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Abstract

Gene expression is an inherently stochastic process: Genes are activated and inactivated by random a
and dissociation events, transcription is typically rare, and many proteins are present in low numbers per
last few years have seen an explosion in the stochastic modeling of these processes, predicting protein flu
in terms of the frequencies of the probabilistic events. Here I discuss commonalities between theoretical
tions, focusing on a gene-mRNA-protein model that includes most published studies as special cases. I a
how expression bursts can be explained as simplistic time-averaging, and how generic approximations c
for concrete interpretations without requiring concrete assumptions. Measures and nomenclature are dis
some extent and the modeling literature is briefly reviewed.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

All cellular events directly or indirectly depend on probabilistic collisions between molecules. If
numbers of identical events occurred in the same cell, and they were statistically independent,
fluctuations could be ignored and deterministic rate equations would suffice to describe dynam
the numbers are not large and the events are not independent. Active genes are often present in z
copy, mRNAs can be equally rare, and most proteins are present in less than 100 molecules per
cell. Substrates, enzymes and regulatory molecules can also fluctuate and further randomize ex
rates.

Cells have many mechanisms for reducing or suppressing harmful fluctuations[1–5]. If these are so
efficient that fluctuations are negligible, stochastic models may seem redundant. However, if we
understand rather than just mimic a process, an absence of randomness must also be explain
bilistically. Stochastic models are equally relevant whether genes are expressed randomly or re
Here I review some common denominators shared by many of the stochastic models and briefly
possible extensions.

2. The standard model

2.1. Molecular assumptions

Many models claim to account for the critical steps in gene expression, yet there is little agre
on what those steps are, i.e., what sets of transitions that can be condensed into effective react
and what concentrations that can be absorbed into rate constants. Experiments in turn show tha
genes can produce very different fluctuations depending on the exact conditions[6–9]. This makes it
difficult to invest a high degree of belief in any particular model and suggests that all we can hop
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an understanding of first principles. Whether or not we address the right first principles is always d
to tell, but in the initial phase we can at least make sure to thoroughly understand the models.

Most theoretical descriptions[10–22] have independently focused on the same basic phenom
Because mRNA levels determine the rate of protein synthesis, the number of proteins per celln3 chases
the number of mRNAsn2, which in turn may chase the number of active genesn1. This principle could
be extended indefinitely: Any process that indirectly affects the rates of gene expression can po
randomize protein concentrations and would then have to be included in realistic stochastic m
However, most models focus on genes, RNAs and proteins, and implicitly include all other proce
effective rate constants.

Gene activation can have many different molecular causes, including dissociation of repress
sociation of activators, or chromatin remodeling. The details vary from gene to gene and orga
organism and can include transitions between numerous different states. As a first approximation
pro- and eukaryotes, the overall kinetic dynamics can be described by a random telegraph proce[23]:

(1)off
λ+

1

�
λ−

1

on

where each gene spontaneously switches on and off with ratesλ+
1 andλ−

1 respectively. Depending o
growth conditions, bacteria can have several copies of partially replicated chromosomes. If th
under study is close to the origin of replication, some cells may then have as many as eight
of the same gene. Here I assume that a constantnmax

1 copies independently switch on and off as
Eq. (1), ignoring cell growth and gene replication. The stationary distribution for the number of a
genes is then Binomial as for the tossing ofnmax

1 unfair coins, where the probability of being on
Pon = λ+

1 /(λ+
1 + λ−

1 ).
Transcription and translation are typically assumed to follow Poisson processes where the pro

probabilities per time unitλ2n1 andλ3n2 are proportional to the number of active genes and mR
respectively. These may or may not be good approximations. The binding of RNA polymeras
change the structure of the gene, either blocking or facilitating further transcription. Replicatio
change the chromatin structure or kick off activators, and repressors and thereby cause abrupt
in expression rates. The transport of mRNAs out of the eukaryotic nucleus, or the release of fi
transcripts from prokaryotic genes, may also affect dynamics.

Finally, mRNAs and proteins are often described as having exponentially distributed lifetimes, a
ing that each degradation event is independent and memory-lacking. However, the events may de
each other if the molecules compete for RNases or proteases. If these degradation enzymes ope
to saturation, the degradation rate per substrate molecule is lower in cells that by chance have
substrate concentration, thereby correcting perturbations less efficiently[24]. The degradation pathwa
may also include many rate-limiting steps. Even if each molecule is a statistically independent u
ternal molecular memory may then still allow molecules to grow old before they die, possibly red
the variation in individual life-times.

Other likely contributors to the observed variability include fluctuations in the many enzyme
substrates involved, cell cycle effects, and random partitioning of copies at cell division. Ignoring
and other complications, the standard model only accounts for six exponential events: Consta
of switching on and off individual genes, constant transcription per active gene, constant tran
per transcript, and exponential decay of both transcripts and proteins. This is illustrated inFig. 1 and
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Fig. 1. (A) Cartoon of gene activation, transcription, translation, mRNA decay and proteolysis. The purple molecule re
a repressor. (B) Gillespie simulations[36] of the events described in Eq.(2), where the coloring matches the cartoon in (A). F
the parameters used, most fluctuations come from genes, the mRNAs adjust quickly to changes in gene activity, and t
adjusts slowly to changes in mRNA level. This may be common biologically, but all parameters could vary several o
magnitude between different genes.

summarized by the following reaction diagram and corresponding dynamics for the averages〈xi〉:

(2)

Gene activation: n1
λ+

1 (nmax
1 −n1)−−−−−−→n1 + 1,

d〈n1〉
dt

= λ+
1

(
nmax

1 − 〈n1〉
) − λ−

1 〈n1〉
Gene inactivation: n1

λ−
1 n1−−−−−→n1 − 1, = λ+

1 nmax
1 − 〈n1〉/τ1,

Transcription:

mRNA degradation:

n2
λ2n1−−−−−→n2 + 1,

n2
n2/τ2−−−−−→n2 − 1,

d〈n2〉
dt

= λ2〈n1〉 − 〈n2〉/τ2,

Translation:

Proteolysis:

n3
λ3n2−−−−−→n3 + 1,

n3
n3/τ3−−−−−→n3 − 1,

d〈n3〉
dt

= λ3〈n2〉 − 〈n3〉/τ3.

