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Abstract. Conditions are determined under which 3F2 (−n, a, b; a + b + 2, ε − n + 1; 1) is a
monotone function of n satisfying ab· 3F2 (−n, a, b; a + b + 2, ε − n + 1; 1) ≥ ab· 2F1 (a, b; a + b + 2; 1) .
Motivated by a conjecture of Vuorinen [Proceedings of Special Functions and Differential Equations,
K. S. Rao, R. Jagannathan, G. Vanden Berghe, J. Van der Jeugt, eds., Allied Publishers, New Delhi,
1998], the corollary that 3F2(−n,− 1

2
,− 1

2
; 1, ε − n + 1; 1) ≥ 4

π
, for 1 > ε ≥ 1

4
and n ≥ 2, is used to

determine surprising hierarchical relationships among the 13 known historical approximations of the
arc length of an ellipse. This complete list of inequalities compares the Maclaurin series coefficients of

2F1 with the coefficients of each of the known approximations, for which maximum errors can then
be established. These approximations range over four centuries from Kepler’s in 1609 to Almkvist’s
in 1985 and include two from Ramanujan.
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1. Introduction. Let L(x, y) be the arc length of an ellipse with semiaxes of

length x and y (with x ≥ y > 0) and let λ ≡ x− y

x+ y
. In 1742, Maclaurin [12] determined

that

L(x, y) = π(x+ y) · 2F1

(
−1

2
,−1

2
; 1;λ2

)
,(1)

where 2F1 is the hypergeometric function defined by

2F1 (a, b; c; z) ≡ 1 +
∞∑

n=1

(a)n(b)nz
n

(c)nn!

with the Appell (or Pochhammer) symbol (a)n ≡ a(a + 1) · · · (a + n − 1) for n ≥ 1
and (a)0 ≡ 1, a 6= 0. (For more background information, see [2], [14], [9], and the
recent survey article [8] by the first author.) In [2], Almkvist and Berndt compiled
and presented the list of the approximations in Table 1.1 for

G(λ) ≡ 2F1

(
−1

2
,−1

2
; 1;λ2

)
=

L(x, y)
π(x+ y)

.

These approximations and their historical and recent connections to the approxima-
tions of π can be found in the Borweins’ book [10]. Another excellent source for histor-
ical and current studies of these topics is the book [5] by Anderson, Vamanamurthy,
and Vuorinen.
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Table 1.1

Approximations of G(λ) ≡ 2F1(− 1
2
,− 1

2
; 1; λ2) (see [2]).

Discoverer(s) Approximation δp = first nonzero term
and year of discovery Ap(λ) in the Maclaurin series for

∆p(λ) ≡ Ap(λ) − G(λ)

Kepler, 1609 A1(λ) ≡ (1 − λ
2)1/2

δ1 = −
3

4
λ
2

Euler, 1773 A2(λ) ≡ (1 + λ
2)1/2

δ2 =
1

4
λ
2

Sipos, 1792 A3(λ) ≡
2

1 +
q

1 − λ2
δ3 =

7

64
λ
4

Ekwall, 1973

Peano, 1889 A4(λ) ≡
3

2
−

1

2
(1 − λ

2)1/2
δ4 =

3

64
λ
4

Muir, 1883 A5(λ) ≡
0
@ (1 + λ)3/2 + (1 − λ)3/2

2

1
A

2/3

δ5 = −
1

64
λ
4

Lindner, 1904-1920 A6(λ) ≡
0
@1 +

λ2

8

1
A

2

δ6 = −
1

28
λ
6

Nyvoll, 1978

Selmer, 1975 A7(λ) ≡ 1 +
λ2/4

1 − λ2/16
δ7 = −

3

210
λ
6

Ramanujan, 1914 A8(λ) ≡ 3 −
q

4 − λ2 δ8 = −
1

29
λ6

Fergestad, 1951

Almkvist, 1978 A9(λ) ≡ 2

�
1 +

q
1 − λ2

�2
+ λ2

q
1 − λ2

�
1 +

q
1 − λ2

��
1 + 4

q
1 − λ2

�2 δ9 =
15

214
λ
8

Bronshtein and Semendyayev, 1964 A10(λ) ≡
64 − 3λ4

64 − 16λ2
δ10 = −

9

214
λ
8

Selmer, 1975

Selmer, 1975 A11(λ) ≡
3

2
+

λ2

8
−

1

2

0
@1 −

λ2

2

1
A

1/2

δ11 = −
5

214
λ
8

Jacobsen and Waadeland, 1985 A12(λ) ≡
256 − 48λ2 − 21λ4

256 − 112λ2 + 3λ4
δ12 = −

33

218
λ10

Ramanujan, 1914 A13(λ) ≡ 1 +
3λ2

10 +
q

4 − 3λ2
δ13 = −

3

217
λ
10

Recently, several inequalities between various mean values and the hypergeometric
function were proved in [10], [15], and the dependence of the hypergeometric function
2F1(a, b; c; z) on its parameters was studied in [4], [6]. These results led to a conjecture
of Vuorinen (see [16]) concerning Muir’s approximation A5. Vuorinen conjectured (see
[16]) that

A5(λ) ≤ G(λ) for allλ ∈ [0, 1].(2)

That is, Vuorinen conjectured that A5 is a lower bound for G. This conjecture was
recently proved by the authors in [9] which has become the genesis of the present
article. Moreover, the results here attest to the adage that a single conjecture may
have many ramifications. Also, note that A5 is one of the mean values studied in [15].
More approximations for hypergeometric functions in terms of such mean values are
actively being sought. For example, let ν ∈ R\{0} and define

Mν(λ) ≡
[
(1 + λ)ν + (1 − λ)ν

2

]1/ν

.

H. Alzer [3] originally made the following conjecture.
Conjecture. The inequalities

Mα(λ) ≤ G(λ) ≤Mβ(λ) hold for all λ ∈ (0, 1)(3)
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if and only if

α ≤ 3/2 and β ≥ (ln 2)/
(
ln
π

2

)
≈ 1.53.

