
F2 Lanczos revisited

Michael Peterson, Chris Monico

Department of Mathematics and Statistics
Texas Tech University

e-mail: cmonico@math.ttu.edu

Draft of December 8, 2006

Abstract

We present a new variant of the block Lanczos algorithm for finding vectors in the
kernel of a symmetric matrix over F2. Our algorithm is at least as efficient as that
of Peter Montgomery [6], while the sequence of matrices Wi constructed here have
different algebraic properties that may be useful in eventually providing a provable
upper bound on the time required to solve this problem. Namely, our Wi satisfy
W T

i Wj = 0 for i 6= j as opposed to W T
i AWj = 0 in [6].

1 Introduction

The problem of solving large sparse systems of linear equations over F2 arises in several
situations. Our primary motivation here is specifically to solve linear homogeneous systems
Bx = 0 such as those arising from integer factorization algorithms like the Number Field
Sieve [1]. In most of what follows, we will assume A to be symmetric and Ax = 0 the
problem to be solved. But note that if B is not symmetric, one may take A = BT B and
under suitable hypothesis, recover vectors in the kernel of B from vectors in the kernel of A.

For a matrix B over F2 which is, say 500, 000 × 501, 000, using Gaussian elimination to
solve Bx = 0 is unacceptable to say the least. Even if such a matrix B were sparse, after
several pivoting operations it would quickly become dense requiring on the order of 30 GB
of storage. Since Gaussian elimination over F2 is an O(n3) algorithm for n×n matrices, the
runtime situation is no better than the storage. There are variants of Gaussian Elimination,
like the ‘structured Gaussian Elimination’ of [2] which perform better in these instances, but
runtime and storage problems still persist at even slightly larger sizes.

Don Coppersmith [3] and Peter Montgomery [6] have already given Block Lanczos vari-
ants which work well over F2. The big advantage of Lanczos methods in the current situation
is that the given matrix is used only in a ‘black-box’ form. That is, no operations are ever
performed on the matrix itself. Instead, the matrix is simply applied to various vectors and
calculations are carried out on the results. So if we begin with a large but sparse matrix, the
total storage requirements are not much more than those required to store the sparse matrix
in a form which is convenient for computing its product on vectors (small block matrices,
in fact). Furthermore, the Lanczos variants offer a big runtime advantage over Gaussian
Elimination in the case where the given matrix is sparse.

Between [3] and [6], Montgomery’s algorithm seems to be more efficient in practice, while
Coppersmith’s retains hints of geometric motivation. Our goal here is to combine the ideas of
both of these papers into an algorithm which is both geometrically motivated and efficient.
In fact, the runtime of our algorithm is essentially identical to Montgomery’s. But the
sequence of subspaces produced in our algorithm is decidedly different, and satisfies different
structural identities (the sequence of subspaces produced in [6] are pairwise A−orthogonal,
while the subspaces produced in this paper are pairwise orthogonal). Perhaps these structural
differences will eventually lead to a provable upper bound on the time required to find a vector
in ker(A) over F2.

For completeness we explicitly include and expand on the ideas from [4] for quickly
computing certain matrix products which arise during the course of this algorithm. Finally,
we will give some experimental data resulting from the application of this algorithm to some
matrices arising from the NFS factorization of several integers.

This paper constitutes an expansion on work of the first author in his Master’s Thesis
[7].

2 Gram-Schmidt Lanczos over R
We consider here a variation on the Lanczos algorithm [5] over RN to find a vector x ∈ ker(A),
where A is symmetric N×N and singular. To be clear, the method we present here is almost
certainly numerically unstable, but our eventual goal is to work over F2 anyway.

It begins by choosing a random y ∈ RN and applying the Gram-Schmidt process to the
sequence of vectors A1y, A2y, A3y, For vectors u, v ∈ RN , let Proj (u; v) denote the
projection of u onto v, so that Proj (u; v) = u·v

v·v v. Set

w0 = Ay

wn+1 = Awn −
n∑

j=0

Proj (Awn; wj), for n ≥ 0.

Then the collection {w0, . . . ,wk} is an orthogonal collection of vectors having the same span
as {Ay, . . . , Ak+1y}.

The key ingredient in the efficiency of this class of algorithms is the clever observation
by Lanczos [5] that the computation of wn+1 can be simplified. By construction, we have
that wi ·wj = 0 for i 6= j. Then for i ≤ n− 2 we have

Awn ·wi = wT
nAT wi = wT

nAwi

= wn ·

(
wi+1 +

i∑
j=0

Proj (Awi; wj)

)

= wn ·wi+1 +
i∑

j=0

wn · (αjwj) for some αj ∈ R

= 0.

2

It follows that for j ≤ n− 2, Proj (Awn; wj) = 0, so that for each n > 1,

wn+1 = Awn − Proj (Awn; wn−1)− Proj (Awn; wn).

