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Random time vs Newton time

Time-changed stochastic processes are getting increased attention due to
their applications in finance, geophysics, fractional partial differential
equations and in modeling the anomalous diffusion in statistical physics.

Time as a characteristic of the evolution

Biological and ecological models.

“Considered in the abstract time and space of mathematics, Life
is a fiction, a creation of our mind which is very different from
reality.”

V. I. Vernadsky, “La biosphere”, Paris: Alcan, 1926.
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Diffusions in complex and heterogenous media.
Experimental data and theoretical speculations

“Richtiges Auffassen einer Sache und Missverstehen der gleichen
Sache schliessen einander nicht vollständig aus.”

F.Kafka

Right understanding of certain notion and wrong understanding
of the same notion are not mutually exclusive.
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The processes that are used as time-change are generally subordinators, or
inverse subordinators. Subordinators are non-decreasing Levy processes,
i.e., processes with independent and stationary increments having
non-decreasing sample paths.
If S(t) is a subordinator, then we have

E[e−λS(t)] = e−tΦ(λ),

where Φ is called the Laplace exponent
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Inverse subordinators

For a subordinator S(t), the first-exit time process is defined by

E(t) = inf
s≥0
{S(s) > t}

and we call this process the inverse subordinator. Note that

P (E(t) > x) = P (S(x) ≤ t).

For every jump of the subordinator S(t) there is a corresponding flat
period of its inverse E(t). These flat periods represent trapping events in
which the test particle gets immobilized in a trap. Trapping slows down
the overall dynamics of the process.
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Markov case

Let L be a generic heuristic Markov generator defined on functions
u0(x, t), t > 0, x ∈ Rd. Consider the evolution equations of the following
type 

∂u0(x, t)

∂t
= (Lu0)(x, t)

u0(x, 0) = ξ(x),
(1)

which we assume a solution u0(x, ·) ∈ L1(R+) is known. We are interested
in studying the subordination of the solution u0(x, t) by the density Gt(τ)
of the inverse subordinator E(t), that is the function u(x, t) defined by

u(x, t) :=

∫ ∞
0

u0(x, τ)Gt(τ) dτ, x ∈ Rd, t ≥ 0. (2)
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If X(t) be the MP for generator L and Y (t) = X(E(t)) be time changed
process then

u0(x, t) = Ex[ξ(X(t))]

u(x, t) = Ex[ξ(Y (t))].
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The subordination principle tells that u(x, t) is the solution of the general
fractional differential equation{

(D(k)
t u)(x, t) = (Lu)(x, t)

u(x, 0) = ξ(x),
(3)

with the same operator L acting in the spatial variables x and the same

initial condition ξ. Here D(k)
t is a generalized fractional (convolutional)

derivative corresponding to E(t) cf. Kochubei, Toaldo, ...

For the special class of inverse stable subordinators we have many detailed
studies starting from Meerschaert pioneering works
in mathematics: Kolokoltsov, Leonenko, .....
in physiscs: Metzler, Mainardi, Taqqu, .....
Relations between these solutions for general subordinators were studied in
several papers, e.g., Kochubei, K, da Silva, Shilling, ....
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Introduction

Let {Xt, t ≥ 0;Px, x ∈ E} be a strong Markov process in a phase space
E. Denote Tt its transition semigroup (in a proper Banach space) and L
the generator of this semigroup. Let St, t ≥ 0 be a subordinator (i.e., a
non-decreasing real-valued Lévy process) with S0 = 0 and the Laplace
exponent Φ:

Ee−λSt = e−tΦ(λ) t, λ > 0.

We assume that St is independent of Xt.
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Denote Et, t > 0 the inverse subordinator and introduce the time changed
process Yt = XEt . We are interesting in the time evolution

u(t, x) = Ex[f(Yt)]

for a given initial date f . As it was pointed out in several works, u(t, x) is
the unique strong solution (in some proper sense) to the following Cauchy
problem

D(k)
t u(t, x) = Lu(t, x) u(0, x) = f(x).

