Limiting value of higher Mahler measure

runabha Biswas ris Monico
A bha B a Chris M a

@ Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409, USA

Abstract

We consider the k-higher Mahler measure my (P) of a Laurent polynomial P as
the integral of logk | P| over the complex unit circle. In this paper we derive an
explicit formula for the value of |my(P)| /k! as k — oo.
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1. Introduction

For a non-zero Laurent polynomial P(z) € C[z,27!], the k-higher Mahler

measure of P is defined [4] as

1
my(P) = /0 log" ‘P (62’7“)‘ dt.

For k = 1 this coincides with the classical (log) Mahler measure defined as
m(P) =log |a| + Zlog (max{1,|r;|}), for P(z)=a H(z —j),
j=1 j=1
since by Jensen’s formula m(P) = mq(P) [3].

Though classical Mahler measure was studied extensively, higher Mahler
measure was introduced and studied very recently by Kurokawa, Lalin and
Ochiai [4] and Akatsuka [1]. It is very difficult to evaluate k-higher Mahler
measure for polynomials except few specific examples shown in [1] and [4] , but
it is relatively easy to find their limiting values.

In [5] Lalin and Sinha answered Lehmer’s question [3] for higher Mahler

measure by finding non-trivial lower bounds for my on Z|z] for k > 2.
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In [2] it has been shown using Akatsuka’s zeta function of [4] that for |a| = 1,
|mi(z + a)|/k! — 1/m as k — oo. In this paper we generalize this result by
computing the same limit for an arbitrary Laurent polynomial P(z) € C[z, z7!]

using a different technique.

Theorem 1.1. Let P(z) € C [z,z_l] be a Laurent polynomial, possibly with

repeated roots. Let z1,...,z, be the distinct roots of P. Then
. me(P)] 1 1
lim ———— = — E —_—
0o ! "(z5)|’
k— k T B | P (z;)]

where S is the complex unit circle |z| = 1, and the right-hand side is taken as

o0 if P'(zj) =0 for some z; € S, i.e., if P has a repeated root on S*.

2. Proof of the theorem

We first prove several lemmas which essentially show that the integrand may

be linearly approximated near the roots of P on S*.

Lemma 2.1. Let P(z) € C[z,27!] be a Laurent polynomial and A C [0,1] be
a closed set such that P (62““) #0 for allt € A. Then

: 1 T
kl;rrgoﬂ/qlogk|P(e2 t)| dt=0

Proof. Since A is closed, due to the periodicity of 2™ and continuity of P(e*"%)
there exist constants b and B such that 0 < b < |P (62““)| < B on A. Then
for each positive integer k, (log® |P (e2™*)])/k! is bounded between (log® b) /k!
and (log" B)/k!, and therefore (1/k!) [, log" |P (e*™**)| dt is bounded between
(1A log" b) /k! and (A log® B)/k!, where pA is the Lebesgue measure of A.
The result follows by letting £ tend to infinity. O

Lemma 2.2. Let P(z) € C [z, z_l] be a Laurent polynomial with a root of order
one at zg = €20 and P'(z) be its derivative with respect to z. Then for each

e € (0,1) there exists § > 0 such that |t — to| < ¢ implies

2m(1 — &) (t — to) P (e2™0)| < |P (e2™)| < [27(1 +&)(t — to) P’ (e*™0)].



Proof. Set f(t) = P (™). Then f'(tg) = 2miP’ (e*™") # 0 and
F(to) = lim f(t) — f(to)‘

t—to t—to
Since f'(to) # 0, it follows that for each € € (0, 1) there exists 6 > 0 such that

0 < |t —to] < d implies

ft) = f(to) 1
1—¢ . <1l+e,
‘ (t—to)  f'(to)
which proves the lemma since f(t9) = P(z9) = 0. O

Lemma 2.3. Let ¢ # 0, and tg € R. Then for all € > 0,

to +e

tim | [ gt et | -

2

el

Proof. For k> 1 and = > 0, it follows from integration by parts and induction
that

1)7 k! logh~
logh udu = zlogh z + x
/0 Z (k—J)-

Using the even symmetry of the mtegrand and substituting u = |¢(t — o)], we

have
L ot e -] = 2| [ o
— log” |c(t — tg dt’: / log” u dul,
k! to—e ‘C| k! 0
and it follows that
to+e X 2 |cel &
kli)ngoy /08 log |c(t—t0)|dt’ = kILH;oW /0 log" udu

k k—
log® |es 710 Jca
g | |+Z g |ce]

= 2¢ lim
k—oo
j=1
— (—=1)"log" |ce|
= 2%y ——
n=0

= 2ee”lo8lesl = 9/|¢|.
O

Lemma 2.4. Let P(z) € C [z,27] be a Laurent polynomial with a root of order

one at zg = e*™"o_ Then for all sufficiently small § > 0,

foto k 2mit 1
/to_5 log ’P(e )’ dt :W

lim —
k—oo k!




