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1 RECAP

� Multivariate regression - more convenient to work with this in a matrix form

� y = Xβ+ ε where X is a n× p matrix where each columns are the values for an x-variable, column
of 1’s in the first column for the intercept.

� Normal equations X ′Xβ = X ′y, solve for β if you can β̂ = (X ′X)−1X ′y

� If x’s are correlated, then β̂j depend not only the correlation between variable xj and y but also
all the other correlations corr(xk, y) - difficult to interpret multivariate regression parameters

� Correlated x’s also lead to numerical instabilities in the estimation due to the fact that the inverse
of X ′X is unstable

� E[β̂] = β and V (β̂) = σ2(X ′X)−1.

� Three sources of estimation variance: noise level σ2, sample size and structure in X (variance of
each x’ and correlation between x’s).

� You can test the significance of β̂j using a t-test: tj =
(β̂)j−0√
σ̂2(X′X)−1

jj

compare with tn−p distribution

� Caution: if x’s are correlated the t-test can give misleading results. Also, look out for multiple
testing issues!

� The goodness-of-fit F-test: Fobs = (SST−RSS)/(p−1)
RSS/(n−p) compare with Fp−1,n−p. Use to test if at least

one βj , j = 1, . . . , p− 1 is non-zero

� You can also use an F-test to compare any pair of nested models. Fobs =
(RSSsimple−RSScomplex)/(∆p)
RSScomplex/(n−pcomplex) ,

where ∆p is the difference in number of parameters between the simple and complex models. Com-
pare Fobs to F∆p,n−pcomplex

.

2 Model Selection

The tools we have discussed so far are t-tests on individual slope estimates and F-test to compare two
nested models. Last lecture we also looked at using the F-test to select between models in a backward
search - starting with a model including all variables and dropping them one by one until the drop leads
to a rejection in the F-test. Now we will look into other criteria that can be used to select between models.

The ultimate validation of a model is if it can be used to predict future observations, i.e. does the
model generalize to the population under consideration? If you look back to lecture 1, I talked about
how the safe option of picking as complex a model as possible was not so safe statistically. That was
because while a complex model may have little or no bias it suffers from high estimation variance. This
is what will hurt us when we do prediction. We don’t know how much ’off’ the true model our estimate
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is, but with a high estimation variance this deviation can be quite substantial. This will result in poor
prediction performance for the model. On the other hand, a simple model may make consistent errors in
the prediction, but these predictions will not be too sensitive to individual data sets used for estimation
of model parameters. This may in fact work better for prediction. Let’s recap some things we talked
about in lecture 1:

Model Simple added complexity Flexible
few parameters ... many parameters

rigid ... adapts to data

Linear polynomial/nonlinear Local average/smoother
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Properties Large bias, low variance ... Small bias, high variance

Let us summarize this bias-variance tradeoff:

E[ŷ] − E[y], average fitted value across many data sets - the true model value = Bias

V [ŷ] = the estimation variance

With more complex models we can adapt to the data and reduce the bias, but more complex models
results in increased estimation variance. In terms of prediction both bias and variance work against us.
Bias means we are mismatching our model to the true y−X relationship, so even with infinite amounts
of data our predictions would be off. Estimation variance has to do what happens with finite data and
for a particular sample. The estimated model can be quite far from its ideal (what you would get for
infinite data, or if you could average your estimated models over many finite data sets drawn from the
same true model) so even if the model has no bias due to estimation variance our predictions based on
an estimated model can be off. We want to control both bias and variance. We combine the two in the
Mean Squared Error (MSE):

MSE = Bias2 + V ariance.

A good prediction model can thus be identified as one that minimizes MSE. To avoid confusion with the
MSE defined as RSS/(n− p) I will refer to the MSE = Bias2 + V ariance as the prediction MSE.