The parameterτ1 = (λ+
1 + λ−

1 )−1 is a characteristic time-scale for changes in gene activity, andτ2 and
τ3 are the average lifetimes of mRNAs and proteins respectively. The average dynamics can be po
immediately from the reaction scheme, but other statistical aspects must be explicitly calculated f
three-variable Markov process dP(n1, n2, n3)/dt that is defined by the individual events:

dP(n1, n2, n3)

dt
= λ+

1

(
nmax

1 − n1 + 1
)
P(n1 − 1, n2, n3) − λ+

1

(
nmax

1 − n1
)
P(n1, n2, n3)

+ λ−
1 (n1 + 1)P (n1 + 1, n2, n3) − λ−

1 n1P(n1, n2, n3)

+ λ2n1P(n1, n2 − 1, n3) − λ2n1P(n1, n2, n3)

+ (n2 + 1)/τ2P(n1, n2 + 1, n3) − n2/τ2P(n1, n2, n3)

+ λ3n2P(n1, n2, n3 − 1) − λ3n2P(n1, n2, n3)

(3)+ (n3 + 1)/τ3P(n1, n2, n3 + 1) − n3/τ3P(n1, n2, n3).

Because the reaction rates are linear in terms of the state variablesni , the time-dependent momen
can be calculated exactly using generating functions. This procedure has been extensively des
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previous studies[10–14,19,20]of stochastic gene expression and was applied in exactly the same w
Eq.(3).

Unless stated otherwise, all equations will be evaluated at the stationary state where dP(n1, n2, n3)/

dt = 0. To reduce notational complexity this will not be indicated explicitly.

2.2. Protein fluctuations

The normalized stationary variance in the number of protein molecules per cell follows:

(4)

Total
protein noise︷ ︸︸ ︷

σ 2
3

〈n3〉2
=

From individual
births and deaths︷ ︸︸ ︷

1

〈n3〉︸︷︷︸
Poisson

+

From spontaneous
mRNA noise︷ ︸︸ ︷

1

〈n2〉︸︷︷︸
Poisson

τ2

τ3 + τ2︸ ︷︷ ︸
One-step

time-averaging

+

From forced mRNA noise, originating
in gene activation-inactivation︷ ︸︸ ︷

1− Pon

〈n1〉︸ ︷︷ ︸
Binomal

τ2

τ2 + τ3

τ1

τ1 + τ3

τ1 + τ3 + τ1τ3/τ2

τ1 + τ2︸ ︷︷ ︸
Two-step

time-averaging

.

The first noise term on the right-hand-side shows that if all other cellular factors are constant, prote
display small-number Poisson fluctuations because individual birth and death events are proba
This noise does not necessarily have to be exactly Poissonian if the assumptions above are not
but some sort of small-number noise is very difficult to avoid because individual chemical events
random collisions between diffusing molecules.

The second and third terms both reflect random changes in the rate for protein synthesis. T
caused by mRNA fluctuations, that in this model follow:

(5)
σ 2

2

〈n2〉2
= 1

〈n2〉 + 1− Pon

〈n1〉
τ1

τ2 + τ1
.

The first term of Eq.(5) again reflects small-number noise, now originating in the inherently pr
bilistic births and deaths of individual transcripts. The second term comes from random changes
activity where the first factor is a measure of stationary small-number gene fluctuations:

(6)
σ 2

1

〈n1〉2
= 1

nmax
1

λ−
1

λ+
1

= 1− Pon

〈n1〉 .

The 1− Pon factor comes from the fact the number of active genes is Binomially rather than Po
distributed. At any given average, Binomial variables have smaller relative fluctuations than Pois
variables, which makes it possible to have a low number of genes without necessarily having lar
tuations as long as genes are mostly active,Pon ≈ 1.

The second factor in Eq.(5) reflects time-averaging and always ranges between zero and one. S
the second linear equation in Eq.(2) for fixed 〈n1〉 gives:

(7)〈n2〉t1+t2 − 〈n2〉∞︸ ︷︷ ︸
Deviation from stationary
average at timet=t1+t2

= (〈n2〉t1 − 〈n2〉∞
)︸ ︷︷ ︸

Deviation from stationary
average at timet=t1

e−t2/τ2.

The mRNA concentrationn2 thus exponentially forgets initial conditions with rate 1/τ2. The para-
meterτ2 therefore determines the effective kinetic memory in the sense that cellular events tha
further back thanτ time units ago have little influence on the current concentration. Rate 1/τ similarly
2 1
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determines how rapidly the gene activity changes. The ratioτ2/τ1 is thus a measure of how much ge
activation changes up and down within the effective memory of the mRNA. Ifτ2/τ1 is large, the cur-
rent mRNA level depends on a relatively long history of random ups and downs, which reduces
fluctuations just like throwing many dice reduces relative fluctuations in the total outcome.

The exact same principles apply to protein fluctuations in Eq.(4). The second term represents tim
averaged small-number mRNA fluctuations, and the third term represents small-number gene
tions, that are first time-averaged by mRNAs and then by proteins (Fig. 1B). Both time-averaging factor
range between zero and one, and the compounded two-step time-averaging is always more effic
either of the individual steps separately.

