
  
Galapagos Islands Data 

 The Galapagos Islands off the coast of Ecuador provide an excellent  laboratory for 
studying the factors that influence the development and survival of different life species. 
Johnson and Raven (1973;  Science p893-5) have presented the data below giving the 
number of species  and related variables for 30 different islands. Counts are given both 
for the total number of species and the number of species that occur only on that one 
island (the endemics). The variables in the data set are: island name, number of species, 
endemics, area in km**2, elevation in meters, distance from nearest island, distance from
Santa Cruz (which is near the center of the Galapagos), and area of adjacent island in 
km**2. In the output below data from selected islands are given.

We will fit a Poisson model, with the number of species as response. Our analysis is 
fairly similar to Faraway’s analysis in his book. The point of the analysis is to 
mostly illustrate techniques. We will see that there are some real flaws with the 
model. We use Faraway’s version of the data, which estimated a few missing values.

> ga = read.table("D:/My Documents/GLMcourse/glmSECTION/gala.txt",header=T)

> ga
                    Species   Endemics   Area   Elevation  Nearest  Scruz   Adjacent
Baltra               58             23           25.09       346          0.6        0.6       1.84
Bartolome         31            21             1.24       109          0.6      26.3   572.33
Caldwell             3              3              0.21       114          2.8      58.7      0.78
Espanola           97           26             58.27       198          1.1      88.3      0.57
Isabela            347           89         4669.32       1707        0.7      28.1   634.49
Pinta               104           37             59.56       777        29.1    119.6   129.49
SantaCruz       444           95            903.82      864          0.6        0.0     0.52
SantaFe           62            28              24.08       259        16.5      16.5     0.52
Wolf                21            12               2.85       253        34.1    254.7     2.33

I omitted the second column (endemics) since it was not to be used in the analysis.

> ga <- ga[,-2]

I first fit a Poisson regression with a log link (default) using all predictors (the 
period implies everything in the data set except the response)

> modp <- glm(Species ~ ., family=poisson, ga)
> summary(modp)

Call:
glm(formula = Species ~ ., family = poisson, data = ga)



Deviance Residuals:
    Min       1Q      Median       3Q      Max
-8.2752  -4.4966  -0.9443   1.9168  10.1849

Coefficients:
              Estimate          Std. Error   z value     Pr(>|z|)
(Intercept)  3.155e+00  5.175e-02   60.963     < 2e-16 
Area         -5.799e-04    2.627e-05 -22.074     < 2e-16 
Elevation    3.541e-03   8.741e-05  40.507     < 2e-16 
Nearest       8.826e-03   1.821e-03    4.846    1.26e-06 
Scruz          -5.709e-03  6.256e-04   -9.126     < 2e-16 
Adjacent    -6.630e-04   2.933e-05 -22.608     < 2e-16 

(Dispersion parameter for poisson family taken to be 1)

    Null deviance:   3510.73  on 29  degrees of freedom
Residual deviance:  716.85  on 24  degrees of freedom
AIC: 889.68

Number of Fisher Scoring iterations: 5

Each effect is highly significant. I can get residuals from the model using the 
residuals command.

> rp     <- residuals(modp,type="pearson")
> rd     <- residuals(modp,type="deviance")
> rraw <-residuals(modp,type="response")            These are raw resids

> cbind(rraw,rp,rd)

                         rraw                        rp                  rd
Baltra                 -20.7243375    -2.3357489    -2.4514468
Bartolome           10.5970710      2.3460625     2.1773837
Caldwell            -22.7224758     -4.4802192    -5.7054741
Champion             3.5946726      0.7769596      0.7566071
Coamano           -15.0144771     -3.6399960    -4.6330643
Daphne.Major   -18.5854494     -3.0726909    -3.4112843
Daphne.Minor     -8.0806055     -1.4266670    -1.4938927
Darwin                -0.9185636      -0.2779883   -0.2820294
Eden                 -21.8300927      -3.9969460    -4.7542578
Enderby            -24.7763009     -4.7880776     -6.2590033
Espanola            69.1386497     13.0984472    10.1848901
Fernandina           5.2558464       0.5610913      0.5556252
Gardner1            42.0813319     10.5471741      8.1129276
Gardner2           -33.2216722     -5.3736162     -6.7899703
Genovesa            14.9744202      2.9933530      2.7512972



