
Available online at http://www.idealibrary.com on
doi:10.1006/bulm.2000.0201
Bulletin of Mathematical Biology(2000)62, 1137–1162

Stoichiometry in Producer–Grazer Systems: Linking
Energy Flow with Element Cycling

IRAKLI LOLADZE AND YANG KUANG

Department of Mathematics,

Arizona State University,
Tempe, AZ 85287-1804, U.S.A.
E-mail: loladze@asu.edu

E-mail: kuang@asu.edu

JAMES J. ELSER

Department of Biology,

Arizona State University,
Tempe, AZ 85287-1501l, U.S.A.
E-mail: j.elser@asu.edu

All organisms are composed of multiple chemical elements such as carbon, nitro-
gen and phosphorus. Whileenergy flowandelement cyclingare two fundamental
and unifying principles in ecosystem theory, population models usually ignore the
latter. Such models implicitly assume chemical homogeneity of all trophic lev-
els by concentrating on a single constituent, generally an equivalent of energy. In
this paper, we examine ramifications of an explicit assumption that both producer
and grazer are composed of two essential elements: carbon and phosphorous. Us-
ing stoichiometric principles, we construct a two-dimensional Lotka–Volterra type
model that incorporates chemical heterogeneity of the first two trophic levels of
a food chain. The analysis shows that indirect competition between two popula-
tions for phosphorus can shift predator–prey interactions from a(+,−) type to
an unusual(−,−) class. This leads to complex dynamics with multiple positive
equilibria, where bistability and deterministic extinction of the grazer are possible.
We derive simple graphical tests for the local stability of all equilibria and show
that system dynamics are confined to a bounded region. Numerical simulations
supported by qualitative analysis reveal that Rosenzweig’s paradox of enrichment
holds only in the part of the phase plane where the grazer is energy limited; a new
phenomenon, the paradox of energy enrichment, arises in the other part, where the
grazer is phosphorus limited. A bifurcation diagram shows that energy enrichment
of producer–grazer systems differs radically from nutrient enrichment. Hence, ex-
pressing producer–grazer interactions in stoichiometrically realistic terms reveals
qualitatively new dynamical behavior.
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1. INTRODUCTION

Energy flow through trophic levels is a fundamental and unifying principle in
ecosystem science (Odum, 1968; Reiners, 1986; Hagen, 1992). It is based on two
ideas. First, this approach separates an ecosystem into distinct trophic levels. The
first level aggregates all biomass that transforms solar energy into a usable chem-
ical form, i.e., primary producers (hereafter, producers). The next level comprises
all organisms directly feeding on producers, i.e., herbivores or grazers. Carnivores,
feeding on herbivores, are the third level, and so on. The other idea is that energy
must dissipate as it flows through this vertical structure due to the second law of
thermodynamics. Hence, as energy is transferred from one trophic level into the
next, some part of it must be lost, forcing ecological transfer efficiency or produc-
tion efficiency to be less than 100%.

Usually, population dynamics models assume a constant production efficiency,
as in the classical Lotka–Volterra equations, which succinctly utilize the energy
flow principle:

dx

dt
= bx− f (x)y (1a)

dy

dt
= ef(x)y− dy. (1b)

Here the system is divided into two trophic levels, prey and predator (x andy are
their respective densities or biomasses in the same units) and the yield constant or
the production efficiency(e), manifests the second law of thermodynamics(0 ≤
e < 1). Sincee is a constant and the functional response of the predator,f (x),
is a monotone non-decreasing function, it follows that higher prey density never
lowers predator growth rate. In other words, energy enrichment of the first trophic
level never decreases the flow of energy to the next level. In fact, all predator–
prey relationships are considered as a (+,−) type, as indicated by the signs of the
off-diagonal terms in the community matrix or Jacobian of system (1).

In the above discussion we used the terminology of energetics and never men-
tioned chemical elements. However, in reality, energy flow in a food web is intri-
cately bound to chemical elements. Solar energy, once transformed by producers,
flows through an ecosystem only as chemical energy in covalent bonding between
various elements in organic compounds. Furthermore, organisms build themselves
from a variety of essential nutrients such as carbon, nitrogen, phosphorous, sulfur,
and calcium. Can the demand of organisms for multiple nutrients alter energy flow
and predator–prey interactions in a way not accounted for by energetics consid-
erations? Recent experiments involving zooplankton–phytoplankton interactions
show that it can.

Urabe and Sterner (1996) grew algae (a producer) at different light intensities in
batch cultures. The systems were open for light energy and carbon that entered
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the system from air as CO2. Phosphorus was limited while all other nutrients were
present in abundance. As light input was increased, algal density increased through
the entire range of light intensity. One would expect that the growth rate of zoo-
plankton grazing on the algae would positively correlate with algal density. This
indeed happened, but only from low to intermediate light levels. Further increases
in light intensity resulted in yet higher algal density but lower animal growth rates.
Why did high food density hurt the grazer growth rate? One cannot explain this
paradoxical result in energy terms without makingad hocassumptions. However,
Urabe and Sternergave a simple explanation involving the stoichiometry of two
essential elements, carbon and phosphorous.

At higher light intensity, algae increased photosynthetic fixation of carbon. Since
the quantity of phosphorus in the system was limited, this led to lower phospho-
rous to carbon ratio (P:C) in algal biomass. However, zooplankton physiology
does not allow significant variation in body P:C ratio. This is a rather general
property among consumer species. Thus, a growing grazer must maintain a spe-
cific chemical composition of its body (Andersen and Hessen, 1991; Sterner and
Hessen, 1994). If the P:C in algal biomass becomes lower than the zooplankton’s
specific P:C ratio, then the grazer cannot utilize the excess energy (carbon) ac-
quired from algae and simply excretes or egests it. In other words, under high light
energy input, algae becomelow quality foodfor the grazer lowering the production
efficiency in carbon terms [simultaneously, the grazer’s assimilation of phosphorus
increases;Elser and Urabe (1999)]. These and other results demonstrate that mass
balance of multiple chemical elements can affect trophic dynamics (Elseret al.,
1998; Sterneret al., 1998). However, current ecological theory fails to stress close
connections between the cycling of chemical elements and the flow of energy in
food webs. Possibly, the reason lies in the historical development of energy flow
concepts and population dynamics theory.

