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Abstract

In several recent works of D. Kahrobaei, C. Koupparis, and V. Shpilrain, public-

key protocols have been proposed which depend on the difficulty of computing discrete

logarithms in matrix rings over group rings. In particular, the specific ring of 3 × 3

matrices over F7S5 has been proposed for use in some of these protocols. In this paper,

we show that the discrete logarithm paper in this matrix ring can be solved on a modern

PC in seconds, and we give a solution to the challenge problem over F2S5 proposed in

one of the aforementioned works.

1 Introduction

In the recent works [10, 11, 12], several public-key protocols have been suggested whose
security is dependent on the supposed difficulty of computing discrete logarithms in rings of
matrices over group rings. The specific suggestion of 3×3 matrices over the group ring F7S5

has been made in all three of these references. The purpose of this article is to demonstrate
that there is a practical algorithm for computing discrete logarithms in this matrix ring in
seconds on a modern personal computer.

Throughout, let R = F7S5. It was shown in [15] that the regular representation of S5

by 120 × 120 matrices over F7 can be used to embed the 3 × 3 matrix ring M3(R) into
M360(F7), and the algorithm of Menezes and Wu [13] was adapted to singular matrices,
which shows already that the Discrete Logarithm Problem (DLP) in M3(R) is at most as
hard as the DLP in F7360 . Recent progress on the DLP in finite fields (i.e., Joux’s algorithm
[6, 2]) already makes this a tractable problem on digital computers. In [15], this embedding
and the Menezes-Wu algorithm are used to show that the DLP in M3(R) can be solved
by a probabilistic quantum algorithm in expected polynomial-time. In this paper, we show
additionally that matrices resulting from this embedding do not give rise to maximally
difficult DLPs. In fact, the matrices resulting from this embedding have minimal polynomials
of degree at most 78, having irreducible factors of degree at most 18. As a result, the protocols
proposed in [10, 11, 12] are broken by computing discrete logarithms in several finite rings



of orders 7d1 , . . . , 7dk with d1 + · · · + dk ≤ 78 and dj ≤ 18 for 1 ≤ j ≤ k. The relevant
embeddings can be computed and these DLPs solved in seconds on a digital computer.

Although the ideas in this paper generalize to group rings FqSn with gcd(q, n!) = 1, for
clarity of exposition we will focus on the specific case F7S5 proposed in [10, 11, 12]. The
challenge problem from the appendix of [10] is in M3(F2S5), whose structure is not described
as easily asM3(R), but the method described herein was used to solve that challenge problem.
The solution is given in Section 8.

2 Cryptosystems using M3(R)

In [10] a Diffie-Hellman protocol is proposed over M3(R). In [11, 12], the following protocol
is proposed which is similar in nature to the Cramer-Shoup system [4].

1. Alice chooses a hash function H on M3(R)3 which produces integers in some large
range. She chooses integers x1, x2, y1, y2, z from some large interval [0, n) and non-
identity matrices A1, A2 ∈M3(R) such that A1 is invertible and A1A2 = A2A1. Finally,
she computes

B = Az1,

C = Ax11 A
x2
2 ,

D = Ay11 A
y2
2 ,

and publishes her public key (n,A1, A2, B, C,D).

2. Bob wishes to send Alice the message N ∈ M3(R). He chooses a random integer
r ∈ [0, n) and computes U1 = Ar1, U2 = Ar2, V = BrN , and W = CrDrα, where
α = H(U1, U2, V ). He sends (U1, U2, V,W ) to Alice.

3. Alice first verifies that W = Ux1+αy1
1 Ux2+αy2

2 , rejecting the transmission if this is not
satisfied. She then computes

(U z
1 )−1 V = (Arz1 )−1BrN = (Arz1 )−1Arz1 N = N.

