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Abstract

We consider the k-higher Mahler measure mk(P ) of a Laurent polynomial P as

the integral of logk |P | over the complex unit circle. In this paper we derive an

explicit formula for the value of |mk(P )| /k! as k →∞.
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1. Introduction

For a non-zero Laurent polynomial P (z) ∈ C[z, z−1], the k-higher Mahler

measure of P is defined [4] as

mk(P ) =

∫ 1

0

logk
∣∣P (e2πit)∣∣ dt.

For k = 1 this coincides with the classical (log) Mahler measure defined as

m(P ) = log |a|+
n∑
j=1

log (max{1, |rj |}) , for P (z) = a

n∏
j=1

(z − rj),

since by Jensen’s formula m(P ) = m1(P ) [3].

Though classical Mahler measure was studied extensively, higher Mahler

measure was introduced and studied very recently by Kurokawa, Lalin and

Ochiai [4] and Akatsuka [1]. It is very difficult to evaluate k-higher Mahler

measure for polynomials except few specific examples shown in [1] and [4] , but

it is relatively easy to find their limiting values.

In [5] Lalin and Sinha answered Lehmer’s question [3] for higher Mahler

measure by finding non-trivial lower bounds for mk on Z[z] for k ≥ 2.
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In [2] it has been shown using Akatsuka’s zeta function of [4] that for |a| = 1,

|mk(z + a)|/k! → 1/π as k → ∞. In this paper we generalize this result by

computing the same limit for an arbitrary Laurent polynomial P (z) ∈ C[z, z−1]

using a different technique.

Theorem 1.1. Let P (z) ∈ C
[
z, z−1

]
be a Laurent polynomial, possibly with

repeated roots. Let z1, . . . , zn be the distinct roots of P . Then

lim
k→∞

|mk(P )|
k!

=
1

π

∑
zj∈S1

1

|P ′(zj)|
,

where S1 is the complex unit circle |z| = 1, and the right-hand side is taken as

∞ if P ′(zj) = 0 for some zj ∈ S1, i.e., if P has a repeated root on S1.

2. Proof of the theorem

We first prove several lemmas which essentially show that the integrand may

be linearly approximated near the roots of P on S1.

Lemma 2.1. Let P (z) ∈ C
[
z, z−1

]
be a Laurent polynomial and A ⊆ [0, 1] be

a closed set such that P
(
e2πit

)
6= 0 for all t ∈ A. Then

lim
k→∞

1

k!

∫
A

logk
∣∣P (e2πit)∣∣ dt = 0

Proof. Since A is closed, due to the periodicity of e2πit and continuity of P (e2πit)

there exist constants b and B such that 0 < b ≤
∣∣P (e2πit)∣∣ ≤ B on A. Then

for each positive integer k, (logk
∣∣P (e2πit)∣∣)/k! is bounded between (logk b)/k!

and (logk B)/k!, and therefore (1/k!)
∫
A

logk
∣∣P (e2πit)∣∣ dt is bounded between

(µA logk b)/k! and (µA logk B)/k!, where µA is the Lebesgue measure of A.

The result follows by letting k tend to infinity.

Lemma 2.2. Let P (z) ∈ C
[
z, z−1

]
be a Laurent polynomial with a root of order

one at z0 = e2πit0 , and P ′(z) be its derivative with respect to z. Then for each

ε ∈ (0, 1) there exists δ > 0 such that |t− t0| < δ implies

∣∣2π(1− ε)(t− t0)P ′
(
e2πit0

)∣∣ ≤ ∣∣P (e2πit)∣∣ ≤ ∣∣2π(1 + ε)(t− t0)P ′
(
e2πit0

)∣∣ .
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Proof. Set f(t) = P
(
e2πit

)
. Then f ′(t0) = 2πiP ′

(
e2πit0

)
6= 0 and

f ′(t0) = lim
t→t0

f(t)− f(t0)

t− t0
.