Lotka (1925) pioneered thermodynamic applications in ecology in his book ‘El-
ements of Mathematical Biology’, the same book where he introduced and anal-
ysed predator–prey equations. In the chapter ‘The Energy Transformers of Nature’,
Lotka wrote that the main variables in his general equations, ‘aggregates of living
organisms—are, in their physical relations,energy transformers’. As energy flows
through the system, a fraction of it is lost because ‘the second law of thermo-
dynamics inexorably demands this payment of a tax to nature’. However, Lotka
did not limit himself to applications of energetics principles to ecology and envi-
sioned how additional physical-chemical laws might affect ecological dynamics.
He stressed that living matter is not a homogeneous substance for energy transfor-
mation and storage, but instead is composed of multiple chemical elements: each
energy transformer ‘does not operate with a single working substance, but with
a complex variety of such substances, a fact which has certain important conse-
quences’. Therefore, Lotka thoroughly analysed and compared the ratios of essen-
tial chemical elements in organisms and their abiotic environment, one of the first
applications of its kind. Furthermore, he used a special term, ‘stoichiometry’, to
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denote ‘that branch of the science which concerns itself with material transforma-
tions, with the relations between the masses of the components’.

Unfortunately, Lotka’s work in the area of stoichiometry did not gain much pop-
ularity among ecologists. Instead, it wasLindeman’s (1942) classic paper, ‘The
trophic-dynamic aspect of ecology’, that brought new meaning to ecosystem sci-
ence. Lindeman separated lake communities into distinct trophic levels: phyto-
plankton, zooplankton, plankton predators and swimming predators. Using field
data, he quantified energy transfer efficiencies between trophic levels. Like Lotka,
Lindeman saw intricate connections between energy and nutrients and used the
same arrows to denote both energy and nutrient flows on his famous diagram. Lin-
deman even discussed how the ratio of two essential elements, nitrogen to phos-
phorus (N:P), affects lake productivity. However, Lindeman’s work is primarily
remembered in the context of energy flow in food chains. Subsequent events saw
increasing separation of energy flow and biogeochemical cycling as distant phe-
nomena to be studied separately.

In the next decade Howard Odum (1957, 1960), drawing parallels between eco-
logical, physical and electrical systems, isolated energy from nutrients and created
unambiguous pure energy flow diagrams. Concentrating on energy allowed him to
avoid complications and confusion with recycling. Unlike nutrients, energy, once
lost in respiration, cannot be recycled and therefore, flows through trophic levels
unidirectionally. The convenience of such single common currency for an entire
system became apparent to ecologists. Indeed, Howard’s brother, EugeneOdum
(1959), made energy flow diagrams part of his influential ‘Theoretical Ecology’
book. It can be argued that from there, the energy flow concept, largely divorced
from element cycling, has had a preeminent place in discussion of food web dy-
namics.

Has this development of energy flow principles influenced population dynamics
theory? Consider that 70 years of development of the Lotka–Volterra equations has
enhanced them with age, size and spatial heterogeneity. However, for the originator
of this equations, Lotka, another kind of heterogeneity, ‘chemical heterogeneity’,
was more important. It is ironic that this direction has not received much attention
until very recently.

Recent advances in stoichiometric theory have revived Lotka’s work. Extending
general approaches of resource ratio competition theory (Tilman, 1982), Sterner
(1990), Hessen and Andersen (1992), Elseret al. (1998) andDeMott (1998) have
investigated stoichiometric effects on algae–zooplankton interactions.Andersen
(1997) explicitly used stoichiometric constraints in modeling the dynamics of
pelagic systems; in particular, the assimilation efficiency of zooplankton in his
model depends on nutrient content of phytoplankton. Kooijman’s (2000) dynamic
energy and mass budgets theory encompasses energy and nutrient fluxes on cellu-
lar, organismal and population levels. We refer readers toElser and Urabe (1999)
for a review of recent progress in stoichiometric nutrient recycling theory and po-
tential new directions proposed by these authors.
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The simple two-dimensional Lotka–Volterra model (1) captures the essence of
the energy flow principle, yet all vestiges of stoichiometric reality are absent. In
this paper we build stoichiometric principles into Lotka–Volterra equations with a
minimum of added complexity. As in the above described experiments, we are pri-
marily interested in effects of light energy enrichment of producer–grazer systems.
However, analytical and numerical analyses of the resulting model (Sections3
and4) provide more insight into system dynamics. For example, bifurcation anal-
ysis reveals qualitative differences in the effects of energy and nutrient enrichment
on trophic dynamics.

2. MODEL CONSTRUCTION

In our qualitative model we concentrate on the first two trophic levels of a food
chain, where the prey is a primary producer and the predator is a grazer. Since
we will be drawing parallels with the above described experiments we can think of
the producer as phytoplankton (algae) and the grazer as zooplankton (for example,
Daphnia), both placed in a clear flask in a constantly stirred culture. Our simple
ecosystem is open for light energy and carbon, which freely enters the system from
the atmosphere for fixation by the producer. We will express our assumptions about
other nutrients later in this section.

We start the model construction with the Rosenzweig–MacArthur variation of
Lotka–Volterra equations as applied to our spatially homogeneous system:

dx

dt
= bx

(
1−

x

K

)
− f (x)y (2a)

dy

dt
= ef(x)y− dy, (2b)

where

x is the density of producer (in milligrams of carbon per liter, mg C l−1),
y is the density of grazer (mg C l−1).
b is the intrinsic growth rate of producer (day−1),
d is the specific loss rate of grazer that includes metabolic losses (respiration)

and death (day−1).
f (x) is the grazer’s ingestion rate, which we take here as a Holling type II func-

tional response. In other words,f (x) is a bounded smooth function that
satisfies the following assumptions:

f (0) = 0, f ′(x) > 0, f ′(0) <∞ and f ′′(x) < 0 for x ≥ 0. (3)
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The choice of Holling type II function is largely for convenience. For most of the
analysis that follows, one can choose Holling type I and III functional responses as
well, though they may occasionally make analytical derivations more tedious.

The parameterse andK require special consideration and will undergo signifi-
cant changes before we arrive at our terminal model (6). In model (2):

(a) e is aconstantproduction efficiency (yield constant). This is the conversion
rate of ingested food into grazer biomass. The basic model (2) is purely energetic in
the sense that producer and grazer densities are given in energy equivalents. Such
an approach makes the producer always of the same quality for the grazer and
leaves no natural and internal mechanism to introduce food quality. In reality, the
process of food assimilation is an extremely complex process that depends strongly
on the quality of ingested food, which in turn depends on nutrient availability.
Reducing such a complicated conversion to a single constante is a weakness in
many predator–prey models.