Here we have a generalized fractional derivative

D(k)
t φ(t) =

d

dt

∫ t

0
k(t− s)(φ(s)− φ(0))ds

with a kernel k uniquely defined by Φ.
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Let u0(t, x) be the solution to a similar Cauchy problem but with ordinary
time derivative. In stochastic terminology, it is the solution to the forward
Kolmogorov equation corresponding to the process Xt. Under quite
general assumptions there is a nice and essentially obvious relation
between these evolutions:

u(t, x) =

∫ ∞
0

u0(τ, x)Gt(τ)dτ,

where Gt(τ) is the density of Et. Of course, we may have similar relations
for fundamental solutions to considered equations, for the backward
Kolmogorov equations or time evolutions of other related quantities.
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Caputo-Djrbashian fractional derivative of order α ∈ (0, 1)

(
D(α)
t u

)
(t) =

d

dt

∫ t

0
k(t− s)

(
u(s)− u(0)

)
ds, t > 0, (4)

where

k(t) =
t−α

Γ(1− α)
, t > 0. (5)
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Differential-convolution operators

(
D(k)
t u

)
(t) =

d

dt

∫ t

0
k(t− s)

(
u(s)− u(0)

)
ds, t > 0, (6)

where k ∈ L1
loc(R+) (R+ := [0,∞)) is a non-negative kernel.

The class of suitable kernels k we are interested in is such that the
fundamental solution of the corresponding evolution equation are
probability densities in L∞(R+) ∩ L1(R+).
As an example of such an operator, we consider the distributed order

derivative D(µ)
t corresponding to

k(t) =

∫ 1

0

t−α

Γ(1− α)
µ(α) dα, t > 0, (7)

where µ(α), 0 ≤ α ≤ 1 is a positive weight function on [0, 1].
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Assumptions on the Laplace transform K of the kernel k ∈ L1
loc(R+).

[(H)] Let k ∈ L1
loc(R+) be a non-negative kernel such that

∫∞
0 k(s) ds > 0

and its Laplace transform

K(λ) := (Lk)(λ) :=

∫ ∞
0

e−λtk(t) dt

exists for all λ > 0 and K belongs to the Stieltjes class S (or equivalently,
the function L(λ) := λK(λ) belongs to the complete Bernstein function
class CBF and

K(λ)→∞, λ→ 0; K(λ)→ 0, λ→∞;

L(λ)→ 0, λ→ 0; L(λ)→∞, λ→∞.

Concerning these classes see

R. L. Schilling, R. Song, and Z. Vondraček. Bernstein Functions: Theory
and Applications. De Gruyter Studies in Mathematics. De Gruyter, Berlin,
2 edition, 2012.
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Example (α-Stable subordinator)

Let k be the kernel corresponding to the Caputo-Djrbashian fractional

derivative D(α)
t of order α ∈ (0, 1). Then its Laplace transform is given by

K(λ) =
1

Γ(1− α)

∫ ∞
0

e−λtt−α dt = λα−1.

It is easy to verify that our assumptions are satisfied for K and L.
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Example (Gamma subordinator)

Let k be the kernel defined by

R+ 3 t 7→ k(t) := aΓ(0, bt), a, b > 0,

where Γ(ν, x) :=
∫∞
x tν−1e−t dt is the upper incomplete Gamma function.

The Laplace transform of k is given by

K(λ) =
a

λ
log

(
1 +

λ

b

)
, λ > 0.

Again, the properties are simple to verify.
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Example (Inverse Gaussian subordinator)

Let a ≥ 0 and b > 0 be given and define the kernel k by

R+ 3 t 7→ k(t) :=

√
b

2π

(
2√
t
e−

at
2 −
√

2aπ(1− erf(z))

)
, z :=

√
at

2
,

where erf(z) := 2√
π

∫ z
0 e
−t2 dt is the error function. The Laplace transform

of k can be computed and is given by

K(λ) =

√
b

λ

(
2
√

2λ+ a−
√
a
)
, λ > 0.

The properties follow easily.
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The function [0,∞) 3 λ 7→ e−τλK(λ), τ > 0 is the composition of a
complete Bernstein and a completely monotone function, then it is a
completely monotone function. By Bernstein’s theorem, for each τ ≥ 0,
there exists a probability measure ντ on R+ such that

e−τλK(λ) =

∫
(0,∞)

e−λs dντ (s). (8)

Define

Gt(τ) :=

∫
(0,t)

k(t− s) dντ (s). (9)

Later we will see a simple probabilistic meaning of this function.
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Again:

Gt(τ) :=

∫
(0,t)

k(t− s) dντ (s). (10)

The function Gt(τ) is a central object of our considerations.

Lemma

1 The t-Laplace transform of Gt(τ) is given by

g(λ, τ) :=

∫ ∞
0

e−λtGt(τ) dt = K(λ)e−τλK(λ). (11)

2 The double (t, τ)-Laplace transform of Gt(τ) is equal to∫ ∞
0

∫ ∞
0

e−λt−pτGt(τ) dt dτ =
K(λ)

λK(λ) + p
.

