TTU REU: Exploring FEM with numpy

Bryan Hatton ${ }^{1}$ Mentor: Wang Chunmei ${ }^{2}$

${ }^{1}$ UCSD ${ }^{2}$ TTU

FEM
Starting with the PDE,
$u^{\prime \prime}$ $=f$ on $[0,1]$ $u(0)$ $=u(1)=0$

we can consider the solution u to live in some ambient function space V, which is so far unspec ified. Multiplying by an arbitrary $v \in V$, we can integrate by parts to obtain

$$
\begin{equation*}
\left(u^{\prime}, v^{\prime}\right)=(f, v) \tag{3}
\end{equation*}
$$

Here, we have denoted $\int_{0}^{1} f g d x$ as (f, g). Using (3), we can construct the ambient space V as

$$
V=H_{0}^{1}([0,1])=\left\{v \in L^{2}([0,1]) \mid v^{\prime} \in L^{2}([0,1]) \vee(0)=v(1)=0\right\}
$$

Notably, $v \in V$ are not necessarily twice differentiable, so we call (3) the weak formulation of (1). To solve the weak formulation, we look for u that satisfies (3) for all $v \in V$.
While V is a linear space, it is intractably large. The FEM introduces a sequence of finite dimen ina V is a inear space, it is intractably large. The FEM introduces a sequence of finite dimenwhich satisfies (3) for only all $v \in V$ parameter h. The true solution u is then approximated by u onto V_{h}
Selecting a basis $\left\{\phi_{i}\right\}_{i=1}^{n}$ of V_{h}, we take $u_{h}=\sum_{i} c_{i} \phi_{i}$ and $v=\phi_{j}$ to obtain

$$
\sum_{i} c_{i}\left(\phi_{i}^{\prime}, \phi_{j}^{\prime}\right)=\left(u_{h}^{\prime}, \phi_{j}^{\prime}\right)=\left(f, \phi_{j}\right)
$$

Varying v over all basis $\left\{\phi_{i}\right\}_{i=1}^{n}$ yields the linear system

$$
\begin{equation*}
A c=L \tag{4}
\end{equation*}
$$

where $a_{i j}=\left(\phi_{i}^{\prime}, \phi_{j}^{\prime}\right)$ and $L_{i}=\left(f, \phi_{i}\right)$. Due to FEM's roots in engineering, the matrix A is often called the stiffness matrix. L is referred to as the load vector. We can solve (4) with traditiona techniques to find the coefficients of u_{h}.

Our Implementation

We evenly space $2^{n}+1$ points across $[0,1]$. We label these points x; and take h to be the common We evenly space $2^{n}+1$ points across $\left[0,1\right.$. We label these points x_{i} and take h to be the common Specifically $v \in V_{h}$ is s.t. v restricted to $\left[x_{i}, x_{i+1}\right]$ is linear for any i.

Abstract

In this poster I present what I learned over the course of the 2021 summer Research Experience for Undergraduates (REU) program at Texas Tech University I outline a standard Finite Element Method (FEM), then present code implementing the method to solve Poisson's equation in 1 dimension with Dirichlet boundary conditions. I then outline a Weak Galerkin method, a FEM variant, and present code solving Poisson's equation in 2 dimensions with Neumann boundary conditions.

W/eak Galerkin

$$
\begin{cases}-\Delta u & =f \text { on } \Omega=[0,1]^{2}\end{cases}
$$

For the variational form, we find $u \in V_{h}$ s.t. $\forall v \in V_{b}$

$$
(\nabla u, \nabla v)-\langle\nabla u \cdot \hat{n}, v\rangle_{\partial \Omega}=(f, v)
$$

By contrast, with the Weak Galerkin method, we look for $u=\left\{u_{o}, u_{b}\right\} \in W_{h}$ such that $u_{b}=$ $Q_{b} g$ on $\partial \Omega$ and

$$
\left(\nabla_{w} u, \nabla_{w} v\right)+S(u, v)=\left(f, v_{o}\right), \quad \forall v \in W_{h}^{0}
$$

Here, Q_{b} is the L^{2} projection onto $P_{k}(e)$, the polynomials of degree $k . S(u, v)$ is the stabilizer term defined by

$$
S(u, v)=\sum_{T} h_{T}^{-1}<u_{o}-u_{b}, v_{o}-v_{b}>\partial T
$$

and the function spaces are
$W_{h}=\left\{\left\{u_{o}, u_{b}\right\}_{T} \in P_{k}(T) \times P_{k}(e)\right\}$
$W_{h}^{0}=\left\{\left\{u_{o}, u_{b}\right\} \in W_{h}\right.$ and $u_{b}=0$ on $\left.\partial \Omega\right\}$
$\nabla_{w} u \in\left[P_{k-1}(T)\right]^{2}$ is defined by

$$
\left(\nabla_{w} u, \psi\right)_{T}=-\left(u_{0}, \nabla \cdot \psi\right)_{T}+<u_{b}, \psi \cdot \hat{n}>_{\partial T} \quad \forall \psi \in\left[P_{k-1}(T)\right]^{2}
$$

We consider the case $k=1$

Weak Gradient and Stabilizer

Unlike with the normal gradient you cannot directly compute the weak gradient The weak gra Unlike with the normal gradient, you cannot directly compute the weak gradient. The weak grafunctions. It "eats" another *test function* to produce a vector. Different u produce different distributions $\nabla_{w} u$.
$\nabla_{w}: W_{h} \times\left[P_{k-1}(T)\right]^{2} \rightarrow \mathbb{R}$ is bilinear. So, if $u=\sum_{i} c_{i} \phi_{i}$, then $\nabla_{w} u=\sum_{i} c_{i} \nabla_{w} \phi_{i}$ as distributions. Moreover for any particular ϕ_{i}, the action of $\nabla_{w} \phi_{i}$ on $\left[P_{k-1}(T)\right]^{2}$ is determined by its action on the basis functions. Once we choose $u, \nabla_{w} u$ is just a row vector. We can therefore compute $\left.\nabla_{w} u, \nabla_{w} v\right)$ as $\int_{\Omega}\left(\nabla_{w} u\right) \cdot\left(\nabla_{w} v\right)$, which is just a dot product.
The stabilizer is also bilinear. So taking $u=\sum_{i} c_{i} \phi_{i}$ and $v=\phi_{j}$, we obtain,

$$
\left(f, \phi_{j}\right)=-\left(\nabla_{w} \sum_{i} c_{i} \phi_{i}, \phi_{j}\right)+S\left(\sum_{i} c_{i} \phi_{i}, \phi_{j}\right)=\sum_{i} c_{i}\left[-\left(\nabla_{w} \phi_{i}, \nabla_{w} \phi_{j}\right)+S\left(\phi_{i}, \phi_{j}\right)\right]
$$

This is the jth row of the linear system
with $L_{i}=\left(f, \phi_{i}\right)$ and $A_{i j}=-\left(\nabla_{w} \phi_{i}, \nabla_{w} \phi_{j}\right)+S\left(\phi_{i}, \phi_{j}\right)$

