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KERNEL ESTIMATORS 299
14.1 Kernel Estimators

In its simplest form, this is just a moving average estimator. More generally, our
estimate of f, called fy (x), is:

pon b XX R . . X
fp”(x)w;i;]{(—h—_)l’j*n;wjyj where MJ,MK( 7 )/K

K is akernel where [ K = 1. The moving average kernel is rectangular, but smoother
kernels can give better results. A is called the bandwidth, window width or smoothing
parameter. It controls the smoothness of the fitted curve.

If the xs are spaced very unevenly, then this estimator can give poor results. This
problem is somewhat ameliorated by the Nadaraya—Watson estimator:

Z?:] !'Vij E‘ ‘$ Wy ot I\'*/ %
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We see that this estimator simply modifies the moving average estimator so that it is
a true weighted average where the weights for each y will sum to one,

1t is worth understanding the basic asymptotics of kernel estimators. The optimal
choice of A gives:

MSE(x) = E(f(x) — fu(x))* = O(n *")

MSE stands for mean squared error and we see that this decreases at a rate propor-
tional to n™/3 with the sample size. Compare this to the typical parametric estimator
where MSE(x) = O(n 1), provided that the parametric model is correct. So the ker-
nel estimator is less efficient. Indeed, the relative difference between the MSEs be-
comes substantial as the sample size increases. However, if the parametric model is
incorrect, the MSE will be O(1) and the fit will not improve past a certain point even
with unlimited data. The advantage of the nonparametic approach is the protection
against model specification error. Without assuming much stronger restrictions on f,
nonparametric estimators cannot do better than O(n—%/5),

The implementation of a kernel estimator requires two choices: the kernel and
the smoothing parameter. For the choice of kernel, smoothness and compaciness are
desirable. We prefer smoothness 1o ensure that the resulting estimator is smooth, so
for example, the uniform kernel will give stepped-looking fit that we may wish to
avoid. We also prefer a compact kernel because this ensures that only data, local to
the point at which f is estimated, is used in the fit. This means that the Gaussian
kernel is less desirable, because although it is light in the tails, it is not zero, meaning
that the contribution of every point to the fit must be computed. The optimal choice
under some standard assumptions is the Epanechnikov kernel:

RS
Kix) = { 6 otherwise

This kernel has the advantage of some smoothness, compactness and rapid computa-
tion. This latter feature is important for larger datasets, particularly when resampling
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techniques like bootstrap are being used. Even so, any sensible choice of kernel will
produce acceptable results, so the choice is not crucially important.

" The choice of smoothing parameter A is critical to the performance of the esti-
mator and far more important than the choice of kernel. If the smoothing parameter
is too small, the estimator will be too rough; but if it is too large, important features
will be smoothed out.

We demonstrate the Nadaraya—Watson estimator next for a variety of choices
of bandwidth on the Old Faithful data shown in Figure 14.2. We use the ksmooth
function which is part of the R base package. This function lacks many useful features
that can be found in some other packages, but it is adequate for simple use. The
default uses a uniform kernel, which is somewhat rough. We have changed this to the

normal kernel:
for{bw in c(0.1,0.5, 2)){
w:.t.h(fa:.thful { '- o :
. plot (waiting ~ eruptions, col-gray (O 75)) :
“lines (ksmooth(erupt:.ons waz.t.:.ng, "normal" bw))

1}
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Pigure 14.2 Nadaraya-Watson kernel smoother with a normal kernel for three differentpand-
widihs on the Old Faithful data.

The central plot in Figure 14.2 is the best choice of the three. Since we do not know
the true function relating waiting time and eruption duration, we can only speculate,
but it does seem reasonable to expect that this function is quite smooth. The fit on
the left does not seem plausible since we would not expect the mean waiting time to
vary so much as a function of eruptions. On the other hand, the plot on the right is
even smoother than the plot in the middle. It is not so easy to choose between these.
Another consideration is that the eye can always visualize additional smoothing, but
it is not so easy to imagine what a less smooth fit might Iook like. For this reason, we
recommend picking the least smooth fit that does not show any implausible fluctua-
tions. Of the three plots shown, the middle plot seems best. Smoothers are often used
as a graphical aid in interpreting the relationship between variables. In such cases,

>\ = kﬁx&\tﬁmi%i& |
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visual selection of the amount of smoothing is effective because the user can employ
background knowledge to make an appropriate choice and avoid serious mistakes.