How can we select models in practise? We can’t actually compute the prediction MSE since we need
to know the true model to compute the bias! We need to find a substitute for the prediction MSE that
we can compute from observed data. Can we use the residual sum of squares (RSS) as a substitute?
No! The RSS =

∑
i(yi− ŷi)

2 always decreasing the more complex the model is (the more parameters to
allow the model to be matched to the data). In fact, if we use n parameters we can get a perfect fit to
the data, RSS = 0. That would make no sense for prediction though since we are then building a model
to match the random error εi.

Let’s revisit the South-African heart disease data. There are 11 explanatory variables and the out-
come is the cholesterol level (ldl). Let’s fit all possible subset models to this data. There are 11 models
of size 1 (size = number of variables), (11*10/2) models of size 2, etc. In Figure 1 I depict the RSS as a
function of model size for all subset models.

It is more common to only look at the winning models of each size. In the right panel of Figure 1 I
show you the so-called RSS curve. Note that this is decreasing with model size. The RSS (or MSE) is
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Figure 1: RSS as a function of model size for all subset models for the SA heart disease data. The blue
line connects the best model of each size.

minimized for the largest model, in this case the one including all the variables. Thus, RSS is not a good
substitute for prediction MSE.

2.1 Using training and test data

Let us assume we had access to another data set. Our training data is used to estimate model parameters.
Our test data is used to check which models work well for prediction.

Training data: (Xi, yi)
n
i=1, Xi = (xi1, xi2, . . . , xi,p−1

Test data: (Xi, y
new
i )ni=1, Xi = (xi1, xi2, . . . , xi,p−1

The test data consist of new outcome data drawn from the same true model and at the same x-locations
as the training data.

The true model β∗ = (β∗0 , β
∗
1 , . . . , β

∗
p−1) is unknown to us. If the outcome is not related to some of

the x-variables some of the β∗j = 0. We can thus write

Training data: yi = Xiβ
∗ + εi, ε ∼ N(0, σ2)

Test data: ynewi = Xiβ
∗ + εnewi , εnew ∼ N(0, σ2)

1. We enumerate all models m = 1, . . . ,M . If we have p − 1 variables there are M = 2p−1 possible
subset models.

2. We fit each model m to the training data and obtain parameter estimates β̂(m) with corresponding
fitted values ŷ(m)i, i = 1, . . . , n

3. RSS(m) =
∑n
i=1(yi − ŷ(m)i)

2

4. MSE(m)train = 1
nRSS(m)

5. pMSE(m) = MSE(m)test = 1
n

∑n
i=1(ynewi − ŷ(m)i)

2

In Figure 2 I mimic the training/testing setup from above. I split the data in half - use one half as
training and reserve the other part for testing. (Note, this is not the exact setup from above since I am
not creating a test data at the precise same x locations in the training data.)
I compare the MSE on the training data to the pMSE (MSE on the test data). Note that while MSE on
the training data is minimized for the largest model, the pMSE decreases up to a point (pselected = 9)
and then starts increasing. The pMSE decreases as long as the decrease in bias exceeds the increase
in estimation variance. At some point, when we exceed the true model size, we are no longer gaining

3



●

●

●

●

●

● ● ● ● ● ●

2 4 6 8 10 12

3.
0

3.
1

3.
2

3.
3

3.
4

3.
5

MSE for best model of each size

number of variables

M
S

E

●

●

●

●

●

●
● ●

●
●

●

2 4 6 8 10 12

2.
40

2.
45

2.
50

2.
55

2.
60

2.
65

prediction MSE

number of variables

pM
S

E

Figure 2: Left: RSS-curve. MSE on training data. Middle: pMSE-curve. MSE on test data.

in terms of bias but estimation variance increases since we are including unnecessary parameters in our
model. Note, while the optimum size model is here identified as the minimizer of pMSE, this model may
not be the minimum MSE model of the same size (see Table 1).

Intercept age sbp adiposity obesity typea
pMSE win TRUE FALSE TRUE TRUE TRUE TRUE

MSE of same size TRUE TRUE FALSE TRUE TRUE TRUE

alcohol alcind tobacco tobind chd famhist
pMSE win TRUE FALSE TRUE TRUE TRUE FALSE

MSE of same size TRUE FALSE FALSE TRUE TRUE TRUE

Table 1: Selected variables using pMSE

4



3 Demo 7

We will examine training and prediction MSE using a data set on car prices and gas mileage (how many
miles/km per gallons/liters). We first read the data into R.