If an attacker can find an integer r′ for which U1 = Ar
′

1 , then Br′ =
(
Ar

′
1

)z
= (Ar1)

z = Br

so that N =
(
Br′
)−1

V is discovered. The algorithm described below for computing discrete

logarithms in M3(R) will also produce the order of a matrix in M3(R); once the order of Br′

is known then (Br′)−1 may be computed via exponentiation.

3 The embedding

Consider the regular representation of S5 over the field F7 of seven elements

ρ : S5 ↪→ GL(120,F7).
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This map can be linearly extended to

ψ : F7S5 ↪→M120(F7),

which in turn induces a ring monomorphism

Ψ : M3(F7S5) ↪→M360(F7)

by applying ψ to each entry. It follows for X, Y ∈ M3(R) that Y = Xk iff Ψ(Y ) = Ψ(X)k,
translating a DLP in M3(R) into an equivalent DLP in M360(F7). In the next section, we’ll
show that the image of Ψ is not a simple ring and admits a decomposition (4.1) which can
be exploited to expedite the calculation of discrete logarithms in M3(R).

4 Structure of matrices in Im Ψ

The group ring F7S5 is semi-simple by Maschke’s Theorem [9, Theorem 8.1], since the char-
acteristic of the ground field does not divide the group order:

char(F7) = 7 6 | 120 = |S5|.

Thus, Wedderburn Theory tells us that there exists a decomposition into simple rings

F7S5
∼= Mn1(∆1)× · · · ×Mnk

(∆k),

for suitable division algebras ∆1, . . . ,∆k [5, Section 18.2]. Finally, since F7 is a splitting field
for S5 [7, Section 5.4], we obtain

F7S5
∼= Mn1(F7)× · · · ×Mn7(F7)

where the ni’s are the degrees of the irreducible representations of S5 which we can read off
the character table for S5 given in Table 1.

We note that this works in general: Whenever char(Fq) 6 | |Sn| we obtain

FqSn ∼= Mn1(Fq)× · · · ×Mnk
(Fq)

where the ni’s are the degrees of the irreducible representations of Sn which we can read
off the character table. Without loss of generality we assume that the ni’s are ordered
non-decreasingly. Then we have

n1 = n2 = 1, ∃i such that ni = n− 1,

and furthermore
n2
1 + · · ·+ n2

k = n!

Finally note also that k is the number of conjugacy classes in Sn, i.e., set k = k(n) then we
have the following recursion formula [3, Chapter 13]

∞∑
n=0

k(n)tn =
∞∏
i=1

(1− ti)−1.
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classes: 1 (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4) (1 2)(3 4 5)
sizes: 1 10 20 30 24 15 20

χ1 1 1 1 1 1 1 1
χ2 1 -1 1 -1 1 1 -1
χ3 4 2 1 0 -1 0 -1
χ4 4 -2 1 0 -1 0 1
χ5 5 -1 -1 1 0 1 -1
χ6 5 1 -1 -1 0 1 1
χ7 6 0 0 0 1 -2 0

Table 1: Character table of S5 from [5].

Proposition 4.1 Let X ∈ Im Ψ. Then the minimal polynomial pX of X has degree at most
78 and each irreducible factor of pX has degree at most 18.

Proof: From the character table of S5 given in Table 1 [9, Chapter 19], it follows that the
seven irreducible characters of S5 have degrees 1,1,4,4,5,5, and 6. Thus we have

F7S5
∼= M1(F7)×M1(F7)×M4(F7)×M4(F7)×M5(F7)×M5(F7)×M6(F7).