If w0, . . . ,wk are all nonzero, it follows that they are linearly independent since they are pair-
wise orthogonal. But since these are vectors in RN , it follows that the sequence {w0, w1, . . .}
defined as above must eventually become zero, so there is a least positive integer m for which
wm+1 = 0. In parallel with the computation of the wj, we compute

x =
m∑

i=0

Proj (y; wi) =
m∑

i=0

wi · y
wi ·wi

wi.

If y is in the span of the wj, then x = y. However, if A is singular this is very unlikely to
happen. We claim that x−y ∈ ker(A). For this, set u = y−x = y−

∑
Proj (y; wi). Then

Au = w0 −
∑ wi · y

wi ·wi

Awi,

so that Au is in the span of w0, . . . ,wm. But wT
j u = 0 for all j and so using the symmetry

of A we have that

Proj (Au; wj) = wj(w
T
j wj)

−1(Awj)
T u

= wj(w
T
j wj)

−1

(
wj+1 +

j∑
i=0

Proj (Awj; wi)

)T

u

= wj(w
T
j wj)

−1

(
wT

j+1u +

j∑
i=0

ci,jw
T
i u

)
= 0 (for some ci,j ∈ R).

The goal of the rest of this paper is to describe a similar technique which will work over F2.

3 Notations

Throughout, K will be fixed (as either 32 or 64), depending on the architecture on which this
algorithm is to be implemented. For matrices X, Y , we let (X|Y) denote the column-wise
concatenation of X and Y . Similarly,

(
X
Y

)
denotes the row-wise concatenation of X and Y .

If Vi is an r × ci matrix for i = 0, 1, . . . , k, we abuse notation slightly and define the
subspace generated by V0, . . . , Vk to be

〈V0, . . . , Vk〉 = {Z : Z = V0U0 + · · ·+ VkUk for some c ≥ 1 and ci × c matrices Ui}.

That is, Q ∈ 〈V0, . . . , Vk〉 iff Q has r rows and every column of Q is in the column span of
(V0|V1| · · · |Vk).

3

4 The algorithm over F2

The most obvious obstruction to extending the technique of Section 2 to F2 is that there
exist nonzero vectors over F2 which are self-orthogonal. This presents a formal problem with
the calculations from the previous section, as division by zero would occur often. However,
the real problem is more fundamental; projection onto such a vector cannot be performed in
any reasonable sense.

Over F2 where addition is simply XOR, we can add vectors of dimension K for the same
cost as adding vectors of dimension 1. For this reason alone, it is already natural to consider
a block Lanczos variant in this case. But more importantly, if V is a subspace of dimension
K over F2, while we may not always be able to project onto V , we can almost always find a
‘large’ subspace W of V for which projection onto W is well-defined. The F2-vector spaces
which do admit well-defined projection are described by the following proposition.

Proposition 4.1 LetW be a subspace of FN
2 having a basis of column vectorsW = Colsp(W)

with W T W invertible. Then each u ∈ FN
2 can be uniquely written as u = w+v with w ∈ W

and WT v = 0. Furthermore, this property is independent of the choice of basis for W.

Proof: Let u ∈ FN
2 and set w = W (W T W)−1W T u and v = u + w. Then w ∈ Colsp(W) =

W , u = v + w and

W T v = W T u + W T w

= W T u + W T W (W T W)−1W T u = 0,

so that WT v = 0 as desired.
Suppose now that w′ is another vector in Colsp(W) so that W T (u+w′) = 0. Then w′ ∈

Colsp(W)⇒ w′ = Wα for some α ∈ FN
2 . So we have 0 = W T (u + w′) = W T u + W T Wα,

whence W T Wα = W T u. Since W T W is invertible, it follows that α = (W T W)−1W T u.
Left multiplying both sides by W we find

w′ = Wα = W (W T W)−1W T u = w,

and so uniqueness follows as desired.
Finally, note that if U is another basis of column vectors forW = Colsp(W) = Colsp(U),

then U = WA for some invertible matrix A. It follows that UT U = AT W T WA = AT (W T W)A
is invertible, so that the result is independent of the choice of basis.

If W T W is invertible and U has the same number of rows as W , we therefore define

Proj (U ; W) := W (W T W)−1W T U.

This notation is both convenient and compatible with intuition since Colsp(Proj (U ; V)) is
then the projection of Colsp(U) onto Colsp(V).

The underlying idea of this algorithm is to produce a sequence of orthogonal subspaces
spanning an A−cyclic subspace of FN , and use projection onto the orthogonal subspaces
to solve the given problem locally. The following proposition summarizes the properties we
desire of these subspaces, and how they will be used to solve the kernel problem over F2. For
simplicity, the proposition is stated strictly in matrix terms, but the subspace interpretation
is obvious.

4

Proposition 4.2 Let A be a symmetric N ×N matrix over F2. Suppose W0, W1, . . . ,Wm+1

is a sequence of matrices satisfying

1. Wi is N × ki.

2. W T
i Wi is invertible for i ∈ {0, 1, . . . ,m}.

3. W T
i Wj = 0 for all distinct i, j ∈ {0, 1, . . . ,m + 1}.

4. AWi ∈ 〈W0, W1, . . . ,Wm+1〉 for all i ∈ {0, 1, . . . ,m}.

Then (W0|W1| · · · |Wm) has full rank. If Y ∈ 〈W0, . . . ,Wm〉, then Y =
∑m

j=0 Proj (Y ; Wj).
Furthermore, if Y is any N × k matrix with AY ∈ 〈W0, . . . ,Wm+1〉 and

X =
m∑

i=0

Proj (Y ; Wi),

then rank (A(X + Y)) ≤ 2 · rank (Wm+1).

