
NOTES ON PRINCIPAL BUNDLES, CONNECTIONS,
AND HOMOGENEOUS SPACES

LANCE D. DRAGER

1. Introduction

These notes are meant to accompany talks in the Geometry Semi-

nar at Texas Tech during the Spring Semester of 2009.

These notes will be updated frequently, so it's best to keep track

of them on the web. Note the version time stamp at the bottom of

the �rst page.

At this point, the seminar participants should be comfortable with

the basic di�erential geometry apparatus done from the point of view

of principal bundles.

I hope to come back and add this material to these notes at some

point in the future.

Thanks to the seminar participants for listening to me and straight-

ening me out. Any errors are, of course, my own.

2. Group Actions

Let G be a Lie Group. If g ∈ G we have the multiplication maps

Lg : G→ G : x 7→ gx

Rg : G→ G : x 7→ xg.

Note that for a, b ∈ G, we have La ◦ Rb = Rb ◦ La, by the associative

law.

We'll use e to denote the identity element of G.
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We identify g, the Lie Algebra of G, with TeG, the tangent space

at the identity. If A ∈ g, we denote the left invariant vector �eld

generated by A by λ(A), and we denote the value of this vector �eld

at g ∈ G by λg(A). Thus, we have

(2.1) λg(A) = (Lg)∗A ∈ TgG.

where

(Lg)∗ : TeG→ TgG

is the tangent map of Lg.

Notation 2.1. In what follows we will usually drop the lower star

when writing the tangent map of Lg or Rg. Thus, we will usually

write the equation (2.1) as just

λg(A) = LgA.

This simpli�es the notation and there is usually no danger of confu-

sion, since there is not much else that LgA could mean.

The Lie bracket of two left invariant vector �elds is left invariant,

and we de�ne the bracket on g by

[A,B] := [λ(A), λ(A)]e.

Thus, in general,

[λ(A), λ(B)] = λ([A,B])

We denote the right invariant vector �eld generated by A ∈ g by

ρ(A). Since we used left invariant vector �elds to de�ne the bracket

in g, we have for right invariant vector �elds

[ρ(A), ρ(B)]e = −[A,B]

and so

[ρ(A), ρ(B)] = −ρ([A,B]).
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For A ∈ g we write exp(tA) = etA for the exponential map of G.

We have

d

dt

∣∣∣∣
t=0

RetA(g) =
d

dt

∣∣∣∣
t=0

getA

=
d

dt

∣∣∣∣
0

Lg(e
tA)

= LgA

= λg(A).

Thus the ow {ϕt} of λ(A) is ϕt = RetA. Similarly, the ow {ψt} of
ρ(A) is ψt = LetA.

The following observations will be useful in a moment. Let M and

N be manifolds. Let π1 : M × N → M and π2 : M × N → N be

the projections. Recall that one usually identi�es T(p,q)(M ×N) with

TpM × TqN via the map

T(p,q)(M ×N) 3 X 7→ ((π1)∗X, (π2)∗X) ∈ TpM × TqN.

Given a vector �eld X onM , we can de�ne a vector �eld X̂ onM×N
by X̂(p,q) = (Xp, 0q). We can characterize X̂ as the unique vector �eld

that is π1-related to X and π2-related to the zero vector �eld.

If X1 and X2 are vector �elds on M , we see that [X̂1, X̂2] is π1-

related to [X1, X2] and π2-related to [0, 0] = 0. Thus, [X̂1, X̂2] =

[X1, X2 ]̂

Now suppose that G acts on M on the left. Let A be an element

of the Lie Algebra g. We can de�ne a ow {ϕt} on M by

ϕt(p) = etAp.

This ow comes from a vector �eld, which we will denote by ρM(A).

Thus,

ρMp (A) =
d

dt

∣∣∣∣
0

etAp.

We now have a map A 7→ ρM(A) from g to the Lie algebra of vector

�elds on M . Naturally, we want to know what [ρM(A), ρM(B)] is.

The answer is

[ρM(A), ρM(B)] = −ρM([A,B]).

To see this, let

m : G×M →M : (g, p) 7→ gp
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be the group action. Given A ∈ g, we have the right invariant vector

�eld ρ(A) on G, and so we get the vector �eld ρ̂(A) on G ×M as

above. We have

m∗(ρ̂(g,p)(A)) = m∗(ρg(A), 0p)

=
d

dt

∣∣∣∣
0

m(etAg, p)

=
d

dt

∣∣∣∣
0

etAgp

= ρMgp(A).

Thus, ρM(A) is the unique vector �eld onM that ism-related to ρ̂(A).

If B is also in g, then [ρ̂(A), ρ̂(B)] ism-related to [ρM(A), ρM(B)]. But

[ρ̂(A), ρ̂(B)] = [ρ(A), ρ(B)]̂ = −ρ̂([A,B]).

