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VECTOR INVARIANTS OF Sylp(GL(n,Fq)) AND THEIR HILBERT

IDEALS

CHRIS MONICO AND MARA D. NEUSEL

Abstract. We describe the Hilbert ideal of the vector invariants of a p-Sylow
subgroup of the general linear group.

1. Introduction

Let F = Fq be a finite field of characteristic p and order q = ps. Consider the
general linear group of d× d matrices over this field, GL(d,F).

The group GL(d,F) acts on the vector space W = Fd by matrix multiplication,
which induces an action on the dual space and hence on the full symmetric algebra
on the dual, denoted by F[W ]. Its ring of polynomial invariants is the Dickson
algebra, denoted by D(d) = F[W ]GL(d,F). Moreover for any subgroup G ⊆ GL(d,F)
we obtain

D(d) ↪→ F[W ]G ↪→ F[W ]

a chain of Noetherian commutative F-algebras, see [7] for more background on
invariant theory of finite groups.

Consider a finite group P and a faithful representation

ρ1 : P ↪→ GL(d,F)

afforded by the upper triangular matrices

M =


1 *

. . .

0 1

 ∈ GL(d,F).

The group ρ1(P ) ∼= P is a p-Sylow subgroup of the general linear group. Denote
by x1, . . . , xd the standard dual basis of W ∗. Then its ring of invariants can be
written as the polynomial algebra

F[x1, . . . , xd]
P = F[ctop(x1), . . . , ctop(xd)]

where ctop(xi) denotes the top orbit Chern class of the basis element xi, i.e., the
product of all linear forms in the set {gxi|g ∈ ρ1(P )}, see, e.g., Example 2 in Section
4.5 in [7]
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In this article we consider the n-fold vector invariants of P , i.e., we embed the
group P into GL(dn,F)

ρn : P ↪→ GL(dn,F)

afforded by the block diagonal matrices

block(M, . . . ,M︸ ︷︷ ︸
n times

) =

M 0
. . .

0 M


for all M ∈ ρ1(P ). Denote by V = W⊕n the corresponding dn-dimensional vector
space. We denote the standard dual basis of V ∗ by x11, . . . , x1d, x21, . . . x2d, . . . , xnd.

Recall that the Hilbert ideal of the ring of invariants F[V ]P is defined as the ideal
in the ambient ring of polynomials generated by all invariants of positive degree

H(ρn(P )) = (F[V ]P )F[V ].

In this paper we prove the following result:

Theorem 1.1. The Hilbert ideal H(ρn(P )) is generated by the top orbit Chern
classes of the basis elements xji, j = 1, . . . , n and i = 1, . . . , d.

Indeed, in the case of d = 2, this result follows from the description of the ring
of invariants:

Theorem 1.2. The ring of invariants F[V ]P is generated by

ctop(xj1) j = 1, . . . , n,

and the elements in the ideal I = (x12, . . . , xn2)F[V ] ∩ F[V ]P .

Ever since Weyl’s First Main Theorem of Invariant Theory vector invariants have
been extensively studied. We mention some of the (for our paper) most relevant
results: In [4] Grosshans studied Weyl’s result over algebraically closed fields of
finite characteristic. Richman computed in [9] the generating set of the ring of
invariants for the case p = q = 2 and d = 2. Campbell and Hughes proved in
[2] Richman’s conjecture on the generating set for the case p = q and d = 2. In
[3] Campbell, Shank and Wehlau produced a SAGBI basis for the case p = q and

d = 2. In Sezer’s and Ünlü’s paper [8] we find a description of a reduced Gröbner
basis of the Hilbert ideal for p = q = 2 and d = 2.

In the next section we choose a term order and prove some technical preliminary
results. In Section 3 we prove Theorem 1.2 and deduce Theorem 1.1 for the case
d = 2. This serves as an induction start. The induction is completed in Section
4 proving Theorem 1.1 in general. In Section 5 we explain the significance of the
ideal I of Theorem 1.2: It is the radical of the image of the transfer.

2. Choosing a Good Term Order

We denote the variables as x11, . . . , x1d, x21, . . . , x2d, . . . , xn1, . . . , xnd and order
them as follows

x11 > x21 > · · · > xn1 > x12 > · · · > xn2 > · · · > x1d > · · · > xnd.

This induces a lexicographic term order on the elements of F[V ]. We denote by
LT (−) the leading term of −. The following results motivate this choice of order.
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Lemma 2.1. Let m ∈ F[x11, . . . , xnd] be a monomial. Then

LT (gm) = m ∀g ∈ P .

