
                                  CLOTTING TIME DATA: Gamma Regression

Analysis based on discussion in M. Davidian’s longitudinal analysis book

In the development of clotting agents, it is common to perform in vitro studies of 
time to clotting. The following data are reported in McCullagh and Nelder (1989, 
section 8.4.2), and are taken from such a study. Here, samples of normal human 
plasma were diluted to one of 9 different percentage concentrations with 
prothrombin-free plasma; the higher the dilution, the more the interference with the
blood's ability to clot, because the blood's natural clotting capability has been 
weakened. For each sample, clotting was induced by introducing thromboplastin, a 
clotting agent, and the time until clotting occurred was recorded (in seconds). 5 
samples were measured at each of the 9 percentage concentrations, and the mean 
clotting times were averaged; thus, the response is mean clotting time over the 5 
samples. The response is plotted against percentage concentration in the upper left 
panel of the first plot. We will discuss the other panels of the figure shortly. It is 
well-recognized that this type of response, which is by its nature always positive, 
does not exhibit the same variability at all levels. Rather, large responses tend to be 
more variable than small ones, and a constant coefficient of variation model, such as
the gamma, is often a suitable model for this nonconstant variation.

From the plot, it is clear that a straight-line model for mean response as a function 
of the percentage concentration would be inappropriate. With this type of data it is 
often the case that the concentrations are log-transformed, but the plot of the 
clotting times against the log(percentage concentration) also shows a non-linear 
relationship. A quadratic model with a log-transformed predictor might seem 
better, but, because such models eventually curve “back up," this might not be a 
good model, either. In the lower right and lower left panels, the reciprocals (1/y) and
logarithms (log y) of the response, respectively, are plotted against log (percentage 
concentration). These appear to be roughly like straight lines, the former more-so 
than the latter. We will return to the implications of these two plots for choosing a 
model for mean response shortly. Note, of course, that a sensible model for mean 
response would be one that honors the positivity restriction for the response. Also 
noticeable from the plot is that the data are of “high quality” - the pattern of change
in the response with log(percentage concentration) is very clear and smooth, with 
very little “noise." This would suggest that if the data really are well-represented by 
the gamma probability distribution, then the coefficient of variation is “small." 
From the plot, it is very difficult to see any evidence of that the variance really is 
nonconstant as the response changes - this is due to the fact that variation is just so 
small, so it is hard to pick up by eye.
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As a first step in the analysis, I fit a gamma regression model with an inverse link, 
using the log-transformed percentage as a predictor. Output from the model is given
below, along with code that defined the data and created the plots above.

> pct = c(5,10,15,20,30,40,60,80,100)
   clot = c(118,58,42,35,27,25,21,19,18)

   par(mfrow=c(2,2))
   plot(pct,clot)
   plot(log(pct),clot)
   plot(log(pct),log(clot))
   plot(log(pct),1/clot)



>  ct = data.frame(pct,clot)
>  ct

  pct clot

1   5  118
2  10   58
3  15   42
4  20   35
5  30   27
6  40   25
7  60   21
8  80   19
9 100   18

> ft = glm(formula = clot ~ log(pct), family = Gamma(link = "inverse"), data = ct)

> gg = summary(ft)
> names(gg)

"call"           "terms"          "family"         "deviance"  "aic"            "contrasts"         
"df.residual"    "null.deviance"   "df.null"        "iter"    "deviance.resid" "coefficients"   
"aliased"        "dispersion"     "df"    "cov.unscaled"      "cov.scaled"

> gg

Call: glm(formula = clot ~ log(pct), family = Gamma(link = "inverse"), data = ct)

Deviance Residuals:
     Min        1Q    Median        3Q       Max
-0.04008  -0.03756  -0.02637   0.02905   0.08641

Coefficients:
                      Estimate Std. Error    t value   Pr(>|t|)
(Intercept) -0.0165       0.000927  -17.85     4.28e-07 
log(pct)       0.0153       0.000415   36.98      2.75e-09 

(Dispersion parameter for Gamma family taken to be 0.002446013)

    Null deviance:    3.5128 on 8 degrees of freedom
Residual deviance: 0.0167 on 7 degrees of freedom
AIC: 37.99



The log(pct) effect is highly significant, and the estimated dispersion parameter, 
which for the gamma is the estimated coefficient of variation (CV) is tiny: .002. This 
indicates that the estimated variation for the fitted gamma model, relative to the 
mean, is small – indicative of the “high quality” alluded to earlier. The diagnostic 
plots show some evidence of lack of fit (where?), but the overall fit is fairly good, as 
we will see in some plots to come.

> par(mfrow=c(2,2))
> plot(ft)
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The next several commands illustrate some features of the fitted model that can be 
obtained and plotted, in particular CIs for the estimated mean response. 

> beta = ft$coefficients             Store regression coefficients (as 2-by-1 vector)
> beta

(Intercept)    log(pct)

-0.01655438  0.01534311

> cov = gg$cov.scaled               Store cov matrix of regression coeffs as 2-by-2 matrix
> cov
                     (Intercept)         log(pct)
(Intercept)  8.603265e-07 -3.606389e-07
log(pct)     -3.606389e-07  1.721883e-07

> x = 1:100                                       Create design matrix for pct of 1 to 100
> xd = cbind(rep(1,100),log(x))
> xd[1:5,]

     [,1]      [,2]
[1,]    1 0.0000
[2,]    1 0.6931
[3,]    1 1.0986
[4,]    1 1.3862
[5,]    1 1.6094

>    lp = xd %*% beta                      Creates estimated linear predictor Xd*beta
>  vlp = xd %*% cov %*% t(xd)    Cov matrix of linear predictor Xd*cov*Xd’ 
>     q = sqrt( diag(vlp) )                  SE of linear predictors, as vector
> low = lp - 1.96*q                         Approx lower and upper 95% CI for linear pred
>  up  = lp + 1.96*q

Replot data on inverse response scale, then fit and CI on inverse scale

>  par(mfrow=c(1,2))
>  plot(log(pct),1/clot);                                                                           
>  lines(log(x),lp); lines(log(x),up,lty=4);  lines(log(x),low,lty=4)

Plot data on original response scale, and use inverse function applied to linear 
predictor and CI



> plot(log(pct),clot)
>  lines(log(x),1/lp); lines(log(x),1/up,lty=4);   lines(log(x),1/low,lty=4)
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Notice how well the model appears to fit, either on the transformed scale or on the 
original scale.