(b) K is the producer’sconstantcarrying capacity that depends on some external
factors bounding its density. The only controlled external factor for our system
is light intensity. Suppose that we fix light intensity at a certain value and let the
producer grow without the grazer and with ample nutrients. Then producer density
will increase until self-shading ultimately stabilizes it at some value,K . While K
is independent of any internal factors it positively correlates with light intensity as
higher light input (that is, below photoinhibition level) allows the producer to reach
higher density. What if some nutrient becomes limiting and a grazer is present in
the system? Can such internal factors affect carrying capacity? In the more general
context of population dynamics, is it a sound modeling practice to tie the upper
bound of population density to a single constant?

Incorporation of stoichiometric reality into the model naturally resolves these
problems. So let us proceed to this step, with our assumptions below.

Any form of life on the Earth builds itself out of various essential elements such
as carbon, nitrogen, phosphorus, calcium, sulfur and potassium. We will track
only two essential substances, carbon and phosphorus. We assume that all other
nutrients are abundant in the system and that their content in producer biomass does
not limit grazer growth. Since the bulk of dry weight of most organisms is carbon,
we express biomass of the populations in carbon terms. There is nothing particular
with the choice of phosphorus; any essential nutrient can be considered instead. We
chose phosphorus because it is frequently a limiting nutrient in freshwater systems
(Schindler, 1977; Elseret al., 1990) and was limiting to both algae and grazers in
the experiments ofUrabe and Sterner (1996), andSterneret al. (1998). What is
important is that we introduce a second ‘working substance’.

ASSUMPTION 1. The total mass of phosphorus in the entire system is fixed, i.e.,
the system is closed for phosphorus with a total of P (mg P l−1).

The following important stoichiometric principles lead to the next assumption.
Every organism requires at least a certain, species-specific, fraction of phosphorus
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in their biomass. We say ‘at least’, because in producers P:C can vary significantly
within a species. For example, the green algaScenedesmus acutuscan have cellular
P:C ratios (by mass) that range from 1.6× 10−3 to 13× 10−3. In animals, P:C
varies much less within a species. For example,Daphnia’s somantic elemental
composition appears to be homeostatically regulated within narrow bounds (P:C
around 31× 10−3 by mass), even when food P:C diverges strongly (Sterner and
Hessen, 1994).

ASSUMPTION 2. Phosphorus to carbon ratio (P:C) in the producer varies, but
it never falls below a minimum q (mg P/mg C); the grazer maintains a constant
P :C, θ (mg P/mg C).

ASSUMPTION 3. All phosphorus in the system is divided into two pools: phos-
phorus in the grazer and phosphorus in the producer.

FollowingAndersen (1997), we assume immediate recycling of phosphorus from
excreted and dead matter and its immediate utilization by the producer. Hence,
there is no free, inorganic phosphorus pool. We will address the validity of this
assumption in the discussion section. Here, we only mention that in most freshwa-
ter systems the concentration of free phosphate in water is often very low or below
detection because algae quickly absorb almost all available phosphorus.

Let us see how these three assumptions affect model (2). Light intensity limits
producer density toK (mg C l−1). However, even in the absence of such an external
limitation, the combination of Assumptions1 and2 imposes another limit on the
producer,P/q (mg C l−1). Moreover, the grazer sequesters some phosphorus from
the total pool ofP; to be exact, the grazer containsθy mg P l−1 of phosphorus, thus
further reducing the upper limit for producer density to(P − θy)/q (mg C l−1).
Hence, the carrying capacity of the producer is defined by external (light energy) or
internal (nutrient, the grazer) factors, which we express as the following minimum
function:

min

(
K ,

P − θy

q

)
. (4)

Next, we show how stoichiometry brings ‘food quality’ into the model and affects
production efficiency of the grazer.

By Assumption2, the producer’s P:C varies. To express this variable quantity,
we note that the producer’s phosphorus content isP − θy mg P l−1 (follows from
Assumptions1–3). Since we measure population densities in carbon terms and the
producer’s density isx (mg C l−1), it follows that the producer’s P:C is(P−θy)/x
(mg P/mg C).

While producer stoichiometry varies, by Assumption2 the grazer must main-
tain a specific P:C, θ . Following Hessen and Andersen (1992), we say that the
producer is optimal food for the grazer if its P:C is equal to or greater thanθ . ‘Op-
timal’ here means that the grazer is able to maximally utilize the energy (carbon)
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content of consumed food, ‘wasting’ any excess of phosphorus it ingests. Thus,
we replace the constant production efficiencye in model (2) by the following pa-
rameter: ê is the maximal production efficiency, which is achieved if the grazer
consumes food of optimal quality. Due to thermodynamic limitations,ê< 1.

If the producer’s P:C< θ , then the grazer excretes or egests the excess of carbon
in the ingested food in order to maintain its constant P:C. This reduces production
efficiency in carbon terms. Hence, production efficiency is not a constant, but
depends on both energetic and nutrient limitations. We express it as a minimum
function:

êmin

(
1,
(P − θy)/x

θ

)
. (5)

Finally, we incorporate the variable carrying capacity (4) and the variable pro-
duction efficiency (5) into equations (2a) and (2b), resulting in:

dx

dt
= bx

(
1−

x

min(K , (P − θy)/q)

)
− f (x)y, (6a)

dy

dt
= êmin

(
1,
(P − θy)/x

θ

)
f (x)y− dy. (6b)

As to the two minimum functions in this model: the main qualitative results
presented in this paper are not affected by changing the minimum functions to
their smoother analogs. Although the minimum function may require the analysis
to be split into two cases, each of these cases is more clear and simple than their
common smooth analog. In addition, note that

bx

(
1−

x

min(K , (P − θy)/q)

)
= bx min

(
1−

x

K
, 1−

x

(P − θy)/q

)
and

bx

(
1−

x

(P − θy)/q

)
= bx

(
1−

q

(P − θy)/x

)
. (7)

The left-hand side of (7) is a logistic equation, where(P− θy)/q is the carrying
capacity of the producer determined by phosphorus availability. The right-hand
side shows that it can be viewed as Droop’s equation (Droop, 1974), whereq is the
minimal phosphorus content of the producer and(P− θy)/x is its actual phospho-
rus content.

3. QUALITATIVE ANALYSIS

3.1. Boundedness and invariance.One of the unusual features of this model is
that the carrying capacity of the producer depends on the density of the grazer. In
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the absence of the grazer, the carrying capacity of the producer depends only on
light and phosphorus availability, which we denote as

k = min(K , P/q). (8)

A technical note: the model is well defined asx→ 0. Conditions (3) assure that
f (x)/x has the following useful properties (see AppendixA):

lim
x→0

f (x)

x
= f ′(0) <∞ and

(
f (x)

x

)′
< 0 for x > 0. (9)

This means thaty′(t) is well defined asx→ 0, because min(1, (p− y)/x) f (x) =
min

(
f (x), (p− y) f (x)

x

)
.

