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Chapter 1

Probability Distributions, Estimation,
and Testing

1.1 Introduction

Here we introduce probability distributions, and basic estimation/testing methods. Random variables are
outcomes of an experiment or data-generating process, where the outcome is not known in advance, although
the set of possible outcomes is. Random variables can be discrete or continuous. Discrete random variables
can take on only a finite or countably infinite set of possible outcomes. Continuous random variables can
take on values along a continuum. In many cases, variables of one type may be treated as or reported as
the other type. In general, we will use upper-case letters (such as Y ) to represent random variables, and
lower-case letters (such as y) to represent specific outcomes. Not all (particularly applied statistics) books
follow this convention.

1.1.1 Discrete Random Variables/Probability Distributions

In many applications, the result of the data-generating process is the count of a number of events of some
sort. In some cases, a certain number of trials are conducted, and the outcome of each trial is observed as a
“Success” or “Failure” (binary outcomes). In these cases, the number of trials ending in Success is observed.
Alternatively, a series of trials may be conducted until a pre-selected number of Successes are observed. In
other settings, the number of events of interest may be counted in a fixed amount of time or space, without
actually breaking the domain into a set of distinct trials.

For discrete random variables, we will use p(y) to represent the probability that the random variable Y
takes on the value y. We require that all such probabilities be bounded between 0 and 1 (inclusive), and
that they sum to 1:

P {Y = y} = p(y) 0 ≤ p(y) ≤ 1
∑

y

p(y) = 1

3
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The cumulative distribution function is the probability that a random variable takes on a value less
than or equal to a specific value y∗. It is an increasing function that begins at 0 and increases to 1, and
we will denote it as F (y∗). For discrete random variables it is a step function, taking a step at each point
where p(y) > 0:

F (y∗) = P (Y ≤ y∗) =
∑

y≤y∗

p(y)

The mean or Expected Value (µ) of a random variable is it’s long-run average if the experiment was
conducted repeatedly ad infinitum. The variance

(

σ2
)

is the average squared difference between the random
variable and its mean, measuring the dispersion within the distribution. The standard deviation (σ) is
the positive square root of the variance, and is in the same units as the data.

µY = E {Y } =
∑

y

yp(y) σ2
Y = V {Y } = E

{

(Y − µY )
2
}

=
∑

y

(y − µY )
2
p(y) σY = +

√

σ2
Y

Note that for any function of Y , the expected value and variance of the function is computed as follows:

E {g(Y )} =
∑

y

g(y)p(y) = µg(Y ) V {g(Y )} = E
{

(

g(Y ) − µg(Y )

)2
}

=
∑

y

(

g(y) − µg(Y )

)2
p(y)

For any constants a and b, we have the mean and variance of the linear function a + bY :

E {a + bY } =
∑

y

ap(y) +
∑

y

byp(y) = a
∑

y

p(y) + b
∑

y

yp(y) = a(1) + bE {Y } = a + bµY

V {a + bY } =
∑

y

((a + by) − (a + bµY ))2 p(y) = b2
∑

y

(y − µY )2 p(y) = b2σ2
Y

A very useful result in mathematical statistics is the following:

σ2
Y = V {Y } = E

{

(Y − µY )
2
}

= E
{

Y 2 − 2µY Y + µ2

}

= E
{

Y 2
}

− 2µY E {Y } + µ2
Y = E

{

Y 2
}

− µ2
Y

Thus, E
{

Y 2
}

= σ2
Y + µ2

Y . Also, from this result we obtain: E {Y (Y − 1)} = σ2
Y + µ2

Y − µY . From this, we
can obtain σ2

Y = E {Y (Y − 1)} − µ2
Y + µY , which is useful for some discrete probability distributions.

Next, we consider several families of discrete probability distributions: the binomial, poisson, and nega-
tive binomial families.

Binomial Distribution

When an experiment consists of n independent trials, each of which can end in one of two outcomes: Success
or Failure with constant probability of success, we refer to this as a binomial experiment. The random
variable Y is the number of Successes in the n trials, and can take on the values y = 0, 1, . . . , n. Note that in
some settings, the “Success” can be a negative attribute. We denote the probability of success as π, which
lies between 0 and 1. We use the notation: Y ∼ B (n, π). The probability distribution, mean and variance
of Y depend on the sample size n and probability of success π.

p(y) =

(

n

y

)

πy (1 − π)
n−y

E {Y } = µY = nπ V {Y } = σ2
Y = nπ (1 − π)
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where
(

n
y

)

= n!
y!(n−y)! . In practice, π will be unknown, and estimated from sample data. Note that to obtain

the mean and variance, we have:

E {Y } = µY =

n
∑

y=0

yp(y) =

n
∑

y=0

y
n!

y!(n − y)!
πy (1 − π)

n−y
=

n
∑

y=1

y
n!

y!(n − y)!
πy (1 − π)

n−y
=

= nπ

n
∑

y=1

(n − 1)!

(y − 1)!(n − y)!
πy−1 (1 − π)

n−y
= nπ

n−1
∑

y∗=0

(

n − 1

y∗

)

πy∗

(1 − π)
n−1−y∗

= nπ
∑

y∗

p (y∗) = nπ y∗ = y−1

To obtain the variance, we use the result from above, σ2
Y = E {Y (Y − 1)} − µ2

Y + µY :

E {Y (Y − 1)} =

n
∑

y=0

y(y−1)p(y) =

n
∑

y=0

y(y−1)
n!

y!(n − y)!
πy (1 − π)

n−y
=

n
∑

y=2

y(y−1)
n!

y!(n − y)!
πy (1 − π)

n−y
=

= n(n − 1)π2
n
∑

y=2

(n − 2)!

(y − 2)!(n − y)!
πy−2 (1 − π)

n−y
= n(n − 1)π2

n−2
∑

y∗∗=0

(

n − 2

y∗∗

)

πy∗∗

(1 − π)
n−2−y∗∗

n(n − 1)π2
∑

y∗∗

p (y∗∗) = n(n − 1)π2 y∗∗ = y − 2

⇒ σ2
Y = n(n − 1)π2 − n2π2 + nπ = nπ − nπ2 = nπ (1 − π)

Poisson Distribution

In many applications, researchers observe the counts of a random process in some fixed amount of time or
space. The random variable Y is a count that can take on any non-negative integer. One important aspect
of the Poisson family is that the mean and variance are the same. This is one aspect that does not work for
all applications. We use the notation: Y ∼ Poi(λ). The probability distribution, mean and variance of Y
are:

p(y) =
e−λλy

y!
E {Y } = µY = λ V {Y } = σ2

Y = λ

Note that λ > 0. The Poisson arises by dividing the time/space into n infinitely small areas, each having
either 0 or 1 Success, with Success probability π = λ/n. Then Y is the number of areas having a success.

p(y) =
n!

y!(n − y)!

(

λ

n

)y (

1 − λ

n

)n−y

=
n(n − 1) · · · (n − y + 1)

y!

(

λ

n

)y (

1 − λ

n

)n−y

=

=
1

y!

(n

n

)

(

n − 1

n

)

· · ·
(

n − y + 1

n

)

λy

(

1 − λ

n

)n(

1 − λ

n

)−y

The limit as n goes to ∞ is:

lim
n→∞

p(y) =
1

y!
(1)(1) · · · (1)λye−λ(1) = p(y) =

e−λλy

y!

To obtain the mean of Y for the Poisson distribution, we have:

E {Y } = µY =
∞
∑

y=0

yp(y) =
∞
∑

y=0

y
e−λλy

y!
=

∞
∑

y=1

y
e−λλy

y!
=

∞
∑

y=1

e−λλy

(y − 1)!
=
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λ

∞
∑

y=1

e−λλ(y−1)

(y − 1)!
= λ

∞
∑

y∗=0

e−λλy∗

y∗!
= λ

∑

y∗

p (y∗) = λ

We use the same result as that for the binomial to obtain the variance for the Poisson distribution:

E {Y (Y − 1)} =

∞
∑

y=0

y(y−1)p(y) =

∞
∑

y=0

y(y−1)
e−λλy

y!
=

∞
∑

y=2

y(y−1)
e−λλy

y!
= λ2

∞
∑

y=2

e−λλ(y−2)

(y − 2)!
= λ2

∞
∑

y∗∗=0

e−λλy∗∗

y∗∗!
= λ2

⇒ σ2
Y = λ2 − λ2 + λ = λ

Negative Binomial Distribution

The negative binomial distribution is used in two quite different contexts. The first is where a binomial
type experiment is being conducted, except instead of having a fixed number of trials, the experiment is
completed when the rth success occurs. The random variable Y is the number of trials needed until the rth

success, and can take on any integer value greater than or equal to r. The probability distribution, its mean
and variance are:

p(y) =

(

y − 1

r − 1

)

πr (1 − π)
y − r E {Y } = µY =

r

π
V {Y } = σ2

Y =
r (1 − π)

π2

A second use of the negative binomial distribution is as a model for count data. It arises from a mixture
of Poisson models. In this setting it has 2 parameters and is more flexible than the Poisson (which has the
variance equal to the mean), and can take on any non-negative integer value. In this form, the negative
binomial distribution and its mean and variance can be written as (see e.g. Cameron and Trivedi, 2005 or
Agresti, 2002):

p(y) =
Γ
(

α−1 + y
)

Γ (α−1) Γ (y + 1)

(

α−1

α−1 + µ

)α−1
(

µ

α−1 + µ

)y

E {Y } = µY = µ V {Y } = σ2
Y = µ (1 + αµ)

where Γ(·) is the gamma integral, and is a built-in function in virtually all computing packages/spreadsheets.
If y is an integer, Γ(y) = (y − 1)!.

1.1.2 Continuous Random Variables/Probability Distributions

Random variables that can take on any value along a continuum are continuous. Here, we consider the
normal, gamma, t, and F families. Special cases of the gamma family include the exponential and chi-squared
distributions. Continuous distributions are density functions, as opposed to probability mass functions. Their
density is always non-negative, and integrates to 1. We will use the notation f(y) for density functions. The
mean and variance for continuous distributions are obtained in a similar manner as discrete distributions,
with integration replacing summation.

E {Y } = µY =

∫ ∞

−∞

yf(y)dy V {Y } = σ2
Y =

∫ ∞

−∞

(y − µY )
2
f(y)dy

In general, for any function g(Y ), we have:

E {g(Y )} =

∫ ∞

−∞

g(y)f(y)dy = µg(Y ) V {g(Y )} = E
{

(

g(Y ) − µg(Y )

)2
}

=

∫ ∞

−∞

(

g(y) − µg(Y )

)2
f(y)dy
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Normal Distribution

The normal distributions, also known as the Gaussian distributions, are a family of symmetric mound-
shaped distributions. The distribution has 2 parameters: the mean µ and the variance σ2, although often
it is indexed by its standard deviation σ. We use the notation Y ∼ N

(

µ, σ2
)

. The probability density
function, the mean and variance are:

f(y) =
1√

2πσ2
exp

(

−(y − µ)
2

2σ2

)

E {Y } = µY = µ V {Y } = σ2
Y = σ2

The mean µ defines the center (median and mode) of the distribution, and the standard deviation σ is a
measure of the spread (µ − σ and µ + σ are the inflection points). Despite the differences in location and
spread of the different distributions in the normal family, probabilities with respect to standard deviations
from the mean are the same for all normal distributions. For −∞ < z1 < z2 < ∞, we have:

P (µ + z1σ ≤ Y ≤ µ + z2σ) =

∫ µ+z2σ

µ+z1σ

1√
2πσ2

exp

(

−(y − µ)
2

2σ2

)

dy =

∫ z2

z1

1√
2π

e−z2/2dz = Φ(z2) − Φ(z1)

Where Z is standard normal, a normal distribution with mean 0, and variance (standard deviation) 1.
Here Φ(z∗) is the cumulative distribution function of the standard normal distribution, up to the point z∗:

Φ(z∗) =

∫ z∗

−∞

1√
2π

e−z2/2dz

These probabilities and critical values can be obtained directly or indirectly from standard tables, statistical
software, or spreadsheets. Note that:

Y ∼ N
(

µ, σ2
)

⇒ Z =
Y − µ

σ
∼ N(0, 1)

This makes it possible to use the standard normal table for any normal distribution. Plots of three normal
distributions are given in Figure 1.1.

Gamma Distribution

The gamma family of distributions are used to model non-negative random variables that are often right-
skewed. There are two widely used parameterizations. The first given here is in terms of shape and scale

parameters:

f(y) =
1

Γ(α)βα
yα−1e−y/β y ≥ 0, α > 0, β > 0 E {Y } = µY = αβ V {Y } = σ2

Y = αβ2

Here, Γ(α) is the gamma function Γ(α) =
∫∞

0
yα−1e−ydy and is built-in to virtually all statistical packages

and spreadsheets. It also has two simple properties:

α > 1 : Γ(α) = (α − 1) Γ(α − 1) Γ(1/2) =
√

π

Thus, if α is an integer, Γ(α) = (α − 1)!. The second given here is in terms of shape and rate parameters:

f(y) =
θα

Γ(α)
yα−1e−yθ y ≥ 0, α > 0, θ > 0 E {Y } = µY =

α

θ
V {Y } = σ2

Y =
α

θ2
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Note that different software packages use different parameterizations in generating samples and giving tail-
areas and critical values. For instance, EXCEL uses the first parameterization and R uses the second.
Figure reffig:gamma1 displays three gamma densities of various shapes.

Two special cases are the exponential family, where α = 1 and the chi-squared family, with α = ν/2 and
β = 2 for integer valued ν . For the exponential family, based on the second parameterization:

f(y) = θe−yθ E {Y } = µY =
1

θ
V {Y } = σ2

Y =
1

θ2

Probabilities for the exponential distribution are trivial to obtain as F (y∗) = 1 − e−y∗θ. Figure 1.3 gives
three exponential distributions.

For the chi-squared family, based on the first parameterization:

f(y) =

(

2

ν

)α

ye−2y/ν E {Y } = µY = ν V {Y } = σ2
Y = 2ν

Here, ν is the degrees of freedom and we denote the distribution as: Y ∼ χ2(ν). Upper and lower
critical values of the chi-squared distribution are available in tabular form, and in statistical packages and
spreadsheets. Probabilities can be obtained with statistical packages and spreadsheets. Figure 1.4 gives
three Chi-squared distributions.

1.2 Linear Functions of Multiple Random Variables

Suppose we simultaneously observe two random variables: X and Y . Their joint probability distribution can
be discrete, continuous, or mixed (one discrete, the other continuous). We consider the joint distribution
and the marginal distributions for the discrete case:

p(x, y) = P {X = x, Y = y} pX(x) = P {X = x} =
∑

y

p(x, y) pY (y) = P {Y = y} =
∑

x

p(x, y)

For the continuous case, we have the joint and marginal densities and cumulative distribution function:

Joint Density when X = x, Y = y : f(x, y) fX(x) =

∫ ∞

−∞

f(x, y)dy fY (y) =

∫ ∞

−∞

f(x, y)dx

F (a, b) = P {X ≤ a, Y ≤ b} =

∫ b

−∞

∫ a

−∞

f(x, y)dxdy

Note that:
Discrete:

∑

x

∑

y

p(x, y) =
∑

x

px(x) =
∑

y

pY (y) = 1

Continuous:

∫ ∞

−∞

∫ ∞

−∞

f(x, y)dxdy =

∫ ∞

−∞

fX(x)dx =

∫ ∞

−∞

fY (y)dy = 1

The conditional probability that X = x, given Y = y (or Y = y given X = x)is denoted as:

p(x|y) = P {X = x|Y = y} =
p(x, y)

pY (y)
p(y|x) = P (Y = y|X = x) =

p(x, y)

pX(x)
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assuming pY (y) > 0. This simply implies the probability that both occur divided by the probability that
Y = y. X and Y are said to be independent if p(x|y) = p(x) for all y, and that p(y|x) = p(y) for all x. The
conditional densities for continuous random variables are similarly defined based on the joint and marginal
densities:

f(x|y) =
f(x, y)

fY (y)
fY (y) > 0 f(y|x) =

f(x, y)

fX(x)
fX(x) > 0

The conditional mean and variance are the mean and variance of the conditional distribution (density),
and is often a function of the conditioning variable:

Discrete: E {Y |X = x} = µY |x =
∑

y

yp(y|x) Continuous: E {Y |X = x} = µY |x =

∫ ∞

−∞

yf(y|x)dy

Discrete: V {Y |X = x} = σ2
Y |x =

∑

y

(

y − µY |x

)2
p(y|x)

Continuous: V {Y |X = x} = σ2
Y |x =

∫ ∞

−∞

(

y − µY |x

)2
f(y|x)dy

Next we consider the variance of the conditional mean and the mean of the conditional variance
for the continuous case (with integration being replaced by summation for the discrete case):

VX {E {Y |x}} =

∫ ∞

−∞

(

µY |x − µY

)2
fX(x)dx

EX {V {Y |x}} =

∫ ∞

−∞

σ2
Y |xfX(x)dx

Note that we can partition the variance of Y into the sum of the variance of the conditional mean and mean
of the conditional variance:

V {Y } = VX {E {Y |x}} + EX {V {Y |x}}

The covariance σXY between X and Y is the average product of deviations from the mean for X and
Y . For the discrete case, we have:

σXY = E {(X − µX) (Y − µY )} =
∑

x

∑

y

(x − µX) (y − µY ) p(x, y) =
∑

x

∑

y

(xy − xµY − µXy + µXµY ) p(x, y) =

=
∑

x

∑

y

xyp(x, y) − µY

∑

x

∑

y

xp(x, y) − µY

∑

x

∑

y

xp(x, y) − µXµY = E {XY } − µXµY

For the continuous case, replace summation with integration. If X and Y are independent, σXY = 0, but the
converse is not typically the case. Covariances can be either positive or negative, depending on the association
(if any) between X and Y . The covariance is unbounded, and depends on the scales of measurement for X
and Y . The correlation ρXY is a measure that is unit-less, is not affected by linear transformations of X
and Y , and bounded between -1 and 1:

ρXY =
σXY

σXσY

where σX and σY are the standard deviations of the maginal distributions of X and Y , respectively.

The mean and variance of any linear function of X and Y : W = aX + bY for fixed constants a and b
are for the discrete case:

E {W} = E {aX + bY } =
∑

x

∑

y

(ax + by)p(x, y) = a
∑

x

xpX(x) + b
∑

y

ypY (y) = aµX + bµY
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V {W} = V {aX + bY } =
∑

x

∑

y

[(ax + by) − (aµx + bµy)]
2
p(x, y) =

∑

x

∑

y

[

a2 (x − µX)
2

+ b2 (y − µY )
2

+ 2ab (x − µX) (y − µY )
]

p(x, y) = a2σ2
X + b2σ2

Y + 2abσXY

For the continuous case, replace summation with integration.

In general, if Y1, . . . , Yn are sequence of random variables, and a1, . . . , an are a sequence of constants:

E

{

n
∑

i=1

aiYi

}

=
n
∑

i=1

aiE {Yi} =
n
∑

i=1

aiµi

V

{

n
∑

i=1

aiYi

}

=

n
∑

i=1

a2
i σ

2
i + 2

n−1
∑

i=1

n
∑

j=i+1

aiajσij

Where µi is the mean of Yi, σ2
i is the variance of Yi, and σij is the covariance of Yi and Yj .

