Limiting value of higher Mahler measure

Arunabha Biswas ${ }^{\text {a }}$, Chris Monico ${ }^{\text {a }}$,
${ }^{a}$ Department of Mathematics \& Statistics, Texas Tech University, Lubbock, TX 79409, USA

Abstract

We consider the k-higher Mahler measure $m_{k}(P)$ of a Laurent polynomial P as the integral of $\log ^{k}|P|$ over the complex unit circle. In this paper we derive an explicit formula for the value of $\left|m_{k}(P)\right| / k!$ as $k \rightarrow \infty$.

Keywords: Mahler measure, higher Mahler measure

1. Introduction

For a non-zero Laurent polynomial $P(z) \in \mathbb{C}\left[z, z^{-1}\right]$, the k-higher Mahler measure of P is defined [4] as

$$
m_{k}(P)=\int_{0}^{1} \log ^{k}\left|P\left(e^{2 \pi i t}\right)\right| \mathrm{d} t
$$

For $k=1$ this coincides with the classical (log) Mahler measure defined as

$$
m(P)=\log |a|+\sum_{j=1}^{n} \log \left(\max \left\{1,\left|r_{j}\right|\right\}\right), \text { for } P(z)=a \prod_{j=1}^{n}\left(z-r_{j}\right)
$$

since by Jensen's formula $m(P)=m_{1}(P)$ [3].
Though classical Mahler measure was studied extensively, higher Mahler measure was introduced and studied very recently by Kurokawa, Lalin and Ochiai [4] and Akatsuka [1]. It is very difficult to evaluate k-higher Mahler measure for polynomials except few specific examples shown in [1] and [4], but it is relatively easy to find their limiting values.

In [5] Lalin and Sinha answered Lehmer's question [3] for higher Mahler measure by finding non-trivial lower bounds for m_{k} on $\mathbb{Z}[z]$ for $k \geq 2$.

[^0]In [2] it has been shown using Akatsuka's zeta function of [4] that for $|a|=1$, $\left|m_{k}(z+a)\right| / k!\rightarrow 1 / \pi$ as $k \rightarrow \infty$. In this paper we generalize this result by computing the same limit for an arbitrary Laurent polynomial $P(z) \in \mathbb{C}\left[z, z^{-1}\right]$ using a different technique.

Theorem 1.1. Let $P(z) \in \mathbb{C}\left[z, z^{-1}\right]$ be a Laurent polynomial, possibly with repeated roots. Let z_{1}, \ldots, z_{n} be the distinct roots of P. Then

$$
\lim _{k \rightarrow \infty} \frac{\left|m_{k}(P)\right|}{k!}=\frac{1}{\pi} \sum_{z_{j} \in S^{1}} \frac{1}{\left|P^{\prime}\left(z_{j}\right)\right|}
$$

where S^{1} is the complex unit circle $|z|=1$, and the right-hand side is taken as ∞ if $P^{\prime}\left(z_{j}\right)=0$ for some $z_{j} \in S^{1}$, i.e., if P has a repeated root on S^{1}.

2. Proof of the theorem

We first prove several lemmas which essentially show that the integrand may be linearly approximated near the roots of P on S^{1}.

Lemma 2.1. Let $P(z) \in \mathbb{C}\left[z, z^{-1}\right]$ be a Laurent polynomial and $A \subseteq[0,1]$ be a closed set such that $P\left(e^{2 \pi i t}\right) \neq 0$ for all $t \in A$. Then

$$
\lim _{k \rightarrow \infty} \frac{1}{k!} \int_{A} \log ^{k}\left|P\left(e^{2 \pi i t}\right)\right| \mathrm{d} t=0
$$

Proof. Since A is closed, due to the periodicity of $e^{2 \pi i t}$ and continuity of $P\left(e^{2 \pi i t}\right)$ there exist constants b and B such that $0<b \leq\left|P\left(e^{2 \pi i t}\right)\right| \leq B$ on A. Then for each positive integer $k,\left(\log ^{k}\left|P\left(e^{2 \pi i t}\right)\right|\right) / k$! is bounded between $\left(\log ^{k} b\right) / k$! and $\left(\log ^{k} B\right) / k$!, and therefore $(1 / k!) \int_{A} \log ^{k}\left|P\left(e^{2 \pi i t}\right)\right| \mathrm{d} t$ is bounded between $\left(\mu A \log ^{k} b\right) / k$! and $\left(\mu A \log ^{k} B\right) / k$!, where μA is the Lebesgue measure of A. The result follows by letting k tend to infinity.