3 For each fixed t ∈ R+, Gt(τ) is a probability density, therefore
R+ 3 τ 7→ Gt(τ) ∈ L∞(R+) ∩ L1(R+).

Yuri Kondratiev (Bielefeld) Random Times 19 / 63



Probabilistic interpretation

Define a subordinator S by its Laplace transform as

E(e−λS(t)) = e−tΦ(λ) = e−tλK(λ), λ ≥ 0,

and Φ is called the Laplace exponent or cumulant of S. The associated
Lvy measure σ has support in [0,∞) and fulfills∫

(0,∞)
(1 ∧ τ) dσ(τ) <∞ (12)

and the Laplace exponent Φ can be represented by

Φ(λ) =

∫
(0,∞)

(1− e−λτ ) dσ(τ). (13)

That is known as the Lévy-Khintchine formula for the subordinator S.
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The kernel k is related to the subordinator S via the Lévy measure σ,
namely if we set

k(t) = σ
(
(t,∞)

)
, ∀t ∈ [0,∞)

it is easy to compute its Laplace transform. In fact, for any λ ≥ 0∫ ∞
0

e−λt
∫ t

0
dσ(s) dt =

∫ ∞
0

∫ s

0
e−λt dt dσ(s) =

1

λ
Φ(λ) = K(λ).
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Denote by E the inverse process of the subordinator S, that is

E(t) := inf{s ≥ 0 : S(s) ≥ t} = sup{s ≥ 0 : S(t) ≤ s}. (14)

Then the marginal density of E(t) is the function Gt(τ), t, τ ≥ 0, more
precisely

Gt(τ) dτ = ∂τP(E(t) ≤ τ) = ∂τP(S(τ) ≥ t) = −∂τP(S(τ) < t).

Note that we can start with the subordinator S(t) and arrive into
generalized fractional derivative framework.
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Fractional FPK equations

Let L be a generic heuristic Markov generator defined on functions
u0(x, t), t > 0, x ∈ Rd. Consider the evolution equations of the following
type 

∂u0(x, t)

∂t
= (Lu0)(x, t)

u0(x, 0) = ξ(x),
(15)

which we assume a solution u0(x, ·) ∈ L1(R+) is known.
We are interested in studying the subordination of the solution u0(x, t) by
the density Gt(τ), that is the function u(x, t) defined by

u(x, t) :=

∫ ∞
0

u0(x, τ)Gt(τ) dτ, x ∈ Rd, t ≥ 0. (16)

The subordination principle tells that u(x, t) is the solution of the general
fractional differential equation{

(D(k)
t u)(x, t) = (Lu)(x, t)

u(x, 0) = ξ(x),
(17)
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Define the Cesaro mean

Mt

(
u(x, t)

)
:=

1

t

∫ t

0
u(x, s) ds

and investigate its long time behavior. Notice that the Cesaro mean of
u(t, x) may be written as

Mt

(
u(x, t)

)
=

∫ ∞
0

u0(x, τ)

(
1

t

∫ t

0
Gs(τ) ds

)
dτ

=

∫ ∞
0

u0(x, τ)Mt

(
Gt(τ)

)
dτ. (18)

Therefore we are led to investigate the Cesaro mean of the density Gt(τ)
which determine the long time behavior of u(x, t) once the integral in the
definition exists. To this end first we introduce a suitable class of the
admissible k(t).
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Definition (Admissible kernels - K(R+))

The subset K(R+) ⊂ L1
loc(R+) of admissible kernels k is defined by those

elements in L1
loc(R+) satisfying (H) such that for some s0 > 0

lim inf
λ→0+

1

K(λ)

∫ s0
λ

0
k(t) dt > 0 (A1)

and

lim
t,r→∞
t
r→1

(∫ t

0
k(s) ds

)(∫ r

0
k(s) ds

)−1

= 1. (A2)

The assumptions (A1) and (A2) are easy to check for the classes we
introduced above.
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Theorem

Let τ ∈ [0,∞) be fixed and k ∈ K(R+) a given admissible kernel. Define
the map G·(τ) : [0,∞) −→ R+, t 7→ Gt(τ) such that

∫∞
0 e−λtGt(τ) dt

exists for all λ > 0. Then

lim
λ→0+

e−τλK(λ) = 1

is equivalent to

lim
t→∞

(∫ t

0
Gs(τ) ds

)(∫ t

0
k(s) ds

)−1

= 1

or

Mt

(
Gt(τ)

)
=

1

t

∫ t

0
Gs(τ) ds ∼ 1

t

∫ t

0
k(s) ds = Mt

(
k(t)

)
, t→∞

and Mt

(
Gt(τ)

)
is uniformly bounded in τ ∈ R+.
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The following three classes of admissible kernels k ∈ K(R+) are studied,
and they are given in terms of their Laplace transform K(λ) as λ→ 0

K(λ) ∼ λθ−1, 0 < θ < 1. (C1)

