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Abstract

FEM
Starting with the PDE,
u" = fonl0,1] (1)
u(0) =u(l) =0 (2)

we can consider the solution u to live in some ambient function space V', which is so far unspec-
ified. Multiplying by an arbitrary v € V, we can integrate by parts to obtain

(u', ") = (f,v) (3)

Here, we have denoted fol fgdx as (f,g). Using (3), we can construct the ambient space V as
v = H}((0,1]) = {v € LX([0,1)) | " € L2([0,1]))v(0) = v(1) = 0}

Notably, v € V are not necessarily twice differentiable, so we call (3) the weak formulation of (1).
To solve the weak formulation, we look for « that satisfies (3) for allv € V.

While V' is a linear space, it is intractably large. The FEM introduces a sequence of finite dimen-
sional sub-spaces V}, indexed by a parameter h. The true solution u is then approximated by wy,
which satisfies (3) for only all v € V};, C V. It turns out that wy, is the subspace-projection of u
onto V.

Selecting a basis {¢;}1*_ of V},, we take uy, = ) ; ¢;¢; and v = ¢; to obtain
> cild, ¢)) = (ug,, 05) = (f, )

(4

Varying v over all basis {¢;}7* ; yields the linear system
Ac =L (4)

where a;; = (¢, ¢%) and L; = (f, ;). Due to FEM's roots in engineering, the matrix A is often

called the stiffness matrix. L is referred to as the load vector. We can solve (4) with traditional
techniques to find the coefficients of wuy,.

Our Implementation

In this poster | present what | learned over the course of the 2021 summer Research Experience
for Undergraduates (REU) program at Texas Tech University. | outline a standard Finite Element
Method (FEM), then present code implementing the method to solve Poisson's equation in 1
dimension with Dirichlet boundary conditions. | then outline a Weak Galerkin method, a FEM
variant, and present code solving Poisson's equation in 2 dimensions with Neumann boundary
conditions.

W.G. Approximation

Weak Galerkin

We evenly space 2" + 1 points across |0, 1]. We label these points z; and take h to be the common
inter-point distance h = 27". We then form V3, as the piece-wise linear functions over this mesh.
Specifically v € Vj, is s.t. v restricted to [x;, x;41] is linear for any 1.

A member of V4(]0, 1]}
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Figure 1:An example member of our choice of V.
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Figure 3:u, with h = 277

Figure 2:uy, with h = 273

Convergence
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Solve

~Au = fonQ=][0,1]
U = g on o)

For the variational form, we find v € V}, s.t. Vv € V},

(Vu, Vo) — < Vu-n,v >yq= (f,v)

By contrast, with the Weak Galerkin method, we look for u = {ue, up} € Wp, such that v, =
Qg on 9 and

(Vwu, Vyv) + S(u,v) = (f,v,), Vv € W}(L)

Here, Qy is the L? projection onto Pi.(e), the polynomials of degree k. S(u, v) is the stabilizer term
defined by

S(u,v) = Zh%l < Uy — Up, Vg — Vp >9T

T

and the function spaces are

Wi, = {{uo, up}|7 € Pp(T) x Py(e)}
WY = {{uo, up} € W}, and uy, = 0 on 92}
Vwu € [P._1(T)]? is defined by
(Vat, V)7 = —(ug, V- O)p+ < up, b - >gp Vb € [Py_y(T))?
We considerthe case k =1

Weak Gradient and Stabilizer

Unlike with the normal gradient, you cannot directly compute the weak gradient. The weak gra-
dient, Vu is a *distribution™. It is not a function per say, rather it is an operator on a space of
functions. It "eats" another *test function™ to produce a vector. Different « produce different
distributions V.

Vw : Wy, x [Pp_1(T)]? — Ris bilinear. So, if u = 3", ¢;¢;, then Vyu = 3. ¢;Vw; as distributions.
Moreover for any particular ¢;, the action of V,¢; on [P._1(T))? is determined by its action on
the basis functions. Once we choose u, Vyu i1s just a row vector. We can therefore compute
(Vwu, Vo) as [o(Vyu) - (Vy), which is just a dot product.

The stabilizer is also bilinear. So taking u = ) _; ¢;¢; and v = ¢, we obtain,

(f.05) = —(Vw > _ iy d5) + SO citiyd) = Y ¢i [~(Vwdi, Vo)) + S(6i, ¢5)]

7 7 )

This is the jth row of the linear system
L = Ac

with L; = (f, ¢;) and Aj; = —(Vwo;, Vwo;) + S5, ¢5)



