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speculation =

thinking
meditation
reflection
thought

contemplation
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Plato theory

Plato = Πλατων = Platon

• Real world of ideas

• Real world of things

• Myth about the cavern

• From ideas to shades (reflections) as things
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The set of natural numbers N = {0, 1, 2, . . . } is a fundamental object in
the mathematics. In certain sense N is the root of all modern
mathematics. Other mathematical structures may be created as a logical
development of this object.
The latter motivated L. Kronecker who summarized ”God made the
integers, all else is the work of man”.

I.Kant: ”Two things fill the mind: the starry heavens above me and the
moral law within me”.
A mathematician may continue: ”and natural numbers given to my mind”.
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A number n ∈ N we interpret as a number of objects (a population)
located in a location space X. For simplicity we take X = Rd. The
collection of all n-point subsets (or configurations with n elements) form a
locally compact space Γ(n)(Rd). It is the space (quite huge) of ideas for
the number n.
Then to N corresponds the set

Γ0(Rd) = ∪∞n=0Γ(n)(Rd)

of all finite configurations.
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We can consider additionally the set Γ(Rd) consisting all locally finite
configurations. This set may be considered as the space of ideas which
corresponds to natural numbers and additionally to the actual infinity
which is absent in the classical framework on natural numbers.
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In such extension of N we arrive in the main question. Namely, most
important mathematical theories related to natural numbers we need to
develop to this new level. It concerns, first of all, the combinatorics that
play central role in many mathematical structures and applications from
probability theory to genetics.
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Classical combinatoric

The combinatoric is dealing with the set of natural numbers N and
relations between them.
Binomial coefficients:(

n

k

)
=
n(n− 1) . . . (n− k + 1)

k!

defined for n ∈ N and 0 ≤ k ≤ n. Introducing the falling factorial (n)k we
can write (

n

k

)
=

(n)k
k!

.

These coefficients may be extended using embedding N ⊂ R to
polynomials

Nk(t) :=

(
t

k

)
=
t(t− 1) . . . (t− k + 1)

k!
=

(t)k
k!

, t ∈ R

which are called Newton polynomials.
Chu-Vandermond relations:

(t+ s)n =

n∑
k=0

(
n

k

)
(t)k(s)n−k.
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Generation functions

An alternative definition is given by the generation function

eλ(t) := et log(1+λ) =

∞∑
n=0

λn

n!
(t)n =

∞∑
n=)

λnNn(t).

Such transition to continuous variables makes possible to apply in discrete
mathematics methods of analysis.

Using many particular GF we may create different polynomial systems.
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Combinatoric and difference calculus

Transition to continuous variables makes possible to apply in discrete
mathematics methods of analysis. In particular, let us define for functions
f : R→ R difference operators

(D+f)(t) = f(t+ 1)− f(t),

(D−f)(t) = f(t− 1)− f(t).

By a direct computation we obtain

D+(t)n = n (t)n−1,

D−(t)n = −n (t− 1)n−1.

Additionally,
D+eλ(t) = λeλ(t).

In this way we arrive in the framework of difference calculus closely related
with the combinatoric.
There are specific questions inside difference calculus as, e.g., an analysis
of Newton series

∞∑
n=0

anNn(t)

and many others.
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K-transform

For functions a : N→ R we define b : N→ R as

b = Ka, b(n) =

n∑
k=0

(
n

k

)
a(k).

This operator K (aka combinatorial transform) is very useful in
combinatoric and its inverse gives so-called inclusion-exclusion formula:

a(n) =

n∑
k=0

(
n

k

)
(−1)n−kb(k).

Note that for a : N→ R, a(j) = 0, j 6= k, a(k) = 1

(Ka)(n) =

(
n

k

)
= k!Nk(n).
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Towards continuum

Any n ∈ N we interpret as the size of a population. It is convenient in the
study of population models. There is a natural generalization leading to
spatial ecological models. Now we would like to consider objects located in
a given locally compact space X. For simplicity we will work with the
Euclidean space Rd.
For the substitution of N in this situation we can use two possible sets.
Denote Γ(Rd) the set of all locally finite configurations (subsets) from Rd.

Γ(Rd) = {γ ⊂ Rd | |γ ∩K| <∞, any compact K ⊂ Rd}.