Therefore, we have that

Im Ψ ∼= M3(F7S5) ∼= M3(F7)×M3(F7)×M12(F7)×M12(F7)×
M15(F7)×M15(F7)×M18(F7). (4.1)

Suppose

A = (A1, . . . , A7) ∈M3(F7)×M3(F7)×M12(F7)×M12(F7)×
M15(F7)×M15(F7)×M18(F7),

and let pj(t) be the minimal polynomial of Aj for 1 ≤ j ≤ 7. With f(t) = p1(t) . . . p7(t)
we have that f(A) = 0, so that f is divisible by the minimal polynomial pA of A. Then
deg pA ≤ deg f ≤ 3 + 3 + 12 + 12 + 15 + 15 + 18 = 78. Furthermore, each irreducible factor
q(t) of pA divides f , and hence divides some pj, so that deg q ≤ 18. The isomorphism (4.1)
implies the same result for all X ∈ Im Ψ.

5 DLP in Im Ψ

As mentioned in the introduction, the algorithm of Menezes and Wu [13] can be adapted to
compute discrete logarithms in Mn(Fq); i.e., it can be adapted to handle singular matrices.
The idea of their algorithm is to compute (in polynomial-time) the Jordan decomposition
of the base-matrix. Then for each irreducible factor f(t) of the characteristic polynomial,
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they compute a discrete logarithm in the field extension Fqdeg f . In the present context, this
reduces DLPs in M3(R) to computing a discrete logarithm in each field F7d1 , . . . ,F7d7 for
some d1, . . . , d7 which satisfy d1, . . . , d7 ≤ 18 and d1 + · · ·+ d7 ≤ 78.

An alternate method for solving this discrete logarithm problem is described in a forth-
coming paper by the first author. In the remainder of the paper, we assume that Fq is a prime
field. Briefly, to solve Y = Xk in Mn(Fq), let µ(t) be the minimal polynomial of X with fac-
torization µ(t) = π1(t)

e1 · · · πr(t)er . Write Y = z(X) for a polynomial z with deg z < deg µ.
For each 1 ≤ j ≤ r, use a Pohlig-Hellman strategy [17] to solve tkj ≡ z(t) (mod πj(t)

e)
by successively computing discrete logarithms in multiplicative subgroups (of comparable
orders) of

Fq[t]/〈πj〉, Fq[t]/〈π2
j 〉, . . . , Fq[t]/〈π

ej
j 〉

A generalized Chinese Remainder Theorem is then used to find an integer k′ for which
tk

′ ≡ z(t) (mod µ(t)) , and it follows that Xk′ = Y .
Specifically, we proceed as follows. To simplify notation, suppose j is fixed and let e = ej,

π = πj. Let N` denote the multiplicative order of t in the ring Fq[t]/〈π(t)`〉. Let k` be a
nonnegative integer for which tk` ≡ z(t) (mod π(t)`) .

First determine the multiplicative order N1 of t in Fq[t]/〈π〉 in the usual way by factoring
the order qdeg π − 1 of the multiplicative group; if q and deg π are small, as in the present
case, this can be done using tables of known factorizations for pm − 1 with small p and m.
The discrete logarithm problem

tk1 ≡ z(t) (mod π(t))

is solved using any algorithm for discrete logarithms in the finite field Fq; our implementation
simply uses Pohlig-Hellman with Pollard’s rho.

Suppose now that N` and k` are known and N`+1 and k`+1 must be determined. If
tN` ≡ 1 (mod π(t)`+1) , then N`+1 = N` and so k`+1 = k`. Otherwise, we first claim that
N`+1 = qN`. To see this, note that tN` = 1 + h(t)π(t)` for some polynomial h. Let h(t) =
h0(t) + h1(t)π(t) with deg h0 < deg π, and it follows that

tN` ≡ 1 + h0(t)π(t)` (mod π(t)`+1) ,

and h0(t) 6= 0. Therefore,

tqN` ≡ (1 + h0(t)π(t)`)q ≡ 1 (mod π(t)`+1) ,

and so N`+1 = qN`. Since k`+1 ≡ k` (mod N`) , it follows that k`+1 = k` + sN` for some
integer s, so that

(tN`)s ≡ z(t)t−k` (mod π(t)`+1) .