> cars <- data.frame(read.table("cars.dat", sep = "\t", header = T))

> print(dim(cars))

[1] 82 19

> print(names(cars))

[1] "mid.price" "city.mpg" "hw.mpg" "airbagstd" "cylnbr" "engsize"

[7] "horsepwr" "rpm.at.max" "engrev.high" "mantrans.op" "fueltank" "passengers"

[13] "length" "width" "uturn" "rearroom" "luggage" "weight"

[19] "domestic"

There are, as you see, 82 different cars in this data set and 19 variables. We will focus on the price
of the cars as a function of the other variables, which include mileage (miles per gallon in the city and
on highway (compare liters per km in Sweden)), airbag standard (0 if not included, 1 if for the driver
and 2 if passenger/side), the number of cylinders, the engine size, horsepower, maximum rpm of engine,
manual transmission (yes=1, no=0), size of the fuel tank, passenger room, length and width of the car,
a measure about the space needed to make u-turn with the car, size of the rear room of the car, luggage
room, weight of the car, and finally an indicator if the car is domestic (US built=1) or not.

Let us examine the data set. I first split the data into a random training set and a random test set for
illustration purposes - this means that you will see different results when you run the demo yourselves.

> ntrain <- 60

> ii <- sample(seq(1, dim(cars)[1]), ntrain)

> cars.train <- cars[ii, ]

> row.names(cars.train) <- seq(1, ntrain)

> cars.test <- cars[-ii, ]

> row.names(cars.test) <- seq(1, dim(cars.test)[1])

I first try some select pairwise scatter plots. Do this yourselves for other pairs of variables.

> par(mfrow = c(2, 2))

> plot(cars.train$mid, cars.train$ci, main = "citympg on price")

> plot(cars.train$hw, cars.train$ci, main = "citympg on hwmpg")

> plot(cars.train$le, cars.train$ci, main = "citympg on length")

> plot(cars.train$engsize, cars.train$ci, main = "citympg on enginesize")

> p <- locator()

> par(mfrow = c(2, 2))

> plot(cars.train$le, cars.train$wi, main = "width on length")

> plot(cars.train$wi, cars.train$we, main = "weight on width")

> plot(cars.train$le, cars.train$wh, main = "wheelbase on length")

> plot(cars.train$lu, cars.train$rea, main = "rearroom on luggage room")

> p <- locator()

In Figure 3 and4 you can see that there are correlations between both the outcome and covariates as
well as between the covariates themselves. We will focus on price as the outcome, but keep in mind that
we have a collinearity problem.
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Figure 3: Scatter plots - 1
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Figure 4: Scatter plots - 2
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> par(mfrow = c(2, 2))

> plot(cars.train$ci, cars.train$mid, main = "price on citymg")

> plot(cars.train$we, cars.train$mid, main = "price on weight")

> plot(cars.train$ho, cars.train$mid, main = "price on horsepower")

> plot(cars.train$man, cars.train$mid, main = "price on transmission")

> p <- locator()
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Figure 5: Price vs city milage, weight, horsepower and manual transmission.

In Figure 5 I depict some pairwise relationships between car prices and some other variables. Do you spot
any problems with the modeling assumptions? I believe we have a skewed distribution for the outcome
(salary, price and similar data often has this long-tailed appearance) and increasing variance with the
expected value of the outcome. In addition, the relationship between price and mileage does not appear
to be linear. I try some transformations (log of price, and inverse of mileage) to see if we can fix the
problem.

