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Motivation: double porosity model

Homogenization problem for parabolic equation with high-contrast
periodic coefficients. Existing results.

T. Arbogast, J. Douglas, and U. Hornung, Derivation of the double
porosity model of single phase flow via homogenization theory, SIAM J.
Math. Anal., 21(1990), pp. 823–836.

The authors derived the limit macroscopic model, showed the memory
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Classical double porosity model

Classical double porosity model (micro-scale):

{
∂tu

ε = div
(
aε(x)∇uε

)
x ∈ Rd, t > 0

uε|t=0 = u0(x),

with

aε(x) =

{
1, if x ∈ F ε
ε2, if x ∈Mε;

here Mε = εM , and M is the union of periodically situated bounded
Lipschitz domains such that the distance between any two such domains
is bounded from below by a positive constant; F ε = Rd \Mε.



Classical double porosity model

Classical double porosity model (micro-scale):

{
∂tu

ε = div
(
aε(x)∇uε

)
x ∈ Rd, t > 0

uε|t=0 = u0(x),

with

aε(x) =

{
1, if x ∈ F ε
ε2, if x ∈Mε;

here Mε = εM , and M is the union of periodically situated bounded
Lipschitz domains such that the distance between any two such domains
is bounded from below by a positive constant; F ε = Rd \Mε.





Memory effect

Under the diffusive scaling x→ εx, t→ ε2t the limit evolution of u(t, x),
as ε→ 0, is not Markov:

∂tu(x, t) = div
(
aeff∇u(x, t)

)
+

∫ t

0

D(t− s)u(s, x)ds

with an exponentially decaying function D(s):

D(s) ≤ C exp(−γs), for some γ > 0.

.



Extended Markov process

Question: Does there exist a Markov process behind this evolution?

Answer: Yes, it does.

It is a Markov process on an extended state space = ”spatial”
component related to the fast movement + ”astral” component related
to the slow movement.
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General assumptions on transition probabilities
We consider a symmetric random walk X̂(n) on Zd, d ≥ 1, with transition
probabilities p(x, y) = Pr(x→ y), (x, y) ∈ Zd × Zd:

p(x, y) = p(y, x), (x, y) ∈ Zd × Zd;
∑
y∈Zd

p(x, y) = 1 ∀x ∈ Zd.

We assume that the random walk satisfies the following properties:

• Periodicity. The functions p(x, x+ ξ) are periodic in x with a period
Y for all ξ ∈ Zd. In what follows we identify the period Y with the
corresponding d-dimensional discrete torus Td.

• Finite range of interactions. There exists c1 > 0 such that

p(x, x+ ξ) = 0, if |ξ| > c1.

• Irreducibility. The random walk is irreducible in Zd.

We denote the transition matrix of the random walk by

P = {p(x, y), x, y ∈ Zd}.
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Structure of the periodicity cell Y = A ∪B

The periodicity cell Y is divided into two sets

Y = A ∪B; A, B 6= ∅, A ∩B = ∅.

Let A], B] be the periodic extension of A and B.

Then

Zd = A] ∪B].

We assume that B is a connected set and its periodic extension B] is
unbounded and connected.
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Transition probabilities for random walk in a high-contrast
periodic environment

Let p(ε)(x, y) be a family of transition probabilities that depend on a
small parameter ε > 0 and satisfy for each ε > 0 the properties
formulated above.

We suppose that the transition matrix P (ε) is a small perturbation of a
fixed transition matrix P 0:

P (ε) = P 0 + ε2V.