It is our main version of the space in the continuous combinatoric we will
use.
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Finite configurations

Another possibility, is to introduce the set of all finite configurations
Γ0(Rd). Then

Γ0(Rd) = ∪∞n=0Γ(n)(Rd),

where Γ(n)(Rd) denoted the set of all configurations with n elements. We
will see that in the continuous combinatoric the spaces Γ(Rd) and Γ0(Rd)
will play very different roles. It is a specific moment related with transition
to the continuum. In this sense N is splitting in these two spaces of
configurations.
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Configuration spaces present beautiful combinations of discrete and
continuous properties. In particular, in these spaces we have interesting
differential geometry, differential operators and diffusion processes etc.

From the other hand side, discreteness of an individual configuration
makes possible to introduce proper analog of difference calculus.
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Note from the beginning, that the analog of the extension N ⊂ R now
naturally play the pair Γ(Rd) ⊂M(Rd) where we have in mind an
imbedding of configurations in the space of discrete Radon measures on
Rd and, as a result, in the space of all Radon mesures on Rd :

Γ(X) 3 γ 7→ γ(dx) =
∑
y∈γ

δy(dx) ∈M(Rd).

Therefore, instead of pair
N ⊂ R

we have
Γ(Rd) ⊂M(Rd).

In spatial combinatoric main objects will be measure-valued
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Falling factorials and Newton polynomials

For a test function 0 ≤ ξ ∈ D(Rd) consider a function

Eξ(ω) = e<ln(1+ξ),ω> ω ∈ D′(Rd).

The power decomposition w.r.t. ξ gives

Eξ(ω) =

∞∑
n=0

1

n!
< ξ⊗n, (ω)n > .

Generalized kernels (ω)n ∈ D′(Rnd) are called infinite dimensional falling
factorials on D′(Rd). Define binomial coefficients (Newton polynomials)
on D′(Rd) as (

ω

n

)
=

(ω)n
n!

.
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Infinite dimensional Chu-Vandermond relations on configurations:

(γ1 ∪ γ2)n =

n∑
k=0

(
n

k

)
(γ1)k ⊗ (γ2)n−k.
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Theorem

For ω ∈M(Rd)
(ω)0 = 1

(ω)1 = ω

(ω)n(x1, . . . , xn) = ω(x1)(ω(x2)−δx1(x2)) . . . (ω(xn)−δx1(xn)−· · ·−δxn−1(xn)).

In the particular case ω = γ = {xi | i ∈ N}

(γ)n = n!

(
γ

n

)
=

∑
{i1....,in}⊂N

δx1 � · · · � δxn ,

where δx1 � · · · � δxn denotes symmetric tensor product.
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Falling factorials as measures

We have

Γ(Rd) 3 γ 7→ γ(dx) ∈M(Rd).

Due to our construction
(γ)n ∈M(Rnd)

is a symmetric Radon masure. Therefore, we arrive in measure valued
Newton polynomials.
The latter is the main consequence of continuous combinatoric transition.
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Difference geometry

For any x ∈ γ define an elementary Markov death operator (death
gradient)

D−x F (γ) = F (γ \ x)− F (γ)

and the tangent space T−γ (Γ) = L2(Rd, γ). Then for ψ ∈ C0(Rd)

D−ψF (γ) =
∑
x∈γ

ψ(x)(F (γ \ x)− F (γ))

is the directional (difference) derivative.
Similarly, we define for x ∈ Rd

D+
x F (γ) = F (γ ∪ x)− F (γ)

and the tangent space T−γ (Γ) = L2(Rd, dx). Then for ϕ ∈ C0(Rd)

D+
ϕF (γ) =

∫
Rd

ϕ(x)(F (γ ∪ x)− F (γ))dx

is another directional (difference) derivative.
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For ϕ ∈ C0(Rd) define a function

Eϕ(γ) = exp(< γ, log(1 + ϕ) >), γ ∈ Γ.

It is the GF for the system on falling factorials (Newton polynomials) on Γ:

Eϕ(γ) =

∞∑
n=0

1

n!
< ϕ⊗n, (γ)n > .

Then
D+
ψEϕ(γ) =< ϕψ > Eϕ(γ).

