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Abstract

Gene expression is an inherently stochastic process: Genes are activated and inactivated by random associatio
and dissociation events, transcription is typically rare, and many proteins are present in low numbers per cell. The
last few years have seen an explosion in the stochastic modeling of these processes, predicting protein fluctuations
in terms of the frequencies of the probabilistic events. Here | discuss commonalities between theoretical descrip-
tions, focusing on a gene-mRNA-protein model that includes most published studies as special cases. | also show
how expression bursts can be explained as simplistic time-averaging, and how generic approximations can allow
for concrete interpretations without requiring concrete assumptions. Measures and nomenclature are discussed t
some extent and the modeling literature is briefly reviewed.
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1. Introduction

All cellular events directly or indirectly depend on probabilistic collisions between molecules. If large
numbers of identical events occurred in the same cell, and they were statistically independent, relative
fluctuations could be ignored and deterministic rate equations would suffice to describe dynamics. But
the numbers are not large and the events are not independent. Active genes are often presentin zero to or
copy, mMRNAs can be equally rare, and most proteins are present in less than 100 molecules per bacteria
cell. Substrates, enzymes and regulatory molecules can also fluctuate and further randomize expressiol
rates.

Cells have many mechanisms for reducing or suppressing harmful fluctufitiesisIf these are so
efficient that fluctuations are negligible, stochastic models may seem redundant. However, if we want to
understand rather than just mimic a process, an absence of randomness must also be explained prob:s
bilistically. Stochastic models are equally relevant whether genes are expressed randomly or regularly.
Here | review some common denominators shared by many of the stochastic models and briefly discuss
possible extensions.

2. Thestandard model
2.1. Molecular assumptions

Many models claim to account for the critical steps in gene expression, yet there is little agreement
on what those steps are, i.e., what sets of transitions that can be condensed into effective reaction step
and what concentrations that can be absorbed into rate constants. Experiments in turn show that similar
genes can produce very different fluctuations depending on the exact confliti@)sThis makes it
difficult to invest a high degree of belief in any particular model and suggests that all we can hope for is
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an understanding of first principles. Whether or not we address the right first principles is always difficult
to tell, but in the initial phase we can at least make sure to thoroughly understand the models.

Most theoretical descriptiond0-22] have independently focused on the same basic phenomenon.
Because mRNA levels determine the rate of protein synthesis, the number of proteins pgchabes
the number of MRNA®,, which in turn may chase the number of active gengesThis principle could
be extended indefinitely: Any process that indirectly affects the rates of gene expression can potentially
randomize protein concentrations and would then have to be included in realistic stochastic models.
However, most models focus on genes, RNAs and proteins, and implicitly include all other processes in
effective rate constants.

Gene activation can have many different molecular causes, including dissociation of repressors, as-
sociation of activators, or chromatin remodeling. The details vary from gene to gene and organism to
organism and can include transitions between numerous different states. As a first approximation, in both
pro- and eukaryotes, the overall kinetic dynamics can be described by a random telegraph[p8jcess

M

off 2on D

M
where each gene spontaneously switches on and off with xgtesid A, respectively. Depending on
growth conditions, bacteria can have several copies of partially replicated chromosomes. If the gene
under study is close to the origin of replication, some cells may then have as many as eight copies
of the same gene. Here | assume that a consigfit copies independently switch on and off as in
Eqg. (1), ignoring cell growth and gene replication. The stationary distribution for the number of active
genes is then Binomial as for the tossingJf* unfair coins, where the probability of being on is
Pon= )\-1"_/()\-1‘_ + )LI)

Transcription and translation are typically assumed to follow Poisson processes where the production
probabilities per time unik,n,; and Asn, are proportional to the number of active genes and mRNAs
respectively. These may or may not be good approximations. The binding of RNA polymerase may
change the structure of the gene, either blocking or facilitating further transcription. Replication can
change the chromatin structure or kick off activators, and repressors and thereby cause abrupt change
in expression rates. The transport of MRNAs out of the eukaryotic nucleus, or the release of finished
transcripts from prokaryotic genes, may also affect dynamics.

Finally, mRNAs and proteins are often described as having exponentially distributed lifetimes, assum-
ing that each degradation event is independent and memory-lacking. However, the events may depend or
each other if the molecules compete for RNases or proteases. If these degradation enzymes operate clos
to saturation, the degradation rate per substrate molecule is lower in cells that by chance have a higher
substrate concentration, thereby correcting perturbations less effidi2atlyThe degradation pathway
may also include many rate-limiting steps. Even if each molecule is a statistically independent unit, in-
ternal molecular memory may then still allow molecules to grow old before they die, possibly reducing
the variation in individual life-times.