Since the multiplicative order of tN` in Fq[t]/〈π(t)`+1〉 is q, it follows that there exists such
an integer s with 0 ≤ s < q. Then k`+1 = k` + sN` satisfies tk`+1 ≡ z(t) (mod π(t)`+1) .

Therefore, each DLP of the form tk ≡ z(t) (mod π(t)e) can be solved by computing one
DLP in the finite field Fq[t]/〈π〉 and at most e− 1 DLPs in groups of order q. The process
is summarized below.
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Algorithm 5.1 (DLP-local)
Input: An irreducible polynomial π(t) ∈ Fq[t], a positive integer e and z(t) in the cyclic
subgroup 〈t〉 of Fq[t]/〈π(t)e〉.
Output: The order N of t modulo π(t)e and an integer k such that tk ≡ z(t) (mod π(t)e) .

1. Use the factorization of qdeg π − 1 to find the order of t modulo π(t), and set N to be
this order. Use Pohlig-Hellman and Pollard’s rho method to find an integer 0 ≤ k < N
such that tk ≡ z(t) (mod π(t)) .

2. For j from 2 to e do as follows: if tN 6≡ 1 (mod π(t)j) then find an integer 0 ≤ k0 < q
such that (tN)k0 ≡ z(t)t−k (mod π(t)j) and set k ← k + k0N and N ← qN .

The entire algorithm is then summarized as follows.

Algorithm 5.2 (DLP-global)
Input: Matrices A,B ∈MN(FqSn) such that A is invertible and B ∈ 〈A〉.
Output: A nonnegative integer k such that B = Ak, and the order N of A.

1. Compute the embeddings X = Ψ(A) ∈ GLn!N(Fq) and Y = Ψ(B) ∈ GLn!N(Fq) as
described in Section 6.

2. Compute the minimal polynomial µ of X and factor it over Fq as µ(t) = π1(t)
e1 . . . πr(t)

et.

3. Find z(t) ∈ Fq[t] with deg z < deg µ such that Y = z(X). Set k ← 0, N ← 1.

4. For j from 1 to r do all of the following: use Algorithm 5.1 to find the order Nj of t
modulo πj(t)

ej and an integer kj such that tkj ≡ z(t) (mod πj(t)
ej) . Use the Euclidean

Algorithm to find integers u, v ∈ Z such that uN + vNj = gcd(N,Nj) = g and set
k ← kju(N/g) + kv(Nj/g), and N ← NNj/g, and k ← k (mod N) .

5. Output k and N .

6 Complexity analysis

In this section we give a crude upper bound on the complexity of the attack. We suppose
that the group ring under consideration is FqSn and the attacker will compute a discrete
logarithm in the matrix ring MN(FqSn). In this case, the keysize for the protocol is at least
k = n!N2 log2 q bits.

The embedding ψ : FqSn −→Mn!(Fq) is computed as follows. Enumerate Sn = {σ1, . . . , σn!},
and let

∑
aiσi ∈ FqSn. For each 1 ≤ j ≤ n!, compute the product in the group-ring(

n!∑
i=1

aiσi

)
σj =

∑
a
(j)
i σi,
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and we have that (a
(j)
1 , . . . , a

(j)
n! )T is the j-th column of ψ (

∑
aiσi). With a precomputed

lookup table for the operation in Sn, each column is computed using O(n!) Fq-operations.
We therefore use O((n!)2) Fq-operations to compute ψ (

∑
aiσi), and O((n!N)2) ≤ O(k2)

Fq-operations to compute Ψ (
∑
aiσi).