Isabela          -23.8210549     -1.2370259     -1.2506377
Marchena       -4.7584774       -0.6372540     -0.6466564
Onslow         -18.2937413       -4.0608923     -5.2267410
Pinta           -108.6035940       -7.4483298     -8.2752152
Pinzon          -13.4269526       -1.2184842     -1.2420429
Las.Plazas    -20.1959932       -3.5592976     -4.0872409
Rabida           16.9401773         2.3256002      2.2158922
SanCristobal  61.1786806        4.1357596      3.9625414
SanSalvado -133.9783421      -6.9560120     -7.4541992
SantaCruz     146.7220046       8.5096926      7.9235897
SantaFe             1.1185583       0.1433561      0.1429205
SantaMaria    126.8346797     10.0851505     9.0539609
Seymour            7.1056825       1.1698389     1.1350150
Tortuga          -19.5216412       -3.2754413   -3.6771692
Wolf                  2.9319966        0.6897765     0.6722795

Note sum of squared deviance residuals is the Deviance!

> sum(rd^2)

716.8458

With count data, we might consider the presence of overdispersion. I saved the 
fitted values, then plotted the fitted values on a log scale (which is the linear 
predictor) against the Pearson residuals, and plotted the fitted values against the 
squared raw residuals, both on a log scale. Note that the form of the plot labels 
provides a nice touch. 

If the mean structure is specified correctly, the first plot should show no dependence
of the size or sign of the residual on the value of the linear predictor. If the response 
is Poisson, then the squared raw residual should be on average equal to the mean 
(i.e. expected squared raw residual estimates the variance, which equals the mean 
for a Poisson count). Why the log scale? Some residuals and fitted values are large, 
so this helps visualize the data.

> fv <- fitted(modp)
> par(mfrow=c(1,2))                            What does this do? 
> plot( log(fv), rp, xlab=expression(log(hat(mu))), ylab="Pearson Resids")
> plot(log(fv), log(rraw^2), xlab=expression(log(hat(mu))), ylab=expression(log (y-
hat(mu))^2 ))

> abline(0,1) 

Looking at the plots it would seem the primary problem lies with the potential for 
overdispersion. This is also clear from an estimate of the overdispersion parameter 
“phi” from the Pearson statistic:



 

> phi = sum(rp^2)/modp$df.res
> phi
 31.74914
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I will refit the model, but account for overdispersion. Since the effect of including an
overdispersion parameter is to divide variances by phi, all standard deviations are 
reduced by a factor of approximately the square root of 31.74, the estimate of phi 
given with the output – so R must be using the Pearson statistic for standardization. 

> modpn <- glm(Species ~ ., family=quasipoisson, ga)
> summary(modpn)

Call:
glm(formula = Species ~ ., family = quasipoisson, data = ga)

Deviance Residuals:
    Min       1Q      Median       3Q      Max
-8.2752  -4.4966  -0.9443   1.9168  10.1849



Coefficients:
                     Estimate     Std. Error   t value   Pr(>|t|)
(Intercept)  3.1548079  0.2915894  10.819     1.03e-10 
Area          -0.0005799  0.0001480  -3.918      0.000649 
Elevation   0.0035406   0.0004925   7.189      1.98e-07 
Nearest      0.0088256   0.0102621   0.860      0.398291
Scruz        -0.0057094   0.0035251  -1.620      0.118379
Adjacent   -0.0006630  0.0001652  -4.012      0.000511 

 (Dispersion parameter for quasipoisson family taken to be 31.74906)

    Null deviance:   3510.73  on 29  degrees of freedom
Residual deviance:  716.85  on 24  degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

Note that R labels the Wald tests on the coefficients as t-statistics. After accounting 
for the overdispersion, neither the Nearest effect nor the Scruz effect is significant. 
The deviances remain unchanged.