1.3 Functions of Normal Random Variables

First, note that if Z ∼ N(0, 1), then Z2 ∼ χ2(1). Many software packages present Z-tests as (Wald) χ2-tests.
See the section on testing below.

Suppose Y1, ..., Yn are independent with Yi ∼ N
(

µ, σ2
)

for i = 1, . . . , n. Then the sample mean and
sample variance are computed as:

Y =

∑n
i=1 Yi

n
S2 =

∑n
i=1(Yi − Y )2

n − 1

In this case, we obtain the following sampling distributions for the mean and a function of the variance:

Y ∼ N

(

µ,
σ2

n

)

(n − 1)S2

σ2
=

∑n
i=1(Yi − Y )2

σ2
∼ χ2(n − 1) Y ,

(n − 1)S2

σ2
are independent.

Note that in general, if Y1, ..., Yn are normally distributed (and not necessarily with the same mean and/or
variance), any linear function of them will be normally distributed, with mean and variance given in the
previous section.

Two distributions associated with the normal and chi-squared distributions are Student’s t and F .
Student’s t-distribution is similar to the standard normal (N(0, 1)), except that is indexed by its degrees of
freedom and that is has heavier tails than the standard normal. As its degrees of freedom approach infinity,
its distribution converges to the standard normal. Let Z ∼ N (0, 1) and W ∼ χ2(ν), where Z and W are
independent. Then, we get:

Y ∼ N
(

µ, σ2
)

⇒ Z =
Y − µ

σ
∼ N(0, 1) T =

Z
√

W/ν
∼ t(ν)

where the probability density, mean, and variance for Student’s t-distribution are:

f(y) =
Γ
(

ν+1
2

)

Γ
(

ν
2

)√
νπ

(

1 +
y2

ν

)− ν+1
2

E {Y } = µY = 0 V {Y } = E
{

(Y − µY )
2
}

=
ν

ν − 2
ν > 2
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and we use the notation Y ∼ t(ν). Now consider the sample mean and variance, and the fact they are
independent:

Y ∼ N

(

µ,
σ2

n

)

⇒ Z =
Y − µ
√

σ2

n

=
√

n
Y − µ

σ
∼ N(0, 1)

W =
(n − 1)S2

σ2
=

∑n
i=1(Yi − Y )2

σ2
∼ χ2(n − 1) ⇒

√

W

ν
=

√

(n − 1)S2

σ2(n − 1)
=

S

σ

⇒ T =
Z

√

W/ν
=

√
nY −µ

σ
S
σ

=
√

n
Y − µ

S
∼ t(ν)

The F -distribution arises often in Regression and Analysis of Variance applications. If W1 ∼ χ2 (ν1),
W2 ∼ χ2 (ν2), and W1, W2 are independent, then:

F =

[

W1

ν1

]

[

W2

ν2

] ∼ F (ν1, ν2)

where the probability density, mean, and variance for the F -distribution are:

f(y) =

[

Γ
((

ν1+ν2

2

))

ν
ν1/2
1 ν

ν2/2
2

Γ (ν1/2) Γ (ν2/2)

][

yν1/2−1

(ν1y + ν2)
(ν1+ν2)/2

]

E {Y } = µY =
ν1

ν2 − 2
ν2 > 2 V {Y } = σ2

Y =
2ν2

2 (ν1 + ν2 − 2)

ν1 (ν2 − 2) (ν2 − 4)
ν2 > 4

Critical values for the t and F -distributions are given in statistical textbooks. Probabilities can be obtained
from many statistical packages and spreadsheets. Technically, the t and F distributions described here are
central t and central F distributions.

Inferences Regarding µ and σ2

We can test hypotheses concerning µ and obtain confidence intervals based on the sample mean and standard
deviation when the data are independent N

(

µ, σ2
)

. Let t (α/2, ν) be the value such that if:

T ∼ t(ν) ⇒ P (T ≥ t (α/2, ν)) = α/2

then we get the following probability statement and (1 − α)100% confidence interval for µ:

1−α = P

(

−t (α/2, n− 1) ≤
√

n
Y − µ

S
≤ t (α/2, n− 1)

)

= P

(

−t (α/2, n− 1)
S√
n
≤ Y − µ ≤ t (α/2, n− 1)

S√
n

)

=

= P

(

Y − t (α/2, n− 1)
S√
n
≤ µ ≤ Y + t (α/2, n− 1)

S√
n

)

A 2-sided test of whether µ = µ0 is set up as follows, where TS is the test statistic, and RR is the rejection
region:

H0 : µ = µ0 HA : µ 6= µ0 TS : tobs =
√

n
Y − µ0

S
RR : |tobs| ≥ t (α/2, ν)

with P -value = 2P (t(n − 1) ≥ |tobs|).
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To make inferences regarding σ2, we will make use of the following notational convention:

W ∼ χ2(ν) ⇒ P
(

W ≥ χ2 (α/2, ν)
)

= α/2

Since the chi2 distribution is not symmetric around 0, as Student’s t is, we will have to also obtain
χ2 (1 − α/2, ν), representing the lower tail of the distribution having area=α/2. Then, we can obtain a
(1 − α)100% Confidence interval for σ2, based on the following probability statements:

1 − α = P

(

χ2 (1 − α/2, ν) ≤ (n − 1)S2

σ2
≤ χ2 (α/2, ν)

)

= P

(

(n − 1)S2

χ2 (α/2, ν)
≤ σ2 ≤ (n − 1)S2

χ2 (1 − α/2, ν)

)

To obtain a (1 −α)100% Confidence interval for σ, take the positive square roots of the end points. To test
H0 : σ2 = σ2

0 versus HA : σ2 6= σ2
0 , simply check whether σ2

0 lies in the confidence interval for σ2.

1.4 Likelihood Functions and Maximum Likelihood Estimation

Suppose we take a random sample of n items from a probability mass (discrete) or probability density
(continuous) function. We can write the marginal probability density (mass) for the each observation (say
yi) as a function of one or more parameters (θ):

Discrete: p (yi|θ) Continuous: f (yi|θ)

If the data are independent, then we get the joint density (mass) functions as the product of the individual
(marginal) functions:

Discrete: p (y1, . . . , yn|θ) =

n
∏

i=1

p (yi|θ) Continuous: f (y1, . . . , yn|θ) =

n
∏

i=1

f (yi|θ)

Consider the following cases: Binomial, Poisson, Exponential, and Normal. For the binomial case, suppose
we consider n individual trials, where each trial can end in Success (with probability π) of Failure (with
probability π). Note that each yi will equal 1 (S) or 0 (F). This is referred to as a Bernoulli distribution
when each trial is considered individually:

p (yi|π) = πyi (1 − π)
1−yi ⇒ p (y1, . . . , yn|π) =

n
∏

i=1

p (yi|π) = π
∑

yi (1 − π)
n−
∑

yi

For the Poisson model, we have:

p (yi|λ) =
e−λλyi

yi!
⇒ p (y1, . . . , yn|λ) =

n
∏

i=1

p (yi|λ) =
e−nλλ

∑

yi

∏

yi!

For the Exponential model, we have:

f (yi|θ) = θe−yiθ ⇒ f (y1, . . . , yn|θ) =

n
∏

i=1

f (yi|θ) = θne−θ
∑

yi

For the normal distribution, we obtain:

f
(

yi|µ, σ2
)

=
1√

2πσ2
exp

(

−(yi − µ)
2

2σ2

)

⇒
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f
(

y1, . . . , yn|µ, σ2
)

=

n
∏

i=1

f
(

yi|µ, σ2
)

=
(

2πσ2
)−n/2

exp

[

−
∑

(yi − µ)
2

2σ2

]

Note that in each of these cases (and for other distributions as well), once we have collected the data, the joint
distribution can be thought of as a function of unknown parameter(s). This is referred to as the likelihood
function. Our goal is to choose parameter value(s) that maximize the likelihood function. These are referred
to as maximum likelihood estimators (MLEs). For most distributions, it is easier to maximize the log
of the likelihood function.

Likelihood: L (θ|y1, . . . , yn) = f (y1, . . . , yn|θ) Log-Likelihood: l = ln(L)

To obtain the MLE(s), we take the derivative of the log-likelihood with respect to the parameter(s) θ, set to

zero, and solve for θ̂. Now, we consider the 4 models described above. For the Binomial (series of Bernoulli
trials) model, we have:

L (π|y1, . . . , yn) = π
∑

yi (1 − π)n−
∑

yi ⇒ l = ln(L) =
∑

yi ln(π) +
(

n −
∑

yi

)

ln (1 − π)

Taking the derivative of l with respect to π, setting to 0, and solving for p̂i, we get:

∂l

∂π
=

∑

yi

π
− n −∑ yi

1 − π

set
= 0 ⇒ π̂ =

∑

yi

n

For the Poisson distribution, we have:

L (λ|y1, . . . , yn) =
e−nλλ

∑

yi

∏

yi!
⇒ l = ln(L) = −nλ +

∑

yi ln(λ) −
∑

ln (yi!)

∂l

∂λ
= −n +

∑

yi

λ

set
= 0 ⇒ λ̂ =

∑

yi

n

For the exponential model, we have:

L (θ|y1, . . . , yn) = θne−θ
∑

yi ⇒ l = ln(L) = n ln(θ) − θ
∑

yi

∂l

∂λ
=

n

θ
−
∑

yi
set
= 0 ⇒ θ̂ =

n
∑

yi

For the Normal distribution, we obtain:

L (θ|y1, . . . , yn) =
(

2πσ2
)−n/2

exp

[

−
∑

(yi − µ)
2

2σ2

]

⇒ l = ln(L) = −n

2

[

ln(2π) + ln
(

σ2
)]

−
∑

(yi − µ)
2

2σ2

∂l

∂µ
=

∑

(yi − µ)

σ2

set
= 0 ⇒ µ̂ =

∑

yi

n

∂l

∂σ2
= − n

2σ2
+

∑

(yi − µ)2

2σ4

set
= 0 ⇒ σ̂2 =

∑

(yi − µ̂)2

n

Under commonly met regularity conditions, the maximum likelihood estimator θ̂ML is asymptotically
normal, with mean equal to the true parameter(s) θ, and variance (or variance-covariance matrix when the
number of parameters, p > 1) equal to:

V
{

θ̂ML

}

= −
(

E

{

∂2l

∂θ∂θ′

})−1
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where:

θ =







θ1

...
θp







∂2l

∂θ∂θ′
=









∂2l
∂θ2

1
· · · ∂2l

∂θ1∂θp

...
. . .

...
∂2l

∂θp∂θ1
· · · ∂2l

∂θ2
p









The estimated variance (or variance-covariance matrix) replaces the unknown parameter values θ with their

ML estimates θ̂ML. The standard error is the standard deviation of its sampling distribution, the square
root of the variance.

For the binomial (sequence of Bernoulli trials), we have, where E {Yi} = π:

l =
∑

yi ln(π) +
(

n −
∑

yi

)

ln (1 − π)
∂l

∂π
=

∑

yi

π
− n −∑ yi

1 − π

⇒ ∂2l

∂π2
= −

∑

yi

π2
− n −∑ yi

(1 − π)
2 ⇒ E

{

∂2l

∂π2

}

= −nπ

π2
− n(1 − π)

(1 − π)
2 = −n

(

1

π
+

1

1 − π

)

= − n

π(1 − π)

⇒ V {π̂ML} = −
(

− n

π(1 − π)

)−1

=
π(1 − π)

n
⇒ V̂ {π̂ML} =

π̂ (1 − π̂)

n

For the normal model, we have, where E {Yi} = µ and E
{

(Yi − µ)
2
}

= σ2:

l = −n

2

[

ln(2π) + ln
(

σ2
)]

−
∑

(yi − µ)
2

2σ2

∂l

∂µ
=

∑

(yi − µ)

σ2

∂l

∂σ2
= − n

2σ2
+

∑

(yi − µ)2

2σ4

∂2l

∂µ2
= − n

σ2
⇒ E

{

∂2l

∂µ2

}

= − n

σ2

∂2l

∂ (σ2)
2 =

n

2σ4
− 2

∑

(yi − µ)
2

2σ6
⇒ E

{

∂2l

∂ (σ2)
2

}

=
n

2σ4
− 2nσ2

2σ6
= − n

2σ4

∂2l

∂µ∂σ2
= −

∑

(yi − µ)

σ4
⇒ E

{

∂2l

∂µ∂σ2

}

= 0

⇒ V

{[

µ̂ML

σ̂2
ML

]}

= −
[

− n
σ2 0
0 − n

2σ4

]−1

=

[

σ2

n 0

0 2σ4

n

]

⇒ V̂

{[

µ̂ML

σ̂2
ML

]}

=

[

σ̂2

n 0

0 2σ̂4

n

]

⇒ V {µ̂ML} =
σ2

n
⇒ V̂ {µ̂ML} =

σ̂2

n

⇒ V
{

σ̂2
ML

}

=
2σ4

n
⇒ V̂

{

σ̂2
ML

}

=
2σ̂4

n

Also note that the covariance of µ̂ and σ̂2 is zero.
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We can construct large-sample Confidence Intervals for the parameter(s) θ, based on the asymptotic
normality of the MLEs:

θ̂ML ± zα/2

√

V̂
{

θ̂ML

}

P
{

Z ≥ zα/2

}

=
α

2

1.5 Likelihood Ratio, Wald, and Score (Lagrange Multiplier) Tests

When we wish to test hypotheses regarding value(s) of parameter(s) θ, there are 3 general classes of tests
that make use of the likelihood function and MLEs. These are referred to as Likelihood Ratio, Wald,
and Score (Lagrange Multiplier) tests. Asymptotically, they are equivalent. In small-samples, their
properties can differ. We consider first the case of a single parameter, then the case of multiple parameters.

The likelihood ratio test is based on the difference in the log-likelihood function l (θ) = lnL (θ|y1, . . . , yn)

at its maximum, evaluated at θ = θ̂ and when it is evaluated at the null value θ = θ0.

The Wald test is based on the difference between the maximized value θ̂ and the null value θ0 in terms
of the estimated standard error (square root of the variance) of θ̂.

The score (Lagrange Multiplier) test is based on a function of the derivative (slope) of the likelihood

function evaluated at the null value θ0. It does not depend on the MLE θ̂, so is often used in complex
estimation problems.

1.5.1 Single Parameter Models

For one parameter families (such as the Binomial (Bernoulli), Poisson, and Exponential), the procedures are
conducted as follows. Note that a Normal with known variance is also a case, but rare in actual practice.

We wish to test a point null hypothesis H0 : θ = θ0 versus an alternative HA : θ 6= θ0. Note that if θ0 is
at the edge of the parameter space, critical values will need to be adjusted.

The Likelihood Ratio Test is conducted as follows:

1. Identify the parameter space Ω, such as Ω ≡ {θ : 0 < θ < 1} for Binomial or Ω ≡ {θ : θ > 0} for the
Poisson.

2. Identify the parameter space under H0 : Ω0 ≡ {θ : θ = θ0}

3. Evaluate the maximum log-likelihood (terms not involving θ can be ignored)

4. Evaluate the log-likelihood under H0 (terms not involving θ can be ignored)

5. Compute X2
LR = −2

[

l (θ0) − l
(

θ̂
)]

6. Under the null hypothesis, X2
LR is asymptotically distributed as χ2(1), where the 1 degree of freedom

refers to the number of restrictions under H0
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7. Reject H0 for large values of X2
LR

(

X2
LR ≥ χ2(1, α)

)

.

The Wald Test makes use of the ML estimate, and its standard error, and asymptotic normality to
conduct the test. First, consider the variance of the ML estimator described above (using slightly different
notation):

V
{

θ̂
}

=
1

n
I−1(θ) I(θ) = − 1

n
E

{

∂2l(θ)

∂θ2

}

where E
{

∂2l(θ)
∂θ2

}

is called the Fisher Information. Then we obtain the Wald statistic, which is the square

of a large-sample Z-statistic (note the use of the estimated variance):

X2
W =

(

θ̂ − θ0

)2

V̂
{

θ̂
} = nI

(

θ̂
)(

θ̂ − θ0

)2

As with the Likelihood Ratio Test, under the null hypothesis, X2
W is asymptotically χ2(1) and we use the

same rejection region:
(

X2
W ≥ χ2(1, α)

)

The Score (Lagrange Multiplier) Test is based on the derivative of the log-likelihood, and actually

does not make use of the ML estimate θ̂, which can be an advantage in complex estimation problems.

First, compute the first derivative of the log-likelihood, evaluated at the null value θ0. Note that this
will only equal 0 if θ0 = θ̂ (the maximum likelihood estimate). This value is called the score:

s (θ, y) =
∂l(θ)

∂θ
s (θ0, y) =

∂l(θ)

∂θ

∣

∣

∣

∣

θ=θ0

Next, multiply the score squared by the variance of the ML estimate, evaluated at the null value θ0 , to obtain
the score statistic:

V
{

θ̂
}∣

∣

∣

θ=θ0

=
1

nI (θ0)
⇒ X2

LM =
s (θ0, y)

2

nI (θ0)

As with the Likelihood Ratio and Wald statistics, we reject the null if X2
LM ≥ χ2(1, α).

In the case of the Exponential distribution, where recall that θ̂ = n
∑

yi

= 1

Y
, and µY = 1

θ :

L (θ|y1, . . . , yn) = θne−θ
∑

yi ⇒ l(θ) = n ln(θ) − θ
∑

yi

∂l(θ)

∂θ
=

n

θ
−
∑

yi
∂2l(θ)

∂θ2
= − n

θ2
I(θ) = − 1

n
E
{

− n

θ2

}

=
1

n

n

θ2
=

1

θ2

For the Likelihood Ratio Test, we obtain:

l
(

θ̂
)

= n ln
(

θ̂
)

− θ̂
∑

yi = n ln
(

θ̂
)

− n
∑

yi

∑

yi = n ln
(

θ̂
)

− n
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l (θ0) = n ln (θ0) − θ0

∑

yi = n ln (θ0) − θ0

(

n

θ̂

)

So that the Likelihood Ratio statistic is:

X2
LR = −2

[

l (θ0) − l
(

θ̂
)]

= −2

[(

n ln (θ0) − θ0

(

n

θ̂

))

− n ln
((

θ̂
)

− n
)

]

= −2n

[

ln

(

θ0

θ̂

)

−
(

θ0

θ̂
− 1

)]

For the Wald Test, we get the statistic:

X2
W =

(

θ̂ − θ0

)2

V̂
{

θ̂
} = nI

(

θ̂
)(

θ̂ − θ0

)2

= n

(

θ̂ − θ0

)2

θ̂2

For the Score (Lagrange Multiplier) Test, we obtain the statistic:

s (θ0, y) =
n

θ0
−
∑

yi =
n − θ0

∑

yi

θ0
nI (θ0) =

n

θ2
0

⇒ X2
LM =

s (θ0, y)
2

nI (θ0)
=

(

n−θ0

∑

yi

θ0

)2

(

n
θ2
0

) =
θ2
0

n

(

n − θ0nY

θ0

)2

=
θ2
0n

2

nθ2
0

(

1 − θ0Y
)2

= n
(

1 − θ0Y
)2

1.5.2 Multiple Parameter Models

For models with multiple parameters, all three tests can be extended to make tests among the parameters
(not necessarily all of them). For instance, in a Normal model, we may wish to test H0 : µ = 100, σ2 = 400
against the alternative that either µ 6= 100 and/or σ2 6= 100. Another possibility is that we may be
simultaneously modeling a Poisson model among 3 populations and wish to test H0 : λ1 = λ2 = λ3 versus
the alternative that the Poisson parameters are not the same among the populations.