These transition probabilities represent the so-called high-contrast
periodic structure of the environment.
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Definition of fast and slow components P0 and V

We impose the following conditions on P 0 and V :

– P 0 is a transition matrix of a SRW on Zd;

– p0(x, x) = 1, if x ∈ A];
(all states in A] are absorbing states for P 0)

– p0(x, y) = 0, if x, y ∈ A], x 6= y;

– p0(x, y) = 0, if x ∈ B], y ∈ A];
– P 0 is irreducible on B];

– the elements of matrix V satisfy the relation∑
y∈Zd

v(x, y) = 0 ∀x ∈ Zd.
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ε-random walk: P (ε) = P 0 + ε2V

Under these conditions, for the transition matrix P (ε) = P 0 + ε2V has
the following properties:

– p(x, y) � 1, when x, y ∈ B] (rapid movement);

– p(x, x) = 1 +O(ε2), when x ∈ A] (slow movement);

– p(x, y) � ε2, when x, y ∈ A], x 6= y (slow movement);

– p(x, y) � ε2, when x ∈ B], y ∈ A] (rare exchange between A] and
B]).

The above choice of the transition probabilities reflects a significant
slowdown of the random walk in the slow component A]:

B] = supp {fast RW} , A] = supp {slow RW} .
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Rescaled process
Let εZd = {x : xε ∈ Zd} be a compression of the lattice Zd, then

εZd = εA] ∪ εB],
and we define the rescaled random walk

X̂ε(t) = εX̂(

[
t

ε2

]
) on εZd

by the transition operator Tε:

Tεf(x) =
∑
y∈εZd

P (ε)(
x

ε
,
y

ε
)f(y), f ∈ l∞0 (εZd).

The difference generator of the random walk X̂ε(t) takes the form

Lε =
1

ε2
(Tε − I).



Rescaled process
Let εZd = {x : xε ∈ Zd} be a compression of the lattice Zd, then

εZd = εA] ∪ εB],
and we define the rescaled random walk

X̂ε(t) = εX̂(

[
t

ε2

]
) on εZd

by the transition operator Tε:

Tεf(x) =
∑
y∈εZd

P (ε)(
x

ε
,
y

ε
)f(y), f ∈ l∞0 (εZd).

The difference generator of the random walk X̂ε(t) takes the form

Lε =
1

ε2
(Tε − I).



Rescaled process
Let εZd = {x : xε ∈ Zd} be a compression of the lattice Zd, then

εZd = εA] ∪ εB],
and we define the rescaled random walk

X̂ε(t) = εX̂(

[
t

ε2

]
) on εZd

by the transition operator Tε:

Tεf(x) =
∑
y∈εZd

P (ε)(
x

ε
,
y

ε
)f(y), f ∈ l∞0 (εZd).

The difference generator of the random walk X̂ε(t) takes the form

Lε =
1

ε2
(Tε − I).





Limit behaviour under diffusive scaling

Our goal is to describe the large time behavior of the random walk
X̂ε(t) and to construct the limit process.

Idea: In addition to the coordinate X̂ε(t) of the random walk on the

lattice we introduce extra variables k(X̂ε(t)) that characterizes the
position of the random walk inside the period. Then the limit dynamics
of this two-component process

Xε(t) =
(
X̂ε(t), k(X̂ε(t))

)
is Markovian.

The components of the limit process are coupled, thus the projection of
the Markov process on the ”spatial” component is not Markov any more.
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Construction of the limit Markov semigroup T (t)
Assume that the set A contains M ∈ N sites of the periodicity cell:

A = {x1, . . . , xM}, M ≥ 1.

We denote E = Rd × {0, 1, . . . ,M}, and C0(E) stands for the Banach
space of continuous functions vanishing at infinity.

A function F = F (x, k) ∈ C0(E) can be represented as a vector function

F (x, k) = {fk(x) ∈ C0(Rd), k = 0, 1, . . . ,M}.

The norm in C0(E) is given by

‖F‖C0(E) = max
k=0,1...,M

‖fk‖C0(Rd).
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The generator of the limit semigroup

Consider the operator

(LF )(x, k) =


Θ · ∇∇f0(x)

0
· · ·
0

 + LAF (x, k),

where Θ is a positive definite matrix (defined in terms of the
homogenization problem), and LA is a generator of a continuous time
Markov jump process

LAF (x, k) = λ(k)

M∑
j=0
j 6=k

µkj(fj(x)− fk(x)).



