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ABSTRACT. We construct a generic polynomial for A4 over Q.

INTRODUCTION

One problem in Inverse Galois Theory is that of describing Galois ex-
tensions with a given Galois group: If K is a field and G a finite group,
what does a G-extension of K look like?

If we approach this problem analytically, by assuming we have a G-
extension and trying to determine its structure, we are likely to end
up with a description in terms of generating elements bearing some
given algebraic relations to each other, ultimately expressed in terms
of parameters from K. A convenient way of expressing this is by means
of a generic polynomial:

Definition. A monic separable polynomial P(s, X) € K(s)[X], where
s = (t1,...,t;) and X are indeterminates, is called generic for G
over K, if it satisfies the following conditions:
(i) Gal(P/K(s)) ~ G, and
(ii) if M/L is a G-extension with L O K, M is the splitting field
over K of a specialisation P(a, X) of P(s, X) at some point
a=(ay,...,a,) € K".

For instance, X?— X —s € K (s)[X] is generic for the cyclic group Cy
over any field K.

In this paper, we will produce a generic polynomial for the alternat-
ing group Ay over the field Q of rational numbers. This polynomial is
given in the Theorem in section 2. Prior to that, in section 1, we give
various results, with or without proof, that are needed in our treatment

of A4.

1. NECESSARY PREREQUISITES

Let K be a field and V a finite-dimensional K-vector space. Then we
denote by K[V] the commutative tensor algebra for V, i.e., K[V] is a
polynomial ring over K in n = dimg V' indeterminates and we identify

V' with the space of homogeneous linear polynomials. The quotient
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field of K[V] is denotes K (V). Thus, any K-basis for V is a generating
transcendency basis (rational generators) for K(V)/K.

It is clear that if U is a subspace of V', we have K(U) as a sub-
field of K(V), and that K(V)/K(U) is then a rational extension with
any basis for a complement of U in V as rational generators. Also,
any vector space automorphism on V' extends to a field automorphism
of K(V). In particular, if the finite group G acts faithfully on V' by
linear transformations, we get a G-action on K (V') and a G-extension
K(V)/K(V)C.

Our first important result is the following, from [K&Mt, Thm. 3|:

Proposition. Let K be an infinite field and G a finite group. Consider
a faithful linear action of G on the finite-dimensional K -vector space V',
and assume that M/ K is a subextension of K(V)/K on which G acts
faithfully. If the fized field MC is rational over K with generating
transcendency basis s1, ..., S, there is a generic G-polynomial over K
with parameters si,...,s,. In fact, any monic polynomial in MY[X]
with splitting field M is generic.

We will not prove this Proposition, but refer to [K&Mt| for proof.

Using Kemper & Mattig’s result, we can find generic polynomial
by studying extensions of the form K(V)/K(V)¢. The most obvious
question is of course whether K (V)¢ itself is a rational extension of K,
the so-called Noether Problem. Here, a first step is the reduction to
subrepresentations, by means of the No-Name Lemma:

The No-Name Lemma. Let the finite group G act faithfully on the
finite-dimensional K-vector space V', and let U be a G-closed subspace
on which the restricted G-action is also faithful. Then the exrtension

K(V)¢/K(U)9 is rational.

In other words: There is a set of G-invariant rational generators
for K(V)/K(U).

Proof. The K(U)-vector space W = K(U) - V generated by V in-
side K (V) has a semi-linear G-action, i.e., o (aw) = ca ow for a € K(U)
and w € W. By the Invariant Basis Lemma (cf. e.g. [K&M]), any basis
for the K (U)%-vector space W¢ of G-invariant elements is therefore
also a K(U)-basis for W. If we pick such a basis 1,wy, ..., ws, it is
easy to see that wy,...,ws are rational generators for K(V)/K(U),

and hence also for K(V)°K(U)¢. O

To take the reduction of the problem one step further, we make
the following observations, cf. [Ke, Prop. 1.1(a)]: Let G — GLg(V)
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for a finite-dimensional K-vector space V. Then G acts on the sub-
field K(V')o of homogeneous elements of degree 0 through PGLg (V).
(A homogeneous element in K (V') is an element of the form f/g, where
f,g € K[V] are homogeneous. The degree is then deg f — deg g. It fol-
lows that the homogeneous elements of degree 0 constitute a subfield,
and in fact that K(V)y = K(va/v1,...,v,/v1), when vy,...,v, is a
K-basis for V. The action of GLg (V) on K (V) becomes an action
of PGLg (V') on K(V)y.) Clearly, K(V)/K (V) is rational, but in fact
the extension K (V)9/K(V)§ of fixed field is rational, generated by
any homogeneous element in K (V)¢ of minimal positive degree. This
is easily seen, once we note that K (V)¢ is generated by homogeneous
elements.