An explicit formula for the falling factorials (as measures on (Rd)n) is

(γ)n =
∑

{x1,...,xn}⊂γ

δx1 � δx2 � · · · � δxn ,

where δx1 � δx2 � · · · � δxn denotes the symmetric tensor product of
measures.
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The action of difference derivatives on Newton monomials is given by

D+
ψ < ϕ(n), (γ)n >= n

∫
Rd

ψ(x) < ϕ(n)(x, ·), (γ)n−1(·) > dx,

D−ψ < ϕ(n), (γ)n >= −n
∑
x∈γ

ψ(x) < ϕ(n)(x, ·), (γ \ x)n−1(·) > .
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Stirling kernels

We have polynomial equality

(γ)n =

n∑
k=1

snkγ
⊗k,

where
snk : D′(Rkd)→ D′(Rnd)

is a linear mapping.
On other side

γ⊗n =

n∑
k=0

Snk (γ)k,

where
Snk : D′(Rkd)→ D′(Rnd)

ia a linear mapping.
Kernels snk and Snk we will call Stirling kernels of first and second kind
respectively.
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For f (n) ∈ D(Rnd) 〈
(γ)n, f

(n)
〉

=

n∑
k=0

n!

k!

〈
γ⊗k(x1, . . . , xk),

∑
i1+...ik=n

(−1)n+k

i1 . . . ik
f (n)(x1, . . . , x1︸ ︷︷ ︸

i1times

, . . . , xk, . . . , xk︸ ︷︷ ︸
iktimes

)

〉
.

For the second kind kernels 〈
γ⊗n, f (n)

〉
=

n∑
k=0

1

k!

〈
(γ)k(x1, . . . , xk),

∑
i1+...ik=n

(
n

i1 . . . ik

)
f (n)(x1, . . . , x1︸ ︷︷ ︸

i1times

, . . . , xk, . . . , xk︸ ︷︷ ︸
iktimes

)

〉
.
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Harmonic analysis on CS

Functions G : Γ0(Rd)→ R we call quasi-observables. Note that G on
Γ(n)(Rd) is given by a symmetric kernel G(n)(x1, . . . , xn) and then

G = (G(n))∞n=0.

Functions F : Γ(Rd)→ R we call observables.

For a quasi-observable G define an operator

(KG)(γ) =
∑

η⊂γ,|η|<∞

G(η), γ ∈ Γ(Rd)

that is an observable. To be well defined we need certain assumptions
about G (bounded support, ....).
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Why we call combinatorial harmonic analysis?

For G1, G2 : Γ0(Rd)→ R define

(G1 ? G2)(η) =
∑

η1∪η2∪η3=η

G1(η1 ∪ η2)G2(η2 ∪ η3).

Then
K(G1 ? G2) = KG1KG2.
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Fourier transforms of states

Let µ ∈M1(Γ(Rd). It is a state in terms of StatPhys.

K : Fun(Γ0)→ Fun(Γ)

K∗ :M1(Γ)→M(Γ0).

K∗µ = ρ, ρ = (ρ(n))∞n=0.

The measure ρ is called correlation measure for µ (Fourier transform of µ).
Assume absolute continuity

dρ(n)(x1, . . . , xn) =
1

n!
k(n)(x1, . . . , xn)dx1 . . . xn.

We call k(n)(x1, . . . , xn), n ∈ N correlation functions of the measure µ.
Transition from measures to CFs is one of the main technical aspects of
the analysis on CS in applications to dynamical problems.
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Alternatively define Bogoliubov functional

Bµ(φ) =

∫
Γ(Rd)

e<γ,log(1+φ>)dµ(γ).

Assuming Bµ is holomorphic in φ ∈ L1(Rd) we obtain

Bµ(φ) =

∞∑
n=0

1

n!

∫
k(n)(x1, . . . , xn)φ(x1) . . . φ(xn)dx1 . . . dxn.
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Certain related papers:

Finkelshtein, Dmitri; Kondratiev, Yuri; Lytvynov, Eugene; Oliveira, Maria
Joo; Streit, Ludwig Sheffer homeomorphisms of spaces of entire functions
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Finkelshtein, Dmitri; Kondratiev, Yuri; Lytvynov, Eugene; Oliveira, Maria
Joo An infinite dimensional umbral calculus. J. Funct. Anal. 276 (2019),
no. 12, 3714-3766
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dynamics of continuous systems: perturbative and approximative
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Marked combinatorics on Rd

Denote K(Rd) ⊂M(Rd) the set of all discrete Radon measures on Rd.