Proof: To see first that the N × (
∑

ki) matrix (W0|W1| · · · |Wm) has full rank, notice that
any linear dependence on the columns of this matrix can be expressed as

0 = W0C0 + W1C1 + · · ·+ WmCm,

for some kj × 1 matrices Cj. It follows from the hypotheses that for each i,
0 = W T

i (W0C0 + W1C1 + · · ·+ WmCm) = W T
i WiCi. But since W T

i Wi is invertible, we have
Ci = 0, and so the columns are linearly independent as desired.

Observe now that if Y =
∑m

j=0 WjUj then for each j

Proj (Y ; Wj) = Wj(W
T
j Wj)

−1W T
j Y =

m∑
i=0

Wj(W
T
j Wj)

−1W T
j WiUi

= Wj(W
T
j Wj)

−1W T
j WjUj = WjUj,

so that
∑

Proj (Y ; Wj) = Y , proving the second statement.
For the last statement, we begin with the observation that for each 0 ≤ j ≤ m,

W T
j (X + Y) = W T

j

(
m∑

i=0

Wi(W
T
i Wi)

−1W T
i Y

)
+ W T

j Y = W T
j Y + W T

j Y = 0.

By a similar calculation, W T
m+1(X + Y) = W T

m+1Y .
Now since A(X +Y) ∈ 〈W0, . . . ,Wm+1〉, we have that A(X +Y) = Wm+1V +W for some

V and some W ∈ 〈W0, . . . ,Wm〉. Using the previous part of this proposition, it follows that
W =

∑m
i=0 Proj (A(X + Y) + Wm+1V ; Wi) =

∑m
i=0 Proj (A(X + Y); Wi), which we will now

compute.

5

By hypothesis, we have that for each 0 ≤ i ≤ m, AWi =
∑m+1

j=0 WjUj,i for some N × ki

matrices Uj,i. Since A is symmetric, it follows that for each 0 ≤ i ≤ m,

Proj (A(X + Y); Wi) = Wi(W
T
i Wi)

−1W T
i A(X + Y)

= Wi(W
T
i Wi)

−1(AWi)
T (X + Y)

= Wi(W
T
i Wi)

−1

(
m+1∑
j=0

WjUj,i

)T

(X + Y)

= Wi(W
T
i Wi)

−1

(
m+1∑
j=0

UT
j,i(W

T
j (X + Y))

)
= Wi(W

T
i Wi)

−1UT
m+1,iW

T
m+1Y.

This gives that

A(X + Y) = Wm+1V + W = Wm+1V +

(
m∑

i=0

Wi(W
T
i Wi)

−1UT
m+1,i

)
W T

m+1Y.

Both terms in this expression have rank at most rank (Wm+1), and since the rank of a sum is
at most the sum of the ranks, it follows that rank (A(X + Y)) ≤ 2 · rank (Wm+1) as desired.

The remainder of this section is devoted to showing how to produce a collection {Wi} of
matrices (subspaces) satisfying the conditions of Proposition 4.2, with 2 · rank (Wm+1) small
compared to rank (X +Y) so that we may recover vectors in the kernel of A via simultaneous
elementary column operations.

The goal is to follow the ideas of Section 2 as closely as possible. To that end, we would
attempt to simply choose a random N×k matrix Y , and set W0 = AY and n = 1. Assuming
(W T

i Wi) is invertible for 0 ≤ i < n, we set

E = AWn−1 −
n−1∑
i=0

Proj (AWn; Wi). (4.1)

If ET E is invertible, we set Wn = E. As in Section 2, we would have the crucial observation
for efficiency that all but the last two of these projections are identically zero. However,
handling the case where ET E is not invertible introduces some complication. Loosely, the
idea is to start with Equation 4.1, but restrict to a maximal dimensional subspace of Colsp(E)
which we can project onto.

Note first that the vectors in Colsp(E) which are orthogonal to all of Colsp(E) form a

subspace D of Colsp(E). Furthermore, ET E is invertible iff D = {0}. If Ũ is an invertible

matrix so that EŨ = [C|D] where Colsp(D) = D, we have

(EŨ)T (EŨ) =

[
CT C CT D

DT C DT D

]
=

[
CT C 0

0 0

]
,

6

and CT C must be invertible since Colsp(D) = D. Since (EŨ)T (EŨ) = ŨT ET EŨ and Ũ is
invertible, it also follows that that rank (CT C) = rank (ET E). The only question remaining

is how to find such a Ũ . For this, compute ET E and find an invertible U so that U(ET E)
is in reduced-row echelon form. Then if rank (ET E) = r we have

U(ET E) =

[
V

0

]
, where V has r rows and full rank.