Suppose we have p parameters to be estimated. We have g ≤ p linearly independent linear hypotheses
among the parameters. For instance, we cannot test H0 : µ = 100, µ = 120. Note, for an introduction to
matrix algebra, see the Regression notes. We can write the null hypothesis as follows:

Parameter Vector: θ =







θ1

...
θp






H0 : Rθ = r R =







R11 · · · R1p

...
. . .

...
Rg1 · · · Rgp






r =







r1

...
rg







where R and r are a matrix and vector of constants that define the restrictions from the null hypothesis.

For the Normal model example, we have (with g = 2 restrictions):

θ =

[

µ
σ2

]

R =

[

1 0
0 1

]

r =

[

100
400

]
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For the Poisson example, there are various ways we could test H0 : λ1 = λ2 = λ3, but keep in mind
there are only 2 linearly independent restrictions (we are not testing what value they are, just that they are
equal). One possibility is:

H01 : λ1 = λ2, λ1 = λ3 ⇒ λ1 − λ2 = 0 λ1 − λ3 = 0

Note that with these two statements, we imply that λ2 = λ3, and including that would cause a redundancy.
A second possibility is:

H02 : λ1 = λ2, λ2 = λ3 ⇒ λ1 − λ2 = 0 λ2 − λ3 = 0

Again, this implies that λ1 = λ3.

For these hypotheses, we have:

θ =





λ1

λ2

λ3



 R1 =

[

1 −1 0
1 0 −1

]

R2 =

[

1 −1 0
0 1 −1

]

r1 = r2 =





0
0
0





Defining l (θ1, . . . , θp|y) = l(θ) as the log-likelihood, and n• as the overall sample size (summed across
group sizes if comparing several populations), we obtain the following quantities for the three tests:

θ̂ ≡ MLE over entire parameter space θ̃ ≡ MLE over constraint H0

si (θ, y) =
∂l(θ)

∂θi
Iij(θ) = − 1

n•
E

{

∂2l(θ)

∂θi∂θj

}

with:

s (θ, y) =







s1 (θ, y)
...

sp (θ, y)






I (θ) =







I11(θ) · · · I1p(θ)
...

. . .
...

Ip1(θ) · · · Ipp(θ)







Each of the chi-squared statistics will be asymptotically χ2(g), under the null hypothesis, where g is the
number of restrictions (rows of R and r). The statistics are obtained as follow:

Likelihood Ratio: X2
LR = −2

[

l
(

θ̃, y
)

− l
(

θ̂, y
)]

Wald: X2
W = n•

(

Rθ̂ − r
)′
(

R
(

I
(

θ̂
))−1

R′

)−1
(

Rθ̂ − r
)

Score (LM): X2
LM =

1

n•
s
(

θ̃, y
)′ (

I
(

θ̃
))−1

s
(

θ̃, y
)

1.6 Sampling Distributions and an Introduction to the Bootstrap

Previously we described the sampling distributions of various estimators derived from independent and nor-
mally distributed random variables. Also, we considered the large-sample properties of maximum likelihood
estimators, that inherently meant we know the underlying distribution of the data.
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One useful tool for obtaining the exact distribution of linear functions of random variables (when it
even exists) is the moment-generating function or mgf. This function serves 2 primary purposes. First,
it can be used to obtain the non-central moments of a distribution: E {Y } , E

{

Y 2
}

, E
{

Y 3
}

, . . .. The
moment-generating function (if it exists) for a distribution can be obtained as follows:

Discrete Distribution: MY (t) = E
{

etY
}

=
∑

y

etyp(y)

Continuous Distribution: MY (t) = E
{

etY
}

=

∫ ∞

−∞

etyf(y)dy

Without going through the derivations, we obtain (most involve rules of sums or competing the square or
change of variables in integration):

Binomial: MY (t) =

n
∑

y=0

ety n!

y!(n − y)!
πy (1 − π)

n−y
=

n
∑

y=0

n!

y!(n − y)!

(

πet
)y

(1 − π)
n−y

=
(

πet + (1 − π)
)n

Poisson: MY (t) =

∞
∑

y=0

ety e−λλy

y!
=

∞
∑

y=0

e−λ (λet)
y

y!
= eλ(et−1)

Normal: MY (t) =

∫ ∞

−∞

ety 1√
2πσ2

exp

[

−(y − µ)
2

2σ2

]

dy = exp

[

µt +
t2σ2

2

]

Gamma: MY (t) =

∫ ∞

−∞

ety 1

Γ(α)βα
yα−1e−y/βdy = (1 − βt)

−α

Note that for the other formulation of the Gamma, we would have MY (t) =
(

1 − t
θ

)−α
. Further, for the

Exponential, we would have MY (t) =
(

1 − t
θ

)−1
and for the chi-squared, we would have (1 − 2t)

−ν/2
.

The mgf can be used to obtain the non-central moments as follows, based on a series expansion etY =
∑∞

i=0
(tY )i

i!

dM(t)

dt

∣

∣

∣

∣

t=0

= M ′(0) = E {Y } d2M(t)

dt2

∣

∣

∣

∣

t=0

= M ′′(0) = E
{

Y 2
}

and so on such that M (k)(0) = E
{

Y k
}

.

More importantly here, if we obtain a sum or linear function of independent random of random
variables, we can use the uniqueness of the mgf to obtain the distribution of the sum or linear function.
Consider W = Y1 + · · ·+ Yn, a sum of independent random variables:

MW (t) = E
{

etW
}

= E
{

et(Y1+···+Yn)
}

=

n
∏

i=1

E
{

etYi
}

=

n
∏

i=1

MYi
(t)

The independence of Y1, . . . , Yn is why we can use this result.

Consider m Binomial random variables, each with success probability π, but with varying sample sizes
ni:

Yi ∼ Bin (ni, π) i = 1, . . . , m MYi
(t) =

(

πet + (1 − π)
)ni

Thus if we let W = Y1 + · · ·+ Ym, we have:

MW (t) =

m
∏

i=1

MYi
(t) =

m
∏

i=1

(

πet + (1 − π)
)ni

=
(

πet + (1 − π)
)

∑

ni ⇒ W ∼ Binomial
(

∑

ni, π
)
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Thus, the sum of independent Binomials with common success probability is Binomial with the same success
probability, and a sample size equal to the sum of the sample sizes.

Similar results lead to for independent Poissons, where Yi ∼ Poisson(λi). Let W = Y1 + · · ·+ Yn:

MW (t) =

n
∏

i=1

MYi
(t) =

n
∏

i=1

eλi(et−1) = exp
[(

∑

λi

)

(

et − 1
)

]

⇒ W ∼ Poisson
(

∑

λi

)

For a sum of independent Gammas, with common β or θ, that is Yi ∼ Gamma(αi, β). Let W =
Y1 + · · ·+ Yn:

MW (t) =
n
∏

i=1

MYi
(t) =

n
∏

i=1

(1− βt)−αi = (1 − βt)−
∑

αi ⇒ W ∼ Gamma
(

∑

αi, β
)

Now consider any linear function U = a1Y1 + · · ·+ anYn, for constants a1, . . . , an. This will not work
for many distributions:

MU (t) = E
{

etW
}

= E
{

et(a1Y1+···+anYn)
}

=
n
∏

i=1

E
{

etaiYi
}

=
n
∏

i=1

MYi
(ait)

Now consider independent Normals, with Yi ∼ N
(

µi, σ
2
i

)

. Let U = a1Y1 + · · ·+ anYn:

MU (t) =

n
∏

i=1

MYi
(ait) =

n
∏

i=1

exp

[

µiait +
a2

i t
2σ2

i

2

]

= exp

[

t
(

∑

aiµi

)

+
t2
(
∑

a2
i σ

2
i

)

2

]

⇒ V ∼ N
(

aiµi,
∑

a2
i σ

2
i

)

So, in special circumstances, when we know the exact distribution of data, we can obtain the exact
distribution of some specific estimators. Due to Central Limit Theorems, we can also state that sample
means of independent observations have sampling distributions that asymptotically converge to the Normal
(assuming finite variance). Thus, in many cases:

√
n

Y − µ

S

approx∼ N(0, 1) ⇒ Y
approx∼ N

(

µ,
σ2

n

)

However, in many settings, estimators either are very complex and no sampling distribution can be
derived, or samples are not large enough to rely on large-sample asymptotics. In these settings, the boot-
strap method is applied to a statistic to obtain a Confidence Interval for the underlying parameter. The
method assumes the sample is representative of the underlying population (e.g. no inherent bias). Also, if
the sampling plan has any specific patterns to it, such as clusters, the bootstrap should reflect that.

The algorithm works as follows:

1. Obtain a sample of size N from the population of interest.

2. Generate a method (function) to compute the statistic of interest.
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3. Generate a random sample with replacement from the original sample, apply the function, and save
the result.

4. Repeat this process over many samples.

5. Obtain a (1 − α)100% Confidence Interval for the parameter of interest.

The last step can be conducted various ways, the most common way is to select the cut-off values of
the middle (1 − α)100% bootstrap sample results. Other ways, particularly bias-corrected methods are
implemented in standard statistical software packages, and make use of the mean and standard deviation
(standard error) of the bootstrap estimates. This version is referred to as the non-parametric bootstrap,
which makes no assumptions on the underlying distribution of the data.

Another possibility when you are confident about the underlying distribution, but unsure of parameter
values. Then, the parameters can be estimated (based on methods such as ML in previous sections), and
then many samples can be generated using random number generators from the corresponding distribution.
The Confidence Interval and mean and standard error of the estimator can be obtained as well. This is
referred to as the non-parametric bootstrap.
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Chapter 2

Simple Linear Regression

2.1 Introduction

Linear regression is used when we have a numeric response variable and numeric (and possibly categorical)
predictor (explanatory) variable(s). The mean of the response variable is to be related to the predictor(s)
with random error terms assumed to be independent and normally distributed with constant variance. The
fitting of linear regression models is very flexible, allowing for fitting curvature and interactions between
factors.

When there is a single numeric predictor, we refer to the model as Simple Regression. The response
variable is denoted as Y and the predictor variable is denoted as X. The assumed model is:

Y = β0 + β1X + ε ε ∼ N(0, σ2) independent

Here β0 is the intercept (mean of Y when X=0) and β1 is the slope (the change in the mean of Y when
X increases by 1 unit). Of primary concern is whether β1 = 0, which implies the mean of Y is constant (β0),
and thus Y and X are not associated.

Note that this model assumes:

E{ε} = 0 V {ε} = E{ε2} = σ2 COV {εi, εj} = E{εiεj} = 0 i 6= j

In practice the variance may not be constant, and the errors may not be independent. These assumptions
will be checked after fitting model.

27
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Estimation of Model Parameters

We obtain a sample of pairs (Xi, Yi) i = 1, . . . , n. Our goal is to choose estimators of β0 and β1 that
minimize the error sum of squares: Q =

∑n
i=1 ε2i . The resulting estimators are (from calculus):

β̂1 =

∑n
i=1(Xi − X)(Yi − Y )
∑n

i=1(Xi − X)2
β̂0 = Y − β̂1X

Once we have estimates, we obtain fitted values and residuals for each observation. The error sum
of squares (SSE) are obtained as the sum of the squared residuals:

Fitted Values: Ŷi = β̂0 + β̂1Xi Residuals: ei = Yi − Ŷi SSE =

n
∑

i=1

(Yi − Ŷi)
2

The (unbiased) estimate of the error variance σ2 is s2 = MSE = SSE
n−2

, where MSE is the Mean
Square Error. The subtraction of 2 can be thought of as the fact that we have estimated two parameters:
β0 and β1.

The estimators β̂1 and β̂0 can be written as linear functions of Y1, . . . , Yn:

β̂1 =

n
∑

i=1

aiYi β̂0 =

n
∑

i=1

biYi where ai =
Xi − X

∑n
i=1(Xi − X)2

bi =
1

n
+

X
(

Xi − X
)

∑n
i=1(Xi − X)2

and thus using the following basic rules of mathematical statistics

E

{

n
∑

i=1

aiYi

}

=

n
∑

i=1

aiE {Yi} V

{

n
∑

i=1

aiYi

}

=

n
∑

i=1

a2
i V {Yi} + 2

n−1
∑

i=1

n
∑

j=i+1

aiajCOV{Yi, Yj}

The last term of the variance drops out when the data are independent. Thus, the sampling distributions of
β̂1 and β̂0, assuming independent, normal errors with constant variance are:

β̂1 ∼ N

(

β1,
σ2

∑n
i=1(Xi − X)2

)

β̂0 ∼ N

(

β0, σ
2

[

1

n
+

X
2

∑n
i=1(Xi − X)2

])

The standard error is the square root of the variance, and the estimated standard error is the standard error
with the unknown σ2 replaced by MSE.

SE{β̂1} =

√

MSE
∑n

i=1(Xi − X)2
SE{β̂0} =

√

√

√

√MSE

[

1

n
+

X
2

∑n
i=1(Xi − X)2

]

2.2 Inference Regarding β1

Primarily of interest is inferences regarding β1. Note that if β1 = 0, Y and X are not associated. We
can test hypotheses and construct confidence intervals based on the estimate β1 and its estimated standard
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error. The t-test is conducted as follows. Note that the null value β10 is almost always 0, and that software
packages that report these tests always are treating β10 as 0. Here, and in all other tests, TS represents Test
Statistic, and RR represents Rejection Region.

H0 : β1 = β10 HA : β1 6= β10 TS : tobs =
β̂1 − β10

SE{β̂1}
RR : |tobs| ≥ tα/2,n−2 P -value : P (tn−2 ≥ |tobs|)

One-sided tests use the same test statistic, but adjusts the Rejection Region and P -value are changed
to reflect the alternative hypothesis:

H+
A : β1 > β10 RR : tobs ≥ tα,n−2 P -value : P (tn−2 ≥ tobs)

H−
A : β1 < β10 RR : tobs ≤ −tα,n−2 P -value : P (tn−2 ≤ tobs)

A (1 − α)100% confidence interval for β1 is obtained as:

β̂1 ± tα/2,n−2SE{β̂1}

Note that the confidence interval represents the values of β10 that the two-sided test: H0 : β1 =
β10 HA : β1 6= β10 fails to reject the null hypothesis.

Inferences regarding β0 are rarely of interest, but can be conducted in analogous manner, using the
estimate β̂0 and its estimated standard error SE{β̂0}.

2.3 Estimating a Mean and Predicting a New Observation @ X =

X∗

We may want to estimate the mean response at a specific level X∗. The parameter of interest is µ∗ =
β0 + β1X

∗. The point estimate, standard error, and (1 − α)100% Confidence Interval are given below:

Ŷ ∗ = β̂0+β̂1X
∗ SE

{

Ŷ ∗
}

=

√

√

√

√MSE

[

1

n
+

(

X∗ − X
)2

∑n
i=1(Xi − X)2

]

(1−α)100% CI : Ŷ ∗±tα/2,n−2SE
{

Ŷ ∗
}

To obtain a (1 − α)100% Confidence Interval for the entire regression line (not just a single point), we
use the Working-Hotelling method:
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Ŷ ∗ ±
√

2Fα/2,2,n−2SE
{

Ŷ ∗
}

If we are interested in predicting a new observation when X = X∗, we have uncertainty with respect
to estimating the mean (as seen by the Confidence Interval above), and the random error for the new case
(with standard deviation σ). The point prediction is the same as for the mean. The estimate, standard error
of prediction, and (1 − α)100% Prediction Interval are given below:

Ŷ ∗
New = β̂0 + β̂1X

∗ SE
{

Ŷ ∗
New

}

=

√

√

√

√MSE

[

1 +
1

n
+

(

X∗ − X
)2

∑n
i=1(Xi − X)2

]

(1 − α)100% PI : Ŷ ∗
New ± tα/2,n−2SE

{

Ŷ ∗
New

}

Note that the Prediction Interval will tend to be much wider than the Confidence Interval for the mean.

2.4 Analysis of Variance

When there is no association between Y and X (β1 = 0), the best predictor of each observation is Y = β̂0

(in terms of minimizing sum of squares of prediction errors). In this case, the total variation can be denoted
as TSS =

∑n
i=1(Yi − Y )2, the Total Sum of Squares.

When there is an association between Y and X (β1 6= 0), the best predictor of each observation is

Ŷi = β̂0 + β̂1Xi (in terms of minimizing sum of squares of prediction errors). In this case, the error variation
can be denoted as SSE =

∑n
i=1(Yi − Ŷi)

2, the Error Sum of Squares.

The difference between TSS and SSE is the variation ”explained” by the regression of Y on X (as
opposed to having ignored X). It represents the difference between the fitted values and the mean: SSR =
∑n

i=1(Ŷi − Y )2 the Regression Sum of Squares.

TSS = SSE + SSR

n
∑

i=1

(Yi − Y )2 =

n
∑

i=1

(Yi − Ŷi)
2 +

n
∑

i=1

(Ŷi − Y )2

Each sum of squares has a degrees of freedom associated with it. The Total Degrees of Freedom
is dfTotal = n − 1. The Error Degrees of Freedom is dfError = n − 2 (for simple regression). The
Regression Degrees of Freedom is dfRegression = 1 (for simple regression).

dfTotal = dfError + dfRegression n − 1 = n − 2 + 1

Error and Regression sums of squares have a Mean Square, which is the sum of squares divided by
its corresponding degrees of freedom: MSE = SSE/(n − 2) and MSR = SSR/1. It can be shown that
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Source df SS MS Fobs P -value

Regression (Model) 1 SSR =
∑n

i=1(Ŷi − Y )2 MSR = SSR
1

Fobs = MSR
MSE

P (F1,n−2 ≥ Fobs)

Error (Residual) n − 2 SSE =
∑n

i=1(Yi − Ŷi)
2 MSE = SSE

n−2

Total (Corrected) n − 1 TSS =
∑n

i=1(Yi − Y )2

Table 2.1: Analysis of Variance Table for Simple Linear Regression

these mean squares have the following Expected Values, average values in repeated sampling at the same
observed X levels:

E{MSE} = σ2 E{MSR} = σ2 + β2
1

n
∑

i=1

(Xi − X)2

Note that when β1 = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A second way
of testing whether β1 = 0 is by the F -test:

H0 : β1 = 0 HA : β1 6= 0 TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,1,n−2 P -value : P (F1,n−2 ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table 2.1.

A measure often reported from a regression analysis is the Coefficient of Determination or r2. This
represents the variation in Y ”explained” by X, divided by the total variation in Y .

r2 =

∑n
i=1(Ŷi − Y )2

∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1 − SSE

TSS
0 ≤ r2 ≤ 1

The interpretation of r2 is the proportion of variation in Y that is“explained” by X, and is often reported
as a percentage (100r2).