Other likely contributors to the observed variability include fluctuations in the many enzymes and
substrates involved, cell cycle effects, and random partitioning of copies at cell division. Ignoring these
and other complications, the standard model only accounts for six exponential events: Constant rates
of switching on and off individual genes, constant transcription per active gene, constant translation
per transcript, and exponential decay of both transcripts and proteins. This is illustrdted inand
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Fig. 1. (A) Cartoon of gene activation, transcription, translation, mRNA decay and proteolysis. The purple molecule represents
arepressor. (B) Gillespie simulatiof86] of the events described in E@), where the coloring matches the cartoon in (A). For

the parameters used, most fluctuations come from genes, the mRNAs adjust quickly to changes in gene activity, and the protein
adjusts slowly to changes in mRNA level. This may be common biologically, but all parameters could vary several orders of
magnitude between different genes.

summarized by the following reaction diagram and corresponding dynamics for the averages

AL (1 ™—ny) d(ny)

Gene activation: n———ng+1, — AT (M7 — (n1)) — AL (na)
-
Gene inactivation:  nq—*—sn; — 1, = A nT®™— (n1) /71,
Transcription: no—2% o+ 1, ding)
. n2/2 = Aa(n1) — (n2)/7o,

mRNA degradation: ,,—2=2,,, 1, dr
Translation: na—32 spat1 d(n3)

_ ) ’ = A3(nz) — (n3)/ta.
Proteolysis: pe " o 3(n2) — (n3)/t3 (2)

The parameter; = (A + A7)t is a characteristic time-scale for changes in gene activityzraadd
13 are the average lifetimes of MRNAs and proteins respectively. The average dynamics can be postulatec
immediately from the reaction scheme, but other statistical aspects must be explicitly calculated from the
three-variable Markov proces$dn 1, no, n3)/dr that is defined by the individual events:
dP(nqi,no,n
% = A7 (7™ = n1 4+ 1) P(n1 — 1, np, n3) — AL (n7'™ — n) P(n1, np, n3)
+ Ay (nu+ 1Py + 1, nz,n3) — Ay n1 P(ng, np, n3)
+ Agny P(ny, nz — 1, n3) — Aony P(ny, np, n3)
+ (n2+1)/12P(ny, n2 + 1, n3) — np/t2P(ny, na, n3)
+ AgnaP(ny, nz,n3 — 1) — Agna P(ny, np, n3)
+ (n3+1)/t3P(ny, n2, n3 + 1) — n3/t3P(n1, n2, n3). )
Because the reaction rates are linear in terms of the state variablie time-dependent moments
can be calculated exactly using generating functions. This procedure has been extensively described ir
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previous studiefl0-14,19,20bf stochastic gene expression and was applied in exactly the same way to
Eq.(3).
Unless stated otherwise, all equations will be evaluated at the stationary state \Wierend, ns3)/
dr = 0. To reduce notational complexity this will not be indicated explicitly.
2.2. Protein fluctuations

The normalized stationary variance in the number of protein molecules per cell follows:

Total PR From spontaneous From forced mRNA noiseoriginating
protein noise bF,rrt?,’S g:-,%'\l&%%etﬂhs mRN’,)A noise in gene activatiorinactivation
— ——
2
O3 B 1 1 T2 1- Pon T2 T1 T1+ 173+ 'L'1‘L'3/‘L'2 (4)
(n3)? (n3) (n2) 1w+ (n1) mt+wmuts 1+
—— —— S—— N— ——
Poisson Poisson One-step Binomal Two-step
time-averaging time-averaging

The first noise term on the right-hand-side shows that if all other cellular factors are constant, proteins still
display small-number Poisson fluctuations because individual birth and death events are probabilistic.
This noise does not necessarily have to be exactly Poissonian if the assumptions above are not fulfilled,
but some sort of small-number noise is very difficult to avoid because individual chemical events rely on
random collisions between diffusing molecules.

The second and third terms both reflect random changes in the rate for protein synthesis. These are
caused by mRNA fluctuations, that in this model follow:

o2 1 1—Pyy T
2 5 — + on 1 ) (5)
(n2) (n2) (n1) m+mn

The first term of Eq(5) again reflects small-number noise, now originating in the inherently proba-
bilistic births and deaths of individual transcripts. The second term comes from random changes in gene
activity where the first factor is a measure of stationary small-number gene fluctuations:

of 1 1-Py
()2 a0 (ng)

The 1— P, factor comes from the fact the number of active genes is Binomially rather than Poisson
distributed. At any given average, Binomial variables have smaller relative fluctuations than Poissonian
variables, which makes it possible to have a low number of genes without necessarily having large fluc-
tuations as long as genes are mostly actRg~ 1.

The second factor in EE5) reflects time-averaging and always ranges between zero and one. Solving
the second linear equation in H®) for fixed (n,) gives:

(6)

(n2)i 11, — (M2)oe = ({12 — (n2)ec) €2/, (7)
Deviation from stationary  Deviation from stationary
average at time=t1-+1, average at time=r;

The mRNA concentration, thus exponentially forgets initial conditions with rater;l/The para-
metert, therefore determines the effective kinetic memory in the sense that cellular events that occur
further back tharr, time units ago have little influence on the current concentration. Ratesitfilarly
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determines how rapidly the gene activity changes. The rafig, is thus a measure of how much gene
activation changes up and down within the effective memory of the mRN#&y/If; is large, the cur-

rent mRNA level depends on a relatively long history of random ups and downs, which reduces mRNA
fluctuations just like throwing many dice reduces relative fluctuations in the total outcome.

The exact same principles apply to protein fluctuations in(Ep.The second term represents time-
averaged small-number mRNA fluctuations, and the third term represents small-number gene fluctua-
tions, that are first time-averaged by mRNAs and then by prot€igs 1B). Both time-averaging factors
range between zero and one, and the compounded two-step time-averaging is always more efficient thar
either of the individual steps separately.