An important consequence of Assumptions1 and2 is the boundedness of solu-
tions. Indeed, if the total amount of phosphorus is bounded in the system and both
populations require it, then their densities should be bounded as well (even if light
input is abundant). AppendixB contains the proof of the following lemma.

L EMMA 1. Solutions with initial conditions in the open rectangle{(x, y) : 0 <
x < k,0< y < P/θ} remain there for all forward times.

We can obtain even better bounds on solutions by considering the following.
Total phosphorus in the system isP; thus, the sum of phosphorus in the producer
and the grazer cannot exceedP. Assumption2 suggests that

qx+ θy ≤ P. (10)

Thus, we expect that incorporation of stoichiometry into the model should confine
its dynamics to{(x, y) : 0 < x < k, 0 < y, qx+ θy ≤ P} which is a trapezoid
if K < P/q or a triangle ifK ≥ P/q. (see Fig.1). The following theorem shows
that this is indeed true.

THEOREM 2. Solutions with initial conditions in the open trapezoid (or triangle
if K ≥ P/q)

1 ≡ {(x, y) : 0< x < k,0< y,qx+ θy < P} (11)

remain there for all forward times.

The proof of this theorem can be found in AppendixC, which takes advantage of
the following simple scaling for facilitation of qualitative analysis. We eliminate
the parameterθ , while our time scale (days) and all other parameters, exceptP and
q, remain unchanged. Let

p :=
P

θ
and s :=

q

θ
,

where
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producer

y

x0

Region I

Region II

x1

Nullclines:

grazer

x2

p

p K

Figure 1. Stoichiometric properties confine dynamics to the trapezoid-shaped area, where
the line,qx + θy = P (note: p = P/θ ), divides the phase plane into two regions. In
Region I, like in the classical Lotka–Volterra model, food quantity limits grazer growth. In
Region II (the shaded area) food quality, i.e., the producer’s phosphorus content, constrains
grazer growth. Competition for limiting nutrient between grazer and producer alters their
interactions from(+,−) in Region I to(−,−) in Region II. This bends down the grazer
nullcline in Region II. The shape of the grazer nullcline with twox-intercepts,x1 and
x2, creates a possibility for multiple positive steady states as shown on the figure. The
horizontal line separates the phase plane in a different way: above this line, producer
carrying capacity is limited by phosphorus; below, by light.

p is maximal grazer density allowed by total phosphorus in the system and
s = q/θ is a dimensionless constant equal to the producer’s minimal P:C,
q, divided by the constant grazer P:C, θ .

Then (4) and (5) become

min

(
K ,

p− y

s

)
and êmin

(
1,

p− y

x

)
.

Then system (6) becomes

dx

dt
= bx

(
1−

x

min(K , (p− y)/s)

)
− f (x)y (12a)

dy

dt
= êmin

(
1,

p− y

x

)
f (x)y− dy. (12b)

The theorem assures that all dynamics will be confined to a bounded region. We
will use 1̄ to denote the region1 together with its boundary with the exception of
a biologically insignificant point(0, p) (at this point the grazer contains all phos-
phorus and thus the producer is absent from the system), i.e.,

1̄ = (∂1 \ (0, p)) ∪1.
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Note, that initial conditions outside of̄1 are meaningless, because they would
mean that we start with higher phosphorus concentration in the system than the
defined total concentration ofP.

3.2. Nullclines. To simplify the analysis, we rewrite system (12) in the follow-
ing form:

x′ = x F(x, y) (13a)

y′ = yG(x, y), (13b)

where

F(x, y) = b

(
1−

x

min(K , (p− y)/s)

)
−

f (x)

x
y (14a)

G(x, y) = êmin

(
1,

p− y

x

)
f (x)− d = êmin

(
f (x), (p− y)

f (x)

x

)
− d.

(14b)

Conditions (9) assure that system (13) is well defined and partial derivatives of
F andG exist almost everywhere on̄1:

Fx =
∂F

∂x
=

b

min(K , (p− y)/s)
−

(
f (x)

x

)′
y (15)

Fy =
∂F

∂y
=

{
−

f (x)
x < 0 if y < p− sK

−(bsx)/(p− y)2− f (x)
x < 0 if y > p− sK

(16)

Gx =
∂G

∂x
=

{
ê f ′(x) > 0 if y < p− x

ê(p− y)
( f (x)

x

)′
< 0 if y > p− x

(17)

Gy =
∂G

∂y
=

{
0 if y < p− x

−ê f (x)
x < 0 if y > p− x.

(18)

A very important feature of the model is the change in the sign ofGx, which
measures the effect of producer density on grazer net growth rate. Conventional
ecological theory considers this effect as positive (or 0 in the case of the saturation
of grazer response) and thus traditionally classifies grazer–producer and indeed
all other predator–prey interactions as (+,−). However, in this model the line,
y = p− x, divides the phase plane into two regions (see Fig.1):

(i) Region I, y < p − x, where only food quantity (energy or carbon) limits
grazer growth, (+,−), and
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(ii) Region II, y > p − x, where food quality (phosphorus content) constrains
grazer growth, (−,−).

Hence, in Region I the grazer growth benefits from higher prey densities like in
classical predator–prey theory. However, in Region II the grazer indirectly com-
petes with its prey for phosphorus. Such competition shifts the grazer–producer
relationship from a conventional (+,−) in Region I to an unusual (−,−) in Re-
gion II. This shift is responsible for the peculiar shape of the grazer nullcline, which
in most predator–prey models is a non-decreasing line. Before we consider its
shape in model (6), let us state our last assumption, without which the grazer will
not have a chance to persist.

ASSUMPTION 4. The maximal net growth rate of the grazer is positive.