2.5 Correlation

The regression coefficient β1 depends on the units of Y and X. It also depends on which variable is the
dependent variable and which is the independent variable. A second widely reported measure is the Pearson
Product Moment Coefficient of Correlation. It is invariant to linear transformations of Y and X, and
does not distinguish which is the dependent and which is the independent variables. This makes it a widely
reported measure when researchers are interested in how 2 random variables vary together in a population.
The population correlation coefficient is labeled ρ, and the sample correlation is labeled r, and is computed
as:
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r =

∑n
i=1(Xi − X)(Yi − Y )

√

∑n
i=1(Xi − X)2

∑n
i=1(Yi − Y )2

=

(

sX

sY

)

β̂1

where sX and sY are the standard deviations of X and Y , respectively. While β̂1 can take on any value,
r lies between -1 and +1, taking on the extreme values if all of the points fall on a straight line. The test of
whether ρ = 0 is mathematically equivalent to the t-test for testig thether β1 = 0. The 2-sided test is given
below:

H0 : ρ = 0 HA : ρ 6= 0 TS : tobs =
r

√

1−r2

n−2

RR : |tobs| ≥ tα/2,n−2 P − value : P (tn−2 ≥ |tobs|)

To construct a large-sample confidence interval, we use Fisher’s z transform to make r approximately
normal. We then construct a confidence interval on the transformed correlation, then ”back transform” the
end points:

z′ =
1

2
ln

(

1 + r

1 − r

)

(1 − α)100% CI for
1

2
ln

(

1 + ρ

1 − ρ

)

: z′ ± zα/2

√

1

n − 3

Labeling the endpoints of the Confidence Interval as (a, b), we obtain:

(1 − α)100% Confidence Interval for ρ :

(

e2a − 1

e2a + 1
,
e2b − 1

e2b + 1

)



Chapter 3

Matrix Form of Simple Linear
Regression

We can write out the regression model in a more concise form using the matrix form. This is particularly
helpful when we have multiple predictors. We first ”string out” the dependent variable (Y ), and the predictor
variable (X) into arrays. In fact, we augment the Xs with a column of 1s for the intercept:

Y =











Y1

Y2

...
Yn











X =











1 X1

1 X2

...
...

1 Xn











β =

[

β0

β1

]

ε =











ε1
ε2
...

εn











We can make use of some basic matrix rules to simplify the algebra of regression models. Note that
matrices with one row or column are referred to as vectors. Matrices with the same number of rows and
columns are referred to as square matrices. When referring to elements of matrices, the row represents
the first subscript, and column is second subscript. Vector elements have one subscript.

The transpose of a matrix or vector, is the matrix or vector obtained by interchanging its rows and
columns (turning it on its side, counterclockwise). It is typically written with a “prime” or “T” as a
superscript.

Y′ =
[

Y1 Y2 · · · Yn

]

X′ =

[

1 1 · · · 1
X1 X2 · · · Xn

]

β′ =
[

β0 β1

]

ε′ =
[

ε1 ε2 · · · εn

]

Matrix Addition/Subtraction: If two matrices are of the same dimension (numbers of rows and
columns), then the matrix formed by adding/subtracting each of the elements within the given rows and
columns is the addition/subtraction of the two matrices.
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A =

[

4 8
2 −4

]

B =

[

3 1
8 6

]

⇒

A + B =

[

4 + 3 8 + 1
2 + 8 −4 + 6

]

=

[

7 9
10 2

]

A− B =

[

4 − 3 8 − 1
2 − 8 −4 − 6

]

=

[

1 7
−6 −10

]

Matrix Multiplication: Unlike Addition/Subtraction, Multiplication takes sums of products of matrix
elements. The number of columns of the left-hand matrix must be equal to the number of rows of
the right-hand matrix. The resulting matrix has the same number of rows of the left-hand matrix and
the number of columns as the right-hand matrix. Note that multiplication of square matrices of common
dimensions will result in a square matrix of the same dimension. The elements of a matrix created by
multiplication are the sums of products of elements in the rows of the left-hand matrix with the elements of
the columns of the right-hand matrix.

AB =

[

4 8
2 −4

] [

3 1
8 6

]

=

[

76 52
−26 −22

]

Note the computation of elements of AB:

AB11 = 4(3) + 8(8) = 12 + 64 = 76 AB12 = 4(1) + 8(6) = 4 + 48 = 52

AB21 = 2(3) + (−4)(8) = 6 − 32 = −26 AB22 = 2(1) + (−4)(6) = 2 − 24 = −22

Important matrix multiplications for the simple linear regression model are:

Xβ =











1 X1

1 X2

...
...

1 Xn











[

β0

β1

]

=











1 (β0) + X1 (β1)
1 (β0) + X2 (β1)

...
1 (β0) + Xn (β1)











=











β0 + β1X1

β0 + β1X2

...
β0 + β1Xn











The statistical model in matrix form (which easily generalizes to multiple predictors is written as:

yi = xi
′β =

[

1 Xi

]

[

β0

β1

]

+ εi ⇒ Y = Xβ + ε where X =







x1
′

...
xn

′







Other matrices used in model estimation are:

X′X =

[

1 1 · · · 1
X1 X2 · · · Xn

]











1 X1

1 X2

...
...

1 Xn











=

[

1(1) + · · ·+ 1(1) 1(X1) + · · ·+ 1(Xn)
X1(1) + · · ·+ Xn(1) X2

1 + · · ·+ X2
n

]

⇒ X′X =

[

n
∑n

i=1 Xi
∑n

i=1 Xi

∑n
i=1 X2

i

]

X′Y =

[ ∑n
i=1 Yi

∑n
i=1 XiYi

]

Y′Y =

[

n
∑

i=1

Y 2
i

]
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Identity and Unit Matrices: The identity (or I) matrix is a square matrix with 1s on the main
diagonal, and 0s elsewhere. When the identity matrix is multiplied by any multiplication-compatible matrix,
it reproduces the multiplied matrix. Thus, it acts like 1 in scalar arithmetic. The unit (or J) matrix is a
matrix of 1s in all cells. When the unit matrix is multiplied by a multiplication-compatible matrix, it sums
the elements of each column (and reproduces the sums for each row).

IA =

[

1 0
0 1

] [

4 8
2 −4

]

=

[

1(4) + 0(2) 1(8) + 0(−4)
0(4) + 1(2) 0(8) + 1(−4)

]

=

[

4 8
2 −4

]

= A

JA =

[

1 1
1 1

] [

4 8
2 −4

]

=

[

1(4) + 1(2) 1(8) + 1(−4)
1(4) + 1(2) 1(8) + 1(−4)

]

=

[

6 4
6 4

]

Matrix Inversion: If a matrix is square and of full rank (no linear functions of a set of columns/rows
are equal to another column/row), then an inverse exists. Note that in simple regression, this simply means
that the X levels are not all the same among observations. When a square, full rank matrix is multiplied by
its inverse, we obtain the identity matrix. This is analogous to the scalar operation: a(1/a) = 1, assuming
a 6= 0. For a 2 × 2 matrix, the inverse is simple to compute. For larger matrices, we will use computers to
obtain them.

D =

[

D11 D12

D21 D22

]

⇒ D−1 =
1

D11D22 − D12D21

[

D22 −D12

−D21 D11

]

Note that if D is not full rank (its columns/rows) are multiples of each other, D11D22 − D12D21 = 0,
and its inverse does not exist.

A =

[

4 8
2 −4

]

⇒ A−1 =
1

4(−4) − 8(2)

[

−4 −8
−2 4

]

=
1

−32

[

−4 −8
−2 4

]

=

[

1
8

1
4

1
16

−1
8

]

Confirm that AA−1 = A−1A = I. Serious rounding errors can occur when the division of the determi-
nant 1

D11D22−D12D21
is rounded down to too few decimal places.

Some very useful results are as follows (assuming matrices are compatible for the operations, which
always holds when each is square and of same dimension):

(AB)′ = B′A′ (AB)−1 = B−1A−1 tr(AB) = tr(BA)

The last one is the trace of the matrix, which represents the sum of the diagonal elements of a square
matrix.

An important application in regression is as follows. The normal equations that are obtained from
ordinary least squares are: X′Xβ = X′Y. This is a result from calculus as we try and minimize the error
sum of squares:
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Q =

n
∑

i=1

ε2i = ε′ε = (Y − Xβ)
′
(Y − Xβ) = Y′Y − 2Y′Xβ + βX′Xβ

Making use of the following calculus results for column vectors a and w, and symmetric matrix A:

∂a′w

∂w
= a

∂w′A′w

∂w
= 2Aw

we obtain, the following derivative for Q with respect to β, set it to 0, and solve for β̂:

∂Q

∂β
= −2X′Y + 2X′Xβ

set
= 0 ⇒ X′Xβ̂ = X′Y ⇒ β̂ = (X′X)−1X′Y

From this result, we can obtain the vectors of fitted values and residuals, and the sums of squares for
the ANOVA from the data matrices and vectors:

Ŷ =











Ŷ1

Ŷ2

...

Ŷn











=











β̂0 + β̂1X1

β̂0 + β̂1X2

...

β̂0 + β̂1Xn











= Xβ̂ = X(X′X)−1X′Y

e =











e1

e2

...
en











=











Y1 − Ŷ1

Y2 − Ŷ2

...

Yn − Ŷn











= Y − Ŷ =
(

I− X(X′X)−1X′
)

Y

Y =











Y

Y
...

Y











=
1

n











∑n
i=1 Yi

∑n
i=1 Yi

...
∑n

i=1 Yi











=
1

n
JY

The matrix X(X′X)−1X′ is very important in regression analysis. It is symmetric and idempotent.
That is, it is equal to its transpose, and when you multiply it by itself (square it), you obtain it again. It
is called the hat or projection matrix, and is often denotes as H or P. Here, we will use P to denote the
projection matrix.

The sums of squares can be written in terms of quadratic forms of the data vector Y. First however
note the following results involving matrices used in their construction:

PX = X(X′X)−1X′X = XI = X PP = X(X′X)−1X′X(X′X)−1X′ = XI(X′X)−1X′ = X(X′X)−1X′ = P

Note that if the model has an intercept (β0), then the first column of X, is a column of 1s. Then, since
PX = X, that implies PJ = J, since J is a n × n matrix of 1s.
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PJ = J JJ = nJ ⇒ 1

n
J

1

n
J =

1

n
J

Now, we re-introduce the sums of squares, and write them in matrix form. The Total (corrected) sum of
squares is:

TSS =

n
∑

i=1

(Yi − Y )2 =
(

Y − Y
)′ (

Y − Y
)

= Y′

(

I − 1

n
J

)′ (

I− 1

n
J

)

Y = Y′

(

I− 1

n
J

)

Y

This is partitioned into the error (SSE) and regression (SSR) sums of squares:

SSE =

n
∑

i=1

(Yi − Ŷi)
2 =

(

Y − Ŷ
)′ (

Y − Ŷ
)

= Y′ (I −P)
′
(I− P)Y = Y′ (I− P)Y

SSR =

n
∑

i=1

(Ŷi − Y )2 =
(

Ŷ −Y
)′ (

Ŷ −Y
)

= Y′

(

P − 1

n
J

)′ (

P − 1

n
J

)

Y = Y′

(

P − 1

n
J

)

Y



38 CHAPTER 3. MATRIX FORM OF SIMPLE LINEAR REGRESSION



Chapter 4

Distributional Results

The model for the observed data (data generating process) can be thought of as Yi is a random variable with
a mean (systematic component) of β0+β1Xi and a random error term of εi that reflects all possible sources of
variation beyond the predictor X. We assume that the error terms have mean 0, and variance σ2

i . In general,
the error terms may or may not be independent (uncorrelated). The expectation and variance-COVariance
matrix of the vector of error terms ε are:

E{ε} =











E{ε1}
E{ε2}

...
E{εn}











=











0
0
...
0











= 0

V {ε} = E
{

(ε − E{ε}) (ε − E{ε})′
}

= E
{

(ε − 0) (ε − 0)
′}

= E {εε′} =











σ2
1 σ12 · · · σ1n

σ12 σ2
2 · · · σ2n

...
...

. . .
...

σ1n σ2n · · · σ2
n











The expectation and variance-covariance matrix of the data vector Y are:

E{Y} =











E{Y1}
E{Y2}

...
E{Yn}











=











β0 + β1X1

β0 + β1X2

...
β0 + β1Xn











= Xβ

ΣY = V {Y} = E
{

(Y − E{Y}) (Y − E{Y})′
}

= E
{

(Y −Xβ) (Y − Xβ)
′}

=











σ2
1 σ12 · · · σ1n

σ12 σ2
2 · · · σ2n

...
...

. . .
...

σ1n σ2n · · · σ2
n











39
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where σij is the covariance between the ith and jth measurements. When the data are independent, but
not necessarily of equal variance (heteroskedastic), we have:

V {Y} =











σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n











When the data are independent with constant variance (homoskedastic), we have V {Y} = σ2I. This is the
common assumption underlying the model, which needs to be checked in practice.

For a random matrix W, and a matrix of fixed constants A of compatible dimensions for multiplication:

E{AW} = AE{W} V {AW} = AV {W}A′

When applied to the least squares estimate β, we obtain:

E
{

β̂
}

= E
{

(X′X)−1X′Y
}

= (X′X)−1X
′
E{Y} = (X′X)−1X′Xβ = β

V
{

β̂
}

= V
{

(X′X)−1X′Y
}

= (X′X)−1X
′
V {Y}X(X′X)−1 = (X′X)−1X′ΣYX(X′X)−1

When the data are independent, with constant variance, ΣY = σ2I then the variance of β̂ simplifies to:

V
{

β̂
}

= σ2(X′X)−1 with estimated variance V̂
{

β̂
}

= s2(X′X)−1 s2 = MSE =
SSE

n − 2

Further, if Y is (multivariate) normal, then so is β̂, and when based on large samples, β̂ is approximately
normal, even when Y is not, based on Central Limit Theorems.

For Quadratic forms, where we have a random column vector, w, and a matrix of constants A we
have the random scalar w′Aw. If whas mean µW and variance-covariance matrix ΣW = σ2V, then:

E {w′Aw} = trace(AΣW) + µ′
WAµW = σ2trace((AV) + µ′

WAµW

Consider the 3 quantities that make up the Analysis of Variance: Y′IY = Y′Y, Y′PY, Y′
(

1
n

)

JY. Here,
we have µY = Xβ and ΣY = σ2V. Here, we consider the basic case (independent and constant variance,
V = I). Further, recall that trace(AB)=trace(BA):

E {Y′IY} = trace(IΣY) + µ′
YIµY = σ2trace ((II) + µ′

YIµY) = nσ2 + β
′X′Xβ

Recalling that P = X(X′X)−1X′, we can obtain the trace of P as trace of X′X(X′X)−1 = I2, which is 2.
Further, recall that PX = X(X′X)−1X′X = X, so that β

′X′PXβ = β
′X′Xβ:

E {Y′PY} = trace(PΣY) + µ′
YPµY = σ2trace((PI) + µ′

YPµY = 2σ2 + β′X′Xβ

When we multiply X′JX, we get:

X′J

[

n n · · · n
∑n

i=1 Xi

∑n
i=1 Xi · · ·

∑n
i=1 Xi

]

⇒ X′JX =

[

n2 n
∑n

i=1 Xi

n
∑n

i=1 Xi (
∑n

i=1 Xi)
2

]

E

{

Y′

(

1

n

)

JY

}

= trace

(

1

n
JΣY

)

+ µ′
Y

(

1

n

)

JµY = σ2trace

(

1

n
J

)

+ µ′
Y

(

1

n

)

JµY = σ2 + β′X′ 1

n
JXβ
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Now, consider the total, error and regression sums of squares:

TSS = Y′

(

I− 1

n
J

)

Y SSE = Y′ (I− P)Y SSR = Y′

(

P − 1

n
J

)

Y

Now, consider X′X and X′
(

1
n

)

JX:

X′X =

[

n
∑n

i=1 Xi
∑n

i=1 Xi

∑n
i=1 X2

i

]

X′

(

1

n

)

JX =

[

n
∑n

i=1 Xi

∑n
i=1 Xi

(
∑

n

i=1
Xi)

2

n

]

⇒ X′X−X′

(

1

n

)

JX =

[

0 0

0
∑n

i=1(Xi − X)2

]

Now, we have:

E{TSS} =
[

nσ2 + β
′X′Xβ

]

−
[

σ2 + β
′X′ 1

n
JXβ

]

= (n − 1)σ2 + β2
1

n
∑

i=1

(Xi − X)2

E{SSE} =
[

nσ2 + β
′X′Xβ

]

−
[

2σ2 + β
′X′Xβ

]

= (n − 2)σ2

E{SSR} =
[

2σ2 + β′X′Xβ
]

−
[

σ2 + β′X′ 1

n
JXβ

]

= σ2 + β2
1

n
∑

i=1

(Xi − X)2

Further, if w is normally distributed, and if AΣWAΣW = AΣW then we have the following results
from Cochran’s Theorem:

w′Aw

σ2
∼ χ2 (dfA, ΩA) dfA = rank(A) ΩA = µ′

WAµW

where dfA and ΩA are the degrees of freedom and non-centrality parameter, respectively. If ΩA = 0,
then it is the standard (central) chi-square distribution. Two other important results are:

w′Aw and w′Bw are independent if AVB = 0

w′Aw and Bw are independent if BVA = 0

Note that with respect to the model with normal, independent errors of constant variance, we have:

V = I (I −P)I(I −P)I = (I −P)I

(

P− 1

n
J

)

I

(

P− 1

n
J

)

I =

(

P− 1

n
J

)

I

(

P− 1

n
J

)

I(I− P) = 0

This leads to the following important results:

SSE

σ2
∼ χ2(n − 2, 0)

SSR

σ2
∼ χ2

(

1, β2
1

n
∑

i=1

(Xi − X)2

)

Further, SSE and SSR are independent. Also β̂ and SSE are independent, since:

β̂ = (X′X)−1X′Y SSE = Y′(I −P)Y ⇒ (X′X)−1X′I(I − P) = (X′X)−1X′ − (X′X)−1X′ = 0 X′P = X′

The ratio of two independent chi-square random variables, each divided by its degrees of freedom, is
follows the F -distribution. If the numerator chi-square is non-central, and the denominator is a standard
(central) chi-square, it follows a non-central distribution, with the non-centrality parameter of the numerator



42 CHAPTER 4. DISTRIBUTIONAL RESULTS

chi-square. If both are central, the ratio follows a standard F -distribution. Thus, since SSE and SSR are
independent:

SSR

σ2
∼ χ2

(

1, β2
1

n
∑

i=1

(Xi − X)2

)

SSE

σ2
∼ χ2(n − 2, 0)

⇒ F =
SSR
σ2 /1

SSE
σ2 /(n − 2)

=
MSR

MSE
∼ F

(

1, n − 2, β2
1

n
∑

i=1

(Xi − X)2

)

When the null hypothesis H0 : β1 = 0, the F -statistic follows the standard (central) F -distribution.



Chapter 5

Model Diagnostics and Influence
Measures

The inferences regarding the simple linear regression model (tests and confidence intervals) are based on the
following assumptions:

• Relation between Y and X is linear

• Errors are normally distributed

• Errors have constant variance

• Errors are independent

These assumptions can be checked graphically, as well as by statistical tests.

5.1 Checking Linearity

A plot of the residuals versus X should be a random cloud of points centered at 0 (they sum to 0). A
”U-shaped” or ”inverted U-shaped” pattern is inconsistent with linearity.