K(Rd) 3 η =
∑
i

siδxi

where si > 0 and {xi} ⊂ Rd is not (in general) a configuration.
Denote Π(R+ × Rd) ⊂ Γ(R+ × Rd) the set of all configuration on
R+ × Rd with finite local mass, e.g., for {(si, xi)} ∈ Π(R+ × Rd)

∀Λ ∈ Bb(Rd)
∑
xi∈Λ

si <∞.
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Plato space

We call Π(R+ × Rd) the Plato space w.r.t. the space K(Rd). For
γ ∈ Π(R+ × Rd) define the reflection mapping (shine) as

Rγ =
∑
i

siδxi ∈ K(Rd).

Topological and geometrical structures on K(Rd) are obtained from
corresponding objets on Γ(R+ × Rd) using this mapping.
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Definition

For each η ∈ K(Rd), define the sequence of fake falling factorials as

P (0)(η) = 1

P (1)(η) = η

P (n)(η)(x1, . . . , xn) = η(x1)(η(x2)− sx1δx1(x2))×
× · · · (η(xn)− sx1δx1(xn)− · · · − sxn−1δxn−1(xn))

where η =
∑

x∈τ(η) sxδx and η(x) = η({x}).
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For η ∈ K(Rd), we have

1

n!
P (n)(η) =

∑
{i1,...,in}⊂N

sxi1 · · · sxin δx1 � · · · � δxn

where � represents the symmetric tensor product and η =
∑

i∈N sxiδxi .
As stated above, the fake falling factorials also arise as the image of falling
factorials on Π(R+ × Rd) under the reflection mapping.
Let ϕ : Rd → R be a measurable function with compact support and set
fϕ(s, x) := sϕ(x) for (s, x) ∈. Then for η ∈ K(Rd) and all n ∈ N0, the
following holds:

〈ϕ⊗n, P (n)(η)〉 = 〈〈f⊗nϕ , (R−1η)n〉〉

where (·)n denotes the falling factorials on Π(R+ × Rd)

Kondratiev, Yuri; Lytvynov, Eugene; Vershik, Anatoly Laplace operators on
the cone of Radon measures. J. Funct. Anal. 269 (2015), no. 9,
2947-2976

P.Kuchling, PhD Thesis, Bielefeld, 2019
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From spatial to classical combinatoric

Let a, b : N→ R. Define a convolution

(a ? b)(n) =
∑

j+k+l=n

a(j + k)b(k + l).

As before

(Ka)(n) =

n∑
k+0

(
n

k

)
a(k).

Then
K(a ? b) = Ka ·Kb.

Coherent state:

eλ(·) : N→ C, eλ(n) = λn, λ ∈ C.

(Keλ)(n) = (1 + λ)n.
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Zero dimensional statistical physics

A measure µ ∈M1(Γ(Rd)) is a state of a continuous system in StatPhys.
Coming back: a measure µ ∈M1(N) is a state of 0D system.
Poisson measure: for σ > 0

πσ(n) = e−σ
σn

n!
.

Characteristics we can incorporate from the analysis on Γ(Rd):

Bogoliubov functional:

B(λ) =

∫
R+

(1 + λ)xdµ(x).

(1 + λ)x =
∞∑
n=0

λn

n!
(x)n.
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Theorem

Let µ ∈M1(R+). Then µ(N) = 1 iff B(λ) has a holomorphic extension.

Correlation measures∫
N

(Ka)(x)dµ(x) =

∫
N
a(x)dρµ(x).

ρµ(n) =
1

n!

∫
N

(x)ndµ(x) =

∞∑
m=n

(
m

n

)
µ(m).
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Other 0D topics

Polynomial systems and new relation for them (binomial, Appel, Sheffer,
Meixner)

Markov processes on N end their applications: birth-and-death, migration,
infection spreading, evolutionary processes etc.

Fractional stochastic dynamics
,
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