Note on an Additive Characterization of Quadratic Residues Modulo p

Chris Monico, Michele Elia
Draft of January 27, 2006

Abstract

It is shown that an even partition $A \cup B$ of the set $\mathcal{R}=\{1,2, \ldots, p-1\}$ of positive residues modulo an odd prime p is the partition into quadratic residues and quadratic non-residues if and only if the elements of A and B satisfy certain additive properties, thus providing a purely additive characterization of the set of quadratic residues.

1 Additive properties of quadratic residues

An integer a which is not a multiple of a prime p is called a quadratic residue modulo p if the quadratic equation $x^{2}=a \bmod p$ has a solution. If it has no solution then a is called a quadratic non-residue modulo p. The set $\mathcal{R}=\{1,2, \cdots, p-1\}$ of non-zero residues modulo p is evenly partitioned by the quadratic residue character into two sets, A and B, of quadratic residues and quadratic non-residues, respectively. The property of being a quadratic residue or a quadratic non-residue is inherently a multiplicative property, by its definition in terms of field product operations. The paper shows that the set of quadratic residues modulo p can also be characterized strictly in terms of field addition operations. Specifically, it determines the number of ways in which an element c of \mathcal{R} can be written as a sum of two elements from A or two elements from B. The answer depends only on whether c is itself an element of A or B. We then show that this property completely determines the sets A and B, providing a purely additive characterization of the set of quadratic residues.

Let p be an odd prime, and let QR and QNR stand for quadratic residue and quadratic non-residue, respectively, in the prime field \mathbb{F}_{p} of p elements. Two generating polynomials for the sets of QR and QNR are defined as

$$
r_{p}(x)=\sum_{\substack{1 \leq j<p \\(j \leq p)=1}} x^{j}, \quad q_{p}(x)=\sum_{\substack{1 \leq j<p \\(j \mid p)=-1}} x^{j}
$$

The canonical representatives of $r_{p}(x)^{2}$ and $q_{p}(x)^{2}$ modulo $\left\langle x^{p}-1\right\rangle$ in $\mathbb{F}_{p}[x]$ are denoted by

$$
\begin{aligned}
r_{p}(x)^{2} & \equiv a_{0}+a_{1} x+\cdots+a_{p-1} x^{p-1}\left(\bmod \left\langle\mathrm{x}^{\mathrm{p}}-1\right\rangle\right) \\
q_{p}(x)^{2} & \equiv b_{0}+b_{1} x+\cdots+b_{p-1} x^{p-1}\left(\bmod \left\langle\mathrm{x}^{\mathrm{p}}-1\right\rangle\right)
\end{aligned}
$$

where a_{j}, b_{j} are non-negative integers smaller than p. It is observed that $a_{j}\left[\right.$ or $\left.b_{j}\right]$ is precisely the number of ways in which j can be written as a sum of two quadratic residues [or nonresidues]. Thus, a_{j}, b_{j} can be considered as elements of the set $\{0,1,2, \cdots, p-1\}$ of canonical representatives of $\mathbb{Z} / p \mathbb{Z}$.

Lemma 1.1 Let p be an odd prime and a_{i}, b_{i} as defined above. Then for $i, j \in \mathcal{R}$, the following hold:

1. $b_{j}-a_{j}=(j \mid p)$.
2. If $(i \mid p)=(j \mid p)$, then $a_{i}=a_{j}$ and $b_{i}=b_{j}$.

Proof: Observe first that $r_{p}(x)+q_{p}(x)=x+x^{2}+\cdots+x^{p-1}=\frac{x^{p}-1}{x-1}-1$. Since there are precisely $(p-1) / 2$ quadratic residues and the same number of non-residues, it follows that $r_{p}(1)-q_{p}(1)=0$, whence $(x-1) \mid\left(r_{p}(x)-q_{p}(x)\right)$, that is $r_{p}(x)-q_{p}(x)=(x-1) f_{p}(x)$. It follows that modulo $\left\langle x^{p}-1\right\rangle$ we have

$$
\begin{aligned}
r_{p}(x)^{2}-q_{p}(x)^{2} & =(x-1) f_{p}(x)\left[\frac{x^{p}-1}{x-1}-1\right] \\
& =f_{p}(x)\left(x^{p}-1\right)-(x-1) f_{p}(x) \\
& \equiv(1-x) f_{p}(x) \\
& \equiv q_{p}(x)-r_{p}(x)\left(\bmod \left\langle\mathrm{x}^{\mathrm{p}}-1\right\rangle\right) .
\end{aligned}
$$