Lemma 2.2. Let $P(z) \in \mathbb{C}\left[z, z^{-1}\right]$ be a Laurent polynomial with a root of order one at $z_{0}=e^{2 \pi i t_{0}}$, and $P^{\prime}(z)$ be its derivative with respect to z. Then for each $\varepsilon \in(0,1)$ there exists $\delta>0$ such that $\left|t-t_{0}\right|<\delta$ implies

$$
\left|2 \pi(1-\varepsilon)\left(t-t_{0}\right) P^{\prime}\left(e^{2 \pi i t_{0}}\right)\right| \leq\left|P\left(e^{2 \pi i t}\right)\right| \leq\left|2 \pi(1+\varepsilon)\left(t-t_{0}\right) P^{\prime}\left(e^{2 \pi i t_{0}}\right)\right|
$$

Proof. Set $f(t)=P\left(e^{2 \pi i t}\right)$. Then $f^{\prime}\left(t_{0}\right)=2 \pi i P^{\prime}\left(e^{2 \pi i t_{0}}\right) \neq 0$ and

$$
f^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}
$$

Since $f^{\prime}\left(t_{0}\right) \neq 0$, it follows that for each $\varepsilon \in(0,1)$ there exists $\delta>0$ such that $0<\left|t-t_{0}\right|<\delta$ implies

$$
1-\varepsilon<\left|\frac{f(t)-f\left(t_{0}\right)}{\left(t-t_{0}\right)} \cdot \frac{1}{f^{\prime}\left(t_{0}\right)}\right|<1+\varepsilon
$$

which proves the lemma since $f\left(t_{0}\right)=P\left(z_{0}\right)=0$.
Lemma 2.3. Let $c \neq 0$, and $t_{0} \in \mathbb{R}$. Then for all $\varepsilon>0$,

$$
\lim _{k \rightarrow \infty} \frac{1}{k!}\left|\int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \log ^{k}\right| c\left(t-t_{0}\right)|\mathrm{d} t|=\frac{2}{|c|}
$$

Proof. For $k \geq 1$ and $x>0$, it follows from integration by parts and induction that

$$
\int_{0}^{x} \log ^{k} u \mathrm{~d} u=x \log ^{k} x+x \sum_{j=1}^{k} \frac{(-1)^{j} k!\log ^{k-j} x}{(k-j)!}
$$

Using the even symmetry of the integrand and substituting $u=\left|c\left(t-t_{0}\right)\right|$, we have

$$
\frac{1}{k!}\left|\int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \log ^{k}\right| c\left(t-t_{0}\right)|\mathrm{d} t|=\frac{2}{|c| k!}\left|\int_{0}^{|c \varepsilon|} \log ^{k} u \mathrm{~d} u\right|
$$

and it follows that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{1}{k!}\left|\int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \log ^{k}\right| c\left(t-t_{0}\right)|\mathrm{d} t| & =\lim _{k \rightarrow \infty} \frac{2}{|c| k!}\left|\int_{0}^{|c \varepsilon|} \log ^{k} u \mathrm{~d} u\right| \\
& =2 \varepsilon \lim _{k \rightarrow \infty}\left|\frac{\log ^{k}|c \varepsilon|}{k!}+\sum_{j=1}^{k} \frac{(-1)^{j} \log ^{k-j}|c \varepsilon|}{(k-j)!}\right| \\
& =2 \varepsilon\left|\sum_{n=0}^{\infty} \frac{(-1)^{n} \log ^{n}|c \varepsilon|}{n!}\right| \\
& =2 \varepsilon e^{-\log |c \varepsilon|}=2 /|c|
\end{aligned}
$$

Lemma 2.4. Let $P(z) \in \mathbb{C}\left[z, z^{-1}\right]$ be a Laurent polynomial with a root of order one at $z_{0}=e^{2 \pi i t_{0}}$. Then for all sufficiently small $\delta>0$,

$$
\lim _{k \rightarrow \infty} \frac{1}{k!}\left|\int_{t_{0}-\delta}^{t_{0}+\delta} \log ^{k}\right| P\left(e^{2 \pi i t}\right)|\mathrm{d} t|=\frac{1}{\pi\left|P^{\prime}\left(e^{2 \pi i t_{0}}\right)\right|}
$$

Proof. First notice that since z_{0} has order one, it cannot be a root of $P^{\prime}(z)$. Now let $\varepsilon \in(0,1)$. By Lemma 2.2 there is a $\delta>0$ such that $\left|t-t_{0}\right|<\delta$ implies $\left|2 \pi(1-\varepsilon)\left(t-t_{0}\right) P^{\prime}\left(e^{2 \pi i t_{0}}\right)\right| \leq\left|P\left(e^{2 \pi i t}\right)\right| \leq\left|2 \pi(1+\varepsilon)\left(t-t_{0}\right) P^{\prime}\left(e^{2 \pi i t_{0}}\right)\right| \leq 1$.