2.3. The simplest example of dynamic disorder

If genes fluctuate rapidly, or if stationary gene fluctuations are insignificant, the third term (4)Eq.
disappears. If mRNAs fluctuate rapidly, the second term instead disappears and the two-step time-
averaging factor can be greatly simplified. In both cases, protein fluctuations can be written as:

032 1 05 TE (8)

(n3)2  (n3) (np)?te+713

where E represents the external environment of either mMRNAs or active genes. The two types of noise
represent the same basic principle, broadly definedlyaamic disordef25,26] ‘Disorder’ because the
parameters for protein synthesis vary randomly between cells in a population, just like chemical reactions
in an imperfect medium, and ‘dynamic’ because the parameters change in time. The Markov process
has thus been extended to include both system and environment. In statistical physics, disorder often
has different connotations because most studies consider how global properties emerge in terms of the
spatial distributions of the underlying disorder. Here we only study local effects of the disorder itself, but
percolation-type phenomena could certainly arise in tissues where cells express genes randomly and thel
affect adjacent cells.

3. Expression bursts
3.1. Translation bursts

Many studies have interpreted E&) in terms of bursts—brief periods of high expression intensity
followed by long periods of low intensity. Most focus on the fact that each mRNA is translated several
times, and often start with the mRNA-protein part of the model above assuming that the genes are con-
stantly on,P,, = 1. Further assuming that proteins decay slowly relative to their transcripts,r», and
measuring fluctuations by the Fano factor (variance over average) then |¢aék to

of . 3 T . (na)m

nTax)»z‘L'z)»ng T2

= 1+ —=14r0=1+( 9
(na) (n2) T2+ 13 (n2) 3 n® ot T3 . ) ®)

whereb is the number of translations per transcript, typically on the order of 100 for an avéragé

gene. This formulation makes intuitive sense. If proteins were made in statistically independent events

and decayed exponentially, stationary fluctuations would be Poissonianm$yitls) = 1. If they instead
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were made in bursts of random size, fluctuations should be larger than Poissonian, just like a random
walker who takes large and random leaps accumulate randomness more quickly. The burst interpretation
can certainly be sound, but a few moderations are due.

First, to truly have brief periods of high intensity it is not enough that> 7,. Some mRNAs are
present in hundreds of copies per cell at any given time, but are still so unstable that the approximation
in Eq. (9) is close to exact. Protein synthesis is then not burst-like at all, regardless of the vahye of
That the equation can be written in terms of bursts does not mean that there actually are any bursts: The
conditions for a mathematically correct expression are in this case more relaxed than the conditions for a
physically sound interpretation. To have true bursts in the model above, it is instead necessary that most
cells have zero transcripts so that the total synthesis rate switches randomly from a low to a high value.
This is not uncommon in real cells where some mRNAs are exceptionally rare. However, it is not nearly
as common as mRNAs having shorter life-times than proteins, which is almost universally true.

Second, the randomness of translation is represented by the first rather than the second tef@),in Eq.
i.e., by the constant ‘1’ rather than k). This is not merely a matter of perspective. Imagine that
translation and protein decay were made entirely deterministic in the model above, using a macroscopic
rate equation forz where the synthesis ratgn, depended on the state of the Markov processifor
The only effect on the stationary protein variance in the equations above is then that the first term in
Eq. (9) disappears. The ‘translation burst noise’ is thus unaffected even if we assume that translation is
deterministic. If we instead assume that the mRNA is deterministic but that protein synthesis and decay
are probabilistic as before, we instead keep the first term iievhile the second one disappears. This
illustrates the importance of separating fluctuation terms according to their origin in probabilistic events
rather than responses to changes in parameters.

Third, if there are other sources of disorder, those noise terms can look quite bizarre when multiplied
by (n3) and interpreted in terms of translation. A responsedp(ns) to changes in the translation rate
does not in any way reflect translational noise. The approximation iff%dn fact assumes a separa-
tion of time-scales where transcription, translation and mRNA decay are compounded into one chemical
event. However, this is not a problem of the burst perspective itself, but of the measure used (see Sec-
tion 5). It can be solved by simply writing E9) aso2/(n3)? = (1 + (b))/(ns).

3.2. Bursting as simple time-averaging

Despite the strong intuitive notion of bursts, the moderations above show that the concept is quite
restricted and that bursting should not be expected for most genes. However, it does simplify the equations
by reducing the number of parameters. Would other interpretations allow for the same simplifications but
at the same time allow for a physical explanation that works more broadly? Again asstyning,,
normalizing the variance in E¢) leads to:

o2 1 1

(n3)2

. 10
(na) * n®nots (10)
Here it is the number of transcripts made during the lifetime of the protélfi%,zs) that determines
the deviation from Poisson statistics, not the number of proteins made during the lifetime of a transcript
(1312), as in the mathematically equivalent £). As expected from E(8), this is a simple version

of time-averagingn"®,73 is the average number of independent transcription events that effectively
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contribute to the current value of the protein. High numbers are more or less the same in different cells
or at different times, thus reducing relative fluctuations.