Next, we consider the action on these vector �elds of equivariant

maps.

Proposition 2.2. Let G act on the left of manifolds M and N and

let f : M → N be an equivariant map, i.e., f(gp) = gf(p). The we

have

f∗(ρ
M
p (A)) = ρNf(p)(A), A ∈ g.

In other words, ρM(A) is f-related to ρN(A).

Proof. This is a simple calculation:

f∗(ρ
M
p (A)) =

d

dt

∣∣∣∣
0

f(etAp)

=
d

dt

∣∣∣∣
0

etAf(p)

= ρNf(p)(A).

�

We can also see the e�ect of a group translation on ρM(A).

Proposition 2.3. Let G act on M on the left. Then, for g ∈ G

and A ∈ g, we have

Lgρ
M
x (A) = ρMgx(Ad(g)A),

where Ad is the adjoint representation of G.
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Proof. Just calculate:

Lgρ
M
x (A) =

d

dt

∣∣∣∣
0

Lg(e
tAx)

=
d

dt

∣∣∣∣
0

getAx

=
d

dt

∣∣∣∣
0

getAg−1gx

=
d

dt

∣∣∣∣
0

etAd(g)Agx

= ρMgx(Ad(g)A).

�

For a �xed p ∈M , we have the map ρMp (·) : g→ TpM . We want to

know something about the kernel and the image of this map.

For p in M , let Hp be the isotropy group of p, i.e.,

Hp := {g ∈ G | gp = p}.

This is a closed subgroup of G. The Lie algebra of Hp will be denoted

by hp.

Proposition 2.4. The kernel of ρMp (·) : g→ TpM is hp.

Proof. If B ∈ hp, then e
tB ∈ Hp of all t. Thus,

(2.2) etBp = p.

Di�erentiating this equation at t = 0 gives ρMp (B) = 0.

Conversely, suppose that ρMp (B) = 0. This means that p is a zero

of the vector �eld ρM(B), as so p is an equilibrium point of the ow.

This means that (2.2) holds for all t. Thus, etB ∈ Hp for all t, and

this implies that B ∈ hp.

�

The main result we need about the image of this map is the fol-

lowing.

Proposition 2.5. If G act transitively on M , the map ρMp (·) : g→
TpM is surjective.

This follows from an important theorem discussed earlier in the

seminar.
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Theorem 2.6. Let G act transitively on M . Fix p ∈M and de�ne

πG : G → M : g 7→ gp. Then πG : G → M has the structure of a

principal Hp bundle. In particular, πG is a submersion.

To get Proposition 2.5, note that the last theorem implies that

(πG)∗ : g→ TpM is surjective. But

(πG)∗(A) =
d

dt

∣∣∣∣
0

πG(etA)

=
d

dt

∣∣∣∣
0

etAp

= ρMp (A).

Remark 2.7. In general, ρMp (g) is the tangent space to the orbit of p,

which is an immersed submanifold.

We can, of course, repeat these constructions with right actions.

We merely record the results.

Proposition 2.8. Suppose that G acts on the right of M .

(1) For each A ∈ g, we get a vector �eld λM(A) on M by

λMp (A) =
d

dt

∣∣∣∣
0

petA

(2) We have

[λM(A), λM(A)] = λM([A,B])

(3) We have

Rgλ
M
p (A) = λMpg(Ad(g−1)A).

The results about the kernel and image are the same.

3. General Invariant Connections

In this section we study invariant connections on a homogeneous

space, without assuming any special structure on the homogeneous

space. Later we will consider the reductive case.
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3.1. The Basic Setup. We begin with some notation.

Notation 3.1. If V is a vector space, GL(V ) denotes the Lie Group of

linear automorphisms of G. The Lie algebra of GL(V ) will be identi-

�ed, in the usual way, with gl(V ), the space of linear endomorphisms

of V , with the commutator bracket.

We want to study homogeneous spaces, so we assume the following

setup.

Let M be a manifold and assume that a Lie group G acts transi-

tively on the left of M . Fix a base point p0 in M , and let H = Hp0

be the isotropy group at p0.

We choose a model space V for the tangent spaces of M and we �x

a particular isomorphism

u0 : V → Tp0M.

Later on we will have natural choices for V and u0, but we won't

specify them yet.

If h ∈ H, we have Lhp0 = p0, so we get an induced map

Tp0M TpoM.//
TpoLh

The mapping H → GL(Tp0M) : h 7→ Tp0Lh is a representation of H

called the Isotropy Representation.

Since u0 is an isomorphism, we get an induced map α(h) : V → V

so that the following diagram commutes

(3.1) .

V Tp0M

V Tp0M

//
u0

��
� �
� �
� �
� �
�

α(h)

��
� �
� �
� �
� �

Tp0Lh

//
u0

Thus, we get a representation α : H → GL(V ), which is equivalent to

the isotropy representation. Just to have a name for it, let's call α

the Model Representation.