Thus, $r_{p}(x)^{2}+r_{p}(x) \equiv q_{p}(x)^{2}+q_{p}(x)\left(\bmod \left\langle\mathrm{x}^{\mathrm{p}}-1\right\rangle\right)$, which proves part 1.
Suppose now that $i, j \in\{1,2, \ldots, p-1\}$ are both quadratic residues modulo p. Then there exist quadratic residues $\alpha, \beta \in \mathbb{Z} / p \mathbb{Z}$ so that $i \alpha \equiv j(\bmod \mathrm{p}), i \equiv j \beta(\bmod \mathrm{p})$. If x, y are quadratic residues with $i \equiv x+y(\bmod \mathrm{p})$, it follows that $j \equiv x \alpha+y \alpha(\bmod \mathrm{p})$ and $x \alpha, y \alpha$ are also quadratic residues. Similarly, if x, y are quadratic residues with $j \equiv x+y(\bmod \mathrm{p})$, it follows that $i \equiv x \beta+y \beta(\bmod \mathrm{p})$, and $x \beta, y \beta$ are quadratic residues. Thus, if i, j are both quadratic residues, we have the equality $a_{i}=a_{j}$. By similar arguments, we obtain $a_{i}=a_{j}$ for $(i \mid p)=(j \mid p)$. It then follows from the first part of the lemma that $b_{i}=b_{j}$ for $(i \mid p)=(j \mid p)$.

Let α_{1}, α_{-1} denote the common value of the a_{i} with $(i \mid p)=1,-1$, respectively. Similarly, define β_{1}, β_{-1} to be the common values of the b_{i} for $(i \mid p)=1,-1$, respectively. Our immediate goal is to explicitly determine these quantities. It follows from simply counting the number of sums of quadratic [non-]residues that

$$
\alpha_{1}+\alpha_{-1}=\beta_{1}+\beta_{-1}=\left\{\begin{array}{ll}
\frac{p-3}{2}, & \text { if } p \equiv 1(\bmod 4) \tag{1.1}\\
\frac{p-1}{2}, & \text { if } p \equiv 3(\bmod 4)
\end{array} .\right.
$$

The different cases above result from the fact that, if $p \equiv 1(\bmod 4)$, then 0 can be written as a sum of quadratic residues in exactly $p-1$ ways, whereas if $p \equiv 3(\bmod 4)$, then 0 cannot be written as any sum of two quadratic non-residues.

Theorem 1.2 Let p be an odd prime and set

$$
d_{p}=\left\{\begin{array}{ll}
\frac{p-1}{4} & \text {, if } p \equiv 1(\bmod 4) \tag{1.2}\\
\frac{p+1}{4} & \text {, if } p \equiv 3(\bmod 4)
\end{array} .\right.
$$

Then every quadratic residue [non-residue] can be written as a sum of two quadratic residues [non-residues] in exactly $d_{p}-1$ ways. Every quadratic residue [non-residue] can be written as a sum of two quadratic non-residues [residues] in exactly d_{p} ways. Moreover, every non-zero residue can be written as a sum of a $Q R$ and a $Q N R$ in exactly $p-1-2 d_{p}$ ways.

Proof: As above, let α_{1}, β_{1} denote respectively the number of ways in which a quadratic residue can be written as a sum of two quadratic residues or non-residues. Let α_{-1}, β_{-1} denote respectively the number of ways in which a quadratic non-residue can be written as a sum of two quadratic residues or non-residues. It is necessary to show that $d_{p}=\alpha_{-1}=\beta_{1}$ and $d_{p}-1=\alpha_{1}=\beta_{-1}$. Notice that there is a bijection between sums of quadratic residues equaling a quadratic residue and sums of non-residues equaling a non-residue (induced by multiplication by a non-residue) whence $\alpha_{1}=\beta_{-1}$. Combining this with the result from Lemma 1.1 that $\beta_{1}-\alpha_{1}=1$, we have $\beta_{1}-\beta_{-1}=1$. The results then follow by applying Equation 1.1.
The equation $x_{1}+x_{2}=a$ in \mathbf{F}_{p} has $p-2$ solutions with neither x_{1} nor x_{2} equal 0 . Therefore, the number of solutions with x_{1} a QR , and x_{2} a QNR, or vice-versa, is $p-2-\left(2 d_{p}-1\right)$.

