Two-Factor Mixed Model ANOVA Example Effectiveness of Sunscreens (§17.4)

• Evaluate effectiveness of 2 sunscreens. Factor A: sunscreens (sun1, sun2), a fixed effect.

• Experimental Units: A random sample of 40 people (20 randomly selected to receive sun1; the remainder getting sun2). For each subject, a 1-inch square patch of skin was marked on back. A reading based on skin color was made prior to application of a fixed amount of sunscreen, and then again after a 2-hour exposure to sun. The difference in readings was recorded for each subject, with higher values indicating a greater degree of burning. **Response: burn.**

• Concerned that measurement of initial skin color is extremely variable. To assess variability due to the technicians taking the readings, 10 technicians were randomly selected and assigned 4 subjects each (2 receiving sun1, 2 receiving sun2). Factor B: technicians (tech1,...,tech10), a random effect.

• Result: CRD with factor A fixed (a=2), factor B random (b=10), and replication n=2 within each factor level combination. Total sample size is 2x10x2=40.

Trellis Panel Plot (from R)

8/1 = tech 8 and sun 1

sun

In MTB

Stat > ANOVA > Balanced ANOVA

- Response: "burn"
- Model: "sun tech sun*tech"
- Random Factors: "tech"
- Results: Display expected mean squares and variance components; Display means corresponding to the terms "sun tech"
- Options: Use restricted form of model

MTB Output: ANOVA table

ANOVA: burn versus sun, tech

Factor	Туре	Levels	Valu	es								
sun	fixed	2	1, 2									
tech	random	10	1,	2,	З,	4,	5,	6,	7,	8,	9,	10

Analysis of Variance for burn

S = 0.363318 R-Sq = 99.50% R-Sq(adj) = 99.03%

MTB Output: Variance components

				Expected Mean Square
		Variance	Error	for Each Term (using
	Source	component	term	restricted model)
1	sun		3	(4) + 2 (3) + 20 Q[1]
2	tech	14.3416	4	(4) + 4 (2)
3	sun*tech	0.2660	4	(4) + 2 (3)
4	Error	0.1320		(4)

 $\hat{\sigma}_{\beta}^{2} = 14.3416$ $\hat{\sigma}_{\alpha\beta}^{2} = 0.2660$ $\hat{\sigma}_{\varepsilon}^{2} = 0.1320$

Variability among technicians is substantial. (The variability is in determining initial skin color!)

Variability among technicians is different for each of the two types of sunscreen. (This variability difference is significant, but not substantial.)

MTB Output: Means

Means

10

4

2.475

sun	Ν	burn		Since there are sunscreen
1	20	7.8200		differences (ANOVA table), we
2	20	7.1500	<u>ــــــــــــــــــــــــــــــــــــ</u>	conclude sun 2 offers a greater amount of protection
tech	Ν	burn		than sun 1.
1	4	7.175		
2	4	4.025		
3	4	9.950		Large variation in technician
4	4	3.275		means supports earlier finding,
5	4	12.550	←	and testifies to the fact that
6	4	5.050		measuring initial skin color is
7	4	8.925		imprecise.
8	4	13.350		
9	4	8.075		

MTB Output: ANOVA table for model with both factors fixed

R Output: ANOVA

- > library(nlme) # needed for lme function
- > sunscreen <- read.csv("Data/Ott5thEdDataCh17/sunscreen.csv")</pre>
- # first convert numbers to factor variables
- > sunscreen\$sun <- as.factor(sunscreen\$sun)</pre>
- > sunscreen\$tech <- as.factor(sunscreen\$tech)</pre>
- > sun.lme <- lme(burn ~ sun, data=sunscreen, random=~1 | tech/sun, method="REML")
- > anova(sun.lme)

```
Number of Observations: 40

Number of Groups:

tech sun %in% tech

10 20

> anova(sun.lme)

numDF denDF F-value p-value

(Intercept) 1 20 38.97512 <.0001

sun 1 9 6.76054 0.0287
```

R Output: Variance components & fixed effects

sun2 -0.67 0.257682 9 -2.600104 0.0287

95% confidence intervals for variance estimates

Diagnostic plots: qqnorm & resids vs. fitted

23-11

SAS

proc mixed;

class sun tech;

model burn = sun;

random tech sun*tech;

SPSS

proc mixed

Model fixed factors: sun Model random factors: tech sun*tech

Random Effects ANOVA With Nesting Example Content Uniformity of Drug Tablets (§17.6)

- **Response: Drug.** Content uniformity of drug tablets.
- Factor A: Site (random). Drug company manufactures at different sites; 2 are randomly chosen for analysis.
- Factor B: Batch (random). Three batches are randomly selected within each site (batch is nested within site).
- **Replicates:** 5 tablets are randomly selected from each batch for measurement.