3.3. Other causes of burst-like expression

There are other possible causes of burst-like expression apart from making many proteins per tran-
script. For example, if genes are mostly inactivi,(« 1) but transcribe a large number of mMRNAs
while in the active state, transcription could occur in bursts. The concentration of free ribosomes, amino
acids, or charged tRNAs may also fluctuate wilfty], possibly with sharp spikes. Such changes in the
underlying gene expression machinery could cause bursts, but are subject to the same moderations a
above: The equations can be formulated in terms of bursts even for parameter values where there are ne
physical bursts. The only way to demonstrate bursts is by directly observing spikes of expression in the
time-series.

4. Generic approaches
4.1. The Fluctuation—Dissipation Theorem

Rather than deriving results from particular assumptions, it is also possible to examine broader classes
of random processes collectively and then afterwards suggest how the general principles are instantiatec
molecularly. Such approaches may seem doomed to hopeless abstraction, but can in fact be formulated ir
terms of physical principles that are at least as concrete as in the specific examples. A recenfztfempt
was based on a reinterpretation of the Fluctuation—Dissipation Thef@228] (FDT), which in one
formulation states that:

z—‘: =Ac +0AT +B. (12)
Herea is the matrix of covariances{ = o), A is the Jacobian matrix for the dynamics of the averages,
andB is a diffusion matrix that depends on the size of the random events. This equation has different
names in different disciplines, and is sometimes called the Lyapunov Equation, the Linear Noise Approx-
imation or the result of a 1st order van Kampef¥'sexpansion. Here we call it the FDT to emphasize
physical rather than mathematical principles. It is also known as the FDT in the textbooks that most
emphasize its use in chemis{88] where both the perturbations and dynamics come from the reaction
mechanisms.

A key approximation that makes the FDT practical to use is that matAcasd B are interpreted
assuming that fluctuations can be ignored. The average rates are then approximated by the rates at th
average concentration. For exampleRi= An? then(R) = A (n?) = A(n)2 + o2, but when calculating
andB above, the second term would be ignored, using 0Rly~ A (n)2. This does not affect analyses of
linear systems like the gene-mRNA-protein model above, but makes it possible to approximate nonlinear
systems despite the fact that averages explicitly depend on fluctuations. Practically it means that we can
calculateA from the deterministic rate equations. Here | keep the averaging bracketexplicit, but
they could also be removedf were interpreted as the deterministic concentration. M&ris thus



J. Paulsson / Physics of Life Reviews 2 (2005) 157-175 165

defined by:
, + -
A= 9 9(n) _ i) () (12)
d(n;) ot d(n;) a(n;)

whereJ" andJ;” are the total fluxes of production and elimination of spetié&he diffusion matrix8
is in turn defined by:

B;j = Z VjkVik Rk 13)
k

where reactiork occurs with rateR, and produce®;, molecules of species The flux is thusJ;, =
|vix Ri|. Stationary variances can be calculated by setting Eb.to zero:

—Ao —oAT =B. (14)

Using this equation to obtain expressions like Ej.involves three steps: CalculatidgandB at steady

state, solving the linear system of equationsofpand rearranging the solution in terms of clear physical
principles. The first two steps can be tedious but are always trivial, and the real conceptual challenge lies
in the interpretations.

4.2. lllustrating the FDT for the gene-mRNA-protein model

For the gene-mRNA-protein system above, the Jacobian matrix can be directly calculated f{@jn Eq.

—l/‘L’]_ 0 0

A= [ A2 —1/‘172 0 i| . (15)
0 )\3 —l/‘L’3

The diffusion matrixB is equally simple. There are six reactions and three spekies(..., 6, and

[i, j1=1, 2, 3), but each species is only affected by two reactions. Because no reaction events change

two different species simultaneously, all off-diagonal elemen @me zero. Finally, each reaction only
adds or removes a single molecule. This means that the progugt only takes values zero or one, and:

FAT (T — (n1)) + A7 (n1) 0 0
B= 0 A2(n1) + (n2)/72 0 :|
L 0 0 A3(nz) + (n3)/73
B 2)\.I (n1) 0 0
= 0 2(?12)/1’2 0 i| (16)
L 0 0 2(1/13)/‘173

The second equality uses the fact that, at steady state, the total average synthesis flux equals the tote
average degradation flux. Elemeh; can be further rewritten using:
Al 1-P
A= (1-—=2 A4+ = x 17

D= (1 e e = 7)
Parameterr; in the denominator oB1;1 will then cancel out against the denominatorAf;, leaving
factor 1— P,, which is a signature of the Binomial distribution.

Solving the equation system above exactly reproduces(BEgg6), which in turn were derived using

exact moment equations. The exactness is perhaps surprising given that the derivation of the FDT in
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Eq.(11)typically assumes small Gaussian fluctuations while the gene-mRNA-protein model can generate
very broad and skewed distributions with averages arbitrarily close to zero. However, the only essential
approximation behind the FDT is that fluctuations are so small that the responses can be approximated a:
weakly nonlinear. Because the Markov process above is exactly linear, the variances thus follow exactly
from the Fluctuation—Dissipation Theorem even though the full distributions are very non-Gaussian—
something that can be shown using moment generating functions or other mgéjpds

4.3. Normalizing the FDT

The algebra required to obtain expressions like @j.can be greatly reduced by normalizing the
equations before rather than after they are solved. In the stationary state we then get:

My+yMT+D=0 (18)
where:
oij (nj) B;;
nij = , Mi':—Ai' and Di': . 19
T ) () T T ) ng) (19