Moreover, gm = m+ h for some h ∈ (x12, . . . , xn2, . . . , x1d, . . . , xnd)F[V ].

Proof. Let m = xα11
11 · · ·x

αnd

nd . Let ρn(g) = block(M, . . . ,M)︸ ︷︷ ︸
n times

where

M =



1 a12 · · · a1d

0
. . .

. . .
...

...
. . .

. . . ad−1,d

0 · · · 0 1

 ∈ ρ1(P )

be an arbitrary element of ρn(P ). Then

gm =
∏
j,i

(xji + ai,i+1xj,i+1 + · · ·+ aidxjd)
αji .

Expanding this expression gives the desired result. �

Lemma 2.2. If f ∈ F[V ]P has a term xα11
11 xα21

21 · · ·x
αn1
n1 , then αj1 is divisible by

qd−1 for all j = 1, . . . , n.

Proof. We prove this by induction on n. If n = 1 we have an explicit description of
the ring of invariants (see introduction) and we note that the top orbit Chern class

ctop(x11) = xq
d−1

11 + other terms

is the only generator with a term xα11
11 .

Next, let n > 1. We consider the term

m = xα11
11 x

α21
21 · · ·x

αn1
n1 .

In case that there is a j0 such that αj01 = 0 we obtain our desired statement by
induction hypothesis. So assume that αj1 6= 0 for all j = 1, . . . , n. We sort the

invariant f by monomials xαn1
n1 · · ·x

αnd
nd and obtain

f =
∑
I

fIx
αn1
n1 · · ·x

αnd

nd

where the sum runs over d-tuples I = (αn1, . . . , αnd). Note that

fI = fI(x11, . . . , x1d, . . . , xn−1,1, . . . , xn−1,d).

Our monomial m appears in fI0x
αn1
n1 for I0 = (αn1, 0, . . . , 0). By Lemma 2.1 xαn1

n1

cannot be a nontrivial translate of any monomial. Therefore, fI0 has to be an in-
variant. In particular we can assume by induction that α11, . . . , αn−1,1 are divisible
by qd−1.

Switching the roles of n and, say, n − 1 in this argument allows us to conclude
that all αj1, j = 1, . . . , n are divisible by qd−1. �
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3. The case of 2× 2-matrices

In this section we prove Theorem 1.1 for the case d = 2, which serves as an
induction start as it will become apparent in Section 4. We note that the result
of this section was proven in [1] for the cases q = 2, 4, n = 2, 3, in addition to the
papers mentioned in the introduction.

Consider the p-Sylow subgroup of GL(2,F) given as follows:

ρ1 : P ↪→ GL(2,F)

where

P ∼= ρ1(P ) = {M ∈ GL(2,F)|M =

[
1 a
0 1

]
|a ∈ F} ⊆ GL(2,F).

It is an elementary abelian p-group of rank s. Its ring of invariants is given by

F[x, y]P = F[xq − xyq−1, y]

where we chose the standard dual basis x, y for V ∗. Note that this is a polynomial
algebra generated by the top orbit Chern classes of the basis elements:

ctop(x) =
∏
g∈P

gx = xq − xyq−1 ctop(y) = y.

Next consider the 2-fold vector invariants of P , i.e., we look at the faithful repre-
sentation of P

ρ2 : P ↪→ GL(4,F)

afforded by the block diagonal matrices
[
1 a
0 1

]
0

0
[
1 a
0 1

]


where a ∈ F. Its ring of invariants is given by

F[x1, y1, x2, y2]P = F[ctop(x1), y1, ctop(x2), y2, Q12]/(r)

where

Q12 = x1y2 − x2y1
and

r = Qq12 − ctop(x1)yq2 + ctop(x2)yq1 −Q12y
q−1
1 yq−12

see [6].1 Next consider the n-fold vector invariants of P :

P ∼= ρn(P ) = {



[
1 a
0 1

]
0

. . .

0
[
1 a
0 1

]
 |a ∈ F} ⊆ GL(2n,F).

We denote the standard dual basis as x1, y1, x2, y2, . . . , xn, yn and note that by
choice of our order we have

x1 > x2 > · · · > xn > y1 > · · · > yn.

1This article treats only the case where q = p. However, the proof works in the general case.
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Theorem 3.1. The ring of invariants F[V ]P is generated by

ctop(xj), j = 1, . . . n

and the elements in the ideal I = (y1, . . . , yn)F[V ] ∩ F[V ]P .

