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Random time vs Newton time

Time-changed stochastic processes are getting increased attention due to
their applications in finance, geophysics, fractional partial differential
equations and in modeling the anomalous diffusion in statistical physics.

The processes that are used as time-change are generally subordinators, or
inverse subordinators. Subordinators are non-decreasing Levy processes,
i.e., processes with independent and stationary increments having
non-decreasing sample paths.
If S(t) is a subordinator, then we have

E[e−λS(t)] = e−tΦ(λ),

where Φ is called the Laplace exponent
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Inverse subordinators

For a subordinator S(t), the first-exit time process is defined by

E(t) = inf
s≥0
{S(s) > t}

and we call this process the inverse subordinator. Note that

P (E(t) > x) = P (S(x) ≤ t).

For every jump of the subordinator S(t) there is a corresponding flat
period of its inverse E(t). These flat periods represent trapping events in
which the test particle gets immobilized in a trap. Trapping slows down
the overall dynamics of the process.
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Markov case

Let L be a generic heuristic Markov generator defined on functions
u0(x, t), t > 0, x ∈ Rd. Consider the evolution equations of the following
type 

∂u0(x, t)

∂t
= (Lu0)(x, t)

u0(x, 0) = ξ(x),
(1)

which we assume a solution u0(x, ·) ∈ L1(R+) is known.
We are interested in studying the subordination of the solution u0(x, t) by
the density Gt(τ) of the inverse subordinator E(t), that is the function
u(x, t) defined by

u(x, t) :=

∫ ∞
0

u0(x, τ)Gt(τ) dτ, x ∈ Rd, t ≥ 0. (2)
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If X(t) be the MP for generator L and Y (t) = X(E(t)) be time changed
process then

u0(x, t) = Ex[ξ(X(t))]

u(x, t) = Ex[ξ(Y (t))].
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The subordination principle tells that u(x, t) is the solution of the general
fractional differential equation{

(D(k)
t u)(x, t) = (Lu)(x, t)

u(x, 0) = ξ(x),
(3)

with the same operator L acting in the spatial variables x and the same

initial condition ξ. Here D(k)
t is a generalized fractional (convolutional)

derivative corresponding to E(t) cf. Kochubei, Toaldo, ...

Relations between these solution were studied in several papers, e.g.,
Kochubei, K, da Silva, Shilling, Orsinger, ....
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Dynamical systems as Markov processes

Any DS can be considered as a deterministic MP.

Then all notions related to MP may be applied to DS.

Our aim is to demonstrate this observation.

Yuri Kondratiev (Bielefeld/Kyiv) Random time
Joint work with Jose Luis da Silva (Madeira) 7

/ 20



DS and Liouville equations

Let X(t, x), t ≥ 0, x ∈ Rd be a dynamical system in Rd starting from x,
that is, X(0, x) = x. This system is also a deterministic Markov process.
Given f : Rd −→ R we define

u(t, x) := f(X(t, x)).

Then we have a version of Kolmogorov equation which is called the
Liouville equation in the theory of dynamical systems:

∂

∂t
u(t, x) = Lu(t, x),

where L is the generator of a semigroup.
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Example

Consider DS
dX(t)

dt
= V (X(t))

where V ∈ TRd is a vector field.
Liouville operatror

Lf(x) =< V (x),∇f(x) >=

d∑
k=1

Vk(x)∇kf(x).

Liouville equation

∂u(t, x)

∂t
=< V (x),∇u(t, x) >

that is so-called transport equation.
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Random times in DS

Assume we have a random time E(t) as an inverse subordinator. Define a
random dynamical systems

Y (t, x, ω) = X(E(t, ω), x, ω).

For suitable functions f : Rd −→ R define

v(t, x) := E[f(Y (t, x))].

Then v(t, x) is the solution to an evolution equation with the same
generator L but with generalized fractional derivative, namely

D(k)
t v(t, x) = Lv(t, x).

As a result the following subordination formula holds:

v(t, x) =

∫ ∞
0

u(τ, x)Gt(τ) dτ. (4)

The problem (as in the Markov case) is to see the change of the behavior
of u after subordination.
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Example

Consider the simplest evolution equation in Rd

d

dt
X(t) = v ∈ Rd, X(0) = x0 ∈ Rd.