As a second analysis, I refit the gamma regression model, but with a log-link, and 
the log-transformed predictor.

> ft = glm(formula =clot~log(pct), family = Gamma(link = "log"), data = ct)
> summary(ft)

Call:
glm(formula = clot ~ log(pct), family = Gamma(link = "log"), data = ct)

Deviance Residuals:
     Min        1Q    Median        3Q       Max
-0.15599  -0.13254  -0.05629   0.07988   0.24588

Coefficients:
                   Estimate   Std. Error    t value    Pr(>|t|)
(Intercept)  5.50323    0.19030        28.92   1.52e-08 
log(pct)     -0.60192    0.05531      -10.88    1.22e-05 

 (Dispersion parameter for Gamma family taken to be 0.02435409)

    Null deviance:    3.51283  on 8  degrees of freedom
Residual deviance: 0.16261  on 7  degrees of freedom
AIC: 58.482

Number of Fisher Scoring iterations: 5

Notice that the log(pct) effect is still highly significant, but there are some suggestions here 
that the model does not fit as well as the previous fit: the residual deviance is very small, but
about 10 times larger than previously, which is reflected in the much larger estimated 
dispersion parameter. 

Diagnostics plots, and a plot of the observed and fitted model, with CI on both the 
transformed scale and the original scale, are given below.  What evidence do you see to 
support a conclusion that the original model fits better? Discuss

Based on these analyses, I would use the first model for inferences and predictions. In 
particular, the estimated mean clotting time satisfies:

                      1/estimated mean   =   -0.0165 +  0.0153 log (pct) 

Or equivalently

                  Estimated mean     = 1/ ( -0.0165 +  0.0153 log (pct)  )
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Fit Gaussian and Gamma GLMs, each with the 3 available links, and compare
Embedding response variable transformations in a GLM allows for AIC based 
comparisons across models (realize that this cannot be done with “lm” because you 
have to physically transform Y…).

We illustrate this idea with the clotting time data:

> library(MASS)
### 3 fits, each with different link
> lmod.iv.gam = glm(formula = clot ~ log(pct), family = 

Gamma(link ="inverse"), data = ct)
> lmod.id.gam = glm(formula = clot ~ log(pct), family = 

Gamma(link = "identity"), data = ct)
> lmod.lg.gam = glm(formula = clot ~ log(pct), family = 

Gamma(link = "log"), data = ct)
> lmod.iv.gau = glm(formula = clot ~ log(pct), family = 

gaussian(link = "inverse"), data = ct)
> lmod.id.gau = glm(formula = clot ~ log(pct), family = 

gaussian(link = "identity"), data = ct)
> lmod.lg.gau = glm(formula = clot ~ log(pct), family = 

gaussian(link = "log"), data = ct)

### string all aic's into dataframe along with models & links
> aic=c(mod.iv.gam$aic,mod.id.gam$aic,mod.lg.gam$aic,

mod.iv.gau$aic, mod.id.gau$aic,mod.lg.gau$aic)
> model=c(rep("gamma",3),rep("normal",3))
> link=c("inv","id","log","inv","id","log")
> model.fits = data.frame(model,link,aic)
> model.fits[order(model.fits$aic),]
   model link      aic
1  gamma  inv 37.98992
4 normal  inv 41.69558
3  gamma  log 58.48166
6 normal  log 61.38859
2  gamma   id 70.43214
5 normal   id 79.51840

It seems the gamma(link=inverse) model is the winner, except that
from the “glm” help file we read the following for the returned 
value of “aic”:

“For gaussian, Gamma and inverse gaussian families the dispersion
is estimated from the residual deviance, and the number of 
parameters is the number of coefficients plus one. For a gaussian
family the MLE of the dispersion is used so this is a valid value
of AIC, but for Gamma and inverse gaussian families it is not.”



I cannot see an easy way to compute the appropriate value of AIC 
(other than manually coding it), but it should work approximately
as a pseudo-AIC. We can however compute the MLE of the dispersion
and print the model summary with it to see if it differs a lot 
from the MME...

### MME of dispersion (default)
> summary(mod.iv.gam)

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.0165544  0.0009275  -17.85 4.28e-07 ***
log(pct)     0.0153431  0.0004150   36.98 2.75e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Gamma family taken to be 0.002446059)

    Null deviance: 3.51283  on 8  degrees of freedom
Residual deviance: 0.01673  on 7  degrees of freedom
AIC: 37.99

### MLE of dispersion (but does not re-compute aic...)
> summary(mod.iv.gam, dispersion = gamma.dispersion(mod.iv.gam)) 

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.0165544  0.0008085  -20.48   <2e-16 ***
log(pct)     0.0153431  0.0003617   42.42   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Gamma family taken to be 0.001858282)

    Null deviance: 3.51283  on 8  degrees of freedom
Residual deviance: 0.01673  on 7  degrees of freedom
AIC: 37.99                                                                                          