As noted by Alzer [3], it follows from our results (see the set of inequalities in expres-
sion (4)) that (3) holds with α = 3/2 and β = 2. Moreover, for a fixed λ, Mν(λ) is
an increasing function of ν. Thus it follows that (3) holds for all α ≤ 3/2 and β ≥ 2.
It can be shown that α = 3/2 is sharp.

2. Main results. In an earlier paper (see [9]), the authors were able to verify
inequality (2) by working with the original version of Vuorinen’s conjecture in terms
of the eccentricity (see (5) and (6)). In this direction, a generating function argument
(motivated by [7]) was used to obtain the following general result (which will also be
applied in this paper to obtain Theorem 2.5).

Theorem 2.1 (see [9]). Suppose a, b > 0. Then for any ε satisfying 1 > ε ≥
ab

a+b+1 , it follows that

3F2 (−n, a, b; a+ b+ 1, ε− n+ 1; 1) ≥ 0,

for all integers n ≥ 1, where 3F2 is the generalized hypergeometric function.
In light of the conjecture in (2), the following question naturally arises:

Which of the remaining approximations given in Table 1.1 are upper
bounds or lower bounds for G?

An attempt to compare an approximation Ap with G motivates an analysis of the
term δp (the first nonzero term in the Maclaurin series representation for the error
function ∆p(λ) ≡ Ap(λ) − G(λ)). What information does δp provide? Certainly the
leading term can be viewed as a measure of accuracy of the given approximation, and
the error function ∆p(λ) will have the same sign as δp for sufficiently small λ. For
example, δ1 < 0 and it follows directly that A1 is a lower bound for G, as Kepler
intended (see [2, p. 599]). In this case, the sign of δ1 is indicative of the sign of ∆1(λ)
for all λ ∈ [0, 1]. Almkvist and Berndt proved (see [2, p. 603]) that Ramanujan’s
first estimate A8 is a lower bound for G by proving the significantly stronger result
that the nonzero Maclaurin series coefficients of ∆8 all have the same (negative)
sign. A numerical investigation suggests that a similar trait might be shared by other
approximations given in Table 1.1. In this article, it will be shown that all of the
approximations given in Table 1.1 satisfy the following property:

The sign of the error function ∆p(λ) coincides with the sign of the
leading term δp for all λ ∈ [0, 1].

Moreover, for all but two of the approximations, it will be established that the nonzero
Maclaurin series coefficients of ∆p all have the same sign as δp. (Only Euler’s ap-
proximation and Muir’s approximation fail to satisfy this condition.) As a conse-
quence of the forthcoming results, each function |∆p| is a strictly increasing func-
tion of λ, for p = 1, . . . , 13. Therefore, 0 = |∆p(0)| < |∆p(λ)| < |∆p(1)| for all
λ ∈ (0, 1). For example, the maximum error for Ramanujan’s second estimate is
|∆13(1)| = |1411 − 4

π | ≈ 0.000512 and satisfies |∆13(1)| < |∆p(1)| for p = 1, . . . , 12. In
this direction, we will prove the following three propositions.

Proposition 2.2. Let G(λ) ≡ ∑∞
n=0 αnλ

2n and Ap(λ) ≡ ∑∞
n=0 β

(p)
n λ2n where

αn ≡ ( (−1/2)n

n! )2 and each Ap is defined as in Table 1.1. Then

β(12)
n ≤ αn ≤ β(9)

n for all integers n ≥ 0.
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Therefore, the error functions |∆9| and |∆12| are strictly increasing and

A12(λ) ≤ G(λ) ≤ A9(λ) for all λ ∈ [0, 1].

Proposition 2.3. Let G(λ) ≡ ∑∞
n=0 αnλ

2n and Ap(λ) ≡ ∑∞
n=0 β

(p)
n λ2n where

αn ≡ ( (−1/2)n

n! )2 and each Ap is defined as in Table 1.1. Then

β(1)
n ≤ β(6)

n ≤ β(7)
n ≤ β(8)

n ≤ β(10)
n ≤ β(11)

n ≤ β(13)
n ≤ αn ≤ β(4)

n ≤ β(3)
n

for all integers n ≥ 0. Therefore, the corresponding error functions |∆p| are strictly
increasing and

A1(λ) ≤ A6(λ) ≤ A7(λ) ≤ A8(λ) ≤ A10(λ) ≤ A11(λ) ≤ A13(λ) ≤ G(λ) ≤ A4(λ) ≤ A3(λ)

for all λ ∈ [0, 1].
The next proposition addresses the two remaining estimates: Euler’s approxima-

tion A2 and Muir’s approximation A5. The claim will be made that

A5(λ) ≡
(

(1 + λ)3/2 + (1 − λ)3/2

2

)2/3

≤ G(λ) ≤ (1 + λ2)1/2 ≡ A2(λ)(4)

for all λ ∈ [0,1]. As we have noted, the nonzero Maclaurin series coefficients of ∆2

and ∆5 (as functions of λ) do not have constant sign. In order to verify the inequalities
in (4), we make use of the known fact due to Landen and Ivory (e.g., see [2, p. 598])
that

G(λ) ≡ 2F1

(
−1

2
,−1

2
; 1;λ2

)
=

2x
x+ y

· 2F1

(
1
2
,−1

2
; 1; ξ2

)
,(5)

where λ ≡ (x− y)/(x + y) and ξ ≡ (1/x)
√
x2 − y2 is the eccentricity of the original

ellipse (see (1)). Without loss of generality, assume that 1 = x ≥ y ≥ 0. A change
of variable from λ to ξ can be accomplished in (4) by using (5) and the substitutions
λ = (1−y)/(1+y) and y =

√
1 − ξ2. Multiplying through by (1+y)/2 and simplifying,

we see that the inequalities in (4) are equivalent to

(
1 + (1 − ξ2)3/4

2

)2/3

≤ 2F1

(
1
2
,−1

2
; 1; ξ2

)
≤ (1 − ξ2/2)1/2(6)

for all ξ ∈ [0,1]. (The first inequality in (6) is the original version of Vuorinen’s
conjecture [16].)

