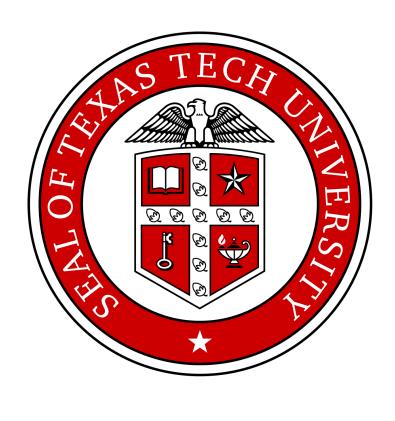
Peaceman Model for Well-Block and Steady-State Einstein Paradigm of Brownian Motion



Jared Cullingford Summer 2021 REU Virtual Program Department of Mathematics and Statistics, Texas Tech University, Advisor: Dr Akif Ibragimov

(3)

Abstract

- Used Einstein Paradigm to create model of steadystate flow to a well in circular reservoir.
- Compared this model to Peaceman's model of flow in a well-block reservoir by using Darcy's Law for rate of production q in our model and equating it to finite discrete approximation of Peaceman's rate of production q.
- Then used Forchheimer equation for non-linear model of flow, found rate of production \tilde{q} and compared it to Peaceman's q through same method.

Einstein Paradigm Model of Flow

Our model of flow, where u(x, y) is "number of particles per unit volume", has this system of equations:

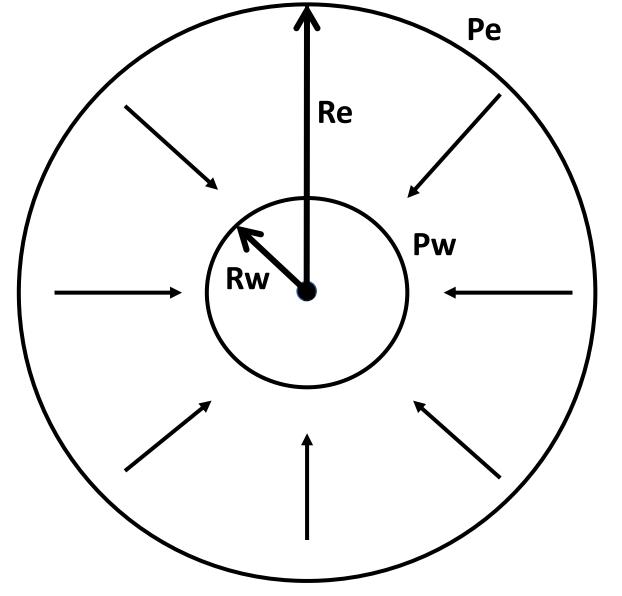
$$\begin{cases} \Delta u = 0\\ u|_{\partial B(0,R_e)} = P_e \\ u|_{\partial B(0,R_w)} = P_w \end{cases} \quad \Omega = B(0,R_e) \backslash B(0,R_w) \quad (1)$$

Where Δ is the laplace. The solution u(r) of (1) is:

$$u(r) = c_1 \ln(r) + c_2$$
 (2)

With following definitions:

$$r = \sqrt{x^2 + y^2}, \ c_1 = \frac{P_e - P_w}{\ln\left(\frac{R_e}{R_w}\right)}$$
$$c_2 = \frac{P_e \ln\left(\frac{1}{R_w}\right)}{\ln\left(\frac{R_e}{R_w}\right)} + \frac{P_w \ln\left(R_e\right)}{\ln\left(\frac{R_e}{R_w}\right)}$$