As an alternative to the Wald tests, we can request approximate F-tests for each 
effect. These correspond to standardizing the drop in deviance from omitting each 
effect from the full model. Faraway notes that the F approximation is viewed to be 
more accurate than the normal or t approximation used with the Wald test. To get 
the approximate F-tests, use the drop1 command:

> drop1(modpn,test="F")

Single term deletions

Model:
Species ~ Area + Elevation + Nearest + Scruz + Adjacent

                 Df        Deviance     F value     Pr(F)
<none>                   716.85
Area          1         1204.35      16.3217     0.0004762 
Elevation   1        2389.57       56.0028     1.007e-07 
Nearest      1          739.41         0.7555     0.3933572
Scruz         1          813.62          3.2400     0.0844448 .
Adjacent   1        1341.45        20.9119     0.0001230 

The deviance column specifies the model deviance when the specified effect is 
omitted from the full model, which has a deviance of 716.85. The p-values are not 
very different from that obtained from the Wald test.



A reasonable next step in the analysis might be to omit the least significant effect in 
the model, Nearest. After removing Nearest, Scruz is insignificant (p = .14). I then 
removed Scruz, leaving a model with three highly significant effects: Area, 
Elevation, and Adjacent. For the sake of brevity, some output is omitted.

> modnew1 <- update(modpn,  ~ .  - Nearest)
> summary(modnew1)

Call:
glm(formula = Species ~ Area + Elevation + Scruz + Adjacent, family = quasipoisson, 
data = ga)

Coefficients:
                     Estimate     Std. Error   t value      Pr(>|t|)
(Intercept)  3.1599640    0.2805140  11.265     2.75e-11 
Area          -0.0005978    0.0001396  -4.283      0.000239 
Elevation    0.0035769    0.0004675   7.651      5.25e-08 
Scruz         -0.0038565    0.0025216  -1.529      0.138723
Adjacent    -0.0007030    0.0001521  -4.621      9.96e-05 

 (Dispersion parameter for quasipoisson family taken to be 29.53500)

> modnew2 <- update(modnew1,  ~ .  - Scruz)
> summary(modnew2)

Call:
glm(formula = Species ~ Area + Elevation + Adjacent, family = quasipoisson,
    data = ga)

Coefficients:
                     Estimate     Std. Error   t value   Pr(>|t|)
(Intercept)  2.9613109  0.2617588  11.313    1.53e-11 
Area          -0.0005704  0.0001381  -4.129    0.000334 
Elevation    0.0035891  0.0004721   7.602    4.54e-08 
Adjacent    -0.0007508  0.0001524  -4.928   4.07e-05 

 (Dispersion parameter for quasipoisson family taken to be 30.08155)

    Null deviance:   3510.73  on 29  degrees of freedom
Residual deviance:  818.74  on 26  degrees of freedom
AIC: NA



I then obtained some diagnostic information for this model, using built-in R 
functions. Could not figure out how to get standardized deviance residuals, but 
these are easy to compute, by saving the deviance residuals and dividing them by the
square-root of the estimated dispersion times one minus the leverage. 

