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Generalized hypergeometric function

1. Introduction

The Kummer confluent hypergeometric function is given by
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where (o), is the Pochhammer symbol defined by (¢), =T(¢ +n)/T (@) =a(e+1)--- (¢ +n—-1) forneN, (¥)g=1,
1

(¢ +1)-1 =g, and the Gamma function is I'(x) = f0°° t*~le~tdt, for x > 0.

Inequalities involving contiguous Kummer confluent hypergeometric functions of the form &(a + v,c + v,x) and
@(a,c+v,x) were presented in Theorem 2 of [4] and Theorem 2.7 of [11]. These inequalities are of the Turdn type [15] in
the case that v = 1. In the present note, we resolve the remaining Turdn-type case involving & (a &+ 1,c, x) and extend it
to include @ (a £ v,c, x), v e N. We then establish a closely related mean inequality that provides simultaneous upper and
lower bounds for @ (a, c, x). Turan-type inequalities, which are of independent interest, also have important applications in
Information Theory (as demonstrated by McEliece, Reznick, and Shearer in their paper [12]) and in modeling credit risk, as
summarized below.

In particular, Carey and Gordy [9] model a lending relationship in which the bank has an option to foreclose upon the
borrower at any time. Following the seminal models of Merton [13] and Black and Cox [6], it is assumed that the value
of the firm’s assets follows a geometric Brownian motion. It is shown that the bank’s optimal foreclosure threshold solves
a first order condition involving a ratio of contiguous Kummer functions, which implies that a Turdn-type inequality for
the Kummer function arises naturally in studying the comparative statics of the model. A proof of this key Turdn-type
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Fig. 1. Graphs of A(x) = A(®(a+1,a+b,x),®(a—1,a+b,x)); ®(x) =P(a,a+b,x); and G(x) =G(®(a+1,a+b,x),P(@—1,a+b,x)); witha=1,b=1.5,
and v=1.

inequality is established in this paper. (For general background on applications of the Kummer function in economic theory
and econometrics, see [1].)

2. Main results

Theorem 1. Suppose a, b > 0. Then for any v e Nwitha,b > v — 1
<1>(a,a+b,x)2><1§(a+v,a+b,x)<15(a—v,a+b,x), (1)

for all nonzero x € R. Moreover, these expressions coincide with value 1 when x = 0 and asymptotically for any x when b — oo.

Corollary 2. Suppose a > 0 and ¢ + 1 > 0 with ¢ # 0. Then for any v e Nwitha > v — 1,
¢(a,c,x)22(1)(a—v,c,x)d>(a+v,c,x), (2)
forall x > 0.
The next result begins with the well-known arithmetic mean-geometric mean inequality,
Ao, B) = % > \/@ =G(o,B) for o, 8 distinct and positive, 3)

which has many interesting refinements and applications (e.g., see [7,8]). Corollary 3 is a refinement of inequality (3) with
a=®(@+v,a+b,x) and B =d(a—v,a+b,x) (see illustrated special case in Fig. 1).

Corollary 3. Suppose v € N and a, b > v. Then for all nonzero x € R

A(®P@+v,a+b,x),®@—v,a+b,x)
> ®(a,a+b,x)
>G(P@+v,a+b,x),d@—v,a+b,x)). (4)

It is also interesting to compare these results with the elegant Theorem 2.3 and open problems in [5] regarding Turan-
type and arithmetic mean-geometric mean inequalities involving the Gaussian hypergeometric function ;F.

3. Proofs

Proof of Theorem 1. First assume x > 0. For ¢ > —1, ¢ # 0, define
fr(x)=®(a, ,x)2—®@+v,c,x)®@a—v,c,x).
We will make use of the following contiguous relation (see [10, p. 1013]):

<1>(a+1,/3,x)—<1>(a,f3,x)=%cb(a—l—l,ﬁ—l—l,x). (5)

Subtracting and adding a term to f,4+1(x) — f,(x) and applying this contiguous relation, we have that
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for1® = =@@+v,c,x)@@—v,c,x) —P@+v+1,c,0P@—v—-1,¢x
=®@—v,c,x)(P@+v,c,x) —P@+v+1,cx)
+P@+v+1,0,x0(@@—v,c,.x)—P@—v-—1.cx)
:q)(a—v,c,x)(_?x)cb(a—t—v—i—l,c—i-1,x)+<1§(a+v+1,c,x)()c—<)¢7(a—v,c+1,x)
b%
=-g (),
c

where

s =®@+v+1,¢,x)@@—v,c+1,x) —®@—v,c,x)@@+v+1,c+1,x).