The minimal polynomial µ of the (n!N)× (n!N) matrix Ψ (
∑
aiσi) can be computed in

a straightforward way with O((n!N)4) ≤ O(k4) operations in Fq.
One approach to factor µ is to first perform a squarefree factorization usingO(deg µ(deg µ log2 q)

2)
bit operations [1, Thm. 7.5.2]. The randomized Cantor-Zassenhaus Algorithm is used in a
recursive fashion to find divisors; the probability of success is at least 1/2 at each stage,
so we expect to use it no more than twice to find a divisor each time. Each applica-
tion is accomplished with O((deg µ + log2 q)(deg µ log2 q)

2) bit operations [1, Thm. 7.4.6].
This is combined with an irreducibility test using the same number of operations [1, Thm.
7.6.2]. The number of times the Cantor-Zassenhaus Algorithm is expected to be used is
not more than twice the total number of irreducible factors of µ, which itself is at most
deg µ. Since deg µ ≤ n!N , the entire process of factoring µ can be accomplished with
O((n!)3N3 log2

2 q(n!N + log2 q)) bit operations, or O(k4) Fq-operations.
Therefore, Steps 1 and 2 in Algorithm 5.2 can be performed with O(k4) operations. Since

this is polynomial-time in the input size, we ignore it for the remainder of this section. But
note that in this estimate we have not used the fact that deg µ is known to be discernibly
smaller than n!N . In particular, if n = 5 and char(Fq) 6 | n!, then deg µ ≤ 26N < 120N =
n!N . So in practice, this portion tends to be faster than this complexity bound would
indicate.

In Step 3, we need to find z0, z1, . . . , zd−1 ∈ Fq such that

Y = z0I + z1X + · · ·+ zd−1X
d−1,

where d = deg µ. In the worst case, one may cast this as a system of (n!N)2 equations in
d unknowns and solve it using Gaussian Elimination. This would require O(d(n!N)4) Fq-
operations. Since d < n!N , the number of Fq-operations is bounded by O((n!N)5) ≤ O(k5),
which is again polynomial-time in the input size. In practice, one may also use much faster
probabilistic techniques.

In Step 4, each application of Algorithm 5.1 requires computing one DLP in the finite
field Fq[t]/〈πj(t)〉, and at most ej − 1 more discrete logarithms in groups of order q. This is
done using Pollard’s rho method [18] and a total of O(qdeg πj/2 +(ej−1)q1/2) = O(ejq

deg πj/2)
operations in subrings of Fq[t]/〈πj(t)ej〉. This gives a bound of O((ej deg πj)

2ejq
deg πj/2) =

O(e3j(deg πj)
2qdeg πj/2) Fq-operations. Letting δ = max{deg π1, . . . , deg πr}, this isO(e3jδ

2qδ/2)

Fq-operations for each 1 ≤ j ≤ r. So in total, Step 4 can be performed with O(δ2qδ/2(e31 +
· · ·+ e3r)) Fq-operations. Additionally, since e1 + · · ·+ er ≤ deg µ, we can bound the number
of operations by O(δ2qδ/2(deg µ)3) ≤ O((n!Nδ)3qδ/2).

The results in the text generalize to show that if n = 5 and char(Fq) 6 | 5! then δ ≤ 6N .
So if n = 5 is fixed, the eavesdropper’s problem is solved with O(N6q3N) Fq-operations. If,
in addition, N = 3 is fixed this yields a complexity bound of O(q9) Fq-operations to solve
the DLP in this ring.

From the character table of S6 [8], it can be similarly shown that if n = 6 and char(Fq) 6 | 6!,
then δ ≤ 16N . In this case, Algorithm 5.2 solves the eavesdropper’s problem with O(N6q8N)
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Ring # DLPs Avg. solve time Max. solve time Max. prime subgroup

M3(Z7S5) 1000 2.5 sec. 6.2 sec. 16148168401
M3(Z11S5) 1000 157.8 sec. 6063.3 sec. 50544702849929377
M3(Z13S5) 1000 6.8 sec. 212.0 sec. 15798461357509
M3(Z17S5) 1000 8.1 sec. 58.7 sec. 2141993519227
M3(Z19S5) 1000 13.3 sec. 536.3 sec. 99995282631947

Table 2: Experimental results from computing discrete logarithms in various rings.