Setting $c=2 \pi(1-\varepsilon) P^{\prime}\left(e^{2 \pi i t_{0}}\right)$ and $d=2 \pi(1+\varepsilon) P^{\prime}\left(e^{2 \pi i t_{0}}\right)$ it follows that for $0<\left|t-t_{0}\right|<\delta$,

$$
\log \left|c\left(t-t_{0}\right)\right| \leq \log \left|P\left(e^{2 \pi i t}\right)\right| \leq \log \left|d\left(t-t_{0}\right)\right| \leq 0
$$

and hence

$$
\left|\log ^{k}\right| c\left(t-t_{0}\right)\left|\left|\geq\left|\log ^{k}\right| P\left(e^{2 \pi i t}\right)\right|\right| \geq\left|\log ^{k}\right| d\left(t-t_{0}\right)| | \geq 0
$$

for all $k \in \mathbb{N}$. Therefore,

$$
\int_{t_{0}-\delta}^{t_{0}+\delta}\left|\log ^{k}\right| c\left(t-t_{0}\right)| | \mathrm{d} t \geq \int_{t_{0}-\delta}^{t_{0}+\delta}\left|\log ^{k}\right| P\left(e^{2 \pi i t}\right)| | \mathrm{d} t \geq \int_{t_{0}-\delta}^{t_{0}+\delta}\left|\log ^{k}\right| d\left(t-t_{0}\right)| | \mathrm{d} t \geq 0
$$

But on $\left(t_{0}-\delta, t_{0}+\delta\right)$, for each fixed k, either all three functions $\log ^{k}\left|c\left(t-t_{0}\right)\right|$, $\log ^{k}\left|P\left(e^{2 \pi i t}\right)\right|$ and $\log ^{k}\left|d\left(t-t_{0}\right)\right|$ are negative (if k is odd), or positive (if k is even). So the integrals of their absolute values are equal to the absolute values of their integrals and therefore we have

$$
\left|\int_{t_{0}-\delta}^{t_{0}+\delta} \log ^{k}\right| c\left(t-t_{0}\right)|\mathrm{d} t| \geq\left|\int_{t_{0}-\delta}^{t_{0}+\delta} \log ^{k}\right| P\left(e^{2 \pi i t}\right)|\mathrm{d} t| \geq\left|\int_{t_{0}-\delta}^{t_{0}+\delta} \log ^{k}\right| d\left(t-t_{0}\right)|\mathrm{d} t|
$$

By Lemma 2.3 it follows that

$$
\frac{2}{|c|} \geq \lim _{k \rightarrow \infty} \frac{1}{k!}\left|\int_{t_{0}-\delta}^{t_{0}+\delta} \log ^{k}\right| P\left(e^{2 \pi i t}\right)| | \geq \frac{2}{|d|}
$$

Since $c=2 \pi(1-\varepsilon) P^{\prime}\left(e^{2 \pi i t_{0}}\right)$ and $d=2 \pi(1+\varepsilon) P^{\prime}\left(e^{2 \pi i t_{0}}\right)$ and $\varepsilon>0$ is arbitrary, we are done.

With these lemmas, we now proceed to prove the main theorem.
Proof of Theorem 1.1. First notice that

$$
\frac{m_{k}(P)}{k!}=\frac{1}{k!} \int_{0}^{1} \log ^{k}\left|P\left(e^{2 \pi i t}\right)\right| \mathrm{d} t
$$

If $P(z)$ does not have any roots on S^{1} then choosing $A=[0,1]$ and applying Lemma 2.1 we see that $\left|m_{k}(P)\right| / k!\rightarrow 0$ as $k \rightarrow \infty$ and the theorem holds in this case.