Proof. Let A be the F algebra generated by ctop(xj) , j = 1, . . . , n and the elements
in the ideal (y1, . . . , yn)F[V ] ∩ F[V ]P . By construction A is a subalgebra of the
invariants F[V ]P .

Any invariant f such that each of its terms is divisible by one of the yj ’s is in I.
Next, let f ∈ F[V ]P be an invariant not in I. Then f contains a term xα1

1 · · ·xαn
n .

By Lemma 2.2 we have that all the αj ’s are divisible by q. Set αj = qkj , then

f − ctop(x1)k1 · · · ctop(xn)kn

is an invariant such that the monomial xα1
1 · · ·xαn

n is replaced by an element of the
ideal (y1, . . . , yn)F[V ], because

ctop(x1)k1 · · · ctop(xn)kn =

n∏
j=1

(xqj − xjy
q−1
j )kj =

n∏
j=1

(x
qkj
j ) + h

where h ∈ (y1, . . . , yn)F[V ]. Successively we obtain an invariant in (y1, . . . , yn)F[V ]
and hence in I. �

Corollary 3.2. The Hilbert ideal is generated by the top orbit Chern classes of the
basis elements x1, . . . , xn, y1, . . . , yn.

Proof. The Hilbert ideal is generated by all invariants of positive degree, i.e., it is
generated by the orbit Chern classes ctop(x1), . . . , ctop(xn) and the elements in the
ideal (y1, . . . , yn)F[V ] ∩ F[V ]G. Since the yj ’s are top orbit Chern classes (and in
particular invariant) we are done. �

4. The General Case d > 2

We start by proving a refinement of Lemma 2.2 for the general case.

Lemma 4.1. Let f ∈ F[V ]P be an invariant with a term

m = xα11
11 · · ·x

αnd

nd .

Then there exists a pair j0, i0 such that αj0i0 ≥ qd−i0 .

Proof. We proceed by induction on d.
Let d = 2. If xj02 divides m for some j0 = 1, . . . , n we are done. Otherwise,

m = xα11
11 · · ·x

αn1
n1

and our result follows from Lemma 2.2. Thus let d > 2.
If

m = xα11
11 xα21

21 · · ·x
αn1
n1

then we know by Lemma 2.2 that all the αj1’s are divisible by qd−1 as desired.
So consider monomials

m = xα11
11 · · ·x

αnd

nd

such that there exists an exponent αj1i1 6= 0 for i1 ∈ {2, . . . , d} and some j1.
The group ρn(P ) contains subgroups Pr consisting of block diagonal matrices

block(M, . . . ,M)︸ ︷︷ ︸
n times
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with

M =



1 a1,2 0 · · · a1,d−1

1 a2,3
... · · · a2,d−1

. . . 0
...

1 0 · · · 0
. . .

. . . ad−1,d
1


i.e., the rth column and the rth row are zero except at the r, r spot where there
is a 1. We note that for all r = 1, . . . d the group Pr is isomorphic to the p-Sylow
subgroup of GL(d − 1,F). The inclusion of groups induces an embedding of the
invariants of P into those of Pr.

Let us consider the group P1. Then f as well as x11, x21, . . . , xn1 are invariant
under P1. Sorting by monomials in the xj1’s we obtain

f =
∑
I

fIx
α11
11 · · ·x

αn1
n1

where the sum runs over n-tuples I = (α11, . . . , αn1). Note that the polynomials fI
are P1-invariant. Thus by induction hypothesis we can assume that in each of the
monomials appearing in a fI there exists a j0 ∈ {1, . . . , n} and an i0 ∈ {2, . . . d}
such that

αj0i0 ≥ qd−i0

unless fI ∈ F.
�

We are ready to prove Theorem 1.1 in general.

Theorem 4.2. The Hilbert ideal is generated by the top orbit Chern classes of the
basis elements xij, i = 1, . . . , n and j = 1, . . . , d.

Proof. By construction

J = (ctop(xji),∀i, j) ⊆ H(ρn(P )).

To show the reverse inclusion, let F ∈ H(ρn(P )). Then

F =

u∑
r=1

Hrfr

for some nontrivial P -invariants fr and some Hr ∈ F[V ]. We proceed by induction
on term order. The smallest monomial in any degree δ is xδnd which is invariant as
well as in our proposed ideal J . Let

LT (F ) = xβ11

11 · · ·x
βnd

nd > xβ11+···+βnd

nd .