Since U is invertible we have rank (UET EUT) = r. Furthermore, since the bottom K − r
rows of UET EUT are zero and this matrix is symmetric, it follows that we have

(EUT)T (EUT) =

[
CT C 0

0 0

]
,

where C is the first r columns of EUT and rank (CT C) = r. It also follows that D is precisely
the span of the last K − r columns of EUT .

Suppose now that {W0, W1, . . . ,Wn−1} have been computed satisfying the first three
hypotheses of Proposition 4.2 and Wn is to be computed. We first compute

En = AWn−1 −
n−1∑
j=0

Proj (AWn−1; Wj). (4.2)

If ET
n En is invertible, we can simply take Wn = En. Very roughly speaking, this happens

with probability only 0.42 or so (see Section 8 for an explanation). In the event ET
n En is

not invertible, we follow the preceding discussion and find an invertible U so that U(ET
n En)

is RREF and set Wn equal to the first r = rank (ET
n En) columns of EnU

T . We also set
Dn+1 equal to the last K − r columns of EnU

T . We clearly cannot discard Dn+1 or the
dimension of the Wi’s obtained in this way would quickly drop to zero. But by construction,
Dn+1 is orthogonal to all of W0, W1, . . . ,Wn making it an excellent candidate for inclusion
in Wn+1. We will argue in Section 8 that if the sequence of En obtained in this way behaved
like random, we would have that the expected value of r is about K − 0.76 with a standard
deviation small compared to K = 32 or 64 (for sufficiently large N). Experimental data will
be given in that section to support this assumption.

So at the next iteration we will compute

Ẽn+1 = AWn −
n∑

j=0

Proj (AWn; Wj),

and taking En+1 = [Dn+1|Ẽn+1], proceed essentially as above. However, in order to be able
to simplify the calculation of Equation 4.2 in subsequent iterations, we will require that
Colsp(Dn+1) ⊆ Colsp(Wn+1) and so some care is required in the RREF computation. We
have

Tn+1 = ET
n+1En+1 =

[
0 DT

n+1Ẽn+1

ẼT
n+1Dn+1 ẼT

n+1Ẽn+1

]
.

7

With the assumptions above on the size of Dn+1, we find that the number of columns
in Dn+1 should be relatively small, say at most 5 or 6. Since DT

n+1Ẽn+1 then has far more

columns than rows and Ẽn+1 is more-or-less independent of Dn+1, it is extremely likely
that DT

n+1Ẽn+1 does have full rank. Then if DT
n+1Ẽn+1 has full rank, its rows are linearly

independent and we can guarantee the inclusion Colsp(Dn+1) ⊆ Colsp(Wn+1) by first putting
this submatrix of Tn+1 in RREF and using the leading entries of these rows as pivots in the
RREF computation of Tn+1. In practice, since the number of rows of DT

n+1Ẽn+1 is small,
it suffices just to put Tn+1 into RREF using an algorithm which always searches for pivot
elements from top to bottom, choosing the first possible one. In the very unlikely event that
DT

n+1Ẽn+1 does not have full rank, the algorithm should terminate with a failure message.
Note that Montgomery’s algorithm admits the same remote possibility of failure, and that
both his and the current algorithm could be modified to allow for this possibility by adding
an additional recurrence term later. However, the possibility is so unlikely in practice that
it is not worth the runtime penalty or the complication of doing so.

The algorithm terminates when we eventually encounter some Wn+1 which would be zero
by the above method. Note that this is guaranteed to happen by the full-rank implication
of Proposition 4.2. When this happens, we take m = n and Wm+1 = Dn+1 for the purpose
of applying the last part of Proposition 4.2.

This is already the essence of the algorithm. The remainder of this paper is devoted to
more efficiently computing the Wj that would be obtained in this way.

5 Simplifying the computation

In this section, we simplify the recurrence and replace some of the more expensive ma-
trix multiplications with less expensive calculations by observations very similar to those of
Montgomery [6], carried over to the present case.

The iterative portion of the algorithm proceeds as follows: Given a sequence W0, W1, . . . ,Wn

satisfying the first three hypothesis of Proposition 4.2 and a matrix Dn+1 of small rank as
described above, we compute

En+1 = AWn −
n∑

j=0

Proj (AWn; Wj), (5.1)

and set Tn+1 = [Dn+1|En+1]
T [Dn+1|En+1]. Find Un+1 as described above so that Un+1Tn+1

is in RREF and take Wn+1 as the first kn+1 = rank (Tn+1) columns of [Dn+1|En+1]U
T
n+1 and

Dn+2 as the remaining K−kn+1 columns. In the sequel, we also assume that Colsp(Dn+1) ⊆
Colsp(Wn+1) for the reasons given above. This assumption will be further justified with
experimental data in the Section 8.

