
Cryptanalysis of a hash function, and the modular
subset sum problem

Chris Monico

Department of Mathematics and Statistics
Texas Tech University

January 17, 2018

Abstract

Recently, Shpilrain and Sosnovski proposed a hash function based on composition

of affine maps. In this paper, we show that this hash function with its proposed

parameters is not weak collision resistant, for plaintexts of size at least 1.9MB. Our

approach is to reduce the preimage problem to a (very) high density instance of the

Random Modular Subset Sum Problem, for which we give an algorithm capable of

solving instances of the resulting size. Specifically, given plaintexts of about 1.9MB,

we were able to produce other plaintexts of the same size with the same hash value in

about 13 hours each, on average.

1 Introduction

Loosely speaking, a hash function is an efficiently computable function h with variable-
length input and fixed-length output. Additionally, for most cryptographic applications it is
desirable that the following inverse problems are computationally infeasible [3]:

1. preimage resistance (one-wayness): Given y in the image of h, find x′ for which h(x′) =
y (this should be hard for almost all y in the image).

2. 2nd-preimage resistance (weak collision resistance): given x, find x′ 6= x such that
h(x) = h(x′).

3. collision resistance (strong collision resistance): Find distinct x, x′ in the domain such
that h(x) = h(x′).

Such functions have numerous applications in cryptography, to problems such as data in-
tegrity verification and authentication [3]. Among the most currently used hash functions
for these purposes are those from the SHA family [4].

In 1994, Tillich and Zémor [6] proposed a hash function by fixing a pair of matrices
A,B ∈ SL2(F2n), defining π(0) = A, π(1) = B, and sending the bitstring x1x2 . . . xk to
π(x1)π(x2) . . . π(xk). One of the main motivations for their proposal was that the algebraic

properties of this function allow an algebraic description of some of the inverse problems that
should be computationally infeasible. In 2011, Grassl et.al [1] subsequently showed that the
particular proposed hash function is not collision resistant.

In [5], the authors propose a related cryptographic hash function, obtained by repeated
composition of affine maps. Let p be a prime, and f1(x) = 2x + 1 and f0(x) = 3x + 1. If
b0, b1, . . . , bn ∈ {0, 1} is a bit-string to be hashed, they propose computing

rx+ s = fbn ◦ fbn−1 ◦ · · · ◦ fb1 ◦ fb0(x) (mod p) ,

and using the pair (r+ s, s) as the hash of this string. The relationship to the Tillich-Zémor
proposal is afforded by the matrix description given in Section 2. They further suggest and
study the results of using a prime p around 2256. The goal of this paper is to show that
this hash function is not weak collision resistant for inputs larger than about 1.9 Megabytes
(MB), with p ≈ 2256. Specifically, given p ≈ 2256 and the hash value of a bit string of
known length of at least 1.9 MB, we have been able to produce other bit strings of the same
length with the same hash value. Our method does not even need the original bit string - a
reasonable bound on its length and the hashed value will suffice.

To do this, we reduce the problem to a dense instance of the Random Modular Subset
Sum Problem (RMSSP), and give a probabilistic algorithm for solving it. We also argue
heuristically that the algorithm is expected to succeed as long as the originally hashed bit

string had at least n zeros and n ones for some n ≥ 2
√

2 log2 p, and that the expected runtime is
O(n2 log n), with an implied constant small enough to keep the attack practical for p ≈ 2256.

2 Reduction to RMSSP

Throughout, let p be a fixed odd prime and

A =

(
2 1
0 1

)
∈ GL2(Fp), and B =

(
3 1
0 1

)
∈ GL2(Fp).

Although we never need to explicitly work with matrices, they provide a convenient descrip-
tion of this hash function, as was observed in [5]. If we identify the affine function cx + d

with the matrix

(
c d
0 1

)
, then f1(cx+ d) = 2cx+ (2d+ 1) which is the function identified

with A

(
c d
0 1

)
. Similarly, left-multiplication by B corresponds to composition with f2.