You can choose A interactively using this subjective method. Plot fi (x) for a
range of different A and pick the one that looks best as we have done above. You may
need to iterate the choice of A to focus your decision. Knowledge about what the true
relationship might look like can be readily employed.

In cases where the fitted curve will be used to make numerical predictions of
future values, the choice of the amount of smoothing has an immediate effect on
the outcome. Even here subjective methods may be used. If this method of selecting
the amount of smoothing seems disturbingly subjective, we should also understand
that the selection of a family of parametric models for the same data would also
involve a great deal of subjective choice although this is often not explicitly recog-
nized. Statistical modeling requires us to use our knowledge of what general forms
of relationship might be reasonable. It is not possible to determine these forms from
the data in an entirely objective manner. Whichever methodology you use, some sub-
Jjective decisions will be necessary. It is best to accept this and be honest about what
these decisions are.

Even so, automatic methods for se}ectmg the amount of smoothing are also use-
ful. Selecting the amount of smoothing using subjectwe ‘méthods requires time and
effort. When a large number of smooths are necessary, some automation is desirable.
In other cases, the statistician wiil want to avoid the explicit appearance of subjec-
tivity in the choice. Cross-validation (CV) is a popular general-purpose method, The
criterion is; T

1 n
V) =~ Y (0~ ()P
}*1
where (f) indicates that point j is left out of the fit. We pick the A that minimizes this
criterion. True cross-validation is computationally expensive, so an approximation to
it, known as generalized cross-validation or GCV, is sometimes used. There are also
many other methods of automaticatly selecting the A.

Qur practical experience has been that automatic methods, such as CV, often
work well, but sometimes produce estimates that are clearly at odds with the amount
of smoothing that contextual knowledge would suggest. For this reason, we are un-
willing to trust automatic methods completely, We recommend using them as a start-
ing point for a possible interactive exploration of the appropriate amount of smooth-
ing if time permits. They are also useful when very large numbers of smooths are
needed such as in the additive modeling approach described in Chapter 15.

‘When smoothing is used to determine whether f has certain features such as mul-
tiple maximwms (called bump hunting) or monotonicity, special methods are neces-
sary to choose the amount of smoothing since this choice will determine the outcome
of the investigation.

The sm library, described in Bowman and Azzalini (1997), allows the computa-
tion of the cross-validated choice of smoothing parameter. For example, we find the

CV choice of smoothing parameter for the Old Faithful and plot the 1esult
library (sm)
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with (faithful, sm.regression (erupt:.ons, waxt:.ng, h==h select. (eruptz.ons,_
“ e+ waiting})) PRI

12
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Figure 14.3 The first panel shows the kernel estimated smooth of the Old Faitliful data for a
cross-validated choice of smoothing parameter. The second and third panels show the resulting
Jits for Examples A and B, respectively,

We see the resulting fit plotted in the first panel of Figure 14.3, The sm package uses
a Gaussian kernel where the smoothing parameter is the standard deviation of the
kernel.

We repeat the exercise for Example A; the plots are shown in the second panel of

Figure 14.3. The resulting fit is somewhat oversmoothed.
with (exa, sm.regression({x, y, h=h.select(x,vy}))

Finally, we compute the fit for Example B as seen in the third pane] of F]g-
ure 14.3,

with {exb, sm.regression(x, y, h=h.select (x,v))) : TR
We see that the fitted curve notices the two outliers but does not reach out to them
A much smaller choice of smoothing parameter would allow the fitted curve to pass
near these two points but only at the price of a much rougher fit elsewhere.