First we show that, as in Section 2, most of the Proj (AWn; Wj) are zero so that the
calculation of En+1 in Equation 5.1 may be greatly simplified. For this, notice that we have
by the construction above for each j, [Wj|Dj+1] = [Dj|Ej]U

T
j where Uj is invertible and Dj

or Dj+1 (or both) may be empty (i.e., have no columns). It follows that for i < n− 2

W T
n AWi = W T

n

(
Ei+1 +

i∑
j=0

Proj (AWi; Wj)

)
= W T

n Ei+1 = W T
n [Wi+1|Di+2](U

T
i+1)

−1.

8

Then i+1 < i+2 < n⇒ W T
n Wi+1 = 0. Furthermore, since Colsp(Di+2) ⊆ Colsp(Wi+2) and

W T
n Wi+2 = 0, it follows that W T

n Di+2 = 0 so that W T
n AWi = 0. Thus for i < n− 2 we have

by the symmetry of A that Proj (AWn; Wi) = Wi(W
T
i Wi)

−1W T
i AWn = Wi(W

T
i Wi)

−1
(
W T

n AWi

)T
=

0. So under the assumptions above, En+1 may be computed by

En+1 = AWn −
n∑

j=n−2

Proj (AWn; Wj). (5.2)

Now we show how to inductively remove some of the more expensive matrix products
occurring in the above expression.

We begin by observing that

Un+1Tn+1U
T
n+1 = [Wn+1|Dn+2]

T [Wn+1|Dn+2] =

[
W T

n+1Wn+1 W T
n+1Dn+2

DT
n+2Wn+1 DT

n+2Dn+2

]
. (5.3)

Since Un+1Tn+1 is already computed and Un+1 is a small (K×K) square matrix, the left-hand
side of Equation 5.3 may be computed cheaply; using this we set Jn+1 = (W T

n+1Wn+1)
−1 for

use in the next few iterations.

We also have W T
n AWn+1 = (W T

n+1AWn)T =
(
W T

n+1

(
En+1 +

∑n
j=0 Proj (AWn; Wj)

))T

=

ET
n+1Wn+1, and this quantity may be found as the lower left kn × kn+1 submatrix of

Tn+1U
T
n+1 = [Dn+1|En+1]

T [Wn+1|Dn+2] =

[
DT

n+1Wn+1 DT
n+1Dn+2

ET
n+1Wn+1 ET

n+1Dn+2

]
, (5.4)

which is again an inexpensive calculation. So we set Fn = W T
n AWn+1 in this way, and save

it for use in the next iteration.
Similarly, W T

n−1AWn+1 =
(
W T

n+1AWn−1

)T
= (W T

n+1En)T = ET
n Wn+1. Then since En =

[Wn|Dn+1](U
T
n)−1Pn−1, where Pn−1 is a matrix selecting the last kn−1 columns, it follows that

W T
n−1AWn+1 = P T

n−1U
−1
n

[
W T

n

DT
n+1

]
Wn+1 = P T

n−1U
−1
n

[
0

DT
n+1Wn+1

]
.

The quantity DT
n+1Wn+1 is already known from Equation 5.4 in the calculation of Fn. In this

way, we set Gn = W T
n−1AWn+1 as the last kn−1 rows of U−1

n

[
0

DT
n+1Wn+1

]
. Observe immediately

that if kn = K then Dn+1 = 0 so that Gn = 0 in this case.
Inductively, we have that the calculation of En+1 may be simplified to

En+1 = AWn + WnJnW
T
n AWn + Wn−1Jn−1Fn−1 + Wn−2Jn−2Gn−1, (5.5)

and the final term may even be omitted if kn−2 = K (which happens for approximately 1/2
of all iterations).

Finally, we simplify the computation of

Xn+1 = Xn + Proj (Y ; Wn+1),

9

from which the solution is produced. For this, we have Proj (Y ; Wn+1) = Wn+1Jn+1W
T
n+1Y

and we wish to remove the expensive computation of W T
n+1Y . We will assume inductively

that Sj = W T
j Y is known for j ≤ n and show how to find Sn+1 = W T

n+1Y . Since

Wn+1 = (the first kn+1 columns of)[Dn+1|En+1]U
T
n+1,

we have

Sn+1 = W T
n+1Y = (the first kn+1 rows of)Un+1

[
DT

n+1Y

ET
n+1Y

]
.

We need now to find DT
n+1Y and ET

n+1Y . Using Equation 5.5 to find ET
n+1Y , we have

ET
n+1Y = W T

n AY + W T
n AWnJ

T
n W T

n Y + F T
n−1J

T
n−1W

T
n−1Y + GT

n−1J
T
n−2W

T
n−2Y

= W T
n AY + HT

n JT
n Sn + F T

n−1J
T
n−1Sn−1 + GT

n−1J
T
n−2Sn−2,

where we have set Hn = W T
n AWn since this quantity has already been computed while

finding En+1 from Equation 5.5. If we assume that Colsp(AY) ⊆ Colsp(W0), then the first
term vanishes for n ≥ 1. Then since

Dn+2 = (the last K − kn+1 columns of)[Dn+1|En+1]U
T
n+1,

it follows that

DT
n+2Y = (the last K − kn+1 rows of)Un+1

[
DT

n+1Y

ET
n+1Y

]
.