K(λ) ∼ λ−1L

(
1

λ

)
, L(x) := µ(0) log(x)−1. (C2)

K(λ) ∼ λ−1L

(
1

λ

)
, L(x) := C log(x)−1−s, s > 0, C > 0. (C3)

Yuri Kondratiev (Bielefeld) Random Times 27 / 63



(C1). We have in this case

K(λ) = λθ−1 = λ−ρL

(
1

λ

)
,

where ρ := 1− θ ≥ 0 and L(x) := 1 is a ‘trivial’ SVF.
Applying the Karamata-Tauberian theorem we obtain∫ t

0
k(s) ds ∼ CtρL(t)⇔Mt(k(t)) =

1

t

∫ t

0
k(s) ds ∼ Ct−θ, as t→∞.

(C2). We have, as λ→ 0

K(λ) ∼ λ−1

(
log

(
1

λ

))−1

µ(0) = λ−1L

(
1

λ

)
, as λ→ 0,

where L(x) := (log(x))−1µ(0) is a SVF. Hence, by the
Karamata-Tauberian theorem we obtain

Mt(k(t)) =
1

t

∫ t

0
k(s) ds ∼ C log(t)−1, as t→∞.
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(C3). The Laplace transform for each s > 0 as

K(λ) ∼ Cλ−1

(
log

(
1

λ

))−1−s
= λ−1L

(
1

λ

)
, as λ→ 0,

where L(x) := C log(x)−1−s is a SVF. Then, by the
Karamata-Tauberian theorem we obtain

Mt(k(t)) =
1

t

∫ t

0
k(s) ds ∼ C log(t)−1−s, as t→∞.
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Particular models

Exponential decay
Let us assume that the solution u0(x, t) of the Cauchy problem is such that

sup
x∈Rd

|u0(x, t)| ≤ Ce−γt, γ > 0. (19)

As the function R+ 3 t 7→ u0(x, t) ∈ R+ is integrable, then the long time
behavior of the Cesaro mean of

u(x, t) =

∫ ∞
0

u0(x, τ)Gt(τ) dτ

reduces to the study of the Cesaro mean of the admissible kernel k(t).
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(C1). For the first class of kernels (C1) it is easy to see that the
Cesaro mean of k is given, as before, by

Mt(u(x, ·)) ∼ Ct−θ, t→∞. (20)

(C2) For the class (C2), an application of the Karamata-Tauberian
theorem gives

Mt(u(x, ·)) ∼ C log(t)−1, t→∞. (21)

(C3) Now we look at class (C3) and again by the
Karamata-Tauberian theorem we obtain

Mt(u(x, ·)) ∼ C log(t)−1−s, t→∞. (22)
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The Heat Equation

We consider the Cauchy problem
∂u0(x, t)

∂t
= ∆u0(x, t)

u0(x, 0) = ϕ(x),
(23)

where ϕ ∈ L1(Rd). If Gt(x) denotes the fundamental solution then the
solution u0(x, t) is written as a convolution between the initial condition ϕ
and Gt, that is

u0(x, t) = (ϕ ∗ Gt)(x).

sup
x∈Rd

|u0(x, τ)| ≤ C, τ ∈ [0, 1] (24)

and

sup
x∈Rd

|u0(x, τ)| ≤ C

τd/2
, τ ∈]1,∞). (25)
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The function u(x, t) is defined as the subordination of u0(x, t) by the
density Gt(τ), that is

u(x, t) =

∫ ∞
0

u0(x, τ)Gt(τ) dτ.

As u0(x, t) is bounded in a neighbourhood of τ = 0+, then the only
important contribution for the long time asymptotic of u(x, t) comes from
τ > 1. On the other hand, the map [1,∞) 3 τ 7→ 1

τd/2
∈ R+ belongs to

L1(R+) for d ≥ 3. Therefore we may derive the long time behavior of the
Cesaro mean of u(x, t) as in the previous example for each classes (C1),
(C2), and (C3).
Notice that for d = 1 and d = 2 this method does not allow us to take any
conclusion on the long time asymptotic of the Cesaro mean of u(x, t) since

1
τd/2

/∈ L1(R+). Below we use an alternative method which allow us to do
so.
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τd/2
∈ R+ belongs to

L1(R+) for d ≥ 3. Therefore we may derive the long time behavior of the
Cesaro mean of u(x, t) as in the previous example for each classes (C1),
(C2), and (C3).
Notice that for d = 1 and d = 2 this method does not allow us to take any
conclusion on the long time asymptotic of the Cesaro mean of u(x, t) since

1
τd/2

/∈ L1(R+). Below we use an alternative method which allow us to do
so.
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Non–local Diffusion
We consider the non–local diffusion
∂u0(x, t)

∂t
= a ∗ u0(x, t)− u0(x, t) =

∫
Rd
a(x− y)(u0(y, t) dy − u0(x, t)

u0(x, 0) = ϕ(x),

(26)
for x ∈ Rd, t > 0, and 0 ≤ a ∈ C(Rd), < a >= 1.