2.3. The simplest example of dynamic disorder

If genes fluctuate rapidly, or if stationary gene fluctuations are insignificant, the third term in E(4)
disappears. If mRNAs fluctuate rapidly, the second term instead disappears and the two-ste
averaging factor can be greatly simplified. In both cases, protein fluctuations can be written as:

(8)
σ 2

3

〈n3〉2
= 1

〈n3〉 + σ 2
E

〈nE〉2

τE

τE + τ3

whereE represents the external environment of either mRNAs or active genes. The two types o
represent the same basic principle, broadly defined asdynamic disorder[25,26]. ‘Disorder’ because th
parameters for protein synthesis vary randomly between cells in a population, just like chemical re
in an imperfect medium, and ‘dynamic’ because the parameters change in time. The Markov
has thus been extended to include both system and environment. In statistical physics, disord
has different connotations because most studies consider how global properties emerge in term
spatial distributions of the underlying disorder. Here we only study local effects of the disorder itse
percolation-type phenomena could certainly arise in tissues where cells express genes randomly
affect adjacent cells.

3. Expression bursts

3.1. Translation bursts

Many studies have interpreted Eq.(8) in terms of bursts—brief periods of high expression inten
followed by long periods of low intensity. Most focus on the fact that each mRNA is translated s
times, and often start with the mRNA-protein part of the model above assuming that the genes a
stantly on,Pon = 1. Further assuming that proteins decay slowly relative to their transcripts,τ3 � τ2, and
measuring fluctuations by the Fano factor (variance over average) then leads to[19]:

(9)
σ 2

3

〈n3〉 = 1+ 〈n3〉
〈n2〉

τ2

τ2 + τ3
≈ 1+ 〈n3〉

〈n2〉
τ2

τ3
= 1+ nmax

1 λ2τ2λ3τ3

nmax
1 λ2τ2

τ2

τ3
= 1+ λ3τ2 = 1+ 〈b〉

whereb is the number of translations per transcript, typically on the order of 100 for an averageE. coli
gene. This formulation makes intuitive sense. If proteins were made in statistically independent
and decayed exponentially, stationary fluctuations would be Poissonian, withσ 2/〈n 〉 = 1. If they instead
3 3
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were made in bursts of random size, fluctuations should be larger than Poissonian, just like a
walker who takes large and random leaps accumulate randomness more quickly. The burst interp
can certainly be sound, but a few moderations are due.

First, to truly have brief periods of high intensity it is not enough thatτ3 � τ2. Some mRNAs are
present in hundreds of copies per cell at any given time, but are still so unstable that the approx
in Eq. (9) is close to exact. Protein synthesis is then not burst-like at all, regardless of the value〈b〉.
That the equation can be written in terms of bursts does not mean that there actually are any bu
conditions for a mathematically correct expression are in this case more relaxed than the conditio
physically sound interpretation. To have true bursts in the model above, it is instead necessary th
cells have zero transcripts so that the total synthesis rate switches randomly from a low to a hig
This is not uncommon in real cells where some mRNAs are exceptionally rare. However, it is not
as common as mRNAs having shorter life-times than proteins, which is almost universally true.

Second, the randomness of translation is represented by the first rather than the second term i(9),
i.e., by the constant ‘1’ rather than by〈b〉. This is not merely a matter of perspective. Imagine t
translation and protein decay were made entirely deterministic in the model above, using a macr
rate equation forn3 where the synthesis rateλ3n2 depended on the state of the Markov process forn2.
The only effect on the stationary protein variance in the equations above is then that the first
Eq. (9) disappears. The ‘translation burst noise’ is thus unaffected even if we assume that trans
deterministic. If we instead assume that the mRNA is deterministic but that protein synthesis and
are probabilistic as before, we instead keep the first term in Eq.(9) while the second one disappears. T
illustrates the importance of separating fluctuation terms according to their origin in probabilistic
rather than responses to changes in parameters.

Third, if there are other sources of disorder, those noise terms can look quite bizarre when mu
by 〈n3〉 and interpreted in terms of translation. A response inσ 2

3 /〈n3〉 to changes in the translation ra
does not in any way reflect translational noise. The approximation in Eq.(9) in fact assumes a separ
tion of time-scales where transcription, translation and mRNA decay are compounded into one c
event. However, this is not a problem of the burst perspective itself, but of the measure used (s
tion 5). It can be solved by simply writing Eq.(9) asσ 2

3 /〈n3〉2 = (1+ 〈b〉)/〈n3〉.

3.2. Bursting as simple time-averaging

Despite the strong intuitive notion of bursts, the moderations above show that the concept
restricted and that bursting should not be expected for most genes. However, it does simplify the e
by reducing the number of parameters. Would other interpretations allow for the same simplificati
at the same time allow for a physical explanation that works more broadly? Again assumingτ3 � τ2,
normalizing the variance in Eq.(9) leads to:

(10)
σ 2

3

〈n3〉2
≈ 1

〈n3〉 + 1

nmax
1 λ2τ3

.

Here it is the number of transcripts made during the lifetime of the protein (nmax
1 λ2τ3) that determines

the deviation from Poisson statistics, not the number of proteins made during the lifetime of a tra
(λ3τ2), as in the mathematically equivalent Eq.(9). As expected from Eq.(8), this is a simple version
of time-averaging:nmaxλ τ is the average number of independent transcription events that effec
1 2 3
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contribute to the current value of the protein. High numbers are more or less the same in differe
or at different times, thus reducing relative fluctuations.