The intensities of jump rates are

α0j =
1

|B|
∑
y∈B

v(y, yj), αj0 =
∑
y∈B

v(yj , y), αkj = v(yk, yj).

λ(k) =

M∑
j=0
j 6=k

αkj , µkj =
αkj
λ(k)

, j, k = 0, 1, . . . ,M, j 6= k,

Remark. The coefficients of the operator LA depend only on the
elements of matrix V .



Astral diffusion



The semigroup
The operator L is defined on the core

D = {(f0, f1, . . . , fM ), f0 ∈ C∞0 (Rd),

fj ∈ C0(Rd), j = 1, . . . ,M}

which is a dense set in C0(E). The operator L on C0(E) satisfies the
positive maximum principle, i.e. if F ∈ C0(E) and
maxE F (x, k) = F (x0, k0) = fk0(x0), then LF (x0, k0) ≤ 0.

Then by the Hille-Yosida theorem the closure of L is a generator of a
strongly continuous, positive, contraction semigroup T (t) on C0(E), that
is a Feller semigroup.

Question: How to see the semigroup convergence

T
[ t
ε2

]
ε → T (t)?
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Construction of the extended process
First we equip the random walk X̂ε(t) = εX̂(

[
t
ε2

]
) with an additional

component k(X̂ε(t)). For the extended process Xε(t) we prove
convergence of the corresponding semigroups.

The additional coordinates characterize the position of a random walker
in the slow component.

If we denote by {xk}] the periodic extension of the point xk ∈ A for
each k = 1, . . . ,M , then

εZd = εB] ∪ εA] = εB] ∪ ε{x1}] ∪ . . . ∪ ε{xM}].

To each point x ∈ εZd we assign an index k(x) ∈ {0, 1, . . . ,M}
depending on the component to which x belongs:

k(x) =

{
0, if x ∈ εB];
j, if x ∈ ε{xj}], j = 1, . . . ,M.
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in the slow component.

If we denote by {xk}] the periodic extension of the point xk ∈ A for
each k = 1, . . . ,M , then

εZd = εB] ∪ εA] = εB] ∪ ε{x1}] ∪ . . . ∪ ε{xM}].

To each point x ∈ εZd we assign an index k(x) ∈ {0, 1, . . . ,M}
depending on the component to which x belongs:

k(x) =

{
0, if x ∈ εB];
j, if x ∈ ε{xj}], j = 1, . . . ,M.
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The extended process: space and transition operator
Then we introduce the space

Eε =
{

(x, k(x)), x ∈ εZd, k(x) ∈ {0, 1, . . . ,M}
}
,

Eε ⊂ εZd × {0, 1, . . . ,M}.

We can take x ∈ εZd as a coordinate on Eε.

Let B(Eε) be the space of bounded functions on Eε and Tε be the
transition operator of the extended random walk

Xε(t) = (X̂ε(t), k(X̂ε(t)))

on Eε with the same transition probabilities of the random walk on εZd as
above:

(Tεf)(x, k(x)) =
∑
y∈εZd

pε(x, y)f(y, k(y)), f ∈ B(Eε).

The operator Tε is a contraction on B(Eε)
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The projection operator πε : C0(E)→ l∞0 (Eε)
Let l∞0 (Eε) be a Banach space of bounded functions on Eε vanishing as
|x| → ∞ with the norm

‖f‖l∞0 (Eε) = sup
(x,k(x))∈Eε

|f(x, k(x))| = sup
x∈εZd

|f(x, k(x))|.

For every F ∈ C0(E) we define on Eε the function πεF ∈ l∞0 (Eε) as
follows:

(πεF )(x, k(x)) =


f0(x), if x ∈ εB], k(x) = 0;
f1(x), if x ∈ ε{x1}], k(x) = 1;
· · ·
fM (x), if x ∈ ε{xM}], k(x) = M.