Mathematically, this is equivalent to the following inequality

max
1̄

G(x, y) > 0. (19)

The grazer nullcline is determined by

G(x, y) = 0. (20)

From continuity ofG(x, y), (19) andG(0,0) < 0 it follows that (20) has a solu-
tion. Hence, the grazer nullcline exists in1̄ and its slope is given by

−Gx/Gy. (21)

Using (17), (18) and (21) we find that in Region I, the grazer nullcline is a vertical
segment (undefined slope) like in the Rosenzweig–MacArthur model, while in Re-
gion II it is declining. The declining grazer nullcline reflects the negative effect of
diminishing food quality at higher producer density. Next, we show that the grazer
nullcline has exactly twox-intercepts, which are solutions of

g(x) ≡ G(x,0) = 0. (22)

Sinceg′(x) = Gx(x,0), (17) yields thatg(x) is strictly increasing for 0≤ x < p
and strictly decreasing forp ≤ x. Hence, maxx≥0 g(x) = g(p). Observe that
on 1̄,

G(x,0) ≥ G(x, y). (23)

Using (23) and (19), we find that

g(p) = max
x≥0

g(x) = max
x≥0

G(x,0) ≥ max
1̄

G(x, y) > 0. (24)
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Thusg(x) is a continuous function that is strictly increasing on the interval(0, p)
while being negative on its left end (g(0) < 0) and positive on its right end
(g(p) > 0). Thus, on this interval (22) has a unique solution, which we denote
x1 (see Fig.1). The boundedness off (x) yields thatg(x) < 0 for large enough
x, and by similar arguments we find that (22) has a unique solution on(p,∞),
which we denotex2. Thus, 0< x1 < p < x2. In other words, the grazer nullcline
has onex-intercept in Region I and a second one in Region II.Andersen (1997),
andSchwinning and Parson (1996) analysing their higher dimensional models ob-
tained hump-shaped nullclines by projecting manifolds on a plane. Interestingly,
Schwinning and Parson (1996) reported the change in the type of grass–legume
interactions from(+,−) to (−,−) due to a shift in the relative importance of ni-
trogen limitation to a light limitation. Here, the triangle-shaped grazer nullcline
reflects the negative role of worsening food quality on the grazer in Region II.

The producer nullcline is a solution ofF(x, y) = 0. This yields a continuous
curve withy-intercept at(0, b/ f ′(0)) andx-intercept at(k,0).

3.3. Equilibria on the boundary. To find equilibria we solve

x F(x, y) = 0 (25a)

yG(x, y) = 0. (25b)

The only boundary equilibria areE0 = (0,0) andE1 = (k,0).
To determine the local stability of these equilibria, we consider the Jacobian of

system (13): (
F(x, y)+ x Fx(x, y) x Fy(x, y)

yGx(x, y) G(x, y)+ yGy(x, y)

)
. (26)

At the origin it takes the form

J(E0) =

(
b 0
0 −d

)
.

Since the determinant is negative, the eigenvalues have different signs. Thus, the
origin is always unstable in the form of a saddle.

At E1 the Jacobian is

J(E1) =

(
−b Fy(k,0)
0 G(k,0)

)
.

If G(k,0) is positive, then the determinant is negative, yielding thatE1 is un-
stable. This means that the grazer can invade the system around this equilibrium
point. Otherwise,E1 is locally asymptotically stable. The following proposition
provides a graphical criterion for the stability ofE1.
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PROPOSITION 3. The steady state E1 is a saddle if it lies between the two x-
intercepts of the grazer nullcline, i.e., if x1 < k < x2. If k /∈ [x1, x2], then E1 is
locally asymptotically stable.

Proof. Recall thatG(k,0) = g(x) andg(x1) = g(x2) = 0. Hence,g(k) > 0 for
x1 < k < x2, which meansG(k,0) > 0 holds, and henceE1 is a saddle. Ifk < x1

or k > x2, theng(k) < 0, makingE1 locally asymptotically stable. 2

3.4. Internal equilibria. Next we derive a simple graphical test that will deter-
mine the local stability of any internal equilibrium of our system. Equilibria are
the intersection points of the producer and the grazer nullclines. Note that the
slope of the producer and grazer nullclines at(x, y) are defined by−(Fx/Fy) and
−(Gx/Gy), respectively. The hump-shaped grazer nullcline creates a possibility
for multiple positive equilibria as Fig.1 shows. Suppose that(x∗, y∗) is one such
equilibria, i.e.,F(x∗, y∗) = 0 andG(x∗, y∗) = 0.

The Jacobian (26) at (x∗, y∗) takes the following form:

J(x∗, y∗) =

(
x∗Fx(x∗, y∗) x∗Fy(x∗, y∗)
y∗Gx(x∗, y∗) y∗Gy(x∗, y∗)

)
.

Its determinant and trace are

Det(J(x∗, y∗))= x∗y∗(FxGy − FyGx) (27)

Tr(J(x∗, y∗))= x∗Fx + y∗Gy. (28)

We split the analysis into two cases depending on whether the equilibrium(x∗, y∗)
is in Region I or II:

(i) Suppose,(x∗, y∗) lies in Region I (y∗ < p− x∗). Then (16)–(18) yield that
at (x∗, y∗), Fy < 0, Gx > 0, Gy = 0. Therefore, the sign of (27) is positive,
while

sign(Tr(J(x∗, y∗))) = sign(Fx) = sign

(
−

Fx

Fy

)
.

Since the fraction−(Fx/Fy) is the slope of the producer nullcline it follows
that (x∗, y∗) is locally asymptotically stable if the producer nullcline is de-
clining at (x∗, y∗). If it is increasing at(x∗, y∗), then the equilibrium is a
repeller.

(ii) Suppose,y∗ > p − x∗. Then (16)–(18) yield that at(x∗, y∗), Fy < 0,
Gx < 0, Gy < 0. An elementary derivation shows that

sign(Det(J)) = sign(FxGy − FyGx) = sign

(
FxGy − FyGx

FyGy

)
= sign

(
−

Gx

Gy
−

(
−

Fx

Fy

))
.
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Hence, if the slope of the producer nullcline at(x∗, y∗) is greater then the grazer’s,
then the determinant (27) is negative, yielding(x∗, y∗) as a saddle. If the grazer
nullcline has larger slope, then the determinant is positive which makes the eigen-
values of the same sign as the trace (28). Recalling thatGx andGy are negative,
we find that

0> −
Gx

Gy
> −

Fx

Fy
. (29)

Condition (29) together withFy < 0 yields thatFx < 0. Therefore, the trace (28)
is negative, so(x∗, y∗) is locally asymptotically stable if the grazer nullcline has
larger slope than the producer’s.

We summarize the conditions for the stability of all possible equilibria (with the
exception of non-generic cases, such as touching nullclines or 0 eigenvalues; which
are biologically insignificant) in the following theorem. The acronym LAS stands
for locally asymptotically stable.