3.3. Other causes of burst-like expression

There are other possible causes of burst-like expression apart from making many proteins p
script. For example, if genes are mostly inactive (Pon � 1) but transcribe a large number of mRNA
while in the active state, transcription could occur in bursts. The concentration of free ribosomes
acids, or charged tRNAs may also fluctuate wildly[27], possibly with sharp spikes. Such changes in
underlying gene expression machinery could cause bursts, but are subject to the same moder
above: The equations can be formulated in terms of bursts even for parameter values where the
physical bursts. The only way to demonstrate bursts is by directly observing spikes of expressio
time-series.

4. Generic approaches

4.1. The Fluctuation–Dissipation Theorem

Rather than deriving results from particular assumptions, it is also possible to examine broader
of random processes collectively and then afterwards suggest how the general principles are ins
molecularly. Such approaches may seem doomed to hopeless abstraction, but can in fact be form
terms of physical principles that are at least as concrete as in the specific examples. A recent atte[22]
was based on a reinterpretation of the Fluctuation–Dissipation Theorem[22,28] (FDT), which in one
formulation states that:

(11)
dσ

dt
= Aσ + σAT + B.

Hereσ is the matrix of covariances (σii = σ 2
i ), A is the Jacobian matrix for the dynamics of the avera

andB is a diffusion matrix that depends on the size of the random events. This equation has d
names in different disciplines, and is sometimes called the Lyapunov Equation, the Linear Noise A
imation or the result of a 1st order van Kampen’s�-expansion. Here we call it the FDT to emphas
physical rather than mathematical principles. It is also known as the FDT in the textbooks tha
emphasize its use in chemistry[28] where both the perturbations and dynamics come from the rea
mechanisms.

A key approximation that makes the FDT practical to use is that matricesA andB are interpreted
assuming that fluctuations can be ignored. The average rates are then approximated by the ra
average concentration. For example, ifR = λn2 then〈R〉 = λ〈n2〉 = λ〈n〉2 +λσ 2, but when calculatingA
andB above, the second term would be ignored, using only〈R〉 ≈ λ〈n〉2. This does not affect analyses
linear systems like the gene-mRNA-protein model above, but makes it possible to approximate no
systems despite the fact that averages explicitly depend on fluctuations. Practically it means tha
calculateA from the deterministic rate equations. Here I keep the averaging brackets〈. . .〉 explicit, but
they could also be removed ifn were interpreted as the deterministic concentration. MatrixA is thus
i
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(12)Aij = ∂

∂〈nj 〉
∂〈ni〉
∂t

= ∂〈J+
i 〉

∂〈nj 〉 − ∂〈J−
i 〉

∂〈nj 〉
whereJ+

i andJ−
i are the total fluxes of production and elimination of speciesi. The diffusion matrixB

is in turn defined by:

(13)Bij =
∑

k

vjkvikRk

where reactionk occurs with rateRk and producesvik molecules of speciesi. The flux is thusJik =
|vikRk|. Stationary variances can be calculated by setting Eq.(11) to zero:

(14)−Aσ − σAT = B.

Using this equation to obtain expressions like Eq.(4) involves three steps: CalculatingA andB at steady
state, solving the linear system of equations forσ , and rearranging the solution in terms of clear phys
principles. The first two steps can be tedious but are always trivial, and the real conceptual challe
in the interpretations.

4.2. Illustrating the FDT for the gene-mRNA-protein model

For the gene-mRNA-protein system above, the Jacobian matrix can be directly calculated from(2):

(15)A =
[−1/τ1 0 0

λ2 −1/τ2 0
0 λ3 −1/τ3

]
.

The diffusion matrixB is equally simple. There are six reactions and three species (k = 1, . . . ,6, and
[i, j ] = 1,2,3), but each species is only affected by two reactions. Because no reaction events
two different species simultaneously, all off-diagonal elements inB are zero. Finally, each reaction on
adds or removes a single molecule. This means that the productvikvjk only takes values zero or one, an

B =
[

λ+
1 (nmax

1 − 〈n1〉) + λ−
1 〈n1〉 0 0

0 λ2〈n1〉 + 〈n2〉/τ2 0
0 0 λ3〈n2〉 + 〈n3〉/τ3

]

(16)=
[2λ−

1 〈n1〉 0 0
0 2〈n2〉/τ2 0
0 0 2〈n3〉/τ3

]
.

The second equality uses the fact that, at steady state, the total average synthesis flux equals
average degradation flux. ElementB11 can be further rewritten using:

(17)λ−
1 =

(
1− λ+

1

λ+
1 + λ−

1

)
(λ+

1 + λ−
1 ) = 1− Pon

τ1
.

Parameterτ1 in the denominator ofB11 will then cancel out against the denominator ofA11, leaving
factor 1− Pon which is a signature of the Binomial distribution.

Solving the equation system above exactly reproduces Eqs.(4)–(6), which in turn were derived usin
exact moment equations. The exactness is perhaps surprising given that the derivation of the
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Eq.(11)typically assumes small Gaussian fluctuations while the gene-mRNA-protein model can g
very broad and skewed distributions with averages arbitrarily close to zero. However, the only e
approximation behind the FDT is that fluctuations are so small that the responses can be approxi
weakly nonlinear. Because the Markov process above is exactly linear, the variances thus follow
from the Fluctuation–Dissipation Theorem even though the full distributions are very non-Gaus
something that can be shown using moment generating functions or other methods[29].

4.3. Normalizing the FDT

The algebra required to obtain expressions like Eq.(4) can be greatly reduced by normalizing t
equations before rather than after they are solved. In the stationary state we then get:

(18)Mη + ηMT + D = 0

where:

(19)ηij = σij

〈ni〉〈nj 〉 , Mij = 〈nj 〉
〈ni〉 Aij and Dij = Bij

〈ni〉〈nj 〉 .