In MTB

Stat > ANOVA > Balanced ANOVA

- Response: "Drug"
- Model: "Site Batch(Site)"
- Random Factors: "Site Batch"
- Results: Display expected mean squares and variance components
- Options: Use restricted form of model

MTB Output: ANOVA table

ANOVA: Drug versus Site, Batch

FactorTypeLevelsValuesSiterandom21, 2Batch(Site)random31, 2, 3

Analysis of Variance for Drug

SourceDFSSMSFP $\sigma_{\alpha}^2 = 0$ Site10.018250.018250.160.709 $\sigma_{\alpha}^2 = 0$ Batch(Site)40.454010.113509.390.000Error240.290200.01209 $\sigma_{\beta(\alpha)}^2 > 0$ Total290.76247 $\sigma_{\beta(\alpha)}^2 > 0$

S = 0.109962 R-Sq = 61.94% R-Sq(adj) = 54.01%

MTB Output: Variance components

	Variance	Error	for Each Term (using
Source	component	term	restricted model)
1 Site	-0.00635	2	(3) + 5(2) + 15(1)
2 Batch(Site)	0.02028	3	(3) + 5 (2)
3 Error	0.01209		(3)

Expected Mean Square

R Output

```
> library(nlme) # needed for lme function
> content <- read.csv("Data/Ott5thEdDataCh17/ch17-Example17.10.csv")</pre>
# first convert numbers to factor variables
> content$Site <- as.factor(content$Site)</pre>
> content$Batch <- as.factor(content$Batch)</pre>
# fit random effects model with Batch nested in Site
> drug.lme <- lme(Drug~1, data=content, random=~1 | Site/Batch)
> summary(drug.lme)
Linear mixed-effects model fit by REML
 Data: content
        AIC BIC loqLik
  -24.06435 -18.59516 16.03217
Number of Observations: 30
```

Number of Groups: Site Batch %in% Site 2 6

R Output

$$\hat{\sigma}_{\alpha} = 0.000003236734 \Longrightarrow \hat{\sigma}_{\alpha}^{2} \approx 0$$
$$\hat{\sigma}_{\beta(\alpha)} = 0.1283446 \Longrightarrow \hat{\sigma}_{\beta(\alpha)}^{2} = 0.01647$$
$$\hat{\sigma}_{\varepsilon} = 0.1099621 \Longrightarrow \hat{\sigma}_{\varepsilon}^{2} = 0.01209$$

23-18

SAS

proc mixed;

class Site Batch;

model Drug = ;

random Site Batch(Site);

SPSS

proc mixed?

Split-Plot Example: Soybean Yields (§17.6, 5th Ed.)

- Response: Yield. Soybean yields in bushels per subplot unit.
- **Factor A: Fertilizer.** Two fertilizer types (1,2). Each fertilizer is randomly applied to 3 wholeplots (a=2).
- Factor B (treatment): Variety. Three varieties of soybean (1,2,3). Each wholeplot is divided into 3 subplots and each variety is randomly applied to each of the subplots. (t=3)
- Wholeplots: WPlot. Experiment is replicated 3 times (n=3). Each replicate consists of a pair of wholeplots (total of 6 wholeplots).
- **Note:** we are ignoring the Block (farm) factor in the original data. View as having 3 pairs of wholeplots (6 Wplots) in one farm.

The Data

EXAMPLE 17.11

 $\lambda_{\rm be}$

Soybean yields (in bushels per subplot unit) are shown here for a two-factor splitplot design laid off in b = 3 blocks. Fertilizers (factor A) were applied at random to the wholeplot units within each farm. Soybean varieties (factor T) were then randomly allocated to the subplots within each wholeplot. Conduct an analysis of variance using these sample data. Give an approximate p-value for each test.

	1			2			3	
	Fert	ilizers		Fert	ilizers		Ferf	ilizers
Varieties	1	2	Varieties	2	1	Varieties	1	2
1	10.6	10.9	2	11.9	11.5	3	0.5	
3	11.8	11.7	3	12.6	12.1	1	8.1	9.8
	11.0	12.4	1	11.6	10.8	2	8.7	9.3

Solution For these data with a = 2, b = 3, t = 3, and n = 1, the sum of squares are as shown (see the Type III SS column in the following computer output):

Stat > ANOVA > General Linear Model

- Response: Yield
- Model: Fertilizer WPlot(Fertilizer) Variety Fertilizer*Variety
- Random Factors: WPlot
- Results: Display expected mean squares and variance components; Display means corresponding to the terms "Variety".