It is useful to rewrite the dynamic matriM in more intuitive terms. The rules for differentiation of
logarithms state that:

dlnf _xaf . 9InGf/e) _ainf dlng

== = . (20)
dlnx  fox dlnx dlnx  dlnx
Applying these rules backwards to EG2) gives:
LN e ) (alnuﬂ B aln<J;>) _ W a5 1)
YUy amg)  (m)\dIn(n;)  dInin;) ) (n;)  dIn(n;)

where the first equality also uses the fact that, at steady $tate~= (J.”) = (J;). The dynamic matrix
M is then:
- +
Mij:_ﬂalnu,. V5 22)
(ni)  9In{n;)
The first factor can be further simplified by noting that, at steady state, the average turnover rate per
molecule approximately equals the inverse average lifetime
- +

Ui U U 1. (23)

(ni) (i) (mi) w
This is exact for exponential first-order degradation and approximate for nonlinear mechanisms. How-
ever, because the matrices in the stationary FDT are interpreted at the macroscopic steallyistate,
evaluated in the hypothetical limit where there are no fluctuations and where the averages remain con-
stant. In this idealization, each molecule is surrounded by a constant environment of other molecules, so
that each species perfectly mimics first-order exponential decay regardless of any nonlinear responses tc
deviations from steady state. This means that thougl{Z3j}is an approximation, it is not an additional
approximation but already implicit in the stationary FDT approach above. Miitroan thus be written
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as:
- +
Mij — _& WhereHl.j — M
T; 0 In(nj)
The second factor is a logarithmic gain @asticity[1,22,30,31]and measures how the death-to-birth
ratio changes with the concentrationsHf; = 3, then a 1% increase in componeantwill cause com-
ponentr; to decrease by increasing its death-to-birth ratio by approximately 3%. The elasticities are thus
normalized measures of the strengths of the kinetic nonlinearities. Comparing the process to a random
walk in a multidimensional landscape, elasticities measure the steepness of mountains and valleys.
Matrix D can be similarly reinterpreted. A full treatment will be published elsewhere, including arbi-
trary chemical events and other extensions. Here | restrict the analysis to nonlinear versions of simple
cases like the gene-mRNA-protein model above, where each chemical event adds or removes a single
molecule of a single species. This would not cover metabolic systems where one component turns into
another component, but still applies to a large set of networks where one component only affects the rates
of another. Mathematically, this means that:

(24)

(J5 + ) (Ji) o
Dii = d L = 2 and Di' = 0 fOI‘l . 25
) ) j # (3)
No we can use the trick from ER3) and rewriteD;; as:
2 1
Djj=——. (26)
(ni) 7

This shows that within the approximation of the FDT, and assuming that one molecule is made at a time,

the randomness introduced by probabilistic births and deaths of a certain species is inversely proportional
to its average number of molecules. However, that does not mean that the resulting fluctuations have to
be inversely proportional to the number of molecules, as that additionally depends on the dynamics and
connections between the chemical species.

4.4, Examples of elasticities

A simple example will illustrate the principle behind elasticities:

—(n\B B
) ke 3 oy _ anG /At (m)?)

dr = 3In(n) =p - 27
The elasticity thus corresponds to the difference in kinetic order between degradation and synthesis. For
an unbiased and unbounded random walk= 0 and there is no stationary state. Changing from first
order synthesisf = 1) to irreversible dimerizationd= 2) can have a similar effect as changing from
constitutive synthesisx(= 0) to well-working ‘hyperbolic’ negative feedback contral £ —1). Both
mechanisms have been implicated in homeostatic syq&2hs
Many multivariate systems are equally tractable, for example:

d
<d”tl> =2 — (n)/m L o
diny) = H= [_1 1] : (28)

ke A3 (n1) — (n2) /T2
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as can be seen in much the same way as in(EQ. If n, instead negatively affected its own synthesis
andn; was an (unsaturated) enzyme that degragedne could have:

d

<d”tl> = — (n)/m L o
dna) . = H= [ 1 2} : (29)
P Ay [(n2) — A5 (n1)(n2)

The nonlinearities are only approximations. For example,if= A, nin, then (niny) ~ (n1)(nz) Iin
Eq. (29) implicitly assumes that fluctuations are negligible (see discussion belo@LE).

The examples above only have one synthesis and degradation term per species. Each term is also
perfect power-law. For more complicated schemes the elasticities must be calculated explicitly using the
definitions in Egqs(21)—(24) but it is still often easy to eye-ball lower and upper bounds.