Theorem

Assume that there exist A > 0 and 0 < r ≤ 2 such that

â(ξ) = 1−A|ξ|r + o(|ξ|r) as ξ → 0.

For any nonnegative ϕ such that ϕ, ϕ̂ ∈ L1(Rd), there exits a unique
solution u(x, t) of the CP such that

‖u0(·, t)‖L∞(Rd) ≤ Ct−d/r.
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As the solution u0(x, t) is time continuous and uniformly bounded in x,
then it is easy to derive the following properties of u0(x, t)

sup
x∈Rd

|u0(x, τ)| ≤ C, τ ∈ [0, 1], (27)

sup
x∈Rd

|u0(x, τ)| ≤ Cτ−d/r, τ ∈]1,∞). (28)

Our aim now is to study the function u(x, t) given by the subordination of
u0(x, t) by the density Gt(τ), namely

u(x, t) =

∫ ∞
0

u0(x, τ)Gt(τ) dτ,

that is determine the long time behavior of u(x, t) for all the classes of
admissible kernels k ∈ K(R+).
For d ≥ 3 the function R+ 3 τ 7→ τ−d/r ∈ R+ is integrable, therefore the
long time behavior of Mt(u(x, t)) reduces to that of Mt(Gt(τ)). For the
three classes of admissible kernels k ∈ K(R+), they are given as above.
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Alternative Method for Subordinated Dynamics

Exponential decay
We have the exponential decay of the initial solution u0(x, t). Computing
the t-Laplace transform of u(x, t)

(Lu(x, ·))(λ) = C

∫ ∞
0

e−γτ (LG·(τ))(λ) dτ

= CK(λ)

∫ ∞
0

e−γτe−τλK(λ) dτ

= C
K(λ)

λK(λ) + γ
.

We investigate each class of admissible kernels k ∈ K(R+), that is (C1),
(C2) and (C3).
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(C1). It follows that

(Lu(x, ·))(λ) = C
λθ−1

λθ + γ
= λ−(1−θ)L

(
1

λ

)
, L(x) :=

C

x−θ + γ
.

Then the Karamata-Tauberian theorem gives

Mt(u(x, t)) ∼ Ct−θ 1

t−θ + γ
∼ Ct−θ, t→∞.
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(C2). We have, as λ→ 0

(Lu(x, ·))(λ) ∼ Cλ−1L

(
1

λ

)
, L(x) := C

(log(x))−1

(log(x))−1 + γ
.

And again, an application of the Karamata-Tauberian
theorem yields

Mt(u(x, t)) ∼ C log(t)−1 1

(log(t))−1 + γ
∼ C log(t)−1, t→∞.

(C3). For that class one obtains

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
, L(x) := C

(log(x))−1−s

(log(x))−1−s + γ
.

By the Karamata-Tauberian theorem we have

Mt(u(x, t)) ∼ C log(t)−1−s 1

(log(t))−1−s + γ
∼ C log(t)−1−s, t→∞.

In conclusion, this alternative method reproduces the same type of decay
of the Cesaro mean as the general method for this example.
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The Heat Equation
We compute the t-Laplace transform of u(x, t) and then apply the
Karamata-Tauberian theorem. We have, again

(Lu(x, ·))(λ) = K(λ)

∫ ∞
0

u0(x, τ)e−τλK(λ) dτ.

The long time behavior of Mt(u(x, t)) is only influenced as τ > 1, that is
the factor

CK(λ)

∫ ∞
1

τ−d/2e−τλK(λ) dτ.

The integral on the right-hand side is computed using the upper
incomplete Gamma function∫ ∞

b
τνe−τx dτ = x−ν−1Γ(ν + 1, bx), <(x) > 0. (29)

Yuri Kondratiev (Bielefeld) Random Times 39 / 63



The Heat Equation
We compute the t-Laplace transform of u(x, t) and then apply the
Karamata-Tauberian theorem. We have, again

(Lu(x, ·))(λ) = K(λ)

∫ ∞
0

u0(x, τ)e−τλK(λ) dτ.

The long time behavior of Mt(u(x, t)) is only influenced as τ > 1, that is
the factor

CK(λ)

∫ ∞
1

τ−d/2e−τλK(λ) dτ.