Fq-operations. Similarly, if n = 7 and char(Fq) 6 | 7! then δ ≤ 35N and the eavesdropper’s
problem can be solved with O(N6q17.5N) operations. Note, however, that the keysize grows
rapidly with n; if n = 7 the keysize would already be approximately 5040N2 log2 q bits.
For this reason, we have not attempted to carry out an asymptotic runtime estimate in
terms of n. But in general, the eavesdropper’s problem can be solved using O(N6qNδn/2)
Fq-operations where δn is the maximum degree of an irreducible representation of Sn. The
first few values of δn for n = 2, 3, . . . are 1, 2, 3, 6, 16, 35, 90, 216, 768, 2310, . . . [16].

7 Experimental results

Table 2 summarizes experimental results obtained using our implementation in C of the
attack given in this paper. We solved instances of discrete logarithms in rings of 3 × 3
matrices over FqS5 for several prime values of q. In each experiment, matrices X ∈M3(FqS5)
were chosen randomly until finding an invertible one. Then a random exponent k of 2048
bits was chosen, Y = Xk computed, and k discarded. Note that since X has minimum
polynomial with degree at most 78, the order of X is less than q78, which is well below 22048

for the primes used in these experiments. The indicated timings are for the times required
to calculate the resulting discrete logarithms logX Y .

The experiments were performed on a single core of an Intel i7 processor at 1.6GHz and
the number of times the experiment was repeated for each ring is indicated in the table. For
each set of experiments, we also indicate the largest prime order subgroup encountered, as
this has a large effect on the runtime of this Pohlig-Hellman type implementation, at Step 1
of Algorithm 5.1.

8 Example

In the appendix of [10] a Diffie-Hellman-like challenge problem is given consisting of matrices
M,Ma,M b ∈ F2S5. The structural results given in this paper do not directly generalize to
this case, since char(F2) divides |S5|. Nevertheless, a precise decomposition is not necessary.
All that was necessary to solve the given challenge problem was to compute the images of
M and Ma under the embedding Ψ : M3(F2S5) −→ M360(F2), and proceed as described in
Section 5.

Initial calculations showed that Ψ(Ma) was not in the F2-span of Ψ(M)0, . . . ,Ψ(M)d−1,
where d was the degree of the minimal polynomial of Ψ(M) which would be a contradiction.
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However, with the group operation of S5 written in reverse, (στ)(j) = (τ ◦ σ)(j) = τ(σ(j)),
the contradiction was resolved and a solution found. With this group operation, we found
that Ψ(M) has minimal polynomial

µ(t) = t63 + t60 + t58 + t57 + t56 + t55 + t51 + t50 + t45 + t44 + t43 + t42+

t41 + t40 + t36 + t35 + t34 + t33 + t31 + t22 + t20 + t17 + t16 + t12.

In light of this, there is a solution a with a < 263 · 26 = 269, and it could be found using
Pollard’s Rho method. However, the minimal polynomial µ factors over F2 as

µ(t) = (t8 + t7 + t5 + t+ 1)3(t7 + t4 + t3 + t2 + 1)2(t3 + t+ 1)4t12(t+ 1).

By solving the obvious 3602 × 64 linear system, we found that Ma = z(M), where

z(t) = t62 + t61 + t60 + t59 + t55 + t53 + t50 + t49 + t45 + t44 +

t42 + t41 + t40 + t37 + t35 + t31 + t30 + t28 + t27 + t26 +

t24 + t23 + t22 + t21 + t19 + t18 + t17 + t14 + t12

By solving tk ≡ z(t) (mod π(t)e) for each irreducible π(t) 6= t with π(t)e|µ(t) and using
the Chinese Remainder Theorem 1 , we determined that t217183 ≡ z(t) (mod µ(t)) , so that
Ψ(M)217183 = Ψ(Ma), and hence M217183 = Ma.
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