14.2 Splines

Smoothing Splines: The model is y; = f{x;} + &, so in the spirit of least squares, we
might choose f to minimize the MSE: %):(yf — f(x:))?. The solution is f(x;) = y;.
This is a “join the dots™ regression that is almost certainly too rough. Instead, suppose
we choose f to minimize a modified least squares criterion:

Mz(yr l) 2 +A f [ (%) 2dx = c:,.ﬁ.L;:f?m.'{:} Vet

where A > 0 is the smoothing parameter and [[f"(x)]?dx is a roughness penalty.
When f is rough, the penalty is large, but when f is smooth, the penalty is small. Thus
the two parts of the criterion balance fit against smoothness. This is the smoothing
spline fit.
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For this choice of roughness penaEty, the solution is of a particulzu form: £ is
a cubic spline. This means that f is a piecewise cubic polynomial in each inferval
(x,,x,_;_]) {assuming that the x;s are unique and sorted), It has the property that f, '
and " are continuous. Given that we know the form of the solution, the estimation is
reduced to the parametric problem of estimating the coefficients of the polynomials.
This can be done in a numerically efficient way.

Several variations on the basic theme are possible. Other choices of roughness
penalty can be considered, where penalties on higher-order derivatives lead to fits
with more continuous derivatives. We can also use weights by inserting them in the
sum of squares part of the criterion. This feature is useful when smoothing splines are
means to an end for some larger procedure that requires weighting. A robust version
can be developed by modifying the sum of squares criterion to:

Lo0i— 7))+ [ 17" (o

where p(x) = |x| is one possible choice.
In R, cross-validation is used to select the smoothing parameter by default. We
show this default choice of smoothing for our three test cases;
with (faithful, {
plot {waiting ~ eruptions, col=gray(0.75))
lines (smooth.spline (erupticns,waiting), 1ty=2}

1
with {exa, {
plot{y ~ x, col=gray(0.75)}
lines (x,m)
lines (smooth.spline (x,y}, lty=2)
1
with (exb, {
plot{y ~ x, col=gray(0.75)}}
lines (x,m)
lines {smooth.spline{x,y},lty=2)
Y ' :
The fits may be seen in Figure 14.4, The fit for the Oid Faithful data tooks rea-

sonable, The fit for Example A does a good job of tracking the hills and valleys but
overfits in the smoother region. The default choice of smoothing parameter given by
CV is a disaster for Example B as the data is just interpolated. This illustrates the
danger of blindly relying on automatic smoothing parameter selection methods.
Regression Splines: Regression splines differ from smoothing splines in the fol-
lowing way: for regression splines, the number of knots of the B-splines used for the
basis are typically much smaller than the sample size. The number of knots chosen
controls the amount of smoothing. For smoothing splines, the observed unique x val-
ues are the knots and A is used to control the smoothing, It is arguable whether the
regression spline method is parametric or nonparametric, because once the knots are
chosen, a parametric family has been specified with a finite number of parameters,
It is the freedom to choose the number of knots that makes the method nonparamet-
ric, One of the desirable characteristics of a nonparametric regression estimator is
that it should be consistent for smooth functions. This can be achieved for regression
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Figure 14.5 One basis function for linear regression splines shown on the left and the complere
set shown on the right.
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Figure 14.6 Evenly spaced knots fit shown on the left and knots spread relative 1o the curvature
on the right.
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Figure 4.4 Smoothing spline fits. For Examples A and B, the rrue function is shown as solid
and the spline fit as dashed.

splines if the number of knots is allowed to increase at an appropriate rate with the
sample size.
We demonstrate some regression splines here. We use piecewise linear splines in

this exampie, which are constructed and plotted as foilows knots
rhs <~ function (x,c) 1felse(x>c Re-g 0) - : . :
curve {rhs(x,0.5),0,1) h
where the spline is shown in the first panel of Figure 14.5. Now we deﬁne some knots
for Example A:

(knots <= 0:9%/10)

