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The Problem

Consider a time homogeneous Markov process X(t), t ≥ 0 starting
from x ∈ Rd.
For suitable function f : Rd → R we consider the the potential for
the function f :

V (f, x) :=

∫ ∞
0

Ex[f(X(t)] dt. (1)

The existence of V (f, x) is a difficult question regarding the class of
admissible f for each process X(t).
We propose an alternative and write equality (1) as

V (f, x) =

∫
Rd

f(y)G(x,dy),

where G(x,dy) is a measure on Rd. This measure is the fundamental
solution to the equation

−LV = f

(L is the generator of X) and may be called the Green measure for
the operator L.
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General Framework Markov Semigroups

Markov Semigroups

We can start with a Markov semigroup T (t), t ≥ 0, that is, a family
of linear operators in a Banach space

E = B(Rd) or E = Cb(Rd) or E = Lp(Rd), p ≥ 1, . . .

depends on each particular case.
This family of operators satisfy the following properties:

1. T (t) ∈ L(E), t ≥ 0,

2. T (0) = IE (identity operator on E),

3. lim
t→0+

T (t)f = f, f ∈ E,

4. T (t+ s) = T (t)T (s),

5. ∀f ≥ 0 T (t)f ≥ 0.

The semigroup is conservative if

6. T (t)1 = 1.
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General Framework Markov Semigroups

Markov Semigroups

The semigroup T (t), t ≥ 0 is associated with a time homogeneous
Markov process {X(t), t ≥ 0 | Px, x ∈ Rd} if

(T (t)f)(x) = Ex[f(X(t))] =

∫
Rd

f(y)Pt(x,dy), f ∈ E,

where Pt(x,B) is the probability of the transition from the point
x ∈ Rd to the Borel set B ⊂ Rd in the time t > 0.
The transition probabilities may be constructed from the semigroup
by choosing f = 1A, A ∈ B(Rd), that is,

Pt(x,A) = (T (t)1A)(x).

Then we have

G(x,dy) :=

∫ ∞
0

Pt(x,dy) dt, x ∈ Rd.
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General Framework Green Measure

Green Measure for Markov Processes

Definition 1. The Green measure for a Markov process X(t), t ≥ 0 with
transition probability Pt(x,B) is defined by

G(x,B) :=

∫ ∞
0

Pt(x,B) dt, B ∈ Bb(Rd),

or ∫
Rd

f(y)G(x, dy) =

∫ ∞
0

f(y)Pt(x,dy) dt, f ∈ C0(Rd)

whenever these integrals exist.

José Luís Silva () Green Measures for Markov Processes Apr. 2, 2021 6 / 25



General Framework Green Measure

Green Measure for Markov Processes

From the relation between semigroup and generator we have

Ex

[∫ ∞
0

f(X(t)) dt

]
=

∫
Rd

f(y)G(x, dy) = −(L−1f)(x) =

∫ ∞
0

(T (t)f)(x) dt

(2)
for every f ∈ C0(Rd).

The Green measure is the fundamental solution corresponding to
the generator operator L.

G(x, dy) = G(x, y) dy,

where G(x, ·) ∈ D′(Rd) is a positive generalized function for all x ∈
Rd.
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Examples Jump Generators and Green Measures

Jump Kernel

Let a : Rd → R be a fixed kernel such that:

Symmetric, a(−x) = a(x), for every x ∈ Rd.

Positive and bounded, a ≥ 0, a ∈ Cb(Rd).

Integrable:
∫
Rd

a(y) dy = 1.

The Fourier transform â ∈ L1(Rd) and has finite second moment:∫
Rd

|x|2a(x) dx <∞.
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Examples Jump Generators and Green Measures

Jump Generators

Consider the generator L defined on thr Banach space E by

(Lf)(x) :=

∫
Rd

a(x− y)[f(y)− f(x)] dy = (a ∗ f)(x)− f(x), x ∈ Rd.

In particular, L∗ = L in L2(Rd) and L is a bdd linear operator in
all Lp(Rd), p ≥ 1.

We call this operator the jump generator with jump kernel a.

The corresponding Markov process is of a pure jump type and is
known in stochastic as compound Poisson process (Skorohod [1991]).

In terms of the Fourier image L is the multiplication operator by

L̂(k) = â(k)− 1 (symbol of L).