> par(mfrow = c(2, 2))

> plot(1/cars.train$ci, log(cars.train$mid), main = "log(price) on 1/citympg")

> plot(cars.train$we, log(cars.train$mid), main = "log(price) on weight")

> plot(cars.train$ho, log(cars.train$mid), main = "log(price) on horsepower")

> plot(cars.train$man, log(cars.train$mid), main = "log(price) on transmission")

> p <- locator()

From Figure 6 we see that the transformations did a pretty good job. Try some other transformations
at home.
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Figure 6: log(price) vs 1/(city milage), weight, horsepower and manual transmission.
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I decide to use this transformations and rename and transform objects in the data frame as follows:

> cars.train[, 1] <- log(cars.train$mid)

> cars.train[, 2] <- 1/cars.train$ci

> cars.train[, 3] <- 1/cars.train$hw

> cars.test[, 1] <- log(cars.test$mid)

> cars.test[, 2] <- 1/cars.test$ci

> cars.test[, 3] <- 1/cars.test$hw

> names(cars.train)[c(1, 2, 3)] <- c("log.mid.price", "city.gpm", "hw.gpm")

> names(cars.test)[c(1, 2, 3)] <- c("log.mid.price", "city.gpm", "hw.gpm")

We are now ready to try a linear model fit:

> mm <- lm(log.mid.price ~ city.gpm + hw.gpm + airbagstd + cylnbr + engsize +

+ horsepwr + rpm.at.max + engrev.high + mantrans.op + fueltank + passengers +

+ length + width + uturn + rearroom + luggage + weight + domestic, data = cars.train)

> print(ms <- summary(mm))

Call:

lm(formula = log.mid.price ~ city.gpm + hw.gpm + airbagstd +

cylnbr + engsize + horsepwr + rpm.at.max + engrev.high +

mantrans.op + fueltank + passengers + length + width + uturn +

rearroom + luggage + weight + domestic, data = cars.train)

Residuals:

Min 1Q Median 3Q Max

-0.37621 -0.09170 -0.00774 0.09307 0.38837

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.632e+00 1.632e+00 1.000 0.323282

city.gpm 2.632e+01 1.329e+01 1.980 0.054392 .

hw.gpm 9.028e+00 1.875e+01 0.482 0.632716

airbagstd 1.974e-01 4.770e-02 4.140 0.000169 ***

cylnbr -8.654e-03 5.666e-02 -0.153 0.879364

engsize -1.321e-01 1.186e-01 -1.113 0.272151

horsepwr 3.476e-03 2.030e-03 1.712 0.094417 .

rpm.at.max -2.010e-05 1.016e-04 -0.198 0.844110

engrev.high 4.070e-05 1.043e-04 0.390 0.698418

mantrans.op -1.706e-01 8.473e-02 -2.014 0.050635 .

fueltank -1.592e-03 2.418e-02 -0.066 0.947839

passengers -2.655e-02 6.868e-02 -0.387 0.701081

length 2.811e-03 4.601e-03 0.611 0.544664

width -8.273e-03 2.378e-02 -0.348 0.729687

uturn -1.975e-02 1.709e-02 -1.155 0.254652

rearroom 8.706e-03 1.688e-02 0.516 0.608866

luggage 2.383e-02 1.892e-02 1.259 0.215039

weight 1.429e-05 2.629e-04 0.054 0.956912

domestic -1.685e-01 7.987e-02 -2.109 0.041075 *

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 0.1857 on 41 degrees of freedom

Multiple R-squared: 0.8928, Adjusted R-squared: 0.8458

F-statistic: 18.98 on 18 and 41 DF, p-value: 2.02e-14

> par(mfrow = c(2, 2))

> plot(mm)

> p <- locator()
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Figure 7: Diagnostic plots

From the model summary we can see that the R-squared is 0.893. Check the model summary for the
Goodness-of-fit test and the p-values of individual coefficients. Are there any surprises? Do you see
the collinearity problem having an impact in this model summary? In Figure 7 I display the standard
diagnostic plots. We will revisit them one by one below, in addition to some other plots, to check for
outliers.
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Identifying outliers

In the plots below, I identify potential outliers in the data set.