Thus, if we assume inductively that Sj = W T
j Y and Vj+1 = DT

j+1Y are known for j ≤ n, we
have that for n ≥ 1

ET
n+1Y = HT

n JT
n Sn + F T

n−1J
T
n−1Sn−1 + GT

n−1J
T
n−2Sn−2 (5.6)

C = Un+1

[
Vn+1

ET
n+1Y

]
(5.7)

Sn+1 = the first kn+1 rows of C (5.8)

Vn+2 = the last K − kn+1 rows of C. (5.9)

Note: if we proceed as above, it could easily happen that we end with Wm+1 = 0 and
Dm+2 6= 0. In this case, we will not have A(X +Y) = 0 identically. However, in practice, the
rank of Dj is small (say, less or equal 5, justified by the heuristic argument and experimental
data in Section 8). Then by Proposition 4.2, rank (A(X + Y)) ≤ 2 · rank (Dm+2)

1 will be
small as well. Suppose that dim ker(A) is sufficiently large, say dim ker(A) ≥ 2K, which
is not an unreasonable assumption if we are trying to find nearly K linearly independent
vectors in the kernel. Then since Y is chosen randomly and X ∈ 〈W0, W1, . . . ,Wn〉, it is
extremely likely that X + Y will have full rank. Then if X + Y has full (or near full) rank
and A(X + Y) has small rank, we produce nearly K linearly independent vectors in ker(A)
by performing simultaneous column operations on A(X + Y) and X + Y .

1In fact, it seems to be the case here that rank (A(X + Y)) ≤ rank (Dm+2), but we have been unable to
prove this.

10

6 A compact description

Algorithm 6.1 F2-Lanczos Kernel
Input: A singular symmetric N × N matrix A over F2 (‘black-box’ form is sufficient, as
the algorithm performs no operations on A itself; we require only the ability to compute AZ
for N ×K matrices Z over F2, where K = 32 or 64 according to the machine architecture).
Output: Several (up to K) linearly independent vectors in the kernel of A.

1. Choose a random N × K matrix Y so that Y and (AY)T (AY) both have full rank.
Set n ← 0, Wn ← AY , Jn ← (W T

n Wn)−1, Sn ← W T
n Y , kn−1, kn ← 64 and all other

variables zero.

2. Compute AWn and Hn ← W T
n AWn. Set P ← JnHn, Q← Jn−1Fn−1, R← Jn−2Gn−1,

and En+1 ← AWn + WnP + Wn−1Q. If kn−1 < 64 then do En+1 ← En+1 + Wn−2R.

3. Compute T ← [Dn+1|En+1]
T [Dn+1|En+1]. Find an invertible Un+1 so that Un+1T is in

reduced row-echelon form (see note below) and set kn+1 = rank (T). Set Wn+1 to be
the first kn+1 columns of [Dn+1|En+1]U

T
n+1 and Dn+2 the remaining columns (or zero if

there are no columns). If Wn+1 = 0, goto Step 5. Otherwise, use the fact that

(Un+1T)T =

[
DT

n+1Wn+1 DT
n+1Dn+2

ET
n+1Wn+1 ET

n+1Dn+2

]
,

to set Fn ← ET
n+1Wn+1 as the lower left kn×kn+1 sub-matrix. If kn < 64, set Gn ←(the

last kn−1 rows of)U−1
n

[
0

DT
n+1Wn+1

]
. Finally, compute Un+1TUT

n+1 and use the fact that

Un+1TUT
n+1 =

[
W T

n+1Wn+1 W T
n+1Dn+2

DT
n+2Wn+1 DT

n+2Dn+2

]
,

to set Jn+1 ← (W T
n+1Wn+1)

−1.

4. If n = 0, compute ET
n+1Y directly. Otherwise, compute it via

ET
n+1Y = P T Sn + QT Sn−1 + RT Sn−2.

Compute Un+1

[
Vn+1

ET
n+1Y

]
, and set Sn+1 to be the first kn+1 rows of this quantity and Vn+2

to be the last K − kn+1 rows. Set X ← X + Wn+1Jn+1Sn+1. Set n ← n + 1 and goto
Step 2.

5. Set Z to be the nonzero columns in the reduced column echelon form of X+Y . Compute
AZ and perform simultaneous column operations on AZ and Z to produce K−d vectors
in ker(A), where d = rank (AZ).

Note: The RREF computation in Step 3 search for pivot elements from top to bottom,
choosing the first possible row each time.

11

7 Efficiency considerations

In this section, we describe and elaborate on several tricks pointed out in [4] for efficient
implementation. In practice, for large matrices A, the most time consuming operations
involved in Algorithm 6.1 are (in this order):

(i) Computing AW for a given N ×K matrix W .

(ii) Computing W T V for N ×K matrices W and V .

(iii) Computing WU where W is N ×K and U is K ×K.

We will describe Coppersmith’s trick for speeding up the computations in (ii) above in the
case when W and V are dense (the corresponding products which appear explicitly in the
algorithm usually do involve W, V, U which are dense). A very similar trick is used to speed
up the calculation (iii) above.