4.5. A generalized equation for dynamically disordered expression

Because the parameters above—average lifetimes, numbers of molecules and elasticities—are so phys
ically direct and intuitive, the FDT can be solved for structural classes of random processes collectively
without losing interpretability. The simplest possible generic model for disordered gene expression in-
cludes four exponential events, each adding or removing a single molecule:

R{ (n1)
n———n+1 diny)
Rf () Y= {If () — (] ()
= i =1 5o that d(dnt ) whereJ==R*.  (30)
ni,n2
np————np+1 d—: = (I3 (n1, n2)) — (J5 (n1, n2))
R (n1,n2)

no—————>np,—1

This is a pseudo-bivariate stochastic system, where the rates for production and degradation of the secon
species depend on the random state of the first, but not vice vBisa=(0). Using the FDT approach
above, we can solve for all stationary processes that display fluctuations around a stable fixed point.
MatricesA andD follow:

Hyi/t 0 2/({n1)T 0
M= _ | Hi/n and D= | %/ ((n)w) ' (31)
Hz1/t2  Hao/To 0 2/((n2)t2)
Solving the FDT for the normalized variancgsind rearranging the solution gives:
spontaneous or intrinsie, noise forced or extrinsicx, noise
2 2 2
N22 = 92 IV i X i + %1 X E % H22/‘E2 (32)
(n2)? (n2) Ha; (n1)? HZ, Hzz/t2 + Hi1/T1
——" ~—~— —— ——
low-copy effective environmental static one-step
fluctuations ~ Stability fluctuations susceptibility time-averaging

wheren;; = Olz(nl)*z ~ (nl)*lell.

For the spontaneous or ‘intrinsic’ noise term, the first factmii) corresponds to the average size
of the random jumps (one molecule made at a time) relative to the average size of the population. The
second factor can be interpreted in several ways. The normalized Jacobian khatrifq. (31) has
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eigenvalues- Hy1/1, and -H,,/12. Because the matrix is triangular, where the environmeaffects the
systemn, but not vice versa, the eigenvalues are the adjustment rate constants for the two components:
A perturbation innq is corrected with rate constail;;/7> (see Eq.(7)), and a perturbation in; is
corrected with rate constafb,/ .. Decreasing the average lifetimescreases the adjustment rates, but
also increases the rate of spontaneous randomisation by the same factor—measuring time in a differen
unit cannot affect stationary fluctuations. Paramétgrcan thus be seen as the rate of adjusting to steady
state normalised by the rate of deviating from steady state.
For another perspective on the same principle, consider the probadbibiyth) that the next event is
a birth rather than a death:
+
P (birth) = Agh S { —.
VA A R A
To have small fluctuations around the averégg, P (birth) should be low above the average and high
below the average. This means that the ratio between death rates and birth rates should increase sharpl
with n,. The sharpness is measured by the elastiffty. If n, changes by 1%, the ratio between the
rates change approximateti, per cent. The value aff,, thus measures the preference for returning to
steady state over deviating further.
The forced or ‘extrinsic’ noise in Eq32) follows entirely different principles. The first factor,

o2/(n1)?, simply measures the relative size of environmental fluctuations. The second factor shows how
a permanent change in would eventually affectn,). For example consider the following equation:

d(nz)
ot

Here we see how the avera¢e) follows changes im;. If concentratior; changed from one fixed
value to another,)eventually adjusts to new steady states given by:

(n2) =/ A2/ B2n. (35)

A fourfold increase im1 then only produces a two-fold change in the stationagy, and H»1/ Ho, =
—1/2. In general, we can formulate this as:

dIn{ny) Hp;

dlnn, o Hj>
where(ny) is evaluated at the steady state towards which the systems adjusis att@nges valug20].
The two elasticities reflect two different principles. Paraméigr measures how the level af affects
the birth and death balance of, while H>; measures how sensitive the eventual steady staie,pfs
to changes in its own birth and death rates.

When changes in; are not permanent it is also necessary to account for the temporal respasse in

As noted aboveH;1/1; and Hoy/ 1, are the rate constants for adjustments to steady state in components
ny andn, respectively. The ratio:

(33)

= Aony — Pa(na)?. (34)

(36)

H22/T2 _ 1 1 (37)
Hi/t1 T2/ Haz Hi/t1
~——— ———

effective memory rate of change of
of systemny environmentn
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is thus a measure for how closely follow changes im;. If n, adjusted swiftly,H»,/12 > Hi1/11, the
time-averaging factor would be close to one, andghifidjusted slowly, the time-averaging factor would

be close to zero. The adjustment rate is thus inversely related to the effective memory window: Fast
systems are only influenced by the recent history and therefore more affected by environmental changes

5. Measures and nomenclature
5.1. Measures of noise

Noise can be quantified in many ways. Autocorrelations conveniently summarize both the magnitude
and frequency of fluctuations and are fairly tractable analytically. However, most models so far have
focused on stationary averages and variances.

The results above were formulated in terms of the variance over squared average, which allows for a
clean separation of different noise sources as long as the models are weakly nonlinear. Another common
measure is the Fano factor—the variance over average—which equals one for Poisson distributions. But
the comparison with the Poissonian only works well for univariate discrete random processes, where the
variance often is proportional to the average with a proportionality constant that reflects the overall nature
of the process. For multivariate random processes, the Poisson distribution holds no special position and
using the Fano factor can be misleading. To illustrate this with a more extreme example than the bursts
in EqQ. (9), assume that protein fluctuations partly came from fluctuations in RNase concentrations. The
variance over squared average would then contain a noise term that was more or less independent o
transcription and translation rates. Multiplying by the average to obtain the Fano factor would thus force
the measure to depend on anything that affected the average.