It is useful to rewrite the dynamic matrixM in more intuitive terms. The rules for differentiation
logarithms state that:

(20)
∂ lnf

∂ lnx
= x

f

∂f

∂x
and

∂ ln(f/g)

∂ lnx
= ∂ lnf

∂ lnx
− ∂ lng

∂ lnx
.

Applying these rules backwards to Eq.(12)gives:

(21)Aij = ∂〈J+
i 〉

∂〈nj 〉 − ∂〈J−
i 〉

∂〈nj 〉 = 〈Ji〉
〈nj 〉

(
∂ ln〈J+

i 〉
∂ ln〈nj 〉 − ∂ ln〈J−

i 〉
∂ ln〈nj 〉

)
= − 〈Ji〉

〈nj 〉
∂ ln〈J−

i 〉/〈J+
i 〉

∂ ln〈nj 〉
where the first equality also uses the fact that, at steady state,〈J+

i 〉 = 〈J−
i 〉 ≡ 〈Ji〉. The dynamic matrix

M is then:

(22)Mij = −〈Ji〉
〈ni〉

∂ ln〈J−
i 〉/〈J+

i 〉
∂ ln〈nj 〉 .

The first factor can be further simplified by noting that, at steady state, the average turnover r
molecule approximately equals the inverse average lifetimeτi :

(23)
〈J−

i 〉
〈ni〉 = 〈J+

i 〉
〈ni〉 = 〈Ji〉

〈ni〉 ≈ 1

τi

.

This is exact for exponential first-order degradation and approximate for nonlinear mechanisms
ever, because the matrices in the stationary FDT are interpreted at the macroscopic steady stM is
evaluated in the hypothetical limit where there are no fluctuations and where the averages rem
stant. In this idealization, each molecule is surrounded by a constant environment of other molec
that each species perfectly mimics first-order exponential decay regardless of any nonlinear resp
deviations from steady state. This means that though Eq.(23) is an approximation, it is not an addition
approximation but already implicit in the stationary FDT approach above. MatrixM can thus be written
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(24)Mij = −Hij

τi

whereHij = ∂ ln〈J−
i 〉/〈J+

i 〉
∂ ln〈nj 〉 .

The second factor is a logarithmic gain orelasticity [1,22,30,31]and measures how the death-to-bi
ratio changes with the concentrations: IfHij = 3, then a 1% increase in componentnj will cause com-
ponentni to decrease by increasing its death-to-birth ratio by approximately 3%. The elasticities a
normalized measures of the strengths of the kinetic nonlinearities. Comparing the process to a
walk in a multidimensional landscape, elasticities measure the steepness of mountains and valle

Matrix D can be similarly reinterpreted. A full treatment will be published elsewhere, including
trary chemical events and other extensions. Here I restrict the analysis to nonlinear versions o
cases like the gene-mRNA-protein model above, where each chemical event adds or removes
molecule of a single species. This would not cover metabolic systems where one component tu
another component, but still applies to a large set of networks where one component only affects t
of another. Mathematically, this means that:

(25)Dii = 〈J+
i 〉 + 〈J−

i 〉
〈ni〉〈ni〉 = 2

〈Ji〉
〈ni〉〈ni〉 and Dij = 0 for i 	= j.

No we can use the trick from Eq.(23)and rewriteDii as:

(26)Dii = 2

〈ni〉
1

τi

.

This shows that within the approximation of the FDT, and assuming that one molecule is made at
the randomness introduced by probabilistic births and deaths of a certain species is inversely prop
to its average number of molecules. However, that does not mean that the resulting fluctuations
be inversely proportional to the number of molecules, as that additionally depends on the dynam
connections between the chemical species.

4.4. Examples of elasticities

A simple example will illustrate the principle behind elasticities:

(27)
d〈n〉
dt

= λ+〈n〉α − λ−〈n〉β ⇒ H = ∂ ln(λ−〈n〉β/λ+〈n〉β)

∂ ln〈n〉 = β − α.

The elasticity thus corresponds to the difference in kinetic order between degradation and synthe
an unbiased and unbounded random walk,H = 0 and there is no stationary state. Changing from
order synthesis (β = 1) to irreversible dimerization (β = 2) can have a similar effect as changing fro
constitutive synthesis (α = 0) to well-working ‘hyperbolic’ negative feedback control (α = −1). Both
mechanisms have been implicated in homeostatic systems[32].

Many multivariate systems are equally tractable, for example:

(28)

d〈n1〉
dt

= λ+
1 − 〈n1〉/τ1

d〈n2〉
dt

= λ+
2 〈n1〉 − 〈n2〉/τ2

⇒ H =
[

1 0
−1 1

]
,
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as can be seen in much the same way as in Eq.(27). If n2 instead negatively affected its own synthe
andn1 was an (unsaturated) enzyme that degradedn2, one could have:

(29)

d〈n1〉
dt

= λ+
1 − 〈n1〉/τ1

d〈n2〉
dt

= λ+
2 /〈n2〉 − λ−

2 〈n1〉〈n2〉
⇒ H =

[
1 0
1 2

]
.

The nonlinearities are only approximations. For example, ifR−
2 = λ−

2 n1n2 then 〈n1n2〉 ≈ 〈n1〉〈n2〉 in
Eq.(29) implicitly assumes that fluctuations are negligible (see discussion below Eq.(11)).

The examples above only have one synthesis and degradation term per species. Each term
perfect power-law. For more complicated schemes the elasticities must be calculated explicitly u
definitions in Eqs.(21)–(24), but it is still often easy to eye-ball lower and upper bounds.