Then πε defines a bounded linear transformation πε : C0(E)→ l∞0 (Eε):

‖πεF‖l∞0 (Eε) = sup
(x,k(x))∈Eε

|(πεF )(x, k(x))| ≤ ‖F‖C0(E), sup
ε
‖πε‖ ≤ 1.
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The semigroup convergence

Theorem

Let T (t) be a strongly continuous, positive, contraction semigroup on
C0(E) with generator L defined by

(LF )(x, k) =


Θ · ∇∇f0(x)

0
· · ·
0

 + LAF (x, k),

and Tε be the linear operator on l∞0 (Eε) defined above (the transition

operator of the extended random walk Xε(t) = (X̂ε(t), k(X̂ε(t))) on Eε).

Then for every F ∈ C0(E)

T
[ t
ε2

]
ε πεF → T (t)F for all t ≥ 0 (1)

as ε→ 0.



The idea of the proof

The proof of the Theorem relies on the following approximation theorem

Theorem (Theorem 6.5, Ch.1, S. N. Ethier, T. G. Kurtz,
Markov processes: Characterization and convergence, 2005.)

For n = 1, 2, . . ., let Tn be a linear contraction on the Banach space Ln,
let εn be a positive number, and put An = ε−1

n (Tn − E). Assume that
limn→∞ εn = 0.
Let {T (t)} be a strongly continuous contraction semigroup on the
Banach space L with generator A, and let D be a core for A.
Assume that πn : L → Ln are bounded linear transformations with
supn ‖πn‖ <∞.
Then the following are equivalent:

a) For each f ∈ L, T
[ t
εn

]
n πnf → T (t)f for all t ≥ 0 as ε→ 0.

b) For each f ∈ D, there exists fn ∈ Ln for each n ≥ 1 such that
fn → f and Anfn → Af .



For every F = (f0, f1, . . . , fM ) ∈ D we construct Fε ∈ l∞0 (Eε) as a
small perturbation of πεF :

Fε = πεF +Gε, ‖Gε‖l∞0 (Eε) → 0 as ε→ 0.

We consider the following Fε ∈ l∞0 (Eε)

Fε(x, k(x)) =



f0(x) + ε(∇f0(x), h(xε )) + ε2(∇∇f0(x), g(xε ))

+ε2
∑M
j=1 qj(

x
ε )(f0(x)− fj(x)),

if x ∈ εB], k(x) = 0,

f1(x), if x ∈ ε{x1}], k(x) = 1,
· · ·
fM (x), if x ∈ ε{xM}], k(x) = M.

Here h(y), g(y), qj(y), j = 1, . . . ,M, are periodic bounded functions
(correctors).
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Correctors

Lemma

There exist bounded periodic functions h(y) = {hi(y)}di=1 and
g(y) = {gim(y)}di,m=1 (correctors) and a positive definite matrix Θ > 0,
such that the limit relation LεFε → LF holds for every F ∈ D.

The matrix Θ defined by

Θ =
1

|B|
∑
y∈B

∑
ξ∈Λy

p0(y, y + ξ) ξ ⊗
(

1

2
ξ + h(y + ξ)

)

is positive definite, i.e. (Θη, η) > 0 ∀η 6= 0.



Invariance principle. The limit Markov process

Thus we justified the convergence of the semigroups, and consequently,
the convergence of finite dimensional distributions of Xε(t).
The next question is about existence of the limit process X (t) in E and
convergence in the Skorokhod topology of DE [0,∞).

Theorem (Invariance principle for the extended processes
Xε(t))

For any initial distribution ν ∈ P(E) there exists a Markov process X (t)
corresponding to the semigroup T (t) : C0(E)→ C0(E) with our
generator L and with sample paths in DE [0,∞).
If ν is the limit law of Xε(0), then

Xε(t) ⇒ X (t) in DE [0,∞) as ε→ 0.
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Generalization: several fast components
We keep the assumptions on P (ε)(x, y), in particular we assume that
the transition probabilities are periodic, have a finite range of interaction
and define an irreducible random walk.
however, now we assume that B] is the union of N , N > 1,
non-intersecting unbounded sets such that P 0 is periodic, invariant and
irreducible on each of these sets.