The corresponding dynamics is

X(t) = x0 + vt, t ≥ 0.

We consider x0 = 0 just for simplicity. Assume that the certain
assumptions on E are satisfied. Take f(x) = e−α|x|, α > 0. The
corresponding solution to the Liouville equation is

u(t, x) = e−αt|v|, t ≥ 0.
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Using properties of densities of certain class of inverse subordinators we
obtain

v(t, x) ∼ 1

α|v|Γ(γ)
tγ−1Q(t), t→∞.

In particular, for the α-stable subordinator considered we obtain
v(t, x) ∼ Ct−α, C is a constant.
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Example

For d = 1 consider the dynamics

α
d

dt
X(t) =

1

Xα−1(t)
, α ≥ 1.

It is clear that the solution is given by

X(t) = (t+ C)1/α.

Take the function f(x) = exp(−a|x|α), a > 0, then the long time
behavior of the subordination v(t, x) is given by

v(t, x) ∼ e−aC

a

tγ−1

Γ(γ)
Q(t), t→∞.
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Potentials for DS

In our framework above for a function f : Rd → R consider the solution to
the Cauchy problem

∂

∂t
u(t, x) = Lu(t, x),

u(0, x) = f(x).

Then as above
u(t, x) = (etLf)(x).

Define a potential for the function f as

U(f, x) =

∫ ∞
0

u(t, x)dt =

∫ ∞
0

(etLf)(x)dt = −(L−1f)(x).
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We would like to have an integral representation

U(f, x) =

∫
Rd

f(y)µx(dy)

with a Radon measure on Rd. This measure we will call the Green
measure for our dynamical system. The existence of this measure is a
non-trivial question for each particular model.
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Trajectories of random DS

Now we will analyze the transformation of trajectories of dynamical
systems under random times. As above we have the Liouville equation for

u(t, x) := f(X(t, x)), t ≥ 0, x ∈ Rd,

that is,
∂

∂t
u(t, x) = Lu(t, x), u(0, x) = f(x),

where L is the generator of a semigroup.
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In addition, let E(t), t ≥ 0 be the inverse subordinator process, then we
can consider the time changed random dynamical systems

Y (t, x) = X(E(t), x), t ≥ 0, x ∈ Rd.

Define
v(t, x) := E[f(Y (t, x)].

The subordination formula gives

v(t, x) =

∫ ∞
0

u(τ, x)Gt(τ) dτ.

Yuri Kondratiev (Bielefeld/Kyiv) Random time
Joint work with Jose Luis da Silva (Madeira) 17

/ 20



Now we will take the vector-function

f(x) = x ∈ Rd.

Then the average trajectories of Y (t, x) is given by∫ ∞
0

(X(τ, x))Gt(τ) dτ =

∫ ∞
0

X(τ, x)Gt(τ) dτ.
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If we consider the dynamical system of Example 1, that is, X(t, x) = vt,
then we obtain

E[Y (t, x)] = v

∫ ∞
0

τGt(τ) dτ.

Computing the Laplace transform of each component yields

vK(p)

∫ ∞
0

τe−τpK(p) dτ =
vp−2

K(p)
∼ vp−(2−γ)L

(
1

p

)
,

where L(x) = (Q(x))−1 is a slowly varying function. It follows from
Karamata–Feller Tauberian theorem. that

E[Y (t, x)] ∼ v t1−γ

Γ(2− γ)

1

Q(t)
.
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Diffusion approximation

Consider the following SDE in Rd:

dXε(t) = v(Xε)dt+ εdW (t)

for each ε > 0. The generator of this diffusion is

Lεf(x) = ε∆f(x)+ < v(x),∇f(x) > .

We can consider Xε as small perturbation of the DS

dX(t) = v(X(t))dt

and the convergence Xε → X under certain Lipschitz assumptions is well
understood (Freidlin, Wentzel, Kutoyants,....). But the class of admissible
vector fields v(x) is quite restricted.
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An open problem is to have an info about transport equations

d/dt u(t, x) =< v(x),∇u(t, x) >

by means of detailed info about the heat type equations (Fokker-Planck)

d/dt uε(t, x) = ε∆u(t, x)+ < v(x),∇u(t, x) > .
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