It is interesting to note that one can show that the functions in (6) can be shown
to satisfy the stated inequalities by establishing that the coefficients of their respective
Maclaurin series, expanded in powers of ξ, satisfy the corresponding inequality rela-
tionships. In view of the preceding discussion, we now state the following proposition.

Proposition 2.4 (see [9]). Let G and Ap be as defined in Table 1.1 and let

1 +
∞∑

n=1

bnξ
2n ≡

(
1 + (1 − ξ2)3/4

2

)2/3

and(7)

1 +
∞∑

n=1

cnξ
2n ≡ (1 − ξ2/2)1/2.(8)



A MONOTONICITY PROPERTY INVOLVING 3F2 407

It follows that

bn ≤ (1/2)n(−1/2)n

n! · n!
≤ cn for all integers n ≥ 1.

Therefore, (6) holds and is equivalent to A5(λ) ≤ G(λ) ≤ A2(λ) for all λ ∈ [0, 1].
Remark. If we apply the identity in (5) with λ = (1−

√
1 − ξ2)/(1+

√
1 − ξ2), the

definition of A2, and simplify, we obtain ∆2(λ) = 2[(1−ξ2/2)1/2− 2F1( 1
2 ,−1

2 ; 1; ξ2)]/(1
+

√
1 − ξ2). Proposition 2.4 implies that (1−ξ2/2)1/2− 2F1( 1

2 ,−1
2 ; 1; ξ2) is a strictly

increasing function of ξ. Therefore ∆2(λ) is a strictly increasing function of ξ. Since
ξ = 2

√
λ

1+λ is a strictly increasing function of λ on [0,1], it follows that |∆2| is a strictly
increasing function of λ. A similar argument can be applied to |∆5|.

Although some of the inequalities in the above propositions are straightforward,
several proved to be surprisingly challenging to verify. In particular, the effort involv-
ing Almkvist’s approximation A9 precipitated the discovery of some deeper results
involving the generalized hypergeometric function 3F2 , which are also of indepen-
dent interest. In this direction, our main general results are as follows.

Theorem 2.5. Let 1 > a ≥ b > −1 and 1 > ε ≥ (a+1)(b+2)
a+b+4 . Then Tn ≡

3F2 (−n, a, b; a+ b+ 2, ε− n+ 1; 1) satisfies

ab(Tn − Tn+1) ≥ 0 for all integers n ≥ 2.

Corollary 2.6. Let 1 > a ≥ b > −1 and 1 > ε ≥ (a+1)(b+2)
a+b+4 . Then Tn ≡

3F2 (−n, a, b; a+ b+ 2, ε− n+ 1; 1) satisfies

abTn ≥ abTn+1 ≥ ab · 2F1 (a, b; a+ b+ 2; 1) for all integers n ≥ 2.

Corollary 2.7. Let 1 > ε ≥ 1
4 . Then Tn ≡ 3F2

(−n,−1
2 ,−1

2 ; 1, ε− n+ 1; 1
)

satisfies

Tn ≥ Tn+1 ≥ 4
π

for all integers n ≥ 2.

3. Verification of coefficient inequalities.
Proof of Proposition 2.2. Part I: Almkvist’s Approximation A9. Let s ≡ (1−λ2)1/2

and βn ≡ β
(9)
n . It follows that

A9(λ) = 2
[
(1 + s) + (1 − s)s

(1 +
√
s)2

]
=

∞∑
n=0

βnλ
2n,

which implies that

2(1 + 2s− s2) = (1 + 2
√
s+ s)

∞∑
n=0

βnλ
2n.(9)

By replacing s by (1−λ2)1/2 and applying (1−λ2)q =
∑∞

n=0
(−q)n

n! λ2n, we may change
(9) to the form

2λ2 + 4
∞∑

n=0

(−1/2)n

n!
λ2n

=
∞∑

n=0

βnλ
2n + 2

∞∑
n=0

n∑
k=0

(−1/4)n−k

(n− k)!
βkλ

2n +
∞∑

n=0

n∑
k=0

(−1/2)n−k

(n− k)!
βkλ

2n.
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Equating the coefficients of λ2n, we obtain β0 = 1, β1 = 1/4, and

4
(−1/2)n

n!
= βn + 2

n∑
k=0

(−1/4)n−k

(n− k)!
βk +

n∑
k=0

(−1/2)n−k

(n− k)!
βk for n ≥ 2.

Solving for βn, we have the recursive relationship

βn =
(−1/2)n

n!
− 1

2

n−1∑
k=0

(−1/4)n−k

(n− k)!
βk − 1

4

n−1∑
k=0

(−1/2)n−k

(n− k)!
βk for n ≥ 2.(10)

We will use (10) and induction to show that

βn ≥ αn for all n ≥ 0.(11)

First note that βn = αn for n = 0, 1, 2. Now let n ≥ 2 and suppose that βk ≥ αk for
all k = 0, . . . , n− 1. Since the coefficients of βk in (10) are all positive, it follows that

βn ≥ (−1/2)n

n!
− 1

2

n−1∑
k=0

(−1/4)n−k

(n− k)!
αk − 1

4

n−1∑
k=0

(−1/2)n−k

(n− k)!
αk.

Thus (11) will be established if we can verify that

(−1/2)n

n!
− 1

2

n−1∑
k=0

(−1/4)n−k

(n− k)!
αk − 1

4

n−1∑
k=0

(−1/2)n−k

(n− k)!
αk ≥ αn for n ≥ 2.(12)

Next we use the identities (c)n−k = (−1)k(c)n

(1−c−n)k
and (1)n = n! and add the corresponding

nth term of each summation to both sides. Then (12) becomes

(−1/2)n

n!
− (−1/4)n

2 · n!

n∑
k=0

(−n)k

(5/4 − n)k
αk − (−1/2)n

4 · n!

n∑
k=0

(−n)k

(3/2 − n)k
αk ≥ αn

4
.(13)

Now we apply αk ≡ ( (−1/2)k

k!