We denote these sets B]1, . . . , B
]
N . Then

εZd = εB] ∪ εA] = εB]1 ∪ . . . ∪ εB
]
N ∪ ε{x1}] ∪ . . . ∪ ε{xM}].

We assign to each x ∈ εZd an index k(x) ∈ {1, . . . , N +M} depending on
the component to which x belongs:

k(x) =

{
j, if x ∈ εB]j , j = 1, . . . , N ;

N + j, if x ∈ ε{xj}], j = 1, . . . ,M.
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Then the limit Markov process has the similar structure and the
generator L has the form

(LF )(x, k) =


Θ1 · ∇∇f1(x)

· · ·
ΘN · ∇∇fN (x)

0
· · ·
0

 + LAF (x, k),

where Θ1, . . . ,ΘN are positive definite matrices, and LA is a generator
of a continuous time Markov jump process

LAF (x, k) = λ(k)

N+M∑
j=1
j 6=k

µkj(fj(x)− fk(x))

with jump rates λ(k)µkj .



Evolution of the first component

Question: How to describe an evolution for the first (spatial)
component in the astral diffusion?

Let us consider the case of an one-point astral set: |A| = 1.

Then P (x, t) = (p0(x, t), p1(x, t)), and let (π0(x), π1(x)) be the initial
condition.
The evolution equation for P (x, t) is{

∂tp0 = Θ · ∇∇p0 − λ(0)p0 + λ(1)p1

∂tp1 = −λ(1)p1 + λ(0)p0
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The solution of the second equation is

p1(x, t) = e−λ(1)tπ1(x) + λ(0)

t∫
0

e−λ(1)(t−s)p0(x, s)ds,

where π1(x) = p1(x, 0).

Substitution of this solution into the first equation gives the following
evolution equation on p0:

∂tp0 = Θ · ∇∇p0−

−λ(0)p0 + λ(0)λ(1)
t∫

0

e−λ(1)(t−s)p0(x, s)ds+ λ(1)e−λ(1)tπ1(x),

p0(x, 0) = π0(x).
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For the construction of the limit process for diffusions in high-contrast
periodic media see

A. Piatnitski, S. Pirogov, E. Zhizhina, Limit behaviour of diffusion in
high-contrast periodic media and related Markov semigroups, Applicable
Analysis, 98(1-2) (2019).



Denote E = Rd ×G?, where G? = G ∪ {?}, then a function F ∈ C0(E)
can be written in a vector form

F (x, ŷ) = (f0(x), f1(x, y)), x ∈ Rd, ŷ ∈ G?, y ∈ G

with f0 ∈ C0(Rd), f1 ∈ C0(Rd, C(G)).

Denote by CG0 (E) a linear closed subspace of functions from C0(E) such
that

f1(x, y)|y∈∂G = f0(x) ∀x ∈ Rd.
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Let us consider in CG0 (E) an unbounded operator of the following form

(AF )(x, ŷ) =

 Θ∇∇f0(x)− 1
|Gc|

∫
G

4yf1(x, y)dy

4yf1(x, y)

 .

The domain D(A) of the operator A is the closure (in the graph norm) of

DA =
{
u0 ∈ C∞0 (Rd), u1 ∈ C∞0 (Rd; C∞(G)), u1(x, y)|y∈∂G = u0(x),

4yu1(x, y)
∣∣∣
y∈∂G

= Θ∇∇u0(x) +
1

|Gc|

∫
∂G

∂u1(x, y)

∂n−y
dσ(y)

}
.

Lemma

The closure of the operator A is a generator of a strongly continuous,
positive, contraction semigroup T (t) on CG0 (E).
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Thank you for your attention!