> par(mfrow = c(1, 1))

> plot(mm$fit, mm$res, xlab = "fitted values", ylab = "residuals")

> abline(h = 0)

> id1 <- identify(mm$fit, mm$res, pos = T)
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Figure 8: Residuals vs fitted values

> qq <- seq(0.5/ntrain, (ntrain - 0.5)/ntrain, length = ntrain)

> normq <- qnorm(p = qq)

> rsort <- sort(rstandard(mm))

> rlist <- sort.list(rstandard(mm))

> plot(normq, rsort, xlab = "Theoretical quantiles", ylab = "Standardized residuals")

> qr <- quantile(rstandard(mm))

> qn <- quantile(qnorm(p = qq))

> b <- (qr[4] - qr[2])/(qn[4] - qn[2])

> a <- qr[4] - b * qn[4]

> abline(a, b)

> id2 <- identify(normq, sort(rstandard(mm)), label = rlist, pos = T)

> plot(mm$fit, abs(rstandard(mm)), xlab = "fitted values", ylab = "|standardized residuals|")

> id3 <- identify(mm$fit, abs(rstandard(mm)), pos = T)

> lm1 <- lm.influence(mm)

> cooksd <- cooks.distance(mm)

> plot(cooksd, main = "Cook's Distance", type = "h")

> abline(h = qf(0.95, 1, mm$df), lty = 2)

> idc <- identify(cooksd, pos = T)

> plot(lm1$hat, main = "Leverage")

> idlev <- identify(lm1$hat, pos = T)
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Figure 9: QQplot

We also examine the leverage and what the effect is of dropping an observation, on both slope
estimates and the standard error estimate σ̂.

> plot(lm1$coeff[, 4], main = "change in slope 4")

> id4 <- identify(lm1$coeff[, 4], pos = T)

> plot(lm1$coeff[, 7], main = "change in slope 7")

> id7 <- identify(lm1$coeff[, 7], pos = T)

> plot(lm1$sig, main = "change in sigma")

> ids <- identify(lm1$sig, pos = T)

We collect on the outlier information and drop the observation most frequently identified (or more
than one if they equally frequently identified):

> indvec <- sort(c(id1$ind, rlist[id2$ind], id3$ind, idlev$ind, id4$ind, id7$ind,

+ ids$ind))

> print(table(indvec))

indvec

10 16 45

3 1 6

> maxid <- max(table(indvec))

> indout <- unique(indvec)[table(indvec) == max(table(indvec))]

Here, this is observation 45. Note, when you do this yourselves you may not need to drop an observation,
or perhaps drop several. If the latter, just run the code again after dropping the first observation or pick
more than one to drop in one go by manually adjusting indout
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Figure 10: Absolute standardized residuals vs fitted values
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Figure 12: Top Left: Leverage. Top Right: Effect on standard error. Lower panels: impact on slope
estimates.
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Updating the model

We can now update the model without the outlier:

> mmb <- lm(log.mid.price ~ city.gpm + hw.gpm + airbagstd + cylnbr + engsize +

+ horsepwr + rpm.at.max + engrev.high + mantrans.op + fueltank + passengers +

+ length + width + uturn + rearroom + luggage + weight + domestic, data = cars.train,

+ subset = -indout)

> print(summary(mmb))

Call:

lm(formula = log.mid.price ~ city.gpm + hw.gpm + airbagstd +

cylnbr + engsize + horsepwr + rpm.at.max + engrev.high +

mantrans.op + fueltank + passengers + length + width + uturn +

rearroom + luggage + weight + domestic, data = cars.train,

subset = -indout)

Residuals:

Min 1Q Median 3Q Max

-0.29365 -0.07898 -0.01359 0.10554 0.31400

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.259e-02 1.612e+00 -0.020 0.98397

city.gpm 2.894e+01 1.228e+01 2.356 0.02345 *

hw.gpm 4.233e+00 1.736e+01 0.244 0.80859

airbagstd 1.498e-01 4.698e-02 3.189 0.00277 **

cylnbr 2.492e-02 5.351e-02 0.466 0.64400

engsize -1.227e-01 1.094e-01 -1.121 0.26883

horsepwr 1.463e-03 1.998e-03 0.732 0.46838

rpm.at.max 6.518e-05 9.821e-05 0.664 0.51071

engrev.high 5.523e-05 9.626e-05 0.574 0.56934

mantrans.op -7.442e-02 8.495e-02 -0.876 0.38628

fueltank 1.191e-03 2.231e-02 0.053 0.95769

passengers -1.918e-02 6.335e-02 -0.303 0.76366

length 6.727e-04 4.305e-03 0.156 0.87661

width 4.283e-05 2.211e-02 0.002 0.99846

uturn -1.985e-03 1.692e-02 -0.117 0.90719

rearroom 1.422e-02 1.568e-02 0.907 0.36996

luggage 1.401e-02 1.777e-02 0.788 0.43512

weight 1.168e-04 2.449e-04 0.477 0.63598

domestic -1.423e-01 7.417e-02 -1.918 0.06224 .

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 0.1711 on 40 degrees of freedom

Multiple R-squared: 0.8986, Adjusted R-squared: 0.853

F-statistic: 19.7 on 18 and 40 DF, p-value: 1.81e-14

> par(mfrow = c(2, 2))

> plot(mmb)

> p <- locator()

In Figure 13 we can see the diagnostic plot after we drop the outlier(s). Compare with Figure 7 above.
You should also compare the model summary: has the fit improved? in what sense?

Stepwise model selection

We try a step wise model selection with the updated model as the starting point. Note, the option
trace=F tells R to only show us the final model.
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Figure 13: Updated model fit: diagnostic plots

> selectstep <- step(mmb, trace = F)

We can use the selected model for prediction. First, we look at the updated model summary after
selection:

> print(summary(selectstep))

Call:

lm(formula = log.mid.price ~ city.gpm + airbagstd + engsize +

horsepwr + mantrans.op + luggage + domestic, data = cars.train,

subset = -indout)

Residuals:

Min 1Q Median 3Q Max

-0.31048 -0.09376 -0.01446 0.10227 0.33623

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0081506 0.1964829 5.131 4.53e-06 ***

city.gpm 32.7339789 5.7974054 5.646 7.31e-07 ***

airbagstd 0.1538940 0.0344034 4.473 4.33e-05 ***

engsize -0.1526909 0.0563171 -2.711 0.009111 **

horsepwr 0.0029042 0.0007772 3.737 0.000472 ***

mantrans.op -0.0980543 0.0650805 -1.507 0.138067

luggage 0.0253647 0.0103841 2.443 0.018084 *

domestic -0.1908148 0.0490933 -3.887 0.000294 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 0.1567 on 51 degrees of freedom

Multiple R-squared: 0.8916, Adjusted R-squared: 0.8767

F-statistic: 59.91 on 7 and 51 DF, p-value: < 2.2e-16

To compute predictions for the test data we do the following:

> predval <- predict(selectstep, newdata = cars.test)

> prederror <- sum((cars.test[, 1] - predval)^2)
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For comparison, what happens when we try to fit a model to the test data? We use the full model
fitted to the test data as a starting point for backward model selection. We compute the training error
(fiterror) below for the selected model on the test data (this is just the residual sum of square for the
backward selected model on the test data).

> mmtest <- lm(log.mid.price ~ city.gpm + hw.gpm + airbagstd + cylnbr + engsize +

+ horsepwr + rpm.at.max + engrev.high + mantrans.op + fueltank + passengers +

+ length + width + uturn + rearroom + luggage + weight + domestic, data = cars.test)

> print(selecttest <- step(mmtest, trace = F))

Call:

lm(formula = log.mid.price ~ city.gpm + hw.gpm + airbagstd +

cylnbr + engsize + engrev.high + fueltank + passengers +

length + width + rearroom + luggage + domestic, data = cars.test)

Coefficients:

(Intercept) city.gpm hw.gpm airbagstd cylnbr engsize engrev.high

5.7634630 20.9197752 32.9105730 0.1969852 -0.1725995 0.4795992 -0.0005791

fueltank passengers length width rearroom luggage domestic

-0.1574263 -0.4340470 0.0556435 -0.1047648 -0.0567480 -0.0501851 -0.4342678

> fiterror <- sum(summary(selecttest)$res^2)

> p <- locator()

Compare the selected models on the training and test data sets. Are they the same?