Several analytic properties of the jump generator L were studied
recently, see for example (Grigor’yan et al. [2018], Kondratiev et al.
[2018, 2017]).
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Examples Jump Generators and Green Measures

Resolvent Kernel

For any λ ∈ (0,∞) , let Gλ(x, y), x, y ∈ Rd be the resolvent kernel
of Rλ(L) := (λ− L)−1.

This kernel Gλ(x, y) admits the representation:

Gλ(x, y) =
1

1 + λ

(
δ(x− y) +Gλ(x− y)

)
, λ ∈ (0,∞),

with

Gλ(x) =

∞∑
k=1

ak(x)

(1 + λ)k
, (3)

ak(x) = a∗k(x) (k-times convolution of a).

The resolvent kernel Gλ(x, y) has a singular part, δ(x − y) and a
regular part Gλ(x− y).
The Green function, as a generalized function, has the form

G0(x) = δ(x) +G0(x).
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Examples Jump Generators and Green Measures

Main Result

Theorem 2. Under the above assumptions the Fourier representation for
G0(x) is given by

G0(x) =
1

(2π)d

∫
Rd

ei(k,x) â(k)

1− â(k)
dk.

For d ≥ 3 this integral exists for all x ∈ Rd.

Proof. The existence of the integral follows from the integrable singu-
larity of (1 − â(k))−1 at k = 0 as a consequence of the assumptions on
a(x).
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Examples Jump Generators and Green Measures

Particular Models: Gauss Kernels

Assume that the jump kernels a(x) has the following form:

a(x) = C exp

(
−b|x|

2

2

)
, C, b > 0. (4)

Proposition 3. If the jump kernel a(x) be given by (4) and d ≥ 3, then
holds

G0(x) ≤ C1 exp

(
−b|x|

2

4

)
.

Proof. By a direct calculation we find

ak(x) =
C

kd/2
exp

(
−b|x|

2

2k

)
.

Substituting ak(x) in G0(x) and estiamting the result follows.
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Examples Jump Generators and Green Measures

Particular Models: Exponential Tails

Assume that the jump kernels a(x) has exponential tails:

a(x) = C exp(−δ|x|), δ > 0. (5)

Proposition 4. If the jump kernel a(x) satisfies (5) and d ≥ 3, then there
exist A,B > 0 such that the bound for G0(x) holds

G0(x) ≤ A exp(−B|x|).

Proof. It was shown in Kondratiev et al. [2018] that

an(x) ≤ Cn−d/2 exp(−cmin(|x|, |x|2/n)).

Hence, the following bound for an(x) holds

an(x) ≤ Cn−d/2
(

exp(−c|x|) + exp(−c|x|2/n)
)
.
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Examples Brownian Motion

Brownian Motion

Let B(t), t ≥ 0 be the Brownian motion in Rd whose generator is
the Laplace operator ∆ considered in a proper Banach space E.
We are interested in studying the expectation of the random variable

Y (f) =

∫ ∞
0

f(B(t)) dt

for certain class of functions f : Rd → R.

Define the following class of functions

CL(Rd) :=
{
f : Rd → R | f is continuous, bdd and f ∈ L1(Rd)

}
.

It is a Banach space with the norm ‖f‖CL := ‖f‖∞ + ‖f‖1.
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Examples Brownian Motion

Brownian Motion

Proposition 5. Let d ≥ 3 be given. The Green measure of Brownian
motion is

G(x,dy) = G0(x− y) dy =
C(d)

|x− y|d−2
dy.

Proof. We have

Ex[Y (f)] = −∆−1f(x) =

∫
Rd

C(d)
f(y)

|x− y|d−2
dy.

Then∣∣∣∣∫
Rd

f(y)

|x− y|d−2
dy

∣∣∣∣ ≤
∣∣∣∣∣
∫
|x−y|≤1

f(y)

|x− y|d−2
dy

∣∣∣∣∣+

∣∣∣∣∣
∫
|x−y|>1

f(y)

|x− y|d−2
dy

∣∣∣∣∣
≤ C1‖f‖∞ + C2‖f‖1
≤ C‖f‖CL.
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Green Measures for Time Changed Markov Processes

Markov Processes in Random Time

Let X = {X(t), t ≥ 0} be a Markov process in Rd s.t. X(0) = x ∈
Rd a.s.
Define the function u(t, x) by (for suitable f : Rd → R. )

u(t, x) := E[f(X(t))], t > 0, x ∈ Rd

This is the solution of the Kolmogorov equation

∂

∂t
u(t, x) = Lu(t, x), u(0, x) = f(x), (6)

where L is the generator of the process X(t).
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Green Measures for Time Changed Markov Processes

Markov Processes in Random Time

Let Y = {Y (t), t ≥ 0} be the random time change in X

Y (t) := X(E(t)), t ≥ 0,

where E(t), t ≥ 0 is the inverse of a subordinator S ⊥⊥ X.
Let us define a similar function for Y (t):

v(t, x) = E[f(Y (t))].