The integral on the right-hand side is computed using the upper
incomplete Gamma function∫ ∞

b
τνe−τx dτ = x−ν−1Γ(ν + 1, bx), <(x) > 0. (29)

Yuri Kondratiev (Bielefeld) Random Times 39 / 63



Hence, neglecting the constant for τ ∈ [0, 1], the t-Laplace transform of
u(x, t) has the form

(Lu(x, ·))(λ) = CK(λ)(λK(λ))d/2−1Γ(1− d/2, λK(λ)).

Now we study each class of admissible kernels with the behavior described
by (C1), (C2) and (C3) above.

Yuri Kondratiev (Bielefeld) Random Times 40 / 63



(C1) We have K(λ) = λθ−1 and we distinguish the following
cases:

1 For d = 1, as λ→ 0

(Lu(x, ·))(λ) = Cλ−(1−θ/2)Γ(1/2, λθ) = λ−ρL

(
1

λ

)
,

where ρ = 1− θ/2 and L(x) := CΓ(1/2, x−θ). In fact,
to see that L(x) is a SVF first we use the relation

Γ(s, x) = Γ(s)− γ(s, x), s 6= 0,−1,−2, . . . , (30)

where γ(s, x) is the lower incomplete Gamma function,
the fact that x−θ → 0 when x→∞ together with

γ(s, x) ∼ xs

s
, x→ 0. (31)

Hence, by the Karamata-Tauberian theorem the Cesaro
mean of u(x, t) behaves as

Mt(u(x, t)) ∼ Ct−θ/2L(t) ∼ Ct−θ/2, t→∞.
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For d = 2, as λ→ 0

(Lu(x, ·))(λ) ∼ λ−(1−θ)L

(
1

λ

)
,

where L(x) := CΓ(0, x−θ) = CE1(x−θ) and E1(x), x > 0 is the
exponential integral.
For x→ 0 we have

E1(x) ∼ −γ − ln(x), (32)

where γ is the Euler-Mascheroni constant. Then it is simple to show that
L(x) = CE1(x−θ) is a SVF. And again, by the Karamata-Tauberian
theorem we obtain

Mt(u(x, t)) ∼ Ct−θL(t) ∼ Ct−θ
(
γ + log(t−θ)

)
, t→∞. (33)
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For d ≥ 3, as λ→ 0

(Lu(x, ·))(λ) ∼ λ−(1−θ)L

(
1

λ

)
,

where L(x) := xθ(1−d/2)Γ(1− d/2, x−θ). To show that L(x) is a SVF use
the relation

Γ(s, x) ∼ −x
s

s
, <(s) < 0, x→ 0. (34)

Once more, the Karamata-Tauberian theorem gives

Mt(u(x, t)) ∼ Ct−θL(t) ∼ Ct−θ, t→∞.
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(C2) The Laplace transform K(λ) behaves as λ→ 0

K(λ) ∼ λ−1L

(
1

λ

)
, L(x) := µ(0) log(x)−1.

We distinguish the cases d = 1, d = 2 and d ≥ 3.
1 For d = 1 as λ→ 0

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where

L(x) := C log(x)−1/2Γ(1/2, µ(0) log(x)−1).

L(x) is a SVF. Hence, by the Karamata-Tauberian
theorem the Cesaro mean of u(x, t) is

Mt(u(x, t)) ∼ C log(t)−1
(

log(t)1/2Γ(1/2, µ(0) log(t)−1)
)

∼ C log(t)−1 + C ′ log(t)−1/2, t→∞.
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For d = 2 as λ→ 0

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where L(x) := µ(0) log(x)−1E1(µ(0) log(x)−1). Again, L(x)
is a SVF because it is the product of two SVF. Then an
application of the Karamata-Tauberian theorem yields

Mt(u(x, t)) ∼ C log(t)−1E1(µ(0) log(t)−1)

∼ C log(t)−1
[
γ + log

(
µ(0) log(t)−1

)]
, t→∞.
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In general, for any d ≥ 3 as λ→ 0 we have

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where

L(x) :=
(
µ(0) log(x)−1

)d/2
Γ(1− d/2, µ(0) log(x)−1).

It is clear that L(x) is a SVF, hence the Karamata-Tauberian
theorem implies the long time behavior for Mt(u(x, ·)),
namely

Mt(u(x, t)) ∼ C log(t)−1
(

log(t)1−d/2Γ(1− d/2, µ(0) log(t)−1)
)

∼ C log(t)−1.
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(C3) Finally, let us investigate the Cesaro mean of u(x, t) for the
class (C3), that is where K(λ) behaves as λ→ 0

K(λ) ∼ λ−1L

(
1

λ

)
, L(x) := C(log(x))−1−s, s > 0, C > 0.