The Cauchy product reveals

e @ v+ D@ = V)i 1 B 1 n
pW=22 Ki(n — k! ((c>k<c+1>n_k (c)n_k<c+1)k)x

n=0 k=0

:ii’:(a+v+1)k(a—v)n,k((c+k)—(c+n—k)>xn

| — |
bt k!(n —k)! c(c+ Dp_r(c+
_l [e 0] n
== DO Tark—nx",
n=1k=0
here T, , = 9T De@Vnk 15, th
where Tr k = g —pics Do crme- | 1 is even, then
n n/2—1 n
D Tak@k—nmy= > Tpp@k—m)+ Y Tou(2k—n)
k=0 k=0 k=n/2+1
n/2—1 n/2—1
= > Tax@k—m)+ Y Tppi(2n—k) —n)
k=0 k=0
[(1-1)/2]
= Y (Tnnk—Ta)(n—2K),
k=0

where [-] denotes the greatest integer function. Similarly, if n is odd, then

n [(n—1)/2]
Y Tark—my= > (Tpno — Tng) (@ —2K).
k=0 k=0
Therefore,
X x & [(n—1)/2]
frn® =0 =80 =53 Y (Tank—Tar)n—2K0x". (6)
n=1 k=0

Simplifying, we find that

T T @+v+pp@—v)—(@+v+1)r@—vn_g
kT Ak ki (n —I)'(c + Dn_r(c + i
_ (a+v+Dla—v) (@+v+Dnk (a_V)nfk>
B k!(”_k)!(c+1)n—l<(c+l)l<( @+v+1) (a—vy
(@+v+ Drla—v)

= Kt — BT Do+ D (h@+v+1) —h@—v)), (7)

where h(B) = Bt por B>0and n—k>k (ie., for [(n —1)/2] > k), the logarithmic derivative of h satisfies

Bk
h'(B)
h(B)

where ¥ =T"/T is the digamma function. Hence, h is increasing under the conditions stated. This fact together with (6)
and (7) yield

=w@B+n—k —w(@B+k >0,
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oo [(n—1)/2]
@ = Fr0 =253 Y Tank = Ta)(n—20%" >0 (8)
n=1 k=0

whena>v >0,sincex>0andc+1>0,c#0.
Thus, (8) implies that

for1®0) = (for1®) = fu ) + (fr® = fum1®) +--- + (f1®) — fo®) >0,
forazv>v—12>--->0and fo(x) =0. Replacing v by v — 1, we conclude that, for x > 0,
fu(x) >0, foreach v eN satisfyinga>v — 1. (9)

Moreover, under these conditions, f, is absolutely monotonic on (0, co) (i.e., fﬁ") X)>0forn=0,1,2,...). Withc=a+b,
this proves Theorem 1 for the case that x > 0.

Now suppose x <0, a,b >0, and v € N with a,b > v — 1. Taking advantage of the available symmetry with c =a+b, we
can interchange a and b in (1) to arrive at

@(b,a+b, —x)2 —®b+v,a+b,—x)®(b—-v,a+b,—x)>0.
Kummer’s transformation [2, p. 191], ®(«, 8, —Xx) = e *® (B — «, B, X), yields
e X, a+b,x?—e ?b(a—v,a+b,x)@@+v,a+b,x)> 0.