Suppose now we are given a pair (x, y) ∈ F2
p which is the hashed value of some bit string

of known length L. We first invert the final operation of adding the second coordinate to the
first, to get (r, s) = (x− y, y) modulo p. We are then trying to find a word in the matrices

A and B which evaluates to

(
r s
0 1

)
. Since det(A) = 2 and det(B) = 3, we therefore have

that r = 2a3b, where a is the number of ones in the original bit string and b is the number
of zeros in that bit string. We have immediately that a + b = L. Since L is known, a and
b can be recovered with O(L logL) operations over Fp; for example, by precomputing and
sorting 20, 21, . . . , 2L, and then testing r, 3−1r, 3−2r, . . . until one is found which is a power

2

of 2. Note that this will succeed even if L is not the actual length of the original bit string
but is an upper bound on that length.

Let n = min{a, b} and

Y =

(
r s
0 1

)
, and U = (AB)nAa−nBb−n =

(
r u
0 1

)
.

The goal is to replace several of the leading AB factors of U with BA, to transform it into

Y . The basis for doing so is the observation that for all W =

(
w11 w12

0 1

)
we have

(AB)j(BA)W = (AB)j(AB)W +

(
0 6j

0 1

)
.

Setting t = s− u (mod p) , suppose that x ∈ {0, 1}n such that

n−1∑
j=0

xj6
j ≡ t (mod p) . (2.1)

Given such an x, it follows that(
n−1∏
j=0

(AB)1−xj(BA)xj

)
Aa−nBb−n = U +

(
0 t
0 1

)
= Y.

The Subset Sum Problem is the following: given a finite set A = {a1, a2, . . . , an} of integers
and a target t, find a subset of A whose elements sum to t, if such a subset exists. It is
well-known that the density, n/ log2(max ai), of an instance of this problem is an important
parameter affecting the efficiency of various algorithms for solving it.

Lyubashevsky [2] considered a variant of this problem coined the Random Modular Subset
Sum Problem (RMSSP): given a modulus M , a target t, and a set A = {a1, a2, . . . , an} of
integers generated uniformly at random in [0,M), find a subset of A whose elements sum
to t modulo M . He defined the density of an instance of this problem to be n/ log2M ; a
high-density instance of this problem is one for which n/ log2M > 1.

The problem (2.1) we now need to solve is quite similar to the RMSSP, except that the
set A is not generated at random; in this case, it is the set of residues of 60, 61, . . . , 6n−1

modulo p. It is, however, a reasonable approximation to assume that it is uniformly random.

3 Solving the RMSSP

Note first the problem (2.1) we are faced with, considered as a RMSSP, is a very special
instance, since the subset consists of small, consecutive powers of six. Nevertheless, we were
unable to take advantage of this to find a more efficient solution.

Also note that if n is small compared to log2 p, there need not exist a solution; in fact, we
have no proof that a solution exists even when n > log2 p, though when n is reasonably larger
than log2 p it certainly seems to be the case; and with values of n used in our experiments,

3

we never encountered any instances in which a solution was not found. In the sequel, we
will assume that n is sufficiently large so that a solution does indeed exist. This is then a
so-called high-density instance of the NMSSP, having n > log2 p. In fact, we will see later

that we require n to be approximately larger than 2
√

2 log2 p, so perhaps very high-density
would be an appropriate descriptor.

There are algorithms in the literature for solving this problem; in particular, [2] proposes
a method with sufficient asymptotic runtime, but a close inspection of the algorithm reveals
that the implied constants in the memory/runtime estimates are too large to be practical in
the current case.

Our approach is quite straightforward, and greedy in some sense. Loosely, the idea is to
construct a set U which contains the canonical residues of 60, 61, . . . , 6n−1 and −t. Subtract
p from half of these at random, to obtain a set of integers in (−p, p) for which about half
are negative and half positive. Denote these integers by a0, a1, . . . , an with an ≡ −t (mod p)
and consider the matrix In+1

∣∣∣∣∣∣∣∣∣
a0
a1
...
an

 .

At each step, we reduce the size of the largest (in absolute value) entry in the rightmost
column (e.g., the∞-norm), by finding another entry in that column with opposite sign such
that

1. Adding the corresponding rows will not produce any non-{0, 1} entries in the left block,
and

2. the resulting value in the rightmost column has minimal possible absolute value, subject
to the constraint above.