Eq. (32) suggests that no measure works well for all types of fluctuations—spontaneous fluctuations
depend on the number of molecules while forced fluctuations do not. However, the variance over squared
average is certainly a more suitable basis for experimental interpretations. First, in most experimental
studies so far the average number of proteins per cell is too high to contribute substantial spontaneous
fluctuations. Second, by plotting the variance over squared average as a function of the inverse average
any univariate scaling behavior is easily identified without introducing scaling problems for any extrinsic
noise. Third, the relevance of a fluctuation typically depends on the normal size of the system. Because
the variance is a second order moment it must then be normalized by the squared average—the Fanc
factor for the numbers of molecules per individual is more than 100,000 times higher for elephants than
for mice.

5.2. Intrinsic vs extrinsic

Previous studies have used different classifications to highlight different aspects of noise. Here | focus
on the distinction between ‘intrinsic’ and ‘extrinsic’ noise, and consider four aspects: The statistical
nature of the fluctuations, how central a process is to gene expression, correlations between different
proteins in the cell, and experimental strategies for measuring noise:

(1) From a physical viewpoint, the terms ‘intrinsic’ and ‘extrinsic’ have no specific meaning other than
‘inside’ and ‘outside’, and thus always depend on the definition of system versus environment. With



)
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proteins as system, the first small-number term of(&yjis intrinsic and the mRNA and gene terms

are both extrinsi¢18,22] Other studie$7,20] define all three terms as intrinsic to distinguish them

from the extrinsic fluctuations in the overall state of the cell. However, spontaneous small-number
protein noise is principally different from the noise that comes from enslavement by genes or mR-
NAs, but the latter two noise sources ad principally different from, e.g., ribosome-mediated noise

that also enslaves proteins. Considering only the statistical nature of the fluctuations, there is thus no
reason to label all three noise terms in E&.as intrinsic.

From a biological viewpoint, noise sources could be classified according to how central the cor-
responding component is to gene expression. However, classifying fluctuations in gene activity as
intrinsic and fluctuations in ribosomes as extrinsic would not separate the central parts of gene ex-
pression from more peripheral cell processes. The opposite would be more appropriate: Ribosomes
are inherent to gene expression while spontaneous changes in gene activity can indirectly reflect
regulation.

Protein noise can also be classified according to correlations between different types of proteins.
Some sources of randomness are shared broadly by many genes in a cell, while others are exclusive
to a particular gene or a small set of genes. The most specific noise comes from having low protein
numbers, originating in the probabilistic births and deaths of individual molecules. Spontaneous
MRNA fluctuations are also quite specific, though some transcripts encode several different proteins.
Operator fluctuations are less specific yet and typically affect all genes in an operon. Many DNA and
RNA binding proteins act as repressors and activators, some of which are specific to a particular gene
and others which regulate large classes of genes. This can form complicated correlation structures.
For example, two genes may be targeted by the same repressor, yet their mMRNAs may be degradec
by different RNases. A few central factors are shared more universally, including ribosomes, core
polymerases, tRNAs, amino acids etc. However, different proteins are still differently affected by
such fluctuations because they have different sequences and lifetimes.

From this perspective, the gene-mRNA-protein terms in(Excould all be intrinsic, taking intrinsic

to mean specific. However, it should then be emphasized that such distinctions can be made in many
different ways. The mRNA term is in some sense more intrinsic than the gene term, but the gene
term is not necessarily more intrinsic than fluctuations in repressor concentrations.

Finally, the classifications can be tailored to the available experimental methods. A particularly
clever strategy for separating noise sources is based on correlations between the expression of twc
physically separate but identically regulated fluorescent reporter §e/®slf the two proteins are
kinetically independent, i.e., if the mechanisms are linear, the normalized covariance between them
then equals the sum of all shared noise tefa®3. Fluctuations in ribosomes, polymerases, RNases

etc thus all end up in the ‘extrinsic’ covariance category, while the gene-mRNA-protein terms in
Eq. (4) are ‘intrinsic’ because eadfp has its own operators and transcripts. The appeal of this ap-
proach is not only that some noise sources are separated from others, but also that the separation t
some extent relates to specificity (see (3) above). The only risk is that the terms are over-interpreted,
construing biological or physical meaning where none is intended: The ‘intrinsic noise’ only par-
tially relates to specificity, as demonstrated by experiments where most extrinsic noise came from a
repressor that was specific to that particular gaiheRealizing that the distinction largely is a side-
effect of the experimental set-up in turn opens the doors for other applications. If the two reporters
were placed under the same operator, operator fluctuations would become shared between the twc
genes and thus move from the intrinsic to the extrinsic category. If the reporters were encoded on
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the same transcript, the mRNA term would also become extrinsic. If they were regulated by different
repressors, repressor fluctuations would move from the extrinsic to the intrinsic category. And so
on. The dual reporter strategy does not separate fluctuations based on a priori physical or biological
principles. It is much more general and useful than that.

6. Analytical models of protein noise, 1977-2004

Detailed models of stochastic gene expression have been published for almost 30 years. Here | only
discuss some analytical studies of constitutive expression (feedback analyses excluded), possibly ignor-
ing others that deserve equal mention (if so please contact me so that the mistake can be corrected).

In the 1970s, David Rignejl0,12—-14] Otto Berg[11] and co-workers pioneered the field in a series
of papers that predicted mRNA and protein fluctuations in growing cells. One of their take-home mes-
sages was that mRNAs produce geometrically distributed translation bursts if they are either translated or
degraded with constant probabilities, and that this in turn widens the protein distributions. Technically,
the models include the mRNA and protein part of B, but also account for deterministic cell growth,
chromosome replication at a fixed time point in the cell cycle, and partitioning of protein copies at cell
division. These insightful studies were carefully motivated and argued, and though some of the analyt-
ical expressions were rather complicated, the papers are as rewarding to read as any of the more recer
analyses. They only failed to initiate a continuous tradition because they were 20 years before their time.