Thus, (1) also holds for x <0. O

Proof of Corollary 2. It follows from the proof of Theorem 1 that (9) holds for x > 0 under the conditions that c+ 1 > 0,
c#0. O

Proof of Corollary 3. First suppose x > 0 and let a,b > v, v € N. The first inequality in (4) is a direct consequence of the
fact that A((a +v),, (@ —v)y) = (a), forn=0,1 and
A(@+v)n, (@—v)p) > (@, foralln>2,

which follows by induction. Thus,

=A@+ V), (@—v)p)x"
A(@(a—i—v,a—l—b,X),@(Cl—Vya‘l'b’x))_’; (a+ byyn!
>§:M=qﬁ(a a+b,x)
= (a+Dbyn! ’ o

For x > 0, the second inequality in (4) follows by taking the square-root across (1), which is allowed since the right-hand
side of (1) is nonnegative when a,b > v.
Now suppose x < 0 with a,b > v. Interchanging a and b in (4), we have

A(®(b+v,a+b,—x),®(b—v,a+b, —x))
>@(b,a+b,—x)>G(@(b+v,a+b,—x),¢(b—v,a+b, —x)).
Kummer’s transformation and the homogeneity of A and G yield
e *A(P(@—v,a+b,x),P@@+v,a+b,x)
>e*®@,a+b,x)>e*G(P(@—v,a+b,x),P(a+v,a+b,x)).
Thus, (4) also holds for x <0. O

4. Concluding remarks

The proof of Theorem 1 can also be used to verify cases when the Turdn-type inequality reverses. For example, if a <0
and ¢ +1 < 0 with [a] =[c + 1] and ¢ not a negative integer, then

@@, c,x)> <P@+1,c,x)®a—1,c,x) forall x> 0.
To see this, take v =0 in (6) and then simplify to find that

oo /[(n—=1)/2] 5
2 - _x @ (@n—i(n — 2k) n
®(a,c.x)*—Pa+1,c.0P@ 1,c,x)—a62;( k; (c+1)k(c+1)n_kk!(n—k)!)x' (10)
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The result follows by noting that (a),, and (c + 1);; will have the same signs under the stated conditions (unless (a); =0
for some m > 2). Hence

[(n—1)/2]

1 @k (@pn—k(n — 2k)?

ac? o+ Drlc+ Dokl — ! >

for all n € N. Moreover, the first nonzero term in the series in (10) simplifies to c2(c+1) <0.

Finally, we note that the techniques of proof presented here can be used to obtain a result similar to (4) with @ = {F;
replaced by the generalized hypergeometric function ,Fq, where

o (@) - -+ (@p)nx"
Fg(ay,....ap:by,....bg:x)=y 0 pn%
pFq(a pi b1 s X) g(bl)n"'(bq)nn!

It can be shown that if p<q+ 1, >1,b;>0fori=1,...,q,and a; > b; fori=1,...,p — 1, then for all x > 0 in the
interval of convergence,

A(pFq(a+1,a;;bj; x), pFq(r — 1, a3: bj; X))
> pFq(a,a;;bj; x) > G(qu(a +1,a;:bj;%), pFgla — 1,a,-;bj;x)) (11)

where pFq(a,ai3bj; %) = pFg(a,ar,...,ap—1;b1, ..., bg; X).

Of particular interest is the case that p =2 and q = 1. In this case, inequality (11) completes the results of M.E.H. Ismail
and A. Laforgia [11] and of A. Baricz [3,5] regarding the Gaussian hypergeometric function »F;. See for example Theo-
rems 2.13 and 2.14 in [11] and Theorem 2.17 in [3].

The first inequality in (11) follows as in Theorem 1. The second inequality in (11) follows by using a generalized version
of (5) (see [14, Identity 30, p. 440]) to reveal that

F(x)zppq(a,a,-;bj;x)z— Fglo +1,a5;bj; %) p Fg(a — 1, a5 b5 %)
p l 2 oo /[(n—1)/2]

(@) (@)n—k l_[lfl (@@ + D@ + Dn—r) .
Rpk )X,
l_[ b? HZ; ,; ki — k)T, ((bi + Di(bi + Dn—i) !

where

_ q )
Ruk = ( 1(b £ ’j(b' o )(n — 2k).
17 @i +n—k) 1'[{;1 (@ +k)

l_[?:1 (bi+1)

For n —k > k, the positivity of R, (and hence F) follows when r T is increasing, which is the case under the
i=1

stated conditions on the a;’s and b;’s
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