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Introduction

Thus far, we have discussed nonparametric regression
involving a single covariate

In practice, we often have a p-dimensional vector of covariates
for each observation

The nonparametric multiple regression problem is therefore to
estimate

E(y|x) = f(x)

where f : Rp 7→ R

Both local regression methods and splines can be extended to
deal with this problem
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Local regression

We have already seen how to extend local regression to the
multivariate case, back when we discussed estimating
multivariate densities

All that is required is to define a multivariate kernel:

f̂(x0) =
1

n

∑
i

p∏
j=1

1

hj
K

(
xij − x0j

hj

)
With the kernel defined, we can now fit a weighted multiple
regression model, with elements xij − x0j
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Local multiple regression
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Thin plate splines

The multidimensional analog of smoothing splines are called
thin plate splines

For two dimensions, we find f(x1, x2) that minimizes

−
n∑

i=1

`{yi, f(x1i, x2i)}+λ
∫ ∫ [

∂2f

∂u2

]2
+2

[
∂2f

∂u∂v

]2
+

[
∂2f

∂v2

]2
dudv

Thin plate splines have fairly complicated basis functions
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Scales and isotropy

An important feature of thin-plate splines is that they are
isotropic: curvature in all directions is penalized equally

This makes sense when f(x1, x2) is a function of, say, spatial
coordinates measured in identical units

However, if x1 and x2 are different quantities measured in
units which are not comparable, the isotropy assumption may
make little sense and result in a lack of equivariance

In practice, it is common to rescale variables to have mean 0,
variance 1, or so that they can fit on the unit square

This issue is equally relevant to multiple local regression,
where bandwidths {hj} must be chosen
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Tensor product splines

An alternative approach to constructing multidimensional
splines is to use a tensor product basis

Suppose we specify a set of basis functions {h1k} for x1 and
{h2k} for x2, with M1 and M2 elements, respectively

The tensor product basis for the two-dimensional smooth
function of x1 and x2 is given by

gjk(x1, x2) = h1j(x1)h2k(x2)

and has M1×M2 elements
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Multidimensional splines
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The curse of dimensionality

Thin plate splines and tensor product splines can be extended
further into higher dimensions, although they become rather
computationally intensive as the dimension exceeds 2

Also, as we saw with kernel density estimation, the curse of
dimensionality implies that we need an exponentially
increasing amount of data to maintain accuracy as p increases
(this applies to both local regression and splines/penalized
regression)

Furthermore, multidimensional smooth functions are harder to
visualize and interpret

Because of this, it is often necessary/desirable to introduce
some sort of structure into the model
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Structured regression

Introducing structure will certainly introduce bias if the
structure does not accurate describe reality; however, it can
result in a dramatic reduction in variance

Nonparametric multiple regression usually comes down to
balancing these goals: introducing enough structure to make
the model fit stable, but not so much structure as to bias the
fit

A number of methods have been proposed in the hopes of
accomplishing this balance, including structured kernels,
varying coefficient models, and projection pursuit regression

By far the simplest and most common approach, however, is
to introduce an additive structure; the resulting model is
called an additive model
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Generalized additive models

An additive model is of the form

E(y|x) = α+ f1(x1) + f2(x2) + · · ·+ fp(xp)

By introducing a distribution and link function into linear
regression, we have generalized linear models (GLMs)

By introducing a distribution and link function into additive
models, we have generalized additive models (GAMs):

g{E(y|x)} = α+
∑
j

fj(xj)
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GAMs and the curse of dimensionality

This additive structure greatly alleviates the curse of
dimensionality:

From a spline perspective, we need only
∑

pmj basis functions
instead of

∏
pmj basis functions

From a local regression perspective, it is much easier to find
points in a one-dimensional neighborhood

As we will see, additive models are also easy to fit
computationally
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Restrictions imposed by various models
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Restrictions imposed by various models (cont’d)
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The gam package

As we mentioned in a previous lecture, there are two R

packages for the implementation of GAMs: mgcv and gam

The two packages both supply a gam function with a formula
interface and are superficially very similar

However, the implementation which underlies their model
fitting is very different, and as a result, they offer different
features
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Backfitting

The gam package is based on a simple algorithmic approach called
backfitting for turning any one-dimensional regression smoother
into a method for fitting additive models

(1) Initialize: α̂ = 1
n

∑
i yi, f̂j = 0 for all j

(2) Cycle over j until convergence:

(a) Compute ỹi = yi − α̂−
∑

k 6=j fk(xik) for all i

(b) Apply the one-dimensional smoother to {xij , ỹi} to obtain f̂j
(c) Set f̂j equal to f̂j − n−1

∑
i f̂j(xij)

Note that we require
∑

i f̂j(xij) = 0 for all j; otherwise the model
is not identifiable
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Backfitting (cont’d)

The modular nature of the backfitting algorithm makes it easy
to fit very general models, such as:

Models in which some terms are fit via local polynomials and
others fit via splines
Models that mix parametric and nonparametric terms
Models that include 2D smooth functions to model
nonparametric interactions of terms

Computing degrees of freedom is also a simple extension of
earlier results: letting Lj denote the smoother matrix for the
jth term, the degrees of freedom of the jth term is tr(Lj)− 1