Since f ′(t0) 6= 0, it follows that for each ε ∈ (0, 1) there exists δ > 0 such that

0 < |t− t0| < δ implies

1− ε <
∣∣∣∣f(t)− f(t0)

(t− t0)
· 1

f ′(t0)

∣∣∣∣ < 1 + ε,

which proves the lemma since f(t0) = P (z0) = 0.

Lemma 2.3. Let c 6= 0, and t0 ∈ R. Then for all ε > 0,

lim
k→∞

1

k!

∣∣∣∣ ∫ t0+ε

t0−ε
logk |c(t− t0)|dt

∣∣∣∣ =
2

|c|
.

Proof. For k ≥ 1 and x > 0, it follows from integration by parts and induction

that ∫ x

0

logk udu = x logk x+ x

k∑
j=1

(−1)j k! logk−j x

(k − j)!
.

Using the even symmetry of the integrand and substituting u = |c(t − t0)|, we

have
1

k!

∣∣∣∣ ∫ t0+ε

t0−ε
logk |c(t− t0)|dt

∣∣∣∣ =
2

|c| k!

∣∣∣∣∣
∫ |cε|
0

logk u du

∣∣∣∣∣ ,
and it follows that

lim
k→∞

1

k!

∣∣∣∣ ∫ t0+ε

t0−ε
logk |c(t− t0)|dt

∣∣∣∣ = lim
k→∞

2

|c| k!

∣∣∣∣∣
∫ |cε|
0

logk udu

∣∣∣∣∣
= 2ε lim

k→∞

∣∣∣∣∣∣ logk |cε|
k!

+

k∑
j=1

(−1)j logk−j |cε|
(k − j)!

∣∣∣∣∣∣
= 2ε

∣∣∣∣∣
∞∑
n=0

(−1)n logn |cε|
n!

∣∣∣∣∣
= 2εe− log |cε| = 2/|c|.

Lemma 2.4. Let P (z) ∈ C
[
z, z−1

]
be a Laurent polynomial with a root of order

one at z0 = e2πit0 . Then for all sufficiently small δ > 0,

lim
k→∞

1

k!

∣∣∣∣∣
∫ t0+δ

t0−δ
logk

∣∣P (e2πit)∣∣ dt

∣∣∣∣∣ =
1

π |P ′ (e2πit0)|
.

3



Proof. First notice that since z0 has order one, it cannot be a root of P ′(z).

Now let ε ∈ (0, 1). By Lemma 2.2 there is a δ > 0 such that |t− t0| < δ implies∣∣2π(1− ε)(t− t0)P ′
(
e2πit0

)∣∣ ≤ ∣∣P (e2πit)∣∣ ≤ ∣∣2π(1 + ε)(t− t0)P ′
(
e2πit0

)∣∣ ≤ 1.

Setting c = 2π(1− ε)P ′
(
e2πit0

)
and d = 2π(1 + ε)P ′

(
e2πit0

)
it follows that for

0 < |t− t0| < δ,

log |c(t− t0)| ≤ log
∣∣P (e2πit)∣∣ ≤ log |d(t− t0)| ≤ 0,

and hence∣∣∣logk |c(t− t0)|
∣∣∣ ≥ ∣∣∣logk

∣∣P (e2πit)∣∣∣∣∣ ≥ ∣∣∣logk |d(t− t0)|
∣∣∣ ≥ 0,

for all k ∈ N. Therefore,

t0+δ∫
t0−δ

∣∣∣logk |c(t− t0)|
∣∣∣ dt ≥

t0+δ∫
t0−δ

∣∣∣logk
∣∣P (e2πit)∣∣∣∣∣ dt ≥

t0+δ∫
t0−δ

∣∣∣logk |d(t− t0)|
∣∣∣ dt ≥ 0.