)2 and the definition of 3F2, then divide both sides of
(13) by −(−1/2)n

4·n! , and simplify. Then inequality (13) becomes

P (n) · 3 F 2

(
−n,−1

2
,−1

2
; 1,

5
4
− n; 1

)

+ 3F2

(
−n,−1

2
,−1

2
; 1,

3
2
− n; 1

)
≥ Q(n),(14)

where P (n) ≡ 2 (−1/4)n

(−1/2)n
and Q(n) ≡ 4 − (−1/2)n

n! . For n ≥ 2, these can be shown to
satisfy

P (n) ≤ P (n+ 1) and(15)
Q(n) ≥ Q(n+ 1).(16)

We first note that inequality (14) can be confirmed directly for n = 2, . . . , 6. An
application of Corollary 2.7 (to be proved in the following section), with the respective
values of ε = 1/4 and ε = 1/2, yields

3F2

(
−n,−1

2
,−1

2
; 1,

5
4
− n; 1

)
≥ 4
π

and(17)

3F2

(
−n,−1

2
,−1

2
; 1,

3
2
− n; 1

)
≥ 4
π

(18)
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for all n ≥ 2. From inequalities (15)–(18) with n ≥ 6, it follows that

P (n) · 3F2

(
−n,−1

2
,−1

2
; 1,

5
4
− n; 1

)
+ 3F2

(
−n,−1

2
,−1

2
; 1,

3
2
− n; 1

)
≥ P (6)

4
π

+
4
π

≥ Q(6) ≥ Q(n).

Therefore, inequality (14) holds for all n ≥ 2 and hence β
(9)
n ≡ βn ≥ αn for all

n ≥ 0. That is, Almkvist’s approximation satisfies the property that all of the nonzero
Maclaurin series coefficients of ∆9 are positive. This concludes the proof of Part I of
Proposition 2.2.

Proof of Proposition 2.2. Part II: Jacobsen and Waadeland’s Approximation A12.
Now we seek to show that the approximation A12 satisfies the property that all of
the nonzero Maclaurin series coefficients of ∆12 are negative. Let a = 3, b = −112,
c = 256, and D =

√
b2 − 4ac. It follows that

1
au2 + bu+ c

=
2a
D

[
1

2au+ b−D
− 1

2au+ b+D

]
=

∞∑
n=0

dnu
n for |u| <

∣∣∣∣D + b

2a

∣∣∣∣ ,
where

dn ≡ 2a
D

[
(−1)n(2a)n

(b−D)n+1
− (−1)n(2a)n

(b+D)n+1

]
=

1
D

(
2a

D − b

)n+1
[(

b−D

b+D

)n+1

− 1

]
.

It follows that dn > 0 for all n ≥ 0 and

A12(λ) ≡ 256 − 48λ2 − 21λ4

256 − 112λ2 + 3λ4

= −7 +
2048 − 832λ2

256 − 112λ2 + 3λ4

= −7 + (2048 − 832λ2)
∞∑

n=0

dnλ
2n.

Now let βn ≡ β
(12)
n . Then the nonzero Maclaurin series coefficients for A12 are given

by β0 = 1 and

βn = 2048dn − 832dn−1 for all n ≥ 1.

Since (xn+1 − 1)/(x − 1) > x for x ≡ (b − D)/(b + D) > 1, it follows easily that
(2048dn)/(832dn−1) > 1 for all n ≥ 1. Thus

βn > 0 for all n ≥ 0.(19)

Direct calculation reveals that βn = αn for n = 0, . . . , 4. Also note that

(256 − 112λ2 + 3λ4)
∞∑

n=0

βnλ
2n = 256 − 48λ2 − 21λ4.

Hence
∞∑

n=3

(256βn − 112βn−1 + 3βn−2)λ2n = 0.(20)
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Thus the coefficients of λ2n in (20) are zero for all n ≥ 3. Solving for βn and using
(19), we have

βn = (112βn−1 − 3βn−2)/256 <
112
256

βn−1 for all n ≥ 3.

Now suppose that βn ≤ αn for some integer n ≥ 4, where αn ≡ ( (−1/2)n

n! )2. Then

βn+1 <
112
256

βn ≤ 112
256

αn =
112
256

αn

αn+1
αn+1 =

112
256

(
n+ 1
n− 1

2

)2

αn+1 ≤ αn+1.

Thus β(12)
n ≡ βn ≤ αn for all integers n ≥ 0. This concludes the proof of Part II of

Proposition 2.2.
Before proving Proposition 2.3, we first observe that the nine approximations

involved have the following respective Maclaurin series representations (recursive re-
lationships satisfied by β(13)

n and β(3)
n are developed in the appendix):

A1(λ) ≡ (1 − λ2)1/2 = 1 +
∞∑

n=1

(−1/2)n

n!
λ2n,(21)

A6(λ) ≡
(

1 +
λ2

8

)2

= 1 +
λ2

4
+
λ4

64
,(22)

A7(λ) ≡ 1 +
λ2/4

1 − λ2/16
= 1 +

λ2

4
+

∞∑
n=2

1
24n−2

λ2n,(23)

A8(λ) ≡ 3 −
√

4 − λ2 = 1 +
λ2

4
−

∞∑
n=2

(−1/2)n

n!22n−1
λ2n,(24)

A10(λ) ≡ 64 − 3λ4

64 − 16λ2
= 1 +

λ2

4
+

∞∑
n=2

1
22n+2

λ2n,(25)

A11(λ) ≡ 3
2

+
λ2

8
− 1

2

(
1 − λ2

2

)1/2

= 1 +
λ2

4
−

∞∑
n=2

(−1/2)n

n!2n+1
λ2n,(26)

A13(λ) ≡ 1 +
3λ2

10 +
√

4 − 3λ2
= 1 +

λ2

4
+

∞∑
n=2

β(13)
n λ2n,(27)