MTB Output: ANOVA table

General Linear Model: Yield versus Fertilizer, Variety, WPlot

MTB Output

				Synthesis
	Source	Error DF	Error MS	of Error MS
1	Fertilizer	4.00	7.2267	(2)
2	WPlot(Fertilizer)	8.00	0.6783	(5)
3	Variety	8.00	0.6783	(5)
4	Fertilizer*Variety	8.00	0.6783	(5)

Least Squares Means for Yield

Variety	Mean
1	10.70
2	10.68
3	10.77

R code

> library(nlme) # needed for lme function

- > soy <- read.csv("Data/Ott5thEdDataCh17/ch17-Example17.11.csv")</pre>
- > # first convert numbers to factor variables
- > soy\$WPlot <- as.factor(soy\$WPlot)</pre>
- > soy\$Fertilizer <- as.factor(soy\$Fertilizer)</pre>
- > soy\$Variety <- as.factor(soy\$Variety)</pre>
- > # fit split-plot model with WPlot nested in Fertilizer (using lme to get random effects)
- > soy.lme <- lme(Yield~Fertilizer*Variety, data=soy, random=~1 |
 WPlot)</pre>
- > # fit split-plot model with WPlot nested in Fertilizer (using aov to get anova table)
- > soy.lm <- aov(Yield~Fertilizer*Variety+Error(WPlot), data=soy)</pre>

Both soy.Im and soy.Ime will give same fit, but latter will also estimate random effects

R Output: Variance components

> summary(soy.lme)

Random effects:

Formula: ~1 | WPlot (Intercept) Residual StdDev: 1.477421 0.8236104

> intervals(soy.lme, which="var-cov")
Approximate 95% confidence intervals

Random Effects:

Level: WPlot

lower est. upper sd((Intercept)) 0.6864762 1.477421 3.179676

Within-group standard error: lower est. upper 0.5045427 0.8236104 1.3444535 Both random effects are significant (at the 5% level).

 $\sigma_{_{arepsilon}}$

 σ_δ

R Output: ANOVA

> anova(soy.lme)

	numDF	denDF	F-value	p-value
(Intercept)	1	8	286.05857	<.0001
Fertilizer	1	4	0.11693	0.7496
Variety	2	8	0.01720	0.9830
Fertilizer:Variety	2	8	0.09091	0.9140

No evidence of Fertilizer or Variety differences...

```
R Output: LS means
> # table of estimated means
> model.tables(soy.lm, type="means")
Tables of means
Grand mean
10.71667
Fertilizer
Fertilizer
     1
           2
                                            Fertilizer means
10.500 10.933
Variety
Variety
      2
     1
                   3
                                            Variety means
10.700 10.683 10.767
 Fertilizer: Variety
          Variety
Fertilizer 1 2
                         3
                                            All pairwise means
         1 10.533 10.533 10.433
         2 10.867 10.833 11.100
```

proc mixed;

class Fertilizer Variety WPlot;

model Yield = Fertilizer Variety Fertilizer*Variety / ddfm=satterth;

random WPlot(Fertilizer);

parms / nobound;

Ismeans Variety / pdiff cl;

proc mixed?

Randomized Block Split-Plot Example: Soybean Yields (§17.6, 5th Ed.)

- Response: Yield. Soybean yields in bushels per subplot unit.
- **Factor A: Fertilizer.** Two fertilizer types (1,2). Each fertilizer is randomly applied to 3 wholeplots (a=2).
- Factor B (treatment): Variety. Three varieties of soybean (1,2,3). Each wholeplot is divided into 3 subplots and each variety is randomly applied to each of the subplots. (t=3)
- Factor C: Blocks. Experiment is replicated at each of 3 farms (b=3).

Stat > ANOVA > General Linear Model

- Response: Yield
- Model: Fertilizer Block Fertilizer*Block Variety Fertilizer*Variety
- Random Factors: Block
- Results: Display expected mean squares and variance components; Display means corresponding to the terms "Variety".

General Linear Model: Yield versus Fertilizer, Block, Variety

Factor	Туре	Leve	els	Val	ues	S							
Fertilizer	fixed		2	1,	2								
Block	random		3	1,	2,	3					Fe	rtilizer	
Variety	fixed		3	1,	2,	3					diff	terenc	es
Analysis of	Variance	e for	r Yie	eld,	u	sing	Adj	usted	SS	for	Test	ts	
Source		DF	Sec	q ss	5	Adj	SS	Adj	MS		F	ţ	Р
Fertilizer		1	0.8	8450)	0.8	450	0.84	450	39	.00	0.0	25
Block		2	28.8	8633		28.8	633	14.43	317	666	.08	0.0	01
Fertilizer*E	Block	2	0.0	0433	3	0.0	433	0.02	217	0	.03	0.9	69
Variety		2	0.0	0233	8	0.02	233	0.01	117	0	.02	0.9	83,
Fertilizer*V	/ariety	2	0.1	1233	8	0.1	233	0.0	617	0	.09	0.9	14
Error		8	5.4	4267	1	5.42	267	0.6	783				\setminus
Total		17	35.3	3250)							No Va	ariety `
												differe	ences


```
> soy.lme <- lme(Yield~Fertilizer*Variety, random=~1 |
    Block/Fertilizer, data=soy)</pre>
```