> rp = residuals(modnew2,type="pearson")                 Pearson residuals                   
> rpstd = rstudent(modnew2)                                        Standardized Pearson residuals   
>  lev   = influence(modnew2)$hat                                Case Leverages          
> cookd = cooks.distance(modnew2)                            Cook’s Distances             
> fv <- fitted(modnew2)                                                Fitted Values
   
> cbind(ga$Species,fv,rp,rpstd,lev,cookd)   
                               
                     Species      fv               rp          rpstd        lev            cookd 
Baltra               58        65.85        -0.967    -0.1767      0.045    3.929696e-04                  
Bartolome        31        18.58         2.881      0.4729      0.041    3.146199e-03                  
Caldwell            3         29.07       -4.835     -1.1281      0.045    9.667971e-03                  
Champion        25         22.78        0.463       0.0816      0.044    8.759058e-05                  
Coamano           2         12.92       -3.038     -0.6778      0.040    3.364752e-03                  
Daphne.Major 18         29.57       -2.128     -0.4107      0.045    1.872732e-03                  
Daphne.Minor 24         26.97       -0.572     -0.1042     0.045     1.350634e-04                  
Darwin            10         35.19        -4.246     -0.9070     0.045     7.462747e-03                  
Eden                  8        24.59        -3.346     -0.7003     0.044     4.572919e-03                  
Enderby             2       28.87         -5.001     -1.1960     0.045     1.034475e-02                  
Espanola          97       38.02          9.563       1.5046     0.045     3.811734e-02                  
Fernandina       93       86.12          0.741       0.9200     0.979    1.068162e+01                  
Gardner1          58       22.04          7.657       1.1766     0.044    2.350568e-02                  
Gardner2            5       43.61         -5.847     -1.3711     0.045     1.410074e-02                  
Genovesa         40        22.80          3.600      0.5876     0.043     5.151113e-03                  
Isabela            347     383.14         -1.846     -2.6919     0.981     7.970545e+01                  
Marchena         51       58.78         -1.014     -0.1855     0.044     4.156694e-04                  
Onslow               2       21.13         -4.162     -0.9694     0.044     7.011612e-03                  
Pinta               104     275.57       -10.335     -2.6976     0.278     4.746153e-01                  
Pinzon             108      98.97           0.907      0.1608     0.054     4.200156e-04                  
Las.Plazas         12      26.56         -2.826      -0.5681     0.044      3.269615e-03                  
Rabida               70     46.80           3.390        0.5697     0.044     4.653138e-03                  
SanCristobal    280    184.21          7.057        1.2490     0.095     4.808517e-02                  
SanSalvador     237   358.86         -6.433       -1.5441     0.366     3.138335e-01                  
SantaCruz         444   256.32         11.722        2.2437    0.156     2.513176e-01                  
SantaFe              62      48.26           1.976        0.3399    0.045     1.610927e-03                  
SantaMaria      285     174.30           8.384       1.4937    0.105     7.741402e-02                  
Seymour            44       32.10           2.099       0.3570    0.045     1.811534e-03                  
Tortuga             16       37.14          -3.468      -0.7037    0.045     4.949248e-03                  
Wolf                  21      47.75          -3.871      -0.7853    0.045     6.168078e-03                  
                                                                           
                                                                           



Looking at these summaries we see two cases with extremely large Cook’s distances 
and leverages (Fernandina and Isabella) and several cases with large standardized 
Pearson residuals (Isabella, Santa Cruz, Pinta). Leverages in linear regression 
measure distance in the covariate space from the center, but in GLMs the 
interpretation is a bit more complicated, because leverages depend on variances. 
Nonetheless, high leverage cases typically are somewhat extreme in the covariate 
space. 

Diagnostic plots are useful in GLM analyses. I made a normal q-q plot of the 
standardized Pearson residuals (should appear as a straight line), a plot of the linear
predictor against the Pearson residuals, and index plots of the case leverages and 
Cook’s distance. The leverage and Cook’s distance plots highlight serious problems. 