THEOREM 4. Boundary equilibria: The origin is a saddle. The only other equi-
librium on the boundary is E1 = (k,0). It is a saddle if it lies between the two
x-intercepts of the grazer nullcline, i.e., if x1 < k < x2. If it lies outside of[x1, x2],
then E1 is LAS.

Internal equilibria: In Region I the internal equilibrium is LAS if the producer
nullcline at it is decreasing; if the producer nullcline at it is increasing, then the
equilibrium is a repeller. In Region II any internal equilibrium is LAS if the pro-
ducer nullcline at it declines steeper then the grazer’s; otherwise, the equilibrium
is a saddle.

4. NUMERICAL EXPERIMENTS

In this section we provide results of numerical experiments that are in some
sense analogous to previously considered laboratory experiments investigating sto-
ichiometric aspects of phytoplankton–zooplankton interactions (Urabe and Sterner,
1996; Sterneret al., 1998). We choose the functional response as a Monod type
function, i.e.,

f (x) =
cx

a+ x
. (30)

The parameter values are listed in the Table1, where we usedAndersen (1997),
andUrabe and Sterner (1996) for guidance in setting parameters at biologically
realistic values. We used XPP software developed by Bard Ermentrout (http:
//www.pitt.edu/~phase) for the numerical runs and as an aid in obtaining all
figures.

http://www.pitt.edu/~phase
http://www.pitt.edu/~phase
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Table 1. Model parameters.

Parameter Value Units

P Total phosphorus 0.025 mg P l−1

ê Maximal production efficiency in carbon terms 0.8
b Maximal growth rate of the producer 1.2 day−1

d Grazer loss rate (includes respiration) 0.25 day−1

θ Grazer constant P/C 0.03 (mg P)/(mg C)
q Producer minimal P/C 0.0038 (mg P)/(mg C)
c Maximum ingestion rate of the grazer 0.81 day−1

a Half-saturation of grazer ingestion response 0.25 mg C l−1

K Producer carrying capacity limited by light 0.25–2.0 mg C l−1

The last parameter,K , indirectly reflects light intensity or energy input into the
system. For example,K = 0.5 mg C l−1 means that with ample nutrients and
without predation, the producer density will tend to 0.5 mg C l−1. We will increase
K from 0.25 to 2.0 mg C l−1 in four numerical runs (see Figs2 and3). We start
with the same initial conditionsx = 0.5 mg C l−1, y = 0.25 mg C l−1 for all four
runs. All values below are in mg C l−1 and rounded to thousandths.

(i) K = 0.25; population densities stabilize around a stable equilibrium with
x = 0.16, y = 0.22 [Fig. 2(a)].

(ii) K = 0.75; population densities do not tend to certain values any more.
Instead, they oscillate around an unstable equilibrium withx = 0.16, y =
0.48 [Fig. 2(b)].

(iii) K = 1.0; oscillations disappear and a stable equilibrium emerges withx =
0.59, y = 0.51 [Fig. 2(c)].

(iv) K = 2.0; producer density approachesx = 2; however, the grazer, de-
spite ample food supply, is heading toward deterministic extinction,y = 0
[Fig. 2(d)].

The phase planes corresponding to these numerical runs together with the two
theorems give us a better idea of underlying dynamics and allow us to rigorously
determine the stability of all equilibria. WhenK = 0.25, the producer nullcline
is decreasing at the equilibrium making it stable by Theorem 4 [Fig.3(a)]. When
K = 0.75, the producer nullcline is increasing at the equilibrium making it unsta-
ble; however, a stable limit cycle surrounds the equilibrium and attracts the trajec-
tory [Fig. 3(b)]. WhenK = 1, the producer nullcline twice intersects the grazer
nullcline in Region II. By Theorem 4 the lower equilibrium (0.59,0.51) is stable,
because the producer nullcline at it declines steeper then the grazer’s [Fig.3(c)].
When K = 2, the boundary equilibriumE1 = (2,0) lands on the right of both
x-intercepts of the grazer nullcline, and therefore is stable [Fig.3(d)].

The bifurcation diagram (see Fig.4) provides further insight on how grazer den-
sity responds to light energy enrichment asK increases from 0 to 2.2. When
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Figure 2. In all four runs, parameters are in biologically realistic range as in Table1. The
initial conditions arex = 0.5 (mg C l−1), y = 0.25 (mg C l−1). In (a) and (b) we ob-
serve Rosenzweig’s paradox of enrichment: an increase inK destabilizes the equilibrium.
However, a further increase inK leads to: (c) stabilization of the system [with a higher
producer/grazer ratio than in (a)] and (d) deterministic extinction of the grazer.

0 < K < 0.16, the grazer does not survive due to starvation, since a boundary
equilibrium E1 = (K ,0) is stable. AsK gradually increases from 0.16 to 0.98
the system exhibits Rosenzweig’s paradox of enrichment (Rosenzweig, 1971): the
grazer density rises (while the producer density is fixed at 0.16) until K = 0.56
when the system undergoes a supercritical Hopf bifurcation and the equilibrium
loses its stability to a limit cycle, the amplitude of which increases withK . Thus
far the system dynamics were confined to Region I, where it behaves similarly to
the Rosenzweig–MacArthur model. However, atK = 0.98 the dynamics sharply
change: the limit cycle disappears in an infinite period bifurcation (or saddle-node
bifurcation, depending on terminology), where a saddle and a stable equilibrium
emerge in Region II. AsK further increases the grazer density declines (while
the producer density increases). Here higher producer abundance is associated
with lower grazer biomass, as in theSterneret al. (1998) experiments. When
K = 1.91 exchange of stability takes place, whereE1 gains stability again and for
any K > 1.91 the grazer does not survive.
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Figure 3. These four phase planes correspond to the four numerical runs in Fig.2.
The stability type of all equlibria easily follow from the second theorem. In (a)
and (b) the dynamics is confined to Region I, where the model behaves similarly to the
Rosenzweig–MacArthur model. In (c) and (d) the system dynamics enters Region II,
where a stable equilibrium emerges. Note that, in (c) higher values ofK would corre-
spond to lower grazer density and higher producer abundance. This trend continues until
the predator cannot survive in (d).