We now want to form the bundle of V -frames of M . A V -frame at

p ∈M is, by de�nition, a linear isomorphism

u : V → TpM.
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The set of V -frames at p is denoted by Fp(M). The group GL(V )

acts transitively and freely on the right of Fp(M) by composition, i.e.

ua := u ◦ a, as in the following commutative diagram.

V TpM

V

//
u

OO� � � � � � � �

a

??�����������
ua

We set F (M) =
⋃
p Fp(M) and de�ne a projection π : F (M) → M

by π(Fp(M)) = {p}. As discussed in the seminar,

F (M)

M
��

π

has the structure of a GL(V )-principal bundle.

Recall that the vertical space Vu ⊆ TuF (M) is the tangent space

to the �ber. It can also be described as the kernel of Tuπ. The group

GL(V ) acts on the right of F (M) and the orbits are exactly the �bers.

As in our discussion of group actions, an element A ∈ gl(V ) gives us

a vertical vector �eld

Vu(A) =
d

dt

∣∣∣∣
0

uetA.

We used λ
F (M)
u (A) for this in the last section, but we'll use Vu(A) in

this case to remind us that it's vertical. Since this vector �eld comes

from a right action, we have

(3.2) RaVu(A) = Vua(Ad(a−1)A).

Since the action of GL(V ) is free (i.e., no isotropy) the map A 7→
Vu(A) is an isomorphism gl(V ) → Vu (to see that it's surjective, use

a local trivialization).

Since G acts on the left of M , we can de�ne a left action of G

on F (M). Suppose g ∈ G; since Lg is a di�eomorphism of M , it

induces an isomorphism from TpM to TgpM . If u ∈ Fp(M), we de�ne
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gu = Lg ◦ u, as in the following commutative diagram.

V TpM

TgpM

//
u

��
???????????

gu

��
� �
� �
� �
� �

TpLg

Note that π(gu) = gπ(u), i.e., π is an equivariant map.

We now have two group actions on F (M), one on the left and one

on the right. Note that for u ∈ F (M), g ∈ G and a ∈ GL(V ) we have

(gu)a = g(ua),

just because composition of maps is associative. This fact can be

written as

(3.3) RaLg = LgRa, g ∈ G, a ∈ GL(V ),

so we can say that the actions commute.

Since G acts on the left of M , every x ∈ g gives us a vector �eld

ρM(x) on M . Since G acts on the left of F (M), we have a similar

vector �eld ρF (M)(x). Since π is an equivariant map,

(π)∗

(
ρF (M)
u (x)

)
= ρMπ(u)(x).

Notation 3.2. Usually we'll drop the superscripts on the vector �elds

ρM(x), etc. It should be clear from context where the vector �eld lives.

Since the vector �elds ρ(x) come from a left action, we have

Lgρp(x) = ρgp(Ad(g)x)

for p ∈M , and a similar equation on F (M).

We can interpret (3.3) as saying that Ra is an equivariant map with

respect to the action of G, so

Raρu(x) = ρua(x).

Similarly, we can interpret (3.3) as saying that Lg is equivariant with

respect to the action of GL(V ), so

(3.4) LgVu(A) = Vgu(A).
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Note that in the diagram(3.1), the composition Tp0Lh ◦ u0 is what

we've de�ned to be hu0, and that the composition u0 ◦ α(h) is the

right action of α(h) ∈ GL(V ) on u0. Thus, we have the formula

(3.5) hu0 = u0α(h), h ∈ H.

We've boxed this formula because we will use it frequently.

Here is the in�nitesimal version.

Proposition 3.3. Suppose that x ∈ g. Then ρu0
(x) is vertical if

and only if x ∈ h. In this case,

ρu0
(x) = Vu0(α∗(x)),

where α∗ : h→ gl(V ) is the Lie algebra homomorphism induced by

the model representation α : H → GL(V ).

Proof. We know that ρu0
(x) is vertical if and only if π∗ρu0

(x) = 0.

But π∗ρu0
(x) = ρp0(x) and the kernel of ρp0(·) is h.

If x ∈ h, we have

ρu0
(x) =

d

dt

∣∣∣∣
0

etxu0

=
d

dt

∣∣∣∣
0

u0α(etx)

=
d

dt

∣∣∣∣
0

u0e
tα∗(x)

= Vu0(α∗(x)).

�

This completes the description of the basic setting we will use. We

next consider invariant connections.

3.2. Invariant Connections.

Definition 3.4. Recall that a connection on F (M) can be speci�ed

as a distribution H on F (M) such that

(1) TF (M) = H ⊕ V

(2) RaHu = Hua for all u ∈ F (M) and a ∈ GL(V ).
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There are several ways to de�ne the notion of a connection being

invariant under G, i.e., G acts on M by a�ne maps. It can be de-

scribed in terms of parallel translation and covariant derivatives, but

the following de�nition should be plausible.