A test for linearity can be conducted when there are repeat observations at certain X-levels (methods
have also been developed to ”group X values). Suppose we have c distinct X-levels, with nj observations
at the jth level. The data need to be re-labeled as Yij where j represents the X group, and i represents the
individual case within the group (i = 1, . . . , nj). We compute the following quantities:

Y j =

∑nj

i=1 Yij

nj
Ŷj = β̂0 + β̂1Xj

43
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We then decompose the Error Sum of Squares into Pure Error and Lack of Fit:

n
∑

i=1

(Yi − Ŷi)
2 =

nj
∑

i=1

c
∑

j=1

(

Yij − Y j

)2
+

c
∑

j=1

nj

(

Y j − Ŷj

)

SSE = SSPE + SSLF

We then partition the error degrees of freedom (n − 2) into Pure Error (n − c) and Lack of Fit (c − 2).
This leads to an F -test for testing H0: Relation is Linear versus HA: Relation is not Linear:

TS : Fobs =
[SSLF/(c − 2)]

[SSPE/(n − c)]
=

MSLF

MSPE
RR : Fobs ≥ Fα,c−2,n−c P -Value : P (Fc−2,n−c ≥ Fobs)

If the relationship is not linear, we can add polynomial terms to allow for ”bends” in the relationship
between Y and X using multiple regression.

5.2 Checking Normality

A normal probability plot of the ordered residuals versus their predicted values should fall approximately
on a straight line. A histogram should be mound-shaped. Neither of these methods work well with small
samples (even data generated from a normal distribution will not necessarily look like it is normal).

Various tests are computed directly by statistical computing packages. The Shapiro-Wilk and Kolmogorov-
Smirnov tests are commonly reported, reporting P -values for testing H0: Errors are normally distributed.

When data are not normally distributed, the Box-Cox transformation is often applied to the data.
This involves fitting regression models for various power transformations of Y on X, where:

Y
(λ)
i =







Y λ
i −1

λ(Ẏ )
(λ−1) λ 6= 0

Ẏ ln(Yi) λ = 0

Here Ẏ is the geometric mean of Y1, . . . , Yn are all strictly positive (a constant can be added to all
observations to assure this).

Ẏ =

(

n
∏

i=1

Yi

)1/n

= exp

{∑n
i=1 ln(Yi)

n

}

Values of λ between -2 and 2 by 0.1 are typically run, and the value of λ that has the smallest Error
Sum of Squares (equivalently Maximum Likelihood) is identified. Software packages will present a confidence
interval for λ.
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5.3 Checking Equal Variance

A plot of the residuals versus the fitted values should be a random cloud of points centered at 0. When the
variances are unequal, the variance tends to increase with the mean, and we observe a funnel-type shape.

Two tests for equal variance are the Brown-Forsyth test and the Breusch-Pagan (aka Cook-Weisberg)
test.

Brown-Forsyth Test - Splits data into two groups of approximately equal sample sizes based on their
fitted values (any cases with the same fitted values should be in the same group). Then labeling the residuals
e11, . . . , e1n1 and e21, . . . , e2n2, obtain the median residual for each group: ẽ1 and ∼ e2, respectively. Then
compute the following:

dij = |eij−ẽi| i = 1, 2; j = 1, . . . , ni di =

∑ni

i=1 dij

ni
s2
i =

∑ni

i=1

(

dij − di

)2

ni − 1
s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

Then, a 2-sample t-test is conducted to test H0: Equal Variances in the 2 groups:

TS : tobs =
d1 − d2

√

s2
p

(

1
n1

+ 1
n2

)

RR : |tobs| ≥ tα/2,n−2 P -value = P (tn−2 ≥ |tobs|)

Breusch-Pagan Test(aka Cook-Weisberg Test) - Fits a regression of the squared residuals on X
and tests whether the (natural) log of the variance is linearly related to X. When the regression of the
squared residuals is fit, we obtain SSRe2 , the regression sum of squares. The test is conducted as follows,
where SSE is the Error Sum of Squares for the original regression of Y on X:

TS : X2
obs =

(SSRe2/2)

(SSE/n)
2 RR : X2

obs ≥ χ2
α,1 P -value: P

(

χ2
1 ≥ X2

obs

)

When the variance is not constant, we can transform Y (often can use the Box-Cox transformation to
obtain constant variance).

We can also use Estimated Weighted Least Squares by relating the standard deviation (or variance)
of the errors to the mean. This is an iterative process, where the weights are re-weighted each iteration. The
weights are the reciprocal of the estimated variance (as a function of the mean). Iteration continues until
the regression coefficient estimates stabilize.

Another, simpler method is to obtain robust standard errors of the OLS estimators based on the residuals
from the linear regression (using the squared residuals as estimates of the variances for the individual cases).
This method was originally proposed by White (1980). The estimated variance-COVariance matrix (with
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resulting robust to heteroskedasticity standard errors for β̂ is:

V̂
{

β̂
}

= (X′X)−1X′Ê2X(X′X)−1 Ê2 =











e2
1 0 · · · 0
0 e2

2 · · · 0
...

...
. . .

...
0 0 · · · e2

n











When the distribution of Y is a from a known family (e.g. Binomial, Poisson, Gamma), we can fit a
Generalized Linear Model.

5.4 Checking Independence

When the data are a time (or spatial) series, the errors can be correlated over time (or space), referred to
as autocorrelated. A plot of residuals versus time should be random, not displaying a trending pattern
(linear or cyclical). If it does show these patterns, autocorrelation may be present.

The Durbin-Watson test is used to test for serial autocorrelation in the errors, where the null hypothesis
is that the errors are uncorrelated. Unfortunately, the formal test can end in one of 3 possible outcomes:
reject H0, accept H0, or inconclusive. Statistical software packages can report an approximate P -value. The
test is obtained as follows:

TS : DW =

∑n
t=2 (et − et−1)

2

∑n
t=1 e2

t

Decision Rule: DW < dLReject H0 DW > dUAccept H0 Otherwise Inconclusive

where tables of dL and dU are in standard regression texts and posted on the internet. These values are
indexed by the number of predictor variables (1, in the case of simple regression) and the sample size (n).

When errors are not independent, estimated standard errors of estimates tend to be too small, making
t-statistics artificially large and confidence intervals artificially narrow.

The Cochrane-Orcutt method transforms the Y and X variables, and fits the model based on the
transformed responses. Another approach is to use Estimated Generalized Least Squares (EGLS).
This uses the estimated COVariance structure of the observations to obtain estimates of the regression
coefficients and their estimated standard errors.

5.5 Detecting Outliers and Influential Observations

These measures are widely used in multiple regression, as well, when there are p predictors, and p′ = p + 1
parameters (including intercept, β0). Many of the ”rules of thumb” are based on p′, which is 1+1=2 for
simple regression. Most of these methods involve matrix algebra, but are obtained from statistical software
packages. Their matrix forms are not given here (see references).
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Also, many of these methods make use of the estimated variance when the ith case was removed (to
remove its effect if it is an outlier):

MSE(i) =
SSE(i)

n − p′ − 1
=

SSE − e2
i

n − p′ − 1
for simple regression p′ = 2

Studentized Residuals - Residuals divided by their estimated standard error, with their contribution
to SSE having been removed (see above). Since residuals have mean 0, the studentized residuals are like
t-statistics. Since we are simultaneously checking whether n of these are outliers, we conclude any cases are
outliers if the absolute value of their studentized residuals exceed tα/2n,n−p′−1, where p′ is the number of
independent variables plus one (for simple regression, p′=2).

Leverage Values (Hat Values) - These measure each case’s potential to influence the regression due
to its X levels. Cases with high leverage values (often denoted vii or hii) have X levels ”away” from the
center of the distribution. The leverage values sum to p′ (2 for simple regression), and cases with leverage
values greater than 2p′/n (twice the average) are considered to be potentially influential due to their X-levels.

DFFITS - These measure how much an individual case’s fitted value shifts when it is included in the
regression fit, and when it is excluded. The shift is divided by its standard error, so we are measuring how
many standard errors a fitted value shifts, due to its being included in the regression model. Cases with the
DFFITS values greater than 2

√

p′/n in absolute value are considered influential on their own fitted values.

DFBETAS - One of these is computed for each case, for each regression coefficient (including the
intercept). DFBETAS measures how much the estimated regression coefficient shifts when that case is
included and excluded from the model, in units of standard errors. Cases with DFBETAS values larger than
2/

√
n in absolute value are considered to be influential on the estimated regression coefficient.

Cook’s D - Is a measure that represents each case’s aggregate influence on all regression coefficients,
and all cases’ fitted values. Cases with Cook’s D larger than F.50,p′,n−p′ are considered influential.

COVRATIO - This measures each case’s influence on the estimated standard errors of the regres-
sion coefficients (inflating or deflating them). Cases with COVRATIO outside of 1 ± 3p′/n are considered
influential.
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Chapter 6

Multiple Linear Regression

When there are more than one predictor variables, the model generalizes to multiple linear regression. The
calculations become more complex, but conceptually, the ideas remain the same. We will use the notation
of p as the number of predictors, and p′ = p + 1 as the number of parameters in the model (including the
intercept). The model can be written as:

Y = β0 + β1X1 + · · ·+ βpXp + ε ε ∼ N(0, σ2) independent

We then obtain least squares (and maximum likelihood) estimates β̂0, β̂1, . . . , β̂p that minimize the error
sum of squares. The fitted values, residuals, and error sum of squares are obtained as:

Ŷi = β̂0 + β̂1Xi1 + · · · β̂pXip ei = Yi − Ŷi SSE =

n
∑

i=1

e2
i

The degrees of freedom for error are now n − p′ = n − (p + 1), as we have now estimated p′ = p + 1
parameters.

In the multiple linear regression model, βj represents the change in E{Y } when Xj increases by 1 unit,
with all other predictor variables being held constant. It is thus often referred to as the partial regression
coefficient.

6.1 Testing and Estimation for Partial Regression Coefficients

Once we fit the model, obtaining the estimated regression coefficients, we also obtain standard errors for
each coefficient (actually, we obtain an estimated variance-COVariance matrix for the coefficients).

49
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If we wish to test whether Y is associated with Xj , after controlling for the remaining p− 1 predictors,
we are testing whether βj = 0. This is equivalent to the t-test from simple regression (in general, we can
test whether a regression coefficient is any specific number, although software packages are testing whether
it is 0):

H0 : βj = βj0 HA : βj 6= βj0 TS : tobs =
β̂j − βj0

SE{β̂j}
RR : |tobs| ≥ tα/2,n−p′ P -value : P (tn−p′ ≥ |tobs|)

One-sided tests make the same adjustments as in simple linear regression:

H+
A : βj > βj0 RR : tobs ≥ tα,n−p′ P -value : P (tn−p′ ≥ tobs)

H−
A : βj < βj0 RR : tobs ≤ −tα,n−p′ P -value : P (tn−p′ ≤ tobs)

A (1 − α)100% Confidence Interval for βj is obtained as:

β̂j ± tα/2,n−p′SE{β̂j}

Note that the Confidence Interval represents the values of βj0 that the two-sided test: H0 : βj =
βj0 HA : βj 6= βj0 fails to reject the null hypothesis.

6.2 Analysis of Variance

When there is no association between Y and X1, . . . , Xp (β1 = · · · = βp = 0), the best predictor of each

observation is Y = β̂0 (in terms of minimizing sum of squares of prediction errors). In this case, the total
variation can be denoted as TSS =

∑n
i=1(Yi − Y )2, the Total Sum of Squares, just as with simple

regression.

When there is an association between Y and at least one of X1, . . . , Xp (not all βi = 0), the best predictor

of each observation is Ŷi = β̂0 + β̂1Xi1 + · · ·+ β̂pXip (in terms of minimizing sum of squares of prediction

errors). In this case, the error variation can be denoted as SSE =
∑n

i=1(Yi − Ŷi)
2, the Error Sum of

Squares.

The difference between TSS and SSE is the variation ”explained” by the regression of Y on X1, . . . , Xp

(as opposed to having ignored X1, . . . , Xp). It represents the difference between the fitted values and the

mean: SSR =
∑n

i=1(Ŷi − Y )2 the Regression Sum of Squares.

TSS = SSE + SSR

n
∑

i=1

(Yi − Y )2 =

n
∑

i=1

(Yi − Ŷi)
2 +

n
∑

i=1

(Ŷi − Y )2
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Source df SS MS Fobs P -value

Regression (Model) p SSR =
∑n

i=1(Ŷi − Y )2 MSR = SSR
p Fobs = MSR

MSE P (Fp,n−p′ ≥ Fobs)

Error (Residual) n − p′ SSE =
∑n

i=1(Yi − Ŷi)
2 MSE = SSE

n−p′

Total (Corrected) n − 1 TSS =
∑n

i=1(Yi − Y )2

Table 6.1: Analysis of Variance Table for Multiple Linear Regression

Each sum of squares has a degrees of freedom associated with it. The Total Degrees of Freedom
is dfTotal = n − 1. The Error Degrees of Freedom is dfError = n − p′. The Regression Degrees of
Freedom is dfRegression = p. Note that when we have p = 1 predictor, this generalizes to simple regression.

dfTotal = dfError + dfRegression n − 1 = n − p′ + p

Error and Regression sums of squares have a Mean Square, which is the sum of squares divided by
its corresponding degrees of freedom: MSE = SSE/(n − p′) and MSR = SSR/p. It can be shown that
these mean squares have the following Expected Values, average values in repeated sampling at the same
observed X levels:

E{MSE} = σ2 E{MSR} ≥ σ2 + β
′X′

(

I−
(

1

n

)

J

)

Xβ

where β and X are matrix/vector extensions of the simple linear regression model (see below). Note that
when β1 = · · ·βp = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A way of testing
whether β1 = · · ·βp = 0 is by the F -test:

H0 : β1 = · · ·βp = 0 HA : Not all βj = 0

TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,p,n−p′ P -value : P (Fp,n−p′ ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table ??.

A measure often reported from a regression analysis is the Coefficient of Determination or R2. This
represents the variation in Y ”explained” by X1, . . . , Xp, divided by the total variation in Y .

r2 =

∑n
i=1(Ŷi − Y )2

∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1 − SSE

TSS
0 ≤ R2 ≤ 1

The interpretation of R2 is the proportion of variation in Y that is ”explained” by X1, . . . , Xp, and is
often reported as a percentage (100R2).
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6.3 Testing a Subset of βs = 0

The F -test from the Analysis of Variance and the t-tests represent extremes as far as model testing (all
variables simultaneously versus one-at-a-time). Often we wish to test whether a group of predictors do not
improve prediction, after controlling for the remaining predictors.

Suppose that after controlling for g predictors, we wish to test whether the remaining p − g predictors
are associated with Y . That is, we wish to test:

H0 : βg+1 = · · ·βp = 0 HA : Not all of βg+1 , . . . , βp = 0

Note that, the t-tests control for all other predictors, while here, we want to control for only X1, . . . , Xg.
To do this, we fit two models: the Complete or Full Model with all p predictors, and the Reduced
Model with only the g ”control” variables. For each model, we obtain the Regression and Error sums of
squares, as well as R2. This leads to the test statistic and rejection region:

TS : Fobs =

[

SSE(R)−SSE(F )
(n−g′)−(n−p′)

]

[

SSE(F )
n−p′

] =

[

SSR(F )−SSE(R)
p−g

]

[

SSE(F )
n−p′

] =

[

R2
F −R2

R

p−g

]

[

1−R2
F

n−p′

]

RR : Fobs ≥ Fα,p−g,n−p′ P -value : P (Fp−g,n−p′ ≥ Fobs)

6.4 Matrix Form of Multiple Regression Model

The matrix form is virtually identical (at least symbolically) for multiple regression as simple regression. The
primary difference is the dimension of the various matrices and vectors. Now, X still has n rows, but it hat
p+1 columns (one for the intercept, and one each for the p predictors). The vectors β and β̂ = (X′X)−1X′Y
each have p′ = p + 1 rows.

We still have that the estimated variance of β̂ = s2(X′X)−1 which is how the estimated standard errors
for the partial regression coefficients used in t-tests and confidence intervals are obtained, in the case of the
model with independent errors with constant variance.

The general linear test can be used to test any set of up to p + 1 linear hypotheses among the βs,
that are linearly independent. The tests described above are special cases. Here we wish to test:

H0 : K′β = m ⇒ K′β − m = 0

where K′ is a q× (p+1) matrix of constants defining the the hypotheses among the β elements and m is the
q × 1 vector of hypothesized values for the q linear functions. Some special cases are given below, assuming
p = 3 (three predictor variables):

H01 : β1 = β2 = β3 = 0 K′
1 =





0 1 0 0
0 0 1 0
0 0 0 1



 m1 =





0
0
0




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H02 : β1 = β2 = β3 K′
2 =

[

0 1 −1 0
0 1 0 −1

]

m2 =

[

0
0

]

H03 : β0 = 100, β1 = 10, β2 = β3 K′
3 =





1 0 0 0
0 1 0 0
0 0 1 −1



 m3 =





100
10
0





The estimator K′β̂ − m has an estimated variance-COVariance matrix of s2K′(X′X)−1K which is q × q.
Then, we can form the F -statistic (based on assuming normal and independent errors with constant variance):

Fobs =

(

K′β̂ −m
)′
(

K′(X′X)−1K
)−1

(

K′β̂ − m
)

qs2

which under the null hypothesis is distributed Fq,n−p′.

Note that even if the data are not normally distributed, the quantity qFobs is asymptotically distributed
as χ2

q, so the test can be conducted in this manner in large samples. Note that in this large-sample case, the

tests are identical as Fα,q,∞ =
χ2

α,q

q .

6.5 Models With Categorical (Qualitative) Predictors

Often, one or more categorical variables are included in a model. If we have a categorical variable with m
levels, we will need to create m − 1 dummy or indicator variables. The variable will take on 1 if the ith

observation is in that level of the variable, 0 otherwise. Note that one level of the variable will have 0s for all
m−1 dummy variables, making it the reference group. The βs for the other groups (levels of the qualitative
variable) reflect the difference in the mean for that group with the reference group, controlling for all other
predictors.

Note that if the qualitative variable has 2 levels, there will be a single dummy variable, and we can test
for differences in the effects of the 2 levels with a t-test, controlling for all other predictors. If there are
m−1 ¿ 2 dummy variables, we can use the F -test to test whether all m−1 βs are 0, controlling for all other
predictors.

6.6 Models With Interaction Terms

When the effect of one predictor depends on the level of another predictor (and vice versa), the predictors
are said to interact. The way we can model interaction(s) is to create a new variable that is the product
of the 2 predictors. Suppose we have Y , and 2 numeric predictors: X1 and X2. We create a new predictor
X3 = X1X2. Now, consider the model:

E{Y } = β0 + β1X1 + β2X2 + β3X3 = β0 + β1X1 + β2X2 + β3X1X2 = β0 + β2X2 + (β1 + β3X2) X1

Thus, the slope with respect to X1 depends on the level of X2, unless β3 = 0, which we can test with a
t-test. This logic extends to qualitative variables as well. We create cross-product terms between numeric (or
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other categorical) predictors with the m − 1 dummy variables representing the qualitative predictor. Then
t-test (m − 1 = 1) or F -test (m − 1 > 2) can be conducted to test for interactions among predictors.

