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FEM

Starting with the PDE,

u′′ = f on [0, 1] (1)

u(0) = u(1) = 0 (2)

we can consider the solution u to live in some ambient function space V , which is so far unspec-

ified. Multiplying by an arbitrary v ∈ V , we can integrate by parts to obtain

(u′, v′) = (f, v) (3)

Here, we have denoted
∫ 1

0 fg dx as (f, g). Using (3), we can construct the ambient space V as

V = H1
0([0, 1]) =

{
v ∈ L2([0, 1]) | v′ ∈ L2([0, 1])v(0) = v(1) = 0

}
Notably, v ∈ V are not necessarily twice differentiable, so we call (3) the weak formulation of (1).

To solve the weak formulation, we look for u that satisfies (3) for all v ∈ V .

While V is a linear space, it is intractably large. The FEM introduces a sequence of finite dimen-

sional sub-spaces Vh indexed by a parameter h. The true solution u is then approximated by uh
which satisfies (3) for only all v ∈ Vh ⊂ V . It turns out that uh is the subspace-projection of u
onto Vh.

Selecting a basis {φi}ni=1 of Vh, we take uh =
∑
i ciφi and v = φj to obtain∑

i

ci(φ′
i, φ

′
j) = (u′

h, φ
′
j) = (f, φj)

Varying v over all basis {φi}ni=1 yields the linear system

Ac = L (4)

where aij = (φ′
i, φ

′
j) and Li = (f, φi). Due to FEM's roots in engineering, the matrix A is often

called the stiffness matrix. L is referred to as the load vector. We can solve (4) with traditional

techniques to find the coefficients of uh.

Our Implementation

We evenly space 2n+1 points across [0, 1]. We label these points xi and take h to be the common

inter-point distance h = 2−n. We then form Vh as the piece-wise linear functions over this mesh.

Specifically v ∈ Vh is s.t. v restricted to [xi, xi+1] is linear for any i.

Figure 1:An example member of our choice of Vh.

Abstract

In this poster I present what I learned over the course of the 2021 summer Research Experience

for Undergraduates (REU) program at Texas Tech University. I outline a standard Finite Element

Method (FEM), then present code implementing the method to solve Poisson's equation in 1

dimension with Dirichlet boundary conditions. I then outline a Weak Galerkin method, a FEM

variant, and present code solving Poisson's equation in 2 dimensions with Neumann boundary

conditions.

W.G. Approximation

Figure 2:ub with h = 2−3 Figure 3:ub with h = 2−5

Convergence

Weak Galerkin

Solve {
−∆u = f on Ω = [0, 1]2

u = g on ∂Ω

For the variational form, we find u ∈ Vh s.t. ∀v ∈ Vh

(∇u,∇v) − < ∇u · n̂, v >∂Ω= (f, v)

By contrast, with the Weak Galerkin method, we look for u = {uo, ub} ∈ Wh such that ub =
Qb g on ∂ Ω and

(∇wu,∇wv) + S(u, v) = (f, vo), ∀v ∈ W 0
h

Here,Qb is the L
2 projection onto Pk(e), the polynomials of degree k. S(u, v) is the stabilizer term

defined by

S(u, v) =
∑
T

h−1
T < uo − ub, vo − vb >∂T

and the function spaces are

Wh = {{uo, ub}|T ∈ Pk(T ) × Pk(e)}

W0
h = {{uo, ub} ∈ Wh and ub = 0 on ∂Ω}

∇wu ∈ [Pk−1(T )]2 is defined by

(∇wu, ψ)T = −(u0,∇ · ψ)T+ < ub, ψ · n̂ >∂T ∀ψ ∈ [Pk−1(T )]2

We consider the case k = 1

Weak Gradient and Stabilizer

Unlike with the normal gradient, you cannot directly compute the weak gradient. The weak gra-

dient, ∇wu is a *distribution*. It is not a function per say, rather it is an operator on a space of

functions. It "eats" another *test function* to produce a vector. Different u produce different

distributions ∇wu.

∇w : Wh× [Pk−1(T )]2 → R is bilinear. So, if u =
∑
i ciφi, then ∇wu =

∑
i ci∇wφi as distributions.

Moreover for any particular φi, the action of ∇wφi on [Pk−1(T )]2 is determined by its action on

the basis functions. Once we choose u, ∇wu is just a row vector. We can therefore compute

(∇wu,∇wv) as
∫

Ω(∇wu) · (∇wv), which is just a dot product.

The stabilizer is also bilinear. So taking u =
∑
i ciφi and v = φj , we obtain,

(f, φj) = −(∇w

∑
i

ciφi, φj) + S(
∑
i

ciφi, φj) =
∑
i

ci
[
−(∇wφi,∇wφj) + S(φi, φj)

]
This is the jth row of the linear system

L = Ac

with Li = (f, φi) and Aij = −(∇wφi,∇wφj) + S(φi, φj)