4.5. A generalized equation for dynamically disordered expression

Because the parameters above—average lifetimes, numbers of molecules and elasticities—are
ically direct and intuitive, the FDT can be solved for structural classes of random processes colle
without losing interpretability. The simplest possible generic model for disordered gene express
cludes four exponential events, each adding or removing a single molecule:

(30)

n1
R+

1 (n1)−−−−−−→n1 + 1

n1
R+

1 (n1)−−−−−−→n1 − 1

n2
R+

1 (n1,n2)−−−−−−→n2 + 1

n2
R−

1 (n1,n2)−−−−−−→n2 − 1

so that

d〈n1〉
dt

= 〈
J+

1 (n1)
〉 − 〈

J−
1 (n1)

〉
d〈n2〉

dt
= 〈

J+
2 (n1, n2)

〉 − 〈
J−

2 (n1, n2)
〉 whereJ±

i = R±
i .

This is a pseudo-bivariate stochastic system, where the rates for production and degradation of th
species depend on the random state of the first, but not vice versa (H12 = 0). Using the FDT approac
above, we can solve for all stationary processes that display fluctuations around a stable fixe
MatricesA andD follow:

(31)M = −
[

H11/τ1 0
H21/τ2 H22/τ2

]
and D =

[
2/(〈n1〉τ1) 0

0 2/(〈n2〉τ2)

]
.

Solving the FDT for the normalized variancesη and rearranging the solution gives:

(32)η22 = σ 2
2

〈n2〉2
≈

spontaneous or intrinsicx2 noise︷ ︸︸ ︷
1

〈n2〉︸︷︷︸
low-copy

fluctuations

× 1

H22︸︷︷︸
effective
stability

+

forced or extrinsicx2 noise︷ ︸︸ ︷
σ 2

1

〈n1〉2︸ ︷︷ ︸
environmental
fluctuations

× H 2
21

H 2
22︸︷︷︸

static
susceptibility

× H22/τ2

H22/τ2 + H11/τ1︸ ︷︷ ︸
one-step

time-averaging

whereη11 = σ 2
1 〈n1〉−2 ≈ 〈n1〉−1H−1

11 .
For the spontaneous or ‘intrinsic’ noise term, the first factor 1/〈n2〉 corresponds to the average s

of the random jumps (one molecule made at a time) relative to the average size of the populati
second factor can be interpreted in several ways. The normalized Jacobian matrixM in Eq. (31) has
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eigenvalues−H11/τ2 and –H22/τ2. Because the matrix is triangular, where the environmentn1 affects the
systemn2 but not vice versa, the eigenvalues are the adjustment rate constants for the two comp
A perturbation inn1 is corrected with rate constantH11/τ2 (see Eq.(7)), and a perturbation inn2 is
corrected with rate constantH22/τ2. Decreasing the average lifetimesτ increases the adjustment rates,
also increases the rate of spontaneous randomisation by the same factor—measuring time in a
unit cannot affect stationary fluctuations. ParameterH22 can thus be seen as the rate of adjusting to ste
state normalised by the rate of deviating from steady state.

For another perspective on the same principle, consider the probabilityP(birth) that the next event i
a birth rather than a death:

(33)P(birth) = J+
2

J+
2 + J−

2

= 1

1+ J−
2 /J+

2

.

To have small fluctuations around the average〈n2〉, P(birth) should be low above the average and h
below the average. This means that the ratio between death rates and birth rates should increas
with n2. The sharpness is measured by the elasticityH22: If n2 changes by 1%, the ratio between t
rates change approximatelyH22 per cent. The value ofH22 thus measures the preference for returnin
steady state over deviating further.

The forced or ‘extrinsic’ noise in Eq.(32) follows entirely different principles. The first facto
σ 2

1 /〈n1〉2, simply measures the relative size of environmental fluctuations. The second factor sho
a permanent change inn1 would eventually affect〈n2〉. For example consider the following equation:

(34)
∂〈n2〉
∂t

= λ2n1 − β2〈n2〉2.

Here we see how the average〈n2〉 follows changes inn1. If concentrationn1 changed from one fixe
value to another,〈n2〉eventually adjusts to new steady states given by:

(35)〈n2〉 = √
λ2/β2n1.

A fourfold increase inn1 then only produces a two-fold change in the stationary〈n2〉, andH21/H22 =
−1/2. In general, we can formulate this as:

(36)
∂ ln〈n2〉
∂ lnn1

= −H21

H22

where〈n2〉 is evaluated at the steady state towards which the systems adjusts aftern1 changes value[20].
The two elasticities reflect two different principles. ParameterH21 measures how the level ofn1 affects
the birth and death balance ofn2, while H22 measures how sensitive the eventual steady state of〈n2〉 is
to changes in its own birth and death rates.

When changes inn1 are not permanent it is also necessary to account for the temporal responsn2.
As noted above,H11/τ1 andH22/τ2 are the rate constants for adjustments to steady state in compo
n1 andn2 respectively. The ratio:

(37)
H22/τ2

H11/τ1
= 1

τ2/H22︸ ︷︷ ︸
effective memory

of systemn2

1

H11/τ1︸ ︷︷ ︸
rate of change of
environmentn1
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is thus a measure for how closelyn2 follow changes inn1. If n2 adjusted swiftly,H22/τ2 � H11/τ1, the
time-averaging factor would be close to one, and ifn2 adjusted slowly, the time-averaging factor wou
be close to zero. The adjustment rate is thus inversely related to the effective memory windo
systems are only influenced by the recent history and therefore more affected by environmental c

5. Measures and nomenclature

5.1. Measures of noise

Noise can be quantified in many ways. Autocorrelations conveniently summarize both the ma
and frequency of fluctuations and are fairly tractable analytically. However, most models so fa
focused on stationary averages and variances.

