
Math 4330, Homework 6, 2/24/2014 : Due 3/10/2014 1

Read 4.5.4 up to and including page 386.

1. Suppose N is an odd composite number and S = {(x, y) ∈ Z2 : x2 ≡ y2 (mod N) }.
(i) Prove that if (u, v) is chosen randomly from S, there is at least a 50% chance that
u 6≡ ±v (mod N) .
(ii) If (u, v) ∈ S and u 6≡ ±v (mod N) , explain how these two integers can be used to
find a proper divisor of N .

Solution: For (i), there’s a small typo here, so I’ll give everyone more time to work on
it. It should read: “Suppose N is an odd composite number divisible by at least two
distinct primes and ...”.

For (ii), if (u, v) ∈ S then u2 ≡ v2 (mod N) , so that (u − v)(u + v) ≡ 0 (mod N) .
Therefore, gcd(u − v,N) and gcd(u + v,N) cannot both be 1. On the other hand,
since u 6≡ ±1 (mod N) , it follows that u + v 6≡ 0 (mod N) and u − v 6≡ 0 (mod N) ,
so that these gcd’s cannot equal N either. Therefore, at least one of gcd(u − v,N),
gcd(u + v,N) is a proper divisor of N (and in fact, they both are).

2. Write a function trialDivision(n) to find a proper divisor of each of the following
numbers: 315 + 40, 319 + 22, 325 + 16, 329 + 8, 331 + 26, 525 + 6. Your program should
also report the time required to factor each number, using the following code snippet:

Removed - it’s in the solution below.

3. Use Algorithm B (omit Step B2 and include the suggestion on p. 386 to handle failures)
to find divisors of the same numbers from the previous exercise (it need not completely
factor the numbers - just find a single proper divisor of each). Your program should
also report the time required to factor each number. Compare the timing results from
this and the previous exercise side-by-side in a table.

Solution for Problems 2 and 3: The following function does the trick:

# HW6, Chris Monico, 4/1/2014

import datetime

##################

def gcd(u,v):

if u==0:

return v

if u<0:

1This document is copyright c©2014 Chris Monico, and may not be reproduced in any form without
written permission from the author.
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u *= -1

if v<0:

v *= -1

return gcd(v%u, u)

##################

def trialDivision(n):

start = datetime.datetime.now()

d=n

i = 2

if n <= 1: return n

while i <= n:

if n%i == 0:

d=i

break

i = i + 1

stop = datetime.datetime.now()

elapsed = stop - start

elapsedSeconds = elapsed.seconds + (elapsed.microseconds/1000000.0)

print "trialDivision(): elapsed time %f seconds. " % (elapsedSeconds)

return d

###################

def pollardRho(N):

start = datetime.datetime.now()

x=5

xprime=2

k=1

ell=1

n=N

# We will allow different choices of c to accommodate the

# (rare) possibility of failure.

c=1

divisorFound = False

while not divisorFound:

g = gcd(xprime-x, n)

while g==1:

k -= 1

if k==0:

xprime = x

ell = 2*ell

k = ell

x = (x*x+c)%n

g = gcd(xprime-x, n)

if g<n:

divisorFound = True
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else:

c += 1 # Try again with a different value of c.

stop = datetime.datetime.now()

elapsed = stop - start

elapsedSeconds = elapsed.seconds + (elapsed.microseconds/1000000.0)

print "pollardRho(): elapsed time %f seconds. " % (elapsedSeconds)

return g

################

numbers=[3**15+40, 3**19+22, 3**25+16, 3**29+8, 3**31+26, 5**25+6]

for N in numbers:

print trialDivision(N)

print pollardRho(N)

Running this code on the given numbers, we obtain the following timings (on my
machine - it will certainly be different on your machine):

N divisor ttrialDivision tpollardRho

315 + 40 409 0.000129 0.000654
319 + 22 20161 0.001392 0.002258
325 + 16 197767 0.058555 0.006828
329 + 8 1373233 0.363805 0.036486

331 + 26 5490391 1.422398 0.026401
525 + 6 218161103 59.525772 0.334806

4. Among all composite numbers of the form N = pq with p and q prime and
√
N/2 ≤

p ≤ 2
√
N , roughly what is the largest such number that each of your programs could

compute if they ran for one year nonstop? You should turn in a written solution with
experimental results and a carefully reasoned argument supporting your conclusion.

Solution: In principle, we could use the known order of magnitude of the runtimes
and then least-squares-fit the parameters. But since we’re looking only for a rough
estimate, we’ll use the timings for the largest number factored and assume they’re the
most accurate.

Trial division required about 60 seconds to find the divisor 218161103. On the other
hand, we know that it needs about p operations to find the prime divisor p, so we did
about (2.2 × 108)/60 ≈ 3.7 × 106 operations per second. There are about 3.2 × 107

seconds in a year, so the code could do about (3.2× 3.7)106+7 ≈ 1.2× 1014 operations
in one year. This means that in one year, the largest prime divisor p it could find
would be about 1.2×1014, and so the largest number of this form it could factor would
have about 28 digits.

Pollard’s rho method needs to do about
√
p iterations to find the prime divisor p. It

found the divisor 218161103 in about 0.334806 seconds, so the code is doing about
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√
2.2× 108/0.335 ≈ 4.5× 104 iterations per second. So in one year, it could do about

(3.2 × 107)(4.5 × 104) ≈ 1.4 × 1012 iterations, which would allow it to find a prime
divisor of about 24 digits. So the largest number of the given form that it could factor
in a year would probably have about 48 digits.
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