A4(λ) ≡ 3
2
− 1

2
(1 − λ2)1/2 = 1 +

λ2

4
− 1

2

∞∑
n=2

(−1/2)n

n!
λ2n,(28)

A3(λ) ≡ 2
1 +

√
1 − λ2

= 1 +
λ2

4
+

∞∑
n=2

β(3)
n λ2n.(29)

Proof of Proposition 2.3. We seek to establish the following inequalities regarding
the specified Maclaurin series coefficients:

β(1)
n ≤ β(6)

n ≤ β(7)
n ≤ β(8)

n ≤ β(10)
n ≤ β(11)

n ≤ β(13)
n ≤ αn ≤ β(4)

n ≤ β(3)
n(30)

for all n ≥ 0. Referring to (21)–(29), we note that the inequalities in (30) are trivial
for n = 0 and n = 1. Thus we must verify (30) for all n ≥ 2. The first two inequalities
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are immediate while the next three inequalities follow directly by induction. We now
proceed to prove the remaining inequalities in (30).
• Claim I. β(11)

n ≤ β(13)
n ≤ αn for all n ≥ 2.

Let βn ≡ β
(13)
n and γn ≡ β

(11)
n , where β(11)

n ≡ −(−1/2)n

n!2n+1 for n ≥ 2 (see (26)) and recall
that αn ≡ ( (−1/2)n

n! )2. The nonzero Maclaurin series coefficients of Ramanujan’s
second estimate A13 can be shown to satisfy (see the appendix) β0 = 1, β1 = 1/4,
β2 = 1/64, and

βn = φn−1 − 2−5βn−1 for all n ≥ 3, where φn ≡ − (−1/2)n(3/4)n

16 · n!
.(31)

Applying (31) twice, we have

βn = φn−1 − 2−5φn−2 + 2−10βn−2 for all n ≥ 4.(32)

Direct calculation reveals that Claim I holds for n = 2, 3, 4. That is, γn ≤ βn ≤ αn

for n = 2, 3, 4. Now let n ≥ 5 and suppose that

γk ≤ βk ≤ αk for all k = 2, . . . , n− 1.(33)

Then (32) and (33) together imply that

φn−1 − 2−5φn−2 + 2−10γn−2

≤
βn︷ ︸︸ ︷

φn−1 − 2−5φn−2 + 2−10βn−2 ≤ φn−1 − 2−5φn−2 + 2−10αn−2.(34)

It can be shown (see the appendix) that

γn ≤ φn−1 − 2−5φn−2 + 2−10γn−2 and(35)
αn ≥ φn−1 − 2−5φn−2 + 2−10αn−2(36)

for all n ≥ 5. Therefore, using inequalities (34)–(36) and induction, we have γn ≤
βn ≤ αn for all n ≥ 2. This completes the proof of Claim I.
• Claim II. αn ≤ β(4)

n ≤ β(3)
n for all n ≥ 2.

If we now apply (28), the first inequality in Claim II becomes

αn ≡
(

(−1/2)n

n!

)2

≤ −(−1/2)n

2 · n!
≡ β(4)

n for all n ≥ 2.

This is equivalent to

−2(−1/2)n

n!
≤ 1 for all n ≥ 2

which follows by induction. The second inequality in Claim II involves the Maclaurin
series coefficients of Sipos and Ekwall’s approximation A3 which can be shown to
satisfy the following recursive relationship (see the appendix): β(3)

0 = 1, β(3)
1 = 1/4,

β
(3)
2 = 1/8, and

β(3)
n = −1

2

n−1∑
k=0

(−1/2)n−k

(n− k)!
β

(3)
k for all n ≥ 2.(37)
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Note that

−1
2

n−1∑
k=0

(−1/2)n−k

(n− k)!
β

(3)
k =

−(−1/2)n

2 · n!
− 1

2

n−1∑
k=1

(−1/2)n−k

(n− k)!
β

(3)
k(38)

for all n ≥ 2, and

−(−1/2)n−k

2 · (n− k)!
β

(3)
k > 0 for k = 1, . . . , n− 1.(39)

Therefore, (37)–(39) together yield

β(4)
n ≡ −(−1/2)n

2 · n!
≤ β(3)

n for all n ≥ 2.

This concludes the proof of Claim II and Proposition 2.3.

Remarks on the Proof of Proposition 2.4. From (8), we have that cn ≡ (1/2)n(−1/2)n

n!
for all n ≥ 1. By induction, it can be shown that

(1/2)n(−1/2)n

n! · n!
≤ cn for all n ≥ 1.

In an earlier paper (see [9]), the authors use the logarithmic derivative and Cauchy
products to obtain the recursive relationship for bn (with bn as defined in (7)) given
by

bn+1 =
1

2(n+ 1)

[(
5
4
n− 1

2

)
bn −

n−2∑
k=0

(k + 1)bk+1

(−1
4

)
n−k

(n− k)!

]
.(40)

Theorem 2.1, together with (40), was then used (see [9]) to establish that

bn ≤ (1/2)n(−1/2)n

n! · n!
for all n ≥ 1.

4. Proofs of general results involving 3F2. We will make use of the following
classical identities which we include for the reader’s convenience (F ≡ 3F2).
Identity 1 {see [13, p. 440, eq. (33)]}.
F (ρ, a, b; c, σ; 1) − F (ρ+ 1, a, b; c, σ + 1; 1)

=
−ab(σ − ρ)
cσ(σ + 1)

· F (ρ+ 1, a+ 1, b+ 1; c+ 1, σ + 2; 1) .

Identity 2 {see [11, p. 59, eq. (3.1.1)]}.

F (−n, a, b; c, d; 1) =
(d− b)n

(d)n
· F (−n, c− a, b; c, 1 + b− d− n; 1).

Identity 3 {see [13, p. 440, eq. (26)]}.
σ · F (ρ, a, b; c, σ; 1) = ρ · F (ρ+ 1, a, b; c, σ + 1; 1) + (σ − ρ) · F (ρ, a, b; c, σ + 1; 1) .