We can also compare the prediction error to the error sum of squares obtained from the selected
model on the test data. Here, the prediction error, using the selected model from the training data,
is 1.502, whereas the error sum of squares, using the test data both for model fitting and prediction is
0.156. What does this tell you?

Using prediction error as a model selection tool

Let us find out which model is actually best for prediction (on this test data). We first enumerate and
fit all models to the training data and collect the MSEs for this model fits.

> yy <- cars.train[, 1]

> xx <- as.matrix(cars.train[, -1])

> yyt <- cars.test[, 1]

> xxt <- as.matrix(cars.test[, -1])

> rleaps <- regsubsets(xx, yy, int = T, nbest = 250, nvmax = dim(cars)[2],

+ really.big = T, method = c("ex"))

> cleaps <- summary(rleaps, matrix = T)

> tt <- apply(cleaps$which, 1, sum)

> mses <- cleaps$rss/length(yy)

We then plot the MSE for all the models as well as the MSE-curve (best models of each model size).

> plot(tt, mses, xlab = "number of variables", ylab = "MSE", main = "MSE for all subset models")

> tmin <- min(tt)

> tmax <- max(tt)

> tsec <- seq(tmin, tmax)

> msevec <- rep(0, length(tsec))

> for (tk in 1:length(tsec)) {

+ msevec[tk] <- min(mses[tt == tsec[tk]])

+ }

> lines(tsec, msevec, lwd = 2, col = 2)

> p <- locator()

> plot(tsec, msevec, xlab = "number of variables", ylab = "MSE", main = "MSE for best model of each size",

+ type = "b", col = 4, lwd = 2)

> p <- locator()
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Figure 14: Left: MSE for all models fitted. Right: Best MSE models for each model size.

In Figure 14 you see that the MSE always decreases with model size.

We then apply all fitted models to the test data (without refitting, no updating of model coefficients)
and collect pMSE values for each.

> pmses <- mses

> for (ta in (2:dim(cleaps$which)[1])) {

+ mmr <- lm(yy ~ xx[, cleaps$which[ta, -1] == T])

+ PEcp <- sum((yyt - cbind(rep(1, dim(xxt)[1]), xxt[, cleaps$which[ta,

+ -1] == T]) %*% mmr$coef)^2)/length(yyt)

+ pmses[ta] <- PEcp

+ }

> pmses[1] <- max(pmses)

> pmsevec <- rep(0, length(tsec))

> for (tk in 1:length(tsec)) {

+ pmsevec[tk] <- min(pmses[tt == tsec[tk]])

+ }

> plot(tsec, pmsevec, xlab = "number of variables", ylab = "pMSE", main = "prediction MSE",

+ type = "b", lwd = 2, col = 2)

We plot the pMSE values as a function of model size. Compare the pMSE curve in Figure 15 to the
MSE curve in Figure 14. What do you see?

Finally, we want to compare the selected model (from training using backward selection) and the
selected model that works best in terms of prediction.

> ptmin <- which.min(pmses)

> pmod <- cleaps$which[ptmin, ]

> winsize <- sum(pmod)

> mtmin <- which.min(mses[tt == sum(pmod)])

> mod <- (cleaps$which[tt == sum(pmod), ])[mtmin, ]

> print(names(mod[mod == T])[-1])

[1] "city.gpm" "airbagstd" "domestic"

> print(names(selectstep$model)[-1])

[1] "city.gpm" "airbagstd" "engsize" "horsepwr" "mantrans.op" "luggage"

[7] "domestic"

In the above summary you can compare the model selected on training data and the model that was
actually best for prediction on this test data. What do you see? Repeat this exercise a couple of times
and try to summarize your findings. Is the same model always best for prediction for all test data sets?
What varies? The model size or the included variables or both?
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