> anova(soy.lme)

	numDF	denDF	F-value	p-value
(Intercept)	1	8	143.24368	<.0001
Fertilizer	1	2	1.54479	0.3399
Variety	2	8	0.02133	0.9790
Fertilizer:Variety	2	8	0.11274	0.8948

Formula: ~1 | Fertilizer %in% Block (Intercept) Residual StdDev: 2.013288e-05 0.7395945 None of the fixed effects are significant under REML estimation!

But we do get positive random effects estimates!

23-35

Repeated Measures Example: *Root Growth of Plants* (§18.3-4)

- **Response: root.** Root length.
- Factor A: fertilizer. Either "added" or not ("control"). Fixed.
- **Factor B: week.** Each of 6 plants was measured at weeks (2,4,6,8,10). Plants are nested in factor A. Random.
- Factor C: plants. 6 plants got fertilizer; 6 didn't; acting as blocks. Random.

Panel plots of data

Panel plots: grouped by fertilizer treatment

Pairwise scatter & correlation of root growths over weeks

R code: fit linear model in notes with plant nested in fertilizer, and default correlation structure for plants (compound symmetry)

```
> grow.lme <- lme(root~fertilizer*week, data=grow, random=~1 | plant)</pre>
> summary(grow.lme)
Linear mixed-effects model fit by REML
 Data: grow
           BIC loqLik
       AIC
  105.0325 127.9767 -40.51623
Random effects:
 Formula: ~1 | plant
        (Intercept) Residual
StdDev: 0.3541493 0.3855818
              \sigma_{\delta}
```

Model with AR(1) autocorrelation structure for plants

```
> grow.lme.3 <- lme(root~fertilizer*week,</pre>
   data=grow, random=~1 | plant,
                 correlation=corAR1())
> summary(grow.lme.3)
Linear mixed-effects model fit by REML
 Data: grow
                                                 AIC & BIC have
       AIC BIC logLik
                                                 increased a bit...
  107.0169 131.8732 -40.50843
Random effects:
 Formula: ~1 | plant
                                                   Little change in
         (Intercept) Residual
                                                   the variance
StdDev: 0.3527663 0.3874222
                                                   components
Correlation Structure: AR(1)
                                                  Estimate of \phi is small
                                                  (maybe 2 weeks is long
 Formula: ~1 | plant
                                                  enough for carryover
 Parameter estimate(s):
                                                  effects to wash out...)
       Phi
0.02549701
```

Test if should go with Ime (compound symmetry) or Ime3 (AR1)

- > grow.lme1 <- lme(root~fertilizer*week, data=grow, random=~1 |
 plant, method="ML")</pre>
- > grow.lme2 <- lme(root~fertilizer*week, data=grow, random=~1 |
 plant, method="ML", correlation=corAR1())</pre>
- > anova(grow.lme1,grow.lme2) Model df AIC BIC logLik Test L.Ratio p-value grow.lme1 1 12 88.79854 113.9307 -32.39927 grow.lme2 2 13 90.77983 118.0063 -32.38991 1 vs 2 0.01871329 0.8912

H₀: simpler model (Ime) vs. H_a: more complex model (Ime3)

P-value=0.8912 means that Ime (compound symmetry) suffices.

Note: Must refit models via maximum likelihood (ML) so that the likelihood ratio test will be valid.

Now fit this 2-way anova via AOV just to extract the LS means

> grow.lm <- aov(root~fertilizer*week+Error(plant), data=grow)</pre>

> model.tables(grow.lm, type="means")

Tables of r	neans					
Grand mean		5.02	23833	←		$\hat{\mu}$
fertilizer added com	ntrol					
5.678	4.370		~			Should not look at main effects
week 2 4	4 6		3 1()		(because of sig. interaction)
fertilizer	7 5.036 r:week	0.083	5 8.9/3)		It seems more growth occurs
Ţ	week					
fertilizer	2	4	6	8	10	
added	1.667	3.683	5.972	7.450	9.617	
control	1,250	2,250	4.100	5.917	8.333	

Profile plot for root length

23-45

group means

Diagnostics: Two sets, one for epsilon, the other for beta (plants)

SAS

proc mixed;

class fertilizer week plant;

model root = fertilizer week fertilizer*week;

random plant(fertilizer);

repeated week / sub=plant(fertilizer) type=ar1 r rcorr;

lsmeans fertilizer*week / pdiff cl;

proc mixed?