Identity 4 {see [14, p. 82, eq. (14)]}.
(a1−a2)·F (a1, a2, a3; b1, b2; z) = a1·F (a1+1, a2, a3; b1, b2; z)−a2·F (a1, a2+1, a3; b1, b2; z).
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Identity 5 {see [13, p. 440, eq. (30)]}.

F (σ, a, b; c, d; 1) − F (σ + 1, a, b; c, d; 1) =
−ab
cd

· F (σ + 1, a+ 1, b+ 1; c+ 1, d+ 1; 1) .

Proof of Theorem 2.5. Define Tn ≡ F (−n, a, b; a+ b+ 2, ε− n+ 1; 1) , where F ≡
3F2. Let 1 > a ≥ b > −1 and 1 > ε ≥ (a+1)(b+2)

a+b+4 . For n ≥ 2, it follows that

Tn+1 − Tn = F (−n− 1, a, b; a+ b+ 2, ε− n; 1) − F (−n, a, b; a+ b+ 2, ε− n+ 1; 1)

=
−ab(ε+ 1)

(ε− n)(ε− n+ 1)(a+ b+ 2)
F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 2; 1)

{using Identity 1 with ρ = −n− 1, σ = ε− n}
=

−ab(ε+ 1)
(n− ε)(n− ε− 1)(a+ b+ 2)

(ε− n− b+ 1)n

(ε− n+ 2)n

×F (−n, b+ 2, b+ 1; a+ b+ 3, b− ε; 1)
{using Identity 2}

=
−ab(ε+ 1)(b− ε)n

(n− ε)(n− ε− 1)(a+ b+ 2)(−1 − ε)n(b− ε)
×[(b+ 1)F (−n, b+ 2, b+ 2; a+ b+ 3, b+ 1 − ε; 1)

+ (−ε− 1)F (−n, b+ 2, b+ 1; a+ b+ 3, b+ 1 − ε; 1)],(41)

where (41) follows from Identity 3 (with ρ = b + 1, σ = b − ε) and the identity
(1 − α− n)n = (−1)n(α)n.
Identity 4 (with a1 = −n and a2 = b+ 1) implies that

F (−n, b+ 2, b+ 2; a+ b+ 3, b+ 1 − ε; 1)

=
1

b+ 1
[(n+ b+ 1)F (−n, b+ 2, b+ 1; a+ b+ 3, b+ 1 − ε; 1)

+(−n)F (−n+ 1, b+ 2, b+ 1; a+ b+ 3, b+ 1 − ε; 1)].(42)

Now let Gn = F (−n, b+ 2, b+ 1; a+ b+ 3, b+ 1 − ε; 1) and use (41) and (42). Then
we have that

Tn+1 − Tn =
−ab(ε+ 1)(b− ε)n

(n− ε)(n− ε− 1)(a+ b+ 2)(−1 − ε)n(b− ε)
×[(n+ b+ 1)Gn − nGn−1 + (−ε− 1)Gn]

=
−ab(ε+ 1)(b− ε)n

(n− ε)(n− ε− 1)(a+ b+ 2)(−1 − ε)n(b− ε)
×[n(Gn −Gn−1) + (b− ε)Gn].(43)

Applications of Identity 5 (with σ = −n) followed by Identity 2 yield

Gn −Gn−1 = F (−n, b+ 2, b+ 1; a+ b+ 3, b+ 1 − ε; 1)
− F (−n+ 1, b+ 2, b+ 1; a+ b+ 3, b+ 1 − ε; 1)

=
−(b+ 2)(b+ 1)

(a+ b+ 3)(b+ 1 − ε)
F (−n+ 1, b+ 3, b+ 2; a+ b+ 4, b+ 2 − ε; 1)

=
−(b+ 2)(b+ 1)

(a+ b+ 3)(b+ 1 − ε)
· (−ε)n−1

(b+ 2 − ε)n−1

×F (−n+ 1, a+ 1, b+ 2; a+ b+ 4, ε− n+ 2; 1) .(44)
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Identity 2 also implies that

Gn =
(−ε)n

(b+ 1 − ε)n
F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1) .(45)

Combining (43)–(45), we have

Tn+1 − Tn =
−ab(ε+ 1)(b− ε)n

(n− ε)(n− ε− 1)(a+ b+ 2)(−1 − ε)n(b− ε)

×
[ −n(b+ 2)(b+ 1)(−ε)n−1

(a+ b+ 3)(b+ 1 − ε)(b+ 2 − ε)n−1
F (−n+ 1, a+ 1, b+ 2; a+ b+ 4, ε− n+ 2; 1)

+(b− ε)
(−ε)n

(b+ 1 − ε)n
F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1)

]
.(46)

Now make use of (b−ε)n

(b+1−ε)n
= (b−ε)

(n+b−ε) ,
(−ε)n

(−1−ε)n
= (−1−ε+n)

(−1−ε) , (−ε)n−1
(−1−ε)n

= 1
(−1−ε) , and

multiply both sides by −ab. Then (46) becomes

ab(Tn − Tn+1) =
(ab)2(ε+ 1)

(n− ε)(n− ε− 1)(a+ b+ 2)(b− ε)

×
[ −n(b+ 2)(b+ 1)(b− ε)
(a+ b+ 3)(−1 − ε)(n+ b− ε)

F (−n+ 1, a+ 1, b+ 2; a+ b+ 4, ε− n+ 2; 1)

+(b− ε)
(n− 1 − ε)(b− ε)

(−1 − ε)(n+ b− ε)
F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1)

]

=
(ab)2

(n− ε)(n− ε− 1)(a+ b+ 2)(n+ b− ε)

×
[
n(b+ 2)(b+ 1)

(a+ b+ 3)
F (−(n− 1), a+ 1, b+ 2; a+ b+ 4, ε− (n− 1) + 1; 1)

+ (ε− b)(n− ε− 1)F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1)
]
,(47)

where n+ b − ε > n− ε− 1 > n − 2 ≥ 0, n − ε > 0, and ε− b > ε− (a+1)(b+2)
a+b+4 ≥ 0.