2 The converse

The goal of this section is to show that the additive properties given in Section 1 completely characterize the quadratic residues. Let d_{p} be defined as in Equation (1.2), and, for the remainder of this section, suppose A and B form an even partition of $F_{p} \backslash\{0\}$ such that

1. Every element of $A[B]$ can be written as a sum of two elements from $A[B]$ in exactly $d_{p}-1$ ways.
2. Every element of $A[B]$ can be written as a sum of two elements from $B[A]$ in exactly d_{p} ways.

Define two polynomials in $\mathbb{F}_{p}[x]$,

$$
a(x)=\sum_{a \in A} x^{a}, \quad b(x)=\sum_{b \in B} x^{b} .
$$

It follows from the assumptions on the sets A and B that

$$
\begin{aligned}
a(x)^{2} & \equiv\left(d_{p}-1\right) a(x)+d_{p} b(x)+c_{p} \\
& \equiv d_{p}\left(x+x^{2}+\cdots+x^{p-1}\right)-a(x)+c_{p} \quad\left(\bmod \left\langle\mathrm{x}^{\mathrm{p}}-1\right\rangle\right),
\end{aligned}
$$

where c_{p} is the number of ways in which zero can be written as a sum of two elements of A. Evaluation at $x=1$ shows that $c_{p}=\frac{p-1}{2}$ if $p \equiv 1(\bmod 4)$ and $c_{p}=0$ if $p \equiv 3(\bmod 4)$. Thus,

$$
\begin{equation*}
a(x)^{2}+a(x) \equiv d_{p}\left((x-1)^{p-1}-1\right)+c_{p} \quad\left(\bmod \left\langle\mathrm{x}^{\mathrm{p}}-1\right\rangle\right) \tag{2.3}
\end{equation*}
$$

Similarly, we find that

$$
\begin{equation*}
b(x)^{2}+b(x) \equiv d_{p}\left((x-1)^{p-1}-1\right)+c_{p} \quad\left(\bmod \left\langle\mathrm{x}^{\mathrm{p}}-1\right\rangle\right) \tag{2.4}
\end{equation*}
$$

We will use the following Hensel-like lemma to show that $\{a(x), b(x)\}=\left\{r_{p}(x), q_{p}(x)\right\}$.
Lemma 2.1 Let p be an odd prime, and $R_{k}:=\mathbb{F}_{p}[x] /\left\langle(x-1)^{k}\right\rangle$ for $k \geq 1$. Then each invertible element of R_{k} has at most two distinct square roots.

Proof: We proceed by induction on k. The base case is obvious since $R_{1} \cong \mathbb{F}_{p}$. Suppose now that the result holds for all $1 \leq k \leq N$. Further suppose that $a, b, c, g \in \mathbb{F}_{p}[x]$ are invertible modulo $\left\langle(x-1)^{N+1}\right\rangle$ and

$$
a^{2}+\left\langle(x-1)^{N+1}\right\rangle=b^{2}+\left\langle(x-1)^{N+1}\right\rangle=c^{2}+\left\langle(x-1)^{N+1}\right\rangle=g+\left\langle(x-1)^{N+1}\right\rangle .
$$

By canonical projection onto R_{N}, it follows that $a^{2}+\left\langle(x-1)^{N}\right\rangle=b^{2}+\left\langle(x-1)^{N}\right\rangle=$ $c^{2}+\left\langle(x-1)^{N}\right\rangle=g+\left\langle(x-1)^{N}\right\rangle$, so that two of these must be equal by the induction hypothesis, say $a+\left\langle(x-1)^{N}\right\rangle=b+\left\langle(x-1)^{N}\right\rangle$. It follows that $a=b+(x-1)^{N} f$ for some $f \in \mathbb{F}_{p}[x]$. Thus,

$$
\begin{aligned}
b^{2}+\left\langle(x-1)^{N+1}\right\rangle & =a^{2}+\left\langle(x-1)^{N+1}\right\rangle \\
& =\left(b+(x-1)^{N} f\right)^{2}+\left\langle(x-1)^{N+1}\right\rangle \\
& =b^{2}+2(x-1)^{N} b f+(x-1)^{2 N} f^{2}+\left\langle(x-1)^{N+1}\right\rangle \\
& =b^{2}+2(x-1)^{N} b f+\left\langle(x-1)^{N+1}\right\rangle .
\end{aligned}
$$

So $2(x-1)^{N} b f \in\left\langle(x-1)^{N+1}\right\rangle$, but since $2 b$ is invertible modulo $\left\langle(x-1)^{N+1}\right\rangle$, it follows that $(x-1) \mid f$, so that $a+\left\langle(x-1)^{N+1}\right\rangle=b+\left\langle(x-1)^{N+1}\right\rangle$.