6.7 Models With Curvature

When a plot of Y versus one or more of the predictors displays curvature, we can include polynomial terms
to ”bend” the regression line. Often, to avoid multicollinearity, we work with centered predictor(s), by
subtracting off their mean(s). If the data show k bends, we will include k + 1 polynomial terms. Suppose
we have a single predictor variable, with 2 ”bends” appearing in a scatterplot. Then, we will include terms
up to the a third order term. Note that even if lower order terms are not significant, when a higher order
term is significant, we keep the lower order terms (unless there is some physical reason not to). We can now
fit the model:

E{Y } = β0 + β1X + β2X
2 + β3X

3

If we wish to test whether the fit is linear, as opposed to ”not linear,” we could test H0 : β2 = β3 = 0.
In many instances it is preferable to center the data (subtract off the mean) or to center and scale the data
(divide centered values by a scale constant) for ease of interpretation and reduce collinearity among the
predictors.

Response surfaces are often fit when we have 2 or more predictors, and include ”linear effects,” ”quadratic
effects,” and ”interaction effects”. In the case of 3 predictors, a full model would be of the form:

E{Y } = β0 + β1X1 + β2X2 + β3X3 + β11X
2
1 + β22X

2
2 + β33X

2
3 + β12X1X2 + β13X1X3 + β23X2X3

We typically wish to simplify the model, to make it more parsimonious, when possible.

6.8 Model Building

When we have many predictors, we may wish to use an algorithm to determine which variables to include
in the model. These variables can be main effects, interactions, and polynomial terms. Note that there are
two common approaches. One method involves testing variables based on t-tests, or equivalently F -tests
for partial regression coefficients. An alternative method involves comparing models based on model based
measures, such as Akaike Information Criterion (AIC), or Schwartz Bayesian Information criterion (BIC
or SBC). These measures can be written as follows (note that different software packages print different
versions, as some parts are constant for all potential models). The goal is to minimize the measures.

AIC(Model) = nln(SSE(Model))+2p′−nln(n) BIC(Model) = nln(SSE(Model))+[ln(n)]p′−nln(n)



6.8. MODEL BUILDING 55

Note that SSE(Model) depends on the variables included in the current model. The measures put a
penalty on excess predictor variables, with BIC placing a higher penalty when ln(n) > 2. Note that p′ is the
number of parameters in the model (including the intercept), and n is the sample size.

6.8.1 Backward Elimination

This is a ”top-down” method, which begins with a ”Complete” Model, with all potential predictors. The
analyst then chooses a significance level to stay in the model (SLS). The model is fit, and the predictor
with the lowest t-statistic in absolute value (largest P -value) is identified. If the P -value is larger than SLS,
the variable is dropped from the model. Then the model is re-fit with all other predictors (this will change
all regression coefficients, standard errors, and P -values). The process continues until all variables have
P -values below SLS.

The model based approach fits the full model, with all predictors and computes AIC (or BIC). Then,
each variable is dropped one-at-a-time, and AIC (or BIC) is obtained for each model. If none of the models
with one dropped variable has AIC (or BIC) below that for the full model, the full model is kept, otherwise
the model with the lowest AIC (or BIC) is kept as the new full model. The process continues until no
variables should be dropped (none of the ”drop one variable models” has a lower AIC (or BIC) than the
”full model.”

6.8.2 Forward Selection

This is a ”bottom-up, which begins with all ”Simple” Models, each with one predictor. The analyst then
chooses a significance level to enter into the model (SLE). Each model is fit, and the predictor with the
highest t-statistic in absolute value (smallest P -value) is identified. If the P -value is smaller than SLE, the
variable is entered into the model. Then all two variable models including the best predictor in the first
round, with each of the other predictors. The best second variable is identified, and its P -value is compared
with SLE. If its P -value is below SLE, the variable is added to the model. The process continues until no
potential added variables have P -values below SLE.

The model based approach fits each simple model, with one predictor and computes AIC (or BIC).
The best variable is identified (assuming its AIC (or BIC) is smaller than that for the null model, with no
predictors). Then, each potential variable is added one-at-a-time, and AIC (or BIC) is obtained for each
model. If none of the models with one added variable has AIC (or BIC) below that for the best simple
model, the simple model is kept, otherwise the model with the lowest AIC (or BIC) is kept as the new full
model. The process continues until no variables should be added (none of the ”add one variable models” has
a lower AIC (or BIC) than the “reduced model.”

6.8.3 Stepwise Regression

This approach is a hybrid of forward selection and backward elimination. It begins like forward selection,
but then applies backward elimination at each step. In forward selection, once a variable is entered, it stays
in the model. In stepwise regression, once a new variable is entered, all previously entered variables are
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tested, to confirm they should stay in the model, after controlling for the new entrant, as well as the other
previous entrant.

6.8.4 All Possible Regressions

We can fit all possible regression models, and use model based measures to choose the ”best” model. Com-
monly used measures are: Adjusted-R2 (equivalently MSE), Mallow’s Cp statistic, AIC, and BIC. The
formulas, and decision criteria are given below (where p′ is the number of parameters in the ”current” model
being fit:

Adjusted-R2 - 1 −
(

n−1
n−p′

)

SSE
TSS - Goal is to maximize

Mallow’s Cp - Cp = SSE(Model)
MSE(Complete)

+ 2p′ − n - Goal is to have Cp ≤ p′

Akaike Information Criterion - AIC(Model) = nln(SSE(Model)) + 2p′ − nln(n) - Goal is to minimize

Bayesian Information Criterion - BIC(Model) = nln(SSE(Model)) + [ln(n)]p′ − nln(n) - Goal is to
minimize

6.9 Issues of Collinearity

When the predictor variables are highly correlated among themselves, the regression coefficients become
unstable, with increased standard errors. This leads to smaller t-statistics for tests regarding the partial
regression coefficients and wider confidence intervals. At its most extreme case, the sign of a regression
coefficient can change when a new predictor variable is included. One widely reported measure of collinearity
is the Variance Inflation Factor (VIF). This is computed for each predictor variable, by regressing it
on the remaining p − 2 predictors. Then V IFJ = 1

1−R2
j

where R2
j is the coefficent of dettermination of the

regression of Xj on the remaining predictors. Values of V IFj greater than 10 are considered problematic,
but if results are significant, it should not be problematic.

Various remedies exist. One is determining which variable(s) make the most sense theoretically for the
model, and removing other variables, which are correlated with the other more meaningful predictors. A
second method involves generating uncorrelated predictor variables from the original set of predictors. While
this method based on principal components removes the collinearity problem, the new variables may lose
their meaning, thus making it harder to describe the process. A third method ridge regression introduces a
bias factor into the regression, that reduces the inflated variance due to collinearity, and through that reduces
the Mean Square Error of the regression coefficients. Unfortunately, there is no simple rule on choosing the
bias factor.

6.9.1 Principal Components Regression

For principal components regression, if we have p predictors: X1, . . . , Xp, we can generate p linearly in-
dependent predictors that are linear functions of X1, . . . , Xp. When the new variables with small eigenvalues



6.9. ISSUES OF COLLINEARITY 57

are removed, the estimate of β obtained from the new regression is biased. The amount of bias depends on
the relative size of the eigenvalues of the removed principal components, however the collinearity problem
will be removed and the variance of the estimator will have been reduced. The process is conducted as
follows (e.g. Rawlings, Pantula, and Dickey (1998), Section 13.2.2):

1. Create Z1, . . .Zp from the original variables X1, . . . , Xp by subtracting the mean and dividing by a
multiple of the standard deviation.

Zij =
Xij − Xj√

n − 1sj

i = 1, ..., n; j = 1, ..., p Xj =

∑n
i=1 Xij

n
sj =

√

∑n
i=1

(

Xij − Xj

)2

n − 1

2. Obtain the eigenvalues λ1, . . . , λp (and place in a diagonal matrix L) and eigenvectors (as columns
in matrix V) of the p × p matrix R = Z′Z, where R is the correlation matrix among the predictor
variables X1, . . . , Xp. These can be obtained in any matrix computer package (Z does not contain a
column for an intercept).

R = Z′Z =











1 r12 · · · r1p

r12 1 · · · r2p

...
...

. . .
...

r1p r2p · · · 1











Z′Z = VLV′ =

n
∑

i=1

λi (viv
′
i)

3. Create the matrix of principal components W = ZV.

4. Fit the regression Y = Wγ and obtain SSR (γ̂j), the partial sum of squares for each generated predictor
variable (principal component):

γ̂ = (W′W)−1W′Y V̂ {γ̂} = s2(W′W)−1

5. For each generated predictor, test H0 : γj = 0, based on the t-test or F -test. Eliminate any principal
components with high V IF and do not have significant coefficients.

6. Let γ̂(g) be the vector of retained coefficients from previous part. Then SSRPC =
∑

SSR (γ̂j), with
g degrees of freedom (the number of retained principal components (generated predictors)).

7. Scaling back to the original variables (in their standardized (mean=0, standard deviation=1) format),

we get: β̂
PC

g = V(g)γ̂(g)where V(g) is the p × g portion of the eigenvector matrix (columns) corre-
sponding to the retained principal components.

8. The estimated variance-COVariance matrix of β̂
PC

g is:

V̂
{

β̂
PC

g

}

= s2V(g)L
−1
(g)V

′
(g) L(g) =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λg











9. The fitted regression equation can be written with respect to the original (standardized) variables, or
the principal components:

Ŷ(g) = Y + Zβ̂
PC

g Ŷ(g) = Y + Wγ̂(g)
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Note that the bias in the estimation comes when we reduce the principal components regression from
p to g components. If the model reflects no need to remove any principal components, the estimator is
unbiased. The bias comes from the fact that we have:

β̂
PC

g = V(g)V
′
(g)β̂ ⇒ E

{

β̂
PC

g

}

= V(g)V
′
(g)β Note: V(p)V

′
(p) = I

6.9.2 Ridge Regression

In Ridge Regression, a biased estimator is directly induced that reduces its variance and mean square
error (variance + squared bias). Unfortunately, the bias-inducing constant varies among applications, so it
must be selected comparing results over various possible levels. We begin with a standardized regression
model with no bias, based on the p× p correlation matrix among the predictors RXX and the p× 1 vector
of correlations RYX between the predictors and response variable.

RXX =











1 r12 · · · r1p

r12 1 · · · r2p

...
...

. . .
...

r1p r2p · · · 1











RYX =











rY 1

rY 2

...
rY p











The estimated standardized regression coefficients are obtained as:

RXXβ̂
∗

= RXY ⇒ β̂
∗

= R−1
XXRYX

The standardized regression coefficients β̂
∗

measure the change in Y in standard deviation units as each
predictor increases by 1 standard deviation, thus removing the effects of scaling each predictor. It can also
be obtained by transforming each X and Y by the following transformations:

X∗
ij =

Xij − Xj√
n − 1sj

Y ∗
i =

Yi − Y√
n − 1sY

In matrix form, we have:

X∗ =











X∗
11 X∗

12 · · · X∗
1p

X∗
21 X∗

22 · · · X∗
2p

...
...

. . .
...

X∗
n1 X∗

n2 · · · X∗
np











Y∗ =











Y ∗
1

Y ∗
2
...

Y ∗
n











β̂
∗

=
(

X∗′

X∗
)−1

X∗′

Y∗

Note that RXX = X∗′

X∗ and RYX = X∗′

Y∗ The standardized ridge estimator is obtained as follows (e.g.
Kutner, Nachtsheim, Neter, and Li (2005), Section 11.2):

β̂
RR

= (RXX+cI)
−1

RYX =
(

X∗′

X∗ + cI
)−1

X∗′

Y∗

A ridge trace plot of the regression coefficients (vertical axis) versus c (horizontal axis) leads to a choice
of c, where the coefficients stabilize or “flatten out.” The fitted regression equation in transformed scale is:

Ŷ
∗

= X∗β̂
RR ⇒ Ŷ ∗

i = β̂RR
1 X∗

i1 + · · ·+ β̂RR
p X∗

ip

In terms of the originally scaled response, we have β̂j = (sY /sj)β̂
RR
j and β̂0 = Y − β̂1X1 − · · · − β̂pXp.

Ŷi = β̂0 + β̂1Xi1 + · · ·+ β̂pXip
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6.10 Models with Unequal Variances (Heteroskedasticity)

When the data are independent, but with unequal variances, we can use (estimated) Weighted Least
Squares. In rare occasions, the variances are known, and they will be used directly. One setting where this
occurs in practice is when the “data” are averages among a group of units with common X levels. If each
individual unit is independent with constant variance σ2, the average of the mi units (Yi in this setting) has
variance V {Yi} = σ2/mi. In this case, we would use the reciprocal of the variance as the weight for each
case (observations based on larger sample sizes have smaller variances and larger weights).

W = Σ−1
Y =













1
σ2
1

0 · · · 0

0 1
σ2
2

· · · 0

...
...

. . .
...

0 0 · · · 1
σ2

n













=











m1

σ2 0 · · · 0
0 m2

σ2 · · · 0
...

...
. . .

...
0 0 · · · mn

σ2











β̂
W

= (X′WX)
−1

X′WY

The variance of the least squares estimator is obtained as follows:

V
{

β̂
W
}

= (X′WX)
−1

X′WΣYWX (X′WX)
−1

= (X′WX)
−1

In the case with V {Yi} = σ2/mi, we can estimate σ2 based on weighted mean square error:

MSEW =

∑n
i=1 mi

(

Yi − Ŷi

)2

n − p′
Ŷi = β̂W

0 + β̂W
1 Xi1 + · · ·+ β̂W

p Xip

In this case (where data are averages):

V̂
{

β̂
W
}(

X′ŴX
)−1

Ŵ =











m1

MSEW
0 · · · 0

0 m2

MSEW
· · · 0

...
...

. . .
...

0 0 · · · mn

MSEW











Note that weighted least squares can be conducted as ordinary least squares on transformed bfX and bfY ,
which makes it possible to conduct using EXCEL, and non-statistical computing packages:

X∗ = W1/2X Y∗ = W1/2Y β̂
W

=
(

X∗′

X∗
)−1

X∗′

Y∗

where W1/2 is the (diagonal) matrix with elements equal to the square roots of the elements of W.

In most cases, the variances are unknown, and must be estimated. In this case, the squared residuals
(variance) or absolute residuals (standard deviation) are regressed against one or more of the predictor
variables or the mean (fitted values). The process is iterative. We begin by fitting ordinary least squares,
obtaining the residuals, then regressing the squared or absolute residuals on the the predictor variables or
fitted values, leading to (assuming all p predictors are used in the residual regression):

Variance Function Case: v̂i = δ̂0+δ̂1Xi1+· · · δ̂pXip Standard Deviation Case: ŝi = δ̂0+δ̂1Xi1+· · · δ̂pXip

Once the estimated variance (standard deviation) is obtained for each case, we get the estimated weights:

Variance Function Case: ŵi =
1

v̂i
Standard Deviation Case: ŵi =

1

ŝ2
i
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Then we compute the estimated weighted least squares estimator as:

β̂
Ŵ

=
(

X′ŴX
)−1

X′ŴY Ŵ =











ŵ1 0 · · · 0
0 ŵ2 · · · 0
...

...
. . .

...
0 0 · · · ŵn











The process is continued until the estimated regression coefficients are stable from iteration to iteration. The
estimated variance is:

V̂

{

β̂
Ŵ
}

=
(

X′ŴX
)−1

When the data collection process is based on a well designed controlled experiment, with multiple cases
for each set of X levels, the variance of the errors can be estimated within each distinct group, and used in
the estimated weighted least squares equation.

Another, simpler method is to obtain robust standard errors of the ordinary least squares (OLS) es-
timators based on the residuals from the linear regression (using the squared residuals as estimates of the
variances for the individual cases). This method was originally proposed by White (1980). The estimated
variance-covariance matrix with resulting robust to heteroskedasticity standard errors for β̂ is:

V̂
{

β̂
}

= (X′X)−1X′Ê2X(X′X)−1 Ê2 =











e2
1 0 · · · 0
0 e2

2 · · · 0
...

...
. . .

...
0 0 · · · e2

n











6.10.1 Bootstrap Methods When Distribution of Errors is Unknown

The bootstrap is widely used in many applications when the distribution of the data is unknown, or when
the distribution of the estimator of is unknown. In regression applications, there are various ways of boot-
strapping (see e.g. Cameron and Trivedi (2009, Chapter 13) and Kutner, et al (2005, Section 11.5)). All
sampling is done with replacement (except the parametric bootstrap).

One possibility is to bootstrap the individual cases from the dataset, and repeatedly re-fit the regression,
and saving the regression coefficients, obtaining their standard error. Then we can construct Confidence
Intervals for the regression coefficients by taking the original estimate and adding and subtracting 2 standard
errors for approximate 95% Confidence Intervals. This method is widely used when the X levels are random
(not set up by the experimenter), and when the errors may not have constant variance. Also, the cut-off
values for the middle (1 − α)100% of the bootstrap estimates can be used.

Another possibility that is useful is to retain the fitted values from the original regression Ŷ1, . . . , Ŷn and
bootstrap the residuals e1, . . . , en. Then the bootstrapped residuals are added to the original fitted values
and the regression coefficients are obtained, and their standard error is computed and used as above.
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The reflection method (see e.g. Kutner, et al (2005, Section 11.5)). In this case, we obtain the lower

α/2 percentile of the bootstrapped regression coefficients
(

β̂∗
j (α/2)

)

and the upper 1−α/2 percentile of the

regression coefficients
(

β̂∗
j (1 − α/2)

)

and obtain the interval:

β̂j − β̂∗
j (α/2) ≤ βj ≤ β̂∗

j (1 − α/2)− β̂j j = 0, 1, . . . , p

In the parametric bootstrap, the residuals are sampled from a specified distribution with parameter(s)
estimated from the original sample.

There are various bias-corrected methods applied as well.

6.11 Generalized Least Squares for Correlated Errors

Typically when data are collected over time and/or space, the errors are correlated, with correlation tending
to be higher among observations that are closer in time or space. In this case, the variance-covariance matrix
of the error terms is written generally:

V {ε} = Σ =











σ2
1 σ12 · · · σ1n

σ12 σ2
2 · · · σ2n

...
...

. . .
...

σ1n σ2n · · · σ2
n











For the case where the observations are equally spaced in time, and the error terms form an autoregressive
process of order 1, we have:

εt = νt + ρεt−1 − 1 < ρ < 1 νt ∼ iid
(

0, σ2
)

{ε} ⊥ {ν}

Note that this autoregressive process can extend back to q time points, but the covariance structure gets

more complicated. If we start with the definition that E {ε1} = 0 and V {ε1} = σ2

1−ρ2 , we obtain:

E {ε2} = E {ν2 + ρε1} = 0

V {ε2} = V {ν2 + ρε1} = V {ν2} + V {ρε1} + 2COV {ν2, ρε1} = σ2 +
ρ2σ2

1 − ρ2
+ 2(0) =

σ2

1 − ρ2

COV {ε1, ε2} = COV {ε1, ν2 + ρε1} =
ρσ2

1 − ρ2

In general, this extends to the following general results:

V {εt} =
σ2

1 − ρ2
= γ(0) COV {εt, εt+k} =

ρ|k|σ2

1 − ρ2
= γ(k) ρ =

COV {εt, εt+1}
V {εt}

=
γ(1)

γ(0)

V {ε} = Σ =
σ2

1 − ρ2











1 ρ · · · ρn−1

ρ 1 · · ·
...