Since 1 > ε ≥ (a+1)(b+2)
a+b+4 > (a+1)(b+1)

a+b+3 , Theorem 2.1 implies that

F (−(n− 1), a+ 1, b+ 2; a+ b+ 4, ε− (n− 1) + 1; 1) ≥ 0 and
F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1) ≥ 0.

Therefore, (47) is the product and sum of nonnegative quantities and thus

ab(Tn − Tn+1) ≥ 0 for all integers n ≥ 2.

In order to prove Corollary 2.6, we will make use of the following two lemmas.
Lemma 4.1. Let n be a positive integer and 0 < ε < 1. Then

(−n)k

(ε− n+ 1)k
≥ 1 for all k = 0, . . . , n− 1.

Proof of Lemma 4.1. Note that the desired inequality holds at k = 0. Now let
n ≥ 2 and suppose that

(−n)k

(ε− n+ 1)k
≥ 1 for some k with 0 ≤ k ≤ n− 2.
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Then

(−n)k+1

(ε− n+ 1)k+1
=

(−n)k(−n+ k)
(ε− n+ 1)k(ε− n+ 1 + k)

≥ (−n)k

(ε− n+ 1)k
≥ 1.

Lemma 4.2. Define ψn(a, b, c, ε) ≡ (a)n(b)n(−n)n

n!(c)n(ε−n+1)n
. Let (a, b, c, ε) be in the domain

of ψn for all n ≥ 2 with ε < c− a− b. Then

lim
n→∞ψn(a, b, c, ε) = 0.

Proof of Lemma 4.2. Since (1 − c− n)n = (−1)n(c)n, it follows that

ψn =
(a)n(b)n(1)n

n!(c)n(−ε)n
=

Γ(a+ n)Γ(b+ n)Γ(c)Γ(−ε)
Γ(a)Γ(b)Γ(c+ n)Γ(−ε+ n)

nc−a−b−εna+b+ε−c.

It is known that (see [1, p. 257, eq. (6.1.46)])

lim
n→∞

Γ(r + n)
Γ(s+ n)

ns−r = 1.

If a+ b+ ε− c < 0, then

lim
n→∞ψn = lim

n→∞
Γ(a+ n)Γ(b+ n)Γ(c)Γ(−ε)
Γ(a)Γ(b)Γ(c+ n)Γ(−ε+ n)

nc−a−b−ε · lim
n→∞na+b+ε−c = 0.

Proof of Corollary 2.6. Let 1 > a ≥ b > −1 and 1 > ε ≥ (a+1)(b+2)
a+b+4 and define

Tn ≡ 3F2 (−n, a, b; a+ b+ 2, ε− n+ 1; 1) .

Theorem 2.5 implies that the sequence {abTn}∞n=2 is a monotone (nonincreasing)
sequence. Now define

Sn ≡ 1 +
(a)n(b)n(−n)n

n!(a+ b+ 2)n(ε− n+ 1)n
+

n−1∑
k=1

(a)k(b)k

k!(a+ b+ 2)k
.

Using the definition of 3F2, Lemma 4.1, and the fact that
ab(a)k(b)k

k!(a+ b+ 2)k
≥ 0 for

k = 1, . . . , n− 1, we obtain

abTn = ab+
ab(a)n(b)n(−n)n

n!(a+ b+ 2)n(ε− n+ 1)n
+

n−1∑
k=1

ab(a)k(b)k(−n)k

k!(a+ b+ 2)k(ε− n+ 1)k
≥ abSn

for all n ≥ 2.
Applying Lemma 4.2 with c = a+ b+ 2, we have

lim
n→∞Sn = 2F1 (a, b; a+ b+ 2; 1) .

Since abTn ≥ abSn for all n ≥ 2, it follows that {abTn}∞n=2 is a bounded monotone
sequence. Thus

abTn ≥ lim
n→∞ abTn ≥ lim

n→∞ abSn = ab · 2F1 (a, b; a+ b+ 2; 1) for all n ≥ 2.
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Proof of Corollary 2.7. Choose a = b = −1/2 and 1 > ε ≥ 1/4 and define

Tn ≡ 3F2

(
−n,−1

2
,−1

2
; 1, ε− n+ 1; 1

)
.

It is known that (see [14, p. 49])

2F1

(
−1

2
,−1

2
; 1; 1

)
=

4
π
.

Corollary 2.6 implies that

Tn ≥ Tn+1 ≥ 4
π

for all n ≥ 2.

5. Appendix.

5.1. Recursive relationship for Maclaurin series coefficients of Ramanu-
jan’s second estimate A13. Writing βn ≡ β

(13)
n , we have

3λ2(10 −
√

4 − 3λ2) = (A13(λ) − 1)(102 − (
√

4 − 3λ2)2) = (96 + 3λ2)
∞∑

n=1

βnλ
2n

which implies that

10 − 2
(

1 − 3
4
λ2

)1/2

= (32 + λ2)
∞∑

n=1

βnλ
2n−2.

Applying (1 − x)q =
∑∞

n=0
(−q)n

n! xn and simplifying yields

8 − 2
∞∑

n=1

(−1/2)n(3/4)n

n!
λ2n = 32β1 +

∞∑
n=1

(32βn+1 + βn)λ2n.

Thus β0 = 1, β1 = 1/4, β2 = 1/64, and

βn+1 =
−(−1/2)n(3/4)n

16 · n!
− βn

32
for all n ≥ 1.

Letting φn ≡ − (−1/2)n(3/4)n

16 · n!
, we obtain

βn+1 = φn − 2−5βn for all n ≥ 2.

5.2. Recursive relationship for Maclaurin series coefficients of Sipos
and Ekwall’s estimate A3. Writing βn ≡ β

(3)
n and using the Cauchy product, we

have

2 = A3(λ)(1 +
√

1 − λ2) =
∞∑

n=0

βnλ
2n +

∞∑
n=0

n∑
k=0

(−1/2)n−k

(n− k)!
βkλ

2n.