>  par(mfrow=c(2,2))                                                        
>  qqnorm(rp);  qqline(rp);                                                   
>  plot(log(fv), rp, xlab=expression(log(hat(mu))), ylab="Pearson Resids");     
>  plot(lev, ylab="Leverage");                                                
>  plot(cookd, ylab="Cook's D")                                               
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It is perhaps easier to allow R to create diagnostic plots directly, using the plot 
command, applied to our model output object:

> par(mfrow=c(2,2))
> plot(modnew2)   
                  

The plot of residuals against fitted values uses the raw deviance residuals plotted 
against the linear predictor. The normal q-q plot uses the standardized deviance 
residuals. The scale-location plot is assessing changes in variance as a function of 
mean. The residual versus leverage plot also includes contours for Cook’s distance, 
which may make it challenging to interpret. A nice feature is that extreme cases are 
labeled.  
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Galapagos Islands Data: Revisited

Our analysis of these data had serious deficiencies. Prior to building the model, we 
did not even consider whether the relationships suggested by the log link made 
sense. A reasonable first step should have been to plot log(Species), as an 
approximation to the log-transformed mean, against each predictor. This is done 
below, and the plots clearly show the need to transform one or more predictors 
(Area, Elevation,  Adjacent).

> par(mfrow=c(3,2))
   plot(ga$Area, log(ga$Species),xlab="Area",ylab="log(Species)")
   plot(ga$Elevation, log(ga$Species),xlab="Elevation",ylab="log(Species)")
   plot(ga$Adjacent, log(ga$Species),xlab="Adjacent",ylab="log(Species)")
   plot(ga$Nearest, log(ga$Species),xlab="Nearest",ylab="log(Species)")
   plot(ga$Scruz, log(ga$Species),xlab="Scruz",ylab="log(Species)")
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A logarithmic transformation is sensible, so for consistency, I transformed each 
predictor to a log scale (after adding 1 since one or more variables had zeros), and 
replotted the data. I also created a data frame containing the original response, and 
the log transformed predictors.

The transformation does an adequate (but not perfect) job of linearizing some of the
relationships, so I will pursue building a model using the log-transformed 
predictors.
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Here is the code that generated the plots, and for creating the data frame.

> Species =  ga$Species
> Larea    =  log(1+ ga$Area)
> Lelev    =  log(1+ ga$Elevation)
> Ladj      =  log(1+ ga$Adjacent)
> Lnear    =  log(1+ga$Nearest)



> Lscruz  =  log(1+ga$Scruz)

 > plot(Larea, log(Species), xlab="log(Area)",        ylab="log(Species)")
 > plot(Lelev, log(Species), xlab="log(Elevation)",ylab="log(Species)")
 > plot(Ladj,   log(Species), xlab="log(Adjacent)",ylab="log(Species)")
 > plot(Lnear, log(Species), xlab="log(Nearest)",   ylab="log(Species)")
 > plot(Lscruz,log(Species), xlab="log(Scruz)",      ylab="log(Species)")

> gb = data.frame(Species,Larea,Lelev,Ladj,Lnear,Lscruz)
> gb                                                                                          First few rows shown 

      Species         Larea            Lelev           Ladj              Lnear        Lscruz
1       58          3.26155210    5.849325   1.04380405    0.4700036   0.4700036
2       31          0.80647587    4.700480    6.35146147   0.4700036   3.3068867
3        3           0.19062036    4.744932    0.57661336   1.3350011   4.0893320

As with the earlier analysis, I will adjust for overdispersion. Fitting the model with 
each of the 5 predictors gives the following summary. 

> modpn <- glm(Species ~ .,family=quasipoisson, gb)
> summary(modpn)

Call:
glm(formula = Species ~ ., family = quasipoisson, data = gb)

Coefficients:
                  Estimate    Std. Error   t value    Pr(>|t|)
(Intercept)  2.25154    1.24722      1.805  0.08360 .
Larea          0.35230    0.09522      3.700  0.00112 **
Lelev          0.21415    0.26472      0.809  0.42648
Ladj          -0.12403    0.04088     -3.034  0.00573 **
Lnear        -0.03206    0.08947     -0.358  0.72320
Lscruz       -0.02868    0.07381    -0.389   0.70105

 (Dispersion parameter for quasipoisson family taken to be 20.27426)

    Null deviance:    3510.73  on 29  degrees of freedom
Residual deviance:   431.51  on 24  degrees of freedom

I performed a backward elimination, starting by removing the least significant 
effect in the full model, Lnear. I then refit the model, omitted the least significant 
effect (Lcruz), and continued this process until each remaining effect was 
significant. The resulting model included effects for Larea and Ladj, each of which 
is highly significant.