We repeat this process as many times as possible until it is no longer possible to shrink the
∞-norm of the vector on the right. At that point, we hope to find a row whose last two
entries are 1 and 0 respectively. If that row is x, it follows that

x0a0 + · · ·+ xn−1an−1 + 1(−t) ≡ 0 (mod p) ,

so that t ≡
∑n−1

j=0 xjaj as desired. Although we have no proof, the algorithm typically
succeeds provided n is large enough. Below, we derive the estimate that n should be at least

2
√

2 log2 p.
For a vector x = 〈x0, x1, . . . xn〉 ∈ Rn+1, we denote the support of x by

supp (x) = {j ∈ {0, 1, . . . , n} : xj 6= 0}.

For an integer m and a positive integer p, we let m mod p denote the nonnegative remainder
of m divided by p. The algorithm we propose for solving the Modular Subset Sum Problem
is as summarized below.

4

Algorithm 3.1
Input: A list a0, a1, . . . , an−1 of integers, a modulus p, and a target integer t.
Output: A vector x ∈ {0, 1}n such that

∑
xjaj ≡ t (mod p) , or a failure message.

1. (Initialize) For j = 0 . . . n−1, choose εj ∈ {0, 1} at random and set ãj ← (aj mod p)−
εjp, and set uj ← ej, the j-th standard basis vector in Rn+1. Set ãn ← −t mod p and
un ← en.

2. Find i ∈ {0, 1, . . . , n} such that |ãi| is maximal. Among all j ∈ {0, 1, . . . , n} for which
supp (uj) ∩ supp (ui) = ∅, find one with |ãj + ãi| minimal. If no such j exists, goto
Step 4.

3. Set ui ← ui + uj, ãi ← ãi + ãj. Then if ãi = 0 and the last coordinate of ui is 1, goto
Step 4. Otherwise, goto Step 2.

4. Find k ∈ {0, 1, . . . , n} such that ãk = 0 and the last coordinate of uk is 1. If no such
k exists, output a failure message and terminate.

5. Set x to be the first n coordinates of uk, output x and terminate.

For a proof of correctness, suppose that the algorithm terminates with an output vector
x. Let uk,` denote the `-th coordinate of uk. First observe that at Step 2 we will always have

n−1∑
`=0

uk,`a` + uk,n(−t) ≡ ãk (mod p) ,

for each 0 ≤ k ≤ n. Therefore, if the algorithm terminates in Step 4 with some value of k,
we will have

n−1∑
`=0

uk,`a` +−t ≡ 0 (mod p) ,

so that the output vector x is indeed a solution.

Remark 3.2 In the case when the algorithm outputs a failure message, it is possible to
restart the algorithm and obtain a different outcome, because of the random choices made
during initialization. If n is too small, it’s possible that no choices of the εj will lead to
success. When n is sufficiently large, it seems to succeed with nearly all choices of εj; but

there seem to be borderline cases in between, when n ≈ 2
√

2 log2 p; in these cases, restarting
the algorithm enough times seems to eventually yield a solution. Our heuristic analysis will
assume that the ai’s are uniformly distributed modulo p. However, if they are too clustered,
we can precondition, multiplying all of the ai’s and t by a randomly chosen r ∈ Z∗p prior to
Step 1. Any resulting vector x will then still be a solution to the original system since it
satisfies

∑
xirai ≡ rt (mod p) .

Remark 3.3 In Step 2, finding i and j is considerably faster if ã0, . . . , ãn are kept sorted.
For that reason, we store them in an AVL tree with key values (ãk, k). The operation ãi ←
ãi + ãj in Step 3 is then performed by deleting the (ãi, i) node, performing the addition, and
then re-inserting the node. Searches, insertions, and deletions each take O(log n) operations.

5

Remark 3.4 Explicit storage of the uk’s requires n2 bits, or (n2/8) bytes. Our implementa-
tion avoids this by not storing the rows explicitly. Instead, we store the row operations that
were performed, and from these recover the uk’s on an as-needed basis. For this, we maintain
an array OpList[0],...,OpList[n] of linked lists. Each time a row operation ui ← ui +uj

performed in Step 3, we append the node (j, t) to the linked list OpList[i], where t is the
current size of the linked list OpList[j]. With these data, we can reconstruct a vector uk

with O(n) operations as a consequence of the fact that whenever the operation ui ← ui + uj

is performed, the supports of ui and uj are disjoint.