5. DISCUSSION

Many population dynamics models, like classical models (1a), (1b) and (2a),
(2b), assume that organisms and their food are made of a single constituent that
is the equivalent of energy. Such an assumption is supported by the concept of
energy flow that views trophic levels as homogeneous substances for energy stor-
age and transformation. This powerful simplification of reality is very convenient
and has proven to be useful, however some of its drawbacks are not always real-
ized. For example, this assumption yields that organisms should assimilate food
with constant efficiency, because food made of a single substance cannot change
its quality. Although our everyday experience suggests that even quality of our
own food varies widely, constant production efficiencies have been a standard as-
sumption in population dynamics theory. These constants are usually scaled away
during analysis, which eliminates any clues on their effects on population dynam-
ics. Nevertheless, several researchers [e.g.,Edelstein-Keshet and Rausher (1989),
Koppel et al. (1996) andHuxel (1999)] considered plant–herbivore models with
variable food quality. However, the reliance of these models on a single ‘working
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Figure 4. A bifurcation diagram of the grazer density plotted againstK , whereK indirectly
reflects energy (light) input into the system. Bold and thin lines represent stable and un-
stable equilibria, respectively. All other parameters are as in Table1, exceptK that varies
from 0 to 2.4. ForK < 0.16 the grazer cannot persist due to starvation and forK > 1.91
it cannot persist due to low food quality. AsK varies from 0.16 to 0.56 the grazer density
at stable equilibrium increases. However, atK = 0.56 the stable equilibrium loses its
stability to a limit cycle, an amplitude of which increases withK (0.56< K < 0.98). In
other words, the system exhibits Rosenzweig’s paradox of enrichment. This trend stops
at K = 0.98, when the limit cycle through an infinite period bifurcation disappears and
the grazer density tends to a newly emerged stable equilibrium. AsK increases from 0.98
to 1.91, worsening food quality gradually lowers the grazer density at this equilibrium. The
grazer is able to persist only for 0.16< K < 0.91.

substance’ precluded the inclusion of actual mechanisms governing food quality.
In this paper we acknowledge the fact that all organisms build themselves from

multiple chemical elements in certain proportions. Our producer–herbivore sys-
tem is open for light energy and carbon but closed for another essential nutrient,
phosphorus. The grazer must acquire energy (carbon) but also a second necessary
constituent, phosphorus. With two ‘working substances’ there is no need for any
ad hocassumptions about variability in production efficiency. Instead, the flexible
chemical composition of the producer together with the constant stoichiometry of
the grazer naturally introduce ‘food quality’ into the system, which in turn leads to
varying production efficiency of the grazer. In reality, other nutrients (such as N or
Ca) can also influence grazer–producer interactions (White, 1993). The following
modification of model (6) accommodatesn limiting nutrients without increasing
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the dimension of the system:

x′ = bx

[
1−

x

min(K , (N1− θ1y)/q1, . . . , (Nn − θny)/qn)

]
− f (x)y

y′ = êmin

(
1,
(N1− θ1y)/x

θ1
, . . . ,

(Nn − θny)/x

θn

)
f (x)y− dy,

where

Ni is the total amount of thei th nutrient in the system,
qi is the producer’s minimali th nutrient content,
θi is the grazer’s constant (homeostatic)i th nutrient content and all other pa-

rameters are as in system (6).

The limitation of the above model as well as models (6a) and (6b) is the ab-
sence of a free nutrient pool and lack of delay in nutrient recycling as assumed in
Assumption3. In nutrient-limited pelagic systems the concentration of free phos-
phorus is very low or below detection. Such a low concentration should not be
ignored if one wishes to model competition among multiple producers. Since we
model only one producer species, we can assume that it simply absorbs all poten-
tially available phosphorus. However for terrestrial systems, even with a single
producer, soil compartments and delays in nutrient release are of major importance
(Agren and Bosatta, 1996) and addition of a free nutrient pool appears to be nec-
essary. Another limitation is that models (6a) and (6b) are homogeneous in all
aspects except of chemical composition of organisms. However, such ‘chemical
heterogeneity’ profoundly effects producer–grazer interactions.

• The demand of both populations for limiting phosphorus naturally bounds
the densities of both populations, even when light energy input into the sys-
tem is unlimited (see Fig.1).
• The carrying capacity of the producer, instead of being a static and external

factor, becomes a multivariable function that depends on energy (light) input,
nutrient concentration and grazer density [see Eqns (4) and (5)].
• In the system where every organism competes with every other organism for

the limiting nutrient, competition effects superimpose on predator–prey in-
teractions. This divides the grazer–producer phase plane into two regions.
In Region I energy (carbon) availability regulates grazer growth and grazer–
producer interactions are the traditional(+,−) type. However, in Region II
food quality (phosphorus content) controls grazer growth and changes grazer–
producer relationships to a competitor type (−,−). This creates a possibility
for multiple positive equilibria and deterministic extinction of the grazer (see
Fig. 1).
• The system exhibits a paradox ofenergy enrichment. Intense energy (light)

enrichment substantially elevates producer density, however, despite such an
abundant food supply the grazer decreases its growth rate and drives itself to
deterministic extinction [see Figs2(d), 3(d) and4].
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From an energetics point of view the paradox of energy enrichment is a true
paradox: higher energy (food) consumption should not decrease growth rate. How-
ever, it is easily solved by ‘food quality’ arguments, as higher producer densities
correspond to its lower phosphorus content and thus, lower production efficien-
cies for the grazer. Hence, in estimating effects of enrichment on producer–grazer
and longer food chains one should take into account both food quantity and food
quality. For example, carbon dioxide enrichment may affect herbivores through
changes in producer abundance but also in its stoichiometry. Since both light and
nutrients can affect quality as well as quantity, a question arises: how does energy
enrichment (that leads here to carbon enrichment of the producer) differ from nutri-
ent enrichment? Motivated by this question we constructed a bifurcation diagram
(Fig. 5), where different dynamical outcomes were presented on theK–P plane
(K is associated with light intensity andP is total phosphorus in the system). We
find a striking difference between light and phosphorus enrichment. Light energy
enrichment (horizontal arrow) may destabilize as well as stabilize the system, but
ultimately leads to the deterministic extinction of the grazer. In contrast, phospho-
rus enrichment (vertical arrow) can only destabilize the system; however, it does
not lead to the extinction of the grazer. Rosenzweig’s paradox of enrichment (usu-
ally viewed as destabilization of predator–prey interactions through Hopf bifurca-
tion) holds only in a limited light–phosphorus range. Yet, under wider definition as
system destabilization or grazer’s extinction, the paradox of enrichment holds in a
rather wideK–P range.

In Fig.5 the various regions of stable attractors do not overlap, meaning that only
one stable attractor exists for any particular (K , P) pair and other parameters are
fixed as in Table1. However, bistability may arise for certain sets of parameter
values that deviate from the ones in Table1 but are still in a biologically realistic
range. For example, in Fig.6, depending on initial conditions, the system can be
attracted to a stable limit cycle or a stable equilibrium. This suggests that in such
systems an externally caused shift in population density may significantly change
system behavior and producer/grazer ratio.