...
. . .

...
ρn−1 ρn−2 · · · 1










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If ρ were known, then we could use Generalized Least Squares to estimate β. Let Σ = σ2W. Then we
would have:

β̂
GLS

=
(

X′W−1X
)−1

X′W−1Y s2 =
1

n − p′

(

Y − Xβ̂
GLS

)′ (

Y − Xβ̂
GLS

)

V̂
{

β̂
GLS

}

= s2
(

X′W−1X
)−1

In practice, ρ will be unknown, and can be estimated from the data. Further, if we make the following
transformations for AR(1) errors, the transformed response will have uncorrelated errors:

Y∗ = T−1Y X∗ = T−1X T−1 =

























√

1 − ρ2 0 0 · · · 0 0 0
−ρ 1 0 · · · 0 0 0
0 −ρ 1 · · · 0 0 0
...

...
. . .

. . .
...

...
...

...
...

...
. . .

. . .
...

...
0 0 0 · · · −ρ 1 0
0 0 0 · · · 0 −ρ 1

























For this model, the transformed Y∗, has the following model and variance-covariance structure:

Y∗ = X∗β + T−1ε V {Y∗} = T−1σ2WT−1′

= σ2I

Then for Estimated Generalized Least Squares (EGLS) also known as Feasible Generalized Least
Squares (FGLS), we obtain estimates of ρ and σ2 based on the residuals from the OLS regression, then
re-fit the EGLS model.

γ̂(0) =

∑n
t=1 e2

t

n
γ̂(1) =

∑n
t=2 etet−1

n
ρ̂ =

γ̂(1)

γ̂(0)
σ̂2 = γ̂(0) − ρ̂γ̂(1)

Next, we obtain the “estimated” transformation matrix, and the transformed Y∗ and X∗:

Y∗ = T̂−1Y X∗ = T̂−1X T̂−1 =

























√

1 − ρ̂2 0 0 · · · 0 0 0
−ρ̂ 1 0 · · · 0 0 0
0 −ρ̂ 1 · · · 0 0 0
...

...
. . .

. . .
...

...
...

...
...

...
. . .

. . .
...

...
0 0 0 · · · −ρ̂ 1 0
0 0 0 · · · 0 −ρ̂ 1

























Note that the transformed responses have the following pattern (the predictors (and intercept) will have a
similar structure):

Y ∗
1 =

√

1 − ρ̂2Y1 Y ∗
t = Yt − ρ̂Yt−1 t = 2, . . . , n

The EGLS estimator, its variance-covariance matrix, and the estimator for σ2 are obtained as follow:

β̂
EGLS

=
(

X′T̂−1′

T̂−1X
)−1

X′T̂−1′

T̂−1Y =
(

X∗′

X∗
)−1

X∗′

Y∗

V̂
{

β̂
EGLS

}

= σ̂2
e

(

X′T̂−1′

T̂−1X
)−1

= σ̂2
e

(

X∗′

X∗
)−1

σ̂2
e =

(

Y −Xβ̂
EGLS

)′

T̂−1′

T̂−1
(

Y − Xβ̂
EGLS

)

n − p′ − 1
=

(

Y∗ −X∗β̂
EGLS

)′ (

Y∗ − X∗β̂
EGLS

)

n − p′ − 1
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Tests and Confidence Intervals for regression coefficients are obtained as follow:

H0 : βj = 0 HA : βj 6= 0 TS : tobs =
β̂EGLS

j

SE
{

β̂EGLS
j

} RR : |tobs| ≥ t (n − p′ − 1, α/2)

(1 − α)100% Confidence Interval: β̂EGLS
j ± t (n − p′ − 1, α/2)SE

{

β̂EGLS
j

}

A test for the autoregressive parameter ρ is obtained as follows:

s2 =
γ̂(0) − ρ̂γ̂(1)

n − p′ − 1
SE {ρ̂} =

√

s2

γ̂(0)
tobs =

ρ̂

SE {ρ̂}
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Chapter 7

Nonlinear Regression

Often theory leads to a relationship between the response and the predictor variable(s) to be nonlinear, based
on differential equations. While polynomial regression models allow for bends, these models are nonlinear
with respect to the parameters. Many models with multiplicative errors can be transformed to be linear
models. For instance:

Y = β0X
β1ε E{ε} = 1 ⇒ ln(Y ) = ln (β0) + β1 ln(X) + ln(ε) ⇒ Y ∗ = β∗

0 + β1X
∗ + ε∗

If the error term had been additive (with mean=0), the linearizing transformation would not have been
possible, and a nonlinear regression would need to have been fitted. Consider the relationship:

Yi = g (x′
i, β) + εi εi ∼ NID

(

0, σ2
)

for some nonlinear function g (noting that linear regression ends up being a special case of this method). In
matrix form, we have:

Y =











Y1

Y2

...
Yn











g (β) =











g (x′
1, β)

g (x′
2, β)
...

g (x′
n, β)











ε =











ε1
ε2
...

εn











Y = g (β) + ε

Then by nonlinear least squares (NLS), we wish to estimate β.

Q =

n
∑

i=1

[Yi − g (x′
i, β)]

2
= (Y − g (β))

′
(Y − g (β))

∂Q

∂β
= −2

n
∑

i=1

[Yi − g (x′
i, β)]

(

∂g (x′
i, β)

∂β

)

Note that for linear regression,
∂g(x′

i
,β)

∂β
= x′

i. Defining the matrix G (β) as follows, we can obtain the NLS

iterative algorithm.

G (β) =





















∂g(x′

1
,β)

∂β1

∂g(x′

1
,β)

∂β2

· · · ∂g(x′

1
,β)

∂β
p

∂g(x′

2
,β)

∂β1

∂g(x′

2
,β)

∂β2

· · · ∂g(x′

2
,β)

∂β
p

...
...

. . .
...

∂g(x′

n
,β)

∂β
1

∂g(x′

n
,β)

∂β
2

· · · ∂g(x′

n
,β)

∂β
p





















where x′
i =

[

xi1 xi2 · · · xip

]

β =











β1

β2

...
βp










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The Gauss-Newton algorithm can be used to obtain the values β̂ that minimize Q by setting ∂Q

∂β
= 0:

∂Q

∂β
= −2

n
∑

i=1

[Yi − g (x′
i, β)]

(

∂g (x′
i, β)

∂β

)

= −2 [Y − g (β)]
′
G (β) =

[

0 0 · · · 0
]

The algorithm begins with setting starting values β0, and iterating to convergence (which can be difficult
with poor starting values):

β̂
(1)

= β
0 +

(

G
(

β
0
)′

G
(

β
0
)

)−1

G
(

β
0
)′ [

Y − g
(

β
0
)]

At the second round β0 is replaced by β̂
(1)

, and we obtain β̂
(2)

. Then iterate to convergence (hopefully).

All of the distributional arguments given below are based on large sample asymtotics, however simulation
results have shown that in small samples, tests generally work well. For more information on nonlinear
regression models, see e.g. (Gallant (1987), and Rawlings, Pantula, Dickey (2001, Chapter 15)). When the
errors are independent and normally distributed with equal variances

(

σ2
)

, the estimator β̂ is approximately
Normal, with:

E
{

β̂
}

= β V
{

β̂
}

= σ2(G′G)
−1

β̂
approx∼ N

(

β, σ2(G′G)
−1
)

The estimated variance-covariance matrix for β̂ is:

V̂
{

β̂
}

= s2
(

Ĝ′Ĝ
)−1

= Ŝρ̂Ŝ Ĝ = G
(

β̂
)

s2 =

(

Y − g
(

β̂
))′ (

Y − g
(

β̂
))

n − p

where Ŝ is the diagonal matrix of estimated standard errors of the elements of β̂, and ρ̂ is the matrix of
correlations of the elements of β̂, which are printed out in various software packages. Estimates (Confi-
dence Intervals) and tests for the regression coefficients can be conducted (approximately) based on the
t-distribution as in linear regression.

(1 − α)100% CI for βj : β̂j ± t (α/2, n− p)SE
{

β̂j

} β̂j − βj0

SE
{

β̂j

}

approx∼ t(n − p) Under H0 : βj = βj0

For linear functions of β of the form K′β, we then have approximate normality of the estimator K′β̂:

K′β̂
approx∼ N

(

K′β, σ2K′ (G′G)
−1

K
)

Thus, to test H0 : K′β = m, where K′ has q linearly independent rows (restrictions on the regression
coefficients), we have the following test statistic and rejection region:

TS : Fobs =

(

K′β̂ − m
)′
[

K′
(

Ĝ′Ĝ
)−1

K

]−1
(

K′β̂ −m
)

qs2
RR : Fobs ≥ F (q, n− p)

with a P -value as the area above the test statistic Fobs for the F (q, n− p) distribution.

By the nature of nonlinear models, we may also be interested in nonlinear functions of the parameters,

say h (β), which cannot be written in the form K′β̂. In this case, the estimator h
(

β̂
)

is approximately

normally distributed:

h
(

β̂
)

approx∼ N
(

h (β) , σ2
(

H (G′G)
−1

H′
))
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where

H (β) =

[

∂h(β)
∂β

1

∂h(β)
∂β

2

· · · ∂h(β)
∂β

p

]

The estimated variance of h
(

β̂
)

replaces both H and G with their estimates, replacing β with β̂. Estimates

(Confidence Intervals) and tests concerning h (β) can be obtained as follow:

(1−α)100% CI for h (β) : h
(

β̂
)

±t (α/2, n− p)SE
{

h
(

β̂
)} h

(

β̂
)

− h0

SE
{

h
(

β̂
)}

approx∼ t(n−p) Under H0 : h (β) = h0

where:

SE
{

h
(

β̂
)}

=

√

s2Ĥ
(

Ĝ′Ĝ
)−1

Ĥ′

When there are several (q) nonlinear functions, an approximate Wald test of h (β) = h0 is:

TS : Fobs =

(

h
(

β̂
)

− h0

)′
[

Ĥ
(

Ĝ′Ĝ
)−1

Ĥ′

]−1
(

h
(

β̂
)

− h0

)

qs2
RR : W ≥ F (q, n − p)

with P -value being the upper-tail area above Fobs for the F (q, n− p) distribution. Here, we define:

h (β) =











h1 (β)
h2 (β)

...
hq (β)











H (β) =





















∂h1(β)
∂β1

∂h1(β)
∂β2

· · · ∂h1(β)
∂β

p

∂h2(β)
∂β1

∂h2(β)
∂β2

· · · ∂h2(β)
∂β

p

...
...

. . .
...

∂hq(β)
∂β1

∂hq(β)
∂β2

· · · ∂hq(β)
∂β

p





















When the error variance is not constant, we can fit estimated weighted NLS. The weights would be the
inverse of the estimated variances, as in the case of Linear Regression described previously. The variances
may be related to the mean and/or the levels of one or more predictor variables. This will necessarily be an
iterative process. The function we want to minimize is:

QW =

n
∑

i=1

[v (g (x′
i; β))]

−1
[Yi − g (x′

i; β)]
2

where σ2
i = v (g (x′

i; β))

If the errors are correlated with a known correlation structure, such as AR(1), the autoregressive pa-
rameter(s) can be estimated and plugged into the variance-covariance matrix, and we can fit estimated
generalized NLS. Here we want to minimize:

[Yi − g (x′
i; β)]

′
V−1 [Yi − g (x′

i; β)]

where the elements of V are functions of unknown parameters which are estimated from the residuals. See
the AR(1) description for Linear Regression.
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Chapter 8

Generalized Linear Models

8.1 Introduction

When data come from exponential families (e.g. Binomial, Poisson, Negative Binomial (with known α),
Gamma, Normal, among others), the linear models that are applied to normal data, such as regression and
ANOVA models can be generalized. The exponential family can be written in terms of its probability density
(mass) function as (Venables and Ripley (1997)):

f (yi; θi, ϕ) = exp

[

Ai{yiθi − γ(θi)}
ϕ

+ τ

(

yi,
ϕ

Ai

)]

⇒ log (f(y)) =
A{yθ − γ(θ)}

ϕ
+ τ

(

y,
ϕ

A

)

where ϕ is a scale parameter (known for some settings), Ai is a known weight, and θi is a function of
the linear predictor.

The generalized linear model has three primary components, and can be applied to any distribution in
the exponential family:

• A response variable y, believed to come from a probability distribution in the exponential family

• A set of predictor variables that are believed to be related to y through a linear predictor: η =
β0 + β1x1 + · · ·+ βpxp

• The mean of y is an invertible function of the linear predictor: η = g(µ) µ = g−1(η)

8.1.1 Normal (Gaussian) Distribution

For the Normal Distribution, with mean µ and variance σ2, we have the following results:
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f
(

y; µ, σ2
)

=
1√

2πσ2
exp

[

−(y − µ)
2

2σ2

]

⇒ log (f(y)) =
yµ − 0.5y2 − 0.5µ2

σ2
− 0.5 log

(

2πσ2
)

Thus, for the normal distribution, Ai = 1, θ = µ, ϕ = σ2, and γ(θ) = µ2/2.

8.1.2 Binomial Distribution

For the Binomial Distribution, with n trials and probability of Success π, we have the following results,
where the ”data” are the sample proportions y/n:

f (y; n, π) =

(

n

y

)

πy(1 − π)n−y =

(

n

y

)(

π

1 − π

)y

(1 − π)n ⇒

log (f(y)) = n

[

y

n
log

(

π

1 − π

)

+ log(1 − π)

]

+ log

(

n

y

)

So, for the Binomial distribution, Ai = ni, θ = log
(

π
1−π

)

= logit(π), γ(θ) = − log(1−π) = log
(

1 + eθ
)

,

and ϕ = 1.

8.1.3 Poisson Distribution

For the Poisson Distribution, with mean of λ, we have the following results:

f (y; λ) =
e−λλy

y!
⇒ log (f(y)) = −λ + y log(λ) − log(y!)

So, for the Poisson Distribution, Ai = 1, θ = log(λ), γ(θ) = λ = eθ, and ϕ = 1.

8.1.4 Gamma Distribution

For the Gamma Distribution, with shape parameter α and scale parameter β (with rate parameter 1/β), we
have the following results (note that the mean is αβ and the variance is αβ2 for the Gamma Distribution):
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f (y; α, β) =
1

βαΓ(α)
yα−1 exp

[

− y

β

]

⇒

log (f(y)) = (α − 1) log(y) − y

β
− α log(β) − log (Γ(α))

Let: θ = − 1

αβ
⇒ β = − 1

αθ
⇒ log (f(y)) = yαθ − α log

(

− 1

αθ

)

+ (α − 1) log(y) − log (Γ(α))

Now subtract and add α log(α), and let ϕ = 1/α:

⇒ log (f(y)) =

{

yαθ − α log

(

− 1

αθ

)

− α log(α)

}

+ {α log(α) + (α − 1) log(y) − log (Γ(α))} =

=
{

yαθ − α log
(

− α

αθ

)}

+ {α log(α) + (α − 1) log(y) − log (Γ(α))} =

=

{

yθ − log(−1/θ)

ϕ

}

+ {(1/ϕ) log(1/ϕ) + ((1/ϕ) − 1) log(y) − log (Γ(1/ϕ))}

For the Gamma Distribution: Ai = 1, θ = − 1
αβ

, γ(θ) = log(−1/θ), and ϕ = 1/α.

8.2 Log-Likelihood Function

Once the data have been collected, we form the log-likelihood function:

l(θ, ϕ; y) =

n
∑

i=1

[

Ai (yiθi − γ(θi))

ϕ
+ τ

(

yi,
ϕ

Ai

)]

=

n
∑

i=1

li(θi, ϕ; yi)

As stated in McCullaugh and Nelder (1989, Section 2.2):

E

{

∂li
∂θi

}

= 0 E

{

∂2li
∂θ2

i

}

+ E

{

(

∂li
∂θi

)2
}

= 0

Taking the partial derivatives and expectations for each observation, we get:

∂li
∂θi

=
Ai

(

yi − ∂γ(θi)
∂θi

)

ϕ
=

Ai (yi − γ′(θi))

ϕ

∂2li
∂θ2

i

=
−Aiγ

′′(θi)

ϕ
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E

{

∂li
∂θi

}

= 0 = E

{

Ai (yi − γ′(θi))

ϕ

}

⇒ E{yi} = µi = γ′(θi)

E

{

∂2li
∂θ2

i

}

+ E

{

(

∂li
∂θi

)2
}

= 0 = E

{−Aiγ
′′(θi)

ϕ

}

+ E

{

(

Ai (yi − γ′(θi))

ϕ

)2
}

=
−Aiγ

′′(θi)

ϕ
+

A2
i V {yi}
ϕ2

⇒ V {yi} =
ϕγ′′(θi)

Ai

V {yi} is called the Variance Function.

8.3 Mean and Variance for Normal, Binomial, Poisson and Gamma

Families

Normal Distribution: Ai = 1, θ = µ, ϕ = σ2, and γ(θ) = µ2/2

⇒ E{yi} = µi = γ′(θi) =
∂γ(µi)

∂µi
=

2µi

2
= µi V {yi} =

ϕγ′′(θi)

Ai
=

σ2(1)

1
= σ2

Binomial distribution: Ai = ni, θ = log
(

π
1−π

)

= logit(π), γ(θ) = − log(1 − π) = log
(

1 + eθ
)

, and

ϕ = 1.

γ(θi) = log
(

1 + eθ
i

)

⇒ γ′(θi) =
(

1 + eθi
)−1

eθi

⇒ γ′′(θi) =

(

1 + eθi
)

eθi − eθieθi

(1 + eθi )
2 =

eθi

(1 + eθi )
2

⇒ E

{

yi

ni

}

= µi = γ′(θi) =
eθi

1 + eθi
V

{

yi

ni

}

=
eθi

ni (1 + eθi)
2 =

πi(1 − πi)

ni

Poisson Distribution, Ai = 1, θ = log(λ), γ(θ) = λ = eθ, and ϕ = 1
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γ(θi) = eθi ⇒ γ′(θi) = γ′′(θi) = eθi

⇒ E{yi} = µi = γ′(θi) = eθi V {yi} = eθi

Gamma Distribution: Ai = 1, θ = − 1
αβ , γ(θ) = log(−1/θ), and ϕ = 1/α.

γ(θi) = log(−1/θ) ⇒ γ′(θi) =

(

1

−1/θ

)(

1

θ2

)

= −1

θ
⇒ γ′′(θi) =

1

θ2

⇒ E{yi} = µi = γ′(θi) = − 1

θi
= αiβi V {yi} =

(

1

αi

)(

1

θ2

)

=
α2

i β
2
i

αi
= αiβ

2
i

8.4 Canonical Link Functions

A link function for a probability distribution is the function of the mean η = g(µ) that is linearly related to
the independent variables: η = β0 + β1x1 + · · ·+ βpxp. The parameter θ for the exponential family is called
the canonical parameter (McCullaugh and Nelder (1989, Section 2.2)). The inverse function of γ′(θ) is the
canonical link (Venables and Ripley (1997)). The canonical links for the Normal, Binomial, Poisson, and
Gamma are given below.