Thus β(3)
0 = 1, β(3)

1 = 1/4, β(3)
2 = 1/8, and

β(3)
n =

−1
2

n−1∑
k=0

(−1/2)n−k

(n− k)!
β

(3)
k for all n ≥ 2.
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5.3. Establishing inequality (35). Let φn ≡ −(−1/2)n(3/4)n

16·n! , γn ≡ β
(11)
n =

−(−1/2)n

n!2n+1 , and n ≥ 4. Inequality (35) claims that γn ≤ φn−1 − 2−5φn−2 + 2−10γn−2.
Direct calculation reveals that the desired inequality holds for n = 4, . . . , 7. Now

suppose that n ≥ 7. Since γn−2 > 0, we have

γn − φn−1 + 2−5φn−2 − 2−10γn−2 < γn − φn−1 + 2−5φn−2

=
−(−1/2)n

n!2n+1
+

(−1/2)n−1(3/4)n−1

16 · (n− 1)!
− 2−9 (−1/2)n−2(3/4)n−2

(n− 2)!

= −2−9 (−1/2)n−2(3/4)n−2

(n− 2)!
·
[
29(4/3)n−2(n− 3/2)(n− 5/2)

n(n− 1)2n+1
− 25(3/4)(n− 5/2)

(n− 1)
+ 1

]

= −2−9 (−1/2)n−2(3/4)n−2

(n− 2)!
·
[
2n+4(n− 3/2)(n− 5/2)

3n−2n(n− 1)
− 24(n− 5/2)

(n− 1)
+ 1

]
.

Since (n−5/2)
(n−1) ≥ 1

2 , it follows that

2n+4(n− 3/2)(n− 5/2)
3n−2n(n− 1)

− 24(n− 5/2)
(n− 1)

+ 1 ≤ 2n+4(n− 3/2)(n− 5/2)
3n−2n(n− 1)

− 11.

Thus

γn − φn−1 + 2−5φn−2 − 2−10γn−2

< −2−5 · 9(−1/2)n−2(3/4)n−2

(n− 2)!
·
[
2n(n− 3/2)(n− 5/2)

3nn(n− 1)
− 11 · 2−4

32

]

≤ −9(−1/2)n−2(3/4)n−2

32(n− 2)!
·
[(

2
3

)n

− 11
144

]

≤ −9(−1/2)n−2(3/4)n−2

32(n− 2)!
·
[(

2
3

)7

− 11
144

]
< 0.

Hence the claim in (35) is established.

5.4. Establishing inequality (36). Let φn ≡ − (−1/2)n(3/4)n

16·n! , αn ≡ ( (−1/2)n

n! )2,
and n ≥ 4.

Inequality (36) claims that φn − 2−5φn−1 + 2−10αn−1 ≤ αn+1. Note that

φ n − 2−5φn−1 + 2−10αn−1 − αn+1

= − (−1/2)n(3/4)n

16 · n!
+ 2−5 (−1/2)n−1(3/4)n−1

16 · (n− 1)!
+ 2−10

(
(−1/2)n−1

(n− 1)!

)2

−
(

(−1/2)n+1

(n+ 1)!

)2

=
(−1/2)n−1

(n− 1)!

{−(n− 3/2)3n

n22n+4
+

3n−1

22n+7
+

(−1/2)n−1

210(n− 1)!
− (n− 3/2)(n− 1/2)(−1/2)n+1

n(n+ 1) · (n+ 1)!

}

=
(−1/2)n−1

(n− 1)!

{
3n−1

22n+4

[
3(3/2 − n)

n
+

1
23

]
+

(−1/2)n−1

(n− 1)!

[
1

210
− (n− 3/2)2(n− 1/2)2

n2(n+ 1)2

]}

=
(−1/2)n−1

(n− 1)!

{
U(n)
V (n)

+ 1
}
V (n),

where

U(n) ≡ 3n−1

22n+4

[
3(3/2 − n)

n
+

1
23

]
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and

V (n) ≡ (−1/2)n−1

(n− 1)!

[
1

210
− (n− 3/2)2(n− 1/2)2

n2(n+ 1)2

]
.

It follows that V (n) > 0. Now let W (n) ≡ U(n)/V (n). Since (−1/2)n−1 < 0, we will
be finished if we can show that W (n) + 1 > 0 for all n ≥ 4. Direct calculation again
yields W (4) + 1 > 0. For n ≥ 4, it is easy to check that

W (n+ 1) −W (n) =
3n

22n+6

[
3(1/2−n)

n+1 + 1
23

]
(−1/2)n

n!

[
1

210 − (n−1/2)2(n+1/2)2

(n+1)2(n+2)2

]

−
3n−1

22n+4

[
3(3/2−n)

n + 1
23

]
(−1/2)n−1

(n−1)!

[
1

210 − (n−3/2)2(n−1/2)2

n2(n+1)2

]

=




3n−1

22n+4

(−1/2)n−1
(n−1)!




{
3n

4(n− 3/2)
Z(n+ 1) − Z(n)

}
,(48)

where Z(n) ≡ [ 3(3/2−n)
n + 1

23 ]/[ 1
210 − (n−3/2)2(n−1/2)2

n2(n+1)2 ]. Direct calculation reveals that
the expression in (48) is nonnegative for n = 4 and n = 5. For n ≥ 6, it can be shown
by a straightforward calculation that 0 < Z(n + 1) ≤ Z(n). Hence 3n

4(n−3/2)Z(n +
1) − Z(n) ≤ Z(n + 1) − Z(n) ≤ 0 for all n ≥ 6. Thus W (n + 1) −W (n) ≥ 0 for all
n ≥ 4 since (−1/2)n−1 < 0. Therefore, W (n) + 1 ≥ W (4) + 1 > 0 for all n ≥ 4. This
establishes the claim in (36).
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