The introduction of stoichiometric reality into population dynamics theory raises
other questions. How will space, age, or size-structured models be affected by sto-
ichiometric considerations? When a stoichiometric perspective is brought to bear
on all interactions, how will the community matrix of an ecosystem changes? Will
competitive and mutualistic interactions always be a (−,−) or (+,+) type, respec-
tively? Will the competitive exclusion principle still hold in a model that is chem-
ically heterogeneous but homogeneous in all other aspects? The analysis of the
model shows that stoichiometry may dampen potentially destructive oscillations
by reducing energy flow to the grazer (see Fig. 2(b), 2(c) and Fig. 4). Here, a cer-
tain degree of weakening of predator-prey interactions contributes to the stability
of the system. This supports the McCann (2000) statement that “weak interactions
serve to limit energy flow in a potentially strong consumer-resource interactions
and, therefore, to inhibit runaway consumption that destabilizes the dynamics of
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Figure 5. The regions of existence of all stable attractors are drawn on theK–P plane with
all other parameters fixed as in Table1. Energy enrichment of the system (the long hor-
izontal arrow) leads the grazer through (steady state)/(cycle)/(steady state)/(deterministic
extinction). It drastically differs from nutrient enrichment (the vertical arrow) that may
destabilize the system; however, it does not lead to grazer extinction. Rozensweig’s para-
dox of enrichment holds in a limited range of light/nutrient parameters, where the system
undergoes Hopf bifurcation. Note, that balanced light/nutrient enrichment, (e.g., along the
shaded area of the stable equilibrium in Region II) may leave the system dynamics quali-
tatively unchanged. Hence, the effects of enrichment strongly depend on its type: energy,
nutrient or combined energy/nutrient enrichment.

food webs”. The question arises as to how stoichiometry contributes to the diver-
sity and stability of an ecosystem.
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APPENDIX A: T HE PROPERTIES OF THE FUNCTIONAL RESPONSE, f (x)f (x)f (x)

We have that( f (x)/x)′ = (x f ′(x)− f (x))/x2. Let l (x) ≡ x f ′(x)− f (x). Then
by (3), l (0) = 0 andl ′(x) = x f ′′(x) < 0. Hence,( f (x)/x)′ < 0 for x > 0. By
definition of a limit and sincef (0) = 0, it follows that limx→0( f (x)/x) = f ′(0).
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parameter values leading to bistability. For example, forP = 0.003, e = 0.7, b = 1,
d = 0.21,θ = 0.01,q = 0.004,c = 0.8, a = 0.13, K = 0.6, the stable limit cycle (whose
basin of attraction is shaded) coexists with the stable equilibrium that attracts all solutions
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APPENDIX B: T HE PROOF OF THE L EMMA

Proof. Let us prove by contradiction, i.e., assume that there is timet1 > 0,
s.t. a trajectory with initial conditions in the open rectangle,x(0) ∈ (0, k) and
y(0) ∈ (0, p), touches or crosses the boundary of the closed rectangle[0, k]×[0, p]
for the first time. Since the boundary consists of four sides, four cases are possible.
Corners are excluded in the first two cases.

Case 1.Assumex(t1) = 0 (left border). Lety1 = maxt∈[0,t1]y(t) < p and f̄ =
f ′(0). Then,

x′ = bx

(
1−

x

min(K , (p− y)/s)

)
− f (x)y

≥ bx

(
1−

x

min(K , (p− y)/s)

)
− f̄ xy

≥

(
b

(
1−

k

min(K , (p− y1)/s)

)
− f̄ y1

)
x ≡ αx,

whereα is a constant. Thus,x(t) ≥ x(0)eαt , which implies thatx(t1) ≥ x(0)eαt1

> 0. Therefore, no trajectory can touch the left-hand-side border of the rectangle.

Case 2.Assumex(t1) = k (right border). Then

x′ ≤ bx

(
1−

x

min(K , p/s)

)
≤ bx

(
1−

x

k

)
.
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The standard comparison argument yields thatx(t) < k for all t ∈ [0, t1] and thus,
no trajectory touches the right-hand-side border.

Case 3.Assume nowy(t1) = 0 (bottom border). Then,y′ = emin(1, (p −
y)/x) f (x)y − dy ≥ −dy. Hence,y(t) ≥ y(0)e−dt > 0. This excludes the
possibility that a trajectory touches corners(0,0) and(k,0) as well.

Case 4.Assumey(t1) = p (top border). Then

y′ ≤ ê
p− y

x
f (x)y ≤ ê(p− y) f ′(0)y = ê f ′(0)py

(
1−

y

p

)
.

Using the standard comparison argument we find thaty(t) < p for all t ∈ [0, t1].
This case takes care of the remaining two corners(0, p) and(k, p). 2

APPENDIX C: T HE PROOF OF THE BOUNDEDNESS AND I NVARIANCE

THEOREM

Proof. Lemma1 assures that trajectories will satisfy the first two inequalities
in (11). Suppose that the last inequality in (11) is not true. Then lett1 > 0 be the
first time it is violated, i.e.,

sx(t1)+ y(t1) = p. (C1)

Since for allt ∈ [0, t1), sx(t)+ y(t) < p, it follows that

sx′(t1)+ y′(t1) ≥ 0. (C2)

From (C1) it follows thatx(t1) = (p− y(t1))/s, which we substitute in (12(a)) to
obtain bounds onx′(t1):

x′(t1) = bx(t1)

(
1−

x(t1)

min(K , (p− y(t1))/s)

)
− f (x(t1))y(t1) (C3)

≤ bx(t1)

(
1−

x(t1)

(p− y(t1))/s

)
− f (x(t1))y(t1) = − f (x(t1))y(t1).

From (C1) it follows thats = (p− y(t1))/x(t1), which we substitute in (12(b)) to
obtain bounds ony′(t1):

y′(t1) = êmin{1, (p− y(t1))/x(t1)} f (x(t1))y(t1)− dy(t1) (C4)

≤ ê
p− y(t1)

x(t1)
f (x(t1))y(t1) = ês f(x(t1))y(t1).
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Using (C3), (C4) and the fact that̂e< 1, we obtain the following:

sx′(t1)+ y′(t1) ≤ −s f(x(t1))y(t1)+ ês f(x(t1))y(t1)

= s f(x(t1))y(t1)(−1+ ê) < 0.

This contradicts (C2) and completes the proof. 2
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