Definition 3.5. We say that H is G-invariant if the action of G

preserves H , i.e.

LgHu = Hgu, ∀g ∈ G, u ∈ F (M).

Now, recall (3.5). If h ∈ H, then hu0 = u0α(h), so Rα(h−1)Lhu0 =

u0. Thus, we get an induced map

(3.6) ψ(h) := Rα(h−1)Lh : Tu0F (M)→ Tu0F (M)

Lemma 3.6. The map

ψ : H → GL(Tu0F (M))

is a representation (i.e., a group homomorphism).

Proof of Lemma. It's clear that ψ(e) is the identity. Suppose that h

and k are in H. Then

ψ(hk) = Rα((hk)−1)Lhk

= Rα(k−1h−1)Lhk

= Rα(k−1)α(h−1)Lhk

= Rα(h−1)Rα(k−1)LhLk

= Rα(h−1)LhRα(k−1)Lk by (3.3),

= ψ(h)ψ(k).

�

Lemma 3.7. The vectical space Vu0 is invariant under ψ.

Proof of Lemma. We have

ψ(h)Vu0(A) = Rα(h−1)LhVu0(A)

= Rα(h−1)Vhu0(A) by (3.4),

= Rα(h−1)Vu0α(h)(A)

= Vu0(Ad(α(h))A) by (3.2).

�
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Suppose now that H is an invariant connection. We then have

ψ(h)Hu0 = Rα(h−1)LhHu0

= Rα(h−1)Hhu0 (H is invariant),

= Rα(h−1)Hu0α(h)

= Hu0 .

We can go the other way, and construct an invariant connection

from a ψ-invariant horizontal space at u0.

Theorem 3.8. There is a one-to-one correspondence between G-

invariant connections on F (M) and subspaces H0 ⊆ Tu0F (M) that

satisfy the two conditions

(1) Tu0F (M) = H0 ⊕ Vu0.

(2) H0 is ψ-invariant.

In other words, the representation ψ has Vu0 as an invariant sub-

space, and H0 is an invariant complement to Vu0.

Proof of Theorem. First suppose that H is an invariant connection.

Let u ∈ F (M) be an arbitrary point and let p = π(u). Since G acts

transitively on M , we can �nd g ∈ G so that gp0 = p. Then gu0 and

u are both in Fp(M), so we can �nd a ∈ GL(V ) so that gu0a = u. See

Figure 1.

But then u = RaLgu0 and

RaLgHu0 = RaHgu0

= Hgu0a

= Hu.

Thus, the whole connection H is determined by Hu0, it's value at

u0. We know from the discussion above that Hu0 satis�es properties

(1) and and (2) of the theorem.

For the converse, suppose that we are give a subspace H0 with that

has properties (1) and (2). We need to de�ne the horizontal subspace

Hu at every u ∈ F (M).

Given u, let p = π(u). We can write u = gu0a as before. We would

then like to de�ne

(3.7) Hu := RaLgHu0 ,
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p0 p
M

F (M)

Lg

Lg

Ra

u0 gu0

u

π

Figure 1. u = gu0a

but we must check that this is independent of our choices. Suppose

that we also have u = g′u0b. Then π(g′u0b) = g′p0 = p. Thus gp0 =

g′p0, so we must have g′ = gh for some h ∈ H. We then have

gu0a = u

= g′u0b

= ghu0b

= gu0α(h)b.
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Since the action of GL(V ) is free, this implies that α(h)b = a, and so

b = α(h−1)a. But then we have

RbLg′H0 = Rα(h−1)aLghH0

= RaRα(h−1)LgLhH0

= RaLgRα(h−1)LhH0

= RaLg{ψ(h)H0}
= RaLgH0,

since H0 is ψ-invariant. Hence, we may de�ne H0 consistently by

(3.7). Since

RaLg : Tu0F (M)→ TuF (M)

is a linear isomorphism that preserves the vertical space, we have

TuF (M) = Hu ⊕ Vu, from condition (1) of the Theorem. It's also

easy to see that Hu0 = H0.

It remains to check that H has the right invariance properties. To

check that H is a connection, we must show

RbHu = Hub, b ∈ GL(V ).

To see this, choose g and a so that gu0a = u. Of course ub = gu0ab.

Then

RbHu = Rb{RaLgH0}
= RabLgH0

= Hgu0ab

= Hub.

To show that H is G-invariant, we must show

Lg′Hu = Hg′u, g′ ∈ G.

Writing u = gu0a, we have

Lg′Hu = Lg′{RaLgH0}
= RaLg′LgH0

= RaLg′gH0

= Hg′gu0a

= Hg′u.
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The proof is now complete.

�
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