{11 0,0 0.1 0.2 0.3 0.4 6.5 0.6 0.7 0.8 0.9
and compute a design matrix of splines w1th knots at these pomts for each X
dm <= outer (exa$x, knots, rhs) N S
matplot (exa$x dm, type="1", cal=1, 'xlab—“ ", ylab "") A
where the basis functions are shown in the second panel of Figme 14 5. Now we
compute and display the regression fit:
Imod <— lim(exaSy ~ dm)
plot. {y ~ =, exa, col=gray(0.75))
lines (axa$x predict {lmod}) : S SR : Sl
where the plot is shown in the first panel of F}gure 14, 6 Because the basm functmns
are piecewise linear, the fit is also piecewise linear. A better fit may be obtained by
adjusting the knots so that they are denser in regions of greater curvature;
newknots<—c(00506065070750808509095) EE
dmn C<- cutex (exa$x newknots, rhs) :
Imod < 1m{exa$y ~ .dmn} . _ _- :
piot’ (y ~x, ‘@xa, col=gray(0. 75)) :
lines (exa$x, predict {Imod) ) Ve : :
where the plot is shown in the second panel of Figure 14.6. We cbtain a better ﬁt
but only by using our knowledge of the true curvature. This knowledge would not he
available for real data, so more practical methods place the knots adaptively accord-
ing to the estimated curvature,
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One can achieve a smoother fit by using higher-order splines. The bs {) function
can be used to generate the appropriate spline basis. The default is cubic B-splines,

We display 12 cubic B-splines evenly spaced on the [0,1] interval. The splines close

to the boundary take a dxffelent form as seen in the first panel of F1gu1e 14 7
library (splines) ' : RERETE
matplot {bs (seq(l,1, length—lOOO) df 12) type=“l“ ylab""" aol= 1) =

Q|
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Figure 14.7 A cubic B-spline basis is shown in the left panel and the resulting fit to the Exam-
ple A data is shown in the right panel.

We can now use least squares to determine the coefficients. We then display the fit as
seen in the second panel of Figure 14 7
Imod <-lm (y ~ bs{x,12},exa}:

plot (y .~ x, exa, col——gray (0 75) )
lines{m ~ x, exa} - :
lines {predict {Imod) ~ x, exa, }.t.y—Z) : B
We see a smooth fit, but again we could do better by p]acmg more Rnots at thc pomts
of high curvature and fewer in the flatter regions.

14.3 Local Polynomials C %w @RE, N \o (YR -3-11 ’\B

Both the kernel and spline methods have been relatively vulnerable to outliers as
seen by their performance on Example B. The fits can be improved with some man-
ual intervention, either to remove the outhiers or to increase the smoothing param-
eters. However, smoothing is frequently just a small part of an analysis and so we
might wish to avoid giving each smooth individual attention. Furthermore, habitual
removal of outliers is an ad hoc strategy that is better replaced with a method that
deals with long-tailed errors gracefully, The local polynomial method combines ro-
bustness ideas from linear regression and local fitting ideas from keme! methods.
First we select a window. We then fit a polynomial to the data in that window
using robust methods. The predicted response at the middle of the window is the
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fitted value. We then slide the window over the range of the data, repeating the fitting
process as the window moves. The most well-known implementation of this type of
smoothing is called lowess or loess and is due to Cleveland (1979).

As with any smoothing method, there ate choices to be made. We need to choose
the order of the polynomial fit. A quadratic allows us to capture peaks and valleys
in the function. However, a linear term also performs well and is the default choice
in the loess function. As with most smoothers, it is important to pick the window
width well. The default choice takes three quarters of the data and may not be a good
c¢hoice as we shall see below.

For the Old Faithful data, the default choice is satisfactory, as seen in the first

panel of Figure 14.8:
with{faithful, { -
‘plot(waiting ~ eruptions, col=gray(0.75))
... £ <~ loess(waiting ~ eruptiona)
i <= order (eruptions)
lines (£$x[i], f$fitted[i])
1} :
For Example A, the default choice is too large. The choice that minimizes the inte-
grated squared error between the estimated and true function requires a span {pro-

portion of the 1ange) of 0. 22 Boih fits are seen in the mlddie panei of Fxgme 14 8
w;th(exa,{
Cplot(y o~ x, colmgray(ﬂ 75))
i-lines{m ~ x)
£ <~ loess{y ~ x) RIS
lines (£6x, £§fittad, I1ty=2) .
£ <~ loess(y ~ x,span=0,22)
lines (f§x, £5fitted, 1ty=5)

1) o :
In practice, the true function is, of course, unknown and we would need to sclect the
span ourselves, but this optimai choice does at least show how well loess can do in
the best of circumstances. The fit is similar to that for smoothing splines.