Proof. First notice that since zp has order one, it cannot be a root of P’(z).

Now let € € (0,1). By Lemma 2.2 there is a § > 0 such that |t — | < 0 implies
|2m(1 — €)(t — to) P (e2™%)| < |P (e*™)| < |27(1 4 &)(t — to) P (e*™)| < 1.

Setting ¢ = 27 (1 — )P’ (¢2™0) and d = 27 (1 4 ) P’ (¢*™*0) it follows that for
0<|t—to| <9,

log |c(t — to)| < log |P (e™)| < log|d(t — to)| <0,
and hence
‘logk le(t — t0)|‘ > ’logk |P (62”“) |‘ > ‘loglC |d(t — t0)|‘ >0,

for all £ € N. Therefore,

to+4 to+6 to+d
/ ‘logk \c(t—t0)|‘ dt 2/ )logk |P (62””)” dt 2/ ‘1ogk |d(t—t0)\‘ dt > 0.

to—6 to—o to—6

But on (o — 0, to + ), for each fixed k, either all three functions log" |c(t —to)],
log® | P (e2™)| and log" |d(t — to)| are negative (if k is odd), or positive (if k is
even). So the integrals of their absolute values are equal to the absolute values

of their integrals and therefore we have

to+9d to+d to+9d
/ log® |e(t — to)| dt| > / log" |P (e*™")| dt| > / log® |d(t — to)| dt| .
to—0 to—9 to—9

By Lemma 2.3 it follows that

lc| = rooo kI

to+9d ) 2
/ logk}‘P(e2ﬂ'Zt)| Z i
to—0 | |

Since ¢ = 27 (1—¢) P’ (e*™") and d = 27 (1+¢) P’ (e*™"0) and € > 0 is arbitrary,

we are done. O
With these lemmas, we now proceed to prove the main theorem.

Proof of Theorem 1.1. First notice that

mk(P) 1 ! T
T E/o log" |P (62 t)| dt.
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If P(z) does not have any roots on S! then choosing A = [0,1] and applying
Lemma 2.1 we see that |my(P)| /k! — 0 as k — oo and the theorem holds in
this case.

Now let ti,...,t, € [0,1] such that €271 ... e*™m are the distinct roots
of P on S'. Let § > 0 be sufficiently small so that |P(e*™)| < 1 on each

interval (t; — 6,¢; +0), j =1,...,m, and these intervals are disjoint and define

A=1[0,1~ | )t; -6t +0).

Tt

1

J

Using Lemma 2.1, and the fact that log |P(e?™)| < 0 on [0, 1]\ A, we find that

my (P 1 . .
lim 7| £(P)] = lim — /loglC |P(62mt)\dt—|—/ logk\P(ezmt)\dt
k— oo k' k—o0 ]{7' A [0,1\A
1 ti+o k omit
lim 3= log® | P(e2 2.
Jim 2 o /tj(S og” |P(e*™")| dt (2.5)

If P has no repeated roots on S!, then by Lemma 2.4, this final sum is equal
m= 1300 [P/(e2™)| 71, and so the theorem is proven in this case.

Finally, if P has a repeated root on S!', we may assume without loss of
generality that P(z1) = P’(21) = 0 where z; = €2™1. With f(t) = P(e*""), we
have that f(¢;) = f'(t1) = 0. Then for each € € (0,1) there is a d. € (0,1) such

that

<eg, forall 0 <|t—t1] <.
t—1t t—1t

Tt follows that log|f(t)] < logle(t —t1)] < 0 for all 0 < |t — 1] < Je, and so

f) | ‘f(t) — (1)

‘logk |f(t)|’ > llogk le(t — t1)|’ ,  forall 0 <|t—t] <.

We may assume that 0. < §, and using (2.5) and Lemma 2.3 deduce that

P t1+96 )
lim [ (P)] >  lim log® | P(e2™)| dt
k—oo ]{}' k—o0 ti—6
146 ‘
= lim ‘logk |P(627”t)|’ dt
k— o0 t1—6
t1+0c
> lim log" |e(t — to)\‘ dt
k— o0 t1—65
2
lel’



Since ¢ € (0,1) was arbitrary, the limit in question diverges to oo and the

theorem is proven. O
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