X1 −X2)〉 > 0 |X d

= G(µ2,Σ)}. Let us note that

|〈X − 1

2
(X1 +X2), ϕ1,n(Σ̂)(X1 −X2)〉(5.3)
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−〈X − 1

2
(µ1 + µ2), ϕ1,n(Σ)(µ1 − µ2)〉|

≤ 1

2
{‖X1 − µ1‖+ ‖X2 − µ2‖} ‖ϕ1,n(Σ)‖L ‖µ1 − µ2‖

+‖X − 1

2
(X1 +X2)‖ ×

[
‖ϕ1,n(Σ̂)− ϕ1,n(Σ)‖L ‖X1 −X2‖

+{‖X1 − µ1‖+ ‖X2 − µ2‖} ‖ϕ1,n(Σ)‖L
]
.

Since ‖Xj − µj‖ = Op(n
−1/2), ‖ϕ1,n(Σ)‖L = O(δ−1(n)), and, according to

(3.21),

(5.4) ‖ϕ1,n(Σ̂)− ϕ1,n(Σ)‖L = Op(
1

δ2(n)
√
n
),

it follows from (5.1) that the limit of the misclassification probability equals

lim
n→∞

P{〈X − µ2 −
1

2
(µ1 − µ2), ϕ1,n(Σ)(µ1 − µ2)〉 > 0}(5.5)

= 1− Φ(
1

2
〈µ1 − µ2,Σ

−1(µ1 − µ2)〉),

where Φ is the standard normal cdf.
For (5.5) we have used the well-known property of regularized inverses

that ‖(δ + Σ)−1Σf − f‖ → 0, as δ → 0, for all f ∈ H, and the fact that
we may choose f = Σ−1(µ1 − µ2) by Assumption 2.2. Since rule (2.34) is
optimal when parameters are known, we have obtained the following result.

Theorem 5.1. Let Pj
d
= G(µj ,Σ) and let Assumption 2.2 and (5.1) be

satisfied. Then the classification rule (2.40) is asymptotically optimal.
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