In 1987, Tapaswi et a[15] considered a stochastic model for a biological oscillator, assuming that a
transcript effectively inhibited its own gene by kicking out a gene activator. Disregarding the feedback
term, their model was identical to the gene-mRNA model above and they used probability generating
functions to calculate the marginal distribution of genes and mRNAs, but did not emphasize conditions
when fluctuations are large. In 1995, Peccoud and Y[d#t used the same mathematical model to
describe genes and proteins, assuming that mMRNAs are degraded rapidly. They used moment equation
to derive exact results for how averages and variances depend on kinetic parameters, predicting that gene
that slowly and randomly switch on and off produce large relative protein fluctuations. In 2001, Kepler
and Elstor{17] revisited the results for the gene-protein part of the model, arriving at the same results as
Peccoud and Ycart, but also analyzing regulated systems in terms of bifurcations, escape times etc.

In 2000-2001, Paulsson et &3] slightly extended the mRNA-protein model by calculating the
stationary distribution for geometrically distributed translation bursts. They also formulated the variance
over squared average in terms of internal and time-averaged external fluctya8ipres in Eq.(8). At
the same time, the same model was independently analyzed by Thattai and van Oudda8ardien
calculated time-dependent moments and emphasized translation bursts, but also treated autoregulate
systems as well as noise propagation in longer expression cag&ddemn 2002, Swain et al[20]
presented a model that accounted for several steps in transcriptional initiation, as well as replication, cell
growth and division. This was more complete than previous studies, but beneath the details the model
was close to identical to Eq4). The apparent discrepancy comes from the fact that the gene noise
was presented as a part of the small-number mRNA noise. The authors also motivated the dual reporter
correlation strategy mathematically.

In 2003, Sasai and Wolyng21] mapped stochastic gene expression onto the quantum many-body
problem, presenting a different way of deriving the gene-protein model above as well as analyzing sys-
tems with multiple attractors. In 2004, Paulsson interpreted the Fluctuation—Dissipation Theorem in
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terms of average numbers of molecules, lifetimes, and elasticities, and derivg82lctp reinterpret

some experimental findings. Raser and O'S@&gublished results that are mathematically identical to
Eq.(4), but viewed from a different perspective. More papers are coming out by the minute so this review
will most likely be out of date before it is printed.

Stochastic gene expression has also been frequently modeled using Monte Carlo simulations, perhap:
most notably by McAdams and Arkii35] who in 1997 introduced the basic notions to a broader audi-
ence. Their conclusions were similar to those of earlier analytical works, for example emphasizing that
protein synthesis may occur in geometrically distributed bursts. But by emphasizing biological implica-
tions they provided a much needed rallying point for subsequent studies.

7. Futuredirectionsand closing remarks

The analysis above only shows that most models have focused on the same phenomenon, not tha
this phenomenon really captures gene expression in living cells. Most experimental results are certainly
consistent with the standard model, sometimes requiring slight modifications, but qualitatively different
models can be equally consistent with the same data. A few idealizations above are particularly notable:

First, there are no strong indications that genes, RNAs and proteins are the critical molecules that
contribute small-number fluctuations. For example, steps in the elongation phases of transcription and
translation may also fluctuate greatly. It has been suggested that the anabolic nature of protein synthesis
joining together smaller subunits, generates enormous fluctuations in the levels of charged2RINAs
How would this affect fluctuations in protein concentrations? The focus on genes, RNAs and proteins
may very well turn out to be a purely sociological choice, reflecting how cartoons are drawn rather than
actual physical properties.

Second, many enzyme and substrate concentrations are statistically correlated. Such correlations ma
even have evolved to suppress total protein fluctuations. For example assume that a gene for a certair
protein is transcribed by a certain sigma factor. Further assume that the corresponding mRNA is degraded
by an RNase that is transcribed by the same sigma-factor. A random increase in the concentration of the
sigma factor then increases both the synthesis and degradation rates of the mRNA, and the two effects
could partially cancel out. Other correlations could have the opposite effect and increase fluctuations
instead.

Third, the discrete probabilistic events are assumed to be exponential, yet we know that gene acti-
vation, transcription and translation consist of numerous small steps. Does this qualitatively change the
nature of the fluctuations in concentrations?

All these issues will undoubtedly be addressed in the next few years, both mathematically and ex-
perimentally. However, in addition to solving the different individual problems, the community as a
whole also faces the collective challenge of converging towards a coherent discipline. Detailed studies
are definitely useful to ensure that the supposed mechanisms of a certain system are consistent witt
the idealizations we use to understand them. But without idealized models and generic theory to begin
with, details are unintelligible. Analytical theory is not automatically better than simulations though.
Simply following mathematical rules and deriving complicated algebraic expressions could even prevent
progress, making problems appear understood when they are not. However, these are the teething trouble
of any new discipline. Given the exploding experimental progress there is little doubt that stochastic gene
expression is establishing itself as one of the most central and exciting problems in molecular biology.
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