Without loss of generality we can assume that the leading term of F appears in
H1f1:

xβ11

11 · · ·x
βnd

nd = γh1x
α11
11 · · ·x

αnd

nd

for some γ ∈ F×, and some terms h1 ∈ H1 and xα11
11 · · ·x

αnd

nd in f1. By Lemma 4.1
there exist j0i0 such that

βj0i0 ≥ αj0i0 ≥ qd−i0 .
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Thus

F − ctop(xj0i0)x
βj0i0−q

d−i0

j0i0

∏
ji6=j0i0

x
βji

ji < F.

Since the top orbit Chern classes are in the Hilbert ideal, we find by induction on
term order that the LHS is in J . Furthermore, the top orbit Chern classes are in
J , and therefore F ∈ J . �

Observe that this result shows the following:

• The maximal degree of a generator of the Hilbert ideal is qd−1 which is far
less that the order of P .

• The Hilbert ideal does not characterize the group P as any group between
ρn(P ) and ρ(×nP ) has the same orbit Chern classes of the basis elements
and hence the same Hilbert ideal, where the representation

ρ : ×nP ↪→ GL(dn,F)

is afforded by the matrices

block(I, . . . , I,M, I, . . . , I︸ ︷︷ ︸
n

)

where I ∈ GL(d,F) is the identity matrix, and M ∈ ρ1(P ) appears in block
j for j = 1, . . . n. We will show in [5] that this phenomenon (and indeed
a more general statement) remains valid for large classes of groups and
representations.

5. The Transfer Variety of P

Recall that the transfer is given by

TrP : F[V ] −→ F[V ]P , f 7→
∑
g∈P

gf.

It is an F[V ]P -module map and as such its image is an ideal in F[V ]P . We denote
by ∂g the twisted differential given by

∂g = 1− g : V ∗ −→ V ∗,

for g ∈ P . We denote

Ig = (Im(∂g)) ⊆ F[V ].

By work of M. Feshbach, see, e.g., Theorem 6.4.7 in [7], we know that

Rad(ImTrP ) =
⋂

g,|g|=p

(Ig ∩ F[V ]P ) ⊆ F[V ]P .

Furthermore, the height of the image of the transfer is

height(ImTrP ) = dimF(V )−max{dimF V
g| |g| = p}.

Apparently, an element g ∈ ρn(P ) of order p whose fixed point set has maximal
dimension is given by

g0 = block(M, . . . ,M︸ ︷︷ ︸
n times

),

where M is an identity matrix with an additional 1 in the 1, d spot. Thus the height
of the image of the transfer is dn− (d− 1)n = n.
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Furthermore, note that

Im(∂g0) = spanF{x1d, . . . , xnd}

Thus

Ig0 = (x1d, . . . , xnd) ⊆ F[V ]

is a prime ideal of height n. By the Krull relations it follows that Ig0 ∩ F[V ]P is a

minimal isolated prime ideal of ImTrP .
More generally we claim the following.

Proposition 5.1. The radical of the image of the transfer of P is given by

Rad(ImTrP ) =
⋂
a

(la,1, . . . , la,n) ∩ F[V ]P

where a = (a2, . . . , ad) ∈ Fd−1 \ {0} and la,j = a2xj2 + · · ·+ anxjn.

Proof. We note that any element ga = block(M, . . . ,M︸ ︷︷ ︸
n times

) where a = (a2, . . . , ad) ∈

Fd−1 \ {0} and

M =



1 a2 a3 · · · ad
. . . 0 · · · 0

. . .
. . .

...
. . . 0

1


has order p. The ideal Iga associated to this element is one of the ideals mentioned
in the statement:

Iga = (la,1, . . . , la,n).

Finally, let g = block(M, . . . ,M︸ ︷︷ ︸
n times

) be an arbitrary element of order p and set

M =


1 a12 · · · a1d

. . .
. . .

...
. . . ad−1,d

1


Then Ig is the ideal in F[V ] generated by the linear forms

a12xj2 + · · ·+ a1dxjd, . . . , ad−1,dxjd ∀j = 1, . . . , n.

However, Ig ⊃ Iga for a = (a12, . . . , a1d). �

Observe that for the case d = 2 we obtain

Rad(ImTrP ) = (x12, . . . , xn2) ∩ F[V ]P

as the ideals Ig are equal for all g ∈ P of order p, and hence the radical of the image
of the transfer is prime of height n.
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