- 1. Consider the following vectors in \mathbb{R}^5 : $\mathbf{x} = (2, 1, 1, 1, 4)^T$, and $\mathbf{y} = (3, 6, 1, 5, 7)^T$.
 - a. Find $\langle \mathbf{x}, \mathbf{y} \rangle$, $||\mathbf{x}||^2$, $||\mathbf{y}||^2$, $\hat{\mathbf{y}} = p(\mathbf{y}|\mathbf{x})$, and $\mathbf{y} \hat{\mathbf{y}}$. Show that $\mathbf{x} \perp (\mathbf{y} \hat{\mathbf{y}})$, and $||\mathbf{y}||^2 = ||\hat{\mathbf{y}}||^2 + ||\mathbf{y} - \hat{\mathbf{y}}||^2$.
 - b. Let $\mathbf{w} = (-1, 2, 4, -4, 0)^T$ and $\mathbf{z} = 3\mathbf{x} + 2\mathbf{w}$. Show that $\langle \mathbf{w}, \mathbf{x} \rangle = 0$ and that $||\mathbf{z}||^2 = 9||\mathbf{x}||^2 + 4||\mathbf{w}||^2$. (Why must this be true?)
 - c. Let $A_1 = \{1, 2\}, A_2 = \{3, 4\}, A_3 = \{5\}$. Find $p(\mathbf{y}|\mathbf{i}_{A_1}), i = 1, 2, 3$.
- 2. Is projection a linear transformation in the sense that $p(c\mathbf{y}|\mathbf{x}) = cp(\mathbf{y}|\mathbf{x})$ for any real number c? Prove or disprove. What is the relationship between p(y|x) and $p(\mathbf{y}|c\mathbf{x})$ for $c \neq 0$?
- 3. Suppose $||\mathbf{x}||^2 > 0$. Use calculus to prove that $||\mathbf{y} b\mathbf{x}||^2$ is minimum for b = $\mathbf{y}^T\mathbf{x}/||\mathbf{x}||^2$. (That is, provide a calculus-based proof of the Theorem on p. 22 of the notes as an alternative to the one provided there.)
- 4. Here we will consider subspaces of \mathcal{R}^4 . Let $\mathbf{x}_1 = (1, 1, 1, 0)^T$, $\mathbf{x}_2 = (1, 1, 0, 0)^T$, $\mathbf{x}_3 = (1, 0, 0, 1)^T$ and $\mathbf{x}_4 = (10, 3, 0, 7)^T$. Let $V_2 = \mathcal{L}(\mathbf{x}_1, \mathbf{x}_2)$, $V_3 = \mathcal{L}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ and $V_4 = \mathcal{L}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$.
 - a. Find matrices A_2 , A_3 , A_4 whose column spaces are equal to V_2 , V_3 , V_4 , respectively.
 - b. Find the dimensions of V_2 and V_3 (i.e., the ranks of A_2 and A_3).
 - c. Find bases for V_2 and V_3 that contain vectors with as many zeros as possible.
 - d. Give a vector $\mathbf{z} \neq \mathbf{0}$ that is orthogonal to all vectors in V_3 .
 - e. x_1, x_2, x_3 and z are linearly independent. Therefore, x_4 is expressible in the form $\sum_{i=1}^{3} b_i \mathbf{x}_i + c \mathbf{z}$ (this is true because one can form at most d linearly independent vectors in a vector space of dimension d). Show that c = 0 and hence that $\mathbf{x}_4 \in V_3$, by determining $\mathbf{x}_4^T \mathbf{z}$. What is dim (V_4) (the dimension
 - f. Give a simple description of V_3 in words.
- 5. Consider \mathbb{R}^6 , Euclidean 6-space, but let's index a vector \mathbf{y} in this space as $\mathbf{y} =$ $(y_{11}, y_{12}, y_{13}, y_{21}, y_{22}, y_{31})^T$. Think of this indexing scheme as representing data y_{ij} from 3 treatment groups, with 3, 2, and 1 replicates (indexed by j) in groups 1, 2, and 3, respectively (indexed by i). That is, y_{ij} represents the j^{th} response in the i^{th} group where i=1,2,3 and $j=1,\ldots,n_i,\ n_1=3,\ n_2=2,\ n_3=1.$ Let \mathbf{a}_i be the indicator for the i^{th} treatment group (e.g., $a_1 = (1, 1, 1, 0, 0, 0)^T$, $a_2 = (0, 0, 0, 1, 1, 0)^T$, etc.). Let $V = \mathcal{L}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$.
 - a. For $\mathbf{y} = (2, 1, 0, 7, 9, 3)^T$ find $\hat{\mathbf{y}} = p(\mathbf{y}|V), \ \mathbf{y} \hat{\mathbf{y}}, \ ||\mathbf{y}||^2, \ ||\hat{\mathbf{y}}||^2, \ ||\mathbf{y} \hat{\mathbf{y}}||^2.$
 - b. Give a general non-matrix formula for $\hat{\mathbf{y}} = p(\mathbf{y}|V)$ for any \mathbf{y} .
- 6. Problem 2.23 7. Problem 2.24 from the textbook.