The results above were formulated in terms of the variance over squared average, which allo
clean separation of different noise sources as long as the models are weakly nonlinear. Another
measure is the Fano factor—the variance over average—which equals one for Poisson distributi
the comparison with the Poissonian only works well for univariate discrete random processes, wh
variance often is proportional to the average with a proportionality constant that reflects the overal
of the process. For multivariate random processes, the Poisson distribution holds no special pos
using the Fano factor can be misleading. To illustrate this with a more extreme example than th
in Eq. (9), assume that protein fluctuations partly came from fluctuations in RNase concentration
variance over squared average would then contain a noise term that was more or less indepe
transcription and translation rates. Multiplying by the average to obtain the Fano factor would thu
the measure to depend on anything that affected the average.

Eq. (32) suggests that no measure works well for all types of fluctuations—spontaneous fluctu
depend on the number of molecules while forced fluctuations do not. However, the variance over
average is certainly a more suitable basis for experimental interpretations. First, in most exper
studies so far the average number of proteins per cell is too high to contribute substantial spon
fluctuations. Second, by plotting the variance over squared average as a function of the inverse
any univariate scaling behavior is easily identified without introducing scaling problems for any ex
noise. Third, the relevance of a fluctuation typically depends on the normal size of the system. B
the variance is a second order moment it must then be normalized by the squared average—
factor for the numbers of molecules per individual is more than 100,000 times higher for elephan
for mice.

5.2. Intrinsic vs extrinsic

Previous studies have used different classifications to highlight different aspects of noise. Here
on the distinction between ‘intrinsic’ and ‘extrinsic’ noise, and consider four aspects: The sta
nature of the fluctuations, how central a process is to gene expression, correlations between
proteins in the cell, and experimental strategies for measuring noise:

(1) From a physical viewpoint, the terms ‘intrinsic’ and ‘extrinsic’ have no specific meaning othe
‘inside’ and ‘outside’, and thus always depend on the definition of system versus environmen
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proteins as system, the first small-number term of Eq.(4) is intrinsic and the mRNA and gene term
are both extrinsic[18,22]. Other studies[7,20] define all three terms as intrinsic to distinguish th
from the extrinsic fluctuations in the overall state of the cell. However, spontaneous small-n
protein noise is principally different from the noise that comes from enslavement by genes o
NAs, but the latter two noise sources arenotprincipally different from, e.g., ribosome-mediated no
that also enslaves proteins. Considering only the statistical nature of the fluctuations, there is
reason to label all three noise terms in Eq.(4) as intrinsic.

(2) From a biological viewpoint, noise sources could be classified according to how central th
responding component is to gene expression. However, classifying fluctuations in gene act
intrinsic and fluctuations in ribosomes as extrinsic would not separate the central parts of g
pression from more peripheral cell processes. The opposite would be more appropriate: Rib
are inherent to gene expression while spontaneous changes in gene activity can indirectly
regulation.

(3) Protein noise can also be classified according to correlations between different types of p
Some sources of randomness are shared broadly by many genes in a cell, while others are e
to a particular gene or a small set of genes. The most specific noise comes from having low
numbers, originating in the probabilistic births and deaths of individual molecules. Sponta
mRNA fluctuations are also quite specific, though some transcripts encode several different p
Operator fluctuations are less specific yet and typically affect all genes in an operon. Many DN
RNA binding proteins act as repressors and activators, some of which are specific to a particu
and others which regulate large classes of genes. This can form complicated correlation str
For example, two genes may be targeted by the same repressor, yet their mRNAs may be d
by different RNases. A few central factors are shared more universally, including ribosome
polymerases, tRNAs, amino acids etc. However, different proteins are still differently affect
such fluctuations because they have different sequences and lifetimes.
From this perspective, the gene-mRNA-protein terms in Eq.(4) could all be intrinsic, taking intrinsic
to mean specific. However, it should then be emphasized that such distinctions can be made
different ways. The mRNA term is in some sense more intrinsic than the gene term, but th
term is not necessarily more intrinsic than fluctuations in repressor concentrations.

(4) Finally, the classifications can be tailored to the available experimental methods. A parti
clever strategy for separating noise sources is based on correlations between the expressio
physically separate but identically regulated fluorescent reporter genes[7,9]. If the two proteins are
kinetically independent, i.e., if the mechanisms are linear, the normalized covariance betwee
then equals the sum of all shared noise terms[20]. Fluctuations in ribosomes, polymerases, RNa
etc thus all end up in the ‘extrinsic’ covariance category, while the gene-mRNA-protein ter
Eq. (4) are ‘intrinsic’ because eachgfp has its own operators and transcripts. The appeal of this
proach is not only that some noise sources are separated from others, but also that the sepa
some extent relates to specificity (see (3) above). The only risk is that the terms are over-inte
construing biological or physical meaning where none is intended: The ‘intrinsic noise’ only
tially relates to specificity, as demonstrated by experiments where most extrinsic noise came
repressor that was specific to that particular gene[7]. Realizing that the distinction largely is a sid
effect of the experimental set-up in turn opens the doors for other applications. If the two rep
were placed under the same operator, operator fluctuations would become shared between
genes and thus move from the intrinsic to the extrinsic category. If the reporters were enco
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the same transcript, the mRNA term would also become extrinsic. If they were regulated by di
repressors, repressor fluctuations would move from the extrinsic to the intrinsic category. A
on. The dual reporter strategy does not separate fluctuations based on a priori physical or bi
principles. It is much more general and useful than that.