3.1 Heuristic analysis

Firstly, we make no claim of rigor for the analysis in this subsection. In particular, we make
several unjustified assumptions, and use several estimates without bounding the error; so it
should be considered as a ‘back-of-the-envelope’ estimate. However, the experimental data
provided in Section 4 seem to fit the predictions made here reasonably well.

The first unjustified assumption we will make is that each time Step 2 is executed,
the set of integers A = {ã0, . . . , ãn} − {M} are uniformly distributed in [−M,M], where
M = max{|ã0|, . . . , |ãn|}. We also unjustifiedly assume that the probability that supp (uj)∩
supp (ui) = ∅ is at least 1/2.

Suppose now that |ãi| = M . Then we expect about n/2 elements of A to have the opposite
sign of ãi, and we expect the largest absolute value of those to be about (n/2)M/(n/2 + 1).
So in Step 2 we expect a value of j to be found with

|ãj + ãi| ≈M − (n/2)M

n/2 + 1
≈ 2M

n
.

In that case, we would expect that after the next n iterations of Step 2, we would have

max{|ã0|, . . . , |ãn|} ≈
2M

n
.

Initially, we have M ≈ p. If every n iterations of Step 2 reduces max{|ã0|, . . . , |ãn|} by a
factor of 2/n, then we would need to do bn iterations total to reduce this maximum to 1,
where b ≈ log2 p/ log2(n/2).

On the other hand, the algorithm will not be able to proceed once the probability that
supp (uj) ∩ supp (ui) = ∅ becomes too small; so long as this probability is at least 1/2, the
algorithm should be able to continue. If the average Hamming weight of u0, . . . ,un is about
w ∈ N, then the probability that two such randomly chosen vectors have disjoint support is
about (

n−w
w

)(
n
w

) =
(n− w)!(n− w)!

n!(n− 2w)!

=

(
n− w
n

)(
n− w − 1

n− 1

)
· · ·
(
n− w − (w − 1)

n− (w − 1)

)
=

(
1− w

n

)(
1− w

n− 1

)
· · ·
(

1− w

n− (w − 1)

)
.

6

For large n and w ≤
√
n, this is approximately (1 − w/n)w, which is about e−w

2/n. If,
for example, w ≤ (4/5)

√
n the probability that two such vectors are disjoint is at least

e−16/25 > 1/2.
Finally, with each n iterations, we expect the average Hamming weight of the vectors

u0, . . . ,un to roughly double. Initially this average weight is 1, so after bn iterations it will
be about 2b, and we need 2b ≤

√
n, so that b ≤ (1/2) log2 n. Above we deduced that we need

b ≈ log2 p/ log2(n/2), and combining these results we find that we should have n ≥ 2
√

2 log2 p.

With n ≈ 2
√

2 log2 p, the expected number of iterations is about bn ≈ (n/2) log2 n.

3.2 Runtime

We will approximate the runtime of Algorithm 3.1 in terms of the number of Fp operations
performed. Step 1 needs O(n) operations.

If the ãk’s are stored in an AVL tree as suggested in Remark 3.3, we need O(log n)
operations to find i in Step 2. In searching for an appropriate value of j in Step 2, we find
the largest (or smallest) value of ãk using the AVL tree and O(log n) operations. Testing
the disjoint support condition for a single value of j requires O(n) operations. As long as
the average density of the vectors u0, . . . ,un is below

√
n, we expect Step 2 to check one

or two values of j before finding an appropriate one. Therefore, we expect all but possibly
the last execution of Step 2 to need O(n) operations, while the last one or two iterations
will need O(n2) operations. Step 3 needs only O(n) operations. Since the expected number
of iterations is about (n/2) log2 n, it follows that all iterations of Steps 2 and 3 will need
O(n2 log2 n) operations total. Since this dominates the number of operations for Steps 4 and

5, we expect the total runtime to be O(n2 log2 n), provided n ≈ 2
√

2 log2 p.

4 Experimental results

The tables below summarize the results of experiments with the algorithm described in this
paper. The algorithm was implemented in C, using the GMP library for arithmetic, and the
experiments were carried out on a single core of an Intel i7-6700 processor at 3.4GHz, with
16GB of RAM. Each experiment consisted of the following:

1. Choose a random prime with the given number of bits,

2. Choose a random string consisting of N bytes,

3. Apply the hash function described in the introduction to obtain a hash value (x, y) ∈
F2
p,

4. Apply the algorithm described in this paper to find another string which hashes to
(x, y).

In these tables, we also compare the number of iterations and time to obtain a solution
with the heuristics obtained in the previous section. In doing so, n in that section corresponds

7

to the smaller of the number of zero bits and the number of one bits in the string; since the
strings were generated uniformly at random, n ≈ N/4 is a good approximation.