Now let $t_{1}, \ldots, t_{m} \in[0,1]$ such that $e^{2 \pi i t_{1}}, \ldots, e^{2 \pi i t_{m}}$ are the distinct roots of P on S^{1}. Let $\delta>0$ be sufficiently small so that $\left|P\left(e^{2 \pi i t_{j}}\right)\right|<1$ on each interval $\left(t_{j}-\delta, t_{j}+\delta\right), j=1, \ldots, m$, and these intervals are disjoint and define

$$
A=[0,1] \backslash \bigcup_{j=1}^{m}\left(t_{j}-\delta, t_{j}+\delta\right)
$$

Using Lemma 2.1, and the fact that $\log \left|P\left(e^{2 \pi i t}\right)\right|<0$ on $[0,1] \backslash A$, we find that

$$
\begin{align*}
\lim _{k \rightarrow \infty} \frac{\left|m_{k}(P)\right|}{k!} & =\lim _{k \rightarrow \infty} \frac{1}{k!}\left|\int_{A} \log ^{k}\right| P\left(e^{2 \pi i t}\right)\left|\mathrm{d} t+\int_{[0,1] \backslash A} \log ^{k}\right| P\left(e^{2 \pi i t}\right)|\mathrm{d} t| \\
& =\lim _{k \rightarrow \infty} \sum_{j=1}^{m} \frac{1}{k!}\left|\int_{t_{j}-\delta}^{t_{j}+\delta} \log ^{k}\right| P\left(e^{2 \pi i t}\right)|\mathrm{d} t| \tag{2.5}
\end{align*}
$$

If P has no repeated roots on S^{1}, then by Lemma 2.4, this final sum is equal $\pi^{-1} \sum_{j=1}^{m}\left|P^{\prime}\left(e^{2 \pi i t_{j}}\right)\right|^{-1}$, and so the theorem is proven in this case.

Finally, if P has a repeated root on S^{1}, we may assume without loss of generality that $P\left(z_{1}\right)=P^{\prime}\left(z_{1}\right)=0$ where $z_{1}=e^{2 \pi i t_{1}}$. With $f(t)=P\left(e^{2 \pi i t}\right)$, we have that $f\left(t_{1}\right)=f^{\prime}\left(t_{1}\right)=0$. Then for each $\varepsilon \in(0,1)$ there is a $\delta_{\varepsilon} \in(0,1)$ such that

$$
\left|\frac{f(t)}{t-t_{1}}\right|=\left|\frac{f(t)-f\left(t_{1}\right)}{t-t_{1}}\right| \leq \varepsilon, \quad \text { for all } 0<\left|t-t_{1}\right|<\delta_{\varepsilon}
$$

It follows that $\log |f(t)| \leq \log \left|\varepsilon\left(t-t_{1}\right)\right|<0$ for all $0<\left|t-t_{1}\right|<\delta_{\varepsilon}$, and so

$$
\left|\log ^{k}\right| f(t)\left|\left|\geq\left|\log ^{k}\right| \varepsilon\left(t-t_{1}\right)\right|\right|, \quad \text { for all } 0<\left|t-t_{1}\right|<\delta_{\varepsilon}
$$

We may assume that $\delta_{\varepsilon}<\delta$, and using (2.5) and Lemma 2.3 deduce that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{\left|m_{k}(P)\right|}{k!} & \geq \lim _{k \rightarrow \infty}\left|\int_{t_{1}-\delta}^{t_{1}+\delta} \log ^{k}\right| P\left(e^{2 \pi i t}\right)|\mathrm{d} t| \\
& =\lim _{k \rightarrow \infty} \int_{t_{1}-\delta}^{t_{1}+\delta}\left|\log ^{k}\right| P\left(e^{2 \pi i t}\right)| | \mathrm{d} t \\
& \geq \lim _{k \rightarrow \infty} \int_{t_{1}-\delta_{\varepsilon}}^{t_{1}+\delta_{\varepsilon}}\left|\log ^{k}\right| \varepsilon\left(t-t_{0}\right)| | \mathrm{d} t \\
& =\frac{2}{|\varepsilon|} .
\end{aligned}
$$

Since $\varepsilon \in(0,1)$ was arbitrary, the limit in question diverges to ∞ and the theorem is proven.
[1] H. Akatsuka, Zeta Mahler measures, J. Number Theory 129 (11) (2009) 2713-2734.
[2] A. Biswas, Asymptotic nature of higher Mahler measure, (2013) (Submitted).
[3] G. Everest, T. Ward, Heights of polynomials and entropy in algebraic dynamics, Springer (2009).
[4] N. Kurokawa, M. Lalín, H. Ochiai, Higher Mahler measures and zeta functions, Acta Arith. 135 (3) (2008) 269-297.
[5] M. Lalín, K. Sinha, Higher Mahler measure for cyclotomic polynomials and Lehmer's question, Ramanujan J. 26 (2) (2011) 257-294.

[^0]: Email address: arunabha.biswas@ttu.edu (Arunabha Biswas)