6. Analytical models of protein noise, 1977–2004

Detailed models of stochastic gene expression have been published for almost 30 years. He
discuss some analytical studies of constitutive expression (feedback analyses excluded), possib
ing others that deserve equal mention (if so please contact me so that the mistake can be correc

In the 1970s, David Rigney[10,12–14], Otto Berg[11] and co-workers pioneered the field in a ser
of papers that predicted mRNA and protein fluctuations in growing cells. One of their take-hom
sages was that mRNAs produce geometrically distributed translation bursts if they are either trans
degraded with constant probabilities, and that this in turn widens the protein distributions. Tech
the models include the mRNA and protein part of Eq.(4), but also account for deterministic cell growt
chromosome replication at a fixed time point in the cell cycle, and partitioning of protein copies
division. These insightful studies were carefully motivated and argued, and though some of the
ical expressions were rather complicated, the papers are as rewarding to read as any of the mo
analyses. They only failed to initiate a continuous tradition because they were 20 years before th

In 1987, Tapaswi et al.[15] considered a stochastic model for a biological oscillator, assuming t
transcript effectively inhibited its own gene by kicking out a gene activator. Disregarding the fee
term, their model was identical to the gene-mRNA model above and they used probability gen
functions to calculate the marginal distribution of genes and mRNAs, but did not emphasize con
when fluctuations are large. In 1995, Peccoud and Ycart[16] used the same mathematical model
describe genes and proteins, assuming that mRNAs are degraded rapidly. They used moment e
to derive exact results for how averages and variances depend on kinetic parameters, predicting t
that slowly and randomly switch on and off produce large relative protein fluctuations. In 2001, K
and Elston[17] revisited the results for the gene-protein part of the model, arriving at the same res
Peccoud and Ycart, but also analyzing regulated systems in terms of bifurcations, escape times

In 2000–2001, Paulsson et al.[33] slightly extended the mRNA-protein model by calculating
stationary distribution for geometrically distributed translation bursts. They also formulated the va
over squared average in terms of internal and time-averaged external fluctuations[18], as in Eq.(8). At
the same time, the same model was independently analyzed by Thattai and van Oudenaarden[19] who
calculated time-dependent moments and emphasized translation bursts, but also treated auto
systems as well as noise propagation in longer expression cascades[34]. In 2002, Swain et al.[20]
presented a model that accounted for several steps in transcriptional initiation, as well as replicat
growth and division. This was more complete than previous studies, but beneath the details th
was close to identical to Eq.(4). The apparent discrepancy comes from the fact that the gene
was presented as a part of the small-number mRNA noise. The authors also motivated the dual
correlation strategy mathematically.

In 2003, Sasai and Wolynes[21] mapped stochastic gene expression onto the quantum many
problem, presenting a different way of deriving the gene-protein model above as well as analyzi
tems with multiple attractors. In 2004, Paulsson interpreted the Fluctuation–Dissipation Theo
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terms of average numbers of molecules, lifetimes, and elasticities, and derived Eq.(32) to reinterpret
some experimental findings. Raser and O’Shea[9] published results that are mathematically identica
Eq.(4), but viewed from a different perspective. More papers are coming out by the minute so this
will most likely be out of date before it is printed.

Stochastic gene expression has also been frequently modeled using Monte Carlo simulations,
most notably by McAdams and Arkin[35] who in 1997 introduced the basic notions to a broader a
ence. Their conclusions were similar to those of earlier analytical works, for example emphasizi
protein synthesis may occur in geometrically distributed bursts. But by emphasizing biological im
tions they provided a much needed rallying point for subsequent studies.

7. Future directions and closing remarks

The analysis above only shows that most models have focused on the same phenomenon,
this phenomenon really captures gene expression in living cells. Most experimental results are c
consistent with the standard model, sometimes requiring slight modifications, but qualitatively di
models can be equally consistent with the same data. A few idealizations above are particularly n

First, there are no strong indications that genes, RNAs and proteins are the critical molecu
contribute small-number fluctuations. For example, steps in the elongation phases of transcrip
translation may also fluctuate greatly. It has been suggested that the anabolic nature of protein s
joining together smaller subunits, generates enormous fluctuations in the levels of charged tRN[27].
How would this affect fluctuations in protein concentrations? The focus on genes, RNAs and p
may very well turn out to be a purely sociological choice, reflecting how cartoons are drawn rath
actual physical properties.

Second, many enzyme and substrate concentrations are statistically correlated. Such correlat
even have evolved to suppress total protein fluctuations. For example assume that a gene for
protein is transcribed by a certain sigma factor. Further assume that the corresponding mRNA is d
by an RNase that is transcribed by the same sigma-factor. A random increase in the concentratio
sigma factor then increases both the synthesis and degradation rates of the mRNA, and the tw
could partially cancel out. Other correlations could have the opposite effect and increase fluct
instead.

Third, the discrete probabilistic events are assumed to be exponential, yet we know that ge
vation, transcription and translation consist of numerous small steps. Does this qualitatively cha
nature of the fluctuations in concentrations?

All these issues will undoubtedly be addressed in the next few years, both mathematically a
perimentally. However, in addition to solving the different individual problems, the community
whole also faces the collective challenge of converging towards a coherent discipline. Detailed
are definitely useful to ensure that the supposed mechanisms of a certain system are consis
the idealizations we use to understand them. But without idealized models and generic theory t
with, details are unintelligible. Analytical theory is not automatically better than simulations th
Simply following mathematical rules and deriving complicated algebraic expressions could even p
progress, making problems appear understood when they are not. However, these are the teethin
of any new discipline. Given the exploding experimental progress there is little doubt that stochast
expression is establishing itself as one of the most central and exciting problems in molecular bio
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