Let λ(p) = 2−2+
√

2 log2 p. This is the expected number of random bytes needed for our
attack to work, according to the heuristics in the previous section. Table 1 compares, for
randomly chosen primes p of various sizes and bit strings of different length 8N , the average
number of times Algorithm 3.1 had to be restarted before obtaining a solution. In all 1200
of these experiments a solution was obtained after restarting Algorithm 3.1 enough times.

log2 p N N/λ(p) # experiments avg. restarts

64 637 1.0 100 5.82
64 701 1.1 100 3.51
64 764 1.2 100 1.59

96 3708 1.0 100 2.62
96 4079 1.1 100 1.43
96 4450 1.2 100 1.07

128 16384 1.0 100 1.96
128 18023 1.1 100 1.17
128 19661 1.2 100 1.05

160 60664 1.0 100 1.62
160 66730 1.1 100 1.21
160 72797 1.2 100 1.05

Table 1: Experiments confirming the necessary length N in bytes for different primes p of

different sizes. N is the number of bytes used in the experiments, while λ(p) = 2−2+
√

2 log2 p

is the predicted number of necessary bytes.

Table 2 compares the results of 490 experiments with the number of iterations predicted
by our heuristic analysis, as well as the runtime bound predicted by that analysis.

5 Conclusion

We have demonstrated the the hash function proposed in [5] is not weak collision resistant, at
least for inputs whose size is at least 1.9MB. Specifically, given such an input x we have been
able to produce another input x′ hashing to the same value, in about 13 hours on average.
The attack presented here would be easily prevented in any number of non-algebraic ways;
for example, by inserting an XOR operation once every 16 bits. However, this would defeat
the main point of such a construction as it would seem to nullify the algebraic advantages.
So it is an open question whether or not there is some ‘nice’ modification which would avoid
this attack while still retaining the algebraic advantages.

8

log2 p N # experiments x x/ρ(N) t t/τ(N)

64 764 100 18742 1.059 0.1 1× 10−8

96 4450 100 136981 1.090 0.7 2× 10−9

128 19661 100 694836 1.087 17.8 2.83× 10−9

160 72797 100 2870966 1.086 305.9 3.180× 10−9

192 237729 50 10221824 1.083 1770.7 1.578× 10−9

224 705871 20 32878864 1.087 16979.6 1.590× 10−9

256 1943805 20 96289524 1.082 47054.2 5.440× 10−10

Table 2: Experiments measuring the time of the attack for primes p of various sizes. N
is the number of bytes used in the experiments. x is the average number of iterations per
application of Algorithm 3.1 and ρ(N) = 2N log2(4N) is the predicted number of iterations.
The average time in seconds per experiment is t and τ(N) = N2 log2 4N is a constant
multiple of the asymptotic runtime bound heuristically derived in Section 3.2.

References

[1] Markus Grassl, Ivana Ilić, Spyros Magliveras, and Rainer Steinwandt. Cryptanalysis of
the Tillich-Zémor hash function. J. Cryptology, 24(1):148–156, 2011.

[2] Vadim Lyubashevsky. On random high density subset sums. Electronic Colloquium on
Computational Complexity (ECCC), (007), 2005.

[3] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca
Raton, FL, 1997. With a foreword by Ronald L. Rivest.

[4] National Institute of Standards and Technology. FIPS PUB 180-4: Secure Hash Standard
(SHS), August 2015. Available at http://dx.doi.org/10.6028/NIST.FIPS.180-4.

[5] Vladimir Shpilrain and Bianca Sosnovski. Compositions of linear functions and applica-
tions to hashing. Groups Complex. Cryptol., 8(2):155–161, 2016.

[6] Jean-Pierre Tillich and Gilles Zémor. Hashing with SL2. In Advances in cryptology—
CRYPTO ’94 (Santa Barbara, CA, 1994), volume 839 of Lecture Notes in Comput. Sci.,
pages 40–49. Springer, Berlin, 1994.

9