Patrick Breheny STA 621: Nonparametric Statistics 17/30



Nonparametric multiple regression
Additive models

Implementations in R

Syntax: gam

So in the gam package, one could submit

fit <- gam(y~x1+s(x2)+lo(x3))

to fit a model in which x1 is modeled parametrically, x2 is
modeled using splines, and x3 is modeled using loess

As we have seen, we can use the anova method to test nested
models:

> fit <- gam(chd~s(age)+lo(ldl)+obesity,fam="binomial")

> fit0 <- gam(chd~s(age)+ldl+obesity,fam="binomial")

> anova(fit0,fit)

Model 1: chd ~ s(age) + ldl + obesity

Model 2: chd ~ s(age) + lo(ldl) + obesity

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 455.00 505.34

2 451.69 504.20 3.3101 1.1364 0.8134
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The mgcv package

The syntax of gam in the mgcv package is very similar,
although the mgcv package has many more features

The implementation is based not on backfitting, but rather on
the Lanczos algorithm, a way of efficiently calculating
truncated matrix decompositions

The implementation is restricted to splines (i.e. no mixing of
local polynomials and splines)
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Selection of λ

One key advantage of this approach is that it allows for the
evaluation of the derivative of AIC with respect to λj

This makes it possible to employ a Newton’s method
approach to simultaneously fit the model and optimize over
the smoothing parameters with respect to AIC

In practice, this is an attractive advantage over the gam

package, for which you must specify either λj or dfj
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Syntax: mgcv

The basic syntax of gam in the mgcv package is:

fit <- gam(chd~te(age,ldl)+s(obesity)+tobacco,

fam=binomial)

where here, we are allowing a tensor product interaction
between age and LDL, an additive nonparametric effect of
obesity, and an additive parametric effect of tobacco use on
the log odds of coronary heart disease

One can add arguments to the te() and s() functions, but
the default behavior is to use a natural cubic spline/thin-plate
spline basis and to automatically choose the smoothing
parameter via optimization of the GCV or AIC objective
(which the package calls UBRE)
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summary.gam

> summary(fit)

Family: binomial

Link function: logit

Formula: chd ~ te(age, ldl) + s(obesity) + tobacco

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.10345 0.15277 -7.223 5.09e-13 ***

tobacco 0.07634 0.02556 2.987 0.00282 **

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

te(age,ldl) 3.619 4.055 44.591 5.66e-09 ***

s(obesity) 1.821 2.333 2.938 0.279

R-sq.(adj) = 0.18 Deviance explained = 16.5%

UBRE score = 0.10897 Scale est. = 1 n = 462
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anova.gam

More specific hypotheses can be tested via the anova method:

> fit0 <- gam(chd ~ te(age,ldl) + obesity + tobacco,

data=heart, family=binomial)

> anova(fit0, fit, test="Chisq")

Analysis of Deviance Table

Model 1: chd ~ te(age, ldl) + obesity + tobacco

Model 2: chd ~ te(age, ldl) + s(obesity) + tobacco

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 455.67 501.01

2 454.56 497.46 1.1108 3.5483 0.06947 .
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anova vs. summary

It is important to note that, while anova and summary agree for
linear regression models, in the nonparametric GAM case they are
taking different approaches to testing, and do not produce the
same results for the same tests:

> summary(fit)

...

edf Ref.df Chi.sq p-value

s(obesity) 1.821 2.333 2.938 0.279

...

> fit0 <- gam(chd ~ te(age,ldl) + tobacco,

data=heart, family=binomial)

> anova(fit0, fit, test="Chisq")

Model 1: chd ~ te(age, ldl) + tobacco

Model 2: chd ~ te(age, ldl) + s(obesity) + tobacco

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 456.98 502.63

2 454.56 497.46 2.4218 5.1721 0.1071
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anova vs. summary

This is due to three factors:

summary is based on a Wald-type test, while anova is
essentially a likelihood ratio test (this issue arises in standard
GLMs also)

When models are refit, the optimal values of λj do not stay
the same

The hypothesis tests in summary and anova use different
definitions for the effective degrees of freedom; anova uses
tr(L), summary uses tr(2L− L′L)
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Comments on hypothesis testing

It should be pointed out once again that these tests are
approximate, and should be taken as only a rough guide
concerning statistical significance

This issue is in not unique to nonparametric regression; any
time model selection is performed, the resulting p-value are no
longer valid and should be taken as only rough indicators of
significance

Keep in mind that hypothesis testing is often not the purpose
of the analysis, and that building a model that accurately
estimates the relationship between the outcome and
explanatory variables may be a more meaningful goal
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1D plots

plot(fit, shade=TRUE)
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2D plots

vis.gam(fit, view=c("age", "ldl"), plot.type="contour")
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Comments

Note that, although one may specify a nonparametric form,
gam will often return linear or nearly linear fits for some
parameters because this is the fit that optimized the AIC
criterion

For example, in the heart study, the age-LDL interaction had
3.6 degrees of freedom, only slightly more flexible than the 3
degrees of freedom arising from a parametric interaction

This is entirely driven by the data: as an example, I was once
working on a project in which I found a meaningful three-way
interaction between age, driving distance, and urban/rural
location on the probability that an individual would attend an
intervention designed to educate women aged 40-64 on living
healthier lifestyles
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A nonparametric three-way interaction:
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