> summary(modpn3)



Call:
glm(formula = Species ~ Larea + Ladj, family = quasipoisson, data = gb)

Coefficients:
                    Estimate   Std. Error    t value      Pr(>|t|)
(Intercept)  3.05199       0.20863     14.629    2.36e-14 ***
Larea          0.43282       0.03787     11.430    7.50e-12 ***
Ladj           -0.12333       0.03410      -3.616    0.00121 **

 (Dispersion parameter for quasipoisson family taken to be 19.01247)

    Null deviance:   3510.7  on 29  degrees of freedom
Residual deviance:  459.2  on 27  degrees of freedom 

As with the earlier analysis, I made diagnostic plots based on summaries that I 
saved and by using the built-in R function plot. Isabella (case 16), which is the 
largest island, and which has a large adjacent island, has a large leverage, but no 
individual case appears to have a strong effect on the estimated regression 
coefficient vector (i.e. a large Cook’s distance). 
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The residuals should be approximately normal when the model holds and (under a 
Poisson model) when all the means are large (which they are not). Although there 
may be some deficiencies with this model, it would appear to be a marked 
improvement upon our earlier attempt. I will stop at this point, and just summarize 
that the two primary features that would appear to impact the number of species 
are the island’s size, and the size of the adjacent island. This is perhaps not too 
surprising. 

Any comments? 

Discussion: How does the area of the island and the area of the adjacent island 
impact the number of species on the island?  Does this make sense?

You should note that I am giving you all the R code so you can reproduce things 
yourself. When handing in an analysis, there is not a need to include all the code, 
but rather limit your discussion to the statistical issues, and relevant summaries. 



Quasi-likelihood with different variance functions
In GLMs with “family=quasi” we can try different combinations of 
variance and link functions. (These are restricted to just a few 
“canned” choices, but the user can in principle program any 
function.) Here we illustrate by first reproducing the last model
with “family=quasi”:

> glm2 <- glm(Species ~ Larea+Ladj, family=quasi(variance = "mu",
link = "log"), galab)
> summary(glm2)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)    
(Intercept)  3.05199    0.20863  14.629 2.36e-14 ***
Larea        0.43282    0.03787  11.430 7.50e-12 ***
Ladj        -0.12333    0.03410  -3.616  0.00121 ** 
---
(Dispersion parameter for quasi family taken to be 19.01248)
    Null deviance: 3510.7  on 29  degrees of freedom
Residual deviance:  459.2  on 27  degrees of freedom

The plot of squared residuals vs. fitted values on p. 2 (which 
suggested overdispersion), also suggests that we might try the 
variance to be something like a polynomial in the mean. Here we 
try V(mu)=mu^2:

> glm3 <- glm(Species ~ Larea+Ladj, family=quasi(variance = 
"mu^2", link = "log"), galab)
> summary(glm3)
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  2.712341   0.222159  12.209 1.67e-12 ***
Larea        0.450912   0.055039   8.193 8.48e-09 ***
Ladj        -0.005249   0.055561  -0.094    0.925    
---
(Dispersion parameter for quasi family taken to be 0.5529679)
    Null deviance: 56.266  on 29  degrees of freedom
Residual deviance: 18.274  on 27  degrees of freedom

However, the result is not as good; there is now a funnel shape 
in the scale-location diagnostic plot...