Normal Distribution:

θ = µ (identity link)

Binomial Distribution:

θ = log

(

µ

1 − µ

)

(logit link)

Poisson Distribution:

θ = log(µ) (log link)

Gamma Distribution:

θ = − 1

αβ
(inverse link)
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8.5 Maximum Likelihood Estimation

Once we have chosen the distribution for the model, we use the method of maximum likelihood to estimate
model parameters, and obtain the variances and covariances among the estimators. Unlike for linear mod-
els, where we have ”close-formed” solutions, for generalized linear models, we must use iterative methods.
Typically, we are maximizing the log of the likelihood function, as opposed to the likelihood, as the process
is easier in this form. Both functions will be maximized at the same parameter values.

Once we have the systematic component selected, including all predictors, interactions, and polynomial
terms of interest, we can write the mean of the linear predictor for the ith case as:

ηi = β0 + β1xi1 + · · ·+ βpxip = x′
iβ =

[

1 xi1 · · · xip

]











β0

β1

...
βp











Then, we take derivatives of the log Likelihood function with respect to each of the regression parameters
(in the form of a (p + 1) × 1 vector):

l(θ, ϕ; y) =

n
∑

i=1

[

Ai (yiθi − γ(θi))

ϕ
+ τ

(

yi,
ϕ

Ai

)]

=

n
∑

i=1

li(θi, ϕ; yi)

g (β) =
∂l

∂β
=

n
∑

i=1





Ai

(

yi
∂θi

∂β
− ∂γ(θi)

∂β

)

ϕ





Taking the second derivative with respect to β
′, we obtain the (p + 1) × (p + 1) matrix:

G (β) =
∂2l

∂β∂β
′ =

n
∑

i=1

Ai

ϕ

[

yi
∂2θi

∂β∂β
′ −

∂2γ (θi)

∂β∂β
′

]

Then, we iterate until convergence with the following Newton-Raphson algorithm:

β̂New = β̂Old −
[

G
(

β̂Old

)]−1

g
(

β̂Old

)

The estimated Variance-Covariance matrix for β̂ is −G
(

β̂
)−1

.

8.5.1 Binomial Distribution

For the Binomial distribution, with “data” yi/ni for m distinct cases, we have Ai = ni, ϕ = 1 and:

l =

m
∑

i=1

log (f(yi)) =

m
∑

i=1

{

ni

[

yi

ni
log

(

πi

1 − πi

)

+ log(1 − πi)

]

+ log

(

ni

yi

)}
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with:

θi = log

(

πi

1 − πi

)

= x′
iβ γ (θi) = log

(

1 + eθi
)

⇒ ∂θi

∂β
= xi

∂γ(θi)

∂β
=

∂ log
(

1 + ex
′

i
β
)

∂β
=

xie
x′

iβ

1 + ex
′

i
β

⇒ ∂2θi

∂β∂β′ = 0
∂γ(θi)

∂β∂β′ =

(

ex
′

i
β

1 + ex′

i
β

)

xix
′
i

⇒ g (β) =
∂l

∂β
=

m
∑

i=1

[

ni

(

yi

ni
xi −

ex
′

i
β

1 + ex
′

i
β

xi

)]

=
m
∑

i=1

[

ni

(

yi

ni
− ex

′

i
β

1 + ex
′

i
β

)]

xi

⇒ G (β) =
∂2l

∂β∂β′ = −
m
∑

i=1

[

ni

(

ex
′

i
β

1 + ex
′

i
β

)

xix
′
i

]

− G
(

β̂
)

= X′ŴX

where

X =











x′
1

x′
2

...
x′
m











Ŵ = diag [niπ̂i (1 − π̂i)] π̂i =
ex

′

i
β̂

1 + ex
′

i
β̂

For starting values of β̂, set:

β̂ =











β̂0

β̂1

...

β̂p











=













log
(

π̂
1−π̂

)

0
...
0













π̂ =

∑m
i=1 yi

∑m
i=1 ni

8.5.2 Poisson Distribution

For the Poisson model, we have Ai = ϕ = 1 and:

l =

n
∑

i=1

log (f(yi)) =

n
∑

i=1

[−λi + yi log(λi) − log(yi!)]

with:

θi = log (λi) = x′
iβ γ (θi) = λi = eθ

i = ex
′

i
β
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⇒ ∂θi

∂β
= xi

∂γ(θi)

∂β
=

∂ex
′

i
β

∂β
= ex

′

i
βxi

⇒ ∂2θi

∂β∂β
′ = 0

∂γ(θi)

∂β∂β
′ = ex

′

i
βxix

′
i

⇒ g (β) =
∂l

∂β
=

n
∑

i=1

[

yixi − ex
′

i
βxi

]

=

n
∑

i=1

[

yi − ex
′

i
β
]

xi

⇒ G (β) =
∂2l

∂β∂β′ = −
n
∑

i=1

[

ex
′

i
βxix

′
i

]

− G
(

β̂
)

= X′ŴX

where

X =











x′
1

x′
2

...
x′
n











Ŵ = diag
[

λ̂i

]

λ̂i = ex
′

i
β̂

For starting values of β̂, set:

β̂ =











β̂0

β̂1

...

β̂p











=











log
(

Y
)

0
...
0











8.5.3 Gamma Distribution

For the Gamma distribution, with parameters α and β, we have Ai = 1 and ϕ = 1/α and we have:

l =

n
∑

i=1

log (f(yi)) =

n
∑

i=1

[

− log (Γ(α)) − α log(β) + (α − 1) log (yi) + −
(

y

β

)]

where we treat α as a fixed known constant while estimating β, with:

θi = − 1

αβi
= x′

iβ γ (θi) = log

(

− 1

θi

)

= log

(

1

−x′
iβ

)

= − log (−x′
iβ)

⇒ ∂θi

∂β
= xi

∂γ(θi)

∂β
=

∂ {− log (−x′
iβ)}

∂β
= − 1

x′
iβ

xi
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⇒ ∂2θi

∂β∂β
′ = 0

∂γ(θi)

∂β∂β
′ =

(

1

x′
iβ

)2

xix
′
i

⇒ g (β) =
∂l

∂β
= α

n
∑

i=1

[

yixi +
1

x′
iβ

xi

]

= α
n
∑

i=1

[

yi +
1

x′
iβ

]

xi

⇒ G (β) =
∂2l

∂β∂β
′ = −α

n
∑

i=1

[

(

1

x′
iβ

)2

xix
′
i

]

− G
(

β̂
)

= αX′ŴX

where

X =











x′
1

x′
2

...
x′
n











Ŵ = diag





(

1

x′
iβ̂

)2




For starting values of β̂, set:

β̂ =











β̂0

β̂1

...

β̂p











=











− 1
Y
0
...
0











After estimating β, we can obtain a moment based estimate of α, the inverse of the square of the coefficient
of variation as follows (see McCullaugh and Nelder, 1987, p. 296):

α̃−1 =
1

n − p′

n
∑

i=1

(

yi − µ̂i

µ̂i

)2

Then the variance-covariance matrix is estimated as:

V
{

β̂
}

= α̃−1
(

X′ŴX
)−1

8.6 Assessing Model Fit

The scaled deviance is a measurement that describes how well a model fits the data, similar to the Error
Sum of Squares in Linear Regression models. It measures the difference in -2 times the difference in the
log-likelihood when the model is fit, and the log-likelihood when the data are the fitted values (saturated
model). If the model is a good fit the scaled deviance divided by n−p′, should be around 1, where the scaled
deviance is the deviance divided by φ.

For the Binomial (logit) model, we fit the model with a set of predictors, and obtain β̂, then obtain the

fitted values µ̂i = π̂i = e
x
′

i
β̂

1+e
x′

i
β̂

. For the saturated model, we use the observed yi as the fitted values:

l (µ) =

m
∑

i=1

[

ni

(

yi

ni
log

(

µi

1 − µi

)

+ log (1 − µi)

)

+ log

(

ni

yi

)]

⇒
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l (µ̂) =

m
∑

i=1

[

ni

(

yi

ni
log

(

µ̂i

1− µ̂i

)

+ log (1 − µ̂i)

)

+ log

((

ni

yi

))]

l (y) =

m
∑

i=1

[

ni

(

yi

ni
log

(

yi/ni

(ni − yi) /ni

)

+ log

(

ni − yi

ni

))

+ log

(

ni

yi

)]

And the deviance is D (y, µ̂) = −2 [l (µ̂) − l (y)]:

D (y, µ̂) = −2

m
∑

i=1

{

ni

(

yi

ni

[

log

(

µ̂i

1 − µ̂i

)

− log

(

yi/ni

(ni − yi) /ni

)]

+

[

log (1 − µ̂i) − log

(

ni − yi

ni

)])}

⇒ D (y, µ̂) = 2

m
∑

i=1

{

yi log

(

yi

niµ̂i

)

+ (ni − yi) log

(

ni − yi

ni (1 − µ̂i)

)}

For the Poisson model, we fit the model with a set of predictors, and obtain β̂, then obtain the fitted values

µ̂i = ex
′

i
β̂. For the saturated model, we use the observed yi as the fitted values:

l (µ) =

n
∑

i=1

[−µi + yi log (µi) log (yi!)] ⇒

l (µ̂) =

n
∑

i=1

[−µ̂i + yi log (µ̂i) log (yi!)] l (y) =

n
∑

i=1

[−yi + yi log (yi) log (yi!)]

And the deviance is D (y, µ̂) = −2 [l (µ̂) − l (y)]:

D (y, µ̂) = −2

n
∑

i=1

[(−µ̂i + yi log (µ̂i) log (yi!)) − (−yi + yi log (yi) log (yi!))] = 2

n
∑

i=1

[

yi log

(

yi

µ̂i

)

− (yi − µ̂i)

]

For the Gamma model, the scaled deviance is -2 times the difference between the log-likelihood for
the fitted model and the saturated model. It is D∗ (y, µ̂) = D (y, µ̂) /φ = αD (y, µ̂). For this model,

m̂ui = −1/ exp
(

x′
iβ̂
)

. The log-likelihood can be written as (ignoring terms that do not change between

l (µ̂) and l (y)):

l (µ) = −α

n
∑

i=1

[

log (µi) + log (yi) +
yi

µi

]

l (µ̂) = −α

n
∑

i=1

[

log (µ̂i) + log (yi) +
yi

µ̂i

]

l (y) = −α

n
∑

i=1

[

log (yi) + log (yi) +
yi

yi

]

⇒ D∗ (y, µ̂) = 2α

n
∑

i=1

[

− log

(

yi

µ̂i

)

+
yi − µ̂i

µ̂i

]

The deviance is D = D∗/α.

A second measure commonly computed is the Pearson chi-square statistic:

X2 =

n
∑

i=1

(yi − µ̂i)
2

V {µ̂i}

The model is rejected if X2 ≥ χ2 (α, n− p′).
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8.7 Residuals

For each observation, we can obtain various types of residuals. For GLM’s, these are typically scaled. The
Pearson residual scales the raw residual by the standard deviation of µ̂i:

rP =
yi − µ̂i
√

V {µ̂i}
X2 =

n
∑

i=1

r2
P

The Deviance residual takes the square root of the contribution of each observation towards the
deviance, and multiplies it by the sign of yi − µ̂i. Note that the contribution depends on the distribution.

For the Binomial, we have:

rD = sign (yi − µ̂i)

√

2

[

yi log

(

yi

µ̂i

)

+ (ni − yi) log

(

ni − yi

ni − µ̂i

)]

For the Poisson, the Deviance residuals are:

rD = sign (yi − µ̂i)

√

2

[

yi log

(

yi

µ̂i

)

− (yi − µ̂i)

]

For the Gamma, we have:

rD = sign (yi − µ̂i)

√

2

[

− log

(

yi

µ̂i

)

+
yi − µ̂i

µ̂i

]

Note that for each case D (y, µ̂) =
∑n

i=1 r2
D.

8.8 Interpreting Regression Coefficients

Here we consider the interpretation of regression coefficients for the conjugate link functions.

In the case of binomial data and the logistic regression model, we have:

µi = πi log

(

µi

1 − µi

)

= x′
iβ = β0 + β1Xi1 + · · ·+ βpXip

Back transforming, we get:

µi =
ex

′

i
β

1 + ex
′

i
β

⇒ µi

1 − µi
=

[

e
x
′

i
β

1+e
x′

i
β

]

[

1

1+e
x′

i
β

] = ex
′

i
β = eβ0+β1Xi1+···+βpXip

where µi

1−µi
is the odds of the event occurring (the number of times it occurs per each non-occurrence). The

effect of increasing Xj by 1, while holding the other predictors constant is measured by the Odds Ratio:

ORj =
odds (X1, . . . , Xj−1, Xj + 1, Xj+1, . . . , Xp)

odds (X1, . . . , Xj−1, Xj, Xj+1, . . . , Xp)
=

eβ0+β1X1+···+βj−1Xj−1+βj(Xj+1)+βj+1Xj+1+···+βpXp

eβ0+β1X1+···+βj−1Xj−1+βjXj+βj+1Xj+1+···+βpXp
= eβj
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Thus, the multiplicative change in the odds is eβj as Xj increases 1 unit, holding all other predictors constant.
If βj is positive, the probability of success increases with Xj , if it is negative, it decreases as Xj increases,
and if it is 0, the probability of success is not related to Xj , controlling for all other predictors.

For the Poisson regression model, we have:

µi = ex
′

i
β = eβ0+β1Xi1+···+βpXip

Here, if we increase Xj by 1 unit, we get a multiplicative change in the mean of Y of eβj . The interpretations
are similar to those of the odds for the logistic regression model.

For the Gamma regression model, we have:

µi = − 1

x′
iβ

= − 1

β0 + β1Xi1 + · · ·+ βpXip

Here, if we change Xj by 1, the ratio change in µi is:

µ (Xj)

µ (Xj + 1)
=

β0 + β1X1 + · · ·+ βj−1Xj−1 + βj (Xj + 1) + βj+1Xj+1 + · · ·+ βpXp

β0 + β1X1 + · · ·+ βj−1Xj−1 + βjXj + βj+1Xj+1 + · · ·+ βpXp
= 1 +

βj

µ (Xj)

Note that if βj is positive, µ decreases as Xj increases; if βj is negative, µ increases as Xj increases; and if
βj = 0, µ is not related to Xj , controlling for all other predictors.

8.9 Inferences Regarding Regression Coefficients

Tests regarding regression coefficients can be conducted as Likelihood-Ratio and Wald tests. Also, large-
sample Confidence can be formed based on asymptotic normality results.

For Likelihood-Ratio tests, the log-likelihood is computed under the null hypothesis, which we will denote
as l0, and under the alternative hypothesis, which we will denote as lA. Then we compute the likelihood-ratio
test statistic, and and define the rejection region:

TS : X2
LR = −2 (l0 − lA) RR : X2

LR ≥ χ2 (α, q)

where q is the number of restrictions under the null hypothesis.

For Wald tests of the form K′β − m = 0, where the number of linear independent rows in K′ is q, the
number of restrictions under the null hypothesis, we have the following test statistic and rejection region:

TS : X2
W =

(

K′β̂ − m
)′ [

K′V̂
(

β̂
)

K
]−1 (

K′β̂ −m
)

q
RR : X2

W ≥ χ2 (α, q)

The special case of testing for individual regression coefficients has the form (some software packages including
R, use the Z-statistic (not squared):

TS : X2
W =





β̂j

SE
(

β̂j

)





2

RR : X2
W ≥ χ2 (α, 1)

A large-sample (1 − α)100% for βj can be computed as:

β̂j ± z (α/2)SE
(

β̂j

)
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8.10 Negative Binomial Regression

In many instances with count data the variance is larger than the mean, making the Poisson model inappro-
priate. The Negative Binomial model allows for the variance to be larger than the mean. The probability
distribution/likelihood for the ith observation is of the form:

Li = p (yi) =
Γ
(

α−1 + yi

)

Γ (α−1) Γ (yi + 1)

(

α−1

α−1 + µi

)α−1
(

µi

α−1 + µi

)yi

=

(

yi + α−1 − 1
)

· · ·
(

α−1
)

Γ
(

α−1
)

Γ (α−1) Γ (yi + 1)

(

α−1

α−1 + µi

)α−1
(

µi

α−1 + µi

)yi

=

(

yi + α−1 − 1
)

· · ·
(

α−1
)

yi!

(

α−1

α−1 + µi

)α−1
(

µi

α−1 + µi

)yi

=

(

yi + e−α∗ − 1
)

· · ·
(

e−α∗
)

yi!

(

e−α∗

e−α∗

+ µi

)e−α∗

(

µi

e−α∗

+ µi

)yi

where −α∗ = ln
(

α−1
)

and µi = x′
iβ. The log-likelihood function for the ith observation is:

li = ln (Li) =

yi−1
∑

j=1

ln
(

e−α∗

+ j
)

− ln (yi!) + e−α∗

ln
(

e−α∗

)

+ yi ln (µi) −
(

e−α∗

+ yi

)

ln
(

µi + e−α∗

)

The first and second partial derivatives with respect to −α∗ and β are:

∂li
∂ (−α∗)

= e−α∗







yi−1
∑

j=1

1

e−α∗ + j
+ 1 + ln

(

e−α∗

)

− e−α∗

+ yi

e−α∗ + µi
− ln

(

e−α∗

+ µi

)







∂2li

∂ (−α∗)
2 = e−α∗







yi−1
∑

j=1

1

e−α∗ + j
+ 1 + ln

(

e−α∗

)

− e−α∗

+ yi

e−α∗ + µi
− ln

(

e−α∗

+ µi

)

−e−α∗

yi−1
∑

j=1

1

(e−α∗ + j)
2 + 1 − e−α∗

(

µi − yi

(µi + e−α∗)
2

)

− e−α∗

µi + e−α∗







∂2li
∂ (−α∗) ∂β

= e−α∗

{

yi − µi

(e−α∗

)
2

}

xi

∂li
∂β

= e−α∗

{

yi − µi

µi + e−α∗

}

xi

∂2li

∂β∂β
′ = −e−α∗

µi

{

e−α∗

+ yi

(µi + e−α∗

)
2

}

xix
′
i

The Newton-Raphson algorithm then is conducted as follows:

g−α∗ =

n
∑

i=1

∂li
∂ (−α∗)

G−α∗ =

n
∑

i=1

∂2li

∂ (−α∗)
2
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gβ =

n
∑

i=1

∂li
∂β

Gβ =

n
∑

i=1

∂2li

∂β∂β
′

g
−α∗β =

[

g−α∗

gβ

]

G
−α∗β =





G−α∗

(

∑n
i=1

∂2li
∂(−α∗)∂β

)′

∑n
i=1

∂2li
∂(−α∗)∂β

Gβ





To complete the algorithm, the following steps can be fit.

First, set −α∗ = 0, which is equivalent to setting α = α−1 = 1, and obtain an estimate of β by iterating
to convergence:

β̂
(i)

= β̂
(i−1) −

[

Gβ

]−1

gβ

Second, set β
′ =

[

1 0 · · · 0
]

and obtain an estimate of −α∗ by iterating to convergence:

ˆ(−α∗)
(i)

= ˆ(−α∗)
(i−1) − [G−α∗]

−1
g−α∗

Third, use the results from the first two steps to obtain an estimate of θ:

θ̂(i) = θ̂(i−1) −
[

G−α∗β

]−1

g−α∗β θ =

[

−α∗

β

]

Fourth, back-transform to get estimate of α−1 = e−α∗

.

Note that for the Negative Binomial distribution: E {Yi} = µi and V {Yi} = µi (1 + αµi).