But on (t0− δ, t0 + δ), for each fixed k, either all three functions logk |c(t− t0)|,

logk
∣∣P (e2πit)∣∣ and logk |d(t− t0)| are negative (if k is odd), or positive (if k is

even). So the integrals of their absolute values are equal to the absolute values

of their integrals and therefore we have∣∣∣∣∣∣
t0+δ∫
t0−δ

logk |c(t− t0)|dt

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
t0+δ∫
t0−δ

logk
∣∣P (e2πit)∣∣ dt

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
t0+δ∫
t0−δ

logk |d(t− t0)|dt

∣∣∣∣∣∣ .
By Lemma 2.3 it follows that

2

|c|
≥ lim
k→∞

1

k!

∣∣∣∣∣
∫ t0+δ

t0−δ
logk

∣∣P (e2πit)∣∣∣∣∣∣∣ ≥ 2

|d|
.

Since c = 2π(1−ε)P ′
(
e2πit0

)
and d = 2π(1+ε)P ′

(
e2πit0

)
and ε > 0 is arbitrary,

we are done.

With these lemmas, we now proceed to prove the main theorem.

Proof of Theorem 1.1. First notice that

mk(P )

k!
=

1

k!

∫ 1

0

logk
∣∣P (e2πit)∣∣ dt.
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If P (z) does not have any roots on S1 then choosing A = [0, 1] and applying

Lemma 2.1 we see that |mk(P )| /k! → 0 as k → ∞ and the theorem holds in

this case.

Now let t1, . . . , tm ∈ [0, 1] such that e2πit1 , . . . , e2πitm are the distinct roots

of P on S1. Let δ > 0 be sufficiently small so that |P (e2πitj )| < 1 on each

interval (tj − δ, tj + δ), j = 1, . . . ,m, and these intervals are disjoint and define

A = [0, 1] r
m⋃
j=1

(tj − δ, tj + δ).

Using Lemma 2.1, and the fact that log |P (e2πit)| < 0 on [0, 1] \A, we find that

lim
k→∞

|mk(P )|
k!

= lim
k→∞

1

k!

∣∣∣∣∣
∫
A

logk |P (e2πit)|dt+

∫
[0,1]\A

logk |P (e2πit)|dt

∣∣∣∣∣
= lim

k→∞

m∑
j=1

1

k!

∣∣∣∣∣
∫ tj+δ

tj−δ
logk |P (e2πit)|dt

∣∣∣∣∣ (2.5)

If P has no repeated roots on S1, then by Lemma 2.4, this final sum is equal

π−1
∑m
j=1 |P ′(e2πitj )|−1, and so the theorem is proven in this case.

Finally, if P has a repeated root on S1, we may assume without loss of

generality that P (z1) = P ′(z1) = 0 where z1 = e2πit1 . With f(t) = P (e2πit), we

have that f(t1) = f ′(t1) = 0. Then for each ε ∈ (0, 1) there is a δε ∈ (0, 1) such

that ∣∣∣∣ f(t)

t− t1

∣∣∣∣ =

∣∣∣∣f(t)− f(t1)

t− t1

∣∣∣∣ ≤ ε, for all 0 < |t− t1| < δε.

It follows that log |f(t)| ≤ log |ε(t− t1)| < 0 for all 0 < |t− t1| < δε, and so∣∣∣logk |f(t)|
∣∣∣ ≥ ∣∣∣logk |ε(t− t1)|

∣∣∣ , for all 0 < |t− t1| < δε.

We may assume that δε < δ, and using (2.5) and Lemma 2.3 deduce that

lim
k→∞

|mk(P )|
k!

≥ lim
k→∞

∣∣∣∣∣
∫ t1+δ

t1−δ
logk |P (e2πit)|dt

∣∣∣∣∣
= lim

k→∞

∫ t1+δ

t1−δ

∣∣∣logk |P (e2πit)|
∣∣∣ dt

≥ lim
k→∞

∫ t1+δε

t1−δε

∣∣∣logk |ε(t− t0)|
∣∣∣ dt

=
2

|ε|
.
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Since ε ∈ (0, 1) was arbitrary, the limit in question diverges to ∞ and the

theorem is proven.
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