It is well-known that any method for performing (ii) can also be used to help speed up the
calculations of AW for many A which arise in practice. In particular, for matrices B arising
from the NFS or QS, we have that B is overall quite sparse, but that some rows are dense
(i.e., those corresponding to ‘small’ primes or a quadratic character base); furthermore, the
dense rows in these cases occur together in ‘clumps’. The suggestion in this case is that one
partition B into blocks of dense rows and sparse rows, where each dense block consists of
exactly K dense rows. Store the sparse portions of B by simply recording the locations of
nonzero entries, and store the dense blocks with K entries per machine word. To use this
Lanczos method, one takes the symmetric matrix A = BT B, and the products BT Z, BZ
may then be computed blockwise using the straightforward method on the sparse rows. For
the dense rows, use the same Coppersmith trick that we are about to describe for computing
(ii) from above.

Suppose now that W, V are both N × K dense with N � K and stored as W =
(w0, w1, . . . , wN−1)

T , V = (v0, v1, . . . , vN−1)
T where wi and vi are K−bit machine words.

That is, the (i, j)−th entry of W is the j−th bit of wi, and similarly for V . The obvious
method for computing the product W T V would be to go through W entry by entry, adding
(via XOR) the appropriate rows of V to various memory locations as necessary. It is easy
to see that if W has half of its entries nonzero, that this requires about NK/2 XOR oper-
ations. Coppersmith’s trick will reduce this to NK/8 + c1 or NK/16 + c2, where c1, c2 are
some constants that do not depend on N ; the exact reduction is machine dependent, and
some variations may even admit more reduction, depending on machine word size, available
memory, cache considerations and so on. Loosely, the idea is to group together common
additions which would be performed several times using the naive approach.

To simplify the discussion now, let us assume that K = 64 (i.e., a 64 bit architecture).
We will partition a 64 bit machine word x into 8 subwords: x = (ρ0(x)|ρ1(x)| · · · |ρ7(x)),
where each ρj(x) is an eight bit word. Create eight temporary arrays, C0, C1, . . . , C7 each of
which holds 28 eight bit words and initialize all entries of these to zero. To compute W T V ,
first perform the following operations.

12

for i = 0..N − 1 do
for j = 0..7 do

Cj[ρj(wi)]← Cj[ρj(wi)]⊕ vi

where ⊕ denotes bitwise modulo 2 addition (i.e., XOR). Now consider, for example, the first
row of the product U = W T V . If πj(x) denotes the j−th bit of x, then the first row of W T V
can be computed from the C0 array via

u0 =
∑

0≤i<N

π0(wi)=1

vi =
∑

0≤k<28

π0(k)=1

C0[k],

where both sums are again bitwise XOR. We can compute every row of U in this way

ut =
∑

0≤k<28

πr(k)=1

Cq[k], where q =

⌊
t

8

⌋
, 0 ≤ t = 8q + r < 64. (7.1)

Computing U in the obvious way from this equation requires about 8128 XOR operations.
As an alternative to directly using Equation 7.1, we present another method for recovering
U from the C0, . . . , C7 arrays.

for j = 0 to 7
k ← 0
while (k < 8)

u8j+k ← Cj[1]⊕ Cj[3]⊕ Cj[5]⊕ · · · ⊕ Cj[2
8−k − 1]

k ← k + 1
if (k < 8) then

for i = 0 to 28−k

Cj[i]← Cj[2i]⊕ Cj[2i + 1]
end for

end if
end while

end for

The number of XOR operations used by this method is roughly 4096, or about half as
many as direct calculation via 7.1, at the added expense of some additional coding complexity.

Notice that we could have instead used a partition of 64 bit machine words into four
subwords of 16 bits each. In this case, we have only four arrays C0, C1, C2, C3 each holding
216 words of 16 bits each and the cost of the initial calculation of the Cj arrays drops to only
4N versus 8N as above. However, the cost of reassembling the final matrix product increases
to about 221 XOR operations. Since the reassembly cost is fixed (e.g. does not depend on N),
this coarser subdivision is asymptotically better by a factor of 1/2. Of course, in practice,
the cutoff where the coarser subdivision is faster is highly implementation dependent, but
the obvious estimate puts it around N ≈ 219.

13

8 Expected size of Dn and experimental results

In this section, we first give a heuristic argument that the dimensions of the spaces Colsp(Dn)
should be small. We then give some supporting data obtained by applying the algorithm
in this paper to several matrices which arose from the NFS factorization of some integers.
The algorithm was implemented with K = 64 and all timings reported here are for a 64 bit
AMD Athlon processor.