Theorem 2.2 Let p be an odd prime and let d_{p} be defined as in Equation (1.2). Suppose $A \subset \mathbb{F}_{p}^{*}$ and $B=\mathbb{F}_{p}^{*} \backslash A$. Then A is precisely the set of quadratic residues of \mathbb{F}_{p} if and only if

1. $|A|=(p-1) / 2$,
2. $1 \in A$,
3. Every element of A can be written as a sum of two elements from A in exactly $d_{p}-1$ ways.
4. Every element of B can be written as a sum of two elements from A in exactly d_{p} ways.

Proof: As in Equation 2.3, it follows from the hypotheses that

$$
a(x)^{2}+a(x) \equiv d_{p}\left((x-1)^{p-1}-1\right)+c_{p} \quad\left(\bmod \left\langle\mathrm{x}^{\mathrm{p}}-1\right\rangle\right)
$$

where

$$
c_{p}=\left\{\begin{aligned}
\frac{p-1}{2}, & \text { if } p \equiv 1(\bmod 4) \\
0, & \text { if } p \equiv 3(\bmod 4)
\end{aligned}\right.
$$

It is an immediate corollary of Lemma 2.1 that a quadratic equation in $R_{k}[y]$ with invertible coefficients has at most two solutions (this follows from a completing-the-square argument). In particular, the equation $y^{2}+y-d_{p}\left((x-1)^{p-1}-1\right)-c_{p}=0$ has coefficients invertible in R_{p} so that it has at most two distinct solutions in $R_{p}=\mathbb{F}_{p}[x] /\left\langle(x-1)^{p}\right\rangle=\mathbb{F}_{p}[x] /\left\langle x^{p}-1\right\rangle$. From the proof of 1.1, we have that $r_{p}(x)$ and $q_{p}(x)$ are two distinct solutions, so that $a(x)=r_{p}(x)$ or $a(x)=q_{p}(x)$. But since $1 \in A$ and A, B are disjoint by assumption, it must be the case that $a(x)=r_{p}(x)$.

2.1 A second proof

In this section, we present an alternate derivation and proof of the results in the first two sections. Let \mathcal{R} and \mathcal{Q} be the subsets of \mathbb{F}_{p} consisting of QRs and QNRs, respectively. Let $(j \mid p)$ denote the Legendre symbol. The characteristic functions of \mathcal{R} and \mathcal{Q} are

$$
\begin{cases}r(0)=0 \quad \text { and } \quad r(j)=\frac{1+(j \mid p)}{2}, & j \in \mathbb{Z}_{p} \\ q(0)=0 \quad \text { and } \quad q(j)=\frac{1-(j \mid p)}{2}, & j \in \mathbb{Z}_{p}\end{cases}
$$

respectively, and their generating functions are

$$
\left\{\begin{array}{l}
r_{p}(x)=\sum_{j=1}^{p-1} \frac{1+(j \mid p)}{2} x^{j}=\frac{1}{2}\left(z_{p}(x)+g(x)-1\right) \tag{2.5}\\
q_{p}(x)=\sum_{j=1}^{p-1} \frac{1-(j \mid p)}{2} x^{j}=\frac{1}{2}\left(z_{p}(x)-g(x)-1\right)
\end{array}\right.
$$

where $z_{p}(x)=\sum_{j=0}^{p-1} x^{j}$ is the generating function of the characteristic function of \mathbb{F}_{p}, and $g(x)=\sum_{i=0}^{p-1}(i \mid p) x^{i}$ is a Gaussian-like sum.
The conclusions of Section 1, can be rewritten in terms of generating polynomials $r_{p}(x)$ and $q_{p}(x)$ as follows

$$
\left\{\begin{align*}
r_{p}(x)^{2}+r_{p}(x) & =\frac{p-(-1 \mid p)}{4}\left(z_{p}(x)+(-1 \mid p)\right) \quad \bmod x^{p}-1 \tag{2.6}\\
r_{p}(x)+q_{p}(x) & =z_{p}(x)-1
\end{align*}\right.
$$