Automatic model selection (without overdispersion)
In GLMs with overdispersion, only the mean and variance functions are specified, 
which is not enough to determine a distribution, and thus there is no likelihood (and
therefore no AIC). 

For GLMs without overdispersion, -2log(Likelihood)=Deviance and thus: 

AIC = Deviance + 2(number of parameters)

We can automate model selection in these cases via the “step” function in R, which 
does stepwise model selection. Using “step” we obtain the full model with the 5 log 
transformed predictors (and no overdispersion).

> galab = data.frame(Larea,Lelev,Ladj,Lnear,Lscruz,Species)
> glm.full <- glm(Species ~ ., family=poisson, galab)            
> summary(glm.full)
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  2.25154    0.27699   8.128 4.35e-16 ***
Larea        0.35230    0.02115  16.659  < 2e-16 ***
Lelev        0.21415    0.05879   3.643  0.00027 ***
Ladj        -0.12403    0.00908 -13.660  < 2e-16 ***
Lnear       -0.03206    0.01987  -1.614  0.10661    
Lscruz      -0.02868    0.01639  -1.749  0.08022 .  
---
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 3510.73  on 29  degrees of freedom
Residual deviance:  431.51  on 24  degrees of freedom
AIC: 604.34

Note that in defining “galab” we need to place the response as 
the last column of the dataframe, since the package “bestglm” on 
the next page expects it that way!

> step(glm.full, trace=T) 
Start:  AIC=604.34
Species ~ Larea + Lelev + Ladj + Lnear + Lscruz

         Df Deviance    AIC
<none>        431.51 604.34
- Lnear   1   434.12 604.95
- Lscruz  1   434.57 605.40
- Lelev   1   445.13 615.96
- Ladj    1   626.41 797.24
- Larea   1   705.54 876.37



For traversing the entire model space, the version of the “regsubsets” function 
(package “leaps”),  is implemented in package “bestglm” (function has same name), 
but again, it does not handle overdispersion. We illustrate with a variety of 
information criteria (IC), in particular cross-validation (CV), which is generally 
applicable when a likelihood-based criterion like AIC/BIC is not available:

### BIC
> bestglm(galab, family=poisson, IC="BIC")
Best Model:
               Estimate Std. Error    z value     Pr(>|z|)
(Intercept)  2.25147641 0.27637148   8.146558 3.744279e-16
Larea        0.35540034 0.02097196  16.946450 2.044295e-64
Lelev        0.20991934 0.05855078   3.585253 3.367521e-04
Ladj        -0.11958950 0.00864749 -13.829390 1.694523e-43
Lscruz      -0.04452264 0.01317517  -3.379285 7.267466e-04

### CV default
> bestglm(galab, family=poisson, IC="CV")
Best Model:
            Estimate  Std. Error  z value Pr(>|z|)
(Intercept) 2.957891 0.045116023 65.56187        0
Larea       0.385460 0.007692144 50.11087        0

### 10-fold CV of Hastie et al (2009).
> bestglm(galab, family=poisson, IC="CV", 
CVArgs=list(Method="HTF", K=10, REP=1))
Best Model:
              Estimate  Std. Error   z value    Pr(>|z|)
(Intercept)  3.0519894 0.047847451  63.78583 0.00000e+00
Larea        0.4328238 0.008684844  49.83668 0.00000e+00
Ladj        -0.1233313 0.007821115 -15.76902 5.08364e-56

### 10-fold with DH Algorithm. 
> bestglm(galab, IC="CV", CVArgs=list(Method="DH", K=10, 
REP=100))
Best Model:
              Estimate Std. Error   t value     Pr(>|t|)
(Intercept)  45.315046  21.698940  2.088353 4.670363e-02
Larea        40.402631   4.023028 10.042840 1.939359e-10
Ladj         -9.506318   4.063597 -2.339385 2.727081e-02
Lnear       -21.494096   8.532889 -2.518971 1.825537e-02