The sequence of matrices [Dn+1|En+1] computed in Step 3 of Algorithm 6.1 is surely
not a random sequence. Nevertheless, the computational evidence suggests that rank (T) =
rank ([Dn+1|En+1]

T [Dn+1|En+1]) does behave very much like rank (W T W) where W is a
random N ×K full rank matrix over F2. In [8], Sendrier computes for N ≥ 2K the number
of (N, K) linear block codes over Fq whose hull has dimension `. Consider G = W T as the
generator matrix for a linear block code C over F2. Then the hull of this code, C ∩ C⊥, is
precisely (the transpose of) the set of vectors in Colsp(W) which are orthogonal to all of
Colsp(W). It follows from Theorem 3 of [8] that if K is fixed and W is a uniform random
variable on the space of N ×K binary matrices with full rank, then for 0 ≤ ` ≤ K

Prob(corank (W T W) = `) = 2−`(`+1)/2
∏

`+1≤i≤K

(
1− 2−i

) ∏
1≤i≤K−`

2

(
1− 4−i

)−1
(

1 + O

(
K

2N/2−`

))
.

The limiting values of this expression as N → ∞ are given for comparison in the last row
of Table 1. We also remark that the expected rank for such W tends to K − 0.7644997803,
and we obtain the same numerical values as [6]. However, the analysis given there does not
seem to directly apply to our situation here unless we are missing an obvious reduction from
the column-reduced echelon form of W to the K ×K case.

The following table gives the results from applying our K = 64 implementation of Al-
gorithm 6.1 to matrices arising from the NFS factorizations of various integers. The first
column is the dimensions of the original matrix M , from which we build a symmetric matrix
A = MT M . The second column is the actual ‘wall-clock’ time, measured in minutes, and the
third is the number of iterations required (e.g., the value of n at step 5). The fourth column
is the average dimension of Dn = Colsp(Dn), and the remaining columns are the frequencies
with which dim(Dn) took on the specified values (neglecting D1, which is zero by construc-
tion). The last row gives the values predicted by the argument above as N → ∞. In none
of these experiments did we encounter any occurrences of dim(Dn) ≥ 5. The limiting values
corresponding to δ = 6, 7, 8 are roughly 6.8× 10−7, 5.4× 10−9 and 2.1× 10−11 respectively.

We should also remark that the matrices used in these experiments had varying densities
which affects the overall runtime of this algorithm inasmuch as denser matrices B require
more time to compute BT BX.

9 Conclusions and Future Work

In this paper, we gave a new variant of the Lanczos algorithm over the binary field F2, which
finds several vectors in the kernel of a symmetric N×N matrix A whose kernel is sufficiently
large (say, of dimension at least twice the size of the desired number of kernel vectors). We

14

Frequency of dim(Dn) = δ

size time iterations avg. δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

51362× 51706 0.5 812 .815 .4236 .4002 .1466 .0246 0 0

418172× 420407 161 6612 .7603 .4267 .4094 .1422 .0206 .0012 0

547795× 550684 247 8663 .7738 .4138 .4217 .1431 .0196 .0017 0

579364× 582582 263 9163 .777 .4133 .4204 .1438 .0210 .0015 0

709413× 713281 443 11217 .7576 .4253 .4140 .1393 .0203 .0010 0

limiting .7645 .4194 .4194 .1398 .0200 .0013 .00004

Table 1: Experimental results K = 64, A = MT M

also reproduced, with some additional detail, observations by Coppersmith [4] which lead to
more efficient implementation.

Each iteration of the algorithm requires a single ‘black-box’ computation of the form AX
and a number of several smaller matrix calculations; each iteration of our algorithm requires
about the same work as in the variation given by Montgomery [6]. Our conjecture is that
this algorithm needs about N/(K − 0.7645) iterations where K is the machine word size in
bits (typically 32 or 64), which is also the conjectured number of iterations needed by [6].
However, the sequence of subspaces produced here have different algebraic properties than
[6], so perhaps this variation will eventually prove useful in proving some rigorous results.

This research was partially supported by a grant from the Texas Tech University Research
Enhancement Fund (REF).

References

[1] In The Development of the Number Field Sieve, volume 1554 of Lecture Notes in Math-
ematics, New York, 1993. Springer Verlag.

[2] E. A. Bender and E. R. Canfield. An approximate probabilistic model for structured
gaussian elimination. Journal of Algorithms, 31:271–290, 1999.

[3] Don Coppersmith. Solving linear equations over GF(2): block Lanczos algorithm. Linear
Algebra Appl., 192:33–60, 1993. Computational linear algebra in algebraic and related
problems (Essen, 1992).

[4] Don Coppersmith. Solving homogeneous linear equations over GF(2) via block Wiede-
mann algorithm. Math. Comp., 62(205):333–350, 1994.

[5] C. Lanczos. Applied Analysis. Prentice Hall,, Englewood Cliffs, NJ, 1956.

[6] Peter L. Montgomery. A block Lanczos algorithm for finding dependencies over GF(2).
In Advances in cryptology—EUROCRYPT ’95 (Saint-Malo, 1995), volume 921 of Lecture
Notes in Comput. Sci., pages 106–120. Springer, Berlin, 1995.

15

[7] M. Peterson. Parallel block lanczos for solving large binary systems. Master’s thesis,
Texas Tech University, 2006.

[8] Nicolas Sendrier. On the dimension of the hull. SIAM Journal on Discrete Mathematics,
10(2):282–293, 1997.

16