Proceeding as before we distinguish the following cases:
For d = 1, as λ→ 0 we have

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where

L(x) := C log(t)−1−sΓ(1/2, C log(x)−1−s)

= C log(t)−1−s(√π − γ(1/2, log(x)−1−s)
is a SVF since it is the product of two SVF. Then, the
Karamata-Tauberian theorem yields

Mt(u(x, t)) ∼ C log(t)−1−s
(√

π − 2 log(t)(−1−s)/2
)
, t→∞.

For d = 2, as λ→ 0 we have

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where L(x) := C log(t)−1−sE1(C log(x)−1−s). Then it
follows from Karamata-Tauberian theorem that

Mt(u(x, t)) ∼ C log(t)−1−s[γ + log(C log(t)−1−s)], t→∞.
for d ≥ 3, as λ→ 0

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where L(x) := C log(x)−2−s+d/2Γ(1− d/2, C log(x)−1−s).
Again, L(x) is a SVF as it is a product of two SVF. Then by
the Karamata-Tauberian theorem we obtain

Mt(u(x, t)) ∼ C log(t)−1−s[ log(t)d/2−1Γ(1− d/2, C log(t)−1−s)
]

∼ C log(t)−1−s.
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As a conclusion, the alternative method produces the same long time
decay of the Cesaro mean of u(x, t) compared to the general method. In
addition, with the Laplace transform method we can handle the dimensions
d = 1 and d = 2 which was not possible with the general method.
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Non-local Diffusion
The long time behavior of Mt(u(x, t)) depends only on τ > 1, that is the
factor

CK(λ)

∫ ∞
1

τ−d/re−τλK(λ) dτ.

The integral on the right hand side above is (neglecting a constant)

(Lu(x, ·))(λ) = CK(λ)(λK(λ))d/r−1Γ(1− d/r, λK(λ)).

We investigate the long time behavior of Mt(u(x, t)) for the three classes
of admissible kernels (C1) , (C2) and (C3). The analysis below is similar
to the analysis of the heat equation assuming 1 < r ≤ 2.
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(C1) We have K(λ) = λθ−1, 0 < θ < 1 and

(Lu(x, ·))(λ) = λ−(1−θd/r)L

(
1

λ

)
,

where L(x) = CΓ(1− d/r, x−θ) which is a SVF.

For d = 1 it follows that

(Lu(x, ·))(λ) = λ−(1−θ/r)Γ(1− 1/s, λ−θ)

with 1− θ/r > 0 and 1− 1/r ∈ (0, 1/2]. As Γ(1− 1/r, λ−θ)
is a SVF, then the Karamata-Tauberian theorem gives

Mt(u(x, t)) ∼ Cλ−θ/rΓ(1− 1/r, λ−θ)

and
Mt(u(x, t)) ∼ Ct−θ/rL(t) ∼ Ct−θ/r.
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For d = 2 we have

(Lu(x, ·))(λ) ≥ λ−(1−2θ/r)Γ(1− 2/r, λ−θ)

such that to have 1− 2θ/r > 0 implies that r = 2. This case
is similar to the heat equation. Thus, we have

Mt(u(x, t)) ∼ Ct−θ
(
γ + log(t−θ)

)
, t→∞.

For d ∈ [3, r/θ ∨ 3), we have

(Lu(x, ·))(λ) ≥ λ−(1−θ)L

(
1

λ

)
,

where L(x) = xθ(1−d/r)Γ(1− d/r, x−θ) is a SVF. Therefore,
we derive the long time behavior of Mt(u(x, t)) as a
consequence of the Karamata-Tauberian theorem, namely

Mt(u(x, t)) ∼ Ct−θL(t) ∼ Ct−θ, t→∞.
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(C2) That is the case when

K(λ) ∼ λ−1L

(
1

λ

)
, L(x) := µ(0) log(x)−1

which implies

(Lu(x, ·))(λ) ∼ Cλ−1L

(
1

λ

)d/r
Γ

(
1− d/r, L

(
1

λ

))
.

For d = 1 as λ→ 0, we have

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where L(x) = C log(x)−1/rΓ(1− 1/r, µ(0) log(x)−1) is a
SVF. Then the Karamata-Tauberian theorem yields

Mt(u(x, t)) ∼ C log(t)−1 log(t)−1−1/rΓ(1− 1/r, µ(0) log(x)−1)

∼ C log(t)−1
(
Γ(1− 1/r) log(t)−1−1/r − C ′

)
, t→∞.
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Now for d = 2 we have

L(u(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where L(x) = C log(x)−2/rΓ(1− 2/r, µ(0) log(x)−1) is a
SVF.