Conversely, $r_{p}(x)$ and $q_{p}(x)$ are the only polynomials with 0,1 coefficients that satisfy equation (2.6). To prove this using a different argument from that given in the previous section,
let \mathcal{A} and \mathcal{B} be two subsets forming an even partition of $\mathbb{F}_{p} \backslash\{0\}$, as above. Let the generating polynomials of their characteristic functions satisfy the conditions

$$
\left\{\begin{align*}
a(x)^{2}+a(x) & =\frac{p-(-1 \mid p)}{4}\left(z_{p}(x)+(-1 \mid p)\right) \quad \bmod x^{p}-1 \tag{2.7}\\
a(x)+b(x) & =z_{p}(x)-1
\end{align*}\right.
$$

Therefore $A(m)=a\left(\zeta_{p}^{m}\right)$ satisfies the equation $A(m)^{2}+A(m)=\frac{p(-1 \mid p)-1}{4}, \forall m \neq 0$, and $A(0)=\frac{(p-1)}{2}$, thus

$$
A(m)=-\frac{1}{2} \pm \frac{\sqrt{(-1 \mid p) p}}{2} \quad \forall m \neq 0
$$

where the only uncertainty lies in the sign. Hence any $A(m)$ is in the quadratic field $\mathbb{Q}(\sqrt{(-1 \mid p) p})$, which is a subfield of the cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)[6$, Exer. 1,p.17]. Since the numerical value of the so-called Gauss sum $g\left(\zeta_{p}^{m}\right)$ is $(m \mid p) g\left(\zeta_{p}\right)= \pm \sqrt{(-1 \mid p) p} \forall m \neq 0$, [3, Equation (5),p.7], (where the uncertainty of the sign is due to the choice of the primitive root ζ_{p}, as Davenport pointed out in [3, p.13]), it follows that

$$
A(m)=-\frac{1}{2} \pm \frac{1}{2}(m \mid p) g\left(\zeta_{p}\right) \quad, \quad m \neq 0
$$

The degree of $\mathbb{Q}\left(\zeta_{p}\right)$ over \mathbb{Q} is $p-1$, [6, Theorem 2.5, p.11], and an integral basis is $\left\{1, \zeta_{p}, \zeta_{p}^{2}, \ldots, \zeta_{p}^{p-2}\right\}$, thus the representation $A(m)=\sum_{j \in \mathcal{R}} \zeta_{p}^{j}$ is unique except for a choice of the primitive root ζ_{p}. This uniqueness of representation in a given integral basis of every element of an algebraic number field, implies that the only partition of \mathbb{F}_{p}, whose generating function satisfies (2.7), is $\mathbb{F}_{p}=\mathcal{R} \cup \mathcal{Q}$.

3 Conclusions

For completeness, we compute the number of solutions to

$$
n \equiv a+b(\bmod \mathrm{p}), \quad(a b \mid p)=-1, \text { for } p \nmid n
$$

which is simply obtained by observing that $n=a+b$ has p solutions in total and $d_{p}+\left(d_{p}-1\right)$ solutions with $(a b \mid p)=0$. Additionally, there are two solutions with $(a b \mid p)=0$, so that the number of solutions with $(a b \mid p)=-1$ is given by

$$
p-\left(2 d_{p}-1\right)-2=p-2 d_{p}-1=\frac{p-2+(-1 \mid p)}{2}
$$

It is finally remarked that Theorem 1.2 is obtained using elementary techniques, while the proofs of the converse in Section 2 require some tools from commutative algebra and/or algebraic number theory. It is an open problem to find a more direct proof that these additive properties characterize the quadratic residues.

References

[1] G.E. Andrews. Number Theory, New York: Dover, 1994.
[2] R. Crandall, C. Pomerance. Prime Numbers, A Computational Perspective, New York: Springer, 2001.
[3] H. Davenport. Multiplicative Number Theory, New York: Springer, 1980.
[4] K.F. Gauss. Disquisitiones Arithmeticae, New York: Springer, 1986.
[5] H.L. Montgomery. Topics in Multiplicative Number Theory, New York: Springer, 1971.
[6] L.C. Washington. Introduction to Cyclotomic fields, New York: Springer, 1997.
[7] H. Weyl. Algebraic Theory of Numbers, Princeton, NJ: Princeton Univ. Press, 1980.