Then v(t, x) satisfies the following fractional evolution equation:

D
(k)
t v(t, x) = Lv(t, x). (7)

The function k ∈ L1
loc(R+) is given in terms of the characteristics of

S and D(k)
t is a differential-convolution operator defined by(
D(k)
t u

)
(t) :=

d

dt

∫ t

0
k(t− τ)u(τ) dτ − k(t)u(0), t > 0. (8)
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Green Measures for Time Changed Markov Processes

Subordination Formula

It follows from the subordination formula (subordination principle):

v(t, x) =

∫ ∞
0

u(τ, x)Gt(τ) dτ , (9)

where Gt(τ) is the density of the inverse subordinator E(t).
If µxt and νxt denote the marginal distrib. of X(t) and Y (t), resp.,
then the subordination relations implies

νxt =

∫ ∞
0

µxτGt(τ) dτ . (10)
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Green Measures for Time Changed Markov Processes

Trapping Effect

For every jump of the subordinator S there is a corresponding flat
period of its inverse E.

These flat periods represent trapping events in which the test par-
ticle gets immobilized in a trap.

Trapping slows down the overall dynamics of the initial MP X.

Our aim is to analyze how these traps will be reflected in the behav-
ior of the time changed process Y , namely its Green measure.
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Green Measures for Time Changed Markov Processes

Assumptions

Let S = {S(t), t ≥ 0} be a subordinator without drift starting at
zero with Laplace transform

E(e−λS(t)) = e−tΦ(λ), λ ≥ 0

and

Φ(λ) =

∫
(0,∞)

(1− e−λτ ) dσ(τ), σ((0,∞)) =∞.

Define the kernel k as follows k(t) := σ
(
(t,∞)

)
, t > 0 and K(λ) :=

(Lk)(λ).
(H) The Lévy measure σ has a completely monotone density ρ(t) w.r.t. the

Lebesgue measure (i.e., (−1)nρ(n)(t) ≥ 0 for all t > 0, n = 0, 1, 2, . . .)
and the functions K, Φ satisfy

K(λ)→∞, as λ→ 0; K(λ)→ 0, as λ→∞; (11)

Φ(λ)→ 0, as λ→ 0; Φ(λ)→∞, as λ→∞. (12)
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Green Measures for Time Changed Markov Processes

Green Measure does not exists!

The Green measure for the time change process Y (t) is defined by

G(x,dy) :=

∫ ∞
0

vxt (dy) dt.

Lemma 6. Under the assumptions formulated for any dimension d the
Green measure for Y (t) does not exists.

Proof. Using the subordination formula (10) we obtain∫ ∞
0

νxt dt =

∫ ∞
0

∫ ∞
0

µxτGt(τ) dτ dt.

But we know that for each τ we have (Kochubei et al. [2020]),∫ ∞
0

Gt(τ) dt = K(0) = +∞.
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Green Measures for Time Changed Markov Processes

Renormalized Green Measures

As the Green measure G(x, dy) does not exists for a general subordi-
nated process Y , we have to consider instead a renormalized Green
measure

Gr(x,dy) := lim
T→∞

1

N(T )

∫ T

0
νxt (dy) dt.

Theorem 7. Assume that the Markov process X(t) in Rd, d ≥ 3 has a
Green measure G(x,dy) and define

N(T ) :=

∫ T

0
k(s) ds, T ≥ 0. (13)

Then the renormalized Green measure for Y (t) exists and

Gr(x,dy) = G(x,dy).
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Green Measures for Time Changed Markov Processes

Proof. The idea of the proof is based on the subordination formula and
the result from Kochubei et al. [2020]

lim
t→∞

(∫ t

0
Gs(τ) ds

)(∫ t

0
k(s) ds

)−1

= 1.
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