For instance, if we start with a two-dimensional representation, this
‘homogenisation’ brings us down to transcendency degree 1, where ev-
erything is rational by Liiroth’s Theorem (see e.g. [Ja, 8.14]). For
convenience, we cite this result in the form we need:

Liiroth’s Theorem. Let K and L be fields with K C L C K(t), t
and indeterminate. Then K(t)/L is finite, and if r; is a non-constant
coefficient in the minimal polynomial X™ + 1, 1 X" 1 +---+mX 41
for t over L, then L = K(r;).

Example. Let C5 = (o) act on Q(z,y,2) by o0: x — y, y— 2z, 2 — .
With s =z —yand t =y —z we then get 0: s — ¢, t — —s—1t, and
using the above result we easily get that Q(s,)“* = Q(u,v) for

2+ 12 + st s® —3st2 — 13
yu=——— and v=—-——1—,
st(s+1t) st(s+1t)

and also that

Q(z,y,2)"

:Q((w—y)2+( 2+ (@ —y)y—2)
(= —y)(y —2)(z —2) ’
(z -y’ =3@-y)(y—2°>—(y—2)°
(z—y)(y—2)(z —2) ’
z+y+2z).
Thus, these two Noether Problems have affirmative answers.
For use below, we record the following consequence of the above

example: Notice that the generators for Q(z,y, z)® are homogeneous
of degrees —1, 0 and 1. If we call them X, Y and Z for convenience,
we thus have Q(z,y,2)% = Q(X,Y,7) = Q(XZ,Y)(Z), from which
it follows that Q(z,y,2)5* = Q(XZ,Y): ‘D’ is obvious, and since
Q(z,y,2)% is rational over both fields of transcendency degree 1, we
get equality. (Cf. also [Ke, Prop. 1.1(b) + proof].)
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Now, Q(z,v, 2)o = Q(s,t), where s = x/y and t = y/z, and on this
field o acts by s — ¢, t — 1/st.

Thus, we can conclude the following: Let o be the automorphism on
the rational function field Q(s,t) given by o: s +— t, t — 1/st. Then
o has order 3, and the fixed field Q(s,#)“ is rational over Q. More
precisely,

33 —3st? + 13 +1
t(s—1)(t—1)(st—1)
s3t3 — 3523 + 65t — 3st + 12 — 32+ 1
t(s—1)(t—1)(st—1) >

Qs, 1) = Q(

2. THE ALTERNATING GROUP A,

We find a generic polynomial for A, over Q by proceeding in several
steps:

(1) There is a linear action of A4 on Q*, obtained by considering Sy
as the rotation group of the cube. If we write

Ay={o,pi,p2 | 0® =pl =1, opio™" = pa, op20™" = p1p2 = pap1)
this gives us an Ay-action on Q(z,y, z) given by

o:x Y, Yz, Zx,
PLIT > —X, Y —Y, 22

(2) Stepping down to the homogeneous degree-0 part Q(z,y, 2z)o =
Q(s,t), s==x/y, t =y/z, we have

og:s—t, t—1/st, and pi:s— s, t— —t.

(Also, Q(z,y, 2)44/Q(s,t)4 is rational of transcendency degree 1, gen-
erated by zyz/(z? + y? + 2%).) Clearly, Q(s,t)"* = Q(s?,t?), and so we
are left with the extension Q(s?,?)/Q(s?, %)% for C3 = (o).

(3) Letting u = s and v = t2, we now ask: If C3 = (o) acts

on Q(u,v) by o: u s v, v 1/uv, is Q(u,v)*/Q rational? From the
Example in section 1, we know that the answer is ‘yes’, and that in
fact

wdvd — 3uv? + 03 + 1
v(iu—1)(v—1)(uv — 1)’
uv® — 3uv® + 6uv? — uv + v — 30? + 1
v(u—1)(v —1)(uv — 1) )

@W@@:@(
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(4) All in all: Q(s,t)/Q(s,t)4 is an extension of rational function
fields, sitting inside our ‘Noether Extension’. Thus, this Noether Prob-
lem has a positive answer for A4, and there is a generic A4-polynomial
with two parameters over Q.

(5) By theProposition in section 1, we can now find a generic poly-
nomial for A, over Q by expressing the minimal polynomial for, say,
s+t+ 1/st over Q(s,t)4 in terms of the generators found above.
Denoting these generators by « and f3, resp., we thus get

Theorem. The polynomial

A A%~ 12(a® — B% + 27)B
Fla,8,X) = x*— 2 x2 _gx 49 (o = 57 +27)

B B2
in Q(a, B)[X], where
A=a®— B> —98% — 275 — 54,
B =0a®—308%+28° —9af +96% — 27a + 276 + 27,

s generic for Ay over Q.

Remark. Finding the polynomial in the Theorem is basically linear
algebra, and was done using MAPLE V.
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