For Example B, the optimal choice of span is one (that is all the data). This is
not surprising since the true function is a constant and so maximal smoothing is
desired. We can see that the robust qualities of loess prevent the fit from becoming

too distorted by the two outliers even with the default choice of smoothmg span
with (exb, {
“plot{y ~ x, col=gray(0.75))
lines(m ~ x)
£ <— loess(y ~ x)
‘lines (£$x, E$fitted, 1ty=2)
. f <— loess(y ~ x,spanwl)
" lines {£$x, £§fitted, 1ty=5)

}

14.4 Cenfidence Bands

it is belpful to have some expression of uncertainty in the curve estimates. Both the
regression spline and loess methods use (local) linear fitting using parametric meth-
ods. These same methods naturally generate a standard error which can be used to
construct a confidence interval at any point in x. We may connect these intervals to-
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Figure 14.8 Loess smoothing: Old Faithful data is shown in the left panel with the default
amount of smoothing. Example A data is shown in the middle and B in the right panel. The
true function is shown as a solid line along wiih the defauir chozce (dorfed) and respective
ognmal amounts of smoothing (dashed) are also shown. T

gether to form a confidence band. These are conveniently constructed and displayed
using the ggplot2 package.

We construct the 95% confidence band for Example A data using loess:
ggplot (exa, 'zes (x=x,y=y}) + geom_point (alpha 0.25) - o+ geom_smooth( -
"<y method="loess", span=0.22) + geom_line (aes{x=x, “y=m) llnetype 2)

The plot is seen in the first panel of Figure 14.9. We have added the true function
4s a dashed line. We observe that the true function falls just ourside the band in a
few areas. However, the band we have constructed is a pointwise confidence band.
The 95% confidence applies at each point but since we have a wide range of points,
the 95% probability of the interval containing the true value cannot hold across the
range. For this we would need a simultaneous confidence band.

We can also construct a band using splines, We need the mgev package which

includes a spline smoothex

library{mgcv) . : : B St Ll

ggplot {exa,’ aas(x—x y—y)) +. geom~point(alpha~0 25) + geom smgoth(
:=ﬂ method="gam", formnla—y ~ s(x, k—20)) + geom llne(aes(x—x, m:'
ey linetype=2) 4 .

We see the resulting piot in the second pancl of Flgure 14.9. In Ehls case, we have
manually chosen the smoothing parameter, k=20, representing the degrees of free-
dom in the fit. It is larger to accommodate the variation in this function, producing a
better although not perfect fit to that seen in Figure 14.6,

14.5 Wavelets ( \,Q 4 \-) }

Regression splines are an example of a basis function approach to fitting. We ap-
proximate the curve by a family of basis functions, §;{x), so that f(x) = ¥ ci9i(x).
Thus the fit requires estimating the coefficients, ¢;. The choice of basis functions will
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Figure 14.9 95% confidence bands for loess (left) and spline (right) fits to Example A.

determine the properties of the fitted curve. The estimation of ¢; is particularly easy
if the basis functions are orthogonal,

Examples of orthogonal bases are orthogonal poltynomials and the Fourier basis.
The disadvantage of both these families is that the basis functions are not compactly
supported so that the fit of each basis function depends on the whole data. This means
that these fits lack the desirable local fit properties that we have seen in previously
discussed smoothing methods. Although Fourier methods are popular for some ap-
plications, particularly those involving periodic data, they are not typically used for
general-purpose smoothing.

Cubic B-splines are compactly supported, but they are not orthogonal. Wavelets
have the advantage that they are compactly supported and can be defined so as to
possess the orthogonality property. They also possess the muldtiresolution property
which allows them to fit the grosser features of the curve while focusing on the finer
detail where necessary.

We begin with the simplest type of wavelet: the Haar basis. The mother wavelet
for the Haar family is defined on the interval {0, 1) as:

=1 21

We generate the members of the family by dilating and translating this function, The
next two members of the family are defined on 10,1/2) and [1/2,1) by rescaling
the mother wavelet to these two intervals. The next four members are defined on
the quarter intervals in the same way. We can index the family members by level
J and within the level by k so that each function will be defined on the interval
/27, (k+1)/27) and takes the form:

R {x) = 202 w(20x — k)
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Figure 14.13 Daubechies wavelet N=2 thresholded fit to the Example A data shown on the
left. Irregular wavelet fit to the Qld Faithful data is shown on the right,

e w;th(fa;thful (aruptions=min(exuptions))/(max(eruptioné)&hin(ﬁ'”
g:xdof f— makegrzd(x, fa;thful$wa1t1ng}
wdof <- irregwd(gridof, bc="5ymmetrlc")
wtof. g~ th:eshold(wdof) : L
wrof L wr(wtof) . : NN

plot(waltzng ~ eruptxons, faxthful col—grey(u 75)) :
with (faithful, llnas(seq(min(e:ugt;ons) max(eruptzons) 1en—512), wrof))
The resuiting plot, shown in the second panel of Figure 14.13, reveals a discontinuity
in the fit not seen in previous plots. This demonstrates one of the main advantages of
the wavelet method in handling and revealing discontinuities. Wavelet methods are
particularly useful in processing very large datasets such as those found in image and
sound files because the filtering method of thresholding coefficients can drastically

reduce file size without losing much information.

14.6 Discussion of Methods

We have presented only a selection of the wide variety of methods available. For
example, nearest neighbor methods adjust for varying density in the predictor space
by adjusting window widths to be wider in sparser regions and narrower in denser
regions. Window widths are also nonconstant in variable bandwidth methods, Such
methods are particularly appropriate for functions like Example A where the smooth-
ness of the function varies. We would like to use a smaller bandwidth in regions
where the function changes rapidly but a wider one where it is more constant.

Bayesian methods of smoothing are evident in the Gaussian Process method as
described in Rasmussen and Williams (2006). This method is particularly appropriate
if you have prior knowledge and also works well on quite small datasets.
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The construction of alternate smoothing methods has long been a popular topic of

interest for statisticians and researchers in other fields. Because no definitive solution
is possible, this has encouraged the development of a wide range of methods. But it
is important not to allow the enthusiasm to solve an interesting technical problem to
overshadow the purpose of a data analysis. We propose four possible objectives:

Description Sometimes we simply want to draw a line on a scatterplot to aid in the
visual interpretation of the relationship displayed. We do not want to spend a lot
of time or effort in constructing this smooth. We want a method that is simple and
reliable.

Auxiliary In some applications, the smoothed fit is needed as part of some larger
analysis. The smooth is not the principal aim. For example, the smooth might
be used to impute some missing values. In such examples, we need to choose
the smoothing method to optimize the wider objective. Sometimes, this means
choosing rougher or smoother results than we would pick in a standalone problem.,

Prediction Interpolating values in noisy data is one example where these methods
could be useful. Extrapolation is more problematic as this requires some assump-
tions about how the function will behave outside the range of the data. Parametric
methods do better here as, although extrapolation is inherently risky, it is more
transparent how they will behave. We may also want to construct confidence state-
ments which is easier to do with the basis function methods, such as splines, be-
cause we can mitror the parametric methods.

Explanation In linear modeling, the most common regression question concerns
whether there is a relationship between x and y, No relationship corresponds to an
assertion that the function is constant. We can construct confidence bands for some
of the methods. We can then observe whether a constant function fits between the
bands to decide the question. Even so, it would be better to directly construct a
hypothesis test for which parametric methods are more amenable, Nonparametric
methods do at least give us more information about situations where the assertion
of no relationship only helds for part of the range of the predictor.

So when should we use nonparametric regression and which particular method
should we choose? In the univariate case, we can describe three situations. When
there is very little noise, interpolation (or at most, very mild smoothing) is the best
way to recover the relation between x and y. Splines are good for this purpose.
When there is a moderate amount of noise, nonparametric methods are most effec-
tive. There is enough noise to make smoothing worthwhile but also encugh signal
to justify a flexible fit. When the amount of noise becomes larger, parametric meth-
ods become relatively more attractive. There is insufficient signal to justify anything
more than a simple model.

It is not reasonable to claim that any one smoother is better than the rest. The
best choice of smoother will depend on the characteristics of the data and knowledge
about the true underlying relationship. The choice will also depend on whether the fit
is (0 be made automatically or with human intervention. When only a single dataset
is being considered, it’s simple enough to craft the fit and intervene if a particular
method produces unreasonable results. If a large number of datasets are to be fit
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