For the special case r = 2 it reduces to

L(x) = C log(x)−1E1(µ(0) log(x)−1).

Then an application of the Karamata-Tauberian theorem
yields

Mt(u(x, t)) ∼ C log(t)−1E1(µ(0) log(t)−1)

∼ C log(t)−1
[
γ + log(µ(0) log(t)−1)

]
, t→∞.

For 1 < r < 2, then −1 < 1− 2/r < 0 and

Mt(u(x, t)) ∼ C log(t)−1 log(x)1−2/rΓ(1− 2/r, µ(0) log(x)−1)

∼ C log(t)−1, t→∞.
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For d ≥ 3, we obtain

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where L(x) = C log(x)−d/rΓ(1− d/r, µ(0) log(x)−1) is a
SVF. As 1− d/r < 0, then by the Karamata-Tauberian
theorem follows

Mt(u(x, t)) ∼ C log(t)−1 log(x)1−d/rΓ(1− d/r, µ(0) log(x)−1)

∼ C log(t)−1, t→∞.
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(C3) The third class of admissible kernels has Laplace transform

K(λ) ∼ λ−1L

(
1

λ

)
, L(x) := C(log(x))−1−s, s > 0, C > 0

such that

(Lu(x, ·))(λ) ∼ Cλ−1L

(
1

λ

)d/r
Γ

(
1− d/r, L

(
1

λ

))
.

First we take d = 1 and obtain

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where L(x) = C log(x)−(1+s)/rΓ(1− 1/r, C log(x)−1−s) is a
SVG. Then by the Karamata-Tauberian theorem and follows

Mt(u(x, t)) ∼ C log(t)−1−s log(t)1+s−(1+s)/rΓ(1− 1/r, C log(t)−1−s)

∼ C log(t)−1−s
(

log(t)1+s−(1+s)/rΓ(1− 1/r) + C ′
)
, t→∞.
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For d = 2 we have

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where L(x) = C log(x)−2(1+s)/rΓ
(
1− 2/r, C log(x)−1−s) is

a SVF.

For r = 2 the SVF L(x) reduces to

L(x) = C log(x)−(1+s)E1

(
C log(x)−1−s)

and then we obtain

Mt(u(x, t)) ∼ C log(t)−1−s(γ+log(C log(t)−1−s)), t→∞.

For 1 < r < 2 then −1 < 1− 2/r < 0 and

Mt(u(x, t)) ∼ C log(t)−1−s log(t)(1+s)(1−2/r)Γ
(
1− 2/r, C log(t)−1−s)

∼ C log(t)−1−s, t→∞.
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Finally for d ≥ 3 we have

(Lu(x, ·))(λ) ∼ λ−1L

(
1

λ

)
,

where L(x) = C log(x)−d(1+s)/rΓ
(
1− d/r, C log(x)−1−s) is

a SVF. As before, we obtain

Mt(u(x, t)) ∼ C log(t)−1−s log(t)(1+s)(1−d/r)Γ
(
1− d/r, C log(t)−1−s)

∼ C log(t)−1−s, t→∞.

In conclusion, both methods produces the same type of long time behavior
for d ≥ 3, in addition for d = 1 and d = 2 we are also able to obtain a
decay using this alternative Laplace transform method.
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Asymptotic without Cesaro mean

Classical relaxation equation

u′(t) = −λu(t), u(0) = 1, λ > 0.

Fractional relaxation equation

D(k)
t v(t) = −λv(t).

In particular, we have models with decaying correlation functions:

κ(1)
t = e−λt, β > 0. (35)

This situation is realized in the contact model in subcritical regime.

Theorem

Assume

K(p) ∼ p−γQ
(

1

p

)
, p→ 0, (36)

where 0 ≤ γ ≤ 1, Q is a slowly varying function.
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Then for the solution v(t) holds

v(t) ∼ 1

Γ(γ)λ
tγ−1Q(t), t→∞.
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Examples

1) In the case of the Caputo-Djrbashian fractional derivative Dα,
0 < α < 1, we have K(p) = pα−1, and (36) is satisfied.
2) For the distributed order derivative with a continuous weight function
µ, we have

K(p) ∼ p−1

(
log

1

p

)−1

µ(0), p→ 0,

if µ(0) 6= 0. Thus, in this case (36) holds with γ = 1.
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Relaxation process equation

du

dt
= −λ(u(t)− u0),

where 1/λ is called the relaxation time. The solution

u(t) = u0(1− e−λt)

is growing to the equilibrium state u0. In the fractal dynamics we will have

u0(1− v(t)).

That means that the convergence to the equilibrium value u0 will be
essentially different from the classical case.
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Thanks for your attention!
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