FDA of Peaceman Model

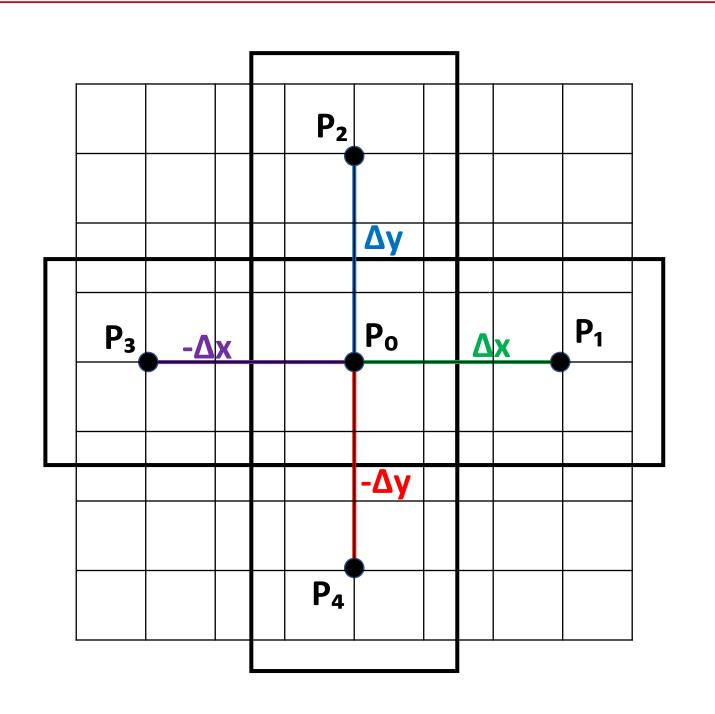
Peaceman's equation for steady-state pressure distribution:

$$q_{i,j} = \frac{kh\Delta y}{\mu\Delta x} (p_{i+1,j} - 2p_{i,j} + p_{i-1,j}) + \frac{kh\Delta x}{\mu\Delta y} (p_{i,j+1} - 2p_{i,j} + p_{i,j-1})$$

Where $q_{i,j} = 0$ if $i \neq 0$ or $j \neq 0$. We let i = 0, j = 0, h = 1, and fix $\Delta x = \Delta y$:

$$q = \frac{k}{\mu} \cdot \left[P_1 + P_2 + P_3 + P_4 - 4P_0\right]$$
(4)

Peaceman Model on Grid



Analytical vs. Discrete Formulae

We have $P_1 = P_2 = P_3 = P_4 = P_e$. We then let $P_w = P_0, R_e = \Delta$, and $R_w = R_0$, for which R_0 has an unknown value.

To find the value for R_0 , we equate Peaceman's q to our q:

$$\frac{k}{\mu} \cdot \left[4P_e - 4P_0\right] = \frac{2\pi k}{\mu} \cdot \frac{P_e - P_0}{\ln\left(\frac{\Delta}{R_0}\right)} \tag{5}$$

Which simplifies to:

$$R_0 = \Delta x \cdot e^{-\pi/2}$$

Exactly what Peaceman derived in his paper, thus our linear steady-state model is justified.

Analytical Solution from Darcy Law

The rate of production q in our model is given:

Where k is permeability, μ is viscosity, and h is the height of the reservoir. For our calculations, we will assume k, μ to be constants and h = 1. We simplify:

The generalized Forchheimer equation for rate of production \tilde{q} with equation of continuity $v_r = C \frac{1}{r}$:

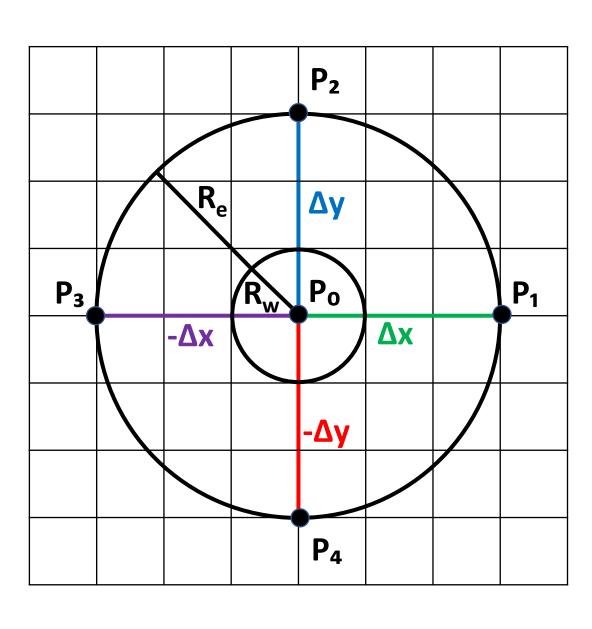
Refe	
[1]	A. Eins
[2]	A. et. a
[3]	H. Hua 2006.
[4]	D. Pea
[5]	A. Pra

(6)

$$q = \frac{kh}{\mu} \int_{\partial B(0, R_{\rm en})} \frac{\partial u}{\partial r} ds \tag{7}$$

$$q = \frac{2\pi k}{\mu} \cdot \frac{P_e - P_w}{\ln\left(\frac{R_e}{R_w}\right)} \tag{8}$$

Circular Model on grid



Forchheimer Relation for Pressure

$$\tilde{q} = V_r \Big|_{r=R_w} \cdot 2\pi R_w \tag{9}$$

$$\tilde{q} = 2\pi \left(\frac{B - \sqrt{B^2 + 4AD}}{2A}\right)$$

erences

stein. Investigations on the theory of the brownian movement. 1926.

al. Productivity index for darcy and pre-/post-darcy flow (analytical approach). 2017.

ang and J. Ayoub. Applicability of the forchheimer equation for non-darcy flow in porous media.

aceman. Interpretation of well-block pressures in numerical reservoir simulation. 1978.

ada and F. Civan. Modification of darcy's law for the threshold pressure gradient. 1999.

Forchheimer Model of Flow in Media

From Forchheimer's equation in the radial case:

$$\begin{cases} -\frac{\partial p}{\partial r} \\ p|_{r=1} \\ p|_{r=1} \end{cases}$$

With solution:

With the following definitions and functions:

 C_1

Results: Forchheimer vs. Peaceman

By equating our \tilde{q} and Peaceman's q, we can get corresponding value of R_w with fixed β :

$$2\pi \left(\frac{B - \sqrt{B^2 + 4AD}}{2A}\right) = \frac{k}{\mu} [4P_e - 4P_0]$$
 (14)

• Let $R_e = \Delta$ in functions $A(R_e, R_w)$ and $B(R_e, R_w)$. Let $P_w = P_0$ in function $D(P_e, P_w)$

of α , β , P_0 , P_e , Δ .

(10)

$$\frac{\partial p}{\partial r} = \alpha v_r(r) + \beta \left(v_r(r) \right)^2 \tag{11}$$

BVP for radial P(r) in the domain with boundary conditions and equation of continuity $v_r = C\frac{1}{r}$:

$$= C \frac{\alpha}{r} + C^2 \beta \frac{1}{r^2}$$

$$R_w = P_w , \quad R_w < r < R_e$$
(12)
$$R_e = P_e$$

$$P(r) = -C\alpha \ln(\frac{r}{R_e}) + C^2\beta \frac{1}{r} + C_1$$
 (13)

$$C = \frac{B - \sqrt{B^2 + 4AD}}{2A}$$
$$= P_e - \left(\frac{B + \sqrt{B^2 + 4AD}}{2A}\right)\beta \frac{1}{R_e}$$
$$A(R_e, R_w) = -\beta \left(\frac{R_e - R_w}{R_e \cdot R_w}\right)$$
$$B(R_e, R_w) = \alpha \ln \left(\frac{R_e}{R_e}\right)$$
$$D(P_e, P_w) = P_e - P_w$$

• α and β are given from the experiment.

End goal is to find $R_w = R_0$ which